Merge tag 'x86-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / kernel / kexec_file.c
blobca40bef75a6169c5a737be2c5857346c22a9e38e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
31 static int kexec_calculate_store_digests(struct kimage *image);
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 unsigned long buf_len)
41 const struct kexec_file_ops * const *fops;
42 int ret = -ENOEXEC;
44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 ret = (*fops)->probe(buf, buf_len);
46 if (!ret) {
47 image->fops = *fops;
48 return ret;
52 return ret;
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 unsigned long buf_len)
59 return kexec_image_probe_default(image, buf, buf_len);
62 static void *kexec_image_load_default(struct kimage *image)
64 if (!image->fops || !image->fops->load)
65 return ERR_PTR(-ENOEXEC);
67 return image->fops->load(image, image->kernel_buf,
68 image->kernel_buf_len, image->initrd_buf,
69 image->initrd_buf_len, image->cmdline_buf,
70 image->cmdline_buf_len);
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
75 return kexec_image_load_default(image);
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 if (!image->fops || !image->fops->cleanup)
81 return 0;
83 return image->fops->cleanup(image->image_loader_data);
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
88 return kexec_image_post_load_cleanup_default(image);
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 unsigned long buf_len)
95 if (!image->fops || !image->fops->verify_sig) {
96 pr_debug("kernel loader does not support signature verification.\n");
97 return -EKEYREJECTED;
100 return image->fops->verify_sig(buf, buf_len);
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 unsigned long buf_len)
106 return kexec_image_verify_sig_default(image, buf, buf_len);
108 #endif
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
117 * Return: 0 on success, negative errno on error.
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
134 * Return: 0 on success, negative errno on error.
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
140 pr_err("REL relocation unsupported.\n");
141 return -ENOEXEC;
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
149 void kimage_file_post_load_cleanup(struct kimage *image)
151 struct purgatory_info *pi = &image->purgatory_info;
153 vfree(image->kernel_buf);
154 image->kernel_buf = NULL;
156 vfree(image->initrd_buf);
157 image->initrd_buf = NULL;
159 kfree(image->cmdline_buf);
160 image->cmdline_buf = NULL;
162 vfree(pi->purgatory_buf);
163 pi->purgatory_buf = NULL;
165 vfree(pi->sechdrs);
166 pi->sechdrs = NULL;
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image);
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
176 kfree(image->image_loader_data);
177 image->image_loader_data = NULL;
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
184 int ret;
186 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
187 image->kernel_buf_len);
188 if (ret) {
190 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
191 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
192 return ret;
196 * If IMA is guaranteed to appraise a signature on the kexec
197 * image, permit it even if the kernel is otherwise locked
198 * down.
200 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
201 security_locked_down(LOCKDOWN_KEXEC))
202 return -EPERM;
204 pr_debug("kernel signature verification failed (%d).\n", ret);
207 return 0;
209 #endif
212 * In file mode list of segments is prepared by kernel. Copy relevant
213 * data from user space, do error checking, prepare segment list
215 static int
216 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
217 const char __user *cmdline_ptr,
218 unsigned long cmdline_len, unsigned flags)
220 int ret;
221 void *ldata;
222 loff_t size;
224 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
225 &size, INT_MAX, READING_KEXEC_IMAGE);
226 if (ret)
227 return ret;
228 image->kernel_buf_len = size;
230 /* Call arch image probe handlers */
231 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
232 image->kernel_buf_len);
233 if (ret)
234 goto out;
236 #ifdef CONFIG_KEXEC_SIG
237 ret = kimage_validate_signature(image);
239 if (ret)
240 goto out;
241 #endif
242 /* It is possible that there no initramfs is being loaded */
243 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
244 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
245 &size, INT_MAX,
246 READING_KEXEC_INITRAMFS);
247 if (ret)
248 goto out;
249 image->initrd_buf_len = size;
252 if (cmdline_len) {
253 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
254 if (IS_ERR(image->cmdline_buf)) {
255 ret = PTR_ERR(image->cmdline_buf);
256 image->cmdline_buf = NULL;
257 goto out;
260 image->cmdline_buf_len = cmdline_len;
262 /* command line should be a string with last byte null */
263 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
264 ret = -EINVAL;
265 goto out;
268 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
269 image->cmdline_buf_len - 1);
272 /* IMA needs to pass the measurement list to the next kernel. */
273 ima_add_kexec_buffer(image);
275 /* Call arch image load handlers */
276 ldata = arch_kexec_kernel_image_load(image);
278 if (IS_ERR(ldata)) {
279 ret = PTR_ERR(ldata);
280 goto out;
283 image->image_loader_data = ldata;
284 out:
285 /* In case of error, free up all allocated memory in this function */
286 if (ret)
287 kimage_file_post_load_cleanup(image);
288 return ret;
291 static int
292 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
293 int initrd_fd, const char __user *cmdline_ptr,
294 unsigned long cmdline_len, unsigned long flags)
296 int ret;
297 struct kimage *image;
298 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
300 image = do_kimage_alloc_init();
301 if (!image)
302 return -ENOMEM;
304 image->file_mode = 1;
306 if (kexec_on_panic) {
307 /* Enable special crash kernel control page alloc policy. */
308 image->control_page = crashk_res.start;
309 image->type = KEXEC_TYPE_CRASH;
312 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
313 cmdline_ptr, cmdline_len, flags);
314 if (ret)
315 goto out_free_image;
317 ret = sanity_check_segment_list(image);
318 if (ret)
319 goto out_free_post_load_bufs;
321 ret = -ENOMEM;
322 image->control_code_page = kimage_alloc_control_pages(image,
323 get_order(KEXEC_CONTROL_PAGE_SIZE));
324 if (!image->control_code_page) {
325 pr_err("Could not allocate control_code_buffer\n");
326 goto out_free_post_load_bufs;
329 if (!kexec_on_panic) {
330 image->swap_page = kimage_alloc_control_pages(image, 0);
331 if (!image->swap_page) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages;
337 *rimage = image;
338 return 0;
339 out_free_control_pages:
340 kimage_free_page_list(&image->control_pages);
341 out_free_post_load_bufs:
342 kimage_file_post_load_cleanup(image);
343 out_free_image:
344 kfree(image);
345 return ret;
348 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
349 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
350 unsigned long, flags)
352 int ret = 0, i;
353 struct kimage **dest_image, *image;
355 /* We only trust the superuser with rebooting the system. */
356 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
357 return -EPERM;
359 /* Make sure we have a legal set of flags */
360 if (flags != (flags & KEXEC_FILE_FLAGS))
361 return -EINVAL;
363 image = NULL;
365 if (!mutex_trylock(&kexec_mutex))
366 return -EBUSY;
368 dest_image = &kexec_image;
369 if (flags & KEXEC_FILE_ON_CRASH) {
370 dest_image = &kexec_crash_image;
371 if (kexec_crash_image)
372 arch_kexec_unprotect_crashkres();
375 if (flags & KEXEC_FILE_UNLOAD)
376 goto exchange;
379 * In case of crash, new kernel gets loaded in reserved region. It is
380 * same memory where old crash kernel might be loaded. Free any
381 * current crash dump kernel before we corrupt it.
383 if (flags & KEXEC_FILE_ON_CRASH)
384 kimage_free(xchg(&kexec_crash_image, NULL));
386 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
387 cmdline_len, flags);
388 if (ret)
389 goto out;
391 ret = machine_kexec_prepare(image);
392 if (ret)
393 goto out;
396 * Some architecture(like S390) may touch the crash memory before
397 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
399 ret = kimage_crash_copy_vmcoreinfo(image);
400 if (ret)
401 goto out;
403 ret = kexec_calculate_store_digests(image);
404 if (ret)
405 goto out;
407 for (i = 0; i < image->nr_segments; i++) {
408 struct kexec_segment *ksegment;
410 ksegment = &image->segment[i];
411 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
412 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
413 ksegment->memsz);
415 ret = kimage_load_segment(image, &image->segment[i]);
416 if (ret)
417 goto out;
420 kimage_terminate(image);
422 ret = machine_kexec_post_load(image);
423 if (ret)
424 goto out;
427 * Free up any temporary buffers allocated which are not needed
428 * after image has been loaded
430 kimage_file_post_load_cleanup(image);
431 exchange:
432 image = xchg(dest_image, image);
433 out:
434 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
435 arch_kexec_protect_crashkres();
437 mutex_unlock(&kexec_mutex);
438 kimage_free(image);
439 return ret;
442 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
443 struct kexec_buf *kbuf)
445 struct kimage *image = kbuf->image;
446 unsigned long temp_start, temp_end;
448 temp_end = min(end, kbuf->buf_max);
449 temp_start = temp_end - kbuf->memsz;
451 do {
452 /* align down start */
453 temp_start = temp_start & (~(kbuf->buf_align - 1));
455 if (temp_start < start || temp_start < kbuf->buf_min)
456 return 0;
458 temp_end = temp_start + kbuf->memsz - 1;
461 * Make sure this does not conflict with any of existing
462 * segments
464 if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 temp_start = temp_start - PAGE_SIZE;
466 continue;
469 /* We found a suitable memory range */
470 break;
471 } while (1);
473 /* If we are here, we found a suitable memory range */
474 kbuf->mem = temp_start;
476 /* Success, stop navigating through remaining System RAM ranges */
477 return 1;
480 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
481 struct kexec_buf *kbuf)
483 struct kimage *image = kbuf->image;
484 unsigned long temp_start, temp_end;
486 temp_start = max(start, kbuf->buf_min);
488 do {
489 temp_start = ALIGN(temp_start, kbuf->buf_align);
490 temp_end = temp_start + kbuf->memsz - 1;
492 if (temp_end > end || temp_end > kbuf->buf_max)
493 return 0;
495 * Make sure this does not conflict with any of existing
496 * segments
498 if (kimage_is_destination_range(image, temp_start, temp_end)) {
499 temp_start = temp_start + PAGE_SIZE;
500 continue;
503 /* We found a suitable memory range */
504 break;
505 } while (1);
507 /* If we are here, we found a suitable memory range */
508 kbuf->mem = temp_start;
510 /* Success, stop navigating through remaining System RAM ranges */
511 return 1;
514 static int locate_mem_hole_callback(struct resource *res, void *arg)
516 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
517 u64 start = res->start, end = res->end;
518 unsigned long sz = end - start + 1;
520 /* Returning 0 will take to next memory range */
522 /* Don't use memory that will be detected and handled by a driver. */
523 if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
524 return 0;
526 if (sz < kbuf->memsz)
527 return 0;
529 if (end < kbuf->buf_min || start > kbuf->buf_max)
530 return 0;
533 * Allocate memory top down with-in ram range. Otherwise bottom up
534 * allocation.
536 if (kbuf->top_down)
537 return locate_mem_hole_top_down(start, end, kbuf);
538 return locate_mem_hole_bottom_up(start, end, kbuf);
541 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
542 static int kexec_walk_memblock(struct kexec_buf *kbuf,
543 int (*func)(struct resource *, void *))
545 int ret = 0;
546 u64 i;
547 phys_addr_t mstart, mend;
548 struct resource res = { };
550 if (kbuf->image->type == KEXEC_TYPE_CRASH)
551 return func(&crashk_res, kbuf);
553 if (kbuf->top_down) {
554 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555 &mstart, &mend, NULL) {
557 * In memblock, end points to the first byte after the
558 * range while in kexec, end points to the last byte
559 * in the range.
561 res.start = mstart;
562 res.end = mend - 1;
563 ret = func(&res, kbuf);
564 if (ret)
565 break;
567 } else {
568 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569 &mstart, &mend, NULL) {
571 * In memblock, end points to the first byte after the
572 * range while in kexec, end points to the last byte
573 * in the range.
575 res.start = mstart;
576 res.end = mend - 1;
577 ret = func(&res, kbuf);
578 if (ret)
579 break;
583 return ret;
585 #else
586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 int (*func)(struct resource *, void *))
589 return 0;
591 #endif
594 * kexec_walk_resources - call func(data) on free memory regions
595 * @kbuf: Context info for the search. Also passed to @func.
596 * @func: Function to call for each memory region.
598 * Return: The memory walk will stop when func returns a non-zero value
599 * and that value will be returned. If all free regions are visited without
600 * func returning non-zero, then zero will be returned.
602 static int kexec_walk_resources(struct kexec_buf *kbuf,
603 int (*func)(struct resource *, void *))
605 if (kbuf->image->type == KEXEC_TYPE_CRASH)
606 return walk_iomem_res_desc(crashk_res.desc,
607 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
608 crashk_res.start, crashk_res.end,
609 kbuf, func);
610 else
611 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
615 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
616 * @kbuf: Parameters for the memory search.
618 * On success, kbuf->mem will have the start address of the memory region found.
620 * Return: 0 on success, negative errno on error.
622 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
624 int ret;
626 /* Arch knows where to place */
627 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
628 return 0;
630 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
631 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
632 else
633 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
635 return ret == 1 ? 0 : -EADDRNOTAVAIL;
639 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
640 * @kbuf: Parameters for the memory search.
642 * On success, kbuf->mem will have the start address of the memory region found.
644 * Return: 0 on success, negative errno on error.
646 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
648 return kexec_locate_mem_hole(kbuf);
652 * kexec_add_buffer - place a buffer in a kexec segment
653 * @kbuf: Buffer contents and memory parameters.
655 * This function assumes that kexec_mutex is held.
656 * On successful return, @kbuf->mem will have the physical address of
657 * the buffer in memory.
659 * Return: 0 on success, negative errno on error.
661 int kexec_add_buffer(struct kexec_buf *kbuf)
663 struct kexec_segment *ksegment;
664 int ret;
666 /* Currently adding segment this way is allowed only in file mode */
667 if (!kbuf->image->file_mode)
668 return -EINVAL;
670 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
671 return -EINVAL;
674 * Make sure we are not trying to add buffer after allocating
675 * control pages. All segments need to be placed first before
676 * any control pages are allocated. As control page allocation
677 * logic goes through list of segments to make sure there are
678 * no destination overlaps.
680 if (!list_empty(&kbuf->image->control_pages)) {
681 WARN_ON(1);
682 return -EINVAL;
685 /* Ensure minimum alignment needed for segments. */
686 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
687 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
689 /* Walk the RAM ranges and allocate a suitable range for the buffer */
690 ret = arch_kexec_locate_mem_hole(kbuf);
691 if (ret)
692 return ret;
694 /* Found a suitable memory range */
695 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
696 ksegment->kbuf = kbuf->buffer;
697 ksegment->bufsz = kbuf->bufsz;
698 ksegment->mem = kbuf->mem;
699 ksegment->memsz = kbuf->memsz;
700 kbuf->image->nr_segments++;
701 return 0;
704 /* Calculate and store the digest of segments */
705 static int kexec_calculate_store_digests(struct kimage *image)
707 struct crypto_shash *tfm;
708 struct shash_desc *desc;
709 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
710 size_t desc_size, nullsz;
711 char *digest;
712 void *zero_buf;
713 struct kexec_sha_region *sha_regions;
714 struct purgatory_info *pi = &image->purgatory_info;
716 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
717 return 0;
719 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
720 zero_buf_sz = PAGE_SIZE;
722 tfm = crypto_alloc_shash("sha256", 0, 0);
723 if (IS_ERR(tfm)) {
724 ret = PTR_ERR(tfm);
725 goto out;
728 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
729 desc = kzalloc(desc_size, GFP_KERNEL);
730 if (!desc) {
731 ret = -ENOMEM;
732 goto out_free_tfm;
735 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
736 sha_regions = vzalloc(sha_region_sz);
737 if (!sha_regions)
738 goto out_free_desc;
740 desc->tfm = tfm;
742 ret = crypto_shash_init(desc);
743 if (ret < 0)
744 goto out_free_sha_regions;
746 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
747 if (!digest) {
748 ret = -ENOMEM;
749 goto out_free_sha_regions;
752 for (j = i = 0; i < image->nr_segments; i++) {
753 struct kexec_segment *ksegment;
755 ksegment = &image->segment[i];
757 * Skip purgatory as it will be modified once we put digest
758 * info in purgatory.
760 if (ksegment->kbuf == pi->purgatory_buf)
761 continue;
763 ret = crypto_shash_update(desc, ksegment->kbuf,
764 ksegment->bufsz);
765 if (ret)
766 break;
769 * Assume rest of the buffer is filled with zero and
770 * update digest accordingly.
772 nullsz = ksegment->memsz - ksegment->bufsz;
773 while (nullsz) {
774 unsigned long bytes = nullsz;
776 if (bytes > zero_buf_sz)
777 bytes = zero_buf_sz;
778 ret = crypto_shash_update(desc, zero_buf, bytes);
779 if (ret)
780 break;
781 nullsz -= bytes;
784 if (ret)
785 break;
787 sha_regions[j].start = ksegment->mem;
788 sha_regions[j].len = ksegment->memsz;
789 j++;
792 if (!ret) {
793 ret = crypto_shash_final(desc, digest);
794 if (ret)
795 goto out_free_digest;
796 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
797 sha_regions, sha_region_sz, 0);
798 if (ret)
799 goto out_free_digest;
801 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
802 digest, SHA256_DIGEST_SIZE, 0);
803 if (ret)
804 goto out_free_digest;
807 out_free_digest:
808 kfree(digest);
809 out_free_sha_regions:
810 vfree(sha_regions);
811 out_free_desc:
812 kfree(desc);
813 out_free_tfm:
814 kfree(tfm);
815 out:
816 return ret;
819 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
821 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
822 * @pi: Purgatory to be loaded.
823 * @kbuf: Buffer to setup.
825 * Allocates the memory needed for the buffer. Caller is responsible to free
826 * the memory after use.
828 * Return: 0 on success, negative errno on error.
830 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
831 struct kexec_buf *kbuf)
833 const Elf_Shdr *sechdrs;
834 unsigned long bss_align;
835 unsigned long bss_sz;
836 unsigned long align;
837 int i, ret;
839 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
840 kbuf->buf_align = bss_align = 1;
841 kbuf->bufsz = bss_sz = 0;
843 for (i = 0; i < pi->ehdr->e_shnum; i++) {
844 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
845 continue;
847 align = sechdrs[i].sh_addralign;
848 if (sechdrs[i].sh_type != SHT_NOBITS) {
849 if (kbuf->buf_align < align)
850 kbuf->buf_align = align;
851 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
852 kbuf->bufsz += sechdrs[i].sh_size;
853 } else {
854 if (bss_align < align)
855 bss_align = align;
856 bss_sz = ALIGN(bss_sz, align);
857 bss_sz += sechdrs[i].sh_size;
860 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
861 kbuf->memsz = kbuf->bufsz + bss_sz;
862 if (kbuf->buf_align < bss_align)
863 kbuf->buf_align = bss_align;
865 kbuf->buffer = vzalloc(kbuf->bufsz);
866 if (!kbuf->buffer)
867 return -ENOMEM;
868 pi->purgatory_buf = kbuf->buffer;
870 ret = kexec_add_buffer(kbuf);
871 if (ret)
872 goto out;
874 return 0;
875 out:
876 vfree(pi->purgatory_buf);
877 pi->purgatory_buf = NULL;
878 return ret;
882 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
883 * @pi: Purgatory to be loaded.
884 * @kbuf: Buffer prepared to store purgatory.
886 * Allocates the memory needed for the buffer. Caller is responsible to free
887 * the memory after use.
889 * Return: 0 on success, negative errno on error.
891 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
892 struct kexec_buf *kbuf)
894 unsigned long bss_addr;
895 unsigned long offset;
896 Elf_Shdr *sechdrs;
897 int i;
900 * The section headers in kexec_purgatory are read-only. In order to
901 * have them modifiable make a temporary copy.
903 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
904 if (!sechdrs)
905 return -ENOMEM;
906 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
907 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
908 pi->sechdrs = sechdrs;
910 offset = 0;
911 bss_addr = kbuf->mem + kbuf->bufsz;
912 kbuf->image->start = pi->ehdr->e_entry;
914 for (i = 0; i < pi->ehdr->e_shnum; i++) {
915 unsigned long align;
916 void *src, *dst;
918 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
919 continue;
921 align = sechdrs[i].sh_addralign;
922 if (sechdrs[i].sh_type == SHT_NOBITS) {
923 bss_addr = ALIGN(bss_addr, align);
924 sechdrs[i].sh_addr = bss_addr;
925 bss_addr += sechdrs[i].sh_size;
926 continue;
929 offset = ALIGN(offset, align);
930 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
931 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
932 pi->ehdr->e_entry < (sechdrs[i].sh_addr
933 + sechdrs[i].sh_size)) {
934 kbuf->image->start -= sechdrs[i].sh_addr;
935 kbuf->image->start += kbuf->mem + offset;
938 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
939 dst = pi->purgatory_buf + offset;
940 memcpy(dst, src, sechdrs[i].sh_size);
942 sechdrs[i].sh_addr = kbuf->mem + offset;
943 sechdrs[i].sh_offset = offset;
944 offset += sechdrs[i].sh_size;
947 return 0;
950 static int kexec_apply_relocations(struct kimage *image)
952 int i, ret;
953 struct purgatory_info *pi = &image->purgatory_info;
954 const Elf_Shdr *sechdrs;
956 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
958 for (i = 0; i < pi->ehdr->e_shnum; i++) {
959 const Elf_Shdr *relsec;
960 const Elf_Shdr *symtab;
961 Elf_Shdr *section;
963 relsec = sechdrs + i;
965 if (relsec->sh_type != SHT_RELA &&
966 relsec->sh_type != SHT_REL)
967 continue;
970 * For section of type SHT_RELA/SHT_REL,
971 * ->sh_link contains section header index of associated
972 * symbol table. And ->sh_info contains section header
973 * index of section to which relocations apply.
975 if (relsec->sh_info >= pi->ehdr->e_shnum ||
976 relsec->sh_link >= pi->ehdr->e_shnum)
977 return -ENOEXEC;
979 section = pi->sechdrs + relsec->sh_info;
980 symtab = sechdrs + relsec->sh_link;
982 if (!(section->sh_flags & SHF_ALLOC))
983 continue;
986 * symtab->sh_link contain section header index of associated
987 * string table.
989 if (symtab->sh_link >= pi->ehdr->e_shnum)
990 /* Invalid section number? */
991 continue;
994 * Respective architecture needs to provide support for applying
995 * relocations of type SHT_RELA/SHT_REL.
997 if (relsec->sh_type == SHT_RELA)
998 ret = arch_kexec_apply_relocations_add(pi, section,
999 relsec, symtab);
1000 else if (relsec->sh_type == SHT_REL)
1001 ret = arch_kexec_apply_relocations(pi, section,
1002 relsec, symtab);
1003 if (ret)
1004 return ret;
1007 return 0;
1011 * kexec_load_purgatory - Load and relocate the purgatory object.
1012 * @image: Image to add the purgatory to.
1013 * @kbuf: Memory parameters to use.
1015 * Allocates the memory needed for image->purgatory_info.sechdrs and
1016 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1017 * to free the memory after use.
1019 * Return: 0 on success, negative errno on error.
1021 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1023 struct purgatory_info *pi = &image->purgatory_info;
1024 int ret;
1026 if (kexec_purgatory_size <= 0)
1027 return -EINVAL;
1029 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1031 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1032 if (ret)
1033 return ret;
1035 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1036 if (ret)
1037 goto out_free_kbuf;
1039 ret = kexec_apply_relocations(image);
1040 if (ret)
1041 goto out;
1043 return 0;
1044 out:
1045 vfree(pi->sechdrs);
1046 pi->sechdrs = NULL;
1047 out_free_kbuf:
1048 vfree(pi->purgatory_buf);
1049 pi->purgatory_buf = NULL;
1050 return ret;
1054 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1055 * @pi: Purgatory to search in.
1056 * @name: Name of the symbol.
1058 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1060 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1061 const char *name)
1063 const Elf_Shdr *sechdrs;
1064 const Elf_Ehdr *ehdr;
1065 const Elf_Sym *syms;
1066 const char *strtab;
1067 int i, k;
1069 if (!pi->ehdr)
1070 return NULL;
1072 ehdr = pi->ehdr;
1073 sechdrs = (void *)ehdr + ehdr->e_shoff;
1075 for (i = 0; i < ehdr->e_shnum; i++) {
1076 if (sechdrs[i].sh_type != SHT_SYMTAB)
1077 continue;
1079 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1080 /* Invalid strtab section number */
1081 continue;
1082 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1083 syms = (void *)ehdr + sechdrs[i].sh_offset;
1085 /* Go through symbols for a match */
1086 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1087 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1088 continue;
1090 if (strcmp(strtab + syms[k].st_name, name) != 0)
1091 continue;
1093 if (syms[k].st_shndx == SHN_UNDEF ||
1094 syms[k].st_shndx >= ehdr->e_shnum) {
1095 pr_debug("Symbol: %s has bad section index %d.\n",
1096 name, syms[k].st_shndx);
1097 return NULL;
1100 /* Found the symbol we are looking for */
1101 return &syms[k];
1105 return NULL;
1108 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1110 struct purgatory_info *pi = &image->purgatory_info;
1111 const Elf_Sym *sym;
1112 Elf_Shdr *sechdr;
1114 sym = kexec_purgatory_find_symbol(pi, name);
1115 if (!sym)
1116 return ERR_PTR(-EINVAL);
1118 sechdr = &pi->sechdrs[sym->st_shndx];
1121 * Returns the address where symbol will finally be loaded after
1122 * kexec_load_segment()
1124 return (void *)(sechdr->sh_addr + sym->st_value);
1128 * Get or set value of a symbol. If "get_value" is true, symbol value is
1129 * returned in buf otherwise symbol value is set based on value in buf.
1131 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1132 void *buf, unsigned int size, bool get_value)
1134 struct purgatory_info *pi = &image->purgatory_info;
1135 const Elf_Sym *sym;
1136 Elf_Shdr *sec;
1137 char *sym_buf;
1139 sym = kexec_purgatory_find_symbol(pi, name);
1140 if (!sym)
1141 return -EINVAL;
1143 if (sym->st_size != size) {
1144 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1145 name, (unsigned long)sym->st_size, size);
1146 return -EINVAL;
1149 sec = pi->sechdrs + sym->st_shndx;
1151 if (sec->sh_type == SHT_NOBITS) {
1152 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1153 get_value ? "get" : "set");
1154 return -EINVAL;
1157 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1159 if (get_value)
1160 memcpy((void *)buf, sym_buf, size);
1161 else
1162 memcpy((void *)sym_buf, buf, size);
1164 return 0;
1166 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1168 int crash_exclude_mem_range(struct crash_mem *mem,
1169 unsigned long long mstart, unsigned long long mend)
1171 int i, j;
1172 unsigned long long start, end, p_start, p_end;
1173 struct crash_mem_range temp_range = {0, 0};
1175 for (i = 0; i < mem->nr_ranges; i++) {
1176 start = mem->ranges[i].start;
1177 end = mem->ranges[i].end;
1178 p_start = mstart;
1179 p_end = mend;
1181 if (mstart > end || mend < start)
1182 continue;
1184 /* Truncate any area outside of range */
1185 if (mstart < start)
1186 p_start = start;
1187 if (mend > end)
1188 p_end = end;
1190 /* Found completely overlapping range */
1191 if (p_start == start && p_end == end) {
1192 mem->ranges[i].start = 0;
1193 mem->ranges[i].end = 0;
1194 if (i < mem->nr_ranges - 1) {
1195 /* Shift rest of the ranges to left */
1196 for (j = i; j < mem->nr_ranges - 1; j++) {
1197 mem->ranges[j].start =
1198 mem->ranges[j+1].start;
1199 mem->ranges[j].end =
1200 mem->ranges[j+1].end;
1204 * Continue to check if there are another overlapping ranges
1205 * from the current position because of shifting the above
1206 * mem ranges.
1208 i--;
1209 mem->nr_ranges--;
1210 continue;
1212 mem->nr_ranges--;
1213 return 0;
1216 if (p_start > start && p_end < end) {
1217 /* Split original range */
1218 mem->ranges[i].end = p_start - 1;
1219 temp_range.start = p_end + 1;
1220 temp_range.end = end;
1221 } else if (p_start != start)
1222 mem->ranges[i].end = p_start - 1;
1223 else
1224 mem->ranges[i].start = p_end + 1;
1225 break;
1228 /* If a split happened, add the split to array */
1229 if (!temp_range.end)
1230 return 0;
1232 /* Split happened */
1233 if (i == mem->max_nr_ranges - 1)
1234 return -ENOMEM;
1236 /* Location where new range should go */
1237 j = i + 1;
1238 if (j < mem->nr_ranges) {
1239 /* Move over all ranges one slot towards the end */
1240 for (i = mem->nr_ranges - 1; i >= j; i--)
1241 mem->ranges[i + 1] = mem->ranges[i];
1244 mem->ranges[j].start = temp_range.start;
1245 mem->ranges[j].end = temp_range.end;
1246 mem->nr_ranges++;
1247 return 0;
1250 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1251 void **addr, unsigned long *sz)
1253 Elf64_Ehdr *ehdr;
1254 Elf64_Phdr *phdr;
1255 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1256 unsigned char *buf;
1257 unsigned int cpu, i;
1258 unsigned long long notes_addr;
1259 unsigned long mstart, mend;
1261 /* extra phdr for vmcoreinfo ELF note */
1262 nr_phdr = nr_cpus + 1;
1263 nr_phdr += mem->nr_ranges;
1266 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1267 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1268 * I think this is required by tools like gdb. So same physical
1269 * memory will be mapped in two ELF headers. One will contain kernel
1270 * text virtual addresses and other will have __va(physical) addresses.
1273 nr_phdr++;
1274 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1275 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1277 buf = vzalloc(elf_sz);
1278 if (!buf)
1279 return -ENOMEM;
1281 ehdr = (Elf64_Ehdr *)buf;
1282 phdr = (Elf64_Phdr *)(ehdr + 1);
1283 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1284 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1285 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1286 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1287 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1288 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1289 ehdr->e_type = ET_CORE;
1290 ehdr->e_machine = ELF_ARCH;
1291 ehdr->e_version = EV_CURRENT;
1292 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1293 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1294 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1296 /* Prepare one phdr of type PT_NOTE for each present CPU */
1297 for_each_present_cpu(cpu) {
1298 phdr->p_type = PT_NOTE;
1299 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1300 phdr->p_offset = phdr->p_paddr = notes_addr;
1301 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1302 (ehdr->e_phnum)++;
1303 phdr++;
1306 /* Prepare one PT_NOTE header for vmcoreinfo */
1307 phdr->p_type = PT_NOTE;
1308 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1309 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1310 (ehdr->e_phnum)++;
1311 phdr++;
1313 /* Prepare PT_LOAD type program header for kernel text region */
1314 if (kernel_map) {
1315 phdr->p_type = PT_LOAD;
1316 phdr->p_flags = PF_R|PF_W|PF_X;
1317 phdr->p_vaddr = (unsigned long) _text;
1318 phdr->p_filesz = phdr->p_memsz = _end - _text;
1319 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1320 ehdr->e_phnum++;
1321 phdr++;
1324 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1325 for (i = 0; i < mem->nr_ranges; i++) {
1326 mstart = mem->ranges[i].start;
1327 mend = mem->ranges[i].end;
1329 phdr->p_type = PT_LOAD;
1330 phdr->p_flags = PF_R|PF_W|PF_X;
1331 phdr->p_offset = mstart;
1333 phdr->p_paddr = mstart;
1334 phdr->p_vaddr = (unsigned long) __va(mstart);
1335 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1336 phdr->p_align = 0;
1337 ehdr->e_phnum++;
1338 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1339 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1340 ehdr->e_phnum, phdr->p_offset);
1341 phdr++;
1344 *addr = buf;
1345 *sz = elf_sz;
1346 return 0;