libceph: always reset osds when kicking
[linux/fpc-iii.git] / mm / page_alloc.c
blobceb416878fe01dda1d36517b9a8e11e1bfdfcb54
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
96 EXPORT_SYMBOL(node_states);
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
106 unsigned long dirty_balance_reserve __read_mostly;
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111 #ifdef CONFIG_PM_SLEEP
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
121 static gfp_t saved_gfp_mask;
123 void pm_restore_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
132 void pm_restrict_gfp_mask(void)
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
140 bool pm_suspended_storage(void)
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
146 #endif /* CONFIG_PM_SLEEP */
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
152 static void __free_pages_ok(struct page *page, unsigned int order);
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
174 #endif
178 EXPORT_SYMBOL(totalram_pages);
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
194 int min_free_kbytes = 1024;
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
219 int page_group_by_mobility_disabled __read_mostly;
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
226 void set_pageblock_migratetype(struct page *page, int migratetype)
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
236 bool oom_killer_disabled __read_mostly;
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
253 return ret;
256 static int page_is_consistent(struct zone *zone, struct page *page)
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
263 return 1;
266 * Temporary debugging check for pages not lying within a given zone.
268 static int bad_range(struct zone *zone, struct page *page)
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
275 return 0;
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
280 return 0;
282 #endif
284 static void bad_page(struct page *page)
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
311 nr_shown = 0;
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page *page)
345 __free_pages_ok(page, compound_order(page));
348 void prep_compound_page(struct page *page, unsigned long order)
350 int i;
351 int nr_pages = 1 << order;
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
386 __ClearPageTail(p);
389 return bad;
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 int i;
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
408 static int __init debug_guardpage_minorder_setup(char *buf)
410 unsigned long res;
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
422 static inline void set_page_guard_flag(struct page *page)
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 static inline void clear_page_guard_flag(struct page *page)
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
436 static inline void set_page_order(struct page *page, int order)
438 set_page_private(page, order);
439 __SetPageBuddy(page);
442 static inline void rmv_page_order(struct page *page)
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
468 return page_idx ^ (1 << order);
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
482 * For recording page's order, we use page_private(page).
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
502 return 0;
506 * Freeing function for a buddy system allocator.
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
526 * -- wli
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
542 VM_BUG_ON(migratetype == -1);
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
573 set_page_order(page, order);
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 zone->free_area[order].nr_free++;
601 static inline int free_pages_check(struct page *page)
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (atomic_read(&page->_count) != 0) |
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
608 bad_page(page);
609 return 1;
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
617 * Frees a number of pages from the PCP lists
618 * Assumes all pages on list are in same zone, and of same order.
619 * count is the number of pages to free.
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
627 static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
630 int migratetype = 0;
631 int batch_free = 0;
632 int to_free = count;
634 spin_lock(&zone->lock);
635 zone->all_unreclaimable = 0;
636 zone->pages_scanned = 0;
638 while (to_free) {
639 struct page *page;
640 struct list_head *list;
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
649 do {
650 batch_free++;
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
660 do {
661 int mt; /* migratetype of the to-be-freed page */
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
666 mt = get_freepage_migratetype(page);
667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 } while (--to_free && --batch_free && !list_empty(list));
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
691 static bool free_pages_prepare(struct page *page, unsigned int order)
693 int i;
694 int bad = 0;
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
714 return true;
717 static void __free_pages_ok(struct page *page, unsigned int order)
719 unsigned long flags;
720 int migratetype;
722 if (!free_pages_prepare(page, order))
723 return;
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
748 set_page_refcounted(page);
749 __free_pages(page, order);
752 #ifdef CONFIG_CMA
753 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754 void __init init_cma_reserved_pageblock(struct page *page)
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
769 #endif
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
783 * -- wli
785 static inline void expand(struct zone *zone, struct page *page,
786 int low, int high, struct free_area *area,
787 int migratetype)
789 unsigned long size = 1 << high;
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
795 VM_BUG_ON(bad_range(zone, &page[size]));
797 #ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
811 continue;
813 #endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
821 * This page is about to be returned from the page allocator
823 static inline int check_new_page(struct page *page)
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
833 return 0;
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
838 int i;
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
846 set_page_private(page, 0);
847 set_page_refcounted(page);
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
858 return 0;
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
888 return NULL;
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904 #endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
914 int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
922 #ifndef CONFIG_HOLES_IN_ZONE
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 set_freepage_migratetype(page, migratetype);
951 page += 1 << order;
952 pages_moved += 1 << order;
955 return pages_moved;
958 int move_freepages_block(struct zone *zone, struct page *page,
959 int migratetype)
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
964 start_pfn = page_to_pfn(page);
965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
966 start_page = pfn_to_page(start_pfn);
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
976 return move_freepages(zone, start_page, end_page, migratetype);
979 static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
990 /* Remove an element from the buddy allocator from the fallback list */
991 static inline struct page *
992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
1002 for (i = 0;; i++) {
1003 migratetype = fallbacks[start_migratetype][i];
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
1007 break;
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1018 * If breaking a large block of pages, move all free
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
1021 * aggressive about taking ownership of free pages
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1037 /* Claim the whole block if over half of it is free */
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1043 migratetype = start_migratetype;
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
1050 /* Take ownership for orders >= pageblock_order */
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
1053 change_pageblock_range(page, current_order,
1054 start_migratetype);
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1063 return page;
1067 return NULL;
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1074 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1077 struct page *page;
1079 retry_reserve:
1080 page = __rmqueue_smallest(zone, order, migratetype);
1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1083 page = __rmqueue_fallback(zone, order, migratetype);
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1097 return page;
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1105 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1106 unsigned long count, struct list_head *list,
1107 int migratetype, int cold)
1109 int mt = migratetype, i;
1111 spin_lock(&zone->lock);
1112 for (i = 0; i < count; ++i) {
1113 struct page *page = __rmqueue(zone, order, migratetype);
1114 if (unlikely(page == NULL))
1115 break;
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1135 set_freepage_migratetype(page, mt);
1136 list = &page->lru;
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1146 #ifdef CONFIG_NUMA
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1157 unsigned long flags;
1158 int to_drain;
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1169 local_irq_restore(flags);
1171 #endif
1174 * Drain pages of the indicated processor.
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1180 static void drain_pages(unsigned int cpu)
1182 unsigned long flags;
1183 struct zone *zone;
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1197 local_irq_restore(flags);
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1204 void drain_local_pages(void *arg)
1206 drain_pages(smp_processor_id());
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1218 void drain_all_pages(void)
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1228 static cpumask_t cpus_with_pcps;
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1253 #ifdef CONFIG_HIBERNATION
1255 void mark_free_pages(struct zone *zone)
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1262 if (!zone->spanned_pages)
1263 return;
1265 spin_lock_irqsave(&zone->lock, flags);
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1285 spin_unlock_irqrestore(&zone->lock, flags);
1287 #endif /* CONFIG_PM */
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1293 void free_hot_cold_page(struct page *page, int cold)
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1300 if (!free_pages_prepare(page, 0))
1301 return;
1303 migratetype = get_pageblock_migratetype(page);
1304 set_freepage_migratetype(page, migratetype);
1305 local_irq_save(flags);
1306 __count_vm_event(PGFREE);
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1320 migratetype = MIGRATE_MOVABLE;
1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1324 if (cold)
1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1326 else
1327 list_add(&page->lru, &pcp->lists[migratetype]);
1328 pcp->count++;
1329 if (pcp->count >= pcp->high) {
1330 free_pcppages_bulk(zone, pcp->batch, pcp);
1331 pcp->count -= pcp->batch;
1334 out:
1335 local_irq_restore(flags);
1339 * Free a list of 0-order pages
1341 void free_hot_cold_page_list(struct list_head *list, int cold)
1343 struct page *page, *next;
1345 list_for_each_entry_safe(page, next, list, lru) {
1346 trace_mm_page_free_batched(page, cold);
1347 free_hot_cold_page(page, cold);
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1359 void split_page(struct page *page, unsigned int order)
1361 int i;
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
1366 #ifdef CONFIG_KMEMCHECK
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373 #endif
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
1379 static int __isolate_free_page(struct page *page, unsigned int order)
1381 unsigned long watermark;
1382 struct zone *zone;
1383 int mt;
1385 BUG_ON(!PageBuddy(page));
1387 zone = page_zone(page);
1389 /* Obey watermarks as if the page was being allocated */
1390 watermark = low_wmark_pages(zone) + (1 << order);
1391 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1392 return 0;
1394 /* Remove page from free list */
1395 list_del(&page->lru);
1396 zone->free_area[order].nr_free--;
1397 rmv_page_order(page);
1399 mt = get_pageblock_migratetype(page);
1400 if (unlikely(mt != MIGRATE_ISOLATE))
1401 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1403 /* Set the pageblock if the isolated page is at least a pageblock */
1404 if (order >= pageblock_order - 1) {
1405 struct page *endpage = page + (1 << order) - 1;
1406 for (; page < endpage; page += pageblock_nr_pages) {
1407 int mt = get_pageblock_migratetype(page);
1408 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1409 set_pageblock_migratetype(page,
1410 MIGRATE_MOVABLE);
1414 return 1UL << order;
1418 * Similar to split_page except the page is already free. As this is only
1419 * being used for migration, the migratetype of the block also changes.
1420 * As this is called with interrupts disabled, the caller is responsible
1421 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1422 * are enabled.
1424 * Note: this is probably too low level an operation for use in drivers.
1425 * Please consult with lkml before using this in your driver.
1427 int split_free_page(struct page *page)
1429 unsigned int order;
1430 int nr_pages;
1432 order = page_order(page);
1434 nr_pages = __isolate_free_page(page, order);
1435 if (!nr_pages)
1436 return 0;
1438 /* Split into individual pages */
1439 set_page_refcounted(page);
1440 split_page(page, order);
1441 return nr_pages;
1445 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1446 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1447 * or two.
1449 static inline
1450 struct page *buffered_rmqueue(struct zone *preferred_zone,
1451 struct zone *zone, int order, gfp_t gfp_flags,
1452 int migratetype)
1454 unsigned long flags;
1455 struct page *page;
1456 int cold = !!(gfp_flags & __GFP_COLD);
1458 again:
1459 if (likely(order == 0)) {
1460 struct per_cpu_pages *pcp;
1461 struct list_head *list;
1463 local_irq_save(flags);
1464 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1465 list = &pcp->lists[migratetype];
1466 if (list_empty(list)) {
1467 pcp->count += rmqueue_bulk(zone, 0,
1468 pcp->batch, list,
1469 migratetype, cold);
1470 if (unlikely(list_empty(list)))
1471 goto failed;
1474 if (cold)
1475 page = list_entry(list->prev, struct page, lru);
1476 else
1477 page = list_entry(list->next, struct page, lru);
1479 list_del(&page->lru);
1480 pcp->count--;
1481 } else {
1482 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1484 * __GFP_NOFAIL is not to be used in new code.
1486 * All __GFP_NOFAIL callers should be fixed so that they
1487 * properly detect and handle allocation failures.
1489 * We most definitely don't want callers attempting to
1490 * allocate greater than order-1 page units with
1491 * __GFP_NOFAIL.
1493 WARN_ON_ONCE(order > 1);
1495 spin_lock_irqsave(&zone->lock, flags);
1496 page = __rmqueue(zone, order, migratetype);
1497 spin_unlock(&zone->lock);
1498 if (!page)
1499 goto failed;
1500 __mod_zone_freepage_state(zone, -(1 << order),
1501 get_pageblock_migratetype(page));
1504 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1505 zone_statistics(preferred_zone, zone, gfp_flags);
1506 local_irq_restore(flags);
1508 VM_BUG_ON(bad_range(zone, page));
1509 if (prep_new_page(page, order, gfp_flags))
1510 goto again;
1511 return page;
1513 failed:
1514 local_irq_restore(flags);
1515 return NULL;
1518 #ifdef CONFIG_FAIL_PAGE_ALLOC
1520 static struct {
1521 struct fault_attr attr;
1523 u32 ignore_gfp_highmem;
1524 u32 ignore_gfp_wait;
1525 u32 min_order;
1526 } fail_page_alloc = {
1527 .attr = FAULT_ATTR_INITIALIZER,
1528 .ignore_gfp_wait = 1,
1529 .ignore_gfp_highmem = 1,
1530 .min_order = 1,
1533 static int __init setup_fail_page_alloc(char *str)
1535 return setup_fault_attr(&fail_page_alloc.attr, str);
1537 __setup("fail_page_alloc=", setup_fail_page_alloc);
1539 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1541 if (order < fail_page_alloc.min_order)
1542 return false;
1543 if (gfp_mask & __GFP_NOFAIL)
1544 return false;
1545 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1546 return false;
1547 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1548 return false;
1550 return should_fail(&fail_page_alloc.attr, 1 << order);
1553 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1555 static int __init fail_page_alloc_debugfs(void)
1557 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1558 struct dentry *dir;
1560 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1561 &fail_page_alloc.attr);
1562 if (IS_ERR(dir))
1563 return PTR_ERR(dir);
1565 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1566 &fail_page_alloc.ignore_gfp_wait))
1567 goto fail;
1568 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1569 &fail_page_alloc.ignore_gfp_highmem))
1570 goto fail;
1571 if (!debugfs_create_u32("min-order", mode, dir,
1572 &fail_page_alloc.min_order))
1573 goto fail;
1575 return 0;
1576 fail:
1577 debugfs_remove_recursive(dir);
1579 return -ENOMEM;
1582 late_initcall(fail_page_alloc_debugfs);
1584 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1586 #else /* CONFIG_FAIL_PAGE_ALLOC */
1588 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1590 return false;
1593 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1596 * Return true if free pages are above 'mark'. This takes into account the order
1597 * of the allocation.
1599 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1600 int classzone_idx, int alloc_flags, long free_pages)
1602 /* free_pages my go negative - that's OK */
1603 long min = mark;
1604 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1605 int o;
1607 free_pages -= (1 << order) - 1;
1608 if (alloc_flags & ALLOC_HIGH)
1609 min -= min / 2;
1610 if (alloc_flags & ALLOC_HARDER)
1611 min -= min / 4;
1612 #ifdef CONFIG_CMA
1613 /* If allocation can't use CMA areas don't use free CMA pages */
1614 if (!(alloc_flags & ALLOC_CMA))
1615 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1616 #endif
1617 if (free_pages <= min + lowmem_reserve)
1618 return false;
1619 for (o = 0; o < order; o++) {
1620 /* At the next order, this order's pages become unavailable */
1621 free_pages -= z->free_area[o].nr_free << o;
1623 /* Require fewer higher order pages to be free */
1624 min >>= 1;
1626 if (free_pages <= min)
1627 return false;
1629 return true;
1632 #ifdef CONFIG_MEMORY_ISOLATION
1633 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1635 if (unlikely(zone->nr_pageblock_isolate))
1636 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1637 return 0;
1639 #else
1640 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1642 return 0;
1644 #endif
1646 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags)
1649 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1650 zone_page_state(z, NR_FREE_PAGES));
1653 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1654 int classzone_idx, int alloc_flags)
1656 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1658 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1659 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1662 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1663 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1664 * sleep although it could do so. But this is more desirable for memory
1665 * hotplug than sleeping which can cause a livelock in the direct
1666 * reclaim path.
1668 free_pages -= nr_zone_isolate_freepages(z);
1669 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1670 free_pages);
1673 #ifdef CONFIG_NUMA
1675 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1676 * skip over zones that are not allowed by the cpuset, or that have
1677 * been recently (in last second) found to be nearly full. See further
1678 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1679 * that have to skip over a lot of full or unallowed zones.
1681 * If the zonelist cache is present in the passed in zonelist, then
1682 * returns a pointer to the allowed node mask (either the current
1683 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1685 * If the zonelist cache is not available for this zonelist, does
1686 * nothing and returns NULL.
1688 * If the fullzones BITMAP in the zonelist cache is stale (more than
1689 * a second since last zap'd) then we zap it out (clear its bits.)
1691 * We hold off even calling zlc_setup, until after we've checked the
1692 * first zone in the zonelist, on the theory that most allocations will
1693 * be satisfied from that first zone, so best to examine that zone as
1694 * quickly as we can.
1696 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1698 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1699 nodemask_t *allowednodes; /* zonelist_cache approximation */
1701 zlc = zonelist->zlcache_ptr;
1702 if (!zlc)
1703 return NULL;
1705 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1706 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1707 zlc->last_full_zap = jiffies;
1710 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1711 &cpuset_current_mems_allowed :
1712 &node_states[N_HIGH_MEMORY];
1713 return allowednodes;
1717 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1718 * if it is worth looking at further for free memory:
1719 * 1) Check that the zone isn't thought to be full (doesn't have its
1720 * bit set in the zonelist_cache fullzones BITMAP).
1721 * 2) Check that the zones node (obtained from the zonelist_cache
1722 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1723 * Return true (non-zero) if zone is worth looking at further, or
1724 * else return false (zero) if it is not.
1726 * This check -ignores- the distinction between various watermarks,
1727 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1728 * found to be full for any variation of these watermarks, it will
1729 * be considered full for up to one second by all requests, unless
1730 * we are so low on memory on all allowed nodes that we are forced
1731 * into the second scan of the zonelist.
1733 * In the second scan we ignore this zonelist cache and exactly
1734 * apply the watermarks to all zones, even it is slower to do so.
1735 * We are low on memory in the second scan, and should leave no stone
1736 * unturned looking for a free page.
1738 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1739 nodemask_t *allowednodes)
1741 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1742 int i; /* index of *z in zonelist zones */
1743 int n; /* node that zone *z is on */
1745 zlc = zonelist->zlcache_ptr;
1746 if (!zlc)
1747 return 1;
1749 i = z - zonelist->_zonerefs;
1750 n = zlc->z_to_n[i];
1752 /* This zone is worth trying if it is allowed but not full */
1753 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1757 * Given 'z' scanning a zonelist, set the corresponding bit in
1758 * zlc->fullzones, so that subsequent attempts to allocate a page
1759 * from that zone don't waste time re-examining it.
1761 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1763 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1764 int i; /* index of *z in zonelist zones */
1766 zlc = zonelist->zlcache_ptr;
1767 if (!zlc)
1768 return;
1770 i = z - zonelist->_zonerefs;
1772 set_bit(i, zlc->fullzones);
1776 * clear all zones full, called after direct reclaim makes progress so that
1777 * a zone that was recently full is not skipped over for up to a second
1779 static void zlc_clear_zones_full(struct zonelist *zonelist)
1781 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1783 zlc = zonelist->zlcache_ptr;
1784 if (!zlc)
1785 return;
1787 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1790 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1792 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1795 static void __paginginit init_zone_allows_reclaim(int nid)
1797 int i;
1799 for_each_online_node(i)
1800 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1801 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1802 else
1803 zone_reclaim_mode = 1;
1806 #else /* CONFIG_NUMA */
1808 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1810 return NULL;
1813 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1814 nodemask_t *allowednodes)
1816 return 1;
1819 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1823 static void zlc_clear_zones_full(struct zonelist *zonelist)
1827 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 return true;
1832 static inline void init_zone_allows_reclaim(int nid)
1835 #endif /* CONFIG_NUMA */
1838 * get_page_from_freelist goes through the zonelist trying to allocate
1839 * a page.
1841 static struct page *
1842 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1843 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1844 struct zone *preferred_zone, int migratetype)
1846 struct zoneref *z;
1847 struct page *page = NULL;
1848 int classzone_idx;
1849 struct zone *zone;
1850 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1851 int zlc_active = 0; /* set if using zonelist_cache */
1852 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1854 classzone_idx = zone_idx(preferred_zone);
1855 zonelist_scan:
1857 * Scan zonelist, looking for a zone with enough free.
1858 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1861 high_zoneidx, nodemask) {
1862 if (NUMA_BUILD && zlc_active &&
1863 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1864 continue;
1865 if ((alloc_flags & ALLOC_CPUSET) &&
1866 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1867 continue;
1869 * When allocating a page cache page for writing, we
1870 * want to get it from a zone that is within its dirty
1871 * limit, such that no single zone holds more than its
1872 * proportional share of globally allowed dirty pages.
1873 * The dirty limits take into account the zone's
1874 * lowmem reserves and high watermark so that kswapd
1875 * should be able to balance it without having to
1876 * write pages from its LRU list.
1878 * This may look like it could increase pressure on
1879 * lower zones by failing allocations in higher zones
1880 * before they are full. But the pages that do spill
1881 * over are limited as the lower zones are protected
1882 * by this very same mechanism. It should not become
1883 * a practical burden to them.
1885 * XXX: For now, allow allocations to potentially
1886 * exceed the per-zone dirty limit in the slowpath
1887 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1888 * which is important when on a NUMA setup the allowed
1889 * zones are together not big enough to reach the
1890 * global limit. The proper fix for these situations
1891 * will require awareness of zones in the
1892 * dirty-throttling and the flusher threads.
1894 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1895 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1896 goto this_zone_full;
1898 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1899 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1900 unsigned long mark;
1901 int ret;
1903 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1904 if (zone_watermark_ok(zone, order, mark,
1905 classzone_idx, alloc_flags))
1906 goto try_this_zone;
1908 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1910 * we do zlc_setup if there are multiple nodes
1911 * and before considering the first zone allowed
1912 * by the cpuset.
1914 allowednodes = zlc_setup(zonelist, alloc_flags);
1915 zlc_active = 1;
1916 did_zlc_setup = 1;
1919 if (zone_reclaim_mode == 0 ||
1920 !zone_allows_reclaim(preferred_zone, zone))
1921 goto this_zone_full;
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1927 if (NUMA_BUILD && zlc_active &&
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
1935 continue;
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
1938 continue;
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
1943 goto this_zone_full;
1947 try_this_zone:
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
1950 if (page)
1951 break;
1952 this_zone_full:
1953 if (NUMA_BUILD)
1954 zlc_mark_zone_full(zonelist, z);
1957 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1963 if (page)
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1973 return page;
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1980 static inline bool should_suppress_show_mem(void)
1982 bool ret = false;
1984 #if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986 #endif
1987 return ret;
1990 static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
2000 return;
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2014 if (fmt) {
2015 struct va_format vaf;
2016 va_list args;
2018 va_start(args, fmt);
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2023 pr_warn("%pV", &vaf);
2025 va_end(args);
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2036 static inline int
2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2038 unsigned long did_some_progress,
2039 unsigned long pages_reclaimed)
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
2075 return 0;
2078 static inline struct page *
2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
2084 struct page *page;
2086 /* Acquire the OOM killer lock for the zones in zonelist */
2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2088 schedule_timeout_uninterruptible(1);
2089 return NULL;
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2100 preferred_zone, migratetype);
2101 if (page)
2102 goto out;
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2121 /* Exhausted what can be done so it's blamo time */
2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2124 out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2129 #ifdef CONFIG_COMPACTION
2130 /* Try memory compaction for high-order allocations before reclaim */
2131 static struct page *
2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2135 int migratetype, bool sync_migration,
2136 bool *contended_compaction, bool *deferred_compaction,
2137 unsigned long *did_some_progress)
2139 if (!order)
2140 return NULL;
2142 if (compaction_deferred(preferred_zone, order)) {
2143 *deferred_compaction = true;
2144 return NULL;
2147 current->flags |= PF_MEMALLOC;
2148 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2149 nodemask, sync_migration,
2150 contended_compaction);
2151 current->flags &= ~PF_MEMALLOC;
2153 if (*did_some_progress != COMPACT_SKIPPED) {
2154 struct page *page;
2156 /* Page migration frees to the PCP lists but we want merging */
2157 drain_pages(get_cpu());
2158 put_cpu();
2160 page = get_page_from_freelist(gfp_mask, nodemask,
2161 order, zonelist, high_zoneidx,
2162 alloc_flags & ~ALLOC_NO_WATERMARKS,
2163 preferred_zone, migratetype);
2164 if (page) {
2165 preferred_zone->compact_blockskip_flush = false;
2166 preferred_zone->compact_considered = 0;
2167 preferred_zone->compact_defer_shift = 0;
2168 if (order >= preferred_zone->compact_order_failed)
2169 preferred_zone->compact_order_failed = order + 1;
2170 count_vm_event(COMPACTSUCCESS);
2171 return page;
2175 * It's bad if compaction run occurs and fails.
2176 * The most likely reason is that pages exist,
2177 * but not enough to satisfy watermarks.
2179 count_vm_event(COMPACTFAIL);
2182 * As async compaction considers a subset of pageblocks, only
2183 * defer if the failure was a sync compaction failure.
2185 if (sync_migration)
2186 defer_compaction(preferred_zone, order);
2188 cond_resched();
2191 return NULL;
2193 #else
2194 static inline struct page *
2195 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2196 struct zonelist *zonelist, enum zone_type high_zoneidx,
2197 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2198 int migratetype, bool sync_migration,
2199 bool *contended_compaction, bool *deferred_compaction,
2200 unsigned long *did_some_progress)
2202 return NULL;
2204 #endif /* CONFIG_COMPACTION */
2206 /* Perform direct synchronous page reclaim */
2207 static int
2208 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2209 nodemask_t *nodemask)
2211 struct reclaim_state reclaim_state;
2212 int progress;
2214 cond_resched();
2216 /* We now go into synchronous reclaim */
2217 cpuset_memory_pressure_bump();
2218 current->flags |= PF_MEMALLOC;
2219 lockdep_set_current_reclaim_state(gfp_mask);
2220 reclaim_state.reclaimed_slab = 0;
2221 current->reclaim_state = &reclaim_state;
2223 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2225 current->reclaim_state = NULL;
2226 lockdep_clear_current_reclaim_state();
2227 current->flags &= ~PF_MEMALLOC;
2229 cond_resched();
2231 return progress;
2234 /* The really slow allocator path where we enter direct reclaim */
2235 static inline struct page *
2236 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2237 struct zonelist *zonelist, enum zone_type high_zoneidx,
2238 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2239 int migratetype, unsigned long *did_some_progress)
2241 struct page *page = NULL;
2242 bool drained = false;
2244 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2245 nodemask);
2246 if (unlikely(!(*did_some_progress)))
2247 return NULL;
2249 /* After successful reclaim, reconsider all zones for allocation */
2250 if (NUMA_BUILD)
2251 zlc_clear_zones_full(zonelist);
2253 retry:
2254 page = get_page_from_freelist(gfp_mask, nodemask, order,
2255 zonelist, high_zoneidx,
2256 alloc_flags & ~ALLOC_NO_WATERMARKS,
2257 preferred_zone, migratetype);
2260 * If an allocation failed after direct reclaim, it could be because
2261 * pages are pinned on the per-cpu lists. Drain them and try again
2263 if (!page && !drained) {
2264 drain_all_pages();
2265 drained = true;
2266 goto retry;
2269 return page;
2273 * This is called in the allocator slow-path if the allocation request is of
2274 * sufficient urgency to ignore watermarks and take other desperate measures
2276 static inline struct page *
2277 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2278 struct zonelist *zonelist, enum zone_type high_zoneidx,
2279 nodemask_t *nodemask, struct zone *preferred_zone,
2280 int migratetype)
2282 struct page *page;
2284 do {
2285 page = get_page_from_freelist(gfp_mask, nodemask, order,
2286 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2287 preferred_zone, migratetype);
2289 if (!page && gfp_mask & __GFP_NOFAIL)
2290 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2291 } while (!page && (gfp_mask & __GFP_NOFAIL));
2293 return page;
2296 static inline
2297 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2298 enum zone_type high_zoneidx,
2299 enum zone_type classzone_idx)
2301 struct zoneref *z;
2302 struct zone *zone;
2304 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2305 wakeup_kswapd(zone, order, classzone_idx);
2308 static inline int
2309 gfp_to_alloc_flags(gfp_t gfp_mask)
2311 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2312 const gfp_t wait = gfp_mask & __GFP_WAIT;
2314 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2315 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2318 * The caller may dip into page reserves a bit more if the caller
2319 * cannot run direct reclaim, or if the caller has realtime scheduling
2320 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2321 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2323 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2325 if (!wait) {
2327 * Not worth trying to allocate harder for
2328 * __GFP_NOMEMALLOC even if it can't schedule.
2330 if (!(gfp_mask & __GFP_NOMEMALLOC))
2331 alloc_flags |= ALLOC_HARDER;
2333 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2334 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2336 alloc_flags &= ~ALLOC_CPUSET;
2337 } else if (unlikely(rt_task(current)) && !in_interrupt())
2338 alloc_flags |= ALLOC_HARDER;
2340 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2341 if (gfp_mask & __GFP_MEMALLOC)
2342 alloc_flags |= ALLOC_NO_WATERMARKS;
2343 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2344 alloc_flags |= ALLOC_NO_WATERMARKS;
2345 else if (!in_interrupt() &&
2346 ((current->flags & PF_MEMALLOC) ||
2347 unlikely(test_thread_flag(TIF_MEMDIE))))
2348 alloc_flags |= ALLOC_NO_WATERMARKS;
2350 #ifdef CONFIG_CMA
2351 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2352 alloc_flags |= ALLOC_CMA;
2353 #endif
2354 return alloc_flags;
2357 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2359 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2362 static inline struct page *
2363 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2364 struct zonelist *zonelist, enum zone_type high_zoneidx,
2365 nodemask_t *nodemask, struct zone *preferred_zone,
2366 int migratetype)
2368 const gfp_t wait = gfp_mask & __GFP_WAIT;
2369 struct page *page = NULL;
2370 int alloc_flags;
2371 unsigned long pages_reclaimed = 0;
2372 unsigned long did_some_progress;
2373 bool sync_migration = false;
2374 bool deferred_compaction = false;
2375 bool contended_compaction = false;
2378 * In the slowpath, we sanity check order to avoid ever trying to
2379 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2380 * be using allocators in order of preference for an area that is
2381 * too large.
2383 if (order >= MAX_ORDER) {
2384 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2385 return NULL;
2389 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2390 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2391 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2392 * using a larger set of nodes after it has established that the
2393 * allowed per node queues are empty and that nodes are
2394 * over allocated.
2396 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2397 goto nopage;
2399 restart:
2400 if (!(gfp_mask & __GFP_NO_KSWAPD))
2401 wake_all_kswapd(order, zonelist, high_zoneidx,
2402 zone_idx(preferred_zone));
2405 * OK, we're below the kswapd watermark and have kicked background
2406 * reclaim. Now things get more complex, so set up alloc_flags according
2407 * to how we want to proceed.
2409 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2412 * Find the true preferred zone if the allocation is unconstrained by
2413 * cpusets.
2415 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2416 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2417 &preferred_zone);
2419 rebalance:
2420 /* This is the last chance, in general, before the goto nopage. */
2421 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2422 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2423 preferred_zone, migratetype);
2424 if (page)
2425 goto got_pg;
2427 /* Allocate without watermarks if the context allows */
2428 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2430 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2431 * the allocation is high priority and these type of
2432 * allocations are system rather than user orientated
2434 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2436 page = __alloc_pages_high_priority(gfp_mask, order,
2437 zonelist, high_zoneidx, nodemask,
2438 preferred_zone, migratetype);
2439 if (page) {
2440 goto got_pg;
2444 /* Atomic allocations - we can't balance anything */
2445 if (!wait)
2446 goto nopage;
2448 /* Avoid recursion of direct reclaim */
2449 if (current->flags & PF_MEMALLOC)
2450 goto nopage;
2452 /* Avoid allocations with no watermarks from looping endlessly */
2453 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2454 goto nopage;
2457 * Try direct compaction. The first pass is asynchronous. Subsequent
2458 * attempts after direct reclaim are synchronous
2460 page = __alloc_pages_direct_compact(gfp_mask, order,
2461 zonelist, high_zoneidx,
2462 nodemask,
2463 alloc_flags, preferred_zone,
2464 migratetype, sync_migration,
2465 &contended_compaction,
2466 &deferred_compaction,
2467 &did_some_progress);
2468 if (page)
2469 goto got_pg;
2470 sync_migration = true;
2473 * If compaction is deferred for high-order allocations, it is because
2474 * sync compaction recently failed. In this is the case and the caller
2475 * requested a movable allocation that does not heavily disrupt the
2476 * system then fail the allocation instead of entering direct reclaim.
2478 if ((deferred_compaction || contended_compaction) &&
2479 (gfp_mask & __GFP_NO_KSWAPD))
2480 goto nopage;
2482 /* Try direct reclaim and then allocating */
2483 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2484 zonelist, high_zoneidx,
2485 nodemask,
2486 alloc_flags, preferred_zone,
2487 migratetype, &did_some_progress);
2488 if (page)
2489 goto got_pg;
2492 * If we failed to make any progress reclaiming, then we are
2493 * running out of options and have to consider going OOM
2495 if (!did_some_progress) {
2496 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2497 if (oom_killer_disabled)
2498 goto nopage;
2499 /* Coredumps can quickly deplete all memory reserves */
2500 if ((current->flags & PF_DUMPCORE) &&
2501 !(gfp_mask & __GFP_NOFAIL))
2502 goto nopage;
2503 page = __alloc_pages_may_oom(gfp_mask, order,
2504 zonelist, high_zoneidx,
2505 nodemask, preferred_zone,
2506 migratetype);
2507 if (page)
2508 goto got_pg;
2510 if (!(gfp_mask & __GFP_NOFAIL)) {
2512 * The oom killer is not called for high-order
2513 * allocations that may fail, so if no progress
2514 * is being made, there are no other options and
2515 * retrying is unlikely to help.
2517 if (order > PAGE_ALLOC_COSTLY_ORDER)
2518 goto nopage;
2520 * The oom killer is not called for lowmem
2521 * allocations to prevent needlessly killing
2522 * innocent tasks.
2524 if (high_zoneidx < ZONE_NORMAL)
2525 goto nopage;
2528 goto restart;
2532 /* Check if we should retry the allocation */
2533 pages_reclaimed += did_some_progress;
2534 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2535 pages_reclaimed)) {
2536 /* Wait for some write requests to complete then retry */
2537 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2538 goto rebalance;
2539 } else {
2541 * High-order allocations do not necessarily loop after
2542 * direct reclaim and reclaim/compaction depends on compaction
2543 * being called after reclaim so call directly if necessary
2545 page = __alloc_pages_direct_compact(gfp_mask, order,
2546 zonelist, high_zoneidx,
2547 nodemask,
2548 alloc_flags, preferred_zone,
2549 migratetype, sync_migration,
2550 &contended_compaction,
2551 &deferred_compaction,
2552 &did_some_progress);
2553 if (page)
2554 goto got_pg;
2557 nopage:
2558 warn_alloc_failed(gfp_mask, order, NULL);
2559 return page;
2560 got_pg:
2561 if (kmemcheck_enabled)
2562 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2564 return page;
2568 * This is the 'heart' of the zoned buddy allocator.
2570 struct page *
2571 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2572 struct zonelist *zonelist, nodemask_t *nodemask)
2574 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2575 struct zone *preferred_zone;
2576 struct page *page = NULL;
2577 int migratetype = allocflags_to_migratetype(gfp_mask);
2578 unsigned int cpuset_mems_cookie;
2579 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2581 gfp_mask &= gfp_allowed_mask;
2583 lockdep_trace_alloc(gfp_mask);
2585 might_sleep_if(gfp_mask & __GFP_WAIT);
2587 if (should_fail_alloc_page(gfp_mask, order))
2588 return NULL;
2591 * Check the zones suitable for the gfp_mask contain at least one
2592 * valid zone. It's possible to have an empty zonelist as a result
2593 * of GFP_THISNODE and a memoryless node
2595 if (unlikely(!zonelist->_zonerefs->zone))
2596 return NULL;
2598 retry_cpuset:
2599 cpuset_mems_cookie = get_mems_allowed();
2601 /* The preferred zone is used for statistics later */
2602 first_zones_zonelist(zonelist, high_zoneidx,
2603 nodemask ? : &cpuset_current_mems_allowed,
2604 &preferred_zone);
2605 if (!preferred_zone)
2606 goto out;
2608 #ifdef CONFIG_CMA
2609 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2610 alloc_flags |= ALLOC_CMA;
2611 #endif
2612 /* First allocation attempt */
2613 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2614 zonelist, high_zoneidx, alloc_flags,
2615 preferred_zone, migratetype);
2616 if (unlikely(!page))
2617 page = __alloc_pages_slowpath(gfp_mask, order,
2618 zonelist, high_zoneidx, nodemask,
2619 preferred_zone, migratetype);
2621 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2623 out:
2625 * When updating a task's mems_allowed, it is possible to race with
2626 * parallel threads in such a way that an allocation can fail while
2627 * the mask is being updated. If a page allocation is about to fail,
2628 * check if the cpuset changed during allocation and if so, retry.
2630 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2631 goto retry_cpuset;
2633 return page;
2635 EXPORT_SYMBOL(__alloc_pages_nodemask);
2638 * Common helper functions.
2640 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2642 struct page *page;
2645 * __get_free_pages() returns a 32-bit address, which cannot represent
2646 * a highmem page
2648 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2650 page = alloc_pages(gfp_mask, order);
2651 if (!page)
2652 return 0;
2653 return (unsigned long) page_address(page);
2655 EXPORT_SYMBOL(__get_free_pages);
2657 unsigned long get_zeroed_page(gfp_t gfp_mask)
2659 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2661 EXPORT_SYMBOL(get_zeroed_page);
2663 void __free_pages(struct page *page, unsigned int order)
2665 if (put_page_testzero(page)) {
2666 if (order == 0)
2667 free_hot_cold_page(page, 0);
2668 else
2669 __free_pages_ok(page, order);
2673 EXPORT_SYMBOL(__free_pages);
2675 void free_pages(unsigned long addr, unsigned int order)
2677 if (addr != 0) {
2678 VM_BUG_ON(!virt_addr_valid((void *)addr));
2679 __free_pages(virt_to_page((void *)addr), order);
2683 EXPORT_SYMBOL(free_pages);
2685 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2687 if (addr) {
2688 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2689 unsigned long used = addr + PAGE_ALIGN(size);
2691 split_page(virt_to_page((void *)addr), order);
2692 while (used < alloc_end) {
2693 free_page(used);
2694 used += PAGE_SIZE;
2697 return (void *)addr;
2701 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2702 * @size: the number of bytes to allocate
2703 * @gfp_mask: GFP flags for the allocation
2705 * This function is similar to alloc_pages(), except that it allocates the
2706 * minimum number of pages to satisfy the request. alloc_pages() can only
2707 * allocate memory in power-of-two pages.
2709 * This function is also limited by MAX_ORDER.
2711 * Memory allocated by this function must be released by free_pages_exact().
2713 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2715 unsigned int order = get_order(size);
2716 unsigned long addr;
2718 addr = __get_free_pages(gfp_mask, order);
2719 return make_alloc_exact(addr, order, size);
2721 EXPORT_SYMBOL(alloc_pages_exact);
2724 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2725 * pages on a node.
2726 * @nid: the preferred node ID where memory should be allocated
2727 * @size: the number of bytes to allocate
2728 * @gfp_mask: GFP flags for the allocation
2730 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2731 * back.
2732 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2733 * but is not exact.
2735 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2737 unsigned order = get_order(size);
2738 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2739 if (!p)
2740 return NULL;
2741 return make_alloc_exact((unsigned long)page_address(p), order, size);
2743 EXPORT_SYMBOL(alloc_pages_exact_nid);
2746 * free_pages_exact - release memory allocated via alloc_pages_exact()
2747 * @virt: the value returned by alloc_pages_exact.
2748 * @size: size of allocation, same value as passed to alloc_pages_exact().
2750 * Release the memory allocated by a previous call to alloc_pages_exact.
2752 void free_pages_exact(void *virt, size_t size)
2754 unsigned long addr = (unsigned long)virt;
2755 unsigned long end = addr + PAGE_ALIGN(size);
2757 while (addr < end) {
2758 free_page(addr);
2759 addr += PAGE_SIZE;
2762 EXPORT_SYMBOL(free_pages_exact);
2764 static unsigned int nr_free_zone_pages(int offset)
2766 struct zoneref *z;
2767 struct zone *zone;
2769 /* Just pick one node, since fallback list is circular */
2770 unsigned int sum = 0;
2772 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2774 for_each_zone_zonelist(zone, z, zonelist, offset) {
2775 unsigned long size = zone->present_pages;
2776 unsigned long high = high_wmark_pages(zone);
2777 if (size > high)
2778 sum += size - high;
2781 return sum;
2785 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2787 unsigned int nr_free_buffer_pages(void)
2789 return nr_free_zone_pages(gfp_zone(GFP_USER));
2791 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2794 * Amount of free RAM allocatable within all zones
2796 unsigned int nr_free_pagecache_pages(void)
2798 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2801 static inline void show_node(struct zone *zone)
2803 if (NUMA_BUILD)
2804 printk("Node %d ", zone_to_nid(zone));
2807 void si_meminfo(struct sysinfo *val)
2809 val->totalram = totalram_pages;
2810 val->sharedram = 0;
2811 val->freeram = global_page_state(NR_FREE_PAGES);
2812 val->bufferram = nr_blockdev_pages();
2813 val->totalhigh = totalhigh_pages;
2814 val->freehigh = nr_free_highpages();
2815 val->mem_unit = PAGE_SIZE;
2818 EXPORT_SYMBOL(si_meminfo);
2820 #ifdef CONFIG_NUMA
2821 void si_meminfo_node(struct sysinfo *val, int nid)
2823 pg_data_t *pgdat = NODE_DATA(nid);
2825 val->totalram = pgdat->node_present_pages;
2826 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2827 #ifdef CONFIG_HIGHMEM
2828 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2829 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2830 NR_FREE_PAGES);
2831 #else
2832 val->totalhigh = 0;
2833 val->freehigh = 0;
2834 #endif
2835 val->mem_unit = PAGE_SIZE;
2837 #endif
2840 * Determine whether the node should be displayed or not, depending on whether
2841 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2843 bool skip_free_areas_node(unsigned int flags, int nid)
2845 bool ret = false;
2846 unsigned int cpuset_mems_cookie;
2848 if (!(flags & SHOW_MEM_FILTER_NODES))
2849 goto out;
2851 do {
2852 cpuset_mems_cookie = get_mems_allowed();
2853 ret = !node_isset(nid, cpuset_current_mems_allowed);
2854 } while (!put_mems_allowed(cpuset_mems_cookie));
2855 out:
2856 return ret;
2859 #define K(x) ((x) << (PAGE_SHIFT-10))
2862 * Show free area list (used inside shift_scroll-lock stuff)
2863 * We also calculate the percentage fragmentation. We do this by counting the
2864 * memory on each free list with the exception of the first item on the list.
2865 * Suppresses nodes that are not allowed by current's cpuset if
2866 * SHOW_MEM_FILTER_NODES is passed.
2868 void show_free_areas(unsigned int filter)
2870 int cpu;
2871 struct zone *zone;
2873 for_each_populated_zone(zone) {
2874 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2875 continue;
2876 show_node(zone);
2877 printk("%s per-cpu:\n", zone->name);
2879 for_each_online_cpu(cpu) {
2880 struct per_cpu_pageset *pageset;
2882 pageset = per_cpu_ptr(zone->pageset, cpu);
2884 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2885 cpu, pageset->pcp.high,
2886 pageset->pcp.batch, pageset->pcp.count);
2890 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2891 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2892 " unevictable:%lu"
2893 " dirty:%lu writeback:%lu unstable:%lu\n"
2894 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2895 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2896 " free_cma:%lu\n",
2897 global_page_state(NR_ACTIVE_ANON),
2898 global_page_state(NR_INACTIVE_ANON),
2899 global_page_state(NR_ISOLATED_ANON),
2900 global_page_state(NR_ACTIVE_FILE),
2901 global_page_state(NR_INACTIVE_FILE),
2902 global_page_state(NR_ISOLATED_FILE),
2903 global_page_state(NR_UNEVICTABLE),
2904 global_page_state(NR_FILE_DIRTY),
2905 global_page_state(NR_WRITEBACK),
2906 global_page_state(NR_UNSTABLE_NFS),
2907 global_page_state(NR_FREE_PAGES),
2908 global_page_state(NR_SLAB_RECLAIMABLE),
2909 global_page_state(NR_SLAB_UNRECLAIMABLE),
2910 global_page_state(NR_FILE_MAPPED),
2911 global_page_state(NR_SHMEM),
2912 global_page_state(NR_PAGETABLE),
2913 global_page_state(NR_BOUNCE),
2914 global_page_state(NR_FREE_CMA_PAGES));
2916 for_each_populated_zone(zone) {
2917 int i;
2919 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2920 continue;
2921 show_node(zone);
2922 printk("%s"
2923 " free:%lukB"
2924 " min:%lukB"
2925 " low:%lukB"
2926 " high:%lukB"
2927 " active_anon:%lukB"
2928 " inactive_anon:%lukB"
2929 " active_file:%lukB"
2930 " inactive_file:%lukB"
2931 " unevictable:%lukB"
2932 " isolated(anon):%lukB"
2933 " isolated(file):%lukB"
2934 " present:%lukB"
2935 " mlocked:%lukB"
2936 " dirty:%lukB"
2937 " writeback:%lukB"
2938 " mapped:%lukB"
2939 " shmem:%lukB"
2940 " slab_reclaimable:%lukB"
2941 " slab_unreclaimable:%lukB"
2942 " kernel_stack:%lukB"
2943 " pagetables:%lukB"
2944 " unstable:%lukB"
2945 " bounce:%lukB"
2946 " free_cma:%lukB"
2947 " writeback_tmp:%lukB"
2948 " pages_scanned:%lu"
2949 " all_unreclaimable? %s"
2950 "\n",
2951 zone->name,
2952 K(zone_page_state(zone, NR_FREE_PAGES)),
2953 K(min_wmark_pages(zone)),
2954 K(low_wmark_pages(zone)),
2955 K(high_wmark_pages(zone)),
2956 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2957 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2958 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2959 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2960 K(zone_page_state(zone, NR_UNEVICTABLE)),
2961 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2962 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2963 K(zone->present_pages),
2964 K(zone_page_state(zone, NR_MLOCK)),
2965 K(zone_page_state(zone, NR_FILE_DIRTY)),
2966 K(zone_page_state(zone, NR_WRITEBACK)),
2967 K(zone_page_state(zone, NR_FILE_MAPPED)),
2968 K(zone_page_state(zone, NR_SHMEM)),
2969 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2970 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2971 zone_page_state(zone, NR_KERNEL_STACK) *
2972 THREAD_SIZE / 1024,
2973 K(zone_page_state(zone, NR_PAGETABLE)),
2974 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2975 K(zone_page_state(zone, NR_BOUNCE)),
2976 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
2977 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2978 zone->pages_scanned,
2979 (zone->all_unreclaimable ? "yes" : "no")
2981 printk("lowmem_reserve[]:");
2982 for (i = 0; i < MAX_NR_ZONES; i++)
2983 printk(" %lu", zone->lowmem_reserve[i]);
2984 printk("\n");
2987 for_each_populated_zone(zone) {
2988 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2990 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2991 continue;
2992 show_node(zone);
2993 printk("%s: ", zone->name);
2995 spin_lock_irqsave(&zone->lock, flags);
2996 for (order = 0; order < MAX_ORDER; order++) {
2997 nr[order] = zone->free_area[order].nr_free;
2998 total += nr[order] << order;
3000 spin_unlock_irqrestore(&zone->lock, flags);
3001 for (order = 0; order < MAX_ORDER; order++)
3002 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3003 printk("= %lukB\n", K(total));
3006 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3008 show_swap_cache_info();
3011 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3013 zoneref->zone = zone;
3014 zoneref->zone_idx = zone_idx(zone);
3018 * Builds allocation fallback zone lists.
3020 * Add all populated zones of a node to the zonelist.
3022 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3023 int nr_zones, enum zone_type zone_type)
3025 struct zone *zone;
3027 BUG_ON(zone_type >= MAX_NR_ZONES);
3028 zone_type++;
3030 do {
3031 zone_type--;
3032 zone = pgdat->node_zones + zone_type;
3033 if (populated_zone(zone)) {
3034 zoneref_set_zone(zone,
3035 &zonelist->_zonerefs[nr_zones++]);
3036 check_highest_zone(zone_type);
3039 } while (zone_type);
3040 return nr_zones;
3045 * zonelist_order:
3046 * 0 = automatic detection of better ordering.
3047 * 1 = order by ([node] distance, -zonetype)
3048 * 2 = order by (-zonetype, [node] distance)
3050 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3051 * the same zonelist. So only NUMA can configure this param.
3053 #define ZONELIST_ORDER_DEFAULT 0
3054 #define ZONELIST_ORDER_NODE 1
3055 #define ZONELIST_ORDER_ZONE 2
3057 /* zonelist order in the kernel.
3058 * set_zonelist_order() will set this to NODE or ZONE.
3060 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3061 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3064 #ifdef CONFIG_NUMA
3065 /* The value user specified ....changed by config */
3066 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3067 /* string for sysctl */
3068 #define NUMA_ZONELIST_ORDER_LEN 16
3069 char numa_zonelist_order[16] = "default";
3072 * interface for configure zonelist ordering.
3073 * command line option "numa_zonelist_order"
3074 * = "[dD]efault - default, automatic configuration.
3075 * = "[nN]ode - order by node locality, then by zone within node
3076 * = "[zZ]one - order by zone, then by locality within zone
3079 static int __parse_numa_zonelist_order(char *s)
3081 if (*s == 'd' || *s == 'D') {
3082 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3083 } else if (*s == 'n' || *s == 'N') {
3084 user_zonelist_order = ZONELIST_ORDER_NODE;
3085 } else if (*s == 'z' || *s == 'Z') {
3086 user_zonelist_order = ZONELIST_ORDER_ZONE;
3087 } else {
3088 printk(KERN_WARNING
3089 "Ignoring invalid numa_zonelist_order value: "
3090 "%s\n", s);
3091 return -EINVAL;
3093 return 0;
3096 static __init int setup_numa_zonelist_order(char *s)
3098 int ret;
3100 if (!s)
3101 return 0;
3103 ret = __parse_numa_zonelist_order(s);
3104 if (ret == 0)
3105 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3107 return ret;
3109 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3112 * sysctl handler for numa_zonelist_order
3114 int numa_zonelist_order_handler(ctl_table *table, int write,
3115 void __user *buffer, size_t *length,
3116 loff_t *ppos)
3118 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3119 int ret;
3120 static DEFINE_MUTEX(zl_order_mutex);
3122 mutex_lock(&zl_order_mutex);
3123 if (write)
3124 strcpy(saved_string, (char*)table->data);
3125 ret = proc_dostring(table, write, buffer, length, ppos);
3126 if (ret)
3127 goto out;
3128 if (write) {
3129 int oldval = user_zonelist_order;
3130 if (__parse_numa_zonelist_order((char*)table->data)) {
3132 * bogus value. restore saved string
3134 strncpy((char*)table->data, saved_string,
3135 NUMA_ZONELIST_ORDER_LEN);
3136 user_zonelist_order = oldval;
3137 } else if (oldval != user_zonelist_order) {
3138 mutex_lock(&zonelists_mutex);
3139 build_all_zonelists(NULL, NULL);
3140 mutex_unlock(&zonelists_mutex);
3143 out:
3144 mutex_unlock(&zl_order_mutex);
3145 return ret;
3149 #define MAX_NODE_LOAD (nr_online_nodes)
3150 static int node_load[MAX_NUMNODES];
3153 * find_next_best_node - find the next node that should appear in a given node's fallback list
3154 * @node: node whose fallback list we're appending
3155 * @used_node_mask: nodemask_t of already used nodes
3157 * We use a number of factors to determine which is the next node that should
3158 * appear on a given node's fallback list. The node should not have appeared
3159 * already in @node's fallback list, and it should be the next closest node
3160 * according to the distance array (which contains arbitrary distance values
3161 * from each node to each node in the system), and should also prefer nodes
3162 * with no CPUs, since presumably they'll have very little allocation pressure
3163 * on them otherwise.
3164 * It returns -1 if no node is found.
3166 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3168 int n, val;
3169 int min_val = INT_MAX;
3170 int best_node = -1;
3171 const struct cpumask *tmp = cpumask_of_node(0);
3173 /* Use the local node if we haven't already */
3174 if (!node_isset(node, *used_node_mask)) {
3175 node_set(node, *used_node_mask);
3176 return node;
3179 for_each_node_state(n, N_HIGH_MEMORY) {
3181 /* Don't want a node to appear more than once */
3182 if (node_isset(n, *used_node_mask))
3183 continue;
3185 /* Use the distance array to find the distance */
3186 val = node_distance(node, n);
3188 /* Penalize nodes under us ("prefer the next node") */
3189 val += (n < node);
3191 /* Give preference to headless and unused nodes */
3192 tmp = cpumask_of_node(n);
3193 if (!cpumask_empty(tmp))
3194 val += PENALTY_FOR_NODE_WITH_CPUS;
3196 /* Slight preference for less loaded node */
3197 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3198 val += node_load[n];
3200 if (val < min_val) {
3201 min_val = val;
3202 best_node = n;
3206 if (best_node >= 0)
3207 node_set(best_node, *used_node_mask);
3209 return best_node;
3214 * Build zonelists ordered by node and zones within node.
3215 * This results in maximum locality--normal zone overflows into local
3216 * DMA zone, if any--but risks exhausting DMA zone.
3218 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3220 int j;
3221 struct zonelist *zonelist;
3223 zonelist = &pgdat->node_zonelists[0];
3224 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3226 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3227 MAX_NR_ZONES - 1);
3228 zonelist->_zonerefs[j].zone = NULL;
3229 zonelist->_zonerefs[j].zone_idx = 0;
3233 * Build gfp_thisnode zonelists
3235 static void build_thisnode_zonelists(pg_data_t *pgdat)
3237 int j;
3238 struct zonelist *zonelist;
3240 zonelist = &pgdat->node_zonelists[1];
3241 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3242 zonelist->_zonerefs[j].zone = NULL;
3243 zonelist->_zonerefs[j].zone_idx = 0;
3247 * Build zonelists ordered by zone and nodes within zones.
3248 * This results in conserving DMA zone[s] until all Normal memory is
3249 * exhausted, but results in overflowing to remote node while memory
3250 * may still exist in local DMA zone.
3252 static int node_order[MAX_NUMNODES];
3254 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3256 int pos, j, node;
3257 int zone_type; /* needs to be signed */
3258 struct zone *z;
3259 struct zonelist *zonelist;
3261 zonelist = &pgdat->node_zonelists[0];
3262 pos = 0;
3263 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3264 for (j = 0; j < nr_nodes; j++) {
3265 node = node_order[j];
3266 z = &NODE_DATA(node)->node_zones[zone_type];
3267 if (populated_zone(z)) {
3268 zoneref_set_zone(z,
3269 &zonelist->_zonerefs[pos++]);
3270 check_highest_zone(zone_type);
3274 zonelist->_zonerefs[pos].zone = NULL;
3275 zonelist->_zonerefs[pos].zone_idx = 0;
3278 static int default_zonelist_order(void)
3280 int nid, zone_type;
3281 unsigned long low_kmem_size,total_size;
3282 struct zone *z;
3283 int average_size;
3285 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3286 * If they are really small and used heavily, the system can fall
3287 * into OOM very easily.
3288 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3290 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3291 low_kmem_size = 0;
3292 total_size = 0;
3293 for_each_online_node(nid) {
3294 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3295 z = &NODE_DATA(nid)->node_zones[zone_type];
3296 if (populated_zone(z)) {
3297 if (zone_type < ZONE_NORMAL)
3298 low_kmem_size += z->present_pages;
3299 total_size += z->present_pages;
3300 } else if (zone_type == ZONE_NORMAL) {
3302 * If any node has only lowmem, then node order
3303 * is preferred to allow kernel allocations
3304 * locally; otherwise, they can easily infringe
3305 * on other nodes when there is an abundance of
3306 * lowmem available to allocate from.
3308 return ZONELIST_ORDER_NODE;
3312 if (!low_kmem_size || /* there are no DMA area. */
3313 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3314 return ZONELIST_ORDER_NODE;
3316 * look into each node's config.
3317 * If there is a node whose DMA/DMA32 memory is very big area on
3318 * local memory, NODE_ORDER may be suitable.
3320 average_size = total_size /
3321 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3322 for_each_online_node(nid) {
3323 low_kmem_size = 0;
3324 total_size = 0;
3325 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3326 z = &NODE_DATA(nid)->node_zones[zone_type];
3327 if (populated_zone(z)) {
3328 if (zone_type < ZONE_NORMAL)
3329 low_kmem_size += z->present_pages;
3330 total_size += z->present_pages;
3333 if (low_kmem_size &&
3334 total_size > average_size && /* ignore small node */
3335 low_kmem_size > total_size * 70/100)
3336 return ZONELIST_ORDER_NODE;
3338 return ZONELIST_ORDER_ZONE;
3341 static void set_zonelist_order(void)
3343 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3344 current_zonelist_order = default_zonelist_order();
3345 else
3346 current_zonelist_order = user_zonelist_order;
3349 static void build_zonelists(pg_data_t *pgdat)
3351 int j, node, load;
3352 enum zone_type i;
3353 nodemask_t used_mask;
3354 int local_node, prev_node;
3355 struct zonelist *zonelist;
3356 int order = current_zonelist_order;
3358 /* initialize zonelists */
3359 for (i = 0; i < MAX_ZONELISTS; i++) {
3360 zonelist = pgdat->node_zonelists + i;
3361 zonelist->_zonerefs[0].zone = NULL;
3362 zonelist->_zonerefs[0].zone_idx = 0;
3365 /* NUMA-aware ordering of nodes */
3366 local_node = pgdat->node_id;
3367 load = nr_online_nodes;
3368 prev_node = local_node;
3369 nodes_clear(used_mask);
3371 memset(node_order, 0, sizeof(node_order));
3372 j = 0;
3374 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3376 * We don't want to pressure a particular node.
3377 * So adding penalty to the first node in same
3378 * distance group to make it round-robin.
3380 if (node_distance(local_node, node) !=
3381 node_distance(local_node, prev_node))
3382 node_load[node] = load;
3384 prev_node = node;
3385 load--;
3386 if (order == ZONELIST_ORDER_NODE)
3387 build_zonelists_in_node_order(pgdat, node);
3388 else
3389 node_order[j++] = node; /* remember order */
3392 if (order == ZONELIST_ORDER_ZONE) {
3393 /* calculate node order -- i.e., DMA last! */
3394 build_zonelists_in_zone_order(pgdat, j);
3397 build_thisnode_zonelists(pgdat);
3400 /* Construct the zonelist performance cache - see further mmzone.h */
3401 static void build_zonelist_cache(pg_data_t *pgdat)
3403 struct zonelist *zonelist;
3404 struct zonelist_cache *zlc;
3405 struct zoneref *z;
3407 zonelist = &pgdat->node_zonelists[0];
3408 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3409 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3410 for (z = zonelist->_zonerefs; z->zone; z++)
3411 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3414 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3416 * Return node id of node used for "local" allocations.
3417 * I.e., first node id of first zone in arg node's generic zonelist.
3418 * Used for initializing percpu 'numa_mem', which is used primarily
3419 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3421 int local_memory_node(int node)
3423 struct zone *zone;
3425 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3426 gfp_zone(GFP_KERNEL),
3427 NULL,
3428 &zone);
3429 return zone->node;
3431 #endif
3433 #else /* CONFIG_NUMA */
3435 static void set_zonelist_order(void)
3437 current_zonelist_order = ZONELIST_ORDER_ZONE;
3440 static void build_zonelists(pg_data_t *pgdat)
3442 int node, local_node;
3443 enum zone_type j;
3444 struct zonelist *zonelist;
3446 local_node = pgdat->node_id;
3448 zonelist = &pgdat->node_zonelists[0];
3449 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3452 * Now we build the zonelist so that it contains the zones
3453 * of all the other nodes.
3454 * We don't want to pressure a particular node, so when
3455 * building the zones for node N, we make sure that the
3456 * zones coming right after the local ones are those from
3457 * node N+1 (modulo N)
3459 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3460 if (!node_online(node))
3461 continue;
3462 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3463 MAX_NR_ZONES - 1);
3465 for (node = 0; node < local_node; node++) {
3466 if (!node_online(node))
3467 continue;
3468 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3469 MAX_NR_ZONES - 1);
3472 zonelist->_zonerefs[j].zone = NULL;
3473 zonelist->_zonerefs[j].zone_idx = 0;
3476 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3477 static void build_zonelist_cache(pg_data_t *pgdat)
3479 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3482 #endif /* CONFIG_NUMA */
3485 * Boot pageset table. One per cpu which is going to be used for all
3486 * zones and all nodes. The parameters will be set in such a way
3487 * that an item put on a list will immediately be handed over to
3488 * the buddy list. This is safe since pageset manipulation is done
3489 * with interrupts disabled.
3491 * The boot_pagesets must be kept even after bootup is complete for
3492 * unused processors and/or zones. They do play a role for bootstrapping
3493 * hotplugged processors.
3495 * zoneinfo_show() and maybe other functions do
3496 * not check if the processor is online before following the pageset pointer.
3497 * Other parts of the kernel may not check if the zone is available.
3499 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3500 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3501 static void setup_zone_pageset(struct zone *zone);
3504 * Global mutex to protect against size modification of zonelists
3505 * as well as to serialize pageset setup for the new populated zone.
3507 DEFINE_MUTEX(zonelists_mutex);
3509 /* return values int ....just for stop_machine() */
3510 static int __build_all_zonelists(void *data)
3512 int nid;
3513 int cpu;
3514 pg_data_t *self = data;
3516 #ifdef CONFIG_NUMA
3517 memset(node_load, 0, sizeof(node_load));
3518 #endif
3520 if (self && !node_online(self->node_id)) {
3521 build_zonelists(self);
3522 build_zonelist_cache(self);
3525 for_each_online_node(nid) {
3526 pg_data_t *pgdat = NODE_DATA(nid);
3528 build_zonelists(pgdat);
3529 build_zonelist_cache(pgdat);
3533 * Initialize the boot_pagesets that are going to be used
3534 * for bootstrapping processors. The real pagesets for
3535 * each zone will be allocated later when the per cpu
3536 * allocator is available.
3538 * boot_pagesets are used also for bootstrapping offline
3539 * cpus if the system is already booted because the pagesets
3540 * are needed to initialize allocators on a specific cpu too.
3541 * F.e. the percpu allocator needs the page allocator which
3542 * needs the percpu allocator in order to allocate its pagesets
3543 * (a chicken-egg dilemma).
3545 for_each_possible_cpu(cpu) {
3546 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3548 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3550 * We now know the "local memory node" for each node--
3551 * i.e., the node of the first zone in the generic zonelist.
3552 * Set up numa_mem percpu variable for on-line cpus. During
3553 * boot, only the boot cpu should be on-line; we'll init the
3554 * secondary cpus' numa_mem as they come on-line. During
3555 * node/memory hotplug, we'll fixup all on-line cpus.
3557 if (cpu_online(cpu))
3558 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3559 #endif
3562 return 0;
3566 * Called with zonelists_mutex held always
3567 * unless system_state == SYSTEM_BOOTING.
3569 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3571 set_zonelist_order();
3573 if (system_state == SYSTEM_BOOTING) {
3574 __build_all_zonelists(NULL);
3575 mminit_verify_zonelist();
3576 cpuset_init_current_mems_allowed();
3577 } else {
3578 /* we have to stop all cpus to guarantee there is no user
3579 of zonelist */
3580 #ifdef CONFIG_MEMORY_HOTPLUG
3581 if (zone)
3582 setup_zone_pageset(zone);
3583 #endif
3584 stop_machine(__build_all_zonelists, pgdat, NULL);
3585 /* cpuset refresh routine should be here */
3587 vm_total_pages = nr_free_pagecache_pages();
3589 * Disable grouping by mobility if the number of pages in the
3590 * system is too low to allow the mechanism to work. It would be
3591 * more accurate, but expensive to check per-zone. This check is
3592 * made on memory-hotadd so a system can start with mobility
3593 * disabled and enable it later
3595 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3596 page_group_by_mobility_disabled = 1;
3597 else
3598 page_group_by_mobility_disabled = 0;
3600 printk("Built %i zonelists in %s order, mobility grouping %s. "
3601 "Total pages: %ld\n",
3602 nr_online_nodes,
3603 zonelist_order_name[current_zonelist_order],
3604 page_group_by_mobility_disabled ? "off" : "on",
3605 vm_total_pages);
3606 #ifdef CONFIG_NUMA
3607 printk("Policy zone: %s\n", zone_names[policy_zone]);
3608 #endif
3612 * Helper functions to size the waitqueue hash table.
3613 * Essentially these want to choose hash table sizes sufficiently
3614 * large so that collisions trying to wait on pages are rare.
3615 * But in fact, the number of active page waitqueues on typical
3616 * systems is ridiculously low, less than 200. So this is even
3617 * conservative, even though it seems large.
3619 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3620 * waitqueues, i.e. the size of the waitq table given the number of pages.
3622 #define PAGES_PER_WAITQUEUE 256
3624 #ifndef CONFIG_MEMORY_HOTPLUG
3625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3627 unsigned long size = 1;
3629 pages /= PAGES_PER_WAITQUEUE;
3631 while (size < pages)
3632 size <<= 1;
3635 * Once we have dozens or even hundreds of threads sleeping
3636 * on IO we've got bigger problems than wait queue collision.
3637 * Limit the size of the wait table to a reasonable size.
3639 size = min(size, 4096UL);
3641 return max(size, 4UL);
3643 #else
3645 * A zone's size might be changed by hot-add, so it is not possible to determine
3646 * a suitable size for its wait_table. So we use the maximum size now.
3648 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3650 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3651 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3652 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3654 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3655 * or more by the traditional way. (See above). It equals:
3657 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3658 * ia64(16K page size) : = ( 8G + 4M)byte.
3659 * powerpc (64K page size) : = (32G +16M)byte.
3661 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3663 return 4096UL;
3665 #endif
3668 * This is an integer logarithm so that shifts can be used later
3669 * to extract the more random high bits from the multiplicative
3670 * hash function before the remainder is taken.
3672 static inline unsigned long wait_table_bits(unsigned long size)
3674 return ffz(~size);
3677 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3680 * Check if a pageblock contains reserved pages
3682 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3684 unsigned long pfn;
3686 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3687 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3688 return 1;
3690 return 0;
3694 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3695 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3696 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3697 * higher will lead to a bigger reserve which will get freed as contiguous
3698 * blocks as reclaim kicks in
3700 static void setup_zone_migrate_reserve(struct zone *zone)
3702 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3703 struct page *page;
3704 unsigned long block_migratetype;
3705 int reserve;
3708 * Get the start pfn, end pfn and the number of blocks to reserve
3709 * We have to be careful to be aligned to pageblock_nr_pages to
3710 * make sure that we always check pfn_valid for the first page in
3711 * the block.
3713 start_pfn = zone->zone_start_pfn;
3714 end_pfn = start_pfn + zone->spanned_pages;
3715 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3716 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3717 pageblock_order;
3720 * Reserve blocks are generally in place to help high-order atomic
3721 * allocations that are short-lived. A min_free_kbytes value that
3722 * would result in more than 2 reserve blocks for atomic allocations
3723 * is assumed to be in place to help anti-fragmentation for the
3724 * future allocation of hugepages at runtime.
3726 reserve = min(2, reserve);
3728 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3729 if (!pfn_valid(pfn))
3730 continue;
3731 page = pfn_to_page(pfn);
3733 /* Watch out for overlapping nodes */
3734 if (page_to_nid(page) != zone_to_nid(zone))
3735 continue;
3737 block_migratetype = get_pageblock_migratetype(page);
3739 /* Only test what is necessary when the reserves are not met */
3740 if (reserve > 0) {
3742 * Blocks with reserved pages will never free, skip
3743 * them.
3745 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3746 if (pageblock_is_reserved(pfn, block_end_pfn))
3747 continue;
3749 /* If this block is reserved, account for it */
3750 if (block_migratetype == MIGRATE_RESERVE) {
3751 reserve--;
3752 continue;
3755 /* Suitable for reserving if this block is movable */
3756 if (block_migratetype == MIGRATE_MOVABLE) {
3757 set_pageblock_migratetype(page,
3758 MIGRATE_RESERVE);
3759 move_freepages_block(zone, page,
3760 MIGRATE_RESERVE);
3761 reserve--;
3762 continue;
3767 * If the reserve is met and this is a previous reserved block,
3768 * take it back
3770 if (block_migratetype == MIGRATE_RESERVE) {
3771 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3772 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3778 * Initially all pages are reserved - free ones are freed
3779 * up by free_all_bootmem() once the early boot process is
3780 * done. Non-atomic initialization, single-pass.
3782 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3783 unsigned long start_pfn, enum memmap_context context)
3785 struct page *page;
3786 unsigned long end_pfn = start_pfn + size;
3787 unsigned long pfn;
3788 struct zone *z;
3790 if (highest_memmap_pfn < end_pfn - 1)
3791 highest_memmap_pfn = end_pfn - 1;
3793 z = &NODE_DATA(nid)->node_zones[zone];
3794 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3796 * There can be holes in boot-time mem_map[]s
3797 * handed to this function. They do not
3798 * exist on hotplugged memory.
3800 if (context == MEMMAP_EARLY) {
3801 if (!early_pfn_valid(pfn))
3802 continue;
3803 if (!early_pfn_in_nid(pfn, nid))
3804 continue;
3806 page = pfn_to_page(pfn);
3807 set_page_links(page, zone, nid, pfn);
3808 mminit_verify_page_links(page, zone, nid, pfn);
3809 init_page_count(page);
3810 reset_page_mapcount(page);
3811 SetPageReserved(page);
3813 * Mark the block movable so that blocks are reserved for
3814 * movable at startup. This will force kernel allocations
3815 * to reserve their blocks rather than leaking throughout
3816 * the address space during boot when many long-lived
3817 * kernel allocations are made. Later some blocks near
3818 * the start are marked MIGRATE_RESERVE by
3819 * setup_zone_migrate_reserve()
3821 * bitmap is created for zone's valid pfn range. but memmap
3822 * can be created for invalid pages (for alignment)
3823 * check here not to call set_pageblock_migratetype() against
3824 * pfn out of zone.
3826 if ((z->zone_start_pfn <= pfn)
3827 && (pfn < z->zone_start_pfn + z->spanned_pages)
3828 && !(pfn & (pageblock_nr_pages - 1)))
3829 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3831 INIT_LIST_HEAD(&page->lru);
3832 #ifdef WANT_PAGE_VIRTUAL
3833 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3834 if (!is_highmem_idx(zone))
3835 set_page_address(page, __va(pfn << PAGE_SHIFT));
3836 #endif
3840 static void __meminit zone_init_free_lists(struct zone *zone)
3842 int order, t;
3843 for_each_migratetype_order(order, t) {
3844 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3845 zone->free_area[order].nr_free = 0;
3849 #ifndef __HAVE_ARCH_MEMMAP_INIT
3850 #define memmap_init(size, nid, zone, start_pfn) \
3851 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3852 #endif
3854 static int __meminit zone_batchsize(struct zone *zone)
3856 #ifdef CONFIG_MMU
3857 int batch;
3860 * The per-cpu-pages pools are set to around 1000th of the
3861 * size of the zone. But no more than 1/2 of a meg.
3863 * OK, so we don't know how big the cache is. So guess.
3865 batch = zone->present_pages / 1024;
3866 if (batch * PAGE_SIZE > 512 * 1024)
3867 batch = (512 * 1024) / PAGE_SIZE;
3868 batch /= 4; /* We effectively *= 4 below */
3869 if (batch < 1)
3870 batch = 1;
3873 * Clamp the batch to a 2^n - 1 value. Having a power
3874 * of 2 value was found to be more likely to have
3875 * suboptimal cache aliasing properties in some cases.
3877 * For example if 2 tasks are alternately allocating
3878 * batches of pages, one task can end up with a lot
3879 * of pages of one half of the possible page colors
3880 * and the other with pages of the other colors.
3882 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3884 return batch;
3886 #else
3887 /* The deferral and batching of frees should be suppressed under NOMMU
3888 * conditions.
3890 * The problem is that NOMMU needs to be able to allocate large chunks
3891 * of contiguous memory as there's no hardware page translation to
3892 * assemble apparent contiguous memory from discontiguous pages.
3894 * Queueing large contiguous runs of pages for batching, however,
3895 * causes the pages to actually be freed in smaller chunks. As there
3896 * can be a significant delay between the individual batches being
3897 * recycled, this leads to the once large chunks of space being
3898 * fragmented and becoming unavailable for high-order allocations.
3900 return 0;
3901 #endif
3904 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3906 struct per_cpu_pages *pcp;
3907 int migratetype;
3909 memset(p, 0, sizeof(*p));
3911 pcp = &p->pcp;
3912 pcp->count = 0;
3913 pcp->high = 6 * batch;
3914 pcp->batch = max(1UL, 1 * batch);
3915 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3916 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3920 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3921 * to the value high for the pageset p.
3924 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3925 unsigned long high)
3927 struct per_cpu_pages *pcp;
3929 pcp = &p->pcp;
3930 pcp->high = high;
3931 pcp->batch = max(1UL, high/4);
3932 if ((high/4) > (PAGE_SHIFT * 8))
3933 pcp->batch = PAGE_SHIFT * 8;
3936 static void __meminit setup_zone_pageset(struct zone *zone)
3938 int cpu;
3940 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3942 for_each_possible_cpu(cpu) {
3943 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3945 setup_pageset(pcp, zone_batchsize(zone));
3947 if (percpu_pagelist_fraction)
3948 setup_pagelist_highmark(pcp,
3949 (zone->present_pages /
3950 percpu_pagelist_fraction));
3955 * Allocate per cpu pagesets and initialize them.
3956 * Before this call only boot pagesets were available.
3958 void __init setup_per_cpu_pageset(void)
3960 struct zone *zone;
3962 for_each_populated_zone(zone)
3963 setup_zone_pageset(zone);
3966 static noinline __init_refok
3967 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3969 int i;
3970 struct pglist_data *pgdat = zone->zone_pgdat;
3971 size_t alloc_size;
3974 * The per-page waitqueue mechanism uses hashed waitqueues
3975 * per zone.
3977 zone->wait_table_hash_nr_entries =
3978 wait_table_hash_nr_entries(zone_size_pages);
3979 zone->wait_table_bits =
3980 wait_table_bits(zone->wait_table_hash_nr_entries);
3981 alloc_size = zone->wait_table_hash_nr_entries
3982 * sizeof(wait_queue_head_t);
3984 if (!slab_is_available()) {
3985 zone->wait_table = (wait_queue_head_t *)
3986 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3987 } else {
3989 * This case means that a zone whose size was 0 gets new memory
3990 * via memory hot-add.
3991 * But it may be the case that a new node was hot-added. In
3992 * this case vmalloc() will not be able to use this new node's
3993 * memory - this wait_table must be initialized to use this new
3994 * node itself as well.
3995 * To use this new node's memory, further consideration will be
3996 * necessary.
3998 zone->wait_table = vmalloc(alloc_size);
4000 if (!zone->wait_table)
4001 return -ENOMEM;
4003 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4004 init_waitqueue_head(zone->wait_table + i);
4006 return 0;
4009 static __meminit void zone_pcp_init(struct zone *zone)
4012 * per cpu subsystem is not up at this point. The following code
4013 * relies on the ability of the linker to provide the
4014 * offset of a (static) per cpu variable into the per cpu area.
4016 zone->pageset = &boot_pageset;
4018 if (zone->present_pages)
4019 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4020 zone->name, zone->present_pages,
4021 zone_batchsize(zone));
4024 int __meminit init_currently_empty_zone(struct zone *zone,
4025 unsigned long zone_start_pfn,
4026 unsigned long size,
4027 enum memmap_context context)
4029 struct pglist_data *pgdat = zone->zone_pgdat;
4030 int ret;
4031 ret = zone_wait_table_init(zone, size);
4032 if (ret)
4033 return ret;
4034 pgdat->nr_zones = zone_idx(zone) + 1;
4036 zone->zone_start_pfn = zone_start_pfn;
4038 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4039 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4040 pgdat->node_id,
4041 (unsigned long)zone_idx(zone),
4042 zone_start_pfn, (zone_start_pfn + size));
4044 zone_init_free_lists(zone);
4046 return 0;
4049 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4050 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4052 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4053 * Architectures may implement their own version but if add_active_range()
4054 * was used and there are no special requirements, this is a convenient
4055 * alternative
4057 int __meminit __early_pfn_to_nid(unsigned long pfn)
4059 unsigned long start_pfn, end_pfn;
4060 int i, nid;
4062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4063 if (start_pfn <= pfn && pfn < end_pfn)
4064 return nid;
4065 /* This is a memory hole */
4066 return -1;
4068 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4070 int __meminit early_pfn_to_nid(unsigned long pfn)
4072 int nid;
4074 nid = __early_pfn_to_nid(pfn);
4075 if (nid >= 0)
4076 return nid;
4077 /* just returns 0 */
4078 return 0;
4081 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4082 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4084 int nid;
4086 nid = __early_pfn_to_nid(pfn);
4087 if (nid >= 0 && nid != node)
4088 return false;
4089 return true;
4091 #endif
4094 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4095 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4096 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4098 * If an architecture guarantees that all ranges registered with
4099 * add_active_ranges() contain no holes and may be freed, this
4100 * this function may be used instead of calling free_bootmem() manually.
4102 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4104 unsigned long start_pfn, end_pfn;
4105 int i, this_nid;
4107 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4108 start_pfn = min(start_pfn, max_low_pfn);
4109 end_pfn = min(end_pfn, max_low_pfn);
4111 if (start_pfn < end_pfn)
4112 free_bootmem_node(NODE_DATA(this_nid),
4113 PFN_PHYS(start_pfn),
4114 (end_pfn - start_pfn) << PAGE_SHIFT);
4119 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4120 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4122 * If an architecture guarantees that all ranges registered with
4123 * add_active_ranges() contain no holes and may be freed, this
4124 * function may be used instead of calling memory_present() manually.
4126 void __init sparse_memory_present_with_active_regions(int nid)
4128 unsigned long start_pfn, end_pfn;
4129 int i, this_nid;
4131 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4132 memory_present(this_nid, start_pfn, end_pfn);
4136 * get_pfn_range_for_nid - Return the start and end page frames for a node
4137 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4138 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4139 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4141 * It returns the start and end page frame of a node based on information
4142 * provided by an arch calling add_active_range(). If called for a node
4143 * with no available memory, a warning is printed and the start and end
4144 * PFNs will be 0.
4146 void __meminit get_pfn_range_for_nid(unsigned int nid,
4147 unsigned long *start_pfn, unsigned long *end_pfn)
4149 unsigned long this_start_pfn, this_end_pfn;
4150 int i;
4152 *start_pfn = -1UL;
4153 *end_pfn = 0;
4155 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4156 *start_pfn = min(*start_pfn, this_start_pfn);
4157 *end_pfn = max(*end_pfn, this_end_pfn);
4160 if (*start_pfn == -1UL)
4161 *start_pfn = 0;
4165 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4166 * assumption is made that zones within a node are ordered in monotonic
4167 * increasing memory addresses so that the "highest" populated zone is used
4169 static void __init find_usable_zone_for_movable(void)
4171 int zone_index;
4172 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4173 if (zone_index == ZONE_MOVABLE)
4174 continue;
4176 if (arch_zone_highest_possible_pfn[zone_index] >
4177 arch_zone_lowest_possible_pfn[zone_index])
4178 break;
4181 VM_BUG_ON(zone_index == -1);
4182 movable_zone = zone_index;
4186 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4187 * because it is sized independent of architecture. Unlike the other zones,
4188 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4189 * in each node depending on the size of each node and how evenly kernelcore
4190 * is distributed. This helper function adjusts the zone ranges
4191 * provided by the architecture for a given node by using the end of the
4192 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4193 * zones within a node are in order of monotonic increases memory addresses
4195 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4196 unsigned long zone_type,
4197 unsigned long node_start_pfn,
4198 unsigned long node_end_pfn,
4199 unsigned long *zone_start_pfn,
4200 unsigned long *zone_end_pfn)
4202 /* Only adjust if ZONE_MOVABLE is on this node */
4203 if (zone_movable_pfn[nid]) {
4204 /* Size ZONE_MOVABLE */
4205 if (zone_type == ZONE_MOVABLE) {
4206 *zone_start_pfn = zone_movable_pfn[nid];
4207 *zone_end_pfn = min(node_end_pfn,
4208 arch_zone_highest_possible_pfn[movable_zone]);
4210 /* Adjust for ZONE_MOVABLE starting within this range */
4211 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4212 *zone_end_pfn > zone_movable_pfn[nid]) {
4213 *zone_end_pfn = zone_movable_pfn[nid];
4215 /* Check if this whole range is within ZONE_MOVABLE */
4216 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4217 *zone_start_pfn = *zone_end_pfn;
4222 * Return the number of pages a zone spans in a node, including holes
4223 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4225 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4226 unsigned long zone_type,
4227 unsigned long *ignored)
4229 unsigned long node_start_pfn, node_end_pfn;
4230 unsigned long zone_start_pfn, zone_end_pfn;
4232 /* Get the start and end of the node and zone */
4233 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4234 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4235 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4236 adjust_zone_range_for_zone_movable(nid, zone_type,
4237 node_start_pfn, node_end_pfn,
4238 &zone_start_pfn, &zone_end_pfn);
4240 /* Check that this node has pages within the zone's required range */
4241 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4242 return 0;
4244 /* Move the zone boundaries inside the node if necessary */
4245 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4246 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4248 /* Return the spanned pages */
4249 return zone_end_pfn - zone_start_pfn;
4253 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4254 * then all holes in the requested range will be accounted for.
4256 unsigned long __meminit __absent_pages_in_range(int nid,
4257 unsigned long range_start_pfn,
4258 unsigned long range_end_pfn)
4260 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4261 unsigned long start_pfn, end_pfn;
4262 int i;
4264 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4265 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4266 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4267 nr_absent -= end_pfn - start_pfn;
4269 return nr_absent;
4273 * absent_pages_in_range - Return number of page frames in holes within a range
4274 * @start_pfn: The start PFN to start searching for holes
4275 * @end_pfn: The end PFN to stop searching for holes
4277 * It returns the number of pages frames in memory holes within a range.
4279 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4280 unsigned long end_pfn)
4282 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4285 /* Return the number of page frames in holes in a zone on a node */
4286 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4287 unsigned long zone_type,
4288 unsigned long *ignored)
4290 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4291 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4292 unsigned long node_start_pfn, node_end_pfn;
4293 unsigned long zone_start_pfn, zone_end_pfn;
4295 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4296 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4297 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4299 adjust_zone_range_for_zone_movable(nid, zone_type,
4300 node_start_pfn, node_end_pfn,
4301 &zone_start_pfn, &zone_end_pfn);
4302 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4305 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4306 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4307 unsigned long zone_type,
4308 unsigned long *zones_size)
4310 return zones_size[zone_type];
4313 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4314 unsigned long zone_type,
4315 unsigned long *zholes_size)
4317 if (!zholes_size)
4318 return 0;
4320 return zholes_size[zone_type];
4323 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4325 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4326 unsigned long *zones_size, unsigned long *zholes_size)
4328 unsigned long realtotalpages, totalpages = 0;
4329 enum zone_type i;
4331 for (i = 0; i < MAX_NR_ZONES; i++)
4332 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4333 zones_size);
4334 pgdat->node_spanned_pages = totalpages;
4336 realtotalpages = totalpages;
4337 for (i = 0; i < MAX_NR_ZONES; i++)
4338 realtotalpages -=
4339 zone_absent_pages_in_node(pgdat->node_id, i,
4340 zholes_size);
4341 pgdat->node_present_pages = realtotalpages;
4342 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4343 realtotalpages);
4346 #ifndef CONFIG_SPARSEMEM
4348 * Calculate the size of the zone->blockflags rounded to an unsigned long
4349 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4350 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4351 * round what is now in bits to nearest long in bits, then return it in
4352 * bytes.
4354 static unsigned long __init usemap_size(unsigned long zonesize)
4356 unsigned long usemapsize;
4358 usemapsize = roundup(zonesize, pageblock_nr_pages);
4359 usemapsize = usemapsize >> pageblock_order;
4360 usemapsize *= NR_PAGEBLOCK_BITS;
4361 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4363 return usemapsize / 8;
4366 static void __init setup_usemap(struct pglist_data *pgdat,
4367 struct zone *zone, unsigned long zonesize)
4369 unsigned long usemapsize = usemap_size(zonesize);
4370 zone->pageblock_flags = NULL;
4371 if (usemapsize)
4372 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4373 usemapsize);
4375 #else
4376 static inline void setup_usemap(struct pglist_data *pgdat,
4377 struct zone *zone, unsigned long zonesize) {}
4378 #endif /* CONFIG_SPARSEMEM */
4380 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4382 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4383 void __init set_pageblock_order(void)
4385 unsigned int order;
4387 /* Check that pageblock_nr_pages has not already been setup */
4388 if (pageblock_order)
4389 return;
4391 if (HPAGE_SHIFT > PAGE_SHIFT)
4392 order = HUGETLB_PAGE_ORDER;
4393 else
4394 order = MAX_ORDER - 1;
4397 * Assume the largest contiguous order of interest is a huge page.
4398 * This value may be variable depending on boot parameters on IA64 and
4399 * powerpc.
4401 pageblock_order = order;
4403 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4407 * is unused as pageblock_order is set at compile-time. See
4408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4409 * the kernel config
4411 void __init set_pageblock_order(void)
4415 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4418 * Set up the zone data structures:
4419 * - mark all pages reserved
4420 * - mark all memory queues empty
4421 * - clear the memory bitmaps
4423 * NOTE: pgdat should get zeroed by caller.
4425 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4426 unsigned long *zones_size, unsigned long *zholes_size)
4428 enum zone_type j;
4429 int nid = pgdat->node_id;
4430 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4431 int ret;
4433 pgdat_resize_init(pgdat);
4434 init_waitqueue_head(&pgdat->kswapd_wait);
4435 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4436 pgdat_page_cgroup_init(pgdat);
4438 for (j = 0; j < MAX_NR_ZONES; j++) {
4439 struct zone *zone = pgdat->node_zones + j;
4440 unsigned long size, realsize, memmap_pages;
4442 size = zone_spanned_pages_in_node(nid, j, zones_size);
4443 realsize = size - zone_absent_pages_in_node(nid, j,
4444 zholes_size);
4447 * Adjust realsize so that it accounts for how much memory
4448 * is used by this zone for memmap. This affects the watermark
4449 * and per-cpu initialisations
4451 memmap_pages =
4452 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4453 if (realsize >= memmap_pages) {
4454 realsize -= memmap_pages;
4455 if (memmap_pages)
4456 printk(KERN_DEBUG
4457 " %s zone: %lu pages used for memmap\n",
4458 zone_names[j], memmap_pages);
4459 } else
4460 printk(KERN_WARNING
4461 " %s zone: %lu pages exceeds realsize %lu\n",
4462 zone_names[j], memmap_pages, realsize);
4464 /* Account for reserved pages */
4465 if (j == 0 && realsize > dma_reserve) {
4466 realsize -= dma_reserve;
4467 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4468 zone_names[0], dma_reserve);
4471 if (!is_highmem_idx(j))
4472 nr_kernel_pages += realsize;
4473 nr_all_pages += realsize;
4475 zone->spanned_pages = size;
4476 zone->present_pages = realsize;
4477 #ifdef CONFIG_NUMA
4478 zone->node = nid;
4479 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4480 / 100;
4481 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4482 #endif
4483 zone->name = zone_names[j];
4484 spin_lock_init(&zone->lock);
4485 spin_lock_init(&zone->lru_lock);
4486 zone_seqlock_init(zone);
4487 zone->zone_pgdat = pgdat;
4489 zone_pcp_init(zone);
4490 lruvec_init(&zone->lruvec);
4491 if (!size)
4492 continue;
4494 set_pageblock_order();
4495 setup_usemap(pgdat, zone, size);
4496 ret = init_currently_empty_zone(zone, zone_start_pfn,
4497 size, MEMMAP_EARLY);
4498 BUG_ON(ret);
4499 memmap_init(size, nid, j, zone_start_pfn);
4500 zone_start_pfn += size;
4504 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4506 /* Skip empty nodes */
4507 if (!pgdat->node_spanned_pages)
4508 return;
4510 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4511 /* ia64 gets its own node_mem_map, before this, without bootmem */
4512 if (!pgdat->node_mem_map) {
4513 unsigned long size, start, end;
4514 struct page *map;
4517 * The zone's endpoints aren't required to be MAX_ORDER
4518 * aligned but the node_mem_map endpoints must be in order
4519 * for the buddy allocator to function correctly.
4521 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4522 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4523 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4524 size = (end - start) * sizeof(struct page);
4525 map = alloc_remap(pgdat->node_id, size);
4526 if (!map)
4527 map = alloc_bootmem_node_nopanic(pgdat, size);
4528 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4530 #ifndef CONFIG_NEED_MULTIPLE_NODES
4532 * With no DISCONTIG, the global mem_map is just set as node 0's
4534 if (pgdat == NODE_DATA(0)) {
4535 mem_map = NODE_DATA(0)->node_mem_map;
4536 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4537 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4538 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4539 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4541 #endif
4542 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4545 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4546 unsigned long node_start_pfn, unsigned long *zholes_size)
4548 pg_data_t *pgdat = NODE_DATA(nid);
4550 /* pg_data_t should be reset to zero when it's allocated */
4551 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4553 pgdat->node_id = nid;
4554 pgdat->node_start_pfn = node_start_pfn;
4555 init_zone_allows_reclaim(nid);
4556 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4558 alloc_node_mem_map(pgdat);
4559 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4560 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4561 nid, (unsigned long)pgdat,
4562 (unsigned long)pgdat->node_mem_map);
4563 #endif
4565 free_area_init_core(pgdat, zones_size, zholes_size);
4568 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4570 #if MAX_NUMNODES > 1
4572 * Figure out the number of possible node ids.
4574 static void __init setup_nr_node_ids(void)
4576 unsigned int node;
4577 unsigned int highest = 0;
4579 for_each_node_mask(node, node_possible_map)
4580 highest = node;
4581 nr_node_ids = highest + 1;
4583 #else
4584 static inline void setup_nr_node_ids(void)
4587 #endif
4590 * node_map_pfn_alignment - determine the maximum internode alignment
4592 * This function should be called after node map is populated and sorted.
4593 * It calculates the maximum power of two alignment which can distinguish
4594 * all the nodes.
4596 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4597 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4598 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4599 * shifted, 1GiB is enough and this function will indicate so.
4601 * This is used to test whether pfn -> nid mapping of the chosen memory
4602 * model has fine enough granularity to avoid incorrect mapping for the
4603 * populated node map.
4605 * Returns the determined alignment in pfn's. 0 if there is no alignment
4606 * requirement (single node).
4608 unsigned long __init node_map_pfn_alignment(void)
4610 unsigned long accl_mask = 0, last_end = 0;
4611 unsigned long start, end, mask;
4612 int last_nid = -1;
4613 int i, nid;
4615 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4616 if (!start || last_nid < 0 || last_nid == nid) {
4617 last_nid = nid;
4618 last_end = end;
4619 continue;
4623 * Start with a mask granular enough to pin-point to the
4624 * start pfn and tick off bits one-by-one until it becomes
4625 * too coarse to separate the current node from the last.
4627 mask = ~((1 << __ffs(start)) - 1);
4628 while (mask && last_end <= (start & (mask << 1)))
4629 mask <<= 1;
4631 /* accumulate all internode masks */
4632 accl_mask |= mask;
4635 /* convert mask to number of pages */
4636 return ~accl_mask + 1;
4639 /* Find the lowest pfn for a node */
4640 static unsigned long __init find_min_pfn_for_node(int nid)
4642 unsigned long min_pfn = ULONG_MAX;
4643 unsigned long start_pfn;
4644 int i;
4646 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4647 min_pfn = min(min_pfn, start_pfn);
4649 if (min_pfn == ULONG_MAX) {
4650 printk(KERN_WARNING
4651 "Could not find start_pfn for node %d\n", nid);
4652 return 0;
4655 return min_pfn;
4659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4661 * It returns the minimum PFN based on information provided via
4662 * add_active_range().
4664 unsigned long __init find_min_pfn_with_active_regions(void)
4666 return find_min_pfn_for_node(MAX_NUMNODES);
4670 * early_calculate_totalpages()
4671 * Sum pages in active regions for movable zone.
4672 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4674 static unsigned long __init early_calculate_totalpages(void)
4676 unsigned long totalpages = 0;
4677 unsigned long start_pfn, end_pfn;
4678 int i, nid;
4680 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4681 unsigned long pages = end_pfn - start_pfn;
4683 totalpages += pages;
4684 if (pages)
4685 node_set_state(nid, N_HIGH_MEMORY);
4687 return totalpages;
4691 * Find the PFN the Movable zone begins in each node. Kernel memory
4692 * is spread evenly between nodes as long as the nodes have enough
4693 * memory. When they don't, some nodes will have more kernelcore than
4694 * others
4696 static void __init find_zone_movable_pfns_for_nodes(void)
4698 int i, nid;
4699 unsigned long usable_startpfn;
4700 unsigned long kernelcore_node, kernelcore_remaining;
4701 /* save the state before borrow the nodemask */
4702 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4703 unsigned long totalpages = early_calculate_totalpages();
4704 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4707 * If movablecore was specified, calculate what size of
4708 * kernelcore that corresponds so that memory usable for
4709 * any allocation type is evenly spread. If both kernelcore
4710 * and movablecore are specified, then the value of kernelcore
4711 * will be used for required_kernelcore if it's greater than
4712 * what movablecore would have allowed.
4714 if (required_movablecore) {
4715 unsigned long corepages;
4718 * Round-up so that ZONE_MOVABLE is at least as large as what
4719 * was requested by the user
4721 required_movablecore =
4722 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4723 corepages = totalpages - required_movablecore;
4725 required_kernelcore = max(required_kernelcore, corepages);
4728 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4729 if (!required_kernelcore)
4730 goto out;
4732 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4733 find_usable_zone_for_movable();
4734 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4736 restart:
4737 /* Spread kernelcore memory as evenly as possible throughout nodes */
4738 kernelcore_node = required_kernelcore / usable_nodes;
4739 for_each_node_state(nid, N_HIGH_MEMORY) {
4740 unsigned long start_pfn, end_pfn;
4743 * Recalculate kernelcore_node if the division per node
4744 * now exceeds what is necessary to satisfy the requested
4745 * amount of memory for the kernel
4747 if (required_kernelcore < kernelcore_node)
4748 kernelcore_node = required_kernelcore / usable_nodes;
4751 * As the map is walked, we track how much memory is usable
4752 * by the kernel using kernelcore_remaining. When it is
4753 * 0, the rest of the node is usable by ZONE_MOVABLE
4755 kernelcore_remaining = kernelcore_node;
4757 /* Go through each range of PFNs within this node */
4758 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4759 unsigned long size_pages;
4761 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4762 if (start_pfn >= end_pfn)
4763 continue;
4765 /* Account for what is only usable for kernelcore */
4766 if (start_pfn < usable_startpfn) {
4767 unsigned long kernel_pages;
4768 kernel_pages = min(end_pfn, usable_startpfn)
4769 - start_pfn;
4771 kernelcore_remaining -= min(kernel_pages,
4772 kernelcore_remaining);
4773 required_kernelcore -= min(kernel_pages,
4774 required_kernelcore);
4776 /* Continue if range is now fully accounted */
4777 if (end_pfn <= usable_startpfn) {
4780 * Push zone_movable_pfn to the end so
4781 * that if we have to rebalance
4782 * kernelcore across nodes, we will
4783 * not double account here
4785 zone_movable_pfn[nid] = end_pfn;
4786 continue;
4788 start_pfn = usable_startpfn;
4792 * The usable PFN range for ZONE_MOVABLE is from
4793 * start_pfn->end_pfn. Calculate size_pages as the
4794 * number of pages used as kernelcore
4796 size_pages = end_pfn - start_pfn;
4797 if (size_pages > kernelcore_remaining)
4798 size_pages = kernelcore_remaining;
4799 zone_movable_pfn[nid] = start_pfn + size_pages;
4802 * Some kernelcore has been met, update counts and
4803 * break if the kernelcore for this node has been
4804 * satisified
4806 required_kernelcore -= min(required_kernelcore,
4807 size_pages);
4808 kernelcore_remaining -= size_pages;
4809 if (!kernelcore_remaining)
4810 break;
4815 * If there is still required_kernelcore, we do another pass with one
4816 * less node in the count. This will push zone_movable_pfn[nid] further
4817 * along on the nodes that still have memory until kernelcore is
4818 * satisified
4820 usable_nodes--;
4821 if (usable_nodes && required_kernelcore > usable_nodes)
4822 goto restart;
4824 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4825 for (nid = 0; nid < MAX_NUMNODES; nid++)
4826 zone_movable_pfn[nid] =
4827 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4829 out:
4830 /* restore the node_state */
4831 node_states[N_HIGH_MEMORY] = saved_node_state;
4834 /* Any regular memory on that node ? */
4835 static void __init check_for_regular_memory(pg_data_t *pgdat)
4837 #ifdef CONFIG_HIGHMEM
4838 enum zone_type zone_type;
4840 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4841 struct zone *zone = &pgdat->node_zones[zone_type];
4842 if (zone->present_pages) {
4843 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4844 break;
4847 #endif
4851 * free_area_init_nodes - Initialise all pg_data_t and zone data
4852 * @max_zone_pfn: an array of max PFNs for each zone
4854 * This will call free_area_init_node() for each active node in the system.
4855 * Using the page ranges provided by add_active_range(), the size of each
4856 * zone in each node and their holes is calculated. If the maximum PFN
4857 * between two adjacent zones match, it is assumed that the zone is empty.
4858 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4859 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4860 * starts where the previous one ended. For example, ZONE_DMA32 starts
4861 * at arch_max_dma_pfn.
4863 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4865 unsigned long start_pfn, end_pfn;
4866 int i, nid;
4868 /* Record where the zone boundaries are */
4869 memset(arch_zone_lowest_possible_pfn, 0,
4870 sizeof(arch_zone_lowest_possible_pfn));
4871 memset(arch_zone_highest_possible_pfn, 0,
4872 sizeof(arch_zone_highest_possible_pfn));
4873 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4874 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4875 for (i = 1; i < MAX_NR_ZONES; i++) {
4876 if (i == ZONE_MOVABLE)
4877 continue;
4878 arch_zone_lowest_possible_pfn[i] =
4879 arch_zone_highest_possible_pfn[i-1];
4880 arch_zone_highest_possible_pfn[i] =
4881 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4883 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4884 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4886 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4887 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4888 find_zone_movable_pfns_for_nodes();
4890 /* Print out the zone ranges */
4891 printk("Zone ranges:\n");
4892 for (i = 0; i < MAX_NR_ZONES; i++) {
4893 if (i == ZONE_MOVABLE)
4894 continue;
4895 printk(KERN_CONT " %-8s ", zone_names[i]);
4896 if (arch_zone_lowest_possible_pfn[i] ==
4897 arch_zone_highest_possible_pfn[i])
4898 printk(KERN_CONT "empty\n");
4899 else
4900 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4901 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4902 (arch_zone_highest_possible_pfn[i]
4903 << PAGE_SHIFT) - 1);
4906 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4907 printk("Movable zone start for each node\n");
4908 for (i = 0; i < MAX_NUMNODES; i++) {
4909 if (zone_movable_pfn[i])
4910 printk(" Node %d: %#010lx\n", i,
4911 zone_movable_pfn[i] << PAGE_SHIFT);
4914 /* Print out the early node map */
4915 printk("Early memory node ranges\n");
4916 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4917 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4918 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4920 /* Initialise every node */
4921 mminit_verify_pageflags_layout();
4922 setup_nr_node_ids();
4923 for_each_online_node(nid) {
4924 pg_data_t *pgdat = NODE_DATA(nid);
4925 free_area_init_node(nid, NULL,
4926 find_min_pfn_for_node(nid), NULL);
4928 /* Any memory on that node */
4929 if (pgdat->node_present_pages)
4930 node_set_state(nid, N_HIGH_MEMORY);
4931 check_for_regular_memory(pgdat);
4935 static int __init cmdline_parse_core(char *p, unsigned long *core)
4937 unsigned long long coremem;
4938 if (!p)
4939 return -EINVAL;
4941 coremem = memparse(p, &p);
4942 *core = coremem >> PAGE_SHIFT;
4944 /* Paranoid check that UL is enough for the coremem value */
4945 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4947 return 0;
4951 * kernelcore=size sets the amount of memory for use for allocations that
4952 * cannot be reclaimed or migrated.
4954 static int __init cmdline_parse_kernelcore(char *p)
4956 return cmdline_parse_core(p, &required_kernelcore);
4960 * movablecore=size sets the amount of memory for use for allocations that
4961 * can be reclaimed or migrated.
4963 static int __init cmdline_parse_movablecore(char *p)
4965 return cmdline_parse_core(p, &required_movablecore);
4968 early_param("kernelcore", cmdline_parse_kernelcore);
4969 early_param("movablecore", cmdline_parse_movablecore);
4971 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4974 * set_dma_reserve - set the specified number of pages reserved in the first zone
4975 * @new_dma_reserve: The number of pages to mark reserved
4977 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4978 * In the DMA zone, a significant percentage may be consumed by kernel image
4979 * and other unfreeable allocations which can skew the watermarks badly. This
4980 * function may optionally be used to account for unfreeable pages in the
4981 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4982 * smaller per-cpu batchsize.
4984 void __init set_dma_reserve(unsigned long new_dma_reserve)
4986 dma_reserve = new_dma_reserve;
4989 void __init free_area_init(unsigned long *zones_size)
4991 free_area_init_node(0, zones_size,
4992 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4995 static int page_alloc_cpu_notify(struct notifier_block *self,
4996 unsigned long action, void *hcpu)
4998 int cpu = (unsigned long)hcpu;
5000 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5001 lru_add_drain_cpu(cpu);
5002 drain_pages(cpu);
5005 * Spill the event counters of the dead processor
5006 * into the current processors event counters.
5007 * This artificially elevates the count of the current
5008 * processor.
5010 vm_events_fold_cpu(cpu);
5013 * Zero the differential counters of the dead processor
5014 * so that the vm statistics are consistent.
5016 * This is only okay since the processor is dead and cannot
5017 * race with what we are doing.
5019 refresh_cpu_vm_stats(cpu);
5021 return NOTIFY_OK;
5024 void __init page_alloc_init(void)
5026 hotcpu_notifier(page_alloc_cpu_notify, 0);
5030 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5031 * or min_free_kbytes changes.
5033 static void calculate_totalreserve_pages(void)
5035 struct pglist_data *pgdat;
5036 unsigned long reserve_pages = 0;
5037 enum zone_type i, j;
5039 for_each_online_pgdat(pgdat) {
5040 for (i = 0; i < MAX_NR_ZONES; i++) {
5041 struct zone *zone = pgdat->node_zones + i;
5042 unsigned long max = 0;
5044 /* Find valid and maximum lowmem_reserve in the zone */
5045 for (j = i; j < MAX_NR_ZONES; j++) {
5046 if (zone->lowmem_reserve[j] > max)
5047 max = zone->lowmem_reserve[j];
5050 /* we treat the high watermark as reserved pages. */
5051 max += high_wmark_pages(zone);
5053 if (max > zone->present_pages)
5054 max = zone->present_pages;
5055 reserve_pages += max;
5057 * Lowmem reserves are not available to
5058 * GFP_HIGHUSER page cache allocations and
5059 * kswapd tries to balance zones to their high
5060 * watermark. As a result, neither should be
5061 * regarded as dirtyable memory, to prevent a
5062 * situation where reclaim has to clean pages
5063 * in order to balance the zones.
5065 zone->dirty_balance_reserve = max;
5068 dirty_balance_reserve = reserve_pages;
5069 totalreserve_pages = reserve_pages;
5073 * setup_per_zone_lowmem_reserve - called whenever
5074 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5075 * has a correct pages reserved value, so an adequate number of
5076 * pages are left in the zone after a successful __alloc_pages().
5078 static void setup_per_zone_lowmem_reserve(void)
5080 struct pglist_data *pgdat;
5081 enum zone_type j, idx;
5083 for_each_online_pgdat(pgdat) {
5084 for (j = 0; j < MAX_NR_ZONES; j++) {
5085 struct zone *zone = pgdat->node_zones + j;
5086 unsigned long present_pages = zone->present_pages;
5088 zone->lowmem_reserve[j] = 0;
5090 idx = j;
5091 while (idx) {
5092 struct zone *lower_zone;
5094 idx--;
5096 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5097 sysctl_lowmem_reserve_ratio[idx] = 1;
5099 lower_zone = pgdat->node_zones + idx;
5100 lower_zone->lowmem_reserve[j] = present_pages /
5101 sysctl_lowmem_reserve_ratio[idx];
5102 present_pages += lower_zone->present_pages;
5107 /* update totalreserve_pages */
5108 calculate_totalreserve_pages();
5111 static void __setup_per_zone_wmarks(void)
5113 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5114 unsigned long lowmem_pages = 0;
5115 struct zone *zone;
5116 unsigned long flags;
5118 /* Calculate total number of !ZONE_HIGHMEM pages */
5119 for_each_zone(zone) {
5120 if (!is_highmem(zone))
5121 lowmem_pages += zone->present_pages;
5124 for_each_zone(zone) {
5125 u64 tmp;
5127 spin_lock_irqsave(&zone->lock, flags);
5128 tmp = (u64)pages_min * zone->present_pages;
5129 do_div(tmp, lowmem_pages);
5130 if (is_highmem(zone)) {
5132 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5133 * need highmem pages, so cap pages_min to a small
5134 * value here.
5136 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5137 * deltas controls asynch page reclaim, and so should
5138 * not be capped for highmem.
5140 int min_pages;
5142 min_pages = zone->present_pages / 1024;
5143 if (min_pages < SWAP_CLUSTER_MAX)
5144 min_pages = SWAP_CLUSTER_MAX;
5145 if (min_pages > 128)
5146 min_pages = 128;
5147 zone->watermark[WMARK_MIN] = min_pages;
5148 } else {
5150 * If it's a lowmem zone, reserve a number of pages
5151 * proportionate to the zone's size.
5153 zone->watermark[WMARK_MIN] = tmp;
5156 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5157 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5159 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5160 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5161 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5163 setup_zone_migrate_reserve(zone);
5164 spin_unlock_irqrestore(&zone->lock, flags);
5167 /* update totalreserve_pages */
5168 calculate_totalreserve_pages();
5172 * setup_per_zone_wmarks - called when min_free_kbytes changes
5173 * or when memory is hot-{added|removed}
5175 * Ensures that the watermark[min,low,high] values for each zone are set
5176 * correctly with respect to min_free_kbytes.
5178 void setup_per_zone_wmarks(void)
5180 mutex_lock(&zonelists_mutex);
5181 __setup_per_zone_wmarks();
5182 mutex_unlock(&zonelists_mutex);
5186 * The inactive anon list should be small enough that the VM never has to
5187 * do too much work, but large enough that each inactive page has a chance
5188 * to be referenced again before it is swapped out.
5190 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5191 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5192 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5193 * the anonymous pages are kept on the inactive list.
5195 * total target max
5196 * memory ratio inactive anon
5197 * -------------------------------------
5198 * 10MB 1 5MB
5199 * 100MB 1 50MB
5200 * 1GB 3 250MB
5201 * 10GB 10 0.9GB
5202 * 100GB 31 3GB
5203 * 1TB 101 10GB
5204 * 10TB 320 32GB
5206 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5208 unsigned int gb, ratio;
5210 /* Zone size in gigabytes */
5211 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5212 if (gb)
5213 ratio = int_sqrt(10 * gb);
5214 else
5215 ratio = 1;
5217 zone->inactive_ratio = ratio;
5220 static void __meminit setup_per_zone_inactive_ratio(void)
5222 struct zone *zone;
5224 for_each_zone(zone)
5225 calculate_zone_inactive_ratio(zone);
5229 * Initialise min_free_kbytes.
5231 * For small machines we want it small (128k min). For large machines
5232 * we want it large (64MB max). But it is not linear, because network
5233 * bandwidth does not increase linearly with machine size. We use
5235 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5236 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5238 * which yields
5240 * 16MB: 512k
5241 * 32MB: 724k
5242 * 64MB: 1024k
5243 * 128MB: 1448k
5244 * 256MB: 2048k
5245 * 512MB: 2896k
5246 * 1024MB: 4096k
5247 * 2048MB: 5792k
5248 * 4096MB: 8192k
5249 * 8192MB: 11584k
5250 * 16384MB: 16384k
5252 int __meminit init_per_zone_wmark_min(void)
5254 unsigned long lowmem_kbytes;
5256 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5258 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5259 if (min_free_kbytes < 128)
5260 min_free_kbytes = 128;
5261 if (min_free_kbytes > 65536)
5262 min_free_kbytes = 65536;
5263 setup_per_zone_wmarks();
5264 refresh_zone_stat_thresholds();
5265 setup_per_zone_lowmem_reserve();
5266 setup_per_zone_inactive_ratio();
5267 return 0;
5269 module_init(init_per_zone_wmark_min)
5272 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5273 * that we can call two helper functions whenever min_free_kbytes
5274 * changes.
5276 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5277 void __user *buffer, size_t *length, loff_t *ppos)
5279 proc_dointvec(table, write, buffer, length, ppos);
5280 if (write)
5281 setup_per_zone_wmarks();
5282 return 0;
5285 #ifdef CONFIG_NUMA
5286 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5287 void __user *buffer, size_t *length, loff_t *ppos)
5289 struct zone *zone;
5290 int rc;
5292 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5293 if (rc)
5294 return rc;
5296 for_each_zone(zone)
5297 zone->min_unmapped_pages = (zone->present_pages *
5298 sysctl_min_unmapped_ratio) / 100;
5299 return 0;
5302 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5303 void __user *buffer, size_t *length, loff_t *ppos)
5305 struct zone *zone;
5306 int rc;
5308 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5309 if (rc)
5310 return rc;
5312 for_each_zone(zone)
5313 zone->min_slab_pages = (zone->present_pages *
5314 sysctl_min_slab_ratio) / 100;
5315 return 0;
5317 #endif
5320 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5321 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5322 * whenever sysctl_lowmem_reserve_ratio changes.
5324 * The reserve ratio obviously has absolutely no relation with the
5325 * minimum watermarks. The lowmem reserve ratio can only make sense
5326 * if in function of the boot time zone sizes.
5328 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5329 void __user *buffer, size_t *length, loff_t *ppos)
5331 proc_dointvec_minmax(table, write, buffer, length, ppos);
5332 setup_per_zone_lowmem_reserve();
5333 return 0;
5337 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5338 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5339 * can have before it gets flushed back to buddy allocator.
5342 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5343 void __user *buffer, size_t *length, loff_t *ppos)
5345 struct zone *zone;
5346 unsigned int cpu;
5347 int ret;
5349 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5350 if (!write || (ret < 0))
5351 return ret;
5352 for_each_populated_zone(zone) {
5353 for_each_possible_cpu(cpu) {
5354 unsigned long high;
5355 high = zone->present_pages / percpu_pagelist_fraction;
5356 setup_pagelist_highmark(
5357 per_cpu_ptr(zone->pageset, cpu), high);
5360 return 0;
5363 int hashdist = HASHDIST_DEFAULT;
5365 #ifdef CONFIG_NUMA
5366 static int __init set_hashdist(char *str)
5368 if (!str)
5369 return 0;
5370 hashdist = simple_strtoul(str, &str, 0);
5371 return 1;
5373 __setup("hashdist=", set_hashdist);
5374 #endif
5377 * allocate a large system hash table from bootmem
5378 * - it is assumed that the hash table must contain an exact power-of-2
5379 * quantity of entries
5380 * - limit is the number of hash buckets, not the total allocation size
5382 void *__init alloc_large_system_hash(const char *tablename,
5383 unsigned long bucketsize,
5384 unsigned long numentries,
5385 int scale,
5386 int flags,
5387 unsigned int *_hash_shift,
5388 unsigned int *_hash_mask,
5389 unsigned long low_limit,
5390 unsigned long high_limit)
5392 unsigned long long max = high_limit;
5393 unsigned long log2qty, size;
5394 void *table = NULL;
5396 /* allow the kernel cmdline to have a say */
5397 if (!numentries) {
5398 /* round applicable memory size up to nearest megabyte */
5399 numentries = nr_kernel_pages;
5400 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5401 numentries >>= 20 - PAGE_SHIFT;
5402 numentries <<= 20 - PAGE_SHIFT;
5404 /* limit to 1 bucket per 2^scale bytes of low memory */
5405 if (scale > PAGE_SHIFT)
5406 numentries >>= (scale - PAGE_SHIFT);
5407 else
5408 numentries <<= (PAGE_SHIFT - scale);
5410 /* Make sure we've got at least a 0-order allocation.. */
5411 if (unlikely(flags & HASH_SMALL)) {
5412 /* Makes no sense without HASH_EARLY */
5413 WARN_ON(!(flags & HASH_EARLY));
5414 if (!(numentries >> *_hash_shift)) {
5415 numentries = 1UL << *_hash_shift;
5416 BUG_ON(!numentries);
5418 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5419 numentries = PAGE_SIZE / bucketsize;
5421 numentries = roundup_pow_of_two(numentries);
5423 /* limit allocation size to 1/16 total memory by default */
5424 if (max == 0) {
5425 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5426 do_div(max, bucketsize);
5428 max = min(max, 0x80000000ULL);
5430 if (numentries < low_limit)
5431 numentries = low_limit;
5432 if (numentries > max)
5433 numentries = max;
5435 log2qty = ilog2(numentries);
5437 do {
5438 size = bucketsize << log2qty;
5439 if (flags & HASH_EARLY)
5440 table = alloc_bootmem_nopanic(size);
5441 else if (hashdist)
5442 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5443 else {
5445 * If bucketsize is not a power-of-two, we may free
5446 * some pages at the end of hash table which
5447 * alloc_pages_exact() automatically does
5449 if (get_order(size) < MAX_ORDER) {
5450 table = alloc_pages_exact(size, GFP_ATOMIC);
5451 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5454 } while (!table && size > PAGE_SIZE && --log2qty);
5456 if (!table)
5457 panic("Failed to allocate %s hash table\n", tablename);
5459 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5460 tablename,
5461 (1UL << log2qty),
5462 ilog2(size) - PAGE_SHIFT,
5463 size);
5465 if (_hash_shift)
5466 *_hash_shift = log2qty;
5467 if (_hash_mask)
5468 *_hash_mask = (1 << log2qty) - 1;
5470 return table;
5473 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5474 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5475 unsigned long pfn)
5477 #ifdef CONFIG_SPARSEMEM
5478 return __pfn_to_section(pfn)->pageblock_flags;
5479 #else
5480 return zone->pageblock_flags;
5481 #endif /* CONFIG_SPARSEMEM */
5484 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5486 #ifdef CONFIG_SPARSEMEM
5487 pfn &= (PAGES_PER_SECTION-1);
5488 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5489 #else
5490 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5491 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5492 #endif /* CONFIG_SPARSEMEM */
5496 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5497 * @page: The page within the block of interest
5498 * @start_bitidx: The first bit of interest to retrieve
5499 * @end_bitidx: The last bit of interest
5500 * returns pageblock_bits flags
5502 unsigned long get_pageblock_flags_group(struct page *page,
5503 int start_bitidx, int end_bitidx)
5505 struct zone *zone;
5506 unsigned long *bitmap;
5507 unsigned long pfn, bitidx;
5508 unsigned long flags = 0;
5509 unsigned long value = 1;
5511 zone = page_zone(page);
5512 pfn = page_to_pfn(page);
5513 bitmap = get_pageblock_bitmap(zone, pfn);
5514 bitidx = pfn_to_bitidx(zone, pfn);
5516 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5517 if (test_bit(bitidx + start_bitidx, bitmap))
5518 flags |= value;
5520 return flags;
5524 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5525 * @page: The page within the block of interest
5526 * @start_bitidx: The first bit of interest
5527 * @end_bitidx: The last bit of interest
5528 * @flags: The flags to set
5530 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5531 int start_bitidx, int end_bitidx)
5533 struct zone *zone;
5534 unsigned long *bitmap;
5535 unsigned long pfn, bitidx;
5536 unsigned long value = 1;
5538 zone = page_zone(page);
5539 pfn = page_to_pfn(page);
5540 bitmap = get_pageblock_bitmap(zone, pfn);
5541 bitidx = pfn_to_bitidx(zone, pfn);
5542 VM_BUG_ON(pfn < zone->zone_start_pfn);
5543 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5545 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5546 if (flags & value)
5547 __set_bit(bitidx + start_bitidx, bitmap);
5548 else
5549 __clear_bit(bitidx + start_bitidx, bitmap);
5553 * This function checks whether pageblock includes unmovable pages or not.
5554 * If @count is not zero, it is okay to include less @count unmovable pages
5556 * PageLRU check wihtout isolation or lru_lock could race so that
5557 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5558 * expect this function should be exact.
5560 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5562 unsigned long pfn, iter, found;
5563 int mt;
5566 * For avoiding noise data, lru_add_drain_all() should be called
5567 * If ZONE_MOVABLE, the zone never contains unmovable pages
5569 if (zone_idx(zone) == ZONE_MOVABLE)
5570 return false;
5571 mt = get_pageblock_migratetype(page);
5572 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5573 return false;
5575 pfn = page_to_pfn(page);
5576 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5577 unsigned long check = pfn + iter;
5579 if (!pfn_valid_within(check))
5580 continue;
5582 page = pfn_to_page(check);
5584 * We can't use page_count without pin a page
5585 * because another CPU can free compound page.
5586 * This check already skips compound tails of THP
5587 * because their page->_count is zero at all time.
5589 if (!atomic_read(&page->_count)) {
5590 if (PageBuddy(page))
5591 iter += (1 << page_order(page)) - 1;
5592 continue;
5595 if (!PageLRU(page))
5596 found++;
5598 * If there are RECLAIMABLE pages, we need to check it.
5599 * But now, memory offline itself doesn't call shrink_slab()
5600 * and it still to be fixed.
5603 * If the page is not RAM, page_count()should be 0.
5604 * we don't need more check. This is an _used_ not-movable page.
5606 * The problematic thing here is PG_reserved pages. PG_reserved
5607 * is set to both of a memory hole page and a _used_ kernel
5608 * page at boot.
5610 if (found > count)
5611 return true;
5613 return false;
5616 bool is_pageblock_removable_nolock(struct page *page)
5618 struct zone *zone;
5619 unsigned long pfn;
5622 * We have to be careful here because we are iterating over memory
5623 * sections which are not zone aware so we might end up outside of
5624 * the zone but still within the section.
5625 * We have to take care about the node as well. If the node is offline
5626 * its NODE_DATA will be NULL - see page_zone.
5628 if (!node_online(page_to_nid(page)))
5629 return false;
5631 zone = page_zone(page);
5632 pfn = page_to_pfn(page);
5633 if (zone->zone_start_pfn > pfn ||
5634 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5635 return false;
5637 return !has_unmovable_pages(zone, page, 0);
5640 #ifdef CONFIG_CMA
5642 static unsigned long pfn_max_align_down(unsigned long pfn)
5644 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5645 pageblock_nr_pages) - 1);
5648 static unsigned long pfn_max_align_up(unsigned long pfn)
5650 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5651 pageblock_nr_pages));
5654 /* [start, end) must belong to a single zone. */
5655 static int __alloc_contig_migrate_range(struct compact_control *cc,
5656 unsigned long start, unsigned long end)
5658 /* This function is based on compact_zone() from compaction.c. */
5659 unsigned long nr_reclaimed;
5660 unsigned long pfn = start;
5661 unsigned int tries = 0;
5662 int ret = 0;
5664 migrate_prep_local();
5666 while (pfn < end || !list_empty(&cc->migratepages)) {
5667 if (fatal_signal_pending(current)) {
5668 ret = -EINTR;
5669 break;
5672 if (list_empty(&cc->migratepages)) {
5673 cc->nr_migratepages = 0;
5674 pfn = isolate_migratepages_range(cc->zone, cc,
5675 pfn, end, true);
5676 if (!pfn) {
5677 ret = -EINTR;
5678 break;
5680 tries = 0;
5681 } else if (++tries == 5) {
5682 ret = ret < 0 ? ret : -EBUSY;
5683 break;
5686 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5687 &cc->migratepages);
5688 cc->nr_migratepages -= nr_reclaimed;
5690 ret = migrate_pages(&cc->migratepages,
5691 alloc_migrate_target,
5692 0, false, MIGRATE_SYNC);
5695 putback_lru_pages(&cc->migratepages);
5696 return ret > 0 ? 0 : ret;
5700 * Update zone's cma pages counter used for watermark level calculation.
5702 static inline void __update_cma_watermarks(struct zone *zone, int count)
5704 unsigned long flags;
5705 spin_lock_irqsave(&zone->lock, flags);
5706 zone->min_cma_pages += count;
5707 spin_unlock_irqrestore(&zone->lock, flags);
5708 setup_per_zone_wmarks();
5712 * Trigger memory pressure bump to reclaim some pages in order to be able to
5713 * allocate 'count' pages in single page units. Does similar work as
5714 *__alloc_pages_slowpath() function.
5716 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5718 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5719 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5720 int did_some_progress = 0;
5721 int order = 1;
5724 * Increase level of watermarks to force kswapd do his job
5725 * to stabilise at new watermark level.
5727 __update_cma_watermarks(zone, count);
5729 /* Obey watermarks as if the page was being allocated */
5730 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5731 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5733 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5734 NULL);
5735 if (!did_some_progress) {
5736 /* Exhausted what can be done so it's blamo time */
5737 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5741 /* Restore original watermark levels. */
5742 __update_cma_watermarks(zone, -count);
5744 return count;
5748 * alloc_contig_range() -- tries to allocate given range of pages
5749 * @start: start PFN to allocate
5750 * @end: one-past-the-last PFN to allocate
5751 * @migratetype: migratetype of the underlaying pageblocks (either
5752 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5753 * in range must have the same migratetype and it must
5754 * be either of the two.
5756 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5757 * aligned, however it's the caller's responsibility to guarantee that
5758 * we are the only thread that changes migrate type of pageblocks the
5759 * pages fall in.
5761 * The PFN range must belong to a single zone.
5763 * Returns zero on success or negative error code. On success all
5764 * pages which PFN is in [start, end) are allocated for the caller and
5765 * need to be freed with free_contig_range().
5767 int alloc_contig_range(unsigned long start, unsigned long end,
5768 unsigned migratetype)
5770 struct zone *zone = page_zone(pfn_to_page(start));
5771 unsigned long outer_start, outer_end;
5772 int ret = 0, order;
5774 struct compact_control cc = {
5775 .nr_migratepages = 0,
5776 .order = -1,
5777 .zone = page_zone(pfn_to_page(start)),
5778 .sync = true,
5779 .ignore_skip_hint = true,
5781 INIT_LIST_HEAD(&cc.migratepages);
5784 * What we do here is we mark all pageblocks in range as
5785 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5786 * have different sizes, and due to the way page allocator
5787 * work, we align the range to biggest of the two pages so
5788 * that page allocator won't try to merge buddies from
5789 * different pageblocks and change MIGRATE_ISOLATE to some
5790 * other migration type.
5792 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5793 * migrate the pages from an unaligned range (ie. pages that
5794 * we are interested in). This will put all the pages in
5795 * range back to page allocator as MIGRATE_ISOLATE.
5797 * When this is done, we take the pages in range from page
5798 * allocator removing them from the buddy system. This way
5799 * page allocator will never consider using them.
5801 * This lets us mark the pageblocks back as
5802 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5803 * aligned range but not in the unaligned, original range are
5804 * put back to page allocator so that buddy can use them.
5807 ret = start_isolate_page_range(pfn_max_align_down(start),
5808 pfn_max_align_up(end), migratetype);
5809 if (ret)
5810 return ret;
5812 ret = __alloc_contig_migrate_range(&cc, start, end);
5813 if (ret)
5814 goto done;
5817 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5818 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5819 * more, all pages in [start, end) are free in page allocator.
5820 * What we are going to do is to allocate all pages from
5821 * [start, end) (that is remove them from page allocator).
5823 * The only problem is that pages at the beginning and at the
5824 * end of interesting range may be not aligned with pages that
5825 * page allocator holds, ie. they can be part of higher order
5826 * pages. Because of this, we reserve the bigger range and
5827 * once this is done free the pages we are not interested in.
5829 * We don't have to hold zone->lock here because the pages are
5830 * isolated thus they won't get removed from buddy.
5833 lru_add_drain_all();
5834 drain_all_pages();
5836 order = 0;
5837 outer_start = start;
5838 while (!PageBuddy(pfn_to_page(outer_start))) {
5839 if (++order >= MAX_ORDER) {
5840 ret = -EBUSY;
5841 goto done;
5843 outer_start &= ~0UL << order;
5846 /* Make sure the range is really isolated. */
5847 if (test_pages_isolated(outer_start, end)) {
5848 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5849 outer_start, end);
5850 ret = -EBUSY;
5851 goto done;
5855 * Reclaim enough pages to make sure that contiguous allocation
5856 * will not starve the system.
5858 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5860 /* Grab isolated pages from freelists. */
5861 outer_end = isolate_freepages_range(&cc, outer_start, end);
5862 if (!outer_end) {
5863 ret = -EBUSY;
5864 goto done;
5867 /* Free head and tail (if any) */
5868 if (start != outer_start)
5869 free_contig_range(outer_start, start - outer_start);
5870 if (end != outer_end)
5871 free_contig_range(end, outer_end - end);
5873 done:
5874 undo_isolate_page_range(pfn_max_align_down(start),
5875 pfn_max_align_up(end), migratetype);
5876 return ret;
5879 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5881 for (; nr_pages--; ++pfn)
5882 __free_page(pfn_to_page(pfn));
5884 #endif
5886 #ifdef CONFIG_MEMORY_HOTPLUG
5887 static int __meminit __zone_pcp_update(void *data)
5889 struct zone *zone = data;
5890 int cpu;
5891 unsigned long batch = zone_batchsize(zone), flags;
5893 for_each_possible_cpu(cpu) {
5894 struct per_cpu_pageset *pset;
5895 struct per_cpu_pages *pcp;
5897 pset = per_cpu_ptr(zone->pageset, cpu);
5898 pcp = &pset->pcp;
5900 local_irq_save(flags);
5901 if (pcp->count > 0)
5902 free_pcppages_bulk(zone, pcp->count, pcp);
5903 drain_zonestat(zone, pset);
5904 setup_pageset(pset, batch);
5905 local_irq_restore(flags);
5907 return 0;
5910 void __meminit zone_pcp_update(struct zone *zone)
5912 stop_machine(__zone_pcp_update, zone, NULL);
5914 #endif
5916 #ifdef CONFIG_MEMORY_HOTREMOVE
5917 void zone_pcp_reset(struct zone *zone)
5919 unsigned long flags;
5920 int cpu;
5921 struct per_cpu_pageset *pset;
5923 /* avoid races with drain_pages() */
5924 local_irq_save(flags);
5925 if (zone->pageset != &boot_pageset) {
5926 for_each_online_cpu(cpu) {
5927 pset = per_cpu_ptr(zone->pageset, cpu);
5928 drain_zonestat(zone, pset);
5930 free_percpu(zone->pageset);
5931 zone->pageset = &boot_pageset;
5933 local_irq_restore(flags);
5937 * All pages in the range must be isolated before calling this.
5939 void
5940 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5942 struct page *page;
5943 struct zone *zone;
5944 int order, i;
5945 unsigned long pfn;
5946 unsigned long flags;
5947 /* find the first valid pfn */
5948 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5949 if (pfn_valid(pfn))
5950 break;
5951 if (pfn == end_pfn)
5952 return;
5953 zone = page_zone(pfn_to_page(pfn));
5954 spin_lock_irqsave(&zone->lock, flags);
5955 pfn = start_pfn;
5956 while (pfn < end_pfn) {
5957 if (!pfn_valid(pfn)) {
5958 pfn++;
5959 continue;
5961 page = pfn_to_page(pfn);
5962 BUG_ON(page_count(page));
5963 BUG_ON(!PageBuddy(page));
5964 order = page_order(page);
5965 #ifdef CONFIG_DEBUG_VM
5966 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5967 pfn, 1 << order, end_pfn);
5968 #endif
5969 list_del(&page->lru);
5970 rmv_page_order(page);
5971 zone->free_area[order].nr_free--;
5972 __mod_zone_page_state(zone, NR_FREE_PAGES,
5973 - (1UL << order));
5974 for (i = 0; i < (1 << order); i++)
5975 SetPageReserved((page+i));
5976 pfn += (1 << order);
5978 spin_unlock_irqrestore(&zone->lock, flags);
5980 #endif
5982 #ifdef CONFIG_MEMORY_FAILURE
5983 bool is_free_buddy_page(struct page *page)
5985 struct zone *zone = page_zone(page);
5986 unsigned long pfn = page_to_pfn(page);
5987 unsigned long flags;
5988 int order;
5990 spin_lock_irqsave(&zone->lock, flags);
5991 for (order = 0; order < MAX_ORDER; order++) {
5992 struct page *page_head = page - (pfn & ((1 << order) - 1));
5994 if (PageBuddy(page_head) && page_order(page_head) >= order)
5995 break;
5997 spin_unlock_irqrestore(&zone->lock, flags);
5999 return order < MAX_ORDER;
6001 #endif
6003 static const struct trace_print_flags pageflag_names[] = {
6004 {1UL << PG_locked, "locked" },
6005 {1UL << PG_error, "error" },
6006 {1UL << PG_referenced, "referenced" },
6007 {1UL << PG_uptodate, "uptodate" },
6008 {1UL << PG_dirty, "dirty" },
6009 {1UL << PG_lru, "lru" },
6010 {1UL << PG_active, "active" },
6011 {1UL << PG_slab, "slab" },
6012 {1UL << PG_owner_priv_1, "owner_priv_1" },
6013 {1UL << PG_arch_1, "arch_1" },
6014 {1UL << PG_reserved, "reserved" },
6015 {1UL << PG_private, "private" },
6016 {1UL << PG_private_2, "private_2" },
6017 {1UL << PG_writeback, "writeback" },
6018 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6019 {1UL << PG_head, "head" },
6020 {1UL << PG_tail, "tail" },
6021 #else
6022 {1UL << PG_compound, "compound" },
6023 #endif
6024 {1UL << PG_swapcache, "swapcache" },
6025 {1UL << PG_mappedtodisk, "mappedtodisk" },
6026 {1UL << PG_reclaim, "reclaim" },
6027 {1UL << PG_swapbacked, "swapbacked" },
6028 {1UL << PG_unevictable, "unevictable" },
6029 #ifdef CONFIG_MMU
6030 {1UL << PG_mlocked, "mlocked" },
6031 #endif
6032 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6033 {1UL << PG_uncached, "uncached" },
6034 #endif
6035 #ifdef CONFIG_MEMORY_FAILURE
6036 {1UL << PG_hwpoison, "hwpoison" },
6037 #endif
6038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6039 {1UL << PG_compound_lock, "compound_lock" },
6040 #endif
6043 static void dump_page_flags(unsigned long flags)
6045 const char *delim = "";
6046 unsigned long mask;
6047 int i;
6049 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6051 printk(KERN_ALERT "page flags: %#lx(", flags);
6053 /* remove zone id */
6054 flags &= (1UL << NR_PAGEFLAGS) - 1;
6056 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6058 mask = pageflag_names[i].mask;
6059 if ((flags & mask) != mask)
6060 continue;
6062 flags &= ~mask;
6063 printk("%s%s", delim, pageflag_names[i].name);
6064 delim = "|";
6067 /* check for left over flags */
6068 if (flags)
6069 printk("%s%#lx", delim, flags);
6071 printk(")\n");
6074 void dump_page(struct page *page)
6076 printk(KERN_ALERT
6077 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6078 page, atomic_read(&page->_count), page_mapcount(page),
6079 page->mapping, page->index);
6080 dump_page_flags(page->flags);
6081 mem_cgroup_print_bad_page(page);