i2c: aspeed: Fix initial values of master and slave state
[linux/fpc-iii.git] / drivers / nvme / host / pci.c
blobba943f211687c638cab9708dbb5011b7e3d53b2f
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
34 #include "nvme.h"
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
45 #define NVME_MAX_KB_SZ 4096
46 #define NVME_MAX_SEGS 127
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 .set = io_queue_depth_set,
69 .get = param_get_int,
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76 struct nvme_dev;
77 struct nvme_queue;
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
84 struct nvme_dev {
85 struct nvme_queue *queues;
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
88 u32 __iomem *dbs;
89 struct device *dev;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
92 unsigned online_queues;
93 unsigned max_qid;
94 unsigned int num_vecs;
95 int q_depth;
96 u32 db_stride;
97 void __iomem *bar;
98 unsigned long bar_mapped_size;
99 struct work_struct remove_work;
100 struct mutex shutdown_lock;
101 bool subsystem;
102 void __iomem *cmb;
103 pci_bus_addr_t cmb_bus_addr;
104 u64 cmb_size;
105 u32 cmbsz;
106 u32 cmbloc;
107 struct nvme_ctrl ctrl;
108 struct completion ioq_wait;
110 mempool_t *iod_mempool;
112 /* shadow doorbell buffer support: */
113 u32 *dbbuf_dbs;
114 dma_addr_t dbbuf_dbs_dma_addr;
115 u32 *dbbuf_eis;
116 dma_addr_t dbbuf_eis_dma_addr;
118 /* host memory buffer support: */
119 u64 host_mem_size;
120 u32 nr_host_mem_descs;
121 dma_addr_t host_mem_descs_dma;
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
128 int n = 0, ret;
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
132 return -EINVAL;
134 return param_set_int(val, kp);
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
139 return qid * 2 * stride;
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
144 return (qid * 2 + 1) * stride;
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
149 return container_of(ctrl, struct nvme_dev, ctrl);
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
156 struct nvme_queue {
157 struct device *q_dmadev;
158 struct nvme_dev *dev;
159 spinlock_t sq_lock;
160 struct nvme_command *sq_cmds;
161 struct nvme_command __iomem *sq_cmds_io;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 volatile struct nvme_completion *cqes;
164 struct blk_mq_tags **tags;
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
167 u32 __iomem *q_db;
168 u16 q_depth;
169 s16 cq_vector;
170 u16 sq_tail;
171 u16 cq_head;
172 u16 last_cq_head;
173 u16 qid;
174 u8 cq_phase;
175 u32 *dbbuf_sq_db;
176 u32 *dbbuf_cq_db;
177 u32 *dbbuf_sq_ei;
178 u32 *dbbuf_cq_ei;
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
187 struct nvme_iod {
188 struct nvme_request req;
189 struct nvme_queue *nvmeq;
190 bool use_sgl;
191 int aborted;
192 int npages; /* In the PRP list. 0 means small pool in use */
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
202 * Check we didin't inadvertently grow the command struct
204 static inline void _nvme_check_size(void)
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
223 return ((num_possible_cpus() + 1) * 8 * stride);
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
230 if (dev->dbbuf_dbs)
231 return 0;
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
235 GFP_KERNEL);
236 if (!dev->dbbuf_dbs)
237 return -ENOMEM;
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
240 GFP_KERNEL);
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
245 return -ENOMEM;
248 return 0;
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
270 if (!dev->dbbuf_dbs || !qid)
271 return;
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
281 struct nvme_command c;
283 if (!dev->dbbuf_dbs)
284 return;
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
307 if (dbbuf_db) {
308 u16 old_value;
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
314 wmb();
316 old_value = *dbbuf_db;
317 *dbbuf_db = value;
319 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
320 return false;
323 return true;
327 * Max size of iod being embedded in the request payload
329 #define NVME_INT_PAGES 2
330 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
333 * Will slightly overestimate the number of pages needed. This is OK
334 * as it only leads to a small amount of wasted memory for the lifetime of
335 * the I/O.
337 static int nvme_npages(unsigned size, struct nvme_dev *dev)
339 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
340 dev->ctrl.page_size);
341 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
345 * Calculates the number of pages needed for the SGL segments. For example a 4k
346 * page can accommodate 256 SGL descriptors.
348 static int nvme_pci_npages_sgl(unsigned int num_seg)
350 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
353 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
354 unsigned int size, unsigned int nseg, bool use_sgl)
356 size_t alloc_size;
358 if (use_sgl)
359 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
360 else
361 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
363 return alloc_size + sizeof(struct scatterlist) * nseg;
366 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
368 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
369 NVME_INT_BYTES(dev), NVME_INT_PAGES,
370 use_sgl);
372 return sizeof(struct nvme_iod) + alloc_size;
375 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376 unsigned int hctx_idx)
378 struct nvme_dev *dev = data;
379 struct nvme_queue *nvmeq = &dev->queues[0];
381 WARN_ON(hctx_idx != 0);
382 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
383 WARN_ON(nvmeq->tags);
385 hctx->driver_data = nvmeq;
386 nvmeq->tags = &dev->admin_tagset.tags[0];
387 return 0;
390 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
392 struct nvme_queue *nvmeq = hctx->driver_data;
394 nvmeq->tags = NULL;
397 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 unsigned int hctx_idx)
400 struct nvme_dev *dev = data;
401 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
403 if (!nvmeq->tags)
404 nvmeq->tags = &dev->tagset.tags[hctx_idx];
406 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407 hctx->driver_data = nvmeq;
408 return 0;
411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412 unsigned int hctx_idx, unsigned int numa_node)
414 struct nvme_dev *dev = set->driver_data;
415 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
417 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
419 BUG_ON(!nvmeq);
420 iod->nvmeq = nvmeq;
421 return 0;
424 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
426 struct nvme_dev *dev = set->driver_data;
428 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
429 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
437 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
439 spin_lock(&nvmeq->sq_lock);
440 if (nvmeq->sq_cmds_io)
441 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
442 sizeof(*cmd));
443 else
444 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
446 if (++nvmeq->sq_tail == nvmeq->q_depth)
447 nvmeq->sq_tail = 0;
448 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
449 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
450 writel(nvmeq->sq_tail, nvmeq->q_db);
451 spin_unlock(&nvmeq->sq_lock);
454 static void **nvme_pci_iod_list(struct request *req)
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
460 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
462 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463 int nseg = blk_rq_nr_phys_segments(req);
464 unsigned int avg_seg_size;
466 if (nseg == 0)
467 return false;
469 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
471 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
472 return false;
473 if (!iod->nvmeq->qid)
474 return false;
475 if (!sgl_threshold || avg_seg_size < sgl_threshold)
476 return false;
477 return true;
480 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
482 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
483 int nseg = blk_rq_nr_phys_segments(rq);
484 unsigned int size = blk_rq_payload_bytes(rq);
486 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
488 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
489 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
490 if (!iod->sg)
491 return BLK_STS_RESOURCE;
492 } else {
493 iod->sg = iod->inline_sg;
496 iod->aborted = 0;
497 iod->npages = -1;
498 iod->nents = 0;
499 iod->length = size;
501 return BLK_STS_OK;
504 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
508 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
510 int i;
512 if (iod->npages == 0)
513 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
514 dma_addr);
516 for (i = 0; i < iod->npages; i++) {
517 void *addr = nvme_pci_iod_list(req)[i];
519 if (iod->use_sgl) {
520 struct nvme_sgl_desc *sg_list = addr;
522 next_dma_addr =
523 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
524 } else {
525 __le64 *prp_list = addr;
527 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
530 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
531 dma_addr = next_dma_addr;
534 if (iod->sg != iod->inline_sg)
535 mempool_free(iod->sg, dev->iod_mempool);
538 #ifdef CONFIG_BLK_DEV_INTEGRITY
539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
541 if (be32_to_cpu(pi->ref_tag) == v)
542 pi->ref_tag = cpu_to_be32(p);
545 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
547 if (be32_to_cpu(pi->ref_tag) == p)
548 pi->ref_tag = cpu_to_be32(v);
552 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
554 * The virtual start sector is the one that was originally submitted by the
555 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
556 * start sector may be different. Remap protection information to match the
557 * physical LBA on writes, and back to the original seed on reads.
559 * Type 0 and 3 do not have a ref tag, so no remapping required.
561 static void nvme_dif_remap(struct request *req,
562 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
564 struct nvme_ns *ns = req->rq_disk->private_data;
565 struct bio_integrity_payload *bip;
566 struct t10_pi_tuple *pi;
567 void *p, *pmap;
568 u32 i, nlb, ts, phys, virt;
570 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
571 return;
573 bip = bio_integrity(req->bio);
574 if (!bip)
575 return;
577 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
579 p = pmap;
580 virt = bip_get_seed(bip);
581 phys = nvme_block_nr(ns, blk_rq_pos(req));
582 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
583 ts = ns->disk->queue->integrity.tuple_size;
585 for (i = 0; i < nlb; i++, virt++, phys++) {
586 pi = (struct t10_pi_tuple *)p;
587 dif_swap(phys, virt, pi);
588 p += ts;
590 kunmap_atomic(pmap);
592 #else /* CONFIG_BLK_DEV_INTEGRITY */
593 static void nvme_dif_remap(struct request *req,
594 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
597 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
600 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
603 #endif
605 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
607 int i;
608 struct scatterlist *sg;
610 for_each_sg(sgl, sg, nents, i) {
611 dma_addr_t phys = sg_phys(sg);
612 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
613 "dma_address:%pad dma_length:%d\n",
614 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
615 sg_dma_len(sg));
619 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
620 struct request *req, struct nvme_rw_command *cmnd)
622 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
623 struct dma_pool *pool;
624 int length = blk_rq_payload_bytes(req);
625 struct scatterlist *sg = iod->sg;
626 int dma_len = sg_dma_len(sg);
627 u64 dma_addr = sg_dma_address(sg);
628 u32 page_size = dev->ctrl.page_size;
629 int offset = dma_addr & (page_size - 1);
630 __le64 *prp_list;
631 void **list = nvme_pci_iod_list(req);
632 dma_addr_t prp_dma;
633 int nprps, i;
635 length -= (page_size - offset);
636 if (length <= 0) {
637 iod->first_dma = 0;
638 goto done;
641 dma_len -= (page_size - offset);
642 if (dma_len) {
643 dma_addr += (page_size - offset);
644 } else {
645 sg = sg_next(sg);
646 dma_addr = sg_dma_address(sg);
647 dma_len = sg_dma_len(sg);
650 if (length <= page_size) {
651 iod->first_dma = dma_addr;
652 goto done;
655 nprps = DIV_ROUND_UP(length, page_size);
656 if (nprps <= (256 / 8)) {
657 pool = dev->prp_small_pool;
658 iod->npages = 0;
659 } else {
660 pool = dev->prp_page_pool;
661 iod->npages = 1;
664 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
665 if (!prp_list) {
666 iod->first_dma = dma_addr;
667 iod->npages = -1;
668 return BLK_STS_RESOURCE;
670 list[0] = prp_list;
671 iod->first_dma = prp_dma;
672 i = 0;
673 for (;;) {
674 if (i == page_size >> 3) {
675 __le64 *old_prp_list = prp_list;
676 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
677 if (!prp_list)
678 return BLK_STS_RESOURCE;
679 list[iod->npages++] = prp_list;
680 prp_list[0] = old_prp_list[i - 1];
681 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
682 i = 1;
684 prp_list[i++] = cpu_to_le64(dma_addr);
685 dma_len -= page_size;
686 dma_addr += page_size;
687 length -= page_size;
688 if (length <= 0)
689 break;
690 if (dma_len > 0)
691 continue;
692 if (unlikely(dma_len < 0))
693 goto bad_sgl;
694 sg = sg_next(sg);
695 dma_addr = sg_dma_address(sg);
696 dma_len = sg_dma_len(sg);
699 done:
700 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
701 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
703 return BLK_STS_OK;
705 bad_sgl:
706 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
707 "Invalid SGL for payload:%d nents:%d\n",
708 blk_rq_payload_bytes(req), iod->nents);
709 return BLK_STS_IOERR;
712 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
713 struct scatterlist *sg)
715 sge->addr = cpu_to_le64(sg_dma_address(sg));
716 sge->length = cpu_to_le32(sg_dma_len(sg));
717 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
720 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
721 dma_addr_t dma_addr, int entries)
723 sge->addr = cpu_to_le64(dma_addr);
724 if (entries < SGES_PER_PAGE) {
725 sge->length = cpu_to_le32(entries * sizeof(*sge));
726 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
727 } else {
728 sge->length = cpu_to_le32(PAGE_SIZE);
729 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
734 struct request *req, struct nvme_rw_command *cmd, int entries)
736 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
737 struct dma_pool *pool;
738 struct nvme_sgl_desc *sg_list;
739 struct scatterlist *sg = iod->sg;
740 dma_addr_t sgl_dma;
741 int i = 0;
743 /* setting the transfer type as SGL */
744 cmd->flags = NVME_CMD_SGL_METABUF;
746 if (entries == 1) {
747 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
748 return BLK_STS_OK;
751 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
752 pool = dev->prp_small_pool;
753 iod->npages = 0;
754 } else {
755 pool = dev->prp_page_pool;
756 iod->npages = 1;
759 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
760 if (!sg_list) {
761 iod->npages = -1;
762 return BLK_STS_RESOURCE;
765 nvme_pci_iod_list(req)[0] = sg_list;
766 iod->first_dma = sgl_dma;
768 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
770 do {
771 if (i == SGES_PER_PAGE) {
772 struct nvme_sgl_desc *old_sg_desc = sg_list;
773 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
775 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
776 if (!sg_list)
777 return BLK_STS_RESOURCE;
779 i = 0;
780 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
781 sg_list[i++] = *link;
782 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
785 nvme_pci_sgl_set_data(&sg_list[i++], sg);
786 sg = sg_next(sg);
787 } while (--entries > 0);
789 return BLK_STS_OK;
792 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
793 struct nvme_command *cmnd)
795 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
796 struct request_queue *q = req->q;
797 enum dma_data_direction dma_dir = rq_data_dir(req) ?
798 DMA_TO_DEVICE : DMA_FROM_DEVICE;
799 blk_status_t ret = BLK_STS_IOERR;
800 int nr_mapped;
802 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
803 iod->nents = blk_rq_map_sg(q, req, iod->sg);
804 if (!iod->nents)
805 goto out;
807 ret = BLK_STS_RESOURCE;
808 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
809 DMA_ATTR_NO_WARN);
810 if (!nr_mapped)
811 goto out;
813 if (iod->use_sgl)
814 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
815 else
816 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
818 if (ret != BLK_STS_OK)
819 goto out_unmap;
821 ret = BLK_STS_IOERR;
822 if (blk_integrity_rq(req)) {
823 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
824 goto out_unmap;
826 sg_init_table(&iod->meta_sg, 1);
827 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
828 goto out_unmap;
830 if (req_op(req) == REQ_OP_WRITE)
831 nvme_dif_remap(req, nvme_dif_prep);
833 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
834 goto out_unmap;
837 if (blk_integrity_rq(req))
838 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
839 return BLK_STS_OK;
841 out_unmap:
842 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
843 out:
844 return ret;
847 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850 enum dma_data_direction dma_dir = rq_data_dir(req) ?
851 DMA_TO_DEVICE : DMA_FROM_DEVICE;
853 if (iod->nents) {
854 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
855 if (blk_integrity_rq(req)) {
856 if (req_op(req) == REQ_OP_READ)
857 nvme_dif_remap(req, nvme_dif_complete);
858 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
862 nvme_cleanup_cmd(req);
863 nvme_free_iod(dev, req);
867 * NOTE: ns is NULL when called on the admin queue.
869 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
870 const struct blk_mq_queue_data *bd)
872 struct nvme_ns *ns = hctx->queue->queuedata;
873 struct nvme_queue *nvmeq = hctx->driver_data;
874 struct nvme_dev *dev = nvmeq->dev;
875 struct request *req = bd->rq;
876 struct nvme_command cmnd;
877 blk_status_t ret;
880 * We should not need to do this, but we're still using this to
881 * ensure we can drain requests on a dying queue.
883 if (unlikely(nvmeq->cq_vector < 0))
884 return BLK_STS_IOERR;
886 ret = nvme_setup_cmd(ns, req, &cmnd);
887 if (ret)
888 return ret;
890 ret = nvme_init_iod(req, dev);
891 if (ret)
892 goto out_free_cmd;
894 if (blk_rq_nr_phys_segments(req)) {
895 ret = nvme_map_data(dev, req, &cmnd);
896 if (ret)
897 goto out_cleanup_iod;
900 blk_mq_start_request(req);
901 nvme_submit_cmd(nvmeq, &cmnd);
902 return BLK_STS_OK;
903 out_cleanup_iod:
904 nvme_free_iod(dev, req);
905 out_free_cmd:
906 nvme_cleanup_cmd(req);
907 return ret;
910 static void nvme_pci_complete_rq(struct request *req)
912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
914 nvme_unmap_data(iod->nvmeq->dev, req);
915 nvme_complete_rq(req);
918 /* We read the CQE phase first to check if the rest of the entry is valid */
919 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
921 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
922 nvmeq->cq_phase;
925 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
927 u16 head = nvmeq->cq_head;
929 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
930 nvmeq->dbbuf_cq_ei))
931 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
936 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
937 struct request *req;
939 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940 dev_warn(nvmeq->dev->ctrl.device,
941 "invalid id %d completed on queue %d\n",
942 cqe->command_id, le16_to_cpu(cqe->sq_id));
943 return;
947 * AEN requests are special as they don't time out and can
948 * survive any kind of queue freeze and often don't respond to
949 * aborts. We don't even bother to allocate a struct request
950 * for them but rather special case them here.
952 if (unlikely(nvmeq->qid == 0 &&
953 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954 nvme_complete_async_event(&nvmeq->dev->ctrl,
955 cqe->status, &cqe->result);
956 return;
959 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
960 nvme_end_request(req, cqe->status, cqe->result);
963 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
965 while (start != end) {
966 nvme_handle_cqe(nvmeq, start);
967 if (++start == nvmeq->q_depth)
968 start = 0;
972 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
974 if (++nvmeq->cq_head == nvmeq->q_depth) {
975 nvmeq->cq_head = 0;
976 nvmeq->cq_phase = !nvmeq->cq_phase;
980 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
981 u16 *end, int tag)
983 bool found = false;
985 *start = nvmeq->cq_head;
986 while (!found && nvme_cqe_pending(nvmeq)) {
987 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
988 found = true;
989 nvme_update_cq_head(nvmeq);
991 *end = nvmeq->cq_head;
993 if (*start != *end)
994 nvme_ring_cq_doorbell(nvmeq);
995 return found;
998 static irqreturn_t nvme_irq(int irq, void *data)
1000 struct nvme_queue *nvmeq = data;
1001 irqreturn_t ret = IRQ_NONE;
1002 u16 start, end;
1004 spin_lock(&nvmeq->cq_lock);
1005 if (nvmeq->cq_head != nvmeq->last_cq_head)
1006 ret = IRQ_HANDLED;
1007 nvme_process_cq(nvmeq, &start, &end, -1);
1008 nvmeq->last_cq_head = nvmeq->cq_head;
1009 spin_unlock(&nvmeq->cq_lock);
1011 if (start != end) {
1012 nvme_complete_cqes(nvmeq, start, end);
1013 return IRQ_HANDLED;
1016 return ret;
1019 static irqreturn_t nvme_irq_check(int irq, void *data)
1021 struct nvme_queue *nvmeq = data;
1022 if (nvme_cqe_pending(nvmeq))
1023 return IRQ_WAKE_THREAD;
1024 return IRQ_NONE;
1027 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1029 u16 start, end;
1030 bool found;
1032 if (!nvme_cqe_pending(nvmeq))
1033 return 0;
1035 spin_lock_irq(&nvmeq->cq_lock);
1036 found = nvme_process_cq(nvmeq, &start, &end, tag);
1037 spin_unlock_irq(&nvmeq->cq_lock);
1039 nvme_complete_cqes(nvmeq, start, end);
1040 return found;
1043 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1045 struct nvme_queue *nvmeq = hctx->driver_data;
1047 return __nvme_poll(nvmeq, tag);
1050 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1052 struct nvme_dev *dev = to_nvme_dev(ctrl);
1053 struct nvme_queue *nvmeq = &dev->queues[0];
1054 struct nvme_command c;
1056 memset(&c, 0, sizeof(c));
1057 c.common.opcode = nvme_admin_async_event;
1058 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1059 nvme_submit_cmd(nvmeq, &c);
1062 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1064 struct nvme_command c;
1066 memset(&c, 0, sizeof(c));
1067 c.delete_queue.opcode = opcode;
1068 c.delete_queue.qid = cpu_to_le16(id);
1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1073 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1074 struct nvme_queue *nvmeq, s16 vector)
1076 struct nvme_command c;
1077 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1080 * Note: we (ab)use the fact that the prp fields survive if no data
1081 * is attached to the request.
1083 memset(&c, 0, sizeof(c));
1084 c.create_cq.opcode = nvme_admin_create_cq;
1085 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1086 c.create_cq.cqid = cpu_to_le16(qid);
1087 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1088 c.create_cq.cq_flags = cpu_to_le16(flags);
1089 c.create_cq.irq_vector = cpu_to_le16(vector);
1091 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1094 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1095 struct nvme_queue *nvmeq)
1097 struct nvme_ctrl *ctrl = &dev->ctrl;
1098 struct nvme_command c;
1099 int flags = NVME_QUEUE_PHYS_CONTIG;
1102 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1103 * set. Since URGENT priority is zeroes, it makes all queues
1104 * URGENT.
1106 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1107 flags |= NVME_SQ_PRIO_MEDIUM;
1110 * Note: we (ab)use the fact that the prp fields survive if no data
1111 * is attached to the request.
1113 memset(&c, 0, sizeof(c));
1114 c.create_sq.opcode = nvme_admin_create_sq;
1115 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1116 c.create_sq.sqid = cpu_to_le16(qid);
1117 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1118 c.create_sq.sq_flags = cpu_to_le16(flags);
1119 c.create_sq.cqid = cpu_to_le16(qid);
1121 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1124 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1126 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1129 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1131 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1134 static void abort_endio(struct request *req, blk_status_t error)
1136 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1137 struct nvme_queue *nvmeq = iod->nvmeq;
1139 dev_warn(nvmeq->dev->ctrl.device,
1140 "Abort status: 0x%x", nvme_req(req)->status);
1141 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1142 blk_mq_free_request(req);
1145 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1148 /* If true, indicates loss of adapter communication, possibly by a
1149 * NVMe Subsystem reset.
1151 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1153 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1154 switch (dev->ctrl.state) {
1155 case NVME_CTRL_RESETTING:
1156 case NVME_CTRL_CONNECTING:
1157 return false;
1158 default:
1159 break;
1162 /* We shouldn't reset unless the controller is on fatal error state
1163 * _or_ if we lost the communication with it.
1165 if (!(csts & NVME_CSTS_CFS) && !nssro)
1166 return false;
1168 return true;
1171 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1173 /* Read a config register to help see what died. */
1174 u16 pci_status;
1175 int result;
1177 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1178 &pci_status);
1179 if (result == PCIBIOS_SUCCESSFUL)
1180 dev_warn(dev->ctrl.device,
1181 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1182 csts, pci_status);
1183 else
1184 dev_warn(dev->ctrl.device,
1185 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1186 csts, result);
1189 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1191 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1192 struct nvme_queue *nvmeq = iod->nvmeq;
1193 struct nvme_dev *dev = nvmeq->dev;
1194 struct request *abort_req;
1195 struct nvme_command cmd;
1196 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1198 /* If PCI error recovery process is happening, we cannot reset or
1199 * the recovery mechanism will surely fail.
1201 mb();
1202 if (pci_channel_offline(to_pci_dev(dev->dev)))
1203 return BLK_EH_RESET_TIMER;
1206 * Reset immediately if the controller is failed
1208 if (nvme_should_reset(dev, csts)) {
1209 nvme_warn_reset(dev, csts);
1210 nvme_dev_disable(dev, false);
1211 nvme_reset_ctrl(&dev->ctrl);
1212 return BLK_EH_DONE;
1216 * Did we miss an interrupt?
1218 if (__nvme_poll(nvmeq, req->tag)) {
1219 dev_warn(dev->ctrl.device,
1220 "I/O %d QID %d timeout, completion polled\n",
1221 req->tag, nvmeq->qid);
1222 return BLK_EH_DONE;
1226 * Shutdown immediately if controller times out while starting. The
1227 * reset work will see the pci device disabled when it gets the forced
1228 * cancellation error. All outstanding requests are completed on
1229 * shutdown, so we return BLK_EH_DONE.
1231 switch (dev->ctrl.state) {
1232 case NVME_CTRL_CONNECTING:
1233 case NVME_CTRL_RESETTING:
1234 dev_warn_ratelimited(dev->ctrl.device,
1235 "I/O %d QID %d timeout, disable controller\n",
1236 req->tag, nvmeq->qid);
1237 nvme_dev_disable(dev, false);
1238 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1239 return BLK_EH_DONE;
1240 default:
1241 break;
1245 * Shutdown the controller immediately and schedule a reset if the
1246 * command was already aborted once before and still hasn't been
1247 * returned to the driver, or if this is the admin queue.
1249 if (!nvmeq->qid || iod->aborted) {
1250 dev_warn(dev->ctrl.device,
1251 "I/O %d QID %d timeout, reset controller\n",
1252 req->tag, nvmeq->qid);
1253 nvme_dev_disable(dev, false);
1254 nvme_reset_ctrl(&dev->ctrl);
1256 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1257 return BLK_EH_DONE;
1260 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1261 atomic_inc(&dev->ctrl.abort_limit);
1262 return BLK_EH_RESET_TIMER;
1264 iod->aborted = 1;
1266 memset(&cmd, 0, sizeof(cmd));
1267 cmd.abort.opcode = nvme_admin_abort_cmd;
1268 cmd.abort.cid = req->tag;
1269 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1271 dev_warn(nvmeq->dev->ctrl.device,
1272 "I/O %d QID %d timeout, aborting\n",
1273 req->tag, nvmeq->qid);
1275 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1276 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1277 if (IS_ERR(abort_req)) {
1278 atomic_inc(&dev->ctrl.abort_limit);
1279 return BLK_EH_RESET_TIMER;
1282 abort_req->timeout = ADMIN_TIMEOUT;
1283 abort_req->end_io_data = NULL;
1284 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1287 * The aborted req will be completed on receiving the abort req.
1288 * We enable the timer again. If hit twice, it'll cause a device reset,
1289 * as the device then is in a faulty state.
1291 return BLK_EH_RESET_TIMER;
1294 static void nvme_free_queue(struct nvme_queue *nvmeq)
1296 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1297 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1298 if (nvmeq->sq_cmds)
1299 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1300 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1303 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1305 int i;
1307 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1308 dev->ctrl.queue_count--;
1309 nvme_free_queue(&dev->queues[i]);
1314 * nvme_suspend_queue - put queue into suspended state
1315 * @nvmeq - queue to suspend
1317 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1319 int vector;
1321 spin_lock_irq(&nvmeq->cq_lock);
1322 if (nvmeq->cq_vector == -1) {
1323 spin_unlock_irq(&nvmeq->cq_lock);
1324 return 1;
1326 vector = nvmeq->cq_vector;
1327 nvmeq->dev->online_queues--;
1328 nvmeq->cq_vector = -1;
1329 spin_unlock_irq(&nvmeq->cq_lock);
1332 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1333 * having to grab the lock.
1335 mb();
1337 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1338 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1340 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1342 return 0;
1345 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1347 struct nvme_queue *nvmeq = &dev->queues[0];
1348 u16 start, end;
1350 if (shutdown)
1351 nvme_shutdown_ctrl(&dev->ctrl);
1352 else
1353 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1355 spin_lock_irq(&nvmeq->cq_lock);
1356 nvme_process_cq(nvmeq, &start, &end, -1);
1357 spin_unlock_irq(&nvmeq->cq_lock);
1359 nvme_complete_cqes(nvmeq, start, end);
1362 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1363 int entry_size)
1365 int q_depth = dev->q_depth;
1366 unsigned q_size_aligned = roundup(q_depth * entry_size,
1367 dev->ctrl.page_size);
1369 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1370 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1371 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1372 q_depth = div_u64(mem_per_q, entry_size);
1375 * Ensure the reduced q_depth is above some threshold where it
1376 * would be better to map queues in system memory with the
1377 * original depth
1379 if (q_depth < 64)
1380 return -ENOMEM;
1383 return q_depth;
1386 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1387 int qid, int depth)
1389 /* CMB SQEs will be mapped before creation */
1390 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1391 return 0;
1393 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1394 &nvmeq->sq_dma_addr, GFP_KERNEL);
1395 if (!nvmeq->sq_cmds)
1396 return -ENOMEM;
1397 return 0;
1400 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1402 struct nvme_queue *nvmeq = &dev->queues[qid];
1404 if (dev->ctrl.queue_count > qid)
1405 return 0;
1407 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1408 &nvmeq->cq_dma_addr, GFP_KERNEL);
1409 if (!nvmeq->cqes)
1410 goto free_nvmeq;
1412 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1413 goto free_cqdma;
1415 nvmeq->q_dmadev = dev->dev;
1416 nvmeq->dev = dev;
1417 spin_lock_init(&nvmeq->sq_lock);
1418 spin_lock_init(&nvmeq->cq_lock);
1419 nvmeq->cq_head = 0;
1420 nvmeq->cq_phase = 1;
1421 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1422 nvmeq->q_depth = depth;
1423 nvmeq->qid = qid;
1424 nvmeq->cq_vector = -1;
1425 dev->ctrl.queue_count++;
1427 return 0;
1429 free_cqdma:
1430 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1431 nvmeq->cq_dma_addr);
1432 free_nvmeq:
1433 return -ENOMEM;
1436 static int queue_request_irq(struct nvme_queue *nvmeq)
1438 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1439 int nr = nvmeq->dev->ctrl.instance;
1441 if (use_threaded_interrupts) {
1442 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1443 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1444 } else {
1445 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1446 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1450 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1452 struct nvme_dev *dev = nvmeq->dev;
1454 spin_lock_irq(&nvmeq->cq_lock);
1455 nvmeq->sq_tail = 0;
1456 nvmeq->cq_head = 0;
1457 nvmeq->cq_phase = 1;
1458 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1459 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1460 nvme_dbbuf_init(dev, nvmeq, qid);
1461 dev->online_queues++;
1462 spin_unlock_irq(&nvmeq->cq_lock);
1465 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1467 struct nvme_dev *dev = nvmeq->dev;
1468 int result;
1469 s16 vector;
1471 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1472 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1473 dev->ctrl.page_size);
1474 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1475 nvmeq->sq_cmds_io = dev->cmb + offset;
1479 * A queue's vector matches the queue identifier unless the controller
1480 * has only one vector available.
1482 vector = dev->num_vecs == 1 ? 0 : qid;
1483 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1484 if (result)
1485 return result;
1487 result = adapter_alloc_sq(dev, qid, nvmeq);
1488 if (result < 0)
1489 return result;
1490 else if (result)
1491 goto release_cq;
1494 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1495 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1496 * xxx' warning if the create CQ/SQ command times out.
1498 nvmeq->cq_vector = vector;
1499 nvme_init_queue(nvmeq, qid);
1500 result = queue_request_irq(nvmeq);
1501 if (result < 0)
1502 goto release_sq;
1504 return result;
1506 release_sq:
1507 nvmeq->cq_vector = -1;
1508 dev->online_queues--;
1509 adapter_delete_sq(dev, qid);
1510 release_cq:
1511 adapter_delete_cq(dev, qid);
1512 return result;
1515 static const struct blk_mq_ops nvme_mq_admin_ops = {
1516 .queue_rq = nvme_queue_rq,
1517 .complete = nvme_pci_complete_rq,
1518 .init_hctx = nvme_admin_init_hctx,
1519 .exit_hctx = nvme_admin_exit_hctx,
1520 .init_request = nvme_init_request,
1521 .timeout = nvme_timeout,
1524 static const struct blk_mq_ops nvme_mq_ops = {
1525 .queue_rq = nvme_queue_rq,
1526 .complete = nvme_pci_complete_rq,
1527 .init_hctx = nvme_init_hctx,
1528 .init_request = nvme_init_request,
1529 .map_queues = nvme_pci_map_queues,
1530 .timeout = nvme_timeout,
1531 .poll = nvme_poll,
1534 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1536 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1538 * If the controller was reset during removal, it's possible
1539 * user requests may be waiting on a stopped queue. Start the
1540 * queue to flush these to completion.
1542 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1543 blk_cleanup_queue(dev->ctrl.admin_q);
1544 blk_mq_free_tag_set(&dev->admin_tagset);
1548 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1550 if (!dev->ctrl.admin_q) {
1551 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1552 dev->admin_tagset.nr_hw_queues = 1;
1554 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1555 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1556 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1557 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1558 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1559 dev->admin_tagset.driver_data = dev;
1561 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1562 return -ENOMEM;
1563 dev->ctrl.admin_tagset = &dev->admin_tagset;
1565 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1566 if (IS_ERR(dev->ctrl.admin_q)) {
1567 blk_mq_free_tag_set(&dev->admin_tagset);
1568 return -ENOMEM;
1570 if (!blk_get_queue(dev->ctrl.admin_q)) {
1571 nvme_dev_remove_admin(dev);
1572 dev->ctrl.admin_q = NULL;
1573 return -ENODEV;
1575 } else
1576 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1578 return 0;
1581 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1583 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1586 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1588 struct pci_dev *pdev = to_pci_dev(dev->dev);
1590 if (size <= dev->bar_mapped_size)
1591 return 0;
1592 if (size > pci_resource_len(pdev, 0))
1593 return -ENOMEM;
1594 if (dev->bar)
1595 iounmap(dev->bar);
1596 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1597 if (!dev->bar) {
1598 dev->bar_mapped_size = 0;
1599 return -ENOMEM;
1601 dev->bar_mapped_size = size;
1602 dev->dbs = dev->bar + NVME_REG_DBS;
1604 return 0;
1607 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1609 int result;
1610 u32 aqa;
1611 struct nvme_queue *nvmeq;
1613 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1614 if (result < 0)
1615 return result;
1617 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1618 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1620 if (dev->subsystem &&
1621 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1622 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1624 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1625 if (result < 0)
1626 return result;
1628 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1629 if (result)
1630 return result;
1632 nvmeq = &dev->queues[0];
1633 aqa = nvmeq->q_depth - 1;
1634 aqa |= aqa << 16;
1636 writel(aqa, dev->bar + NVME_REG_AQA);
1637 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1638 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1640 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1641 if (result)
1642 return result;
1644 nvmeq->cq_vector = 0;
1645 nvme_init_queue(nvmeq, 0);
1646 result = queue_request_irq(nvmeq);
1647 if (result) {
1648 nvmeq->cq_vector = -1;
1649 return result;
1652 return result;
1655 static int nvme_create_io_queues(struct nvme_dev *dev)
1657 unsigned i, max;
1658 int ret = 0;
1660 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1661 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1662 ret = -ENOMEM;
1663 break;
1667 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1668 for (i = dev->online_queues; i <= max; i++) {
1669 ret = nvme_create_queue(&dev->queues[i], i);
1670 if (ret)
1671 break;
1675 * Ignore failing Create SQ/CQ commands, we can continue with less
1676 * than the desired amount of queues, and even a controller without
1677 * I/O queues can still be used to issue admin commands. This might
1678 * be useful to upgrade a buggy firmware for example.
1680 return ret >= 0 ? 0 : ret;
1683 static ssize_t nvme_cmb_show(struct device *dev,
1684 struct device_attribute *attr,
1685 char *buf)
1687 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1689 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1690 ndev->cmbloc, ndev->cmbsz);
1692 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1694 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1696 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1698 return 1ULL << (12 + 4 * szu);
1701 static u32 nvme_cmb_size(struct nvme_dev *dev)
1703 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1706 static void nvme_map_cmb(struct nvme_dev *dev)
1708 u64 size, offset;
1709 resource_size_t bar_size;
1710 struct pci_dev *pdev = to_pci_dev(dev->dev);
1711 int bar;
1713 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1714 if (!dev->cmbsz)
1715 return;
1716 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1718 if (!use_cmb_sqes)
1719 return;
1721 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1722 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1723 bar = NVME_CMB_BIR(dev->cmbloc);
1724 bar_size = pci_resource_len(pdev, bar);
1726 if (offset > bar_size)
1727 return;
1730 * Controllers may support a CMB size larger than their BAR,
1731 * for example, due to being behind a bridge. Reduce the CMB to
1732 * the reported size of the BAR
1734 if (size > bar_size - offset)
1735 size = bar_size - offset;
1737 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1738 if (!dev->cmb)
1739 return;
1740 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1741 dev->cmb_size = size;
1743 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1744 &dev_attr_cmb.attr, NULL))
1745 dev_warn(dev->ctrl.device,
1746 "failed to add sysfs attribute for CMB\n");
1749 static inline void nvme_release_cmb(struct nvme_dev *dev)
1751 if (dev->cmb) {
1752 iounmap(dev->cmb);
1753 dev->cmb = NULL;
1754 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1755 &dev_attr_cmb.attr, NULL);
1756 dev->cmbsz = 0;
1760 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1762 u64 dma_addr = dev->host_mem_descs_dma;
1763 struct nvme_command c;
1764 int ret;
1766 memset(&c, 0, sizeof(c));
1767 c.features.opcode = nvme_admin_set_features;
1768 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1769 c.features.dword11 = cpu_to_le32(bits);
1770 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1771 ilog2(dev->ctrl.page_size));
1772 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1773 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1774 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1776 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1777 if (ret) {
1778 dev_warn(dev->ctrl.device,
1779 "failed to set host mem (err %d, flags %#x).\n",
1780 ret, bits);
1782 return ret;
1785 static void nvme_free_host_mem(struct nvme_dev *dev)
1787 int i;
1789 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1790 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1791 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1793 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1794 le64_to_cpu(desc->addr));
1797 kfree(dev->host_mem_desc_bufs);
1798 dev->host_mem_desc_bufs = NULL;
1799 dma_free_coherent(dev->dev,
1800 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1801 dev->host_mem_descs, dev->host_mem_descs_dma);
1802 dev->host_mem_descs = NULL;
1803 dev->nr_host_mem_descs = 0;
1806 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1807 u32 chunk_size)
1809 struct nvme_host_mem_buf_desc *descs;
1810 u32 max_entries, len;
1811 dma_addr_t descs_dma;
1812 int i = 0;
1813 void **bufs;
1814 u64 size, tmp;
1816 tmp = (preferred + chunk_size - 1);
1817 do_div(tmp, chunk_size);
1818 max_entries = tmp;
1820 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1821 max_entries = dev->ctrl.hmmaxd;
1823 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1824 &descs_dma, GFP_KERNEL);
1825 if (!descs)
1826 goto out;
1828 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1829 if (!bufs)
1830 goto out_free_descs;
1832 for (size = 0; size < preferred && i < max_entries; size += len) {
1833 dma_addr_t dma_addr;
1835 len = min_t(u64, chunk_size, preferred - size);
1836 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1837 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1838 if (!bufs[i])
1839 break;
1841 descs[i].addr = cpu_to_le64(dma_addr);
1842 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1843 i++;
1846 if (!size)
1847 goto out_free_bufs;
1849 dev->nr_host_mem_descs = i;
1850 dev->host_mem_size = size;
1851 dev->host_mem_descs = descs;
1852 dev->host_mem_descs_dma = descs_dma;
1853 dev->host_mem_desc_bufs = bufs;
1854 return 0;
1856 out_free_bufs:
1857 while (--i >= 0) {
1858 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1860 dma_free_coherent(dev->dev, size, bufs[i],
1861 le64_to_cpu(descs[i].addr));
1864 kfree(bufs);
1865 out_free_descs:
1866 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1867 descs_dma);
1868 out:
1869 dev->host_mem_descs = NULL;
1870 return -ENOMEM;
1873 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1875 u32 chunk_size;
1877 /* start big and work our way down */
1878 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1879 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1880 chunk_size /= 2) {
1881 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1882 if (!min || dev->host_mem_size >= min)
1883 return 0;
1884 nvme_free_host_mem(dev);
1888 return -ENOMEM;
1891 static int nvme_setup_host_mem(struct nvme_dev *dev)
1893 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1894 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1895 u64 min = (u64)dev->ctrl.hmmin * 4096;
1896 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1897 int ret;
1899 preferred = min(preferred, max);
1900 if (min > max) {
1901 dev_warn(dev->ctrl.device,
1902 "min host memory (%lld MiB) above limit (%d MiB).\n",
1903 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1904 nvme_free_host_mem(dev);
1905 return 0;
1909 * If we already have a buffer allocated check if we can reuse it.
1911 if (dev->host_mem_descs) {
1912 if (dev->host_mem_size >= min)
1913 enable_bits |= NVME_HOST_MEM_RETURN;
1914 else
1915 nvme_free_host_mem(dev);
1918 if (!dev->host_mem_descs) {
1919 if (nvme_alloc_host_mem(dev, min, preferred)) {
1920 dev_warn(dev->ctrl.device,
1921 "failed to allocate host memory buffer.\n");
1922 return 0; /* controller must work without HMB */
1925 dev_info(dev->ctrl.device,
1926 "allocated %lld MiB host memory buffer.\n",
1927 dev->host_mem_size >> ilog2(SZ_1M));
1930 ret = nvme_set_host_mem(dev, enable_bits);
1931 if (ret)
1932 nvme_free_host_mem(dev);
1933 return ret;
1936 static int nvme_setup_io_queues(struct nvme_dev *dev)
1938 struct nvme_queue *adminq = &dev->queues[0];
1939 struct pci_dev *pdev = to_pci_dev(dev->dev);
1940 int result, nr_io_queues;
1941 unsigned long size;
1943 struct irq_affinity affd = {
1944 .pre_vectors = 1
1947 nr_io_queues = num_possible_cpus();
1948 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1949 if (result < 0)
1950 return result;
1952 if (nr_io_queues == 0)
1953 return 0;
1955 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1956 result = nvme_cmb_qdepth(dev, nr_io_queues,
1957 sizeof(struct nvme_command));
1958 if (result > 0)
1959 dev->q_depth = result;
1960 else
1961 nvme_release_cmb(dev);
1964 do {
1965 size = db_bar_size(dev, nr_io_queues);
1966 result = nvme_remap_bar(dev, size);
1967 if (!result)
1968 break;
1969 if (!--nr_io_queues)
1970 return -ENOMEM;
1971 } while (1);
1972 adminq->q_db = dev->dbs;
1974 /* Deregister the admin queue's interrupt */
1975 pci_free_irq(pdev, 0, adminq);
1978 * If we enable msix early due to not intx, disable it again before
1979 * setting up the full range we need.
1981 pci_free_irq_vectors(pdev);
1982 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1983 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1984 if (result <= 0)
1985 return -EIO;
1986 dev->num_vecs = result;
1987 dev->max_qid = max(result - 1, 1);
1990 * Should investigate if there's a performance win from allocating
1991 * more queues than interrupt vectors; it might allow the submission
1992 * path to scale better, even if the receive path is limited by the
1993 * number of interrupts.
1996 result = queue_request_irq(adminq);
1997 if (result) {
1998 adminq->cq_vector = -1;
1999 return result;
2001 return nvme_create_io_queues(dev);
2004 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2006 struct nvme_queue *nvmeq = req->end_io_data;
2008 blk_mq_free_request(req);
2009 complete(&nvmeq->dev->ioq_wait);
2012 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2014 struct nvme_queue *nvmeq = req->end_io_data;
2015 u16 start, end;
2017 if (!error) {
2018 unsigned long flags;
2020 spin_lock_irqsave(&nvmeq->cq_lock, flags);
2021 nvme_process_cq(nvmeq, &start, &end, -1);
2022 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
2024 nvme_complete_cqes(nvmeq, start, end);
2027 nvme_del_queue_end(req, error);
2030 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2032 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2033 struct request *req;
2034 struct nvme_command cmd;
2036 memset(&cmd, 0, sizeof(cmd));
2037 cmd.delete_queue.opcode = opcode;
2038 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2040 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2041 if (IS_ERR(req))
2042 return PTR_ERR(req);
2044 req->timeout = ADMIN_TIMEOUT;
2045 req->end_io_data = nvmeq;
2047 blk_execute_rq_nowait(q, NULL, req, false,
2048 opcode == nvme_admin_delete_cq ?
2049 nvme_del_cq_end : nvme_del_queue_end);
2050 return 0;
2053 static void nvme_disable_io_queues(struct nvme_dev *dev)
2055 int pass, queues = dev->online_queues - 1;
2056 unsigned long timeout;
2057 u8 opcode = nvme_admin_delete_sq;
2059 for (pass = 0; pass < 2; pass++) {
2060 int sent = 0, i = queues;
2062 reinit_completion(&dev->ioq_wait);
2063 retry:
2064 timeout = ADMIN_TIMEOUT;
2065 for (; i > 0; i--, sent++)
2066 if (nvme_delete_queue(&dev->queues[i], opcode))
2067 break;
2069 while (sent--) {
2070 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2071 if (timeout == 0)
2072 return;
2073 if (i)
2074 goto retry;
2076 opcode = nvme_admin_delete_cq;
2081 * return error value only when tagset allocation failed
2083 static int nvme_dev_add(struct nvme_dev *dev)
2085 int ret;
2087 if (!dev->ctrl.tagset) {
2088 dev->tagset.ops = &nvme_mq_ops;
2089 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2090 dev->tagset.timeout = NVME_IO_TIMEOUT;
2091 dev->tagset.numa_node = dev_to_node(dev->dev);
2092 dev->tagset.queue_depth =
2093 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2094 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2095 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2096 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2097 nvme_pci_cmd_size(dev, true));
2099 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2100 dev->tagset.driver_data = dev;
2102 ret = blk_mq_alloc_tag_set(&dev->tagset);
2103 if (ret) {
2104 dev_warn(dev->ctrl.device,
2105 "IO queues tagset allocation failed %d\n", ret);
2106 return ret;
2108 dev->ctrl.tagset = &dev->tagset;
2110 nvme_dbbuf_set(dev);
2111 } else {
2112 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2114 /* Free previously allocated queues that are no longer usable */
2115 nvme_free_queues(dev, dev->online_queues);
2118 return 0;
2121 static int nvme_pci_enable(struct nvme_dev *dev)
2123 int result = -ENOMEM;
2124 struct pci_dev *pdev = to_pci_dev(dev->dev);
2126 if (pci_enable_device_mem(pdev))
2127 return result;
2129 pci_set_master(pdev);
2131 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2132 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2133 goto disable;
2135 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2136 result = -ENODEV;
2137 goto disable;
2141 * Some devices and/or platforms don't advertise or work with INTx
2142 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2143 * adjust this later.
2145 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2146 if (result < 0)
2147 return result;
2149 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2151 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2152 io_queue_depth);
2153 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2154 dev->dbs = dev->bar + 4096;
2157 * Temporary fix for the Apple controller found in the MacBook8,1 and
2158 * some MacBook7,1 to avoid controller resets and data loss.
2160 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2161 dev->q_depth = 2;
2162 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2163 "set queue depth=%u to work around controller resets\n",
2164 dev->q_depth);
2165 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2166 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2167 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2168 dev->q_depth = 64;
2169 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2170 "set queue depth=%u\n", dev->q_depth);
2173 nvme_map_cmb(dev);
2175 pci_enable_pcie_error_reporting(pdev);
2176 pci_save_state(pdev);
2177 return 0;
2179 disable:
2180 pci_disable_device(pdev);
2181 return result;
2184 static void nvme_dev_unmap(struct nvme_dev *dev)
2186 if (dev->bar)
2187 iounmap(dev->bar);
2188 pci_release_mem_regions(to_pci_dev(dev->dev));
2191 static void nvme_pci_disable(struct nvme_dev *dev)
2193 struct pci_dev *pdev = to_pci_dev(dev->dev);
2195 nvme_release_cmb(dev);
2196 pci_free_irq_vectors(pdev);
2198 if (pci_is_enabled(pdev)) {
2199 pci_disable_pcie_error_reporting(pdev);
2200 pci_disable_device(pdev);
2204 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2206 int i;
2207 bool dead = true;
2208 struct pci_dev *pdev = to_pci_dev(dev->dev);
2210 mutex_lock(&dev->shutdown_lock);
2211 if (pci_is_enabled(pdev)) {
2212 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2214 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2215 dev->ctrl.state == NVME_CTRL_RESETTING)
2216 nvme_start_freeze(&dev->ctrl);
2217 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2218 pdev->error_state != pci_channel_io_normal);
2222 * Give the controller a chance to complete all entered requests if
2223 * doing a safe shutdown.
2225 if (!dead) {
2226 if (shutdown)
2227 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2230 nvme_stop_queues(&dev->ctrl);
2232 if (!dead && dev->ctrl.queue_count > 0) {
2233 nvme_disable_io_queues(dev);
2234 nvme_disable_admin_queue(dev, shutdown);
2236 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2237 nvme_suspend_queue(&dev->queues[i]);
2239 nvme_pci_disable(dev);
2241 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2242 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2245 * The driver will not be starting up queues again if shutting down so
2246 * must flush all entered requests to their failed completion to avoid
2247 * deadlocking blk-mq hot-cpu notifier.
2249 if (shutdown)
2250 nvme_start_queues(&dev->ctrl);
2251 mutex_unlock(&dev->shutdown_lock);
2254 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2256 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2257 PAGE_SIZE, PAGE_SIZE, 0);
2258 if (!dev->prp_page_pool)
2259 return -ENOMEM;
2261 /* Optimisation for I/Os between 4k and 128k */
2262 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2263 256, 256, 0);
2264 if (!dev->prp_small_pool) {
2265 dma_pool_destroy(dev->prp_page_pool);
2266 return -ENOMEM;
2268 return 0;
2271 static void nvme_release_prp_pools(struct nvme_dev *dev)
2273 dma_pool_destroy(dev->prp_page_pool);
2274 dma_pool_destroy(dev->prp_small_pool);
2277 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2279 struct nvme_dev *dev = to_nvme_dev(ctrl);
2281 nvme_dbbuf_dma_free(dev);
2282 put_device(dev->dev);
2283 if (dev->tagset.tags)
2284 blk_mq_free_tag_set(&dev->tagset);
2285 if (dev->ctrl.admin_q)
2286 blk_put_queue(dev->ctrl.admin_q);
2287 kfree(dev->queues);
2288 free_opal_dev(dev->ctrl.opal_dev);
2289 mempool_destroy(dev->iod_mempool);
2290 kfree(dev);
2293 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2295 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2297 nvme_get_ctrl(&dev->ctrl);
2298 nvme_dev_disable(dev, false);
2299 nvme_kill_queues(&dev->ctrl);
2300 if (!queue_work(nvme_wq, &dev->remove_work))
2301 nvme_put_ctrl(&dev->ctrl);
2304 static void nvme_reset_work(struct work_struct *work)
2306 struct nvme_dev *dev =
2307 container_of(work, struct nvme_dev, ctrl.reset_work);
2308 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2309 int result = -ENODEV;
2310 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2312 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2313 goto out;
2316 * If we're called to reset a live controller first shut it down before
2317 * moving on.
2319 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2320 nvme_dev_disable(dev, false);
2323 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2324 * initializing procedure here.
2326 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2327 dev_warn(dev->ctrl.device,
2328 "failed to mark controller CONNECTING\n");
2329 goto out;
2332 result = nvme_pci_enable(dev);
2333 if (result)
2334 goto out;
2336 result = nvme_pci_configure_admin_queue(dev);
2337 if (result)
2338 goto out;
2340 result = nvme_alloc_admin_tags(dev);
2341 if (result)
2342 goto out;
2345 * Limit the max command size to prevent iod->sg allocations going
2346 * over a single page.
2348 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2349 dev->ctrl.max_segments = NVME_MAX_SEGS;
2351 result = nvme_init_identify(&dev->ctrl);
2352 if (result)
2353 goto out;
2355 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2356 if (!dev->ctrl.opal_dev)
2357 dev->ctrl.opal_dev =
2358 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2359 else if (was_suspend)
2360 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2361 } else {
2362 free_opal_dev(dev->ctrl.opal_dev);
2363 dev->ctrl.opal_dev = NULL;
2366 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2367 result = nvme_dbbuf_dma_alloc(dev);
2368 if (result)
2369 dev_warn(dev->dev,
2370 "unable to allocate dma for dbbuf\n");
2373 if (dev->ctrl.hmpre) {
2374 result = nvme_setup_host_mem(dev);
2375 if (result < 0)
2376 goto out;
2379 result = nvme_setup_io_queues(dev);
2380 if (result)
2381 goto out;
2384 * Keep the controller around but remove all namespaces if we don't have
2385 * any working I/O queue.
2387 if (dev->online_queues < 2) {
2388 dev_warn(dev->ctrl.device, "IO queues not created\n");
2389 nvme_kill_queues(&dev->ctrl);
2390 nvme_remove_namespaces(&dev->ctrl);
2391 new_state = NVME_CTRL_ADMIN_ONLY;
2392 } else {
2393 nvme_start_queues(&dev->ctrl);
2394 nvme_wait_freeze(&dev->ctrl);
2395 /* hit this only when allocate tagset fails */
2396 if (nvme_dev_add(dev))
2397 new_state = NVME_CTRL_ADMIN_ONLY;
2398 nvme_unfreeze(&dev->ctrl);
2402 * If only admin queue live, keep it to do further investigation or
2403 * recovery.
2405 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2406 dev_warn(dev->ctrl.device,
2407 "failed to mark controller state %d\n", new_state);
2408 goto out;
2411 nvme_start_ctrl(&dev->ctrl);
2412 return;
2414 out:
2415 nvme_remove_dead_ctrl(dev, result);
2418 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2420 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2421 struct pci_dev *pdev = to_pci_dev(dev->dev);
2423 if (pci_get_drvdata(pdev))
2424 device_release_driver(&pdev->dev);
2425 nvme_put_ctrl(&dev->ctrl);
2428 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2430 *val = readl(to_nvme_dev(ctrl)->bar + off);
2431 return 0;
2434 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2436 writel(val, to_nvme_dev(ctrl)->bar + off);
2437 return 0;
2440 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2442 *val = readq(to_nvme_dev(ctrl)->bar + off);
2443 return 0;
2446 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2448 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2450 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2453 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2454 .name = "pcie",
2455 .module = THIS_MODULE,
2456 .flags = NVME_F_METADATA_SUPPORTED,
2457 .reg_read32 = nvme_pci_reg_read32,
2458 .reg_write32 = nvme_pci_reg_write32,
2459 .reg_read64 = nvme_pci_reg_read64,
2460 .free_ctrl = nvme_pci_free_ctrl,
2461 .submit_async_event = nvme_pci_submit_async_event,
2462 .get_address = nvme_pci_get_address,
2465 static int nvme_dev_map(struct nvme_dev *dev)
2467 struct pci_dev *pdev = to_pci_dev(dev->dev);
2469 if (pci_request_mem_regions(pdev, "nvme"))
2470 return -ENODEV;
2472 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2473 goto release;
2475 return 0;
2476 release:
2477 pci_release_mem_regions(pdev);
2478 return -ENODEV;
2481 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2483 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2485 * Several Samsung devices seem to drop off the PCIe bus
2486 * randomly when APST is on and uses the deepest sleep state.
2487 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2488 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2489 * 950 PRO 256GB", but it seems to be restricted to two Dell
2490 * laptops.
2492 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2493 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2494 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2495 return NVME_QUIRK_NO_DEEPEST_PS;
2496 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2498 * Samsung SSD 960 EVO drops off the PCIe bus after system
2499 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2500 * within few minutes after bootup on a Coffee Lake board -
2501 * ASUS PRIME Z370-A
2503 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2504 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2505 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2506 return NVME_QUIRK_NO_APST;
2509 return 0;
2512 static void nvme_async_probe(void *data, async_cookie_t cookie)
2514 struct nvme_dev *dev = data;
2516 nvme_reset_ctrl_sync(&dev->ctrl);
2517 flush_work(&dev->ctrl.scan_work);
2518 nvme_put_ctrl(&dev->ctrl);
2521 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2523 int node, result = -ENOMEM;
2524 struct nvme_dev *dev;
2525 unsigned long quirks = id->driver_data;
2526 size_t alloc_size;
2528 node = dev_to_node(&pdev->dev);
2529 if (node == NUMA_NO_NODE)
2530 set_dev_node(&pdev->dev, first_memory_node);
2532 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2533 if (!dev)
2534 return -ENOMEM;
2536 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2537 sizeof(struct nvme_queue), GFP_KERNEL, node);
2538 if (!dev->queues)
2539 goto free;
2541 dev->dev = get_device(&pdev->dev);
2542 pci_set_drvdata(pdev, dev);
2544 result = nvme_dev_map(dev);
2545 if (result)
2546 goto put_pci;
2548 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2549 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2550 mutex_init(&dev->shutdown_lock);
2551 init_completion(&dev->ioq_wait);
2553 result = nvme_setup_prp_pools(dev);
2554 if (result)
2555 goto unmap;
2557 quirks |= check_vendor_combination_bug(pdev);
2559 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2560 quirks);
2561 if (result)
2562 goto release_pools;
2565 * Double check that our mempool alloc size will cover the biggest
2566 * command we support.
2568 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2569 NVME_MAX_SEGS, true);
2570 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2572 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2573 mempool_kfree,
2574 (void *) alloc_size,
2575 GFP_KERNEL, node);
2576 if (!dev->iod_mempool) {
2577 result = -ENOMEM;
2578 goto release_pools;
2581 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2583 nvme_get_ctrl(&dev->ctrl);
2584 async_schedule(nvme_async_probe, dev);
2586 return 0;
2588 release_pools:
2589 nvme_release_prp_pools(dev);
2590 unmap:
2591 nvme_dev_unmap(dev);
2592 put_pci:
2593 put_device(dev->dev);
2594 free:
2595 kfree(dev->queues);
2596 kfree(dev);
2597 return result;
2600 static void nvme_reset_prepare(struct pci_dev *pdev)
2602 struct nvme_dev *dev = pci_get_drvdata(pdev);
2603 nvme_dev_disable(dev, false);
2606 static void nvme_reset_done(struct pci_dev *pdev)
2608 struct nvme_dev *dev = pci_get_drvdata(pdev);
2609 nvme_reset_ctrl_sync(&dev->ctrl);
2612 static void nvme_shutdown(struct pci_dev *pdev)
2614 struct nvme_dev *dev = pci_get_drvdata(pdev);
2615 nvme_dev_disable(dev, true);
2619 * The driver's remove may be called on a device in a partially initialized
2620 * state. This function must not have any dependencies on the device state in
2621 * order to proceed.
2623 static void nvme_remove(struct pci_dev *pdev)
2625 struct nvme_dev *dev = pci_get_drvdata(pdev);
2627 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2629 cancel_work_sync(&dev->ctrl.reset_work);
2630 pci_set_drvdata(pdev, NULL);
2632 if (!pci_device_is_present(pdev)) {
2633 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2634 nvme_dev_disable(dev, true);
2637 flush_work(&dev->ctrl.reset_work);
2638 nvme_stop_ctrl(&dev->ctrl);
2639 nvme_remove_namespaces(&dev->ctrl);
2640 nvme_dev_disable(dev, true);
2641 nvme_free_host_mem(dev);
2642 nvme_dev_remove_admin(dev);
2643 nvme_free_queues(dev, 0);
2644 nvme_uninit_ctrl(&dev->ctrl);
2645 nvme_release_prp_pools(dev);
2646 nvme_dev_unmap(dev);
2647 nvme_put_ctrl(&dev->ctrl);
2650 #ifdef CONFIG_PM_SLEEP
2651 static int nvme_suspend(struct device *dev)
2653 struct pci_dev *pdev = to_pci_dev(dev);
2654 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2656 nvme_dev_disable(ndev, true);
2657 return 0;
2660 static int nvme_resume(struct device *dev)
2662 struct pci_dev *pdev = to_pci_dev(dev);
2663 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2665 nvme_reset_ctrl(&ndev->ctrl);
2666 return 0;
2668 #endif
2670 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2672 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2673 pci_channel_state_t state)
2675 struct nvme_dev *dev = pci_get_drvdata(pdev);
2678 * A frozen channel requires a reset. When detected, this method will
2679 * shutdown the controller to quiesce. The controller will be restarted
2680 * after the slot reset through driver's slot_reset callback.
2682 switch (state) {
2683 case pci_channel_io_normal:
2684 return PCI_ERS_RESULT_CAN_RECOVER;
2685 case pci_channel_io_frozen:
2686 dev_warn(dev->ctrl.device,
2687 "frozen state error detected, reset controller\n");
2688 nvme_dev_disable(dev, false);
2689 return PCI_ERS_RESULT_NEED_RESET;
2690 case pci_channel_io_perm_failure:
2691 dev_warn(dev->ctrl.device,
2692 "failure state error detected, request disconnect\n");
2693 return PCI_ERS_RESULT_DISCONNECT;
2695 return PCI_ERS_RESULT_NEED_RESET;
2698 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2700 struct nvme_dev *dev = pci_get_drvdata(pdev);
2702 dev_info(dev->ctrl.device, "restart after slot reset\n");
2703 pci_restore_state(pdev);
2704 nvme_reset_ctrl(&dev->ctrl);
2705 return PCI_ERS_RESULT_RECOVERED;
2708 static void nvme_error_resume(struct pci_dev *pdev)
2710 struct nvme_dev *dev = pci_get_drvdata(pdev);
2712 flush_work(&dev->ctrl.reset_work);
2713 pci_cleanup_aer_uncorrect_error_status(pdev);
2716 static const struct pci_error_handlers nvme_err_handler = {
2717 .error_detected = nvme_error_detected,
2718 .slot_reset = nvme_slot_reset,
2719 .resume = nvme_error_resume,
2720 .reset_prepare = nvme_reset_prepare,
2721 .reset_done = nvme_reset_done,
2724 static const struct pci_device_id nvme_id_table[] = {
2725 { PCI_VDEVICE(INTEL, 0x0953),
2726 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2727 NVME_QUIRK_DEALLOCATE_ZEROES, },
2728 { PCI_VDEVICE(INTEL, 0x0a53),
2729 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2730 NVME_QUIRK_DEALLOCATE_ZEROES, },
2731 { PCI_VDEVICE(INTEL, 0x0a54),
2732 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2733 NVME_QUIRK_DEALLOCATE_ZEROES, },
2734 { PCI_VDEVICE(INTEL, 0x0a55),
2735 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2736 NVME_QUIRK_DEALLOCATE_ZEROES, },
2737 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2738 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2739 NVME_QUIRK_MEDIUM_PRIO_SQ },
2740 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2741 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2742 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2743 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2744 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2745 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2746 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2747 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2748 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2749 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2750 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2751 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2752 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2753 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2754 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2755 .driver_data = NVME_QUIRK_LIGHTNVM, },
2756 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2757 .driver_data = NVME_QUIRK_LIGHTNVM, },
2758 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2759 .driver_data = NVME_QUIRK_LIGHTNVM, },
2760 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2761 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2762 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2763 { 0, }
2765 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2767 static struct pci_driver nvme_driver = {
2768 .name = "nvme",
2769 .id_table = nvme_id_table,
2770 .probe = nvme_probe,
2771 .remove = nvme_remove,
2772 .shutdown = nvme_shutdown,
2773 .driver = {
2774 .pm = &nvme_dev_pm_ops,
2776 .sriov_configure = pci_sriov_configure_simple,
2777 .err_handler = &nvme_err_handler,
2780 static int __init nvme_init(void)
2782 return pci_register_driver(&nvme_driver);
2785 static void __exit nvme_exit(void)
2787 pci_unregister_driver(&nvme_driver);
2788 flush_workqueue(nvme_wq);
2789 _nvme_check_size();
2792 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2793 MODULE_LICENSE("GPL");
2794 MODULE_VERSION("1.0");
2795 module_init(nvme_init);
2796 module_exit(nvme_exit);