2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
45 #define NVME_MAX_KB_SZ 4096
46 #define NVME_MAX_SEGS 127
48 static int use_threaded_interrupts
;
49 module_param(use_threaded_interrupts
, int, 0);
51 static bool use_cmb_sqes
= true;
52 module_param(use_cmb_sqes
, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
55 static unsigned int max_host_mem_size_mb
= 128;
56 module_param(max_host_mem_size_mb
, uint
, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb
,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 static unsigned int sgl_threshold
= SZ_32K
;
61 module_param(sgl_threshold
, uint
, 0644);
62 MODULE_PARM_DESC(sgl_threshold
,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
66 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
67 static const struct kernel_param_ops io_queue_depth_ops
= {
68 .set
= io_queue_depth_set
,
72 static int io_queue_depth
= 1024;
73 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
74 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
79 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
85 struct nvme_queue
*queues
;
86 struct blk_mq_tag_set tagset
;
87 struct blk_mq_tag_set admin_tagset
;
90 struct dma_pool
*prp_page_pool
;
91 struct dma_pool
*prp_small_pool
;
92 unsigned online_queues
;
94 unsigned int num_vecs
;
98 unsigned long bar_mapped_size
;
99 struct work_struct remove_work
;
100 struct mutex shutdown_lock
;
103 pci_bus_addr_t cmb_bus_addr
;
107 struct nvme_ctrl ctrl
;
108 struct completion ioq_wait
;
110 mempool_t
*iod_mempool
;
112 /* shadow doorbell buffer support: */
114 dma_addr_t dbbuf_dbs_dma_addr
;
116 dma_addr_t dbbuf_eis_dma_addr
;
118 /* host memory buffer support: */
120 u32 nr_host_mem_descs
;
121 dma_addr_t host_mem_descs_dma
;
122 struct nvme_host_mem_buf_desc
*host_mem_descs
;
123 void **host_mem_desc_bufs
;
126 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
130 ret
= kstrtoint(val
, 10, &n
);
131 if (ret
!= 0 || n
< 2)
134 return param_set_int(val
, kp
);
137 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
139 return qid
* 2 * stride
;
142 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
144 return (qid
* 2 + 1) * stride
;
147 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
149 return container_of(ctrl
, struct nvme_dev
, ctrl
);
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
157 struct device
*q_dmadev
;
158 struct nvme_dev
*dev
;
160 struct nvme_command
*sq_cmds
;
161 struct nvme_command __iomem
*sq_cmds_io
;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp
;
163 volatile struct nvme_completion
*cqes
;
164 struct blk_mq_tags
**tags
;
165 dma_addr_t sq_dma_addr
;
166 dma_addr_t cq_dma_addr
;
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
188 struct nvme_request req
;
189 struct nvme_queue
*nvmeq
;
192 int npages
; /* In the PRP list. 0 means small pool in use */
193 int nents
; /* Used in scatterlist */
194 int length
; /* Of data, in bytes */
195 dma_addr_t first_dma
;
196 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
197 struct scatterlist
*sg
;
198 struct scatterlist inline_sg
[0];
202 * Check we didin't inadvertently grow the command struct
204 static inline void _nvme_check_size(void)
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != NVME_IDENTIFY_DATA_SIZE
);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != NVME_IDENTIFY_DATA_SIZE
);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf
) != 64);
221 static inline unsigned int nvme_dbbuf_size(u32 stride
)
223 return ((num_possible_cpus() + 1) * 8 * stride
);
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
228 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
233 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
234 &dev
->dbbuf_dbs_dma_addr
,
238 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
239 &dev
->dbbuf_eis_dma_addr
,
241 if (!dev
->dbbuf_eis
) {
242 dma_free_coherent(dev
->dev
, mem_size
,
243 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
244 dev
->dbbuf_dbs
= NULL
;
251 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
253 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
255 if (dev
->dbbuf_dbs
) {
256 dma_free_coherent(dev
->dev
, mem_size
,
257 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
258 dev
->dbbuf_dbs
= NULL
;
260 if (dev
->dbbuf_eis
) {
261 dma_free_coherent(dev
->dev
, mem_size
,
262 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
263 dev
->dbbuf_eis
= NULL
;
267 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
268 struct nvme_queue
*nvmeq
, int qid
)
270 if (!dev
->dbbuf_dbs
|| !qid
)
273 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
274 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
275 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
276 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
279 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
281 struct nvme_command c
;
286 memset(&c
, 0, sizeof(c
));
287 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
288 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
289 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
291 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
292 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev
);
298 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
300 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
305 volatile u32
*dbbuf_ei
)
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
316 old_value
= *dbbuf_db
;
319 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
327 * Max size of iod being embedded in the request payload
329 #define NVME_INT_PAGES 2
330 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
333 * Will slightly overestimate the number of pages needed. This is OK
334 * as it only leads to a small amount of wasted memory for the lifetime of
337 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
339 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
340 dev
->ctrl
.page_size
);
341 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
345 * Calculates the number of pages needed for the SGL segments. For example a 4k
346 * page can accommodate 256 SGL descriptors.
348 static int nvme_pci_npages_sgl(unsigned int num_seg
)
350 return DIV_ROUND_UP(num_seg
* sizeof(struct nvme_sgl_desc
), PAGE_SIZE
);
353 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev
*dev
,
354 unsigned int size
, unsigned int nseg
, bool use_sgl
)
359 alloc_size
= sizeof(__le64
*) * nvme_pci_npages_sgl(nseg
);
361 alloc_size
= sizeof(__le64
*) * nvme_npages(size
, dev
);
363 return alloc_size
+ sizeof(struct scatterlist
) * nseg
;
366 static unsigned int nvme_pci_cmd_size(struct nvme_dev
*dev
, bool use_sgl
)
368 unsigned int alloc_size
= nvme_pci_iod_alloc_size(dev
,
369 NVME_INT_BYTES(dev
), NVME_INT_PAGES
,
372 return sizeof(struct nvme_iod
) + alloc_size
;
375 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
376 unsigned int hctx_idx
)
378 struct nvme_dev
*dev
= data
;
379 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
381 WARN_ON(hctx_idx
!= 0);
382 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
383 WARN_ON(nvmeq
->tags
);
385 hctx
->driver_data
= nvmeq
;
386 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
390 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
392 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
397 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
398 unsigned int hctx_idx
)
400 struct nvme_dev
*dev
= data
;
401 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
404 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
406 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
407 hctx
->driver_data
= nvmeq
;
411 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
412 unsigned int hctx_idx
, unsigned int numa_node
)
414 struct nvme_dev
*dev
= set
->driver_data
;
415 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
416 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
417 struct nvme_queue
*nvmeq
= &dev
->queues
[queue_idx
];
424 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
426 struct nvme_dev
*dev
= set
->driver_data
;
428 return blk_mq_pci_map_queues(set
, to_pci_dev(dev
->dev
),
429 dev
->num_vecs
> 1 ? 1 /* admin queue */ : 0);
433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
437 static void nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
439 spin_lock(&nvmeq
->sq_lock
);
440 if (nvmeq
->sq_cmds_io
)
441 memcpy_toio(&nvmeq
->sq_cmds_io
[nvmeq
->sq_tail
], cmd
,
444 memcpy(&nvmeq
->sq_cmds
[nvmeq
->sq_tail
], cmd
, sizeof(*cmd
));
446 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
448 if (nvme_dbbuf_update_and_check_event(nvmeq
->sq_tail
,
449 nvmeq
->dbbuf_sq_db
, nvmeq
->dbbuf_sq_ei
))
450 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
451 spin_unlock(&nvmeq
->sq_lock
);
454 static void **nvme_pci_iod_list(struct request
*req
)
456 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
457 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
460 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
462 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
463 int nseg
= blk_rq_nr_phys_segments(req
);
464 unsigned int avg_seg_size
;
469 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
471 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
473 if (!iod
->nvmeq
->qid
)
475 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
480 static blk_status_t
nvme_init_iod(struct request
*rq
, struct nvme_dev
*dev
)
482 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
483 int nseg
= blk_rq_nr_phys_segments(rq
);
484 unsigned int size
= blk_rq_payload_bytes(rq
);
486 iod
->use_sgl
= nvme_pci_use_sgls(dev
, rq
);
488 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
489 iod
->sg
= mempool_alloc(dev
->iod_mempool
, GFP_ATOMIC
);
491 return BLK_STS_RESOURCE
;
493 iod
->sg
= iod
->inline_sg
;
504 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
506 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
507 const int last_prp
= dev
->ctrl
.page_size
/ sizeof(__le64
) - 1;
508 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
512 if (iod
->npages
== 0)
513 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
516 for (i
= 0; i
< iod
->npages
; i
++) {
517 void *addr
= nvme_pci_iod_list(req
)[i
];
520 struct nvme_sgl_desc
*sg_list
= addr
;
523 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
525 __le64
*prp_list
= addr
;
527 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
530 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
531 dma_addr
= next_dma_addr
;
534 if (iod
->sg
!= iod
->inline_sg
)
535 mempool_free(iod
->sg
, dev
->iod_mempool
);
538 #ifdef CONFIG_BLK_DEV_INTEGRITY
539 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
541 if (be32_to_cpu(pi
->ref_tag
) == v
)
542 pi
->ref_tag
= cpu_to_be32(p
);
545 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
547 if (be32_to_cpu(pi
->ref_tag
) == p
)
548 pi
->ref_tag
= cpu_to_be32(v
);
552 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
554 * The virtual start sector is the one that was originally submitted by the
555 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
556 * start sector may be different. Remap protection information to match the
557 * physical LBA on writes, and back to the original seed on reads.
559 * Type 0 and 3 do not have a ref tag, so no remapping required.
561 static void nvme_dif_remap(struct request
*req
,
562 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
564 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
565 struct bio_integrity_payload
*bip
;
566 struct t10_pi_tuple
*pi
;
568 u32 i
, nlb
, ts
, phys
, virt
;
570 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
573 bip
= bio_integrity(req
->bio
);
577 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
580 virt
= bip_get_seed(bip
);
581 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
582 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
583 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
585 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
586 pi
= (struct t10_pi_tuple
*)p
;
587 dif_swap(phys
, virt
, pi
);
592 #else /* CONFIG_BLK_DEV_INTEGRITY */
593 static void nvme_dif_remap(struct request
*req
,
594 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
597 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
600 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
605 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
608 struct scatterlist
*sg
;
610 for_each_sg(sgl
, sg
, nents
, i
) {
611 dma_addr_t phys
= sg_phys(sg
);
612 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
613 "dma_address:%pad dma_length:%d\n",
614 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
619 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
620 struct request
*req
, struct nvme_rw_command
*cmnd
)
622 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
623 struct dma_pool
*pool
;
624 int length
= blk_rq_payload_bytes(req
);
625 struct scatterlist
*sg
= iod
->sg
;
626 int dma_len
= sg_dma_len(sg
);
627 u64 dma_addr
= sg_dma_address(sg
);
628 u32 page_size
= dev
->ctrl
.page_size
;
629 int offset
= dma_addr
& (page_size
- 1);
631 void **list
= nvme_pci_iod_list(req
);
635 length
-= (page_size
- offset
);
641 dma_len
-= (page_size
- offset
);
643 dma_addr
+= (page_size
- offset
);
646 dma_addr
= sg_dma_address(sg
);
647 dma_len
= sg_dma_len(sg
);
650 if (length
<= page_size
) {
651 iod
->first_dma
= dma_addr
;
655 nprps
= DIV_ROUND_UP(length
, page_size
);
656 if (nprps
<= (256 / 8)) {
657 pool
= dev
->prp_small_pool
;
660 pool
= dev
->prp_page_pool
;
664 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
666 iod
->first_dma
= dma_addr
;
668 return BLK_STS_RESOURCE
;
671 iod
->first_dma
= prp_dma
;
674 if (i
== page_size
>> 3) {
675 __le64
*old_prp_list
= prp_list
;
676 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
678 return BLK_STS_RESOURCE
;
679 list
[iod
->npages
++] = prp_list
;
680 prp_list
[0] = old_prp_list
[i
- 1];
681 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
684 prp_list
[i
++] = cpu_to_le64(dma_addr
);
685 dma_len
-= page_size
;
686 dma_addr
+= page_size
;
692 if (unlikely(dma_len
< 0))
695 dma_addr
= sg_dma_address(sg
);
696 dma_len
= sg_dma_len(sg
);
700 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
701 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
706 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
707 "Invalid SGL for payload:%d nents:%d\n",
708 blk_rq_payload_bytes(req
), iod
->nents
);
709 return BLK_STS_IOERR
;
712 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
713 struct scatterlist
*sg
)
715 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
716 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
717 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
720 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
721 dma_addr_t dma_addr
, int entries
)
723 sge
->addr
= cpu_to_le64(dma_addr
);
724 if (entries
< SGES_PER_PAGE
) {
725 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
726 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
728 sge
->length
= cpu_to_le32(PAGE_SIZE
);
729 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
733 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
734 struct request
*req
, struct nvme_rw_command
*cmd
, int entries
)
736 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
737 struct dma_pool
*pool
;
738 struct nvme_sgl_desc
*sg_list
;
739 struct scatterlist
*sg
= iod
->sg
;
743 /* setting the transfer type as SGL */
744 cmd
->flags
= NVME_CMD_SGL_METABUF
;
747 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
751 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
752 pool
= dev
->prp_small_pool
;
755 pool
= dev
->prp_page_pool
;
759 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
762 return BLK_STS_RESOURCE
;
765 nvme_pci_iod_list(req
)[0] = sg_list
;
766 iod
->first_dma
= sgl_dma
;
768 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
771 if (i
== SGES_PER_PAGE
) {
772 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
773 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
775 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
777 return BLK_STS_RESOURCE
;
780 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
781 sg_list
[i
++] = *link
;
782 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
785 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
787 } while (--entries
> 0);
792 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
793 struct nvme_command
*cmnd
)
795 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
796 struct request_queue
*q
= req
->q
;
797 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
798 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
799 blk_status_t ret
= BLK_STS_IOERR
;
802 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
803 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
807 ret
= BLK_STS_RESOURCE
;
808 nr_mapped
= dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
,
814 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
, nr_mapped
);
816 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
818 if (ret
!= BLK_STS_OK
)
822 if (blk_integrity_rq(req
)) {
823 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
826 sg_init_table(&iod
->meta_sg
, 1);
827 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
830 if (req_op(req
) == REQ_OP_WRITE
)
831 nvme_dif_remap(req
, nvme_dif_prep
);
833 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
837 if (blk_integrity_rq(req
))
838 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
842 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
847 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
849 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
850 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
851 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
854 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
855 if (blk_integrity_rq(req
)) {
856 if (req_op(req
) == REQ_OP_READ
)
857 nvme_dif_remap(req
, nvme_dif_complete
);
858 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
862 nvme_cleanup_cmd(req
);
863 nvme_free_iod(dev
, req
);
867 * NOTE: ns is NULL when called on the admin queue.
869 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
870 const struct blk_mq_queue_data
*bd
)
872 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
873 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
874 struct nvme_dev
*dev
= nvmeq
->dev
;
875 struct request
*req
= bd
->rq
;
876 struct nvme_command cmnd
;
880 * We should not need to do this, but we're still using this to
881 * ensure we can drain requests on a dying queue.
883 if (unlikely(nvmeq
->cq_vector
< 0))
884 return BLK_STS_IOERR
;
886 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
890 ret
= nvme_init_iod(req
, dev
);
894 if (blk_rq_nr_phys_segments(req
)) {
895 ret
= nvme_map_data(dev
, req
, &cmnd
);
897 goto out_cleanup_iod
;
900 blk_mq_start_request(req
);
901 nvme_submit_cmd(nvmeq
, &cmnd
);
904 nvme_free_iod(dev
, req
);
906 nvme_cleanup_cmd(req
);
910 static void nvme_pci_complete_rq(struct request
*req
)
912 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
914 nvme_unmap_data(iod
->nvmeq
->dev
, req
);
915 nvme_complete_rq(req
);
918 /* We read the CQE phase first to check if the rest of the entry is valid */
919 static inline bool nvme_cqe_pending(struct nvme_queue
*nvmeq
)
921 return (le16_to_cpu(nvmeq
->cqes
[nvmeq
->cq_head
].status
) & 1) ==
925 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
927 u16 head
= nvmeq
->cq_head
;
929 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
931 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
934 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
, u16 idx
)
936 volatile struct nvme_completion
*cqe
= &nvmeq
->cqes
[idx
];
939 if (unlikely(cqe
->command_id
>= nvmeq
->q_depth
)) {
940 dev_warn(nvmeq
->dev
->ctrl
.device
,
941 "invalid id %d completed on queue %d\n",
942 cqe
->command_id
, le16_to_cpu(cqe
->sq_id
));
947 * AEN requests are special as they don't time out and can
948 * survive any kind of queue freeze and often don't respond to
949 * aborts. We don't even bother to allocate a struct request
950 * for them but rather special case them here.
952 if (unlikely(nvmeq
->qid
== 0 &&
953 cqe
->command_id
>= NVME_AQ_BLK_MQ_DEPTH
)) {
954 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
955 cqe
->status
, &cqe
->result
);
959 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
->command_id
);
960 nvme_end_request(req
, cqe
->status
, cqe
->result
);
963 static void nvme_complete_cqes(struct nvme_queue
*nvmeq
, u16 start
, u16 end
)
965 while (start
!= end
) {
966 nvme_handle_cqe(nvmeq
, start
);
967 if (++start
== nvmeq
->q_depth
)
972 static inline void nvme_update_cq_head(struct nvme_queue
*nvmeq
)
974 if (++nvmeq
->cq_head
== nvmeq
->q_depth
) {
976 nvmeq
->cq_phase
= !nvmeq
->cq_phase
;
980 static inline bool nvme_process_cq(struct nvme_queue
*nvmeq
, u16
*start
,
985 *start
= nvmeq
->cq_head
;
986 while (!found
&& nvme_cqe_pending(nvmeq
)) {
987 if (nvmeq
->cqes
[nvmeq
->cq_head
].command_id
== tag
)
989 nvme_update_cq_head(nvmeq
);
991 *end
= nvmeq
->cq_head
;
994 nvme_ring_cq_doorbell(nvmeq
);
998 static irqreturn_t
nvme_irq(int irq
, void *data
)
1000 struct nvme_queue
*nvmeq
= data
;
1001 irqreturn_t ret
= IRQ_NONE
;
1004 spin_lock(&nvmeq
->cq_lock
);
1005 if (nvmeq
->cq_head
!= nvmeq
->last_cq_head
)
1007 nvme_process_cq(nvmeq
, &start
, &end
, -1);
1008 nvmeq
->last_cq_head
= nvmeq
->cq_head
;
1009 spin_unlock(&nvmeq
->cq_lock
);
1012 nvme_complete_cqes(nvmeq
, start
, end
);
1019 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1021 struct nvme_queue
*nvmeq
= data
;
1022 if (nvme_cqe_pending(nvmeq
))
1023 return IRQ_WAKE_THREAD
;
1027 static int __nvme_poll(struct nvme_queue
*nvmeq
, unsigned int tag
)
1032 if (!nvme_cqe_pending(nvmeq
))
1035 spin_lock_irq(&nvmeq
->cq_lock
);
1036 found
= nvme_process_cq(nvmeq
, &start
, &end
, tag
);
1037 spin_unlock_irq(&nvmeq
->cq_lock
);
1039 nvme_complete_cqes(nvmeq
, start
, end
);
1043 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
1045 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1047 return __nvme_poll(nvmeq
, tag
);
1050 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1052 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1053 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1054 struct nvme_command c
;
1056 memset(&c
, 0, sizeof(c
));
1057 c
.common
.opcode
= nvme_admin_async_event
;
1058 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1059 nvme_submit_cmd(nvmeq
, &c
);
1062 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1064 struct nvme_command c
;
1066 memset(&c
, 0, sizeof(c
));
1067 c
.delete_queue
.opcode
= opcode
;
1068 c
.delete_queue
.qid
= cpu_to_le16(id
);
1070 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1073 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1074 struct nvme_queue
*nvmeq
, s16 vector
)
1076 struct nvme_command c
;
1077 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
1080 * Note: we (ab)use the fact that the prp fields survive if no data
1081 * is attached to the request.
1083 memset(&c
, 0, sizeof(c
));
1084 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1085 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1086 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1087 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1088 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1089 c
.create_cq
.irq_vector
= cpu_to_le16(vector
);
1091 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1094 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1095 struct nvme_queue
*nvmeq
)
1097 struct nvme_ctrl
*ctrl
= &dev
->ctrl
;
1098 struct nvme_command c
;
1099 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1102 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1103 * set. Since URGENT priority is zeroes, it makes all queues
1106 if (ctrl
->quirks
& NVME_QUIRK_MEDIUM_PRIO_SQ
)
1107 flags
|= NVME_SQ_PRIO_MEDIUM
;
1110 * Note: we (ab)use the fact that the prp fields survive if no data
1111 * is attached to the request.
1113 memset(&c
, 0, sizeof(c
));
1114 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1115 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1116 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1117 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1118 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1119 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1121 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1124 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1126 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1129 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1131 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1134 static void abort_endio(struct request
*req
, blk_status_t error
)
1136 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1137 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1139 dev_warn(nvmeq
->dev
->ctrl
.device
,
1140 "Abort status: 0x%x", nvme_req(req
)->status
);
1141 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1142 blk_mq_free_request(req
);
1145 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1148 /* If true, indicates loss of adapter communication, possibly by a
1149 * NVMe Subsystem reset.
1151 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1153 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1154 switch (dev
->ctrl
.state
) {
1155 case NVME_CTRL_RESETTING
:
1156 case NVME_CTRL_CONNECTING
:
1162 /* We shouldn't reset unless the controller is on fatal error state
1163 * _or_ if we lost the communication with it.
1165 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1171 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1173 /* Read a config register to help see what died. */
1177 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1179 if (result
== PCIBIOS_SUCCESSFUL
)
1180 dev_warn(dev
->ctrl
.device
,
1181 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1184 dev_warn(dev
->ctrl
.device
,
1185 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1189 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1191 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1192 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1193 struct nvme_dev
*dev
= nvmeq
->dev
;
1194 struct request
*abort_req
;
1195 struct nvme_command cmd
;
1196 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1198 /* If PCI error recovery process is happening, we cannot reset or
1199 * the recovery mechanism will surely fail.
1202 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1203 return BLK_EH_RESET_TIMER
;
1206 * Reset immediately if the controller is failed
1208 if (nvme_should_reset(dev
, csts
)) {
1209 nvme_warn_reset(dev
, csts
);
1210 nvme_dev_disable(dev
, false);
1211 nvme_reset_ctrl(&dev
->ctrl
);
1216 * Did we miss an interrupt?
1218 if (__nvme_poll(nvmeq
, req
->tag
)) {
1219 dev_warn(dev
->ctrl
.device
,
1220 "I/O %d QID %d timeout, completion polled\n",
1221 req
->tag
, nvmeq
->qid
);
1226 * Shutdown immediately if controller times out while starting. The
1227 * reset work will see the pci device disabled when it gets the forced
1228 * cancellation error. All outstanding requests are completed on
1229 * shutdown, so we return BLK_EH_DONE.
1231 switch (dev
->ctrl
.state
) {
1232 case NVME_CTRL_CONNECTING
:
1233 case NVME_CTRL_RESETTING
:
1234 dev_warn_ratelimited(dev
->ctrl
.device
,
1235 "I/O %d QID %d timeout, disable controller\n",
1236 req
->tag
, nvmeq
->qid
);
1237 nvme_dev_disable(dev
, false);
1238 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1245 * Shutdown the controller immediately and schedule a reset if the
1246 * command was already aborted once before and still hasn't been
1247 * returned to the driver, or if this is the admin queue.
1249 if (!nvmeq
->qid
|| iod
->aborted
) {
1250 dev_warn(dev
->ctrl
.device
,
1251 "I/O %d QID %d timeout, reset controller\n",
1252 req
->tag
, nvmeq
->qid
);
1253 nvme_dev_disable(dev
, false);
1254 nvme_reset_ctrl(&dev
->ctrl
);
1256 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1260 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1261 atomic_inc(&dev
->ctrl
.abort_limit
);
1262 return BLK_EH_RESET_TIMER
;
1266 memset(&cmd
, 0, sizeof(cmd
));
1267 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1268 cmd
.abort
.cid
= req
->tag
;
1269 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1271 dev_warn(nvmeq
->dev
->ctrl
.device
,
1272 "I/O %d QID %d timeout, aborting\n",
1273 req
->tag
, nvmeq
->qid
);
1275 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1276 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1277 if (IS_ERR(abort_req
)) {
1278 atomic_inc(&dev
->ctrl
.abort_limit
);
1279 return BLK_EH_RESET_TIMER
;
1282 abort_req
->timeout
= ADMIN_TIMEOUT
;
1283 abort_req
->end_io_data
= NULL
;
1284 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1287 * The aborted req will be completed on receiving the abort req.
1288 * We enable the timer again. If hit twice, it'll cause a device reset,
1289 * as the device then is in a faulty state.
1291 return BLK_EH_RESET_TIMER
;
1294 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1296 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1297 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1299 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1300 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1303 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1307 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1308 dev
->ctrl
.queue_count
--;
1309 nvme_free_queue(&dev
->queues
[i
]);
1314 * nvme_suspend_queue - put queue into suspended state
1315 * @nvmeq - queue to suspend
1317 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1321 spin_lock_irq(&nvmeq
->cq_lock
);
1322 if (nvmeq
->cq_vector
== -1) {
1323 spin_unlock_irq(&nvmeq
->cq_lock
);
1326 vector
= nvmeq
->cq_vector
;
1327 nvmeq
->dev
->online_queues
--;
1328 nvmeq
->cq_vector
= -1;
1329 spin_unlock_irq(&nvmeq
->cq_lock
);
1332 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1333 * having to grab the lock.
1337 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1338 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1340 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), vector
, nvmeq
);
1345 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1347 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1351 nvme_shutdown_ctrl(&dev
->ctrl
);
1353 nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1355 spin_lock_irq(&nvmeq
->cq_lock
);
1356 nvme_process_cq(nvmeq
, &start
, &end
, -1);
1357 spin_unlock_irq(&nvmeq
->cq_lock
);
1359 nvme_complete_cqes(nvmeq
, start
, end
);
1362 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1365 int q_depth
= dev
->q_depth
;
1366 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1367 dev
->ctrl
.page_size
);
1369 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1370 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1371 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1372 q_depth
= div_u64(mem_per_q
, entry_size
);
1375 * Ensure the reduced q_depth is above some threshold where it
1376 * would be better to map queues in system memory with the
1386 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1389 /* CMB SQEs will be mapped before creation */
1390 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
))
1393 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1394 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1395 if (!nvmeq
->sq_cmds
)
1400 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
, int depth
)
1402 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1404 if (dev
->ctrl
.queue_count
> qid
)
1407 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1408 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1412 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1415 nvmeq
->q_dmadev
= dev
->dev
;
1417 spin_lock_init(&nvmeq
->sq_lock
);
1418 spin_lock_init(&nvmeq
->cq_lock
);
1420 nvmeq
->cq_phase
= 1;
1421 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1422 nvmeq
->q_depth
= depth
;
1424 nvmeq
->cq_vector
= -1;
1425 dev
->ctrl
.queue_count
++;
1430 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1431 nvmeq
->cq_dma_addr
);
1436 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1438 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1439 int nr
= nvmeq
->dev
->ctrl
.instance
;
1441 if (use_threaded_interrupts
) {
1442 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1443 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1445 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1446 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1450 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1452 struct nvme_dev
*dev
= nvmeq
->dev
;
1454 spin_lock_irq(&nvmeq
->cq_lock
);
1457 nvmeq
->cq_phase
= 1;
1458 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1459 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1460 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1461 dev
->online_queues
++;
1462 spin_unlock_irq(&nvmeq
->cq_lock
);
1465 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1467 struct nvme_dev
*dev
= nvmeq
->dev
;
1471 if (dev
->cmb
&& use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1472 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(nvmeq
->q_depth
),
1473 dev
->ctrl
.page_size
);
1474 nvmeq
->sq_dma_addr
= dev
->cmb_bus_addr
+ offset
;
1475 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1479 * A queue's vector matches the queue identifier unless the controller
1480 * has only one vector available.
1482 vector
= dev
->num_vecs
== 1 ? 0 : qid
;
1483 result
= adapter_alloc_cq(dev
, qid
, nvmeq
, vector
);
1487 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1494 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1495 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1496 * xxx' warning if the create CQ/SQ command times out.
1498 nvmeq
->cq_vector
= vector
;
1499 nvme_init_queue(nvmeq
, qid
);
1500 result
= queue_request_irq(nvmeq
);
1507 nvmeq
->cq_vector
= -1;
1508 dev
->online_queues
--;
1509 adapter_delete_sq(dev
, qid
);
1511 adapter_delete_cq(dev
, qid
);
1515 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1516 .queue_rq
= nvme_queue_rq
,
1517 .complete
= nvme_pci_complete_rq
,
1518 .init_hctx
= nvme_admin_init_hctx
,
1519 .exit_hctx
= nvme_admin_exit_hctx
,
1520 .init_request
= nvme_init_request
,
1521 .timeout
= nvme_timeout
,
1524 static const struct blk_mq_ops nvme_mq_ops
= {
1525 .queue_rq
= nvme_queue_rq
,
1526 .complete
= nvme_pci_complete_rq
,
1527 .init_hctx
= nvme_init_hctx
,
1528 .init_request
= nvme_init_request
,
1529 .map_queues
= nvme_pci_map_queues
,
1530 .timeout
= nvme_timeout
,
1534 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1536 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1538 * If the controller was reset during removal, it's possible
1539 * user requests may be waiting on a stopped queue. Start the
1540 * queue to flush these to completion.
1542 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1543 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1544 blk_mq_free_tag_set(&dev
->admin_tagset
);
1548 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1550 if (!dev
->ctrl
.admin_q
) {
1551 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1552 dev
->admin_tagset
.nr_hw_queues
= 1;
1554 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1555 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1556 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1557 dev
->admin_tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
1558 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1559 dev
->admin_tagset
.driver_data
= dev
;
1561 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1563 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1565 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1566 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1567 blk_mq_free_tag_set(&dev
->admin_tagset
);
1570 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1571 nvme_dev_remove_admin(dev
);
1572 dev
->ctrl
.admin_q
= NULL
;
1576 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1581 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1583 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1586 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1588 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1590 if (size
<= dev
->bar_mapped_size
)
1592 if (size
> pci_resource_len(pdev
, 0))
1596 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1598 dev
->bar_mapped_size
= 0;
1601 dev
->bar_mapped_size
= size
;
1602 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1607 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1611 struct nvme_queue
*nvmeq
;
1613 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1617 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1618 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1620 if (dev
->subsystem
&&
1621 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1622 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1624 result
= nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1628 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1632 nvmeq
= &dev
->queues
[0];
1633 aqa
= nvmeq
->q_depth
- 1;
1636 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1637 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1638 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1640 result
= nvme_enable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1644 nvmeq
->cq_vector
= 0;
1645 nvme_init_queue(nvmeq
, 0);
1646 result
= queue_request_irq(nvmeq
);
1648 nvmeq
->cq_vector
= -1;
1655 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1660 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1661 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1667 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1668 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1669 ret
= nvme_create_queue(&dev
->queues
[i
], i
);
1675 * Ignore failing Create SQ/CQ commands, we can continue with less
1676 * than the desired amount of queues, and even a controller without
1677 * I/O queues can still be used to issue admin commands. This might
1678 * be useful to upgrade a buggy firmware for example.
1680 return ret
>= 0 ? 0 : ret
;
1683 static ssize_t
nvme_cmb_show(struct device
*dev
,
1684 struct device_attribute
*attr
,
1687 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1689 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1690 ndev
->cmbloc
, ndev
->cmbsz
);
1692 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1694 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1696 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1698 return 1ULL << (12 + 4 * szu
);
1701 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1703 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1706 static void nvme_map_cmb(struct nvme_dev
*dev
)
1709 resource_size_t bar_size
;
1710 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1713 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1716 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1721 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1722 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1723 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1724 bar_size
= pci_resource_len(pdev
, bar
);
1726 if (offset
> bar_size
)
1730 * Controllers may support a CMB size larger than their BAR,
1731 * for example, due to being behind a bridge. Reduce the CMB to
1732 * the reported size of the BAR
1734 if (size
> bar_size
- offset
)
1735 size
= bar_size
- offset
;
1737 dev
->cmb
= ioremap_wc(pci_resource_start(pdev
, bar
) + offset
, size
);
1740 dev
->cmb_bus_addr
= pci_bus_address(pdev
, bar
) + offset
;
1741 dev
->cmb_size
= size
;
1743 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1744 &dev_attr_cmb
.attr
, NULL
))
1745 dev_warn(dev
->ctrl
.device
,
1746 "failed to add sysfs attribute for CMB\n");
1749 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1754 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1755 &dev_attr_cmb
.attr
, NULL
);
1760 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1762 u64 dma_addr
= dev
->host_mem_descs_dma
;
1763 struct nvme_command c
;
1766 memset(&c
, 0, sizeof(c
));
1767 c
.features
.opcode
= nvme_admin_set_features
;
1768 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1769 c
.features
.dword11
= cpu_to_le32(bits
);
1770 c
.features
.dword12
= cpu_to_le32(dev
->host_mem_size
>>
1771 ilog2(dev
->ctrl
.page_size
));
1772 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1773 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1774 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1776 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1778 dev_warn(dev
->ctrl
.device
,
1779 "failed to set host mem (err %d, flags %#x).\n",
1785 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1789 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1790 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1791 size_t size
= le32_to_cpu(desc
->size
) * dev
->ctrl
.page_size
;
1793 dma_free_coherent(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1794 le64_to_cpu(desc
->addr
));
1797 kfree(dev
->host_mem_desc_bufs
);
1798 dev
->host_mem_desc_bufs
= NULL
;
1799 dma_free_coherent(dev
->dev
,
1800 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1801 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1802 dev
->host_mem_descs
= NULL
;
1803 dev
->nr_host_mem_descs
= 0;
1806 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1809 struct nvme_host_mem_buf_desc
*descs
;
1810 u32 max_entries
, len
;
1811 dma_addr_t descs_dma
;
1816 tmp
= (preferred
+ chunk_size
- 1);
1817 do_div(tmp
, chunk_size
);
1820 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1821 max_entries
= dev
->ctrl
.hmmaxd
;
1823 descs
= dma_zalloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1824 &descs_dma
, GFP_KERNEL
);
1828 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1830 goto out_free_descs
;
1832 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1833 dma_addr_t dma_addr
;
1835 len
= min_t(u64
, chunk_size
, preferred
- size
);
1836 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1837 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1841 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1842 descs
[i
].size
= cpu_to_le32(len
/ dev
->ctrl
.page_size
);
1849 dev
->nr_host_mem_descs
= i
;
1850 dev
->host_mem_size
= size
;
1851 dev
->host_mem_descs
= descs
;
1852 dev
->host_mem_descs_dma
= descs_dma
;
1853 dev
->host_mem_desc_bufs
= bufs
;
1858 size_t size
= le32_to_cpu(descs
[i
].size
) * dev
->ctrl
.page_size
;
1860 dma_free_coherent(dev
->dev
, size
, bufs
[i
],
1861 le64_to_cpu(descs
[i
].addr
));
1866 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1869 dev
->host_mem_descs
= NULL
;
1873 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1877 /* start big and work our way down */
1878 for (chunk_size
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1879 chunk_size
>= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1881 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1882 if (!min
|| dev
->host_mem_size
>= min
)
1884 nvme_free_host_mem(dev
);
1891 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1893 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1894 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1895 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1896 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1899 preferred
= min(preferred
, max
);
1901 dev_warn(dev
->ctrl
.device
,
1902 "min host memory (%lld MiB) above limit (%d MiB).\n",
1903 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1904 nvme_free_host_mem(dev
);
1909 * If we already have a buffer allocated check if we can reuse it.
1911 if (dev
->host_mem_descs
) {
1912 if (dev
->host_mem_size
>= min
)
1913 enable_bits
|= NVME_HOST_MEM_RETURN
;
1915 nvme_free_host_mem(dev
);
1918 if (!dev
->host_mem_descs
) {
1919 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
1920 dev_warn(dev
->ctrl
.device
,
1921 "failed to allocate host memory buffer.\n");
1922 return 0; /* controller must work without HMB */
1925 dev_info(dev
->ctrl
.device
,
1926 "allocated %lld MiB host memory buffer.\n",
1927 dev
->host_mem_size
>> ilog2(SZ_1M
));
1930 ret
= nvme_set_host_mem(dev
, enable_bits
);
1932 nvme_free_host_mem(dev
);
1936 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1938 struct nvme_queue
*adminq
= &dev
->queues
[0];
1939 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1940 int result
, nr_io_queues
;
1943 struct irq_affinity affd
= {
1947 nr_io_queues
= num_possible_cpus();
1948 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1952 if (nr_io_queues
== 0)
1955 if (dev
->cmb
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1956 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1957 sizeof(struct nvme_command
));
1959 dev
->q_depth
= result
;
1961 nvme_release_cmb(dev
);
1965 size
= db_bar_size(dev
, nr_io_queues
);
1966 result
= nvme_remap_bar(dev
, size
);
1969 if (!--nr_io_queues
)
1972 adminq
->q_db
= dev
->dbs
;
1974 /* Deregister the admin queue's interrupt */
1975 pci_free_irq(pdev
, 0, adminq
);
1978 * If we enable msix early due to not intx, disable it again before
1979 * setting up the full range we need.
1981 pci_free_irq_vectors(pdev
);
1982 result
= pci_alloc_irq_vectors_affinity(pdev
, 1, nr_io_queues
+ 1,
1983 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
, &affd
);
1986 dev
->num_vecs
= result
;
1987 dev
->max_qid
= max(result
- 1, 1);
1990 * Should investigate if there's a performance win from allocating
1991 * more queues than interrupt vectors; it might allow the submission
1992 * path to scale better, even if the receive path is limited by the
1993 * number of interrupts.
1996 result
= queue_request_irq(adminq
);
1998 adminq
->cq_vector
= -1;
2001 return nvme_create_io_queues(dev
);
2004 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
2006 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2008 blk_mq_free_request(req
);
2009 complete(&nvmeq
->dev
->ioq_wait
);
2012 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
2014 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2018 unsigned long flags
;
2020 spin_lock_irqsave(&nvmeq
->cq_lock
, flags
);
2021 nvme_process_cq(nvmeq
, &start
, &end
, -1);
2022 spin_unlock_irqrestore(&nvmeq
->cq_lock
, flags
);
2024 nvme_complete_cqes(nvmeq
, start
, end
);
2027 nvme_del_queue_end(req
, error
);
2030 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2032 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2033 struct request
*req
;
2034 struct nvme_command cmd
;
2036 memset(&cmd
, 0, sizeof(cmd
));
2037 cmd
.delete_queue
.opcode
= opcode
;
2038 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2040 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
2042 return PTR_ERR(req
);
2044 req
->timeout
= ADMIN_TIMEOUT
;
2045 req
->end_io_data
= nvmeq
;
2047 blk_execute_rq_nowait(q
, NULL
, req
, false,
2048 opcode
== nvme_admin_delete_cq
?
2049 nvme_del_cq_end
: nvme_del_queue_end
);
2053 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2055 int pass
, queues
= dev
->online_queues
- 1;
2056 unsigned long timeout
;
2057 u8 opcode
= nvme_admin_delete_sq
;
2059 for (pass
= 0; pass
< 2; pass
++) {
2060 int sent
= 0, i
= queues
;
2062 reinit_completion(&dev
->ioq_wait
);
2064 timeout
= ADMIN_TIMEOUT
;
2065 for (; i
> 0; i
--, sent
++)
2066 if (nvme_delete_queue(&dev
->queues
[i
], opcode
))
2070 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
2076 opcode
= nvme_admin_delete_cq
;
2081 * return error value only when tagset allocation failed
2083 static int nvme_dev_add(struct nvme_dev
*dev
)
2087 if (!dev
->ctrl
.tagset
) {
2088 dev
->tagset
.ops
= &nvme_mq_ops
;
2089 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2090 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2091 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
2092 dev
->tagset
.queue_depth
=
2093 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2094 dev
->tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
2095 if ((dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))) && sgl_threshold
) {
2096 dev
->tagset
.cmd_size
= max(dev
->tagset
.cmd_size
,
2097 nvme_pci_cmd_size(dev
, true));
2099 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2100 dev
->tagset
.driver_data
= dev
;
2102 ret
= blk_mq_alloc_tag_set(&dev
->tagset
);
2104 dev_warn(dev
->ctrl
.device
,
2105 "IO queues tagset allocation failed %d\n", ret
);
2108 dev
->ctrl
.tagset
= &dev
->tagset
;
2110 nvme_dbbuf_set(dev
);
2112 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2114 /* Free previously allocated queues that are no longer usable */
2115 nvme_free_queues(dev
, dev
->online_queues
);
2121 static int nvme_pci_enable(struct nvme_dev
*dev
)
2123 int result
= -ENOMEM
;
2124 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2126 if (pci_enable_device_mem(pdev
))
2129 pci_set_master(pdev
);
2131 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
2132 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
2135 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2141 * Some devices and/or platforms don't advertise or work with INTx
2142 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2143 * adjust this later.
2145 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2149 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2151 dev
->q_depth
= min_t(int, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2153 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2154 dev
->dbs
= dev
->bar
+ 4096;
2157 * Temporary fix for the Apple controller found in the MacBook8,1 and
2158 * some MacBook7,1 to avoid controller resets and data loss.
2160 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2162 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2163 "set queue depth=%u to work around controller resets\n",
2165 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2166 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2167 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2169 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2170 "set queue depth=%u\n", dev
->q_depth
);
2175 pci_enable_pcie_error_reporting(pdev
);
2176 pci_save_state(pdev
);
2180 pci_disable_device(pdev
);
2184 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2188 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2191 static void nvme_pci_disable(struct nvme_dev
*dev
)
2193 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2195 nvme_release_cmb(dev
);
2196 pci_free_irq_vectors(pdev
);
2198 if (pci_is_enabled(pdev
)) {
2199 pci_disable_pcie_error_reporting(pdev
);
2200 pci_disable_device(pdev
);
2204 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2208 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2210 mutex_lock(&dev
->shutdown_lock
);
2211 if (pci_is_enabled(pdev
)) {
2212 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2214 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2215 dev
->ctrl
.state
== NVME_CTRL_RESETTING
)
2216 nvme_start_freeze(&dev
->ctrl
);
2217 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2218 pdev
->error_state
!= pci_channel_io_normal
);
2222 * Give the controller a chance to complete all entered requests if
2223 * doing a safe shutdown.
2227 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2230 nvme_stop_queues(&dev
->ctrl
);
2232 if (!dead
&& dev
->ctrl
.queue_count
> 0) {
2233 nvme_disable_io_queues(dev
);
2234 nvme_disable_admin_queue(dev
, shutdown
);
2236 for (i
= dev
->ctrl
.queue_count
- 1; i
>= 0; i
--)
2237 nvme_suspend_queue(&dev
->queues
[i
]);
2239 nvme_pci_disable(dev
);
2241 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2242 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2245 * The driver will not be starting up queues again if shutting down so
2246 * must flush all entered requests to their failed completion to avoid
2247 * deadlocking blk-mq hot-cpu notifier.
2250 nvme_start_queues(&dev
->ctrl
);
2251 mutex_unlock(&dev
->shutdown_lock
);
2254 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2256 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2257 PAGE_SIZE
, PAGE_SIZE
, 0);
2258 if (!dev
->prp_page_pool
)
2261 /* Optimisation for I/Os between 4k and 128k */
2262 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2264 if (!dev
->prp_small_pool
) {
2265 dma_pool_destroy(dev
->prp_page_pool
);
2271 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2273 dma_pool_destroy(dev
->prp_page_pool
);
2274 dma_pool_destroy(dev
->prp_small_pool
);
2277 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2279 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2281 nvme_dbbuf_dma_free(dev
);
2282 put_device(dev
->dev
);
2283 if (dev
->tagset
.tags
)
2284 blk_mq_free_tag_set(&dev
->tagset
);
2285 if (dev
->ctrl
.admin_q
)
2286 blk_put_queue(dev
->ctrl
.admin_q
);
2288 free_opal_dev(dev
->ctrl
.opal_dev
);
2289 mempool_destroy(dev
->iod_mempool
);
2293 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
2295 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
2297 nvme_get_ctrl(&dev
->ctrl
);
2298 nvme_dev_disable(dev
, false);
2299 nvme_kill_queues(&dev
->ctrl
);
2300 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2301 nvme_put_ctrl(&dev
->ctrl
);
2304 static void nvme_reset_work(struct work_struct
*work
)
2306 struct nvme_dev
*dev
=
2307 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2308 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2309 int result
= -ENODEV
;
2310 enum nvme_ctrl_state new_state
= NVME_CTRL_LIVE
;
2312 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
))
2316 * If we're called to reset a live controller first shut it down before
2319 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2320 nvme_dev_disable(dev
, false);
2323 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2324 * initializing procedure here.
2326 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2327 dev_warn(dev
->ctrl
.device
,
2328 "failed to mark controller CONNECTING\n");
2332 result
= nvme_pci_enable(dev
);
2336 result
= nvme_pci_configure_admin_queue(dev
);
2340 result
= nvme_alloc_admin_tags(dev
);
2345 * Limit the max command size to prevent iod->sg allocations going
2346 * over a single page.
2348 dev
->ctrl
.max_hw_sectors
= NVME_MAX_KB_SZ
<< 1;
2349 dev
->ctrl
.max_segments
= NVME_MAX_SEGS
;
2351 result
= nvme_init_identify(&dev
->ctrl
);
2355 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2356 if (!dev
->ctrl
.opal_dev
)
2357 dev
->ctrl
.opal_dev
=
2358 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2359 else if (was_suspend
)
2360 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2362 free_opal_dev(dev
->ctrl
.opal_dev
);
2363 dev
->ctrl
.opal_dev
= NULL
;
2366 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2367 result
= nvme_dbbuf_dma_alloc(dev
);
2370 "unable to allocate dma for dbbuf\n");
2373 if (dev
->ctrl
.hmpre
) {
2374 result
= nvme_setup_host_mem(dev
);
2379 result
= nvme_setup_io_queues(dev
);
2384 * Keep the controller around but remove all namespaces if we don't have
2385 * any working I/O queue.
2387 if (dev
->online_queues
< 2) {
2388 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2389 nvme_kill_queues(&dev
->ctrl
);
2390 nvme_remove_namespaces(&dev
->ctrl
);
2391 new_state
= NVME_CTRL_ADMIN_ONLY
;
2393 nvme_start_queues(&dev
->ctrl
);
2394 nvme_wait_freeze(&dev
->ctrl
);
2395 /* hit this only when allocate tagset fails */
2396 if (nvme_dev_add(dev
))
2397 new_state
= NVME_CTRL_ADMIN_ONLY
;
2398 nvme_unfreeze(&dev
->ctrl
);
2402 * If only admin queue live, keep it to do further investigation or
2405 if (!nvme_change_ctrl_state(&dev
->ctrl
, new_state
)) {
2406 dev_warn(dev
->ctrl
.device
,
2407 "failed to mark controller state %d\n", new_state
);
2411 nvme_start_ctrl(&dev
->ctrl
);
2415 nvme_remove_dead_ctrl(dev
, result
);
2418 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2420 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2421 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2423 if (pci_get_drvdata(pdev
))
2424 device_release_driver(&pdev
->dev
);
2425 nvme_put_ctrl(&dev
->ctrl
);
2428 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2430 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2434 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2436 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2440 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2442 *val
= readq(to_nvme_dev(ctrl
)->bar
+ off
);
2446 static int nvme_pci_get_address(struct nvme_ctrl
*ctrl
, char *buf
, int size
)
2448 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
2450 return snprintf(buf
, size
, "%s", dev_name(&pdev
->dev
));
2453 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2455 .module
= THIS_MODULE
,
2456 .flags
= NVME_F_METADATA_SUPPORTED
,
2457 .reg_read32
= nvme_pci_reg_read32
,
2458 .reg_write32
= nvme_pci_reg_write32
,
2459 .reg_read64
= nvme_pci_reg_read64
,
2460 .free_ctrl
= nvme_pci_free_ctrl
,
2461 .submit_async_event
= nvme_pci_submit_async_event
,
2462 .get_address
= nvme_pci_get_address
,
2465 static int nvme_dev_map(struct nvme_dev
*dev
)
2467 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2469 if (pci_request_mem_regions(pdev
, "nvme"))
2472 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2477 pci_release_mem_regions(pdev
);
2481 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2483 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2485 * Several Samsung devices seem to drop off the PCIe bus
2486 * randomly when APST is on and uses the deepest sleep state.
2487 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2488 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2489 * 950 PRO 256GB", but it seems to be restricted to two Dell
2492 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2493 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2494 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2495 return NVME_QUIRK_NO_DEEPEST_PS
;
2496 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2498 * Samsung SSD 960 EVO drops off the PCIe bus after system
2499 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2500 * within few minutes after bootup on a Coffee Lake board -
2503 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2504 (dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A") ||
2505 dmi_match(DMI_BOARD_NAME
, "PRIME Z370-A")))
2506 return NVME_QUIRK_NO_APST
;
2512 static void nvme_async_probe(void *data
, async_cookie_t cookie
)
2514 struct nvme_dev
*dev
= data
;
2516 nvme_reset_ctrl_sync(&dev
->ctrl
);
2517 flush_work(&dev
->ctrl
.scan_work
);
2518 nvme_put_ctrl(&dev
->ctrl
);
2521 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2523 int node
, result
= -ENOMEM
;
2524 struct nvme_dev
*dev
;
2525 unsigned long quirks
= id
->driver_data
;
2528 node
= dev_to_node(&pdev
->dev
);
2529 if (node
== NUMA_NO_NODE
)
2530 set_dev_node(&pdev
->dev
, first_memory_node
);
2532 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2536 dev
->queues
= kcalloc_node(num_possible_cpus() + 1,
2537 sizeof(struct nvme_queue
), GFP_KERNEL
, node
);
2541 dev
->dev
= get_device(&pdev
->dev
);
2542 pci_set_drvdata(pdev
, dev
);
2544 result
= nvme_dev_map(dev
);
2548 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2549 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2550 mutex_init(&dev
->shutdown_lock
);
2551 init_completion(&dev
->ioq_wait
);
2553 result
= nvme_setup_prp_pools(dev
);
2557 quirks
|= check_vendor_combination_bug(pdev
);
2559 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2565 * Double check that our mempool alloc size will cover the biggest
2566 * command we support.
2568 alloc_size
= nvme_pci_iod_alloc_size(dev
, NVME_MAX_KB_SZ
,
2569 NVME_MAX_SEGS
, true);
2570 WARN_ON_ONCE(alloc_size
> PAGE_SIZE
);
2572 dev
->iod_mempool
= mempool_create_node(1, mempool_kmalloc
,
2574 (void *) alloc_size
,
2576 if (!dev
->iod_mempool
) {
2581 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2583 nvme_get_ctrl(&dev
->ctrl
);
2584 async_schedule(nvme_async_probe
, dev
);
2589 nvme_release_prp_pools(dev
);
2591 nvme_dev_unmap(dev
);
2593 put_device(dev
->dev
);
2600 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2602 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2603 nvme_dev_disable(dev
, false);
2606 static void nvme_reset_done(struct pci_dev
*pdev
)
2608 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2609 nvme_reset_ctrl_sync(&dev
->ctrl
);
2612 static void nvme_shutdown(struct pci_dev
*pdev
)
2614 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2615 nvme_dev_disable(dev
, true);
2619 * The driver's remove may be called on a device in a partially initialized
2620 * state. This function must not have any dependencies on the device state in
2623 static void nvme_remove(struct pci_dev
*pdev
)
2625 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2627 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2629 cancel_work_sync(&dev
->ctrl
.reset_work
);
2630 pci_set_drvdata(pdev
, NULL
);
2632 if (!pci_device_is_present(pdev
)) {
2633 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2634 nvme_dev_disable(dev
, true);
2637 flush_work(&dev
->ctrl
.reset_work
);
2638 nvme_stop_ctrl(&dev
->ctrl
);
2639 nvme_remove_namespaces(&dev
->ctrl
);
2640 nvme_dev_disable(dev
, true);
2641 nvme_free_host_mem(dev
);
2642 nvme_dev_remove_admin(dev
);
2643 nvme_free_queues(dev
, 0);
2644 nvme_uninit_ctrl(&dev
->ctrl
);
2645 nvme_release_prp_pools(dev
);
2646 nvme_dev_unmap(dev
);
2647 nvme_put_ctrl(&dev
->ctrl
);
2650 #ifdef CONFIG_PM_SLEEP
2651 static int nvme_suspend(struct device
*dev
)
2653 struct pci_dev
*pdev
= to_pci_dev(dev
);
2654 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2656 nvme_dev_disable(ndev
, true);
2660 static int nvme_resume(struct device
*dev
)
2662 struct pci_dev
*pdev
= to_pci_dev(dev
);
2663 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2665 nvme_reset_ctrl(&ndev
->ctrl
);
2670 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2672 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2673 pci_channel_state_t state
)
2675 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2678 * A frozen channel requires a reset. When detected, this method will
2679 * shutdown the controller to quiesce. The controller will be restarted
2680 * after the slot reset through driver's slot_reset callback.
2683 case pci_channel_io_normal
:
2684 return PCI_ERS_RESULT_CAN_RECOVER
;
2685 case pci_channel_io_frozen
:
2686 dev_warn(dev
->ctrl
.device
,
2687 "frozen state error detected, reset controller\n");
2688 nvme_dev_disable(dev
, false);
2689 return PCI_ERS_RESULT_NEED_RESET
;
2690 case pci_channel_io_perm_failure
:
2691 dev_warn(dev
->ctrl
.device
,
2692 "failure state error detected, request disconnect\n");
2693 return PCI_ERS_RESULT_DISCONNECT
;
2695 return PCI_ERS_RESULT_NEED_RESET
;
2698 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2700 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2702 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2703 pci_restore_state(pdev
);
2704 nvme_reset_ctrl(&dev
->ctrl
);
2705 return PCI_ERS_RESULT_RECOVERED
;
2708 static void nvme_error_resume(struct pci_dev
*pdev
)
2710 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2712 flush_work(&dev
->ctrl
.reset_work
);
2713 pci_cleanup_aer_uncorrect_error_status(pdev
);
2716 static const struct pci_error_handlers nvme_err_handler
= {
2717 .error_detected
= nvme_error_detected
,
2718 .slot_reset
= nvme_slot_reset
,
2719 .resume
= nvme_error_resume
,
2720 .reset_prepare
= nvme_reset_prepare
,
2721 .reset_done
= nvme_reset_done
,
2724 static const struct pci_device_id nvme_id_table
[] = {
2725 { PCI_VDEVICE(INTEL
, 0x0953),
2726 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2727 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2728 { PCI_VDEVICE(INTEL
, 0x0a53),
2729 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2730 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2731 { PCI_VDEVICE(INTEL
, 0x0a54),
2732 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2733 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2734 { PCI_VDEVICE(INTEL
, 0x0a55),
2735 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2736 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2737 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
2738 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
2739 NVME_QUIRK_MEDIUM_PRIO_SQ
},
2740 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2741 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2742 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2743 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2744 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2745 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2746 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2747 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2748 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2749 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2750 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2751 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2752 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2753 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2754 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2755 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2756 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2757 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2758 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2759 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2760 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2761 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2762 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
2765 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2767 static struct pci_driver nvme_driver
= {
2769 .id_table
= nvme_id_table
,
2770 .probe
= nvme_probe
,
2771 .remove
= nvme_remove
,
2772 .shutdown
= nvme_shutdown
,
2774 .pm
= &nvme_dev_pm_ops
,
2776 .sriov_configure
= pci_sriov_configure_simple
,
2777 .err_handler
= &nvme_err_handler
,
2780 static int __init
nvme_init(void)
2782 return pci_register_driver(&nvme_driver
);
2785 static void __exit
nvme_exit(void)
2787 pci_unregister_driver(&nvme_driver
);
2788 flush_workqueue(nvme_wq
);
2792 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2793 MODULE_LICENSE("GPL");
2794 MODULE_VERSION("1.0");
2795 module_init(nvme_init
);
2796 module_exit(nvme_exit
);