1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
86 struct address_space
*mapping
;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page
)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page
)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page
)))
121 if (!PageMovable(page
) || PageIsolated(page
))
122 goto out_no_isolated
;
124 mapping
= page_mapping(page
);
125 VM_BUG_ON_PAGE(!mapping
, page
);
127 if (!mapping
->a_ops
->isolate_page(page
, mode
))
128 goto out_no_isolated
;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page
));
132 __SetPageIsolated(page
);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page
*page
)
148 struct address_space
*mapping
;
150 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
151 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
152 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
154 mapping
= page_mapping(page
);
155 mapping
->a_ops
->putback_page(page
);
156 __ClearPageIsolated(page
);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head
*l
)
172 list_for_each_entry_safe(page
, page2
, l
, lru
) {
173 if (unlikely(PageHuge(page
))) {
174 putback_active_hugepage(page
);
177 list_del(&page
->lru
);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page
))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
186 if (PageMovable(page
))
187 putback_movable_page(page
);
189 __ClearPageIsolated(page
);
193 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
194 page_is_file_cache(page
), -hpage_nr_pages(page
));
195 putback_lru_page(page
);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
204 unsigned long addr
, void *old
)
206 struct page_vma_mapped_walk pvmw
= {
210 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
216 VM_BUG_ON_PAGE(PageTail(page
), page
);
217 while (page_vma_mapped_walk(&pvmw
)) {
221 new = page
- pvmw
.page
->index
+
222 linear_page_index(vma
, pvmw
.address
);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
228 remove_migration_pmd(&pvmw
, new);
234 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
235 if (pte_swp_soft_dirty(*pvmw
.pte
))
236 pte
= pte_mksoft_dirty(pte
);
239 * Recheck VMA as permissions can change since migration started
241 entry
= pte_to_swp_entry(*pvmw
.pte
);
242 if (is_write_migration_entry(entry
))
243 pte
= maybe_mkwrite(pte
, vma
);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry
= make_device_private_entry(new, pte_write(pte
));
248 pte
= swp_entry_to_pte(entry
);
249 } else if (is_device_public_page(new)) {
250 pte
= pte_mkdevmap(pte
);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte
= pte_mkhuge(pte
);
259 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
260 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
262 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
264 page_dup_rmap(new, true);
268 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
271 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
273 page_add_file_rmap(new, false);
275 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
291 struct rmap_walk_control rwc
= {
292 .rmap_one
= remove_migration_pte
,
297 rmap_walk_locked(new, &rwc
);
299 rmap_walk(new, &rwc
);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
316 if (!is_swap_pte(pte
))
319 entry
= pte_to_swp_entry(pte
);
320 if (!is_migration_entry(entry
))
323 page
= migration_entry_to_page(entry
);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
332 if (!get_page_unless_zero(page
))
334 pte_unmap_unlock(ptep
, ptl
);
335 wait_on_page_locked(page
);
339 pte_unmap_unlock(ptep
, ptl
);
342 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
343 unsigned long address
)
345 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
346 pte_t
*ptep
= pte_offset_map(pmd
, address
);
347 __migration_entry_wait(mm
, ptep
, ptl
);
350 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
351 struct mm_struct
*mm
, pte_t
*pte
)
353 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
354 __migration_entry_wait(mm
, pte
, ptl
);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
363 ptl
= pmd_lock(mm
, pmd
);
364 if (!is_pmd_migration_entry(*pmd
))
366 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
367 if (!get_page_unless_zero(page
))
370 wait_on_page_locked(page
);
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
381 enum migrate_mode mode
)
383 struct buffer_head
*bh
= head
;
385 /* Simple case, sync compaction */
386 if (mode
!= MIGRATE_ASYNC
) {
390 bh
= bh
->b_this_page
;
392 } while (bh
!= head
);
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
400 if (!trylock_buffer(bh
)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head
*failed_bh
= bh
;
408 while (bh
!= failed_bh
) {
411 bh
= bh
->b_this_page
;
416 bh
= bh
->b_this_page
;
417 } while (bh
!= head
);
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
422 enum migrate_mode mode
)
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space
*mapping
,
437 struct page
*newpage
, struct page
*page
,
438 struct buffer_head
*head
, enum migrate_mode mode
,
441 struct zone
*oldzone
, *newzone
;
443 int expected_count
= 1 + extra_count
;
447 * Device public or private pages have an extra refcount as they are
450 expected_count
+= is_device_private_page(page
);
451 expected_count
+= is_device_public_page(page
);
454 /* Anonymous page without mapping */
455 if (page_count(page
) != expected_count
)
458 /* No turning back from here */
459 newpage
->index
= page
->index
;
460 newpage
->mapping
= page
->mapping
;
461 if (PageSwapBacked(page
))
462 __SetPageSwapBacked(newpage
);
464 return MIGRATEPAGE_SUCCESS
;
467 oldzone
= page_zone(page
);
468 newzone
= page_zone(newpage
);
470 xa_lock_irq(&mapping
->i_pages
);
472 pslot
= radix_tree_lookup_slot(&mapping
->i_pages
,
475 expected_count
+= hpage_nr_pages(page
) + page_has_private(page
);
476 if (page_count(page
) != expected_count
||
477 radix_tree_deref_slot_protected(pslot
,
478 &mapping
->i_pages
.xa_lock
) != page
) {
479 xa_unlock_irq(&mapping
->i_pages
);
483 if (!page_ref_freeze(page
, expected_count
)) {
484 xa_unlock_irq(&mapping
->i_pages
);
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
495 if (mode
== MIGRATE_ASYNC
&& head
&&
496 !buffer_migrate_lock_buffers(head
, mode
)) {
497 page_ref_unfreeze(page
, expected_count
);
498 xa_unlock_irq(&mapping
->i_pages
);
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
506 newpage
->index
= page
->index
;
507 newpage
->mapping
= page
->mapping
;
508 page_ref_add(newpage
, hpage_nr_pages(page
)); /* add cache reference */
509 if (PageSwapBacked(page
)) {
510 __SetPageSwapBacked(newpage
);
511 if (PageSwapCache(page
)) {
512 SetPageSwapCache(newpage
);
513 set_page_private(newpage
, page_private(page
));
516 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty
= PageDirty(page
);
522 ClearPageDirty(page
);
523 SetPageDirty(newpage
);
526 radix_tree_replace_slot(&mapping
->i_pages
, pslot
, newpage
);
527 if (PageTransHuge(page
)) {
529 int index
= page_index(page
);
531 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
532 pslot
= radix_tree_lookup_slot(&mapping
->i_pages
,
534 radix_tree_replace_slot(&mapping
->i_pages
, pslot
,
540 * Drop cache reference from old page by unfreezing
541 * to one less reference.
542 * We know this isn't the last reference.
544 page_ref_unfreeze(page
, expected_count
- hpage_nr_pages(page
));
546 xa_unlock(&mapping
->i_pages
);
547 /* Leave irq disabled to prevent preemption while updating stats */
550 * If moved to a different zone then also account
551 * the page for that zone. Other VM counters will be
552 * taken care of when we establish references to the
553 * new page and drop references to the old page.
555 * Note that anonymous pages are accounted for
556 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557 * are mapped to swap space.
559 if (newzone
!= oldzone
) {
560 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
561 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
562 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
563 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
564 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
566 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
567 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
568 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
569 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
570 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
575 return MIGRATEPAGE_SUCCESS
;
577 EXPORT_SYMBOL(migrate_page_move_mapping
);
580 * The expected number of remaining references is the same as that
581 * of migrate_page_move_mapping().
583 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
584 struct page
*newpage
, struct page
*page
)
589 xa_lock_irq(&mapping
->i_pages
);
591 pslot
= radix_tree_lookup_slot(&mapping
->i_pages
, page_index(page
));
593 expected_count
= 2 + page_has_private(page
);
594 if (page_count(page
) != expected_count
||
595 radix_tree_deref_slot_protected(pslot
, &mapping
->i_pages
.xa_lock
) != page
) {
596 xa_unlock_irq(&mapping
->i_pages
);
600 if (!page_ref_freeze(page
, expected_count
)) {
601 xa_unlock_irq(&mapping
->i_pages
);
605 newpage
->index
= page
->index
;
606 newpage
->mapping
= page
->mapping
;
610 radix_tree_replace_slot(&mapping
->i_pages
, pslot
, newpage
);
612 page_ref_unfreeze(page
, expected_count
- 1);
614 xa_unlock_irq(&mapping
->i_pages
);
616 return MIGRATEPAGE_SUCCESS
;
620 * Gigantic pages are so large that we do not guarantee that page++ pointer
621 * arithmetic will work across the entire page. We need something more
624 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
628 struct page
*dst_base
= dst
;
629 struct page
*src_base
= src
;
631 for (i
= 0; i
< nr_pages
; ) {
633 copy_highpage(dst
, src
);
636 dst
= mem_map_next(dst
, dst_base
, i
);
637 src
= mem_map_next(src
, src_base
, i
);
641 static void copy_huge_page(struct page
*dst
, struct page
*src
)
648 struct hstate
*h
= page_hstate(src
);
649 nr_pages
= pages_per_huge_page(h
);
651 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
652 __copy_gigantic_page(dst
, src
, nr_pages
);
657 BUG_ON(!PageTransHuge(src
));
658 nr_pages
= hpage_nr_pages(src
);
661 for (i
= 0; i
< nr_pages
; i
++) {
663 copy_highpage(dst
+ i
, src
+ i
);
668 * Copy the page to its new location
670 void migrate_page_states(struct page
*newpage
, struct page
*page
)
675 SetPageError(newpage
);
676 if (PageReferenced(page
))
677 SetPageReferenced(newpage
);
678 if (PageUptodate(page
))
679 SetPageUptodate(newpage
);
680 if (TestClearPageActive(page
)) {
681 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
682 SetPageActive(newpage
);
683 } else if (TestClearPageUnevictable(page
))
684 SetPageUnevictable(newpage
);
685 if (PageChecked(page
))
686 SetPageChecked(newpage
);
687 if (PageMappedToDisk(page
))
688 SetPageMappedToDisk(newpage
);
690 /* Move dirty on pages not done by migrate_page_move_mapping() */
692 SetPageDirty(newpage
);
694 if (page_is_young(page
))
695 set_page_young(newpage
);
696 if (page_is_idle(page
))
697 set_page_idle(newpage
);
700 * Copy NUMA information to the new page, to prevent over-eager
701 * future migrations of this same page.
703 cpupid
= page_cpupid_xchg_last(page
, -1);
704 page_cpupid_xchg_last(newpage
, cpupid
);
706 ksm_migrate_page(newpage
, page
);
708 * Please do not reorder this without considering how mm/ksm.c's
709 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
711 if (PageSwapCache(page
))
712 ClearPageSwapCache(page
);
713 ClearPagePrivate(page
);
714 set_page_private(page
, 0);
717 * If any waiters have accumulated on the new page then
720 if (PageWriteback(newpage
))
721 end_page_writeback(newpage
);
723 copy_page_owner(page
, newpage
);
725 mem_cgroup_migrate(page
, newpage
);
727 EXPORT_SYMBOL(migrate_page_states
);
729 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
731 if (PageHuge(page
) || PageTransHuge(page
))
732 copy_huge_page(newpage
, page
);
734 copy_highpage(newpage
, page
);
736 migrate_page_states(newpage
, page
);
738 EXPORT_SYMBOL(migrate_page_copy
);
740 /************************************************************
741 * Migration functions
742 ***********************************************************/
745 * Common logic to directly migrate a single LRU page suitable for
746 * pages that do not use PagePrivate/PagePrivate2.
748 * Pages are locked upon entry and exit.
750 int migrate_page(struct address_space
*mapping
,
751 struct page
*newpage
, struct page
*page
,
752 enum migrate_mode mode
)
756 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
758 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
760 if (rc
!= MIGRATEPAGE_SUCCESS
)
763 if (mode
!= MIGRATE_SYNC_NO_COPY
)
764 migrate_page_copy(newpage
, page
);
766 migrate_page_states(newpage
, page
);
767 return MIGRATEPAGE_SUCCESS
;
769 EXPORT_SYMBOL(migrate_page
);
773 * Migration function for pages with buffers. This function can only be used
774 * if the underlying filesystem guarantees that no other references to "page"
777 int buffer_migrate_page(struct address_space
*mapping
,
778 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
780 struct buffer_head
*bh
, *head
;
783 if (!page_has_buffers(page
))
784 return migrate_page(mapping
, newpage
, page
, mode
);
786 head
= page_buffers(page
);
788 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
790 if (rc
!= MIGRATEPAGE_SUCCESS
)
794 * In the async case, migrate_page_move_mapping locked the buffers
795 * with an IRQ-safe spinlock held. In the sync case, the buffers
796 * need to be locked now
798 if (mode
!= MIGRATE_ASYNC
)
799 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
801 ClearPagePrivate(page
);
802 set_page_private(newpage
, page_private(page
));
803 set_page_private(page
, 0);
809 set_bh_page(bh
, newpage
, bh_offset(bh
));
810 bh
= bh
->b_this_page
;
812 } while (bh
!= head
);
814 SetPagePrivate(newpage
);
816 if (mode
!= MIGRATE_SYNC_NO_COPY
)
817 migrate_page_copy(newpage
, page
);
819 migrate_page_states(newpage
, page
);
825 bh
= bh
->b_this_page
;
827 } while (bh
!= head
);
829 return MIGRATEPAGE_SUCCESS
;
831 EXPORT_SYMBOL(buffer_migrate_page
);
835 * Writeback a page to clean the dirty state
837 static int writeout(struct address_space
*mapping
, struct page
*page
)
839 struct writeback_control wbc
= {
840 .sync_mode
= WB_SYNC_NONE
,
843 .range_end
= LLONG_MAX
,
848 if (!mapping
->a_ops
->writepage
)
849 /* No write method for the address space */
852 if (!clear_page_dirty_for_io(page
))
853 /* Someone else already triggered a write */
857 * A dirty page may imply that the underlying filesystem has
858 * the page on some queue. So the page must be clean for
859 * migration. Writeout may mean we loose the lock and the
860 * page state is no longer what we checked for earlier.
861 * At this point we know that the migration attempt cannot
864 remove_migration_ptes(page
, page
, false);
866 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
868 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
869 /* unlocked. Relock */
872 return (rc
< 0) ? -EIO
: -EAGAIN
;
876 * Default handling if a filesystem does not provide a migration function.
878 static int fallback_migrate_page(struct address_space
*mapping
,
879 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
881 if (PageDirty(page
)) {
882 /* Only writeback pages in full synchronous migration */
885 case MIGRATE_SYNC_NO_COPY
:
890 return writeout(mapping
, page
);
894 * Buffers may be managed in a filesystem specific way.
895 * We must have no buffers or drop them.
897 if (page_has_private(page
) &&
898 !try_to_release_page(page
, GFP_KERNEL
))
901 return migrate_page(mapping
, newpage
, page
, mode
);
905 * Move a page to a newly allocated page
906 * The page is locked and all ptes have been successfully removed.
908 * The new page will have replaced the old page if this function
913 * MIGRATEPAGE_SUCCESS - success
915 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
916 enum migrate_mode mode
)
918 struct address_space
*mapping
;
920 bool is_lru
= !__PageMovable(page
);
922 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
923 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
925 mapping
= page_mapping(page
);
927 if (likely(is_lru
)) {
929 rc
= migrate_page(mapping
, newpage
, page
, mode
);
930 else if (mapping
->a_ops
->migratepage
)
932 * Most pages have a mapping and most filesystems
933 * provide a migratepage callback. Anonymous pages
934 * are part of swap space which also has its own
935 * migratepage callback. This is the most common path
936 * for page migration.
938 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
941 rc
= fallback_migrate_page(mapping
, newpage
,
945 * In case of non-lru page, it could be released after
946 * isolation step. In that case, we shouldn't try migration.
948 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
949 if (!PageMovable(page
)) {
950 rc
= MIGRATEPAGE_SUCCESS
;
951 __ClearPageIsolated(page
);
955 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
957 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
958 !PageIsolated(page
));
962 * When successful, old pagecache page->mapping must be cleared before
963 * page is freed; but stats require that PageAnon be left as PageAnon.
965 if (rc
== MIGRATEPAGE_SUCCESS
) {
966 if (__PageMovable(page
)) {
967 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
970 * We clear PG_movable under page_lock so any compactor
971 * cannot try to migrate this page.
973 __ClearPageIsolated(page
);
977 * Anonymous and movable page->mapping will be cleard by
978 * free_pages_prepare so don't reset it here for keeping
979 * the type to work PageAnon, for example.
981 if (!PageMappingFlags(page
))
982 page
->mapping
= NULL
;
988 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
989 int force
, enum migrate_mode mode
)
992 int page_was_mapped
= 0;
993 struct anon_vma
*anon_vma
= NULL
;
994 bool is_lru
= !__PageMovable(page
);
996 if (!trylock_page(page
)) {
997 if (!force
|| mode
== MIGRATE_ASYNC
)
1001 * It's not safe for direct compaction to call lock_page.
1002 * For example, during page readahead pages are added locked
1003 * to the LRU. Later, when the IO completes the pages are
1004 * marked uptodate and unlocked. However, the queueing
1005 * could be merging multiple pages for one bio (e.g.
1006 * mpage_readpages). If an allocation happens for the
1007 * second or third page, the process can end up locking
1008 * the same page twice and deadlocking. Rather than
1009 * trying to be clever about what pages can be locked,
1010 * avoid the use of lock_page for direct compaction
1013 if (current
->flags
& PF_MEMALLOC
)
1019 if (PageWriteback(page
)) {
1021 * Only in the case of a full synchronous migration is it
1022 * necessary to wait for PageWriteback. In the async case,
1023 * the retry loop is too short and in the sync-light case,
1024 * the overhead of stalling is too much
1028 case MIGRATE_SYNC_NO_COPY
:
1036 wait_on_page_writeback(page
);
1040 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041 * we cannot notice that anon_vma is freed while we migrates a page.
1042 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043 * of migration. File cache pages are no problem because of page_lock()
1044 * File Caches may use write_page() or lock_page() in migration, then,
1045 * just care Anon page here.
1047 * Only page_get_anon_vma() understands the subtleties of
1048 * getting a hold on an anon_vma from outside one of its mms.
1049 * But if we cannot get anon_vma, then we won't need it anyway,
1050 * because that implies that the anon page is no longer mapped
1051 * (and cannot be remapped so long as we hold the page lock).
1053 if (PageAnon(page
) && !PageKsm(page
))
1054 anon_vma
= page_get_anon_vma(page
);
1057 * Block others from accessing the new page when we get around to
1058 * establishing additional references. We are usually the only one
1059 * holding a reference to newpage at this point. We used to have a BUG
1060 * here if trylock_page(newpage) fails, but would like to allow for
1061 * cases where there might be a race with the previous use of newpage.
1062 * This is much like races on refcount of oldpage: just don't BUG().
1064 if (unlikely(!trylock_page(newpage
)))
1067 if (unlikely(!is_lru
)) {
1068 rc
= move_to_new_page(newpage
, page
, mode
);
1069 goto out_unlock_both
;
1073 * Corner case handling:
1074 * 1. When a new swap-cache page is read into, it is added to the LRU
1075 * and treated as swapcache but it has no rmap yet.
1076 * Calling try_to_unmap() against a page->mapping==NULL page will
1077 * trigger a BUG. So handle it here.
1078 * 2. An orphaned page (see truncate_complete_page) might have
1079 * fs-private metadata. The page can be picked up due to memory
1080 * offlining. Everywhere else except page reclaim, the page is
1081 * invisible to the vm, so the page can not be migrated. So try to
1082 * free the metadata, so the page can be freed.
1084 if (!page
->mapping
) {
1085 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1086 if (page_has_private(page
)) {
1087 try_to_free_buffers(page
);
1088 goto out_unlock_both
;
1090 } else if (page_mapped(page
)) {
1091 /* Establish migration ptes */
1092 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1095 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1096 page_was_mapped
= 1;
1099 if (!page_mapped(page
))
1100 rc
= move_to_new_page(newpage
, page
, mode
);
1102 if (page_was_mapped
)
1103 remove_migration_ptes(page
,
1104 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1107 unlock_page(newpage
);
1109 /* Drop an anon_vma reference if we took one */
1111 put_anon_vma(anon_vma
);
1115 * If migration is successful, decrease refcount of the newpage
1116 * which will not free the page because new page owner increased
1117 * refcounter. As well, if it is LRU page, add the page to LRU
1120 if (rc
== MIGRATEPAGE_SUCCESS
) {
1121 if (unlikely(__PageMovable(newpage
)))
1124 putback_lru_page(newpage
);
1131 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1134 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1135 #define ICE_noinline noinline
1137 #define ICE_noinline
1141 * Obtain the lock on page, remove all ptes and migrate the page
1142 * to the newly allocated page in newpage.
1144 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1145 free_page_t put_new_page
,
1146 unsigned long private, struct page
*page
,
1147 int force
, enum migrate_mode mode
,
1148 enum migrate_reason reason
)
1150 int rc
= MIGRATEPAGE_SUCCESS
;
1151 struct page
*newpage
;
1153 if (!thp_migration_supported() && PageTransHuge(page
))
1156 newpage
= get_new_page(page
, private);
1160 if (page_count(page
) == 1) {
1161 /* page was freed from under us. So we are done. */
1162 ClearPageActive(page
);
1163 ClearPageUnevictable(page
);
1164 if (unlikely(__PageMovable(page
))) {
1166 if (!PageMovable(page
))
1167 __ClearPageIsolated(page
);
1171 put_new_page(newpage
, private);
1177 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1178 if (rc
== MIGRATEPAGE_SUCCESS
)
1179 set_page_owner_migrate_reason(newpage
, reason
);
1182 if (rc
!= -EAGAIN
) {
1184 * A page that has been migrated has all references
1185 * removed and will be freed. A page that has not been
1186 * migrated will have kepts its references and be
1189 list_del(&page
->lru
);
1192 * Compaction can migrate also non-LRU pages which are
1193 * not accounted to NR_ISOLATED_*. They can be recognized
1196 if (likely(!__PageMovable(page
)))
1197 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1198 page_is_file_cache(page
), -hpage_nr_pages(page
));
1202 * If migration is successful, releases reference grabbed during
1203 * isolation. Otherwise, restore the page to right list unless
1206 if (rc
== MIGRATEPAGE_SUCCESS
) {
1208 if (reason
== MR_MEMORY_FAILURE
) {
1210 * Set PG_HWPoison on just freed page
1211 * intentionally. Although it's rather weird,
1212 * it's how HWPoison flag works at the moment.
1214 if (!test_set_page_hwpoison(page
))
1215 num_poisoned_pages_inc();
1218 if (rc
!= -EAGAIN
) {
1219 if (likely(!__PageMovable(page
))) {
1220 putback_lru_page(page
);
1225 if (PageMovable(page
))
1226 putback_movable_page(page
);
1228 __ClearPageIsolated(page
);
1234 put_new_page(newpage
, private);
1243 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 * This function doesn't wait the completion of hugepage I/O
1246 * because there is no race between I/O and migration for hugepage.
1247 * Note that currently hugepage I/O occurs only in direct I/O
1248 * where no lock is held and PG_writeback is irrelevant,
1249 * and writeback status of all subpages are counted in the reference
1250 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251 * under direct I/O, the reference of the head page is 512 and a bit more.)
1252 * This means that when we try to migrate hugepage whose subpages are
1253 * doing direct I/O, some references remain after try_to_unmap() and
1254 * hugepage migration fails without data corruption.
1256 * There is also no race when direct I/O is issued on the page under migration,
1257 * because then pte is replaced with migration swap entry and direct I/O code
1258 * will wait in the page fault for migration to complete.
1260 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1261 free_page_t put_new_page
, unsigned long private,
1262 struct page
*hpage
, int force
,
1263 enum migrate_mode mode
, int reason
)
1266 int page_was_mapped
= 0;
1267 struct page
*new_hpage
;
1268 struct anon_vma
*anon_vma
= NULL
;
1271 * Movability of hugepages depends on architectures and hugepage size.
1272 * This check is necessary because some callers of hugepage migration
1273 * like soft offline and memory hotremove don't walk through page
1274 * tables or check whether the hugepage is pmd-based or not before
1275 * kicking migration.
1277 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1278 putback_active_hugepage(hpage
);
1282 new_hpage
= get_new_page(hpage
, private);
1286 if (!trylock_page(hpage
)) {
1291 case MIGRATE_SYNC_NO_COPY
:
1299 if (PageAnon(hpage
))
1300 anon_vma
= page_get_anon_vma(hpage
);
1302 if (unlikely(!trylock_page(new_hpage
)))
1305 if (page_mapped(hpage
)) {
1307 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1308 page_was_mapped
= 1;
1311 if (!page_mapped(hpage
))
1312 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1314 if (page_was_mapped
)
1315 remove_migration_ptes(hpage
,
1316 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1318 unlock_page(new_hpage
);
1322 put_anon_vma(anon_vma
);
1324 if (rc
== MIGRATEPAGE_SUCCESS
) {
1325 move_hugetlb_state(hpage
, new_hpage
, reason
);
1326 put_new_page
= NULL
;
1332 putback_active_hugepage(hpage
);
1333 if (reason
== MR_MEMORY_FAILURE
&& !test_set_page_hwpoison(hpage
))
1334 num_poisoned_pages_inc();
1337 * If migration was not successful and there's a freeing callback, use
1338 * it. Otherwise, put_page() will drop the reference grabbed during
1342 put_new_page(new_hpage
, private);
1344 putback_active_hugepage(new_hpage
);
1350 * migrate_pages - migrate the pages specified in a list, to the free pages
1351 * supplied as the target for the page migration
1353 * @from: The list of pages to be migrated.
1354 * @get_new_page: The function used to allocate free pages to be used
1355 * as the target of the page migration.
1356 * @put_new_page: The function used to free target pages if migration
1357 * fails, or NULL if no special handling is necessary.
1358 * @private: Private data to be passed on to get_new_page()
1359 * @mode: The migration mode that specifies the constraints for
1360 * page migration, if any.
1361 * @reason: The reason for page migration.
1363 * The function returns after 10 attempts or if no pages are movable any more
1364 * because the list has become empty or no retryable pages exist any more.
1365 * The caller should call putback_movable_pages() to return pages to the LRU
1366 * or free list only if ret != 0.
1368 * Returns the number of pages that were not migrated, or an error code.
1370 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1371 free_page_t put_new_page
, unsigned long private,
1372 enum migrate_mode mode
, int reason
)
1376 int nr_succeeded
= 0;
1380 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1384 current
->flags
|= PF_SWAPWRITE
;
1386 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1389 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1394 rc
= unmap_and_move_huge_page(get_new_page
,
1395 put_new_page
, private, page
,
1396 pass
> 2, mode
, reason
);
1398 rc
= unmap_and_move(get_new_page
, put_new_page
,
1399 private, page
, pass
> 2, mode
,
1405 * THP migration might be unsupported or the
1406 * allocation could've failed so we should
1407 * retry on the same page with the THP split
1410 * Head page is retried immediately and tail
1411 * pages are added to the tail of the list so
1412 * we encounter them after the rest of the list
1415 if (PageTransHuge(page
)) {
1417 rc
= split_huge_page_to_list(page
, from
);
1420 list_safe_reset_next(page
, page2
, lru
);
1429 case MIGRATEPAGE_SUCCESS
:
1434 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1435 * unlike -EAGAIN case, the failed page is
1436 * removed from migration page list and not
1437 * retried in the next outer loop.
1448 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1450 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1451 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1454 current
->flags
&= ~PF_SWAPWRITE
;
1461 static int store_status(int __user
*status
, int start
, int value
, int nr
)
1464 if (put_user(value
, status
+ start
))
1472 static int do_move_pages_to_node(struct mm_struct
*mm
,
1473 struct list_head
*pagelist
, int node
)
1477 if (list_empty(pagelist
))
1480 err
= migrate_pages(pagelist
, alloc_new_node_page
, NULL
, node
,
1481 MIGRATE_SYNC
, MR_SYSCALL
);
1483 putback_movable_pages(pagelist
);
1488 * Resolves the given address to a struct page, isolates it from the LRU and
1489 * puts it to the given pagelist.
1490 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1491 * queued or the page doesn't need to be migrated because it is already on
1494 static int add_page_for_migration(struct mm_struct
*mm
, unsigned long addr
,
1495 int node
, struct list_head
*pagelist
, bool migrate_all
)
1497 struct vm_area_struct
*vma
;
1499 unsigned int follflags
;
1502 down_read(&mm
->mmap_sem
);
1504 vma
= find_vma(mm
, addr
);
1505 if (!vma
|| addr
< vma
->vm_start
|| !vma_migratable(vma
))
1508 /* FOLL_DUMP to ignore special (like zero) pages */
1509 follflags
= FOLL_GET
| FOLL_DUMP
;
1510 page
= follow_page(vma
, addr
, follflags
);
1512 err
= PTR_ERR(page
);
1521 if (page_to_nid(page
) == node
)
1525 if (page_mapcount(page
) > 1 && !migrate_all
)
1528 if (PageHuge(page
)) {
1529 if (PageHead(page
)) {
1530 isolate_huge_page(page
, pagelist
);
1536 head
= compound_head(page
);
1537 err
= isolate_lru_page(head
);
1542 list_add_tail(&head
->lru
, pagelist
);
1543 mod_node_page_state(page_pgdat(head
),
1544 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1545 hpage_nr_pages(head
));
1549 * Either remove the duplicate refcount from
1550 * isolate_lru_page() or drop the page ref if it was
1555 up_read(&mm
->mmap_sem
);
1560 * Migrate an array of page address onto an array of nodes and fill
1561 * the corresponding array of status.
1563 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1564 unsigned long nr_pages
,
1565 const void __user
* __user
*pages
,
1566 const int __user
*nodes
,
1567 int __user
*status
, int flags
)
1569 int current_node
= NUMA_NO_NODE
;
1570 LIST_HEAD(pagelist
);
1576 for (i
= start
= 0; i
< nr_pages
; i
++) {
1577 const void __user
*p
;
1582 if (get_user(p
, pages
+ i
))
1584 if (get_user(node
, nodes
+ i
))
1586 addr
= (unsigned long)p
;
1589 if (node
< 0 || node
>= MAX_NUMNODES
)
1591 if (!node_state(node
, N_MEMORY
))
1595 if (!node_isset(node
, task_nodes
))
1598 if (current_node
== NUMA_NO_NODE
) {
1599 current_node
= node
;
1601 } else if (node
!= current_node
) {
1602 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1605 err
= store_status(status
, start
, current_node
, i
- start
);
1609 current_node
= node
;
1613 * Errors in the page lookup or isolation are not fatal and we simply
1614 * report them via status
1616 err
= add_page_for_migration(mm
, addr
, current_node
,
1617 &pagelist
, flags
& MPOL_MF_MOVE_ALL
);
1621 err
= store_status(status
, i
, err
, 1);
1625 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1629 err
= store_status(status
, start
, current_node
, i
- start
);
1633 current_node
= NUMA_NO_NODE
;
1636 if (list_empty(&pagelist
))
1639 /* Make sure we do not overwrite the existing error */
1640 err1
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1642 err1
= store_status(status
, start
, current_node
, i
- start
);
1650 * Determine the nodes of an array of pages and store it in an array of status.
1652 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1653 const void __user
**pages
, int *status
)
1657 down_read(&mm
->mmap_sem
);
1659 for (i
= 0; i
< nr_pages
; i
++) {
1660 unsigned long addr
= (unsigned long)(*pages
);
1661 struct vm_area_struct
*vma
;
1665 vma
= find_vma(mm
, addr
);
1666 if (!vma
|| addr
< vma
->vm_start
)
1669 /* FOLL_DUMP to ignore special (like zero) pages */
1670 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1672 err
= PTR_ERR(page
);
1676 err
= page
? page_to_nid(page
) : -ENOENT
;
1684 up_read(&mm
->mmap_sem
);
1688 * Determine the nodes of a user array of pages and store it in
1689 * a user array of status.
1691 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1692 const void __user
* __user
*pages
,
1695 #define DO_PAGES_STAT_CHUNK_NR 16
1696 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1697 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1700 unsigned long chunk_nr
;
1702 chunk_nr
= nr_pages
;
1703 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1704 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1706 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1709 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1711 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1716 nr_pages
-= chunk_nr
;
1718 return nr_pages
? -EFAULT
: 0;
1722 * Move a list of pages in the address space of the currently executing
1725 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1726 const void __user
* __user
*pages
,
1727 const int __user
*nodes
,
1728 int __user
*status
, int flags
)
1730 struct task_struct
*task
;
1731 struct mm_struct
*mm
;
1733 nodemask_t task_nodes
;
1736 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1739 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1742 /* Find the mm_struct */
1744 task
= pid
? find_task_by_vpid(pid
) : current
;
1749 get_task_struct(task
);
1752 * Check if this process has the right to modify the specified
1753 * process. Use the regular "ptrace_may_access()" checks.
1755 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1762 err
= security_task_movememory(task
);
1766 task_nodes
= cpuset_mems_allowed(task
);
1767 mm
= get_task_mm(task
);
1768 put_task_struct(task
);
1774 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1775 nodes
, status
, flags
);
1777 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1783 put_task_struct(task
);
1787 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1788 const void __user
* __user
*, pages
,
1789 const int __user
*, nodes
,
1790 int __user
*, status
, int, flags
)
1792 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1795 #ifdef CONFIG_COMPAT
1796 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1797 compat_uptr_t __user
*, pages32
,
1798 const int __user
*, nodes
,
1799 int __user
*, status
,
1802 const void __user
* __user
*pages
;
1805 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
1806 for (i
= 0; i
< nr_pages
; i
++) {
1809 if (get_user(p
, pages32
+ i
) ||
1810 put_user(compat_ptr(p
), pages
+ i
))
1813 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1815 #endif /* CONFIG_COMPAT */
1817 #ifdef CONFIG_NUMA_BALANCING
1819 * Returns true if this is a safe migration target node for misplaced NUMA
1820 * pages. Currently it only checks the watermarks which crude
1822 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1823 unsigned long nr_migrate_pages
)
1827 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1828 struct zone
*zone
= pgdat
->node_zones
+ z
;
1830 if (!populated_zone(zone
))
1833 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1834 if (!zone_watermark_ok(zone
, 0,
1835 high_wmark_pages(zone
) +
1844 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1847 int nid
= (int) data
;
1848 struct page
*newpage
;
1850 newpage
= __alloc_pages_node(nid
,
1851 (GFP_HIGHUSER_MOVABLE
|
1852 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1853 __GFP_NORETRY
| __GFP_NOWARN
) &
1860 * page migration rate limiting control.
1861 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1862 * window of time. Default here says do not migrate more than 1280M per second.
1864 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1865 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1867 /* Returns true if the node is migrate rate-limited after the update */
1868 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1869 unsigned long nr_pages
)
1872 * Rate-limit the amount of data that is being migrated to a node.
1873 * Optimal placement is no good if the memory bus is saturated and
1874 * all the time is being spent migrating!
1876 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1877 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1878 pgdat
->numabalancing_migrate_nr_pages
= 0;
1879 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1880 msecs_to_jiffies(migrate_interval_millisecs
);
1881 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1883 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1884 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1890 * This is an unlocked non-atomic update so errors are possible.
1891 * The consequences are failing to migrate when we potentiall should
1892 * have which is not severe enough to warrant locking. If it is ever
1893 * a problem, it can be converted to a per-cpu counter.
1895 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1899 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1903 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1905 /* Avoid migrating to a node that is nearly full */
1906 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1909 if (isolate_lru_page(page
))
1913 * migrate_misplaced_transhuge_page() skips page migration's usual
1914 * check on page_count(), so we must do it here, now that the page
1915 * has been isolated: a GUP pin, or any other pin, prevents migration.
1916 * The expected page count is 3: 1 for page's mapcount and 1 for the
1917 * caller's pin and 1 for the reference taken by isolate_lru_page().
1919 if (PageTransHuge(page
) && page_count(page
) != 3) {
1920 putback_lru_page(page
);
1924 page_lru
= page_is_file_cache(page
);
1925 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1926 hpage_nr_pages(page
));
1929 * Isolating the page has taken another reference, so the
1930 * caller's reference can be safely dropped without the page
1931 * disappearing underneath us during migration.
1937 bool pmd_trans_migrating(pmd_t pmd
)
1939 struct page
*page
= pmd_page(pmd
);
1940 return PageLocked(page
);
1944 * Attempt to migrate a misplaced page to the specified destination
1945 * node. Caller is expected to have an elevated reference count on
1946 * the page that will be dropped by this function before returning.
1948 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1951 pg_data_t
*pgdat
= NODE_DATA(node
);
1954 LIST_HEAD(migratepages
);
1957 * Don't migrate file pages that are mapped in multiple processes
1958 * with execute permissions as they are probably shared libraries.
1960 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1961 (vma
->vm_flags
& VM_EXEC
))
1965 * Also do not migrate dirty pages as not all filesystems can move
1966 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1968 if (page_is_file_cache(page
) && PageDirty(page
))
1972 * Rate-limit the amount of data that is being migrated to a node.
1973 * Optimal placement is no good if the memory bus is saturated and
1974 * all the time is being spent migrating!
1976 if (numamigrate_update_ratelimit(pgdat
, 1))
1979 isolated
= numamigrate_isolate_page(pgdat
, page
);
1983 list_add(&page
->lru
, &migratepages
);
1984 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1985 NULL
, node
, MIGRATE_ASYNC
,
1988 if (!list_empty(&migratepages
)) {
1989 list_del(&page
->lru
);
1990 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1991 page_is_file_cache(page
));
1992 putback_lru_page(page
);
1996 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1997 BUG_ON(!list_empty(&migratepages
));
2004 #endif /* CONFIG_NUMA_BALANCING */
2006 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2008 * Migrates a THP to a given target node. page must be locked and is unlocked
2011 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2012 struct vm_area_struct
*vma
,
2013 pmd_t
*pmd
, pmd_t entry
,
2014 unsigned long address
,
2015 struct page
*page
, int node
)
2018 pg_data_t
*pgdat
= NODE_DATA(node
);
2020 struct page
*new_page
= NULL
;
2021 int page_lru
= page_is_file_cache(page
);
2022 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2023 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
2026 * Rate-limit the amount of data that is being migrated to a node.
2027 * Optimal placement is no good if the memory bus is saturated and
2028 * all the time is being spent migrating!
2030 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
2033 new_page
= alloc_pages_node(node
,
2034 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2038 prep_transhuge_page(new_page
);
2040 isolated
= numamigrate_isolate_page(pgdat
, page
);
2046 /* Prepare a page as a migration target */
2047 __SetPageLocked(new_page
);
2048 if (PageSwapBacked(page
))
2049 __SetPageSwapBacked(new_page
);
2051 /* anon mapping, we can simply copy page->mapping to the new page: */
2052 new_page
->mapping
= page
->mapping
;
2053 new_page
->index
= page
->index
;
2054 migrate_page_copy(new_page
, page
);
2055 WARN_ON(PageLRU(new_page
));
2057 /* Recheck the target PMD */
2058 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2059 ptl
= pmd_lock(mm
, pmd
);
2060 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2062 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2064 /* Reverse changes made by migrate_page_copy() */
2065 if (TestClearPageActive(new_page
))
2066 SetPageActive(page
);
2067 if (TestClearPageUnevictable(new_page
))
2068 SetPageUnevictable(page
);
2070 unlock_page(new_page
);
2071 put_page(new_page
); /* Free it */
2073 /* Retake the callers reference and putback on LRU */
2075 putback_lru_page(page
);
2076 mod_node_page_state(page_pgdat(page
),
2077 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2082 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2083 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2086 * Clear the old entry under pagetable lock and establish the new PTE.
2087 * Any parallel GUP will either observe the old page blocking on the
2088 * page lock, block on the page table lock or observe the new page.
2089 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2090 * guarantee the copy is visible before the pagetable update.
2092 flush_cache_range(vma
, mmun_start
, mmun_end
);
2093 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2094 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2095 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2096 update_mmu_cache_pmd(vma
, address
, &entry
);
2098 page_ref_unfreeze(page
, 2);
2099 mlock_migrate_page(new_page
, page
);
2100 page_remove_rmap(page
, true);
2101 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2105 * No need to double call mmu_notifier->invalidate_range() callback as
2106 * the above pmdp_huge_clear_flush_notify() did already call it.
2108 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2110 /* Take an "isolate" reference and put new page on the LRU. */
2112 putback_lru_page(new_page
);
2114 unlock_page(new_page
);
2116 put_page(page
); /* Drop the rmap reference */
2117 put_page(page
); /* Drop the LRU isolation reference */
2119 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2120 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2122 mod_node_page_state(page_pgdat(page
),
2123 NR_ISOLATED_ANON
+ page_lru
,
2128 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2130 ptl
= pmd_lock(mm
, pmd
);
2131 if (pmd_same(*pmd
, entry
)) {
2132 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2133 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2134 update_mmu_cache_pmd(vma
, address
, &entry
);
2143 #endif /* CONFIG_NUMA_BALANCING */
2145 #endif /* CONFIG_NUMA */
2147 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2148 struct migrate_vma
{
2149 struct vm_area_struct
*vma
;
2152 unsigned long cpages
;
2153 unsigned long npages
;
2154 unsigned long start
;
2158 static int migrate_vma_collect_hole(unsigned long start
,
2160 struct mm_walk
*walk
)
2162 struct migrate_vma
*migrate
= walk
->private;
2165 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2166 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2167 migrate
->dst
[migrate
->npages
] = 0;
2175 static int migrate_vma_collect_skip(unsigned long start
,
2177 struct mm_walk
*walk
)
2179 struct migrate_vma
*migrate
= walk
->private;
2182 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2183 migrate
->dst
[migrate
->npages
] = 0;
2184 migrate
->src
[migrate
->npages
++] = 0;
2190 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2191 unsigned long start
,
2193 struct mm_walk
*walk
)
2195 struct migrate_vma
*migrate
= walk
->private;
2196 struct vm_area_struct
*vma
= walk
->vma
;
2197 struct mm_struct
*mm
= vma
->vm_mm
;
2198 unsigned long addr
= start
, unmapped
= 0;
2203 if (pmd_none(*pmdp
))
2204 return migrate_vma_collect_hole(start
, end
, walk
);
2206 if (pmd_trans_huge(*pmdp
)) {
2209 ptl
= pmd_lock(mm
, pmdp
);
2210 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2215 page
= pmd_page(*pmdp
);
2216 if (is_huge_zero_page(page
)) {
2218 split_huge_pmd(vma
, pmdp
, addr
);
2219 if (pmd_trans_unstable(pmdp
))
2220 return migrate_vma_collect_skip(start
, end
,
2227 if (unlikely(!trylock_page(page
)))
2228 return migrate_vma_collect_skip(start
, end
,
2230 ret
= split_huge_page(page
);
2234 return migrate_vma_collect_skip(start
, end
,
2236 if (pmd_none(*pmdp
))
2237 return migrate_vma_collect_hole(start
, end
,
2242 if (unlikely(pmd_bad(*pmdp
)))
2243 return migrate_vma_collect_skip(start
, end
, walk
);
2245 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2246 arch_enter_lazy_mmu_mode();
2248 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2249 unsigned long mpfn
, pfn
;
2257 if (pte_none(pte
)) {
2258 mpfn
= MIGRATE_PFN_MIGRATE
;
2264 if (!pte_present(pte
)) {
2268 * Only care about unaddressable device page special
2269 * page table entry. Other special swap entries are not
2270 * migratable, and we ignore regular swapped page.
2272 entry
= pte_to_swp_entry(pte
);
2273 if (!is_device_private_entry(entry
))
2276 page
= device_private_entry_to_page(entry
);
2277 mpfn
= migrate_pfn(page_to_pfn(page
))|
2278 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2279 if (is_write_device_private_entry(entry
))
2280 mpfn
|= MIGRATE_PFN_WRITE
;
2282 if (is_zero_pfn(pfn
)) {
2283 mpfn
= MIGRATE_PFN_MIGRATE
;
2288 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2289 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2290 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2293 /* FIXME support THP */
2294 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2298 pfn
= page_to_pfn(page
);
2301 * By getting a reference on the page we pin it and that blocks
2302 * any kind of migration. Side effect is that it "freezes" the
2305 * We drop this reference after isolating the page from the lru
2306 * for non device page (device page are not on the lru and thus
2307 * can't be dropped from it).
2313 * Optimize for the common case where page is only mapped once
2314 * in one process. If we can lock the page, then we can safely
2315 * set up a special migration page table entry now.
2317 if (trylock_page(page
)) {
2320 mpfn
|= MIGRATE_PFN_LOCKED
;
2321 ptep_get_and_clear(mm
, addr
, ptep
);
2323 /* Setup special migration page table entry */
2324 entry
= make_migration_entry(page
, mpfn
&
2326 swp_pte
= swp_entry_to_pte(entry
);
2327 if (pte_soft_dirty(pte
))
2328 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2329 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2332 * This is like regular unmap: we remove the rmap and
2333 * drop page refcount. Page won't be freed, as we took
2334 * a reference just above.
2336 page_remove_rmap(page
, false);
2339 if (pte_present(pte
))
2344 migrate
->dst
[migrate
->npages
] = 0;
2345 migrate
->src
[migrate
->npages
++] = mpfn
;
2347 arch_leave_lazy_mmu_mode();
2348 pte_unmap_unlock(ptep
- 1, ptl
);
2350 /* Only flush the TLB if we actually modified any entries */
2352 flush_tlb_range(walk
->vma
, start
, end
);
2358 * migrate_vma_collect() - collect pages over a range of virtual addresses
2359 * @migrate: migrate struct containing all migration information
2361 * This will walk the CPU page table. For each virtual address backed by a
2362 * valid page, it updates the src array and takes a reference on the page, in
2363 * order to pin the page until we lock it and unmap it.
2365 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2367 struct mm_walk mm_walk
;
2369 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2370 mm_walk
.pte_entry
= NULL
;
2371 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2372 mm_walk
.hugetlb_entry
= NULL
;
2373 mm_walk
.test_walk
= NULL
;
2374 mm_walk
.vma
= migrate
->vma
;
2375 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2376 mm_walk
.private = migrate
;
2378 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2381 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2382 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2386 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2390 * migrate_vma_check_page() - check if page is pinned or not
2391 * @page: struct page to check
2393 * Pinned pages cannot be migrated. This is the same test as in
2394 * migrate_page_move_mapping(), except that here we allow migration of a
2397 static bool migrate_vma_check_page(struct page
*page
)
2400 * One extra ref because caller holds an extra reference, either from
2401 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2407 * FIXME support THP (transparent huge page), it is bit more complex to
2408 * check them than regular pages, because they can be mapped with a pmd
2409 * or with a pte (split pte mapping).
2411 if (PageCompound(page
))
2414 /* Page from ZONE_DEVICE have one extra reference */
2415 if (is_zone_device_page(page
)) {
2417 * Private page can never be pin as they have no valid pte and
2418 * GUP will fail for those. Yet if there is a pending migration
2419 * a thread might try to wait on the pte migration entry and
2420 * will bump the page reference count. Sadly there is no way to
2421 * differentiate a regular pin from migration wait. Hence to
2422 * avoid 2 racing thread trying to migrate back to CPU to enter
2423 * infinite loop (one stoping migration because the other is
2424 * waiting on pte migration entry). We always return true here.
2426 * FIXME proper solution is to rework migration_entry_wait() so
2427 * it does not need to take a reference on page.
2429 if (is_device_private_page(page
))
2433 * Only allow device public page to be migrated and account for
2434 * the extra reference count imply by ZONE_DEVICE pages.
2436 if (!is_device_public_page(page
))
2441 /* For file back page */
2442 if (page_mapping(page
))
2443 extra
+= 1 + page_has_private(page
);
2445 if ((page_count(page
) - extra
) > page_mapcount(page
))
2452 * migrate_vma_prepare() - lock pages and isolate them from the lru
2453 * @migrate: migrate struct containing all migration information
2455 * This locks pages that have been collected by migrate_vma_collect(). Once each
2456 * page is locked it is isolated from the lru (for non-device pages). Finally,
2457 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2458 * migrated by concurrent kernel threads.
2460 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2462 const unsigned long npages
= migrate
->npages
;
2463 const unsigned long start
= migrate
->start
;
2464 unsigned long addr
, i
, restore
= 0;
2465 bool allow_drain
= true;
2469 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2470 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2476 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2478 * Because we are migrating several pages there can be
2479 * a deadlock between 2 concurrent migration where each
2480 * are waiting on each other page lock.
2482 * Make migrate_vma() a best effort thing and backoff
2483 * for any page we can not lock right away.
2485 if (!trylock_page(page
)) {
2486 migrate
->src
[i
] = 0;
2492 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2495 /* ZONE_DEVICE pages are not on LRU */
2496 if (!is_zone_device_page(page
)) {
2497 if (!PageLRU(page
) && allow_drain
) {
2498 /* Drain CPU's pagevec */
2499 lru_add_drain_all();
2500 allow_drain
= false;
2503 if (isolate_lru_page(page
)) {
2505 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2509 migrate
->src
[i
] = 0;
2517 /* Drop the reference we took in collect */
2521 if (!migrate_vma_check_page(page
)) {
2523 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2527 if (!is_zone_device_page(page
)) {
2529 putback_lru_page(page
);
2532 migrate
->src
[i
] = 0;
2536 if (!is_zone_device_page(page
))
2537 putback_lru_page(page
);
2544 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2545 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2547 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2550 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2552 migrate
->src
[i
] = 0;
2560 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2561 * @migrate: migrate struct containing all migration information
2563 * Replace page mapping (CPU page table pte) with a special migration pte entry
2564 * and check again if it has been pinned. Pinned pages are restored because we
2565 * cannot migrate them.
2567 * This is the last step before we call the device driver callback to allocate
2568 * destination memory and copy contents of original page over to new page.
2570 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2572 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2573 const unsigned long npages
= migrate
->npages
;
2574 const unsigned long start
= migrate
->start
;
2575 unsigned long addr
, i
, restore
= 0;
2577 for (i
= 0; i
< npages
; i
++) {
2578 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2580 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2583 if (page_mapped(page
)) {
2584 try_to_unmap(page
, flags
);
2585 if (page_mapped(page
))
2589 if (migrate_vma_check_page(page
))
2593 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2598 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2599 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2601 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2604 remove_migration_ptes(page
, page
, false);
2606 migrate
->src
[i
] = 0;
2610 if (is_zone_device_page(page
))
2613 putback_lru_page(page
);
2617 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2623 struct vm_area_struct
*vma
= migrate
->vma
;
2624 struct mm_struct
*mm
= vma
->vm_mm
;
2625 struct mem_cgroup
*memcg
;
2635 /* Only allow populating anonymous memory */
2636 if (!vma_is_anonymous(vma
))
2639 pgdp
= pgd_offset(mm
, addr
);
2640 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2643 pudp
= pud_alloc(mm
, p4dp
, addr
);
2646 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2650 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2654 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2655 * pte_offset_map() on pmds where a huge pmd might be created
2656 * from a different thread.
2658 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2659 * parallel threads are excluded by other means.
2661 * Here we only have down_read(mmap_sem).
2663 if (pte_alloc(mm
, pmdp
, addr
))
2666 /* See the comment in pte_alloc_one_map() */
2667 if (unlikely(pmd_trans_unstable(pmdp
)))
2670 if (unlikely(anon_vma_prepare(vma
)))
2672 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2676 * The memory barrier inside __SetPageUptodate makes sure that
2677 * preceding stores to the page contents become visible before
2678 * the set_pte_at() write.
2680 __SetPageUptodate(page
);
2682 if (is_zone_device_page(page
)) {
2683 if (is_device_private_page(page
)) {
2684 swp_entry_t swp_entry
;
2686 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2687 entry
= swp_entry_to_pte(swp_entry
);
2688 } else if (is_device_public_page(page
)) {
2689 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2690 if (vma
->vm_flags
& VM_WRITE
)
2691 entry
= pte_mkwrite(pte_mkdirty(entry
));
2692 entry
= pte_mkdevmap(entry
);
2695 entry
= mk_pte(page
, vma
->vm_page_prot
);
2696 if (vma
->vm_flags
& VM_WRITE
)
2697 entry
= pte_mkwrite(pte_mkdirty(entry
));
2700 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2702 if (pte_present(*ptep
)) {
2703 unsigned long pfn
= pte_pfn(*ptep
);
2705 if (!is_zero_pfn(pfn
)) {
2706 pte_unmap_unlock(ptep
, ptl
);
2707 mem_cgroup_cancel_charge(page
, memcg
, false);
2711 } else if (!pte_none(*ptep
)) {
2712 pte_unmap_unlock(ptep
, ptl
);
2713 mem_cgroup_cancel_charge(page
, memcg
, false);
2718 * Check for usefaultfd but do not deliver the fault. Instead,
2721 if (userfaultfd_missing(vma
)) {
2722 pte_unmap_unlock(ptep
, ptl
);
2723 mem_cgroup_cancel_charge(page
, memcg
, false);
2727 inc_mm_counter(mm
, MM_ANONPAGES
);
2728 page_add_new_anon_rmap(page
, vma
, addr
, false);
2729 mem_cgroup_commit_charge(page
, memcg
, false, false);
2730 if (!is_zone_device_page(page
))
2731 lru_cache_add_active_or_unevictable(page
, vma
);
2735 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2736 ptep_clear_flush_notify(vma
, addr
, ptep
);
2737 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2738 update_mmu_cache(vma
, addr
, ptep
);
2740 /* No need to invalidate - it was non-present before */
2741 set_pte_at(mm
, addr
, ptep
, entry
);
2742 update_mmu_cache(vma
, addr
, ptep
);
2745 pte_unmap_unlock(ptep
, ptl
);
2746 *src
= MIGRATE_PFN_MIGRATE
;
2750 *src
&= ~MIGRATE_PFN_MIGRATE
;
2754 * migrate_vma_pages() - migrate meta-data from src page to dst page
2755 * @migrate: migrate struct containing all migration information
2757 * This migrates struct page meta-data from source struct page to destination
2758 * struct page. This effectively finishes the migration from source page to the
2761 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2763 const unsigned long npages
= migrate
->npages
;
2764 const unsigned long start
= migrate
->start
;
2765 struct vm_area_struct
*vma
= migrate
->vma
;
2766 struct mm_struct
*mm
= vma
->vm_mm
;
2767 unsigned long addr
, i
, mmu_start
;
2768 bool notified
= false;
2770 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2771 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2772 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2773 struct address_space
*mapping
;
2777 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2782 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2788 mmu_notifier_invalidate_range_start(mm
,
2792 migrate_vma_insert_page(migrate
, addr
, newpage
,
2798 mapping
= page_mapping(page
);
2800 if (is_zone_device_page(newpage
)) {
2801 if (is_device_private_page(newpage
)) {
2803 * For now only support private anonymous when
2804 * migrating to un-addressable device memory.
2807 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2810 } else if (!is_device_public_page(newpage
)) {
2812 * Other types of ZONE_DEVICE page are not
2815 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2820 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2821 if (r
!= MIGRATEPAGE_SUCCESS
)
2822 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2826 * No need to double call mmu_notifier->invalidate_range() callback as
2827 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2828 * did already call it.
2831 mmu_notifier_invalidate_range_only_end(mm
, mmu_start
,
2836 * migrate_vma_finalize() - restore CPU page table entry
2837 * @migrate: migrate struct containing all migration information
2839 * This replaces the special migration pte entry with either a mapping to the
2840 * new page if migration was successful for that page, or to the original page
2843 * This also unlocks the pages and puts them back on the lru, or drops the extra
2844 * refcount, for device pages.
2846 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2848 const unsigned long npages
= migrate
->npages
;
2851 for (i
= 0; i
< npages
; i
++) {
2852 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2853 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2857 unlock_page(newpage
);
2863 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2865 unlock_page(newpage
);
2871 remove_migration_ptes(page
, newpage
, false);
2875 if (is_zone_device_page(page
))
2878 putback_lru_page(page
);
2880 if (newpage
!= page
) {
2881 unlock_page(newpage
);
2882 if (is_zone_device_page(newpage
))
2885 putback_lru_page(newpage
);
2891 * migrate_vma() - migrate a range of memory inside vma
2893 * @ops: migration callback for allocating destination memory and copying
2894 * @vma: virtual memory area containing the range to be migrated
2895 * @start: start address of the range to migrate (inclusive)
2896 * @end: end address of the range to migrate (exclusive)
2897 * @src: array of hmm_pfn_t containing source pfns
2898 * @dst: array of hmm_pfn_t containing destination pfns
2899 * @private: pointer passed back to each of the callback
2900 * Returns: 0 on success, error code otherwise
2902 * This function tries to migrate a range of memory virtual address range, using
2903 * callbacks to allocate and copy memory from source to destination. First it
2904 * collects all the pages backing each virtual address in the range, saving this
2905 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908 * in the corresponding src array entry. It then restores any pages that are
2909 * pinned, by remapping and unlocking those pages.
2911 * At this point it calls the alloc_and_copy() callback. For documentation on
2912 * what is expected from that callback, see struct migrate_vma_ops comments in
2913 * include/linux/migrate.h
2915 * After the alloc_and_copy() callback, this function goes over each entry in
2916 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918 * then the function tries to migrate struct page information from the source
2919 * struct page to the destination struct page. If it fails to migrate the struct
2920 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923 * At this point all successfully migrated pages have an entry in the src
2924 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925 * array entry with MIGRATE_PFN_VALID flag set.
2927 * It then calls the finalize_and_map() callback. See comments for "struct
2928 * migrate_vma_ops", in include/linux/migrate.h for details about
2929 * finalize_and_map() behavior.
2931 * After the finalize_and_map() callback, for successfully migrated pages, this
2932 * function updates the CPU page table to point to new pages, otherwise it
2933 * restores the CPU page table to point to the original source pages.
2935 * Function returns 0 after the above steps, even if no pages were migrated
2936 * (The function only returns an error if any of the arguments are invalid.)
2938 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939 * unsigned long entries.
2941 int migrate_vma(const struct migrate_vma_ops
*ops
,
2942 struct vm_area_struct
*vma
,
2943 unsigned long start
,
2949 struct migrate_vma migrate
;
2951 /* Sanity check the arguments */
2954 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
))
2956 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2958 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2960 if (!ops
|| !src
|| !dst
|| start
>= end
)
2963 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2966 migrate
.start
= start
;
2972 /* Collect, and try to unmap source pages */
2973 migrate_vma_collect(&migrate
);
2974 if (!migrate
.cpages
)
2977 /* Lock and isolate page */
2978 migrate_vma_prepare(&migrate
);
2979 if (!migrate
.cpages
)
2983 migrate_vma_unmap(&migrate
);
2984 if (!migrate
.cpages
)
2988 * At this point pages are locked and unmapped, and thus they have
2989 * stable content and can safely be copied to destination memory that
2990 * is allocated by the callback.
2992 * Note that migration can fail in migrate_vma_struct_page() for each
2995 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2997 /* This does the real migration of struct page */
2998 migrate_vma_pages(&migrate
);
3000 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
3002 /* Unlock and remap pages */
3003 migrate_vma_finalize(&migrate
);
3007 EXPORT_SYMBOL(migrate_vma
);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */