Merge 4.11-rc4 into tty-next
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob0d0be7754a653120a4e08c3897e37c572d3cda49
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {0,}
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access},
160 {0x3243103C, "Smart Array P410", &SA5_access},
161 {0x3245103C, "Smart Array P410i", &SA5_access},
162 {0x3247103C, "Smart Array P411", &SA5_access},
163 {0x3249103C, "Smart Array P812", &SA5_access},
164 {0x324A103C, "Smart Array P712m", &SA5_access},
165 {0x324B103C, "Smart Array P711m", &SA5_access},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access},
168 {0x3351103C, "Smart Array P420", &SA5_access},
169 {0x3352103C, "Smart Array P421", &SA5_access},
170 {0x3353103C, "Smart Array P822", &SA5_access},
171 {0x3354103C, "Smart Array P420i", &SA5_access},
172 {0x3355103C, "Smart Array P220i", &SA5_access},
173 {0x3356103C, "Smart Array P721m", &SA5_access},
174 {0x1921103C, "Smart Array P830i", &SA5_access},
175 {0x1922103C, "Smart Array P430", &SA5_access},
176 {0x1923103C, "Smart Array P431", &SA5_access},
177 {0x1924103C, "Smart Array P830", &SA5_access},
178 {0x1926103C, "Smart Array P731m", &SA5_access},
179 {0x1928103C, "Smart Array P230i", &SA5_access},
180 {0x1929103C, "Smart Array P530", &SA5_access},
181 {0x21BD103C, "Smart Array P244br", &SA5_access},
182 {0x21BE103C, "Smart Array P741m", &SA5_access},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access},
186 {0x21C2103C, "Smart Array P440", &SA5_access},
187 {0x21C3103C, "Smart Array P441", &SA5_access},
188 {0x21C4103C, "Smart Array", &SA5_access},
189 {0x21C5103C, "Smart Array P841", &SA5_access},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access},
191 {0x21C7103C, "Smart HBA H240", &SA5_access},
192 {0x21C8103C, "Smart HBA H241", &SA5_access},
193 {0x21C9103C, "Smart Array", &SA5_access},
194 {0x21CA103C, "Smart Array P246br", &SA5_access},
195 {0x21CB103C, "Smart Array P840", &SA5_access},
196 {0x21CC103C, "Smart Array", &SA5_access},
197 {0x21CD103C, "Smart Array", &SA5_access},
198 {0x21CE103C, "Smart HBA", &SA5_access},
199 {0x05809005, "SmartHBA-SA", &SA5_access},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 struct sas_rphy *rphy);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 void __user *arg);
236 #endif
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280 unsigned char lunaddr[],
281 int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283 int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298 struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300 unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303 struct hpsa_scsi_dev_t *dev,
304 unsigned char *scsi3addr);
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
308 unsigned long *priv = shost_priv(sdev->host);
309 return (struct ctlr_info *) *priv;
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
314 unsigned long *priv = shost_priv(sh);
315 return (struct ctlr_info *) *priv;
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
320 return c->scsi_cmd == SCSI_CMD_IDLE;
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
325 return c->abort_pending || c->reset_pending;
328 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330 u8 *sense_key, u8 *asc, u8 *ascq)
332 struct scsi_sense_hdr sshdr;
333 bool rc;
335 *sense_key = -1;
336 *asc = -1;
337 *ascq = -1;
339 if (sense_data_len < 1)
340 return;
342 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343 if (rc) {
344 *sense_key = sshdr.sense_key;
345 *asc = sshdr.asc;
346 *ascq = sshdr.ascq;
350 static int check_for_unit_attention(struct ctlr_info *h,
351 struct CommandList *c)
353 u8 sense_key, asc, ascq;
354 int sense_len;
356 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357 sense_len = sizeof(c->err_info->SenseInfo);
358 else
359 sense_len = c->err_info->SenseLen;
361 decode_sense_data(c->err_info->SenseInfo, sense_len,
362 &sense_key, &asc, &ascq);
363 if (sense_key != UNIT_ATTENTION || asc == 0xff)
364 return 0;
366 switch (asc) {
367 case STATE_CHANGED:
368 dev_warn(&h->pdev->dev,
369 "%s: a state change detected, command retried\n",
370 h->devname);
371 break;
372 case LUN_FAILED:
373 dev_warn(&h->pdev->dev,
374 "%s: LUN failure detected\n", h->devname);
375 break;
376 case REPORT_LUNS_CHANGED:
377 dev_warn(&h->pdev->dev,
378 "%s: report LUN data changed\n", h->devname);
380 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381 * target (array) devices.
383 break;
384 case POWER_OR_RESET:
385 dev_warn(&h->pdev->dev,
386 "%s: a power on or device reset detected\n",
387 h->devname);
388 break;
389 case UNIT_ATTENTION_CLEARED:
390 dev_warn(&h->pdev->dev,
391 "%s: unit attention cleared by another initiator\n",
392 h->devname);
393 break;
394 default:
395 dev_warn(&h->pdev->dev,
396 "%s: unknown unit attention detected\n",
397 h->devname);
398 break;
400 return 1;
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
405 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408 return 0;
409 dev_warn(&h->pdev->dev, HPSA "device busy");
410 return 1;
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415 struct device_attribute *attr, char *buf)
417 int ld;
418 struct ctlr_info *h;
419 struct Scsi_Host *shost = class_to_shost(dev);
421 h = shost_to_hba(shost);
422 ld = lockup_detected(h);
424 return sprintf(buf, "ld=%d\n", ld);
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428 struct device_attribute *attr,
429 const char *buf, size_t count)
431 int status, len;
432 struct ctlr_info *h;
433 struct Scsi_Host *shost = class_to_shost(dev);
434 char tmpbuf[10];
436 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437 return -EACCES;
438 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439 strncpy(tmpbuf, buf, len);
440 tmpbuf[len] = '\0';
441 if (sscanf(tmpbuf, "%d", &status) != 1)
442 return -EINVAL;
443 h = shost_to_hba(shost);
444 h->acciopath_status = !!status;
445 dev_warn(&h->pdev->dev,
446 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447 h->acciopath_status ? "enabled" : "disabled");
448 return count;
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
455 int debug_level, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466 return -EINVAL;
467 if (debug_level < 0)
468 debug_level = 0;
469 h = shost_to_hba(shost);
470 h->raid_offload_debug = debug_level;
471 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472 h->raid_offload_debug);
473 return count;
476 static ssize_t host_store_rescan(struct device *dev,
477 struct device_attribute *attr,
478 const char *buf, size_t count)
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 h = shost_to_hba(shost);
483 hpsa_scan_start(h->scsi_host);
484 return count;
487 static ssize_t host_show_firmware_revision(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct ctlr_info *h;
491 struct Scsi_Host *shost = class_to_shost(dev);
492 unsigned char *fwrev;
494 h = shost_to_hba(shost);
495 if (!h->hba_inquiry_data)
496 return 0;
497 fwrev = &h->hba_inquiry_data[32];
498 return snprintf(buf, 20, "%c%c%c%c\n",
499 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503 struct device_attribute *attr, char *buf)
505 struct Scsi_Host *shost = class_to_shost(dev);
506 struct ctlr_info *h = shost_to_hba(shost);
508 return snprintf(buf, 20, "%d\n",
509 atomic_read(&h->commands_outstanding));
512 static ssize_t host_show_transport_mode(struct device *dev,
513 struct device_attribute *attr, char *buf)
515 struct ctlr_info *h;
516 struct Scsi_Host *shost = class_to_shost(dev);
518 h = shost_to_hba(shost);
519 return snprintf(buf, 20, "%s\n",
520 h->transMethod & CFGTBL_Trans_Performant ?
521 "performant" : "simple");
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525 struct device_attribute *attr, char *buf)
527 struct ctlr_info *h;
528 struct Scsi_Host *shost = class_to_shost(dev);
530 h = shost_to_hba(shost);
531 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532 (h->acciopath_status == 1) ? "enabled" : "disabled");
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537 0x324a103C, /* Smart Array P712m */
538 0x324b103C, /* Smart Array P711m */
539 0x3223103C, /* Smart Array P800 */
540 0x3234103C, /* Smart Array P400 */
541 0x3235103C, /* Smart Array P400i */
542 0x3211103C, /* Smart Array E200i */
543 0x3212103C, /* Smart Array E200 */
544 0x3213103C, /* Smart Array E200i */
545 0x3214103C, /* Smart Array E200i */
546 0x3215103C, /* Smart Array E200i */
547 0x3237103C, /* Smart Array E500 */
548 0x323D103C, /* Smart Array P700m */
549 0x40800E11, /* Smart Array 5i */
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
552 0x40700E11, /* Smart Array 5300 */
553 0x40820E11, /* Smart Array 532 */
554 0x40830E11, /* Smart Array 5312 */
555 0x409A0E11, /* Smart Array 641 */
556 0x409B0E11, /* Smart Array 642 */
557 0x40910E11, /* Smart Array 6i */
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562 0x40800E11, /* Smart Array 5i */
563 0x40700E11, /* Smart Array 5300 */
564 0x40820E11, /* Smart Array 532 */
565 0x40830E11, /* Smart Array 5312 */
566 0x409A0E11, /* Smart Array 641 */
567 0x409B0E11, /* Smart Array 642 */
568 0x40910E11, /* Smart Array 6i */
569 /* Exclude 640x boards. These are two pci devices in one slot
570 * which share a battery backed cache module. One controls the
571 * cache, the other accesses the cache through the one that controls
572 * it. If we reset the one controlling the cache, the other will
573 * likely not be happy. Just forbid resetting this conjoined mess.
574 * The 640x isn't really supported by hpsa anyway.
576 0x409C0E11, /* Smart Array 6400 */
577 0x409D0E11, /* Smart Array 6400 EM */
580 static u32 needs_abort_tags_swizzled[] = {
581 0x323D103C, /* Smart Array P700m */
582 0x324a103C, /* Smart Array P712m */
583 0x324b103C, /* SmartArray P711m */
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
588 int i;
590 for (i = 0; i < nelems; i++)
591 if (a[i] == board_id)
592 return 1;
593 return 0;
596 static int ctlr_is_hard_resettable(u32 board_id)
598 return !board_id_in_array(unresettable_controller,
599 ARRAY_SIZE(unresettable_controller), board_id);
602 static int ctlr_is_soft_resettable(u32 board_id)
604 return !board_id_in_array(soft_unresettable_controller,
605 ARRAY_SIZE(soft_unresettable_controller), board_id);
608 static int ctlr_is_resettable(u32 board_id)
610 return ctlr_is_hard_resettable(board_id) ||
611 ctlr_is_soft_resettable(board_id);
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
616 return board_id_in_array(needs_abort_tags_swizzled,
617 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
620 static ssize_t host_show_resettable(struct device *dev,
621 struct device_attribute *attr, char *buf)
623 struct ctlr_info *h;
624 struct Scsi_Host *shost = class_to_shost(dev);
626 h = shost_to_hba(shost);
627 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
632 return (scsi3addr[3] & 0xC0) == 0x40;
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
638 #define HPSA_RAID_0 0
639 #define HPSA_RAID_4 1
640 #define HPSA_RAID_1 2 /* also used for RAID 10 */
641 #define HPSA_RAID_5 3 /* also used for RAID 50 */
642 #define HPSA_RAID_51 4
643 #define HPSA_RAID_6 5 /* also used for RAID 60 */
644 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
650 return !device->physical_device;
653 static ssize_t raid_level_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
656 ssize_t l = 0;
657 unsigned char rlevel;
658 struct ctlr_info *h;
659 struct scsi_device *sdev;
660 struct hpsa_scsi_dev_t *hdev;
661 unsigned long flags;
663 sdev = to_scsi_device(dev);
664 h = sdev_to_hba(sdev);
665 spin_lock_irqsave(&h->lock, flags);
666 hdev = sdev->hostdata;
667 if (!hdev) {
668 spin_unlock_irqrestore(&h->lock, flags);
669 return -ENODEV;
672 /* Is this even a logical drive? */
673 if (!is_logical_device(hdev)) {
674 spin_unlock_irqrestore(&h->lock, flags);
675 l = snprintf(buf, PAGE_SIZE, "N/A\n");
676 return l;
679 rlevel = hdev->raid_level;
680 spin_unlock_irqrestore(&h->lock, flags);
681 if (rlevel > RAID_UNKNOWN)
682 rlevel = RAID_UNKNOWN;
683 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684 return l;
687 static ssize_t lunid_show(struct device *dev,
688 struct device_attribute *attr, char *buf)
690 struct ctlr_info *h;
691 struct scsi_device *sdev;
692 struct hpsa_scsi_dev_t *hdev;
693 unsigned long flags;
694 unsigned char lunid[8];
696 sdev = to_scsi_device(dev);
697 h = sdev_to_hba(sdev);
698 spin_lock_irqsave(&h->lock, flags);
699 hdev = sdev->hostdata;
700 if (!hdev) {
701 spin_unlock_irqrestore(&h->lock, flags);
702 return -ENODEV;
704 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705 spin_unlock_irqrestore(&h->lock, flags);
706 return snprintf(buf, 20, "0x%8phN\n", lunid);
709 static ssize_t unique_id_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
712 struct ctlr_info *h;
713 struct scsi_device *sdev;
714 struct hpsa_scsi_dev_t *hdev;
715 unsigned long flags;
716 unsigned char sn[16];
718 sdev = to_scsi_device(dev);
719 h = sdev_to_hba(sdev);
720 spin_lock_irqsave(&h->lock, flags);
721 hdev = sdev->hostdata;
722 if (!hdev) {
723 spin_unlock_irqrestore(&h->lock, flags);
724 return -ENODEV;
726 memcpy(sn, hdev->device_id, sizeof(sn));
727 spin_unlock_irqrestore(&h->lock, flags);
728 return snprintf(buf, 16 * 2 + 2,
729 "%02X%02X%02X%02X%02X%02X%02X%02X"
730 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731 sn[0], sn[1], sn[2], sn[3],
732 sn[4], sn[5], sn[6], sn[7],
733 sn[8], sn[9], sn[10], sn[11],
734 sn[12], sn[13], sn[14], sn[15]);
737 static ssize_t sas_address_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
740 struct ctlr_info *h;
741 struct scsi_device *sdev;
742 struct hpsa_scsi_dev_t *hdev;
743 unsigned long flags;
744 u64 sas_address;
746 sdev = to_scsi_device(dev);
747 h = sdev_to_hba(sdev);
748 spin_lock_irqsave(&h->lock, flags);
749 hdev = sdev->hostdata;
750 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751 spin_unlock_irqrestore(&h->lock, flags);
752 return -ENODEV;
754 sas_address = hdev->sas_address;
755 spin_unlock_irqrestore(&h->lock, flags);
757 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761 struct device_attribute *attr, char *buf)
763 struct ctlr_info *h;
764 struct scsi_device *sdev;
765 struct hpsa_scsi_dev_t *hdev;
766 unsigned long flags;
767 int offload_enabled;
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->lock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->lock, flags);
775 return -ENODEV;
777 offload_enabled = hdev->offload_enabled;
778 spin_unlock_irqrestore(&h->lock, flags);
779 return snprintf(buf, 20, "%d\n", offload_enabled);
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784 struct device_attribute *attr, char *buf)
786 struct ctlr_info *h;
787 struct scsi_device *sdev;
788 struct hpsa_scsi_dev_t *hdev;
789 unsigned long flags;
790 int i;
791 int output_len = 0;
792 u8 box;
793 u8 bay;
794 u8 path_map_index = 0;
795 char *active;
796 unsigned char phys_connector[2];
798 sdev = to_scsi_device(dev);
799 h = sdev_to_hba(sdev);
800 spin_lock_irqsave(&h->devlock, flags);
801 hdev = sdev->hostdata;
802 if (!hdev) {
803 spin_unlock_irqrestore(&h->devlock, flags);
804 return -ENODEV;
807 bay = hdev->bay;
808 for (i = 0; i < MAX_PATHS; i++) {
809 path_map_index = 1<<i;
810 if (i == hdev->active_path_index)
811 active = "Active";
812 else if (hdev->path_map & path_map_index)
813 active = "Inactive";
814 else
815 continue;
817 output_len += scnprintf(buf + output_len,
818 PAGE_SIZE - output_len,
819 "[%d:%d:%d:%d] %20.20s ",
820 h->scsi_host->host_no,
821 hdev->bus, hdev->target, hdev->lun,
822 scsi_device_type(hdev->devtype));
824 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825 output_len += scnprintf(buf + output_len,
826 PAGE_SIZE - output_len,
827 "%s\n", active);
828 continue;
831 box = hdev->box[i];
832 memcpy(&phys_connector, &hdev->phys_connector[i],
833 sizeof(phys_connector));
834 if (phys_connector[0] < '0')
835 phys_connector[0] = '0';
836 if (phys_connector[1] < '0')
837 phys_connector[1] = '0';
838 output_len += scnprintf(buf + output_len,
839 PAGE_SIZE - output_len,
840 "PORT: %.2s ",
841 phys_connector);
842 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843 hdev->expose_device) {
844 if (box == 0 || box == 0xFF) {
845 output_len += scnprintf(buf + output_len,
846 PAGE_SIZE - output_len,
847 "BAY: %hhu %s\n",
848 bay, active);
849 } else {
850 output_len += scnprintf(buf + output_len,
851 PAGE_SIZE - output_len,
852 "BOX: %hhu BAY: %hhu %s\n",
853 box, bay, active);
855 } else if (box != 0 && box != 0xFF) {
856 output_len += scnprintf(buf + output_len,
857 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858 box, active);
859 } else
860 output_len += scnprintf(buf + output_len,
861 PAGE_SIZE - output_len, "%s\n", active);
864 spin_unlock_irqrestore(&h->devlock, flags);
865 return output_len;
868 static ssize_t host_show_ctlr_num(struct device *dev,
869 struct device_attribute *attr, char *buf)
871 struct ctlr_info *h;
872 struct Scsi_Host *shost = class_to_shost(dev);
874 h = shost_to_hba(shost);
875 return snprintf(buf, 20, "%d\n", h->ctlr);
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884 host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887 host_show_hp_ssd_smart_path_status,
888 host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890 host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892 host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894 host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896 host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898 host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900 host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902 host_show_ctlr_num, NULL);
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905 &dev_attr_raid_level,
906 &dev_attr_lunid,
907 &dev_attr_unique_id,
908 &dev_attr_hp_ssd_smart_path_enabled,
909 &dev_attr_path_info,
910 &dev_attr_sas_address,
911 NULL,
914 static struct device_attribute *hpsa_shost_attrs[] = {
915 &dev_attr_rescan,
916 &dev_attr_firmware_revision,
917 &dev_attr_commands_outstanding,
918 &dev_attr_transport_mode,
919 &dev_attr_resettable,
920 &dev_attr_hp_ssd_smart_path_status,
921 &dev_attr_raid_offload_debug,
922 &dev_attr_lockup_detected,
923 &dev_attr_ctlr_num,
924 NULL,
927 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
930 static struct scsi_host_template hpsa_driver_template = {
931 .module = THIS_MODULE,
932 .name = HPSA,
933 .proc_name = HPSA,
934 .queuecommand = hpsa_scsi_queue_command,
935 .scan_start = hpsa_scan_start,
936 .scan_finished = hpsa_scan_finished,
937 .change_queue_depth = hpsa_change_queue_depth,
938 .this_id = -1,
939 .use_clustering = ENABLE_CLUSTERING,
940 .eh_abort_handler = hpsa_eh_abort_handler,
941 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
942 .ioctl = hpsa_ioctl,
943 .slave_alloc = hpsa_slave_alloc,
944 .slave_configure = hpsa_slave_configure,
945 .slave_destroy = hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947 .compat_ioctl = hpsa_compat_ioctl,
948 #endif
949 .sdev_attrs = hpsa_sdev_attrs,
950 .shost_attrs = hpsa_shost_attrs,
951 .max_sectors = 8192,
952 .no_write_same = 1,
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
957 u32 a;
958 struct reply_queue_buffer *rq = &h->reply_queue[q];
960 if (h->transMethod & CFGTBL_Trans_io_accel1)
961 return h->access.command_completed(h, q);
963 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964 return h->access.command_completed(h, q);
966 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967 a = rq->head[rq->current_entry];
968 rq->current_entry++;
969 atomic_dec(&h->commands_outstanding);
970 } else {
971 a = FIFO_EMPTY;
973 /* Check for wraparound */
974 if (rq->current_entry == h->max_commands) {
975 rq->current_entry = 0;
976 rq->wraparound ^= 1;
978 return a;
982 * There are some special bits in the bus address of the
983 * command that we have to set for the controller to know
984 * how to process the command:
986 * Normal performant mode:
987 * bit 0: 1 means performant mode, 0 means simple mode.
988 * bits 1-3 = block fetch table entry
989 * bits 4-6 = command type (== 0)
991 * ioaccel1 mode:
992 * bit 0 = "performant mode" bit.
993 * bits 1-3 = block fetch table entry
994 * bits 4-6 = command type (== 110)
995 * (command type is needed because ioaccel1 mode
996 * commands are submitted through the same register as normal
997 * mode commands, so this is how the controller knows whether
998 * the command is normal mode or ioaccel1 mode.)
1000 * ioaccel2 mode:
1001 * bit 0 = "performant mode" bit.
1002 * bits 1-4 = block fetch table entry (note extra bit)
1003 * bits 4-6 = not needed, because ioaccel2 mode has
1004 * a separate special register for submitting commands.
1008 * set_performant_mode: Modify the tag for cciss performant
1009 * set bit 0 for pull model, bits 3-1 for block fetch
1010 * register number
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014 int reply_queue)
1016 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018 if (unlikely(!h->msix_vectors))
1019 return;
1020 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 c->Header.ReplyQueue =
1022 raw_smp_processor_id() % h->nreply_queues;
1023 else
1024 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029 struct CommandList *c,
1030 int reply_queue)
1032 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1035 * Tell the controller to post the reply to the queue for this
1036 * processor. This seems to give the best I/O throughput.
1038 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040 else
1041 cp->ReplyQueue = reply_queue % h->nreply_queues;
1043 * Set the bits in the address sent down to include:
1044 * - performant mode bit (bit 0)
1045 * - pull count (bits 1-3)
1046 * - command type (bits 4-6)
1048 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049 IOACCEL1_BUSADDR_CMDTYPE;
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053 struct CommandList *c,
1054 int reply_queue)
1056 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057 &h->ioaccel2_cmd_pool[c->cmdindex];
1059 /* Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1062 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064 else
1065 cp->reply_queue = reply_queue % h->nreply_queues;
1066 /* Set the bits in the address sent down to include:
1067 * - performant mode bit not used in ioaccel mode 2
1068 * - pull count (bits 0-3)
1069 * - command type isn't needed for ioaccel2
1071 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075 struct CommandList *c,
1076 int reply_queue)
1078 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1081 * Tell the controller to post the reply to the queue for this
1082 * processor. This seems to give the best I/O throughput.
1084 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086 else
1087 cp->reply_queue = reply_queue % h->nreply_queues;
1089 * Set the bits in the address sent down to include:
1090 * - performant mode bit not used in ioaccel mode 2
1091 * - pull count (bits 0-3)
1092 * - command type isn't needed for ioaccel2
1094 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1097 static int is_firmware_flash_cmd(u8 *cdb)
1099 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1103 * During firmware flash, the heartbeat register may not update as frequently
1104 * as it should. So we dial down lockup detection during firmware flash. and
1105 * dial it back up when firmware flash completes.
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110 struct CommandList *c)
1112 if (!is_firmware_flash_cmd(c->Request.CDB))
1113 return;
1114 atomic_inc(&h->firmware_flash_in_progress);
1115 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119 struct CommandList *c)
1121 if (is_firmware_flash_cmd(c->Request.CDB) &&
1122 atomic_dec_and_test(&h->firmware_flash_in_progress))
1123 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127 struct CommandList *c, int reply_queue)
1129 dial_down_lockup_detection_during_fw_flash(h, c);
1130 atomic_inc(&h->commands_outstanding);
1131 switch (c->cmd_type) {
1132 case CMD_IOACCEL1:
1133 set_ioaccel1_performant_mode(h, c, reply_queue);
1134 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135 break;
1136 case CMD_IOACCEL2:
1137 set_ioaccel2_performant_mode(h, c, reply_queue);
1138 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139 break;
1140 case IOACCEL2_TMF:
1141 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 break;
1144 default:
1145 set_performant_mode(h, c, reply_queue);
1146 h->access.submit_command(h, c);
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1152 if (unlikely(hpsa_is_pending_event(c)))
1153 return finish_cmd(c);
1155 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1160 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1165 if (!h->hba_inquiry_data)
1166 return 0;
1167 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168 return 1;
1169 return 0;
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173 unsigned char scsi3addr[], int bus, int *target, int *lun)
1175 /* finds an unused bus, target, lun for a new physical device
1176 * assumes h->devlock is held
1178 int i, found = 0;
1179 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1181 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1183 for (i = 0; i < h->ndevices; i++) {
1184 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185 __set_bit(h->dev[i]->target, lun_taken);
1188 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189 if (i < HPSA_MAX_DEVICES) {
1190 /* *bus = 1; */
1191 *target = i;
1192 *lun = 0;
1193 found = 1;
1195 return !found;
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199 struct hpsa_scsi_dev_t *dev, char *description)
1201 #define LABEL_SIZE 25
1202 char label[LABEL_SIZE];
1204 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205 return;
1207 switch (dev->devtype) {
1208 case TYPE_RAID:
1209 snprintf(label, LABEL_SIZE, "controller");
1210 break;
1211 case TYPE_ENCLOSURE:
1212 snprintf(label, LABEL_SIZE, "enclosure");
1213 break;
1214 case TYPE_DISK:
1215 case TYPE_ZBC:
1216 if (dev->external)
1217 snprintf(label, LABEL_SIZE, "external");
1218 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219 snprintf(label, LABEL_SIZE, "%s",
1220 raid_label[PHYSICAL_DRIVE]);
1221 else
1222 snprintf(label, LABEL_SIZE, "RAID-%s",
1223 dev->raid_level > RAID_UNKNOWN ? "?" :
1224 raid_label[dev->raid_level]);
1225 break;
1226 case TYPE_ROM:
1227 snprintf(label, LABEL_SIZE, "rom");
1228 break;
1229 case TYPE_TAPE:
1230 snprintf(label, LABEL_SIZE, "tape");
1231 break;
1232 case TYPE_MEDIUM_CHANGER:
1233 snprintf(label, LABEL_SIZE, "changer");
1234 break;
1235 default:
1236 snprintf(label, LABEL_SIZE, "UNKNOWN");
1237 break;
1240 dev_printk(level, &h->pdev->dev,
1241 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243 description,
1244 scsi_device_type(dev->devtype),
1245 dev->vendor,
1246 dev->model,
1247 label,
1248 dev->offload_config ? '+' : '-',
1249 dev->offload_enabled ? '+' : '-',
1250 dev->expose_device);
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255 struct hpsa_scsi_dev_t *device,
1256 struct hpsa_scsi_dev_t *added[], int *nadded)
1258 /* assumes h->devlock is held */
1259 int n = h->ndevices;
1260 int i;
1261 unsigned char addr1[8], addr2[8];
1262 struct hpsa_scsi_dev_t *sd;
1264 if (n >= HPSA_MAX_DEVICES) {
1265 dev_err(&h->pdev->dev, "too many devices, some will be "
1266 "inaccessible.\n");
1267 return -1;
1270 /* physical devices do not have lun or target assigned until now. */
1271 if (device->lun != -1)
1272 /* Logical device, lun is already assigned. */
1273 goto lun_assigned;
1275 /* If this device a non-zero lun of a multi-lun device
1276 * byte 4 of the 8-byte LUN addr will contain the logical
1277 * unit no, zero otherwise.
1279 if (device->scsi3addr[4] == 0) {
1280 /* This is not a non-zero lun of a multi-lun device */
1281 if (hpsa_find_target_lun(h, device->scsi3addr,
1282 device->bus, &device->target, &device->lun) != 0)
1283 return -1;
1284 goto lun_assigned;
1287 /* This is a non-zero lun of a multi-lun device.
1288 * Search through our list and find the device which
1289 * has the same 8 byte LUN address, excepting byte 4 and 5.
1290 * Assign the same bus and target for this new LUN.
1291 * Use the logical unit number from the firmware.
1293 memcpy(addr1, device->scsi3addr, 8);
1294 addr1[4] = 0;
1295 addr1[5] = 0;
1296 for (i = 0; i < n; i++) {
1297 sd = h->dev[i];
1298 memcpy(addr2, sd->scsi3addr, 8);
1299 addr2[4] = 0;
1300 addr2[5] = 0;
1301 /* differ only in byte 4 and 5? */
1302 if (memcmp(addr1, addr2, 8) == 0) {
1303 device->bus = sd->bus;
1304 device->target = sd->target;
1305 device->lun = device->scsi3addr[4];
1306 break;
1309 if (device->lun == -1) {
1310 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311 " suspect firmware bug or unsupported hardware "
1312 "configuration.\n");
1313 return -1;
1316 lun_assigned:
1318 h->dev[n] = device;
1319 h->ndevices++;
1320 added[*nadded] = device;
1321 (*nadded)++;
1322 hpsa_show_dev_msg(KERN_INFO, h, device,
1323 device->expose_device ? "added" : "masked");
1324 device->offload_to_be_enabled = device->offload_enabled;
1325 device->offload_enabled = 0;
1326 return 0;
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331 int entry, struct hpsa_scsi_dev_t *new_entry)
1333 int offload_enabled;
1334 /* assumes h->devlock is held */
1335 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1337 /* Raid level changed. */
1338 h->dev[entry]->raid_level = new_entry->raid_level;
1340 /* Raid offload parameters changed. Careful about the ordering. */
1341 if (new_entry->offload_config && new_entry->offload_enabled) {
1343 * if drive is newly offload_enabled, we want to copy the
1344 * raid map data first. If previously offload_enabled and
1345 * offload_config were set, raid map data had better be
1346 * the same as it was before. if raid map data is changed
1347 * then it had better be the case that
1348 * h->dev[entry]->offload_enabled is currently 0.
1350 h->dev[entry]->raid_map = new_entry->raid_map;
1351 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1353 if (new_entry->hba_ioaccel_enabled) {
1354 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1357 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358 h->dev[entry]->offload_config = new_entry->offload_config;
1359 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360 h->dev[entry]->queue_depth = new_entry->queue_depth;
1363 * We can turn off ioaccel offload now, but need to delay turning
1364 * it on until we can update h->dev[entry]->phys_disk[], but we
1365 * can't do that until all the devices are updated.
1367 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368 if (!new_entry->offload_enabled)
1369 h->dev[entry]->offload_enabled = 0;
1371 offload_enabled = h->dev[entry]->offload_enabled;
1372 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374 h->dev[entry]->offload_enabled = offload_enabled;
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379 int entry, struct hpsa_scsi_dev_t *new_entry,
1380 struct hpsa_scsi_dev_t *added[], int *nadded,
1381 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1383 /* assumes h->devlock is held */
1384 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385 removed[*nremoved] = h->dev[entry];
1386 (*nremoved)++;
1389 * New physical devices won't have target/lun assigned yet
1390 * so we need to preserve the values in the slot we are replacing.
1392 if (new_entry->target == -1) {
1393 new_entry->target = h->dev[entry]->target;
1394 new_entry->lun = h->dev[entry]->lun;
1397 h->dev[entry] = new_entry;
1398 added[*nadded] = new_entry;
1399 (*nadded)++;
1400 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402 new_entry->offload_enabled = 0;
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1409 /* assumes h->devlock is held */
1410 int i;
1411 struct hpsa_scsi_dev_t *sd;
1413 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415 sd = h->dev[entry];
1416 removed[*nremoved] = h->dev[entry];
1417 (*nremoved)++;
1419 for (i = entry; i < h->ndevices-1; i++)
1420 h->dev[i] = h->dev[i+1];
1421 h->ndevices--;
1422 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426 (a)[7] == (b)[7] && \
1427 (a)[6] == (b)[6] && \
1428 (a)[5] == (b)[5] && \
1429 (a)[4] == (b)[4] && \
1430 (a)[3] == (b)[3] && \
1431 (a)[2] == (b)[2] && \
1432 (a)[1] == (b)[1] && \
1433 (a)[0] == (b)[0])
1435 static void fixup_botched_add(struct ctlr_info *h,
1436 struct hpsa_scsi_dev_t *added)
1438 /* called when scsi_add_device fails in order to re-adjust
1439 * h->dev[] to match the mid layer's view.
1441 unsigned long flags;
1442 int i, j;
1444 spin_lock_irqsave(&h->lock, flags);
1445 for (i = 0; i < h->ndevices; i++) {
1446 if (h->dev[i] == added) {
1447 for (j = i; j < h->ndevices-1; j++)
1448 h->dev[j] = h->dev[j+1];
1449 h->ndevices--;
1450 break;
1453 spin_unlock_irqrestore(&h->lock, flags);
1454 kfree(added);
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458 struct hpsa_scsi_dev_t *dev2)
1460 /* we compare everything except lun and target as these
1461 * are not yet assigned. Compare parts likely
1462 * to differ first
1464 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465 sizeof(dev1->scsi3addr)) != 0)
1466 return 0;
1467 if (memcmp(dev1->device_id, dev2->device_id,
1468 sizeof(dev1->device_id)) != 0)
1469 return 0;
1470 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471 return 0;
1472 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473 return 0;
1474 if (dev1->devtype != dev2->devtype)
1475 return 0;
1476 if (dev1->bus != dev2->bus)
1477 return 0;
1478 return 1;
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482 struct hpsa_scsi_dev_t *dev2)
1484 /* Device attributes that can change, but don't mean
1485 * that the device is a different device, nor that the OS
1486 * needs to be told anything about the change.
1488 if (dev1->raid_level != dev2->raid_level)
1489 return 1;
1490 if (dev1->offload_config != dev2->offload_config)
1491 return 1;
1492 if (dev1->offload_enabled != dev2->offload_enabled)
1493 return 1;
1494 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495 if (dev1->queue_depth != dev2->queue_depth)
1496 return 1;
1497 return 0;
1500 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1501 * and return needle location in *index. If scsi3addr matches, but not
1502 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503 * location in *index.
1504 * In the case of a minor device attribute change, such as RAID level, just
1505 * return DEVICE_UPDATED, along with the updated device's location in index.
1506 * If needle not found, return DEVICE_NOT_FOUND.
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510 int *index)
1512 int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517 if (needle == NULL)
1518 return DEVICE_NOT_FOUND;
1520 for (i = 0; i < haystack_size; i++) {
1521 if (haystack[i] == NULL) /* previously removed. */
1522 continue;
1523 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524 *index = i;
1525 if (device_is_the_same(needle, haystack[i])) {
1526 if (device_updated(needle, haystack[i]))
1527 return DEVICE_UPDATED;
1528 return DEVICE_SAME;
1529 } else {
1530 /* Keep offline devices offline */
1531 if (needle->volume_offline)
1532 return DEVICE_NOT_FOUND;
1533 return DEVICE_CHANGED;
1537 *index = -1;
1538 return DEVICE_NOT_FOUND;
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542 unsigned char scsi3addr[])
1544 struct offline_device_entry *device;
1545 unsigned long flags;
1547 /* Check to see if device is already on the list */
1548 spin_lock_irqsave(&h->offline_device_lock, flags);
1549 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550 if (memcmp(device->scsi3addr, scsi3addr,
1551 sizeof(device->scsi3addr)) == 0) {
1552 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553 return;
1556 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1558 /* Device is not on the list, add it. */
1559 device = kmalloc(sizeof(*device), GFP_KERNEL);
1560 if (!device)
1561 return;
1563 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1564 spin_lock_irqsave(&h->offline_device_lock, flags);
1565 list_add_tail(&device->offline_list, &h->offline_device_list);
1566 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1569 /* Print a message explaining various offline volume states */
1570 static void hpsa_show_volume_status(struct ctlr_info *h,
1571 struct hpsa_scsi_dev_t *sd)
1573 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1574 dev_info(&h->pdev->dev,
1575 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1576 h->scsi_host->host_no,
1577 sd->bus, sd->target, sd->lun);
1578 switch (sd->volume_offline) {
1579 case HPSA_LV_OK:
1580 break;
1581 case HPSA_LV_UNDERGOING_ERASE:
1582 dev_info(&h->pdev->dev,
1583 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1584 h->scsi_host->host_no,
1585 sd->bus, sd->target, sd->lun);
1586 break;
1587 case HPSA_LV_NOT_AVAILABLE:
1588 dev_info(&h->pdev->dev,
1589 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1590 h->scsi_host->host_no,
1591 sd->bus, sd->target, sd->lun);
1592 break;
1593 case HPSA_LV_UNDERGOING_RPI:
1594 dev_info(&h->pdev->dev,
1595 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1596 h->scsi_host->host_no,
1597 sd->bus, sd->target, sd->lun);
1598 break;
1599 case HPSA_LV_PENDING_RPI:
1600 dev_info(&h->pdev->dev,
1601 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1602 h->scsi_host->host_no,
1603 sd->bus, sd->target, sd->lun);
1604 break;
1605 case HPSA_LV_ENCRYPTED_NO_KEY:
1606 dev_info(&h->pdev->dev,
1607 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1608 h->scsi_host->host_no,
1609 sd->bus, sd->target, sd->lun);
1610 break;
1611 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1612 dev_info(&h->pdev->dev,
1613 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1614 h->scsi_host->host_no,
1615 sd->bus, sd->target, sd->lun);
1616 break;
1617 case HPSA_LV_UNDERGOING_ENCRYPTION:
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 break;
1623 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1624 dev_info(&h->pdev->dev,
1625 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1626 h->scsi_host->host_no,
1627 sd->bus, sd->target, sd->lun);
1628 break;
1629 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1630 dev_info(&h->pdev->dev,
1631 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1632 h->scsi_host->host_no,
1633 sd->bus, sd->target, sd->lun);
1634 break;
1635 case HPSA_LV_PENDING_ENCRYPTION:
1636 dev_info(&h->pdev->dev,
1637 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1638 h->scsi_host->host_no,
1639 sd->bus, sd->target, sd->lun);
1640 break;
1641 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1642 dev_info(&h->pdev->dev,
1643 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1644 h->scsi_host->host_no,
1645 sd->bus, sd->target, sd->lun);
1646 break;
1651 * Figure the list of physical drive pointers for a logical drive with
1652 * raid offload configured.
1654 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1655 struct hpsa_scsi_dev_t *dev[], int ndevices,
1656 struct hpsa_scsi_dev_t *logical_drive)
1658 struct raid_map_data *map = &logical_drive->raid_map;
1659 struct raid_map_disk_data *dd = &map->data[0];
1660 int i, j;
1661 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1662 le16_to_cpu(map->metadata_disks_per_row);
1663 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1664 le16_to_cpu(map->layout_map_count) *
1665 total_disks_per_row;
1666 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1667 total_disks_per_row;
1668 int qdepth;
1670 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1671 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1673 logical_drive->nphysical_disks = nraid_map_entries;
1675 qdepth = 0;
1676 for (i = 0; i < nraid_map_entries; i++) {
1677 logical_drive->phys_disk[i] = NULL;
1678 if (!logical_drive->offload_config)
1679 continue;
1680 for (j = 0; j < ndevices; j++) {
1681 if (dev[j] == NULL)
1682 continue;
1683 if (dev[j]->devtype != TYPE_DISK &&
1684 dev[j]->devtype != TYPE_ZBC)
1685 continue;
1686 if (is_logical_device(dev[j]))
1687 continue;
1688 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1689 continue;
1691 logical_drive->phys_disk[i] = dev[j];
1692 if (i < nphys_disk)
1693 qdepth = min(h->nr_cmds, qdepth +
1694 logical_drive->phys_disk[i]->queue_depth);
1695 break;
1699 * This can happen if a physical drive is removed and
1700 * the logical drive is degraded. In that case, the RAID
1701 * map data will refer to a physical disk which isn't actually
1702 * present. And in that case offload_enabled should already
1703 * be 0, but we'll turn it off here just in case
1705 if (!logical_drive->phys_disk[i]) {
1706 logical_drive->offload_enabled = 0;
1707 logical_drive->offload_to_be_enabled = 0;
1708 logical_drive->queue_depth = 8;
1711 if (nraid_map_entries)
1713 * This is correct for reads, too high for full stripe writes,
1714 * way too high for partial stripe writes
1716 logical_drive->queue_depth = qdepth;
1717 else
1718 logical_drive->queue_depth = h->nr_cmds;
1721 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1722 struct hpsa_scsi_dev_t *dev[], int ndevices)
1724 int i;
1726 for (i = 0; i < ndevices; i++) {
1727 if (dev[i] == NULL)
1728 continue;
1729 if (dev[i]->devtype != TYPE_DISK &&
1730 dev[i]->devtype != TYPE_ZBC)
1731 continue;
1732 if (!is_logical_device(dev[i]))
1733 continue;
1736 * If offload is currently enabled, the RAID map and
1737 * phys_disk[] assignment *better* not be changing
1738 * and since it isn't changing, we do not need to
1739 * update it.
1741 if (dev[i]->offload_enabled)
1742 continue;
1744 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1748 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1750 int rc = 0;
1752 if (!h->scsi_host)
1753 return 1;
1755 if (is_logical_device(device)) /* RAID */
1756 rc = scsi_add_device(h->scsi_host, device->bus,
1757 device->target, device->lun);
1758 else /* HBA */
1759 rc = hpsa_add_sas_device(h->sas_host, device);
1761 return rc;
1764 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1765 struct hpsa_scsi_dev_t *dev)
1767 int i;
1768 int count = 0;
1770 for (i = 0; i < h->nr_cmds; i++) {
1771 struct CommandList *c = h->cmd_pool + i;
1772 int refcount = atomic_inc_return(&c->refcount);
1774 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1775 dev->scsi3addr)) {
1776 unsigned long flags;
1778 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1779 if (!hpsa_is_cmd_idle(c))
1780 ++count;
1781 spin_unlock_irqrestore(&h->lock, flags);
1784 cmd_free(h, c);
1787 return count;
1790 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1791 struct hpsa_scsi_dev_t *device)
1793 int cmds = 0;
1794 int waits = 0;
1796 while (1) {
1797 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1798 if (cmds == 0)
1799 break;
1800 if (++waits > 20)
1801 break;
1802 dev_warn(&h->pdev->dev,
1803 "%s: removing device with %d outstanding commands!\n",
1804 __func__, cmds);
1805 msleep(1000);
1809 static void hpsa_remove_device(struct ctlr_info *h,
1810 struct hpsa_scsi_dev_t *device)
1812 struct scsi_device *sdev = NULL;
1814 if (!h->scsi_host)
1815 return;
1817 if (is_logical_device(device)) { /* RAID */
1818 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1819 device->target, device->lun);
1820 if (sdev) {
1821 scsi_remove_device(sdev);
1822 scsi_device_put(sdev);
1823 } else {
1825 * We don't expect to get here. Future commands
1826 * to this device will get a selection timeout as
1827 * if the device were gone.
1829 hpsa_show_dev_msg(KERN_WARNING, h, device,
1830 "didn't find device for removal.");
1832 } else { /* HBA */
1834 device->removed = 1;
1835 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1837 hpsa_remove_sas_device(device);
1841 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1842 struct hpsa_scsi_dev_t *sd[], int nsds)
1844 /* sd contains scsi3 addresses and devtypes, and inquiry
1845 * data. This function takes what's in sd to be the current
1846 * reality and updates h->dev[] to reflect that reality.
1848 int i, entry, device_change, changes = 0;
1849 struct hpsa_scsi_dev_t *csd;
1850 unsigned long flags;
1851 struct hpsa_scsi_dev_t **added, **removed;
1852 int nadded, nremoved;
1855 * A reset can cause a device status to change
1856 * re-schedule the scan to see what happened.
1858 if (h->reset_in_progress) {
1859 h->drv_req_rescan = 1;
1860 return;
1863 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1864 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1866 if (!added || !removed) {
1867 dev_warn(&h->pdev->dev, "out of memory in "
1868 "adjust_hpsa_scsi_table\n");
1869 goto free_and_out;
1872 spin_lock_irqsave(&h->devlock, flags);
1874 /* find any devices in h->dev[] that are not in
1875 * sd[] and remove them from h->dev[], and for any
1876 * devices which have changed, remove the old device
1877 * info and add the new device info.
1878 * If minor device attributes change, just update
1879 * the existing device structure.
1881 i = 0;
1882 nremoved = 0;
1883 nadded = 0;
1884 while (i < h->ndevices) {
1885 csd = h->dev[i];
1886 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1887 if (device_change == DEVICE_NOT_FOUND) {
1888 changes++;
1889 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1890 continue; /* remove ^^^, hence i not incremented */
1891 } else if (device_change == DEVICE_CHANGED) {
1892 changes++;
1893 hpsa_scsi_replace_entry(h, i, sd[entry],
1894 added, &nadded, removed, &nremoved);
1895 /* Set it to NULL to prevent it from being freed
1896 * at the bottom of hpsa_update_scsi_devices()
1898 sd[entry] = NULL;
1899 } else if (device_change == DEVICE_UPDATED) {
1900 hpsa_scsi_update_entry(h, i, sd[entry]);
1902 i++;
1905 /* Now, make sure every device listed in sd[] is also
1906 * listed in h->dev[], adding them if they aren't found
1909 for (i = 0; i < nsds; i++) {
1910 if (!sd[i]) /* if already added above. */
1911 continue;
1913 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1914 * as the SCSI mid-layer does not handle such devices well.
1915 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1916 * at 160Hz, and prevents the system from coming up.
1918 if (sd[i]->volume_offline) {
1919 hpsa_show_volume_status(h, sd[i]);
1920 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1921 continue;
1924 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1925 h->ndevices, &entry);
1926 if (device_change == DEVICE_NOT_FOUND) {
1927 changes++;
1928 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1929 break;
1930 sd[i] = NULL; /* prevent from being freed later. */
1931 } else if (device_change == DEVICE_CHANGED) {
1932 /* should never happen... */
1933 changes++;
1934 dev_warn(&h->pdev->dev,
1935 "device unexpectedly changed.\n");
1936 /* but if it does happen, we just ignore that device */
1939 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1941 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1942 * any logical drives that need it enabled.
1944 for (i = 0; i < h->ndevices; i++) {
1945 if (h->dev[i] == NULL)
1946 continue;
1947 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1950 spin_unlock_irqrestore(&h->devlock, flags);
1952 /* Monitor devices which are in one of several NOT READY states to be
1953 * brought online later. This must be done without holding h->devlock,
1954 * so don't touch h->dev[]
1956 for (i = 0; i < nsds; i++) {
1957 if (!sd[i]) /* if already added above. */
1958 continue;
1959 if (sd[i]->volume_offline)
1960 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1963 /* Don't notify scsi mid layer of any changes the first time through
1964 * (or if there are no changes) scsi_scan_host will do it later the
1965 * first time through.
1967 if (!changes)
1968 goto free_and_out;
1970 /* Notify scsi mid layer of any removed devices */
1971 for (i = 0; i < nremoved; i++) {
1972 if (removed[i] == NULL)
1973 continue;
1974 if (removed[i]->expose_device)
1975 hpsa_remove_device(h, removed[i]);
1976 kfree(removed[i]);
1977 removed[i] = NULL;
1980 /* Notify scsi mid layer of any added devices */
1981 for (i = 0; i < nadded; i++) {
1982 int rc = 0;
1984 if (added[i] == NULL)
1985 continue;
1986 if (!(added[i]->expose_device))
1987 continue;
1988 rc = hpsa_add_device(h, added[i]);
1989 if (!rc)
1990 continue;
1991 dev_warn(&h->pdev->dev,
1992 "addition failed %d, device not added.", rc);
1993 /* now we have to remove it from h->dev,
1994 * since it didn't get added to scsi mid layer
1996 fixup_botched_add(h, added[i]);
1997 h->drv_req_rescan = 1;
2000 free_and_out:
2001 kfree(added);
2002 kfree(removed);
2006 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2007 * Assume's h->devlock is held.
2009 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2010 int bus, int target, int lun)
2012 int i;
2013 struct hpsa_scsi_dev_t *sd;
2015 for (i = 0; i < h->ndevices; i++) {
2016 sd = h->dev[i];
2017 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2018 return sd;
2020 return NULL;
2023 static int hpsa_slave_alloc(struct scsi_device *sdev)
2025 struct hpsa_scsi_dev_t *sd = NULL;
2026 unsigned long flags;
2027 struct ctlr_info *h;
2029 h = sdev_to_hba(sdev);
2030 spin_lock_irqsave(&h->devlock, flags);
2031 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2032 struct scsi_target *starget;
2033 struct sas_rphy *rphy;
2035 starget = scsi_target(sdev);
2036 rphy = target_to_rphy(starget);
2037 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2038 if (sd) {
2039 sd->target = sdev_id(sdev);
2040 sd->lun = sdev->lun;
2043 if (!sd)
2044 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2045 sdev_id(sdev), sdev->lun);
2047 if (sd && sd->expose_device) {
2048 atomic_set(&sd->ioaccel_cmds_out, 0);
2049 sdev->hostdata = sd;
2050 } else
2051 sdev->hostdata = NULL;
2052 spin_unlock_irqrestore(&h->devlock, flags);
2053 return 0;
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device *sdev)
2059 struct hpsa_scsi_dev_t *sd;
2060 int queue_depth;
2062 sd = sdev->hostdata;
2063 sdev->no_uld_attach = !sd || !sd->expose_device;
2065 if (sd)
2066 queue_depth = sd->queue_depth != 0 ?
2067 sd->queue_depth : sdev->host->can_queue;
2068 else
2069 queue_depth = sdev->host->can_queue;
2071 scsi_change_queue_depth(sdev, queue_depth);
2073 return 0;
2076 static void hpsa_slave_destroy(struct scsi_device *sdev)
2078 /* nothing to do. */
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2083 int i;
2085 if (!h->ioaccel2_cmd_sg_list)
2086 return;
2087 for (i = 0; i < h->nr_cmds; i++) {
2088 kfree(h->ioaccel2_cmd_sg_list[i]);
2089 h->ioaccel2_cmd_sg_list[i] = NULL;
2091 kfree(h->ioaccel2_cmd_sg_list);
2092 h->ioaccel2_cmd_sg_list = NULL;
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2097 int i;
2099 if (h->chainsize <= 0)
2100 return 0;
2102 h->ioaccel2_cmd_sg_list =
2103 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2104 GFP_KERNEL);
2105 if (!h->ioaccel2_cmd_sg_list)
2106 return -ENOMEM;
2107 for (i = 0; i < h->nr_cmds; i++) {
2108 h->ioaccel2_cmd_sg_list[i] =
2109 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2110 h->maxsgentries, GFP_KERNEL);
2111 if (!h->ioaccel2_cmd_sg_list[i])
2112 goto clean;
2114 return 0;
2116 clean:
2117 hpsa_free_ioaccel2_sg_chain_blocks(h);
2118 return -ENOMEM;
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2123 int i;
2125 if (!h->cmd_sg_list)
2126 return;
2127 for (i = 0; i < h->nr_cmds; i++) {
2128 kfree(h->cmd_sg_list[i]);
2129 h->cmd_sg_list[i] = NULL;
2131 kfree(h->cmd_sg_list);
2132 h->cmd_sg_list = NULL;
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2137 int i;
2139 if (h->chainsize <= 0)
2140 return 0;
2142 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2143 GFP_KERNEL);
2144 if (!h->cmd_sg_list)
2145 return -ENOMEM;
2147 for (i = 0; i < h->nr_cmds; i++) {
2148 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2149 h->chainsize, GFP_KERNEL);
2150 if (!h->cmd_sg_list[i])
2151 goto clean;
2154 return 0;
2156 clean:
2157 hpsa_free_sg_chain_blocks(h);
2158 return -ENOMEM;
2161 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2162 struct io_accel2_cmd *cp, struct CommandList *c)
2164 struct ioaccel2_sg_element *chain_block;
2165 u64 temp64;
2166 u32 chain_size;
2168 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2169 chain_size = le32_to_cpu(cp->sg[0].length);
2170 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2171 PCI_DMA_TODEVICE);
2172 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2173 /* prevent subsequent unmapping */
2174 cp->sg->address = 0;
2175 return -1;
2177 cp->sg->address = cpu_to_le64(temp64);
2178 return 0;
2181 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2182 struct io_accel2_cmd *cp)
2184 struct ioaccel2_sg_element *chain_sg;
2185 u64 temp64;
2186 u32 chain_size;
2188 chain_sg = cp->sg;
2189 temp64 = le64_to_cpu(chain_sg->address);
2190 chain_size = le32_to_cpu(cp->sg[0].length);
2191 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2194 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2195 struct CommandList *c)
2197 struct SGDescriptor *chain_sg, *chain_block;
2198 u64 temp64;
2199 u32 chain_len;
2201 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2202 chain_block = h->cmd_sg_list[c->cmdindex];
2203 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2204 chain_len = sizeof(*chain_sg) *
2205 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2206 chain_sg->Len = cpu_to_le32(chain_len);
2207 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2208 PCI_DMA_TODEVICE);
2209 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2210 /* prevent subsequent unmapping */
2211 chain_sg->Addr = cpu_to_le64(0);
2212 return -1;
2214 chain_sg->Addr = cpu_to_le64(temp64);
2215 return 0;
2218 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2219 struct CommandList *c)
2221 struct SGDescriptor *chain_sg;
2223 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2224 return;
2226 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2227 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2228 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2232 /* Decode the various types of errors on ioaccel2 path.
2233 * Return 1 for any error that should generate a RAID path retry.
2234 * Return 0 for errors that don't require a RAID path retry.
2236 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2237 struct CommandList *c,
2238 struct scsi_cmnd *cmd,
2239 struct io_accel2_cmd *c2,
2240 struct hpsa_scsi_dev_t *dev)
2242 int data_len;
2243 int retry = 0;
2244 u32 ioaccel2_resid = 0;
2246 switch (c2->error_data.serv_response) {
2247 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2248 switch (c2->error_data.status) {
2249 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2250 break;
2251 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2252 cmd->result |= SAM_STAT_CHECK_CONDITION;
2253 if (c2->error_data.data_present !=
2254 IOACCEL2_SENSE_DATA_PRESENT) {
2255 memset(cmd->sense_buffer, 0,
2256 SCSI_SENSE_BUFFERSIZE);
2257 break;
2259 /* copy the sense data */
2260 data_len = c2->error_data.sense_data_len;
2261 if (data_len > SCSI_SENSE_BUFFERSIZE)
2262 data_len = SCSI_SENSE_BUFFERSIZE;
2263 if (data_len > sizeof(c2->error_data.sense_data_buff))
2264 data_len =
2265 sizeof(c2->error_data.sense_data_buff);
2266 memcpy(cmd->sense_buffer,
2267 c2->error_data.sense_data_buff, data_len);
2268 retry = 1;
2269 break;
2270 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2271 retry = 1;
2272 break;
2273 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2274 retry = 1;
2275 break;
2276 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2277 retry = 1;
2278 break;
2279 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2280 retry = 1;
2281 break;
2282 default:
2283 retry = 1;
2284 break;
2286 break;
2287 case IOACCEL2_SERV_RESPONSE_FAILURE:
2288 switch (c2->error_data.status) {
2289 case IOACCEL2_STATUS_SR_IO_ERROR:
2290 case IOACCEL2_STATUS_SR_IO_ABORTED:
2291 case IOACCEL2_STATUS_SR_OVERRUN:
2292 retry = 1;
2293 break;
2294 case IOACCEL2_STATUS_SR_UNDERRUN:
2295 cmd->result = (DID_OK << 16); /* host byte */
2296 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2297 ioaccel2_resid = get_unaligned_le32(
2298 &c2->error_data.resid_cnt[0]);
2299 scsi_set_resid(cmd, ioaccel2_resid);
2300 break;
2301 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2302 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2303 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2305 * Did an HBA disk disappear? We will eventually
2306 * get a state change event from the controller but
2307 * in the meantime, we need to tell the OS that the
2308 * HBA disk is no longer there and stop I/O
2309 * from going down. This allows the potential re-insert
2310 * of the disk to get the same device node.
2312 if (dev->physical_device && dev->expose_device) {
2313 cmd->result = DID_NO_CONNECT << 16;
2314 dev->removed = 1;
2315 h->drv_req_rescan = 1;
2316 dev_warn(&h->pdev->dev,
2317 "%s: device is gone!\n", __func__);
2318 } else
2320 * Retry by sending down the RAID path.
2321 * We will get an event from ctlr to
2322 * trigger rescan regardless.
2324 retry = 1;
2325 break;
2326 default:
2327 retry = 1;
2329 break;
2330 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2331 break;
2332 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2333 break;
2334 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2335 retry = 1;
2336 break;
2337 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2338 break;
2339 default:
2340 retry = 1;
2341 break;
2344 return retry; /* retry on raid path? */
2347 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2348 struct CommandList *c)
2350 bool do_wake = false;
2353 * Prevent the following race in the abort handler:
2355 * 1. LLD is requested to abort a SCSI command
2356 * 2. The SCSI command completes
2357 * 3. The struct CommandList associated with step 2 is made available
2358 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2359 * 5. Abort handler follows scsi_cmnd->host_scribble and
2360 * finds struct CommandList and tries to aborts it
2361 * Now we have aborted the wrong command.
2363 * Reset c->scsi_cmd here so that the abort or reset handler will know
2364 * this command has completed. Then, check to see if the handler is
2365 * waiting for this command, and, if so, wake it.
2367 c->scsi_cmd = SCSI_CMD_IDLE;
2368 mb(); /* Declare command idle before checking for pending events. */
2369 if (c->abort_pending) {
2370 do_wake = true;
2371 c->abort_pending = false;
2373 if (c->reset_pending) {
2374 unsigned long flags;
2375 struct hpsa_scsi_dev_t *dev;
2378 * There appears to be a reset pending; lock the lock and
2379 * reconfirm. If so, then decrement the count of outstanding
2380 * commands and wake the reset command if this is the last one.
2382 spin_lock_irqsave(&h->lock, flags);
2383 dev = c->reset_pending; /* Re-fetch under the lock. */
2384 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2385 do_wake = true;
2386 c->reset_pending = NULL;
2387 spin_unlock_irqrestore(&h->lock, flags);
2390 if (do_wake)
2391 wake_up_all(&h->event_sync_wait_queue);
2394 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2395 struct CommandList *c)
2397 hpsa_cmd_resolve_events(h, c);
2398 cmd_tagged_free(h, c);
2401 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2402 struct CommandList *c, struct scsi_cmnd *cmd)
2404 hpsa_cmd_resolve_and_free(h, c);
2405 if (cmd && cmd->scsi_done)
2406 cmd->scsi_done(cmd);
2409 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2411 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2412 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2415 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2417 cmd->result = DID_ABORT << 16;
2420 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2421 struct scsi_cmnd *cmd)
2423 hpsa_set_scsi_cmd_aborted(cmd);
2424 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2425 c->Request.CDB, c->err_info->ScsiStatus);
2426 hpsa_cmd_resolve_and_free(h, c);
2429 static void process_ioaccel2_completion(struct ctlr_info *h,
2430 struct CommandList *c, struct scsi_cmnd *cmd,
2431 struct hpsa_scsi_dev_t *dev)
2433 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2435 /* check for good status */
2436 if (likely(c2->error_data.serv_response == 0 &&
2437 c2->error_data.status == 0))
2438 return hpsa_cmd_free_and_done(h, c, cmd);
2441 * Any RAID offload error results in retry which will use
2442 * the normal I/O path so the controller can handle whatever's
2443 * wrong.
2445 if (is_logical_device(dev) &&
2446 c2->error_data.serv_response ==
2447 IOACCEL2_SERV_RESPONSE_FAILURE) {
2448 if (c2->error_data.status ==
2449 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2450 dev->offload_enabled = 0;
2451 dev->offload_to_be_enabled = 0;
2454 return hpsa_retry_cmd(h, c);
2457 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2458 return hpsa_retry_cmd(h, c);
2460 return hpsa_cmd_free_and_done(h, c, cmd);
2463 /* Returns 0 on success, < 0 otherwise. */
2464 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2465 struct CommandList *cp)
2467 u8 tmf_status = cp->err_info->ScsiStatus;
2469 switch (tmf_status) {
2470 case CISS_TMF_COMPLETE:
2472 * CISS_TMF_COMPLETE never happens, instead,
2473 * ei->CommandStatus == 0 for this case.
2475 case CISS_TMF_SUCCESS:
2476 return 0;
2477 case CISS_TMF_INVALID_FRAME:
2478 case CISS_TMF_NOT_SUPPORTED:
2479 case CISS_TMF_FAILED:
2480 case CISS_TMF_WRONG_LUN:
2481 case CISS_TMF_OVERLAPPED_TAG:
2482 break;
2483 default:
2484 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2485 tmf_status);
2486 break;
2488 return -tmf_status;
2491 static void complete_scsi_command(struct CommandList *cp)
2493 struct scsi_cmnd *cmd;
2494 struct ctlr_info *h;
2495 struct ErrorInfo *ei;
2496 struct hpsa_scsi_dev_t *dev;
2497 struct io_accel2_cmd *c2;
2499 u8 sense_key;
2500 u8 asc; /* additional sense code */
2501 u8 ascq; /* additional sense code qualifier */
2502 unsigned long sense_data_size;
2504 ei = cp->err_info;
2505 cmd = cp->scsi_cmd;
2506 h = cp->h;
2508 if (!cmd->device) {
2509 cmd->result = DID_NO_CONNECT << 16;
2510 return hpsa_cmd_free_and_done(h, cp, cmd);
2513 dev = cmd->device->hostdata;
2514 if (!dev) {
2515 cmd->result = DID_NO_CONNECT << 16;
2516 return hpsa_cmd_free_and_done(h, cp, cmd);
2518 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2520 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2521 if ((cp->cmd_type == CMD_SCSI) &&
2522 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2523 hpsa_unmap_sg_chain_block(h, cp);
2525 if ((cp->cmd_type == CMD_IOACCEL2) &&
2526 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2527 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2529 cmd->result = (DID_OK << 16); /* host byte */
2530 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2532 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2533 if (dev->physical_device && dev->expose_device &&
2534 dev->removed) {
2535 cmd->result = DID_NO_CONNECT << 16;
2536 return hpsa_cmd_free_and_done(h, cp, cmd);
2538 if (likely(cp->phys_disk != NULL))
2539 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2543 * We check for lockup status here as it may be set for
2544 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2545 * fail_all_oustanding_cmds()
2547 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2548 /* DID_NO_CONNECT will prevent a retry */
2549 cmd->result = DID_NO_CONNECT << 16;
2550 return hpsa_cmd_free_and_done(h, cp, cmd);
2553 if ((unlikely(hpsa_is_pending_event(cp)))) {
2554 if (cp->reset_pending)
2555 return hpsa_cmd_free_and_done(h, cp, cmd);
2556 if (cp->abort_pending)
2557 return hpsa_cmd_abort_and_free(h, cp, cmd);
2560 if (cp->cmd_type == CMD_IOACCEL2)
2561 return process_ioaccel2_completion(h, cp, cmd, dev);
2563 scsi_set_resid(cmd, ei->ResidualCnt);
2564 if (ei->CommandStatus == 0)
2565 return hpsa_cmd_free_and_done(h, cp, cmd);
2567 /* For I/O accelerator commands, copy over some fields to the normal
2568 * CISS header used below for error handling.
2570 if (cp->cmd_type == CMD_IOACCEL1) {
2571 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2572 cp->Header.SGList = scsi_sg_count(cmd);
2573 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2574 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2575 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2576 cp->Header.tag = c->tag;
2577 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2578 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2580 /* Any RAID offload error results in retry which will use
2581 * the normal I/O path so the controller can handle whatever's
2582 * wrong.
2584 if (is_logical_device(dev)) {
2585 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2586 dev->offload_enabled = 0;
2587 return hpsa_retry_cmd(h, cp);
2591 /* an error has occurred */
2592 switch (ei->CommandStatus) {
2594 case CMD_TARGET_STATUS:
2595 cmd->result |= ei->ScsiStatus;
2596 /* copy the sense data */
2597 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2598 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2599 else
2600 sense_data_size = sizeof(ei->SenseInfo);
2601 if (ei->SenseLen < sense_data_size)
2602 sense_data_size = ei->SenseLen;
2603 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2604 if (ei->ScsiStatus)
2605 decode_sense_data(ei->SenseInfo, sense_data_size,
2606 &sense_key, &asc, &ascq);
2607 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2608 if (sense_key == ABORTED_COMMAND) {
2609 cmd->result |= DID_SOFT_ERROR << 16;
2610 break;
2612 break;
2614 /* Problem was not a check condition
2615 * Pass it up to the upper layers...
2617 if (ei->ScsiStatus) {
2618 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2619 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2620 "Returning result: 0x%x\n",
2621 cp, ei->ScsiStatus,
2622 sense_key, asc, ascq,
2623 cmd->result);
2624 } else { /* scsi status is zero??? How??? */
2625 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2626 "Returning no connection.\n", cp),
2628 /* Ordinarily, this case should never happen,
2629 * but there is a bug in some released firmware
2630 * revisions that allows it to happen if, for
2631 * example, a 4100 backplane loses power and
2632 * the tape drive is in it. We assume that
2633 * it's a fatal error of some kind because we
2634 * can't show that it wasn't. We will make it
2635 * look like selection timeout since that is
2636 * the most common reason for this to occur,
2637 * and it's severe enough.
2640 cmd->result = DID_NO_CONNECT << 16;
2642 break;
2644 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2645 break;
2646 case CMD_DATA_OVERRUN:
2647 dev_warn(&h->pdev->dev,
2648 "CDB %16phN data overrun\n", cp->Request.CDB);
2649 break;
2650 case CMD_INVALID: {
2651 /* print_bytes(cp, sizeof(*cp), 1, 0);
2652 print_cmd(cp); */
2653 /* We get CMD_INVALID if you address a non-existent device
2654 * instead of a selection timeout (no response). You will
2655 * see this if you yank out a drive, then try to access it.
2656 * This is kind of a shame because it means that any other
2657 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2658 * missing target. */
2659 cmd->result = DID_NO_CONNECT << 16;
2661 break;
2662 case CMD_PROTOCOL_ERR:
2663 cmd->result = DID_ERROR << 16;
2664 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2665 cp->Request.CDB);
2666 break;
2667 case CMD_HARDWARE_ERR:
2668 cmd->result = DID_ERROR << 16;
2669 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2670 cp->Request.CDB);
2671 break;
2672 case CMD_CONNECTION_LOST:
2673 cmd->result = DID_ERROR << 16;
2674 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2675 cp->Request.CDB);
2676 break;
2677 case CMD_ABORTED:
2678 /* Return now to avoid calling scsi_done(). */
2679 return hpsa_cmd_abort_and_free(h, cp, cmd);
2680 case CMD_ABORT_FAILED:
2681 cmd->result = DID_ERROR << 16;
2682 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2683 cp->Request.CDB);
2684 break;
2685 case CMD_UNSOLICITED_ABORT:
2686 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2687 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2688 cp->Request.CDB);
2689 break;
2690 case CMD_TIMEOUT:
2691 cmd->result = DID_TIME_OUT << 16;
2692 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2693 cp->Request.CDB);
2694 break;
2695 case CMD_UNABORTABLE:
2696 cmd->result = DID_ERROR << 16;
2697 dev_warn(&h->pdev->dev, "Command unabortable\n");
2698 break;
2699 case CMD_TMF_STATUS:
2700 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2701 cmd->result = DID_ERROR << 16;
2702 break;
2703 case CMD_IOACCEL_DISABLED:
2704 /* This only handles the direct pass-through case since RAID
2705 * offload is handled above. Just attempt a retry.
2707 cmd->result = DID_SOFT_ERROR << 16;
2708 dev_warn(&h->pdev->dev,
2709 "cp %p had HP SSD Smart Path error\n", cp);
2710 break;
2711 default:
2712 cmd->result = DID_ERROR << 16;
2713 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2714 cp, ei->CommandStatus);
2717 return hpsa_cmd_free_and_done(h, cp, cmd);
2720 static void hpsa_pci_unmap(struct pci_dev *pdev,
2721 struct CommandList *c, int sg_used, int data_direction)
2723 int i;
2725 for (i = 0; i < sg_used; i++)
2726 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2727 le32_to_cpu(c->SG[i].Len),
2728 data_direction);
2731 static int hpsa_map_one(struct pci_dev *pdev,
2732 struct CommandList *cp,
2733 unsigned char *buf,
2734 size_t buflen,
2735 int data_direction)
2737 u64 addr64;
2739 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2740 cp->Header.SGList = 0;
2741 cp->Header.SGTotal = cpu_to_le16(0);
2742 return 0;
2745 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2746 if (dma_mapping_error(&pdev->dev, addr64)) {
2747 /* Prevent subsequent unmap of something never mapped */
2748 cp->Header.SGList = 0;
2749 cp->Header.SGTotal = cpu_to_le16(0);
2750 return -1;
2752 cp->SG[0].Addr = cpu_to_le64(addr64);
2753 cp->SG[0].Len = cpu_to_le32(buflen);
2754 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2755 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2756 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2757 return 0;
2760 #define NO_TIMEOUT ((unsigned long) -1)
2761 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2762 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2763 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2765 DECLARE_COMPLETION_ONSTACK(wait);
2767 c->waiting = &wait;
2768 __enqueue_cmd_and_start_io(h, c, reply_queue);
2769 if (timeout_msecs == NO_TIMEOUT) {
2770 /* TODO: get rid of this no-timeout thing */
2771 wait_for_completion_io(&wait);
2772 return IO_OK;
2774 if (!wait_for_completion_io_timeout(&wait,
2775 msecs_to_jiffies(timeout_msecs))) {
2776 dev_warn(&h->pdev->dev, "Command timed out.\n");
2777 return -ETIMEDOUT;
2779 return IO_OK;
2782 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2783 int reply_queue, unsigned long timeout_msecs)
2785 if (unlikely(lockup_detected(h))) {
2786 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2787 return IO_OK;
2789 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2792 static u32 lockup_detected(struct ctlr_info *h)
2794 int cpu;
2795 u32 rc, *lockup_detected;
2797 cpu = get_cpu();
2798 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2799 rc = *lockup_detected;
2800 put_cpu();
2801 return rc;
2804 #define MAX_DRIVER_CMD_RETRIES 25
2805 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2806 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2808 int backoff_time = 10, retry_count = 0;
2809 int rc;
2811 do {
2812 memset(c->err_info, 0, sizeof(*c->err_info));
2813 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2814 timeout_msecs);
2815 if (rc)
2816 break;
2817 retry_count++;
2818 if (retry_count > 3) {
2819 msleep(backoff_time);
2820 if (backoff_time < 1000)
2821 backoff_time *= 2;
2823 } while ((check_for_unit_attention(h, c) ||
2824 check_for_busy(h, c)) &&
2825 retry_count <= MAX_DRIVER_CMD_RETRIES);
2826 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2827 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2828 rc = -EIO;
2829 return rc;
2832 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2833 struct CommandList *c)
2835 const u8 *cdb = c->Request.CDB;
2836 const u8 *lun = c->Header.LUN.LunAddrBytes;
2838 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2839 txt, lun, cdb);
2842 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2843 struct CommandList *cp)
2845 const struct ErrorInfo *ei = cp->err_info;
2846 struct device *d = &cp->h->pdev->dev;
2847 u8 sense_key, asc, ascq;
2848 int sense_len;
2850 switch (ei->CommandStatus) {
2851 case CMD_TARGET_STATUS:
2852 if (ei->SenseLen > sizeof(ei->SenseInfo))
2853 sense_len = sizeof(ei->SenseInfo);
2854 else
2855 sense_len = ei->SenseLen;
2856 decode_sense_data(ei->SenseInfo, sense_len,
2857 &sense_key, &asc, &ascq);
2858 hpsa_print_cmd(h, "SCSI status", cp);
2859 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2860 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2861 sense_key, asc, ascq);
2862 else
2863 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2864 if (ei->ScsiStatus == 0)
2865 dev_warn(d, "SCSI status is abnormally zero. "
2866 "(probably indicates selection timeout "
2867 "reported incorrectly due to a known "
2868 "firmware bug, circa July, 2001.)\n");
2869 break;
2870 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2871 break;
2872 case CMD_DATA_OVERRUN:
2873 hpsa_print_cmd(h, "overrun condition", cp);
2874 break;
2875 case CMD_INVALID: {
2876 /* controller unfortunately reports SCSI passthru's
2877 * to non-existent targets as invalid commands.
2879 hpsa_print_cmd(h, "invalid command", cp);
2880 dev_warn(d, "probably means device no longer present\n");
2882 break;
2883 case CMD_PROTOCOL_ERR:
2884 hpsa_print_cmd(h, "protocol error", cp);
2885 break;
2886 case CMD_HARDWARE_ERR:
2887 hpsa_print_cmd(h, "hardware error", cp);
2888 break;
2889 case CMD_CONNECTION_LOST:
2890 hpsa_print_cmd(h, "connection lost", cp);
2891 break;
2892 case CMD_ABORTED:
2893 hpsa_print_cmd(h, "aborted", cp);
2894 break;
2895 case CMD_ABORT_FAILED:
2896 hpsa_print_cmd(h, "abort failed", cp);
2897 break;
2898 case CMD_UNSOLICITED_ABORT:
2899 hpsa_print_cmd(h, "unsolicited abort", cp);
2900 break;
2901 case CMD_TIMEOUT:
2902 hpsa_print_cmd(h, "timed out", cp);
2903 break;
2904 case CMD_UNABORTABLE:
2905 hpsa_print_cmd(h, "unabortable", cp);
2906 break;
2907 case CMD_CTLR_LOCKUP:
2908 hpsa_print_cmd(h, "controller lockup detected", cp);
2909 break;
2910 default:
2911 hpsa_print_cmd(h, "unknown status", cp);
2912 dev_warn(d, "Unknown command status %x\n",
2913 ei->CommandStatus);
2917 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2918 u16 page, unsigned char *buf,
2919 unsigned char bufsize)
2921 int rc = IO_OK;
2922 struct CommandList *c;
2923 struct ErrorInfo *ei;
2925 c = cmd_alloc(h);
2927 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2928 page, scsi3addr, TYPE_CMD)) {
2929 rc = -1;
2930 goto out;
2932 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2933 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2934 if (rc)
2935 goto out;
2936 ei = c->err_info;
2937 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2938 hpsa_scsi_interpret_error(h, c);
2939 rc = -1;
2941 out:
2942 cmd_free(h, c);
2943 return rc;
2946 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2947 u8 reset_type, int reply_queue)
2949 int rc = IO_OK;
2950 struct CommandList *c;
2951 struct ErrorInfo *ei;
2953 c = cmd_alloc(h);
2956 /* fill_cmd can't fail here, no data buffer to map. */
2957 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2958 scsi3addr, TYPE_MSG);
2959 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2960 if (rc) {
2961 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2962 goto out;
2964 /* no unmap needed here because no data xfer. */
2966 ei = c->err_info;
2967 if (ei->CommandStatus != 0) {
2968 hpsa_scsi_interpret_error(h, c);
2969 rc = -1;
2971 out:
2972 cmd_free(h, c);
2973 return rc;
2976 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2977 struct hpsa_scsi_dev_t *dev,
2978 unsigned char *scsi3addr)
2980 int i;
2981 bool match = false;
2982 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2983 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2985 if (hpsa_is_cmd_idle(c))
2986 return false;
2988 switch (c->cmd_type) {
2989 case CMD_SCSI:
2990 case CMD_IOCTL_PEND:
2991 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2992 sizeof(c->Header.LUN.LunAddrBytes));
2993 break;
2995 case CMD_IOACCEL1:
2996 case CMD_IOACCEL2:
2997 if (c->phys_disk == dev) {
2998 /* HBA mode match */
2999 match = true;
3000 } else {
3001 /* Possible RAID mode -- check each phys dev. */
3002 /* FIXME: Do we need to take out a lock here? If
3003 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004 * instead. */
3005 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3006 /* FIXME: an alternate test might be
3008 * match = dev->phys_disk[i]->ioaccel_handle
3009 * == c2->scsi_nexus; */
3010 match = dev->phys_disk[i] == c->phys_disk;
3013 break;
3015 case IOACCEL2_TMF:
3016 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3017 match = dev->phys_disk[i]->ioaccel_handle ==
3018 le32_to_cpu(ac->it_nexus);
3020 break;
3022 case 0: /* The command is in the middle of being initialized. */
3023 match = false;
3024 break;
3026 default:
3027 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3028 c->cmd_type);
3029 BUG();
3032 return match;
3035 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3036 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3038 int i;
3039 int rc = 0;
3041 /* We can really only handle one reset at a time */
3042 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3043 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3044 return -EINTR;
3047 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3049 for (i = 0; i < h->nr_cmds; i++) {
3050 struct CommandList *c = h->cmd_pool + i;
3051 int refcount = atomic_inc_return(&c->refcount);
3053 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3054 unsigned long flags;
3057 * Mark the target command as having a reset pending,
3058 * then lock a lock so that the command cannot complete
3059 * while we're considering it. If the command is not
3060 * idle then count it; otherwise revoke the event.
3062 c->reset_pending = dev;
3063 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3064 if (!hpsa_is_cmd_idle(c))
3065 atomic_inc(&dev->reset_cmds_out);
3066 else
3067 c->reset_pending = NULL;
3068 spin_unlock_irqrestore(&h->lock, flags);
3071 cmd_free(h, c);
3074 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3075 if (!rc)
3076 wait_event(h->event_sync_wait_queue,
3077 atomic_read(&dev->reset_cmds_out) == 0 ||
3078 lockup_detected(h));
3080 if (unlikely(lockup_detected(h))) {
3081 dev_warn(&h->pdev->dev,
3082 "Controller lockup detected during reset wait\n");
3083 rc = -ENODEV;
3086 if (unlikely(rc))
3087 atomic_set(&dev->reset_cmds_out, 0);
3088 else
3089 wait_for_device_to_become_ready(h, scsi3addr, 0);
3091 mutex_unlock(&h->reset_mutex);
3092 return rc;
3095 static void hpsa_get_raid_level(struct ctlr_info *h,
3096 unsigned char *scsi3addr, unsigned char *raid_level)
3098 int rc;
3099 unsigned char *buf;
3101 *raid_level = RAID_UNKNOWN;
3102 buf = kzalloc(64, GFP_KERNEL);
3103 if (!buf)
3104 return;
3106 if (!hpsa_vpd_page_supported(h, scsi3addr,
3107 HPSA_VPD_LV_DEVICE_GEOMETRY))
3108 goto exit;
3110 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3111 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3113 if (rc == 0)
3114 *raid_level = buf[8];
3115 if (*raid_level > RAID_UNKNOWN)
3116 *raid_level = RAID_UNKNOWN;
3117 exit:
3118 kfree(buf);
3119 return;
3122 #define HPSA_MAP_DEBUG
3123 #ifdef HPSA_MAP_DEBUG
3124 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3125 struct raid_map_data *map_buff)
3127 struct raid_map_disk_data *dd = &map_buff->data[0];
3128 int map, row, col;
3129 u16 map_cnt, row_cnt, disks_per_row;
3131 if (rc != 0)
3132 return;
3134 /* Show details only if debugging has been activated. */
3135 if (h->raid_offload_debug < 2)
3136 return;
3138 dev_info(&h->pdev->dev, "structure_size = %u\n",
3139 le32_to_cpu(map_buff->structure_size));
3140 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3141 le32_to_cpu(map_buff->volume_blk_size));
3142 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3143 le64_to_cpu(map_buff->volume_blk_cnt));
3144 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3145 map_buff->phys_blk_shift);
3146 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3147 map_buff->parity_rotation_shift);
3148 dev_info(&h->pdev->dev, "strip_size = %u\n",
3149 le16_to_cpu(map_buff->strip_size));
3150 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3151 le64_to_cpu(map_buff->disk_starting_blk));
3152 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3153 le64_to_cpu(map_buff->disk_blk_cnt));
3154 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3155 le16_to_cpu(map_buff->data_disks_per_row));
3156 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3157 le16_to_cpu(map_buff->metadata_disks_per_row));
3158 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3159 le16_to_cpu(map_buff->row_cnt));
3160 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3161 le16_to_cpu(map_buff->layout_map_count));
3162 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3163 le16_to_cpu(map_buff->flags));
3164 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3165 le16_to_cpu(map_buff->flags) &
3166 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3167 dev_info(&h->pdev->dev, "dekindex = %u\n",
3168 le16_to_cpu(map_buff->dekindex));
3169 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3170 for (map = 0; map < map_cnt; map++) {
3171 dev_info(&h->pdev->dev, "Map%u:\n", map);
3172 row_cnt = le16_to_cpu(map_buff->row_cnt);
3173 for (row = 0; row < row_cnt; row++) {
3174 dev_info(&h->pdev->dev, " Row%u:\n", row);
3175 disks_per_row =
3176 le16_to_cpu(map_buff->data_disks_per_row);
3177 for (col = 0; col < disks_per_row; col++, dd++)
3178 dev_info(&h->pdev->dev,
3179 " D%02u: h=0x%04x xor=%u,%u\n",
3180 col, dd->ioaccel_handle,
3181 dd->xor_mult[0], dd->xor_mult[1]);
3182 disks_per_row =
3183 le16_to_cpu(map_buff->metadata_disks_per_row);
3184 for (col = 0; col < disks_per_row; col++, dd++)
3185 dev_info(&h->pdev->dev,
3186 " M%02u: h=0x%04x xor=%u,%u\n",
3187 col, dd->ioaccel_handle,
3188 dd->xor_mult[0], dd->xor_mult[1]);
3192 #else
3193 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3194 __attribute__((unused)) int rc,
3195 __attribute__((unused)) struct raid_map_data *map_buff)
3198 #endif
3200 static int hpsa_get_raid_map(struct ctlr_info *h,
3201 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3203 int rc = 0;
3204 struct CommandList *c;
3205 struct ErrorInfo *ei;
3207 c = cmd_alloc(h);
3209 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3210 sizeof(this_device->raid_map), 0,
3211 scsi3addr, TYPE_CMD)) {
3212 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3213 cmd_free(h, c);
3214 return -1;
3216 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3217 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3218 if (rc)
3219 goto out;
3220 ei = c->err_info;
3221 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3222 hpsa_scsi_interpret_error(h, c);
3223 rc = -1;
3224 goto out;
3226 cmd_free(h, c);
3228 /* @todo in the future, dynamically allocate RAID map memory */
3229 if (le32_to_cpu(this_device->raid_map.structure_size) >
3230 sizeof(this_device->raid_map)) {
3231 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3232 rc = -1;
3234 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3235 return rc;
3236 out:
3237 cmd_free(h, c);
3238 return rc;
3241 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3242 unsigned char scsi3addr[], u16 bmic_device_index,
3243 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3245 int rc = IO_OK;
3246 struct CommandList *c;
3247 struct ErrorInfo *ei;
3249 c = cmd_alloc(h);
3251 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3252 0, RAID_CTLR_LUNID, TYPE_CMD);
3253 if (rc)
3254 goto out;
3256 c->Request.CDB[2] = bmic_device_index & 0xff;
3257 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3259 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3260 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3261 if (rc)
3262 goto out;
3263 ei = c->err_info;
3264 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3265 hpsa_scsi_interpret_error(h, c);
3266 rc = -1;
3268 out:
3269 cmd_free(h, c);
3270 return rc;
3273 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3274 struct bmic_identify_controller *buf, size_t bufsize)
3276 int rc = IO_OK;
3277 struct CommandList *c;
3278 struct ErrorInfo *ei;
3280 c = cmd_alloc(h);
3282 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3283 0, RAID_CTLR_LUNID, TYPE_CMD);
3284 if (rc)
3285 goto out;
3287 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3288 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3289 if (rc)
3290 goto out;
3291 ei = c->err_info;
3292 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3293 hpsa_scsi_interpret_error(h, c);
3294 rc = -1;
3296 out:
3297 cmd_free(h, c);
3298 return rc;
3301 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3302 unsigned char scsi3addr[], u16 bmic_device_index,
3303 struct bmic_identify_physical_device *buf, size_t bufsize)
3305 int rc = IO_OK;
3306 struct CommandList *c;
3307 struct ErrorInfo *ei;
3309 c = cmd_alloc(h);
3310 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3311 0, RAID_CTLR_LUNID, TYPE_CMD);
3312 if (rc)
3313 goto out;
3315 c->Request.CDB[2] = bmic_device_index & 0xff;
3316 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3318 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3319 DEFAULT_TIMEOUT);
3320 ei = c->err_info;
3321 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3322 hpsa_scsi_interpret_error(h, c);
3323 rc = -1;
3325 out:
3326 cmd_free(h, c);
3328 return rc;
3332 * get enclosure information
3333 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3334 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3335 * Uses id_physical_device to determine the box_index.
3337 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3338 unsigned char *scsi3addr,
3339 struct ReportExtendedLUNdata *rlep, int rle_index,
3340 struct hpsa_scsi_dev_t *encl_dev)
3342 int rc = -1;
3343 struct CommandList *c = NULL;
3344 struct ErrorInfo *ei = NULL;
3345 struct bmic_sense_storage_box_params *bssbp = NULL;
3346 struct bmic_identify_physical_device *id_phys = NULL;
3347 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3348 u16 bmic_device_index = 0;
3350 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3352 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3353 rc = IO_OK;
3354 goto out;
3357 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3358 if (!bssbp)
3359 goto out;
3361 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3362 if (!id_phys)
3363 goto out;
3365 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3366 id_phys, sizeof(*id_phys));
3367 if (rc) {
3368 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3369 __func__, encl_dev->external, bmic_device_index);
3370 goto out;
3373 c = cmd_alloc(h);
3375 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3376 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3378 if (rc)
3379 goto out;
3381 if (id_phys->phys_connector[1] == 'E')
3382 c->Request.CDB[5] = id_phys->box_index;
3383 else
3384 c->Request.CDB[5] = 0;
3386 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3387 DEFAULT_TIMEOUT);
3388 if (rc)
3389 goto out;
3391 ei = c->err_info;
3392 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3393 rc = -1;
3394 goto out;
3397 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3398 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3399 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3401 rc = IO_OK;
3402 out:
3403 kfree(bssbp);
3404 kfree(id_phys);
3406 if (c)
3407 cmd_free(h, c);
3409 if (rc != IO_OK)
3410 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3411 "Error, could not get enclosure information\n");
3414 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3415 unsigned char *scsi3addr)
3417 struct ReportExtendedLUNdata *physdev;
3418 u32 nphysicals;
3419 u64 sa = 0;
3420 int i;
3422 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3423 if (!physdev)
3424 return 0;
3426 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3427 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3428 kfree(physdev);
3429 return 0;
3431 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3433 for (i = 0; i < nphysicals; i++)
3434 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3435 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3436 break;
3439 kfree(physdev);
3441 return sa;
3444 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3445 struct hpsa_scsi_dev_t *dev)
3447 int rc;
3448 u64 sa = 0;
3450 if (is_hba_lunid(scsi3addr)) {
3451 struct bmic_sense_subsystem_info *ssi;
3453 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3454 if (!ssi)
3455 return;
3457 rc = hpsa_bmic_sense_subsystem_information(h,
3458 scsi3addr, 0, ssi, sizeof(*ssi));
3459 if (rc == 0) {
3460 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3461 h->sas_address = sa;
3464 kfree(ssi);
3465 } else
3466 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3468 dev->sas_address = sa;
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3473 unsigned char scsi3addr[], u8 page)
3475 int rc;
3476 int i;
3477 int pages;
3478 unsigned char *buf, bufsize;
3480 buf = kzalloc(256, GFP_KERNEL);
3481 if (!buf)
3482 return false;
3484 /* Get the size of the page list first */
3485 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3486 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3487 buf, HPSA_VPD_HEADER_SZ);
3488 if (rc != 0)
3489 goto exit_unsupported;
3490 pages = buf[3];
3491 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3492 bufsize = pages + HPSA_VPD_HEADER_SZ;
3493 else
3494 bufsize = 255;
3496 /* Get the whole VPD page list */
3497 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3498 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3499 buf, bufsize);
3500 if (rc != 0)
3501 goto exit_unsupported;
3503 pages = buf[3];
3504 for (i = 1; i <= pages; i++)
3505 if (buf[3 + i] == page)
3506 goto exit_supported;
3507 exit_unsupported:
3508 kfree(buf);
3509 return false;
3510 exit_supported:
3511 kfree(buf);
3512 return true;
3515 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3516 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3518 int rc;
3519 unsigned char *buf;
3520 u8 ioaccel_status;
3522 this_device->offload_config = 0;
3523 this_device->offload_enabled = 0;
3524 this_device->offload_to_be_enabled = 0;
3526 buf = kzalloc(64, GFP_KERNEL);
3527 if (!buf)
3528 return;
3529 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3530 goto out;
3531 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3532 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3533 if (rc != 0)
3534 goto out;
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3540 this_device->offload_config =
3541 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3542 if (this_device->offload_config) {
3543 this_device->offload_enabled =
3544 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3545 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3546 this_device->offload_enabled = 0;
3548 this_device->offload_to_be_enabled = this_device->offload_enabled;
3549 out:
3550 kfree(buf);
3551 return;
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3556 unsigned char *device_id, int index, int buflen)
3558 int rc;
3559 unsigned char *buf;
3561 /* Does controller have VPD for device id? */
3562 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3563 return 1; /* not supported */
3565 buf = kzalloc(64, GFP_KERNEL);
3566 if (!buf)
3567 return -ENOMEM;
3569 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3570 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3571 if (rc == 0) {
3572 if (buflen > 16)
3573 buflen = 16;
3574 memcpy(device_id, &buf[8], buflen);
3577 kfree(buf);
3579 return rc; /*0 - got id, otherwise, didn't */
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3583 void *buf, int bufsize,
3584 int extended_response)
3586 int rc = IO_OK;
3587 struct CommandList *c;
3588 unsigned char scsi3addr[8];
3589 struct ErrorInfo *ei;
3591 c = cmd_alloc(h);
3593 /* address the controller */
3594 memset(scsi3addr, 0, sizeof(scsi3addr));
3595 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3596 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3597 rc = -1;
3598 goto out;
3600 if (extended_response)
3601 c->Request.CDB[1] = extended_response;
3602 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3603 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3604 if (rc)
3605 goto out;
3606 ei = c->err_info;
3607 if (ei->CommandStatus != 0 &&
3608 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3609 hpsa_scsi_interpret_error(h, c);
3610 rc = -1;
3611 } else {
3612 struct ReportLUNdata *rld = buf;
3614 if (rld->extended_response_flag != extended_response) {
3615 dev_err(&h->pdev->dev,
3616 "report luns requested format %u, got %u\n",
3617 extended_response,
3618 rld->extended_response_flag);
3619 rc = -1;
3622 out:
3623 cmd_free(h, c);
3624 return rc;
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628 struct ReportExtendedLUNdata *buf, int bufsize)
3630 int rc;
3631 struct ReportLUNdata *lbuf;
3633 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3634 HPSA_REPORT_PHYS_EXTENDED);
3635 if (!rc || !hpsa_allow_any)
3636 return rc;
3638 /* REPORT PHYS EXTENDED is not supported */
3639 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3640 if (!lbuf)
3641 return -ENOMEM;
3643 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3644 if (!rc) {
3645 int i;
3646 u32 nphys;
3648 /* Copy ReportLUNdata header */
3649 memcpy(buf, lbuf, 8);
3650 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3651 for (i = 0; i < nphys; i++)
3652 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3654 kfree(lbuf);
3655 return rc;
3658 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3659 struct ReportLUNdata *buf, int bufsize)
3661 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3664 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3665 int bus, int target, int lun)
3667 device->bus = bus;
3668 device->target = target;
3669 device->lun = lun;
3672 /* Use VPD inquiry to get details of volume status */
3673 static int hpsa_get_volume_status(struct ctlr_info *h,
3674 unsigned char scsi3addr[])
3676 int rc;
3677 int status;
3678 int size;
3679 unsigned char *buf;
3681 buf = kzalloc(64, GFP_KERNEL);
3682 if (!buf)
3683 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3685 /* Does controller have VPD for logical volume status? */
3686 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3687 goto exit_failed;
3689 /* Get the size of the VPD return buffer */
3690 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3691 buf, HPSA_VPD_HEADER_SZ);
3692 if (rc != 0)
3693 goto exit_failed;
3694 size = buf[3];
3696 /* Now get the whole VPD buffer */
3697 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698 buf, size + HPSA_VPD_HEADER_SZ);
3699 if (rc != 0)
3700 goto exit_failed;
3701 status = buf[4]; /* status byte */
3703 kfree(buf);
3704 return status;
3705 exit_failed:
3706 kfree(buf);
3707 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3710 /* Determine offline status of a volume.
3711 * Return either:
3712 * 0 (not offline)
3713 * 0xff (offline for unknown reasons)
3714 * # (integer code indicating one of several NOT READY states
3715 * describing why a volume is to be kept offline)
3717 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3718 unsigned char scsi3addr[])
3720 struct CommandList *c;
3721 unsigned char *sense;
3722 u8 sense_key, asc, ascq;
3723 int sense_len;
3724 int rc, ldstat = 0;
3725 u16 cmd_status;
3726 u8 scsi_status;
3727 #define ASC_LUN_NOT_READY 0x04
3728 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3731 c = cmd_alloc(h);
3733 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3734 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3735 DEFAULT_TIMEOUT);
3736 if (rc) {
3737 cmd_free(h, c);
3738 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3740 sense = c->err_info->SenseInfo;
3741 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3742 sense_len = sizeof(c->err_info->SenseInfo);
3743 else
3744 sense_len = c->err_info->SenseLen;
3745 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3746 cmd_status = c->err_info->CommandStatus;
3747 scsi_status = c->err_info->ScsiStatus;
3748 cmd_free(h, c);
3750 /* Determine the reason for not ready state */
3751 ldstat = hpsa_get_volume_status(h, scsi3addr);
3753 /* Keep volume offline in certain cases: */
3754 switch (ldstat) {
3755 case HPSA_LV_FAILED:
3756 case HPSA_LV_UNDERGOING_ERASE:
3757 case HPSA_LV_NOT_AVAILABLE:
3758 case HPSA_LV_UNDERGOING_RPI:
3759 case HPSA_LV_PENDING_RPI:
3760 case HPSA_LV_ENCRYPTED_NO_KEY:
3761 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3762 case HPSA_LV_UNDERGOING_ENCRYPTION:
3763 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3764 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3765 return ldstat;
3766 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3767 /* If VPD status page isn't available,
3768 * use ASC/ASCQ to determine state
3770 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3771 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3772 return ldstat;
3773 break;
3774 default:
3775 break;
3777 return HPSA_LV_OK;
3781 * Find out if a logical device supports aborts by simply trying one.
3782 * Smart Array may claim not to support aborts on logical drives, but
3783 * if a MSA2000 * is connected, the drives on that will be presented
3784 * by the Smart Array as logical drives, and aborts may be sent to
3785 * those devices successfully. So the simplest way to find out is
3786 * to simply try an abort and see how the device responds.
3788 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3789 unsigned char *scsi3addr)
3791 struct CommandList *c;
3792 struct ErrorInfo *ei;
3793 int rc = 0;
3795 u64 tag = (u64) -1; /* bogus tag */
3797 /* Assume that physical devices support aborts */
3798 if (!is_logical_dev_addr_mode(scsi3addr))
3799 return 1;
3801 c = cmd_alloc(h);
3803 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3804 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3805 DEFAULT_TIMEOUT);
3806 /* no unmap needed here because no data xfer. */
3807 ei = c->err_info;
3808 switch (ei->CommandStatus) {
3809 case CMD_INVALID:
3810 rc = 0;
3811 break;
3812 case CMD_UNABORTABLE:
3813 case CMD_ABORT_FAILED:
3814 rc = 1;
3815 break;
3816 case CMD_TMF_STATUS:
3817 rc = hpsa_evaluate_tmf_status(h, c);
3818 break;
3819 default:
3820 rc = 0;
3821 break;
3823 cmd_free(h, c);
3824 return rc;
3827 static int hpsa_update_device_info(struct ctlr_info *h,
3828 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3829 unsigned char *is_OBDR_device)
3832 #define OBDR_SIG_OFFSET 43
3833 #define OBDR_TAPE_SIG "$DR-10"
3834 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3835 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3837 unsigned char *inq_buff;
3838 unsigned char *obdr_sig;
3839 int rc = 0;
3841 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3842 if (!inq_buff) {
3843 rc = -ENOMEM;
3844 goto bail_out;
3847 /* Do an inquiry to the device to see what it is. */
3848 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3849 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3850 dev_err(&h->pdev->dev,
3851 "%s: inquiry failed, device will be skipped.\n",
3852 __func__);
3853 rc = HPSA_INQUIRY_FAILED;
3854 goto bail_out;
3857 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3858 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3860 this_device->devtype = (inq_buff[0] & 0x1f);
3861 memcpy(this_device->scsi3addr, scsi3addr, 8);
3862 memcpy(this_device->vendor, &inq_buff[8],
3863 sizeof(this_device->vendor));
3864 memcpy(this_device->model, &inq_buff[16],
3865 sizeof(this_device->model));
3866 this_device->rev = inq_buff[2];
3867 memset(this_device->device_id, 0,
3868 sizeof(this_device->device_id));
3869 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3870 sizeof(this_device->device_id)))
3871 dev_err(&h->pdev->dev,
3872 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3873 h->ctlr, __func__,
3874 h->scsi_host->host_no,
3875 this_device->target, this_device->lun,
3876 scsi_device_type(this_device->devtype),
3877 this_device->model);
3879 if ((this_device->devtype == TYPE_DISK ||
3880 this_device->devtype == TYPE_ZBC) &&
3881 is_logical_dev_addr_mode(scsi3addr)) {
3882 unsigned char volume_offline;
3884 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3885 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3886 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3887 volume_offline = hpsa_volume_offline(h, scsi3addr);
3888 if (volume_offline == HPSA_LV_FAILED) {
3889 rc = HPSA_LV_FAILED;
3890 dev_err(&h->pdev->dev,
3891 "%s: LV failed, device will be skipped.\n",
3892 __func__);
3893 goto bail_out;
3895 } else {
3896 this_device->raid_level = RAID_UNKNOWN;
3897 this_device->offload_config = 0;
3898 this_device->offload_enabled = 0;
3899 this_device->offload_to_be_enabled = 0;
3900 this_device->hba_ioaccel_enabled = 0;
3901 this_device->volume_offline = 0;
3902 this_device->queue_depth = h->nr_cmds;
3905 if (is_OBDR_device) {
3906 /* See if this is a One-Button-Disaster-Recovery device
3907 * by looking for "$DR-10" at offset 43 in inquiry data.
3909 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3910 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3911 strncmp(obdr_sig, OBDR_TAPE_SIG,
3912 OBDR_SIG_LEN) == 0);
3914 kfree(inq_buff);
3915 return 0;
3917 bail_out:
3918 kfree(inq_buff);
3919 return rc;
3922 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3923 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3925 unsigned long flags;
3926 int rc, entry;
3928 * See if this device supports aborts. If we already know
3929 * the device, we already know if it supports aborts, otherwise
3930 * we have to find out if it supports aborts by trying one.
3932 spin_lock_irqsave(&h->devlock, flags);
3933 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3934 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3935 entry >= 0 && entry < h->ndevices) {
3936 dev->supports_aborts = h->dev[entry]->supports_aborts;
3937 spin_unlock_irqrestore(&h->devlock, flags);
3938 } else {
3939 spin_unlock_irqrestore(&h->devlock, flags);
3940 dev->supports_aborts =
3941 hpsa_device_supports_aborts(h, scsi3addr);
3942 if (dev->supports_aborts < 0)
3943 dev->supports_aborts = 0;
3948 * Helper function to assign bus, target, lun mapping of devices.
3949 * Logical drive target and lun are assigned at this time, but
3950 * physical device lun and target assignment are deferred (assigned
3951 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3953 static void figure_bus_target_lun(struct ctlr_info *h,
3954 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3956 u32 lunid = get_unaligned_le32(lunaddrbytes);
3958 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3959 /* physical device, target and lun filled in later */
3960 if (is_hba_lunid(lunaddrbytes)) {
3961 int bus = HPSA_HBA_BUS;
3963 if (!device->rev)
3964 bus = HPSA_LEGACY_HBA_BUS;
3965 hpsa_set_bus_target_lun(device,
3966 bus, 0, lunid & 0x3fff);
3967 } else
3968 /* defer target, lun assignment for physical devices */
3969 hpsa_set_bus_target_lun(device,
3970 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3971 return;
3973 /* It's a logical device */
3974 if (device->external) {
3975 hpsa_set_bus_target_lun(device,
3976 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3977 lunid & 0x00ff);
3978 return;
3980 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3981 0, lunid & 0x3fff);
3986 * Get address of physical disk used for an ioaccel2 mode command:
3987 * 1. Extract ioaccel2 handle from the command.
3988 * 2. Find a matching ioaccel2 handle from list of physical disks.
3989 * 3. Return:
3990 * 1 and set scsi3addr to address of matching physical
3991 * 0 if no matching physical disk was found.
3993 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3994 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3996 struct io_accel2_cmd *c2 =
3997 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3998 unsigned long flags;
3999 int i;
4001 spin_lock_irqsave(&h->devlock, flags);
4002 for (i = 0; i < h->ndevices; i++)
4003 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4004 memcpy(scsi3addr, h->dev[i]->scsi3addr,
4005 sizeof(h->dev[i]->scsi3addr));
4006 spin_unlock_irqrestore(&h->devlock, flags);
4007 return 1;
4009 spin_unlock_irqrestore(&h->devlock, flags);
4010 return 0;
4013 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4014 int i, int nphysicals, int nlocal_logicals)
4016 /* In report logicals, local logicals are listed first,
4017 * then any externals.
4019 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4021 if (i == raid_ctlr_position)
4022 return 0;
4024 if (i < logicals_start)
4025 return 0;
4027 /* i is in logicals range, but still within local logicals */
4028 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4029 return 0;
4031 return 1; /* it's an external lun */
4035 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4036 * logdev. The number of luns in physdev and logdev are returned in
4037 * *nphysicals and *nlogicals, respectively.
4038 * Returns 0 on success, -1 otherwise.
4040 static int hpsa_gather_lun_info(struct ctlr_info *h,
4041 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4042 struct ReportLUNdata *logdev, u32 *nlogicals)
4044 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4045 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4046 return -1;
4048 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4049 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4050 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4051 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4052 *nphysicals = HPSA_MAX_PHYS_LUN;
4054 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4055 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4056 return -1;
4058 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4059 /* Reject Logicals in excess of our max capability. */
4060 if (*nlogicals > HPSA_MAX_LUN) {
4061 dev_warn(&h->pdev->dev,
4062 "maximum logical LUNs (%d) exceeded. "
4063 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4064 *nlogicals - HPSA_MAX_LUN);
4065 *nlogicals = HPSA_MAX_LUN;
4067 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4068 dev_warn(&h->pdev->dev,
4069 "maximum logical + physical LUNs (%d) exceeded. "
4070 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4071 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4072 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4074 return 0;
4077 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4078 int i, int nphysicals, int nlogicals,
4079 struct ReportExtendedLUNdata *physdev_list,
4080 struct ReportLUNdata *logdev_list)
4082 /* Helper function, figure out where the LUN ID info is coming from
4083 * given index i, lists of physical and logical devices, where in
4084 * the list the raid controller is supposed to appear (first or last)
4087 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4088 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4090 if (i == raid_ctlr_position)
4091 return RAID_CTLR_LUNID;
4093 if (i < logicals_start)
4094 return &physdev_list->LUN[i -
4095 (raid_ctlr_position == 0)].lunid[0];
4097 if (i < last_device)
4098 return &logdev_list->LUN[i - nphysicals -
4099 (raid_ctlr_position == 0)][0];
4100 BUG();
4101 return NULL;
4104 /* get physical drive ioaccel handle and queue depth */
4105 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4106 struct hpsa_scsi_dev_t *dev,
4107 struct ReportExtendedLUNdata *rlep, int rle_index,
4108 struct bmic_identify_physical_device *id_phys)
4110 int rc;
4111 struct ext_report_lun_entry *rle;
4114 * external targets don't support BMIC
4116 if (dev->external) {
4117 dev->queue_depth = 7;
4118 return;
4121 rle = &rlep->LUN[rle_index];
4123 dev->ioaccel_handle = rle->ioaccel_handle;
4124 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4125 dev->hba_ioaccel_enabled = 1;
4126 memset(id_phys, 0, sizeof(*id_phys));
4127 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4128 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4129 sizeof(*id_phys));
4130 if (!rc)
4131 /* Reserve space for FW operations */
4132 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4133 #define DRIVE_QUEUE_DEPTH 7
4134 dev->queue_depth =
4135 le16_to_cpu(id_phys->current_queue_depth_limit) -
4136 DRIVE_CMDS_RESERVED_FOR_FW;
4137 else
4138 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4141 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4142 struct ReportExtendedLUNdata *rlep, int rle_index,
4143 struct bmic_identify_physical_device *id_phys)
4145 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4147 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4148 this_device->hba_ioaccel_enabled = 1;
4150 memcpy(&this_device->active_path_index,
4151 &id_phys->active_path_number,
4152 sizeof(this_device->active_path_index));
4153 memcpy(&this_device->path_map,
4154 &id_phys->redundant_path_present_map,
4155 sizeof(this_device->path_map));
4156 memcpy(&this_device->box,
4157 &id_phys->alternate_paths_phys_box_on_port,
4158 sizeof(this_device->box));
4159 memcpy(&this_device->phys_connector,
4160 &id_phys->alternate_paths_phys_connector,
4161 sizeof(this_device->phys_connector));
4162 memcpy(&this_device->bay,
4163 &id_phys->phys_bay_in_box,
4164 sizeof(this_device->bay));
4167 /* get number of local logical disks. */
4168 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4169 struct bmic_identify_controller *id_ctlr,
4170 u32 *nlocals)
4172 int rc;
4174 if (!id_ctlr) {
4175 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4176 __func__);
4177 return -ENOMEM;
4179 memset(id_ctlr, 0, sizeof(*id_ctlr));
4180 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4181 if (!rc)
4182 if (id_ctlr->configured_logical_drive_count < 256)
4183 *nlocals = id_ctlr->configured_logical_drive_count;
4184 else
4185 *nlocals = le16_to_cpu(
4186 id_ctlr->extended_logical_unit_count);
4187 else
4188 *nlocals = -1;
4189 return rc;
4192 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4194 struct bmic_identify_physical_device *id_phys;
4195 bool is_spare = false;
4196 int rc;
4198 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4199 if (!id_phys)
4200 return false;
4202 rc = hpsa_bmic_id_physical_device(h,
4203 lunaddrbytes,
4204 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4205 id_phys, sizeof(*id_phys));
4206 if (rc == 0)
4207 is_spare = (id_phys->more_flags >> 6) & 0x01;
4209 kfree(id_phys);
4210 return is_spare;
4213 #define RPL_DEV_FLAG_NON_DISK 0x1
4214 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4215 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4217 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4219 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4220 struct ext_report_lun_entry *rle)
4222 u8 device_flags;
4223 u8 device_type;
4225 if (!MASKED_DEVICE(lunaddrbytes))
4226 return false;
4228 device_flags = rle->device_flags;
4229 device_type = rle->device_type;
4231 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4232 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4233 return false;
4234 return true;
4237 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4238 return false;
4240 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4241 return false;
4244 * Spares may be spun down, we do not want to
4245 * do an Inquiry to a RAID set spare drive as
4246 * that would have them spun up, that is a
4247 * performance hit because I/O to the RAID device
4248 * stops while the spin up occurs which can take
4249 * over 50 seconds.
4251 if (hpsa_is_disk_spare(h, lunaddrbytes))
4252 return true;
4254 return false;
4257 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4259 /* the idea here is we could get notified
4260 * that some devices have changed, so we do a report
4261 * physical luns and report logical luns cmd, and adjust
4262 * our list of devices accordingly.
4264 * The scsi3addr's of devices won't change so long as the
4265 * adapter is not reset. That means we can rescan and
4266 * tell which devices we already know about, vs. new
4267 * devices, vs. disappearing devices.
4269 struct ReportExtendedLUNdata *physdev_list = NULL;
4270 struct ReportLUNdata *logdev_list = NULL;
4271 struct bmic_identify_physical_device *id_phys = NULL;
4272 struct bmic_identify_controller *id_ctlr = NULL;
4273 u32 nphysicals = 0;
4274 u32 nlogicals = 0;
4275 u32 nlocal_logicals = 0;
4276 u32 ndev_allocated = 0;
4277 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4278 int ncurrent = 0;
4279 int i, n_ext_target_devs, ndevs_to_allocate;
4280 int raid_ctlr_position;
4281 bool physical_device;
4282 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4284 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4285 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4286 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4287 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4288 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4289 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4291 if (!currentsd || !physdev_list || !logdev_list ||
4292 !tmpdevice || !id_phys || !id_ctlr) {
4293 dev_err(&h->pdev->dev, "out of memory\n");
4294 goto out;
4296 memset(lunzerobits, 0, sizeof(lunzerobits));
4298 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4300 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4301 logdev_list, &nlogicals)) {
4302 h->drv_req_rescan = 1;
4303 goto out;
4306 /* Set number of local logicals (non PTRAID) */
4307 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4308 dev_warn(&h->pdev->dev,
4309 "%s: Can't determine number of local logical devices.\n",
4310 __func__);
4313 /* We might see up to the maximum number of logical and physical disks
4314 * plus external target devices, and a device for the local RAID
4315 * controller.
4317 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4319 /* Allocate the per device structures */
4320 for (i = 0; i < ndevs_to_allocate; i++) {
4321 if (i >= HPSA_MAX_DEVICES) {
4322 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4323 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4324 ndevs_to_allocate - HPSA_MAX_DEVICES);
4325 break;
4328 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4329 if (!currentsd[i]) {
4330 h->drv_req_rescan = 1;
4331 goto out;
4333 ndev_allocated++;
4336 if (is_scsi_rev_5(h))
4337 raid_ctlr_position = 0;
4338 else
4339 raid_ctlr_position = nphysicals + nlogicals;
4341 /* adjust our table of devices */
4342 n_ext_target_devs = 0;
4343 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4344 u8 *lunaddrbytes, is_OBDR = 0;
4345 int rc = 0;
4346 int phys_dev_index = i - (raid_ctlr_position == 0);
4347 bool skip_device = false;
4349 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4351 /* Figure out where the LUN ID info is coming from */
4352 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4353 i, nphysicals, nlogicals, physdev_list, logdev_list);
4355 /* Determine if this is a lun from an external target array */
4356 tmpdevice->external =
4357 figure_external_status(h, raid_ctlr_position, i,
4358 nphysicals, nlocal_logicals);
4361 * Skip over some devices such as a spare.
4363 if (!tmpdevice->external && physical_device) {
4364 skip_device = hpsa_skip_device(h, lunaddrbytes,
4365 &physdev_list->LUN[phys_dev_index]);
4366 if (skip_device)
4367 continue;
4370 /* Get device type, vendor, model, device id */
4371 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4372 &is_OBDR);
4373 if (rc == -ENOMEM) {
4374 dev_warn(&h->pdev->dev,
4375 "Out of memory, rescan deferred.\n");
4376 h->drv_req_rescan = 1;
4377 goto out;
4379 if (rc) {
4380 h->drv_req_rescan = 1;
4381 continue;
4384 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4385 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4386 this_device = currentsd[ncurrent];
4388 /* Turn on discovery_polling if there are ext target devices.
4389 * Event-based change notification is unreliable for those.
4391 if (!h->discovery_polling) {
4392 if (tmpdevice->external) {
4393 h->discovery_polling = 1;
4394 dev_info(&h->pdev->dev,
4395 "External target, activate discovery polling.\n");
4400 *this_device = *tmpdevice;
4401 this_device->physical_device = physical_device;
4404 * Expose all devices except for physical devices that
4405 * are masked.
4407 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4408 this_device->expose_device = 0;
4409 else
4410 this_device->expose_device = 1;
4414 * Get the SAS address for physical devices that are exposed.
4416 if (this_device->physical_device && this_device->expose_device)
4417 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4419 switch (this_device->devtype) {
4420 case TYPE_ROM:
4421 /* We don't *really* support actual CD-ROM devices,
4422 * just "One Button Disaster Recovery" tape drive
4423 * which temporarily pretends to be a CD-ROM drive.
4424 * So we check that the device is really an OBDR tape
4425 * device by checking for "$DR-10" in bytes 43-48 of
4426 * the inquiry data.
4428 if (is_OBDR)
4429 ncurrent++;
4430 break;
4431 case TYPE_DISK:
4432 case TYPE_ZBC:
4433 if (this_device->physical_device) {
4434 /* The disk is in HBA mode. */
4435 /* Never use RAID mapper in HBA mode. */
4436 this_device->offload_enabled = 0;
4437 hpsa_get_ioaccel_drive_info(h, this_device,
4438 physdev_list, phys_dev_index, id_phys);
4439 hpsa_get_path_info(this_device,
4440 physdev_list, phys_dev_index, id_phys);
4442 ncurrent++;
4443 break;
4444 case TYPE_TAPE:
4445 case TYPE_MEDIUM_CHANGER:
4446 ncurrent++;
4447 break;
4448 case TYPE_ENCLOSURE:
4449 if (!this_device->external)
4450 hpsa_get_enclosure_info(h, lunaddrbytes,
4451 physdev_list, phys_dev_index,
4452 this_device);
4453 ncurrent++;
4454 break;
4455 case TYPE_RAID:
4456 /* Only present the Smartarray HBA as a RAID controller.
4457 * If it's a RAID controller other than the HBA itself
4458 * (an external RAID controller, MSA500 or similar)
4459 * don't present it.
4461 if (!is_hba_lunid(lunaddrbytes))
4462 break;
4463 ncurrent++;
4464 break;
4465 default:
4466 break;
4468 if (ncurrent >= HPSA_MAX_DEVICES)
4469 break;
4472 if (h->sas_host == NULL) {
4473 int rc = 0;
4475 rc = hpsa_add_sas_host(h);
4476 if (rc) {
4477 dev_warn(&h->pdev->dev,
4478 "Could not add sas host %d\n", rc);
4479 goto out;
4483 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4484 out:
4485 kfree(tmpdevice);
4486 for (i = 0; i < ndev_allocated; i++)
4487 kfree(currentsd[i]);
4488 kfree(currentsd);
4489 kfree(physdev_list);
4490 kfree(logdev_list);
4491 kfree(id_ctlr);
4492 kfree(id_phys);
4495 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4496 struct scatterlist *sg)
4498 u64 addr64 = (u64) sg_dma_address(sg);
4499 unsigned int len = sg_dma_len(sg);
4501 desc->Addr = cpu_to_le64(addr64);
4502 desc->Len = cpu_to_le32(len);
4503 desc->Ext = 0;
4507 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4508 * dma mapping and fills in the scatter gather entries of the
4509 * hpsa command, cp.
4511 static int hpsa_scatter_gather(struct ctlr_info *h,
4512 struct CommandList *cp,
4513 struct scsi_cmnd *cmd)
4515 struct scatterlist *sg;
4516 int use_sg, i, sg_limit, chained, last_sg;
4517 struct SGDescriptor *curr_sg;
4519 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4521 use_sg = scsi_dma_map(cmd);
4522 if (use_sg < 0)
4523 return use_sg;
4525 if (!use_sg)
4526 goto sglist_finished;
4529 * If the number of entries is greater than the max for a single list,
4530 * then we have a chained list; we will set up all but one entry in the
4531 * first list (the last entry is saved for link information);
4532 * otherwise, we don't have a chained list and we'll set up at each of
4533 * the entries in the one list.
4535 curr_sg = cp->SG;
4536 chained = use_sg > h->max_cmd_sg_entries;
4537 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4538 last_sg = scsi_sg_count(cmd) - 1;
4539 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4540 hpsa_set_sg_descriptor(curr_sg, sg);
4541 curr_sg++;
4544 if (chained) {
4546 * Continue with the chained list. Set curr_sg to the chained
4547 * list. Modify the limit to the total count less the entries
4548 * we've already set up. Resume the scan at the list entry
4549 * where the previous loop left off.
4551 curr_sg = h->cmd_sg_list[cp->cmdindex];
4552 sg_limit = use_sg - sg_limit;
4553 for_each_sg(sg, sg, sg_limit, i) {
4554 hpsa_set_sg_descriptor(curr_sg, sg);
4555 curr_sg++;
4559 /* Back the pointer up to the last entry and mark it as "last". */
4560 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4562 if (use_sg + chained > h->maxSG)
4563 h->maxSG = use_sg + chained;
4565 if (chained) {
4566 cp->Header.SGList = h->max_cmd_sg_entries;
4567 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4568 if (hpsa_map_sg_chain_block(h, cp)) {
4569 scsi_dma_unmap(cmd);
4570 return -1;
4572 return 0;
4575 sglist_finished:
4577 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4578 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4579 return 0;
4582 #define IO_ACCEL_INELIGIBLE (1)
4583 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4585 int is_write = 0;
4586 u32 block;
4587 u32 block_cnt;
4589 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4590 switch (cdb[0]) {
4591 case WRITE_6:
4592 case WRITE_12:
4593 is_write = 1;
4594 case READ_6:
4595 case READ_12:
4596 if (*cdb_len == 6) {
4597 block = (((cdb[1] & 0x1F) << 16) |
4598 (cdb[2] << 8) |
4599 cdb[3]);
4600 block_cnt = cdb[4];
4601 if (block_cnt == 0)
4602 block_cnt = 256;
4603 } else {
4604 BUG_ON(*cdb_len != 12);
4605 block = get_unaligned_be32(&cdb[2]);
4606 block_cnt = get_unaligned_be32(&cdb[6]);
4608 if (block_cnt > 0xffff)
4609 return IO_ACCEL_INELIGIBLE;
4611 cdb[0] = is_write ? WRITE_10 : READ_10;
4612 cdb[1] = 0;
4613 cdb[2] = (u8) (block >> 24);
4614 cdb[3] = (u8) (block >> 16);
4615 cdb[4] = (u8) (block >> 8);
4616 cdb[5] = (u8) (block);
4617 cdb[6] = 0;
4618 cdb[7] = (u8) (block_cnt >> 8);
4619 cdb[8] = (u8) (block_cnt);
4620 cdb[9] = 0;
4621 *cdb_len = 10;
4622 break;
4624 return 0;
4627 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4628 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4629 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4631 struct scsi_cmnd *cmd = c->scsi_cmd;
4632 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4633 unsigned int len;
4634 unsigned int total_len = 0;
4635 struct scatterlist *sg;
4636 u64 addr64;
4637 int use_sg, i;
4638 struct SGDescriptor *curr_sg;
4639 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4641 /* TODO: implement chaining support */
4642 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4643 atomic_dec(&phys_disk->ioaccel_cmds_out);
4644 return IO_ACCEL_INELIGIBLE;
4647 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4649 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4650 atomic_dec(&phys_disk->ioaccel_cmds_out);
4651 return IO_ACCEL_INELIGIBLE;
4654 c->cmd_type = CMD_IOACCEL1;
4656 /* Adjust the DMA address to point to the accelerated command buffer */
4657 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4658 (c->cmdindex * sizeof(*cp));
4659 BUG_ON(c->busaddr & 0x0000007F);
4661 use_sg = scsi_dma_map(cmd);
4662 if (use_sg < 0) {
4663 atomic_dec(&phys_disk->ioaccel_cmds_out);
4664 return use_sg;
4667 if (use_sg) {
4668 curr_sg = cp->SG;
4669 scsi_for_each_sg(cmd, sg, use_sg, i) {
4670 addr64 = (u64) sg_dma_address(sg);
4671 len = sg_dma_len(sg);
4672 total_len += len;
4673 curr_sg->Addr = cpu_to_le64(addr64);
4674 curr_sg->Len = cpu_to_le32(len);
4675 curr_sg->Ext = cpu_to_le32(0);
4676 curr_sg++;
4678 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4680 switch (cmd->sc_data_direction) {
4681 case DMA_TO_DEVICE:
4682 control |= IOACCEL1_CONTROL_DATA_OUT;
4683 break;
4684 case DMA_FROM_DEVICE:
4685 control |= IOACCEL1_CONTROL_DATA_IN;
4686 break;
4687 case DMA_NONE:
4688 control |= IOACCEL1_CONTROL_NODATAXFER;
4689 break;
4690 default:
4691 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4692 cmd->sc_data_direction);
4693 BUG();
4694 break;
4696 } else {
4697 control |= IOACCEL1_CONTROL_NODATAXFER;
4700 c->Header.SGList = use_sg;
4701 /* Fill out the command structure to submit */
4702 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4703 cp->transfer_len = cpu_to_le32(total_len);
4704 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4705 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4706 cp->control = cpu_to_le32(control);
4707 memcpy(cp->CDB, cdb, cdb_len);
4708 memcpy(cp->CISS_LUN, scsi3addr, 8);
4709 /* Tag was already set at init time. */
4710 enqueue_cmd_and_start_io(h, c);
4711 return 0;
4715 * Queue a command directly to a device behind the controller using the
4716 * I/O accelerator path.
4718 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4719 struct CommandList *c)
4721 struct scsi_cmnd *cmd = c->scsi_cmd;
4722 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4724 if (!dev)
4725 return -1;
4727 c->phys_disk = dev;
4729 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4730 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4734 * Set encryption parameters for the ioaccel2 request
4736 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4737 struct CommandList *c, struct io_accel2_cmd *cp)
4739 struct scsi_cmnd *cmd = c->scsi_cmd;
4740 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4741 struct raid_map_data *map = &dev->raid_map;
4742 u64 first_block;
4744 /* Are we doing encryption on this device */
4745 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4746 return;
4747 /* Set the data encryption key index. */
4748 cp->dekindex = map->dekindex;
4750 /* Set the encryption enable flag, encoded into direction field. */
4751 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4753 /* Set encryption tweak values based on logical block address
4754 * If block size is 512, tweak value is LBA.
4755 * For other block sizes, tweak is (LBA * block size)/ 512)
4757 switch (cmd->cmnd[0]) {
4758 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4759 case READ_6:
4760 case WRITE_6:
4761 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4762 (cmd->cmnd[2] << 8) |
4763 cmd->cmnd[3]);
4764 break;
4765 case WRITE_10:
4766 case READ_10:
4767 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4768 case WRITE_12:
4769 case READ_12:
4770 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4771 break;
4772 case WRITE_16:
4773 case READ_16:
4774 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4775 break;
4776 default:
4777 dev_err(&h->pdev->dev,
4778 "ERROR: %s: size (0x%x) not supported for encryption\n",
4779 __func__, cmd->cmnd[0]);
4780 BUG();
4781 break;
4784 if (le32_to_cpu(map->volume_blk_size) != 512)
4785 first_block = first_block *
4786 le32_to_cpu(map->volume_blk_size)/512;
4788 cp->tweak_lower = cpu_to_le32(first_block);
4789 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4792 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4793 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4794 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4796 struct scsi_cmnd *cmd = c->scsi_cmd;
4797 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4798 struct ioaccel2_sg_element *curr_sg;
4799 int use_sg, i;
4800 struct scatterlist *sg;
4801 u64 addr64;
4802 u32 len;
4803 u32 total_len = 0;
4805 if (!cmd->device)
4806 return -1;
4808 if (!cmd->device->hostdata)
4809 return -1;
4811 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4813 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4814 atomic_dec(&phys_disk->ioaccel_cmds_out);
4815 return IO_ACCEL_INELIGIBLE;
4818 c->cmd_type = CMD_IOACCEL2;
4819 /* Adjust the DMA address to point to the accelerated command buffer */
4820 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4821 (c->cmdindex * sizeof(*cp));
4822 BUG_ON(c->busaddr & 0x0000007F);
4824 memset(cp, 0, sizeof(*cp));
4825 cp->IU_type = IOACCEL2_IU_TYPE;
4827 use_sg = scsi_dma_map(cmd);
4828 if (use_sg < 0) {
4829 atomic_dec(&phys_disk->ioaccel_cmds_out);
4830 return use_sg;
4833 if (use_sg) {
4834 curr_sg = cp->sg;
4835 if (use_sg > h->ioaccel_maxsg) {
4836 addr64 = le64_to_cpu(
4837 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4838 curr_sg->address = cpu_to_le64(addr64);
4839 curr_sg->length = 0;
4840 curr_sg->reserved[0] = 0;
4841 curr_sg->reserved[1] = 0;
4842 curr_sg->reserved[2] = 0;
4843 curr_sg->chain_indicator = 0x80;
4845 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4847 scsi_for_each_sg(cmd, sg, use_sg, i) {
4848 addr64 = (u64) sg_dma_address(sg);
4849 len = sg_dma_len(sg);
4850 total_len += len;
4851 curr_sg->address = cpu_to_le64(addr64);
4852 curr_sg->length = cpu_to_le32(len);
4853 curr_sg->reserved[0] = 0;
4854 curr_sg->reserved[1] = 0;
4855 curr_sg->reserved[2] = 0;
4856 curr_sg->chain_indicator = 0;
4857 curr_sg++;
4860 switch (cmd->sc_data_direction) {
4861 case DMA_TO_DEVICE:
4862 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4863 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4864 break;
4865 case DMA_FROM_DEVICE:
4866 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4867 cp->direction |= IOACCEL2_DIR_DATA_IN;
4868 break;
4869 case DMA_NONE:
4870 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4871 cp->direction |= IOACCEL2_DIR_NO_DATA;
4872 break;
4873 default:
4874 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4875 cmd->sc_data_direction);
4876 BUG();
4877 break;
4879 } else {
4880 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4881 cp->direction |= IOACCEL2_DIR_NO_DATA;
4884 /* Set encryption parameters, if necessary */
4885 set_encrypt_ioaccel2(h, c, cp);
4887 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4888 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4889 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4891 cp->data_len = cpu_to_le32(total_len);
4892 cp->err_ptr = cpu_to_le64(c->busaddr +
4893 offsetof(struct io_accel2_cmd, error_data));
4894 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4896 /* fill in sg elements */
4897 if (use_sg > h->ioaccel_maxsg) {
4898 cp->sg_count = 1;
4899 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4900 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4901 atomic_dec(&phys_disk->ioaccel_cmds_out);
4902 scsi_dma_unmap(cmd);
4903 return -1;
4905 } else
4906 cp->sg_count = (u8) use_sg;
4908 enqueue_cmd_and_start_io(h, c);
4909 return 0;
4913 * Queue a command to the correct I/O accelerator path.
4915 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4916 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4917 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4919 if (!c->scsi_cmd->device)
4920 return -1;
4922 if (!c->scsi_cmd->device->hostdata)
4923 return -1;
4925 /* Try to honor the device's queue depth */
4926 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4927 phys_disk->queue_depth) {
4928 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929 return IO_ACCEL_INELIGIBLE;
4931 if (h->transMethod & CFGTBL_Trans_io_accel1)
4932 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4933 cdb, cdb_len, scsi3addr,
4934 phys_disk);
4935 else
4936 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4937 cdb, cdb_len, scsi3addr,
4938 phys_disk);
4941 static void raid_map_helper(struct raid_map_data *map,
4942 int offload_to_mirror, u32 *map_index, u32 *current_group)
4944 if (offload_to_mirror == 0) {
4945 /* use physical disk in the first mirrored group. */
4946 *map_index %= le16_to_cpu(map->data_disks_per_row);
4947 return;
4949 do {
4950 /* determine mirror group that *map_index indicates */
4951 *current_group = *map_index /
4952 le16_to_cpu(map->data_disks_per_row);
4953 if (offload_to_mirror == *current_group)
4954 continue;
4955 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4956 /* select map index from next group */
4957 *map_index += le16_to_cpu(map->data_disks_per_row);
4958 (*current_group)++;
4959 } else {
4960 /* select map index from first group */
4961 *map_index %= le16_to_cpu(map->data_disks_per_row);
4962 *current_group = 0;
4964 } while (offload_to_mirror != *current_group);
4968 * Attempt to perform offload RAID mapping for a logical volume I/O.
4970 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4971 struct CommandList *c)
4973 struct scsi_cmnd *cmd = c->scsi_cmd;
4974 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4975 struct raid_map_data *map = &dev->raid_map;
4976 struct raid_map_disk_data *dd = &map->data[0];
4977 int is_write = 0;
4978 u32 map_index;
4979 u64 first_block, last_block;
4980 u32 block_cnt;
4981 u32 blocks_per_row;
4982 u64 first_row, last_row;
4983 u32 first_row_offset, last_row_offset;
4984 u32 first_column, last_column;
4985 u64 r0_first_row, r0_last_row;
4986 u32 r5or6_blocks_per_row;
4987 u64 r5or6_first_row, r5or6_last_row;
4988 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4989 u32 r5or6_first_column, r5or6_last_column;
4990 u32 total_disks_per_row;
4991 u32 stripesize;
4992 u32 first_group, last_group, current_group;
4993 u32 map_row;
4994 u32 disk_handle;
4995 u64 disk_block;
4996 u32 disk_block_cnt;
4997 u8 cdb[16];
4998 u8 cdb_len;
4999 u16 strip_size;
5000 #if BITS_PER_LONG == 32
5001 u64 tmpdiv;
5002 #endif
5003 int offload_to_mirror;
5005 if (!dev)
5006 return -1;
5008 /* check for valid opcode, get LBA and block count */
5009 switch (cmd->cmnd[0]) {
5010 case WRITE_6:
5011 is_write = 1;
5012 case READ_6:
5013 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5014 (cmd->cmnd[2] << 8) |
5015 cmd->cmnd[3]);
5016 block_cnt = cmd->cmnd[4];
5017 if (block_cnt == 0)
5018 block_cnt = 256;
5019 break;
5020 case WRITE_10:
5021 is_write = 1;
5022 case READ_10:
5023 first_block =
5024 (((u64) cmd->cmnd[2]) << 24) |
5025 (((u64) cmd->cmnd[3]) << 16) |
5026 (((u64) cmd->cmnd[4]) << 8) |
5027 cmd->cmnd[5];
5028 block_cnt =
5029 (((u32) cmd->cmnd[7]) << 8) |
5030 cmd->cmnd[8];
5031 break;
5032 case WRITE_12:
5033 is_write = 1;
5034 case READ_12:
5035 first_block =
5036 (((u64) cmd->cmnd[2]) << 24) |
5037 (((u64) cmd->cmnd[3]) << 16) |
5038 (((u64) cmd->cmnd[4]) << 8) |
5039 cmd->cmnd[5];
5040 block_cnt =
5041 (((u32) cmd->cmnd[6]) << 24) |
5042 (((u32) cmd->cmnd[7]) << 16) |
5043 (((u32) cmd->cmnd[8]) << 8) |
5044 cmd->cmnd[9];
5045 break;
5046 case WRITE_16:
5047 is_write = 1;
5048 case READ_16:
5049 first_block =
5050 (((u64) cmd->cmnd[2]) << 56) |
5051 (((u64) cmd->cmnd[3]) << 48) |
5052 (((u64) cmd->cmnd[4]) << 40) |
5053 (((u64) cmd->cmnd[5]) << 32) |
5054 (((u64) cmd->cmnd[6]) << 24) |
5055 (((u64) cmd->cmnd[7]) << 16) |
5056 (((u64) cmd->cmnd[8]) << 8) |
5057 cmd->cmnd[9];
5058 block_cnt =
5059 (((u32) cmd->cmnd[10]) << 24) |
5060 (((u32) cmd->cmnd[11]) << 16) |
5061 (((u32) cmd->cmnd[12]) << 8) |
5062 cmd->cmnd[13];
5063 break;
5064 default:
5065 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5067 last_block = first_block + block_cnt - 1;
5069 /* check for write to non-RAID-0 */
5070 if (is_write && dev->raid_level != 0)
5071 return IO_ACCEL_INELIGIBLE;
5073 /* check for invalid block or wraparound */
5074 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5075 last_block < first_block)
5076 return IO_ACCEL_INELIGIBLE;
5078 /* calculate stripe information for the request */
5079 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5080 le16_to_cpu(map->strip_size);
5081 strip_size = le16_to_cpu(map->strip_size);
5082 #if BITS_PER_LONG == 32
5083 tmpdiv = first_block;
5084 (void) do_div(tmpdiv, blocks_per_row);
5085 first_row = tmpdiv;
5086 tmpdiv = last_block;
5087 (void) do_div(tmpdiv, blocks_per_row);
5088 last_row = tmpdiv;
5089 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5090 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5091 tmpdiv = first_row_offset;
5092 (void) do_div(tmpdiv, strip_size);
5093 first_column = tmpdiv;
5094 tmpdiv = last_row_offset;
5095 (void) do_div(tmpdiv, strip_size);
5096 last_column = tmpdiv;
5097 #else
5098 first_row = first_block / blocks_per_row;
5099 last_row = last_block / blocks_per_row;
5100 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5101 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5102 first_column = first_row_offset / strip_size;
5103 last_column = last_row_offset / strip_size;
5104 #endif
5106 /* if this isn't a single row/column then give to the controller */
5107 if ((first_row != last_row) || (first_column != last_column))
5108 return IO_ACCEL_INELIGIBLE;
5110 /* proceeding with driver mapping */
5111 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5112 le16_to_cpu(map->metadata_disks_per_row);
5113 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5114 le16_to_cpu(map->row_cnt);
5115 map_index = (map_row * total_disks_per_row) + first_column;
5117 switch (dev->raid_level) {
5118 case HPSA_RAID_0:
5119 break; /* nothing special to do */
5120 case HPSA_RAID_1:
5121 /* Handles load balance across RAID 1 members.
5122 * (2-drive R1 and R10 with even # of drives.)
5123 * Appropriate for SSDs, not optimal for HDDs
5125 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5126 if (dev->offload_to_mirror)
5127 map_index += le16_to_cpu(map->data_disks_per_row);
5128 dev->offload_to_mirror = !dev->offload_to_mirror;
5129 break;
5130 case HPSA_RAID_ADM:
5131 /* Handles N-way mirrors (R1-ADM)
5132 * and R10 with # of drives divisible by 3.)
5134 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5136 offload_to_mirror = dev->offload_to_mirror;
5137 raid_map_helper(map, offload_to_mirror,
5138 &map_index, &current_group);
5139 /* set mirror group to use next time */
5140 offload_to_mirror =
5141 (offload_to_mirror >=
5142 le16_to_cpu(map->layout_map_count) - 1)
5143 ? 0 : offload_to_mirror + 1;
5144 dev->offload_to_mirror = offload_to_mirror;
5145 /* Avoid direct use of dev->offload_to_mirror within this
5146 * function since multiple threads might simultaneously
5147 * increment it beyond the range of dev->layout_map_count -1.
5149 break;
5150 case HPSA_RAID_5:
5151 case HPSA_RAID_6:
5152 if (le16_to_cpu(map->layout_map_count) <= 1)
5153 break;
5155 /* Verify first and last block are in same RAID group */
5156 r5or6_blocks_per_row =
5157 le16_to_cpu(map->strip_size) *
5158 le16_to_cpu(map->data_disks_per_row);
5159 BUG_ON(r5or6_blocks_per_row == 0);
5160 stripesize = r5or6_blocks_per_row *
5161 le16_to_cpu(map->layout_map_count);
5162 #if BITS_PER_LONG == 32
5163 tmpdiv = first_block;
5164 first_group = do_div(tmpdiv, stripesize);
5165 tmpdiv = first_group;
5166 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5167 first_group = tmpdiv;
5168 tmpdiv = last_block;
5169 last_group = do_div(tmpdiv, stripesize);
5170 tmpdiv = last_group;
5171 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5172 last_group = tmpdiv;
5173 #else
5174 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5175 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5176 #endif
5177 if (first_group != last_group)
5178 return IO_ACCEL_INELIGIBLE;
5180 /* Verify request is in a single row of RAID 5/6 */
5181 #if BITS_PER_LONG == 32
5182 tmpdiv = first_block;
5183 (void) do_div(tmpdiv, stripesize);
5184 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5185 tmpdiv = last_block;
5186 (void) do_div(tmpdiv, stripesize);
5187 r5or6_last_row = r0_last_row = tmpdiv;
5188 #else
5189 first_row = r5or6_first_row = r0_first_row =
5190 first_block / stripesize;
5191 r5or6_last_row = r0_last_row = last_block / stripesize;
5192 #endif
5193 if (r5or6_first_row != r5or6_last_row)
5194 return IO_ACCEL_INELIGIBLE;
5197 /* Verify request is in a single column */
5198 #if BITS_PER_LONG == 32
5199 tmpdiv = first_block;
5200 first_row_offset = do_div(tmpdiv, stripesize);
5201 tmpdiv = first_row_offset;
5202 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5203 r5or6_first_row_offset = first_row_offset;
5204 tmpdiv = last_block;
5205 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5206 tmpdiv = r5or6_last_row_offset;
5207 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5208 tmpdiv = r5or6_first_row_offset;
5209 (void) do_div(tmpdiv, map->strip_size);
5210 first_column = r5or6_first_column = tmpdiv;
5211 tmpdiv = r5or6_last_row_offset;
5212 (void) do_div(tmpdiv, map->strip_size);
5213 r5or6_last_column = tmpdiv;
5214 #else
5215 first_row_offset = r5or6_first_row_offset =
5216 (u32)((first_block % stripesize) %
5217 r5or6_blocks_per_row);
5219 r5or6_last_row_offset =
5220 (u32)((last_block % stripesize) %
5221 r5or6_blocks_per_row);
5223 first_column = r5or6_first_column =
5224 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5225 r5or6_last_column =
5226 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5227 #endif
5228 if (r5or6_first_column != r5or6_last_column)
5229 return IO_ACCEL_INELIGIBLE;
5231 /* Request is eligible */
5232 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5233 le16_to_cpu(map->row_cnt);
5235 map_index = (first_group *
5236 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5237 (map_row * total_disks_per_row) + first_column;
5238 break;
5239 default:
5240 return IO_ACCEL_INELIGIBLE;
5243 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5244 return IO_ACCEL_INELIGIBLE;
5246 c->phys_disk = dev->phys_disk[map_index];
5247 if (!c->phys_disk)
5248 return IO_ACCEL_INELIGIBLE;
5250 disk_handle = dd[map_index].ioaccel_handle;
5251 disk_block = le64_to_cpu(map->disk_starting_blk) +
5252 first_row * le16_to_cpu(map->strip_size) +
5253 (first_row_offset - first_column *
5254 le16_to_cpu(map->strip_size));
5255 disk_block_cnt = block_cnt;
5257 /* handle differing logical/physical block sizes */
5258 if (map->phys_blk_shift) {
5259 disk_block <<= map->phys_blk_shift;
5260 disk_block_cnt <<= map->phys_blk_shift;
5262 BUG_ON(disk_block_cnt > 0xffff);
5264 /* build the new CDB for the physical disk I/O */
5265 if (disk_block > 0xffffffff) {
5266 cdb[0] = is_write ? WRITE_16 : READ_16;
5267 cdb[1] = 0;
5268 cdb[2] = (u8) (disk_block >> 56);
5269 cdb[3] = (u8) (disk_block >> 48);
5270 cdb[4] = (u8) (disk_block >> 40);
5271 cdb[5] = (u8) (disk_block >> 32);
5272 cdb[6] = (u8) (disk_block >> 24);
5273 cdb[7] = (u8) (disk_block >> 16);
5274 cdb[8] = (u8) (disk_block >> 8);
5275 cdb[9] = (u8) (disk_block);
5276 cdb[10] = (u8) (disk_block_cnt >> 24);
5277 cdb[11] = (u8) (disk_block_cnt >> 16);
5278 cdb[12] = (u8) (disk_block_cnt >> 8);
5279 cdb[13] = (u8) (disk_block_cnt);
5280 cdb[14] = 0;
5281 cdb[15] = 0;
5282 cdb_len = 16;
5283 } else {
5284 cdb[0] = is_write ? WRITE_10 : READ_10;
5285 cdb[1] = 0;
5286 cdb[2] = (u8) (disk_block >> 24);
5287 cdb[3] = (u8) (disk_block >> 16);
5288 cdb[4] = (u8) (disk_block >> 8);
5289 cdb[5] = (u8) (disk_block);
5290 cdb[6] = 0;
5291 cdb[7] = (u8) (disk_block_cnt >> 8);
5292 cdb[8] = (u8) (disk_block_cnt);
5293 cdb[9] = 0;
5294 cdb_len = 10;
5296 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5297 dev->scsi3addr,
5298 dev->phys_disk[map_index]);
5302 * Submit commands down the "normal" RAID stack path
5303 * All callers to hpsa_ciss_submit must check lockup_detected
5304 * beforehand, before (opt.) and after calling cmd_alloc
5306 static int hpsa_ciss_submit(struct ctlr_info *h,
5307 struct CommandList *c, struct scsi_cmnd *cmd,
5308 unsigned char scsi3addr[])
5310 cmd->host_scribble = (unsigned char *) c;
5311 c->cmd_type = CMD_SCSI;
5312 c->scsi_cmd = cmd;
5313 c->Header.ReplyQueue = 0; /* unused in simple mode */
5314 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5315 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5317 /* Fill in the request block... */
5319 c->Request.Timeout = 0;
5320 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5321 c->Request.CDBLen = cmd->cmd_len;
5322 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5323 switch (cmd->sc_data_direction) {
5324 case DMA_TO_DEVICE:
5325 c->Request.type_attr_dir =
5326 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5327 break;
5328 case DMA_FROM_DEVICE:
5329 c->Request.type_attr_dir =
5330 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5331 break;
5332 case DMA_NONE:
5333 c->Request.type_attr_dir =
5334 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5335 break;
5336 case DMA_BIDIRECTIONAL:
5337 /* This can happen if a buggy application does a scsi passthru
5338 * and sets both inlen and outlen to non-zero. ( see
5339 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5342 c->Request.type_attr_dir =
5343 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5344 /* This is technically wrong, and hpsa controllers should
5345 * reject it with CMD_INVALID, which is the most correct
5346 * response, but non-fibre backends appear to let it
5347 * slide by, and give the same results as if this field
5348 * were set correctly. Either way is acceptable for
5349 * our purposes here.
5352 break;
5354 default:
5355 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5356 cmd->sc_data_direction);
5357 BUG();
5358 break;
5361 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5362 hpsa_cmd_resolve_and_free(h, c);
5363 return SCSI_MLQUEUE_HOST_BUSY;
5365 enqueue_cmd_and_start_io(h, c);
5366 /* the cmd'll come back via intr handler in complete_scsi_command() */
5367 return 0;
5370 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5371 struct CommandList *c)
5373 dma_addr_t cmd_dma_handle, err_dma_handle;
5375 /* Zero out all of commandlist except the last field, refcount */
5376 memset(c, 0, offsetof(struct CommandList, refcount));
5377 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5378 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5379 c->err_info = h->errinfo_pool + index;
5380 memset(c->err_info, 0, sizeof(*c->err_info));
5381 err_dma_handle = h->errinfo_pool_dhandle
5382 + index * sizeof(*c->err_info);
5383 c->cmdindex = index;
5384 c->busaddr = (u32) cmd_dma_handle;
5385 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5386 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5387 c->h = h;
5388 c->scsi_cmd = SCSI_CMD_IDLE;
5391 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5393 int i;
5395 for (i = 0; i < h->nr_cmds; i++) {
5396 struct CommandList *c = h->cmd_pool + i;
5398 hpsa_cmd_init(h, i, c);
5399 atomic_set(&c->refcount, 0);
5403 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5404 struct CommandList *c)
5406 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5408 BUG_ON(c->cmdindex != index);
5410 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5411 memset(c->err_info, 0, sizeof(*c->err_info));
5412 c->busaddr = (u32) cmd_dma_handle;
5415 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5416 struct CommandList *c, struct scsi_cmnd *cmd,
5417 unsigned char *scsi3addr)
5419 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5420 int rc = IO_ACCEL_INELIGIBLE;
5422 if (!dev)
5423 return SCSI_MLQUEUE_HOST_BUSY;
5425 cmd->host_scribble = (unsigned char *) c;
5427 if (dev->offload_enabled) {
5428 hpsa_cmd_init(h, c->cmdindex, c);
5429 c->cmd_type = CMD_SCSI;
5430 c->scsi_cmd = cmd;
5431 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5432 if (rc < 0) /* scsi_dma_map failed. */
5433 rc = SCSI_MLQUEUE_HOST_BUSY;
5434 } else if (dev->hba_ioaccel_enabled) {
5435 hpsa_cmd_init(h, c->cmdindex, c);
5436 c->cmd_type = CMD_SCSI;
5437 c->scsi_cmd = cmd;
5438 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5439 if (rc < 0) /* scsi_dma_map failed. */
5440 rc = SCSI_MLQUEUE_HOST_BUSY;
5442 return rc;
5445 static void hpsa_command_resubmit_worker(struct work_struct *work)
5447 struct scsi_cmnd *cmd;
5448 struct hpsa_scsi_dev_t *dev;
5449 struct CommandList *c = container_of(work, struct CommandList, work);
5451 cmd = c->scsi_cmd;
5452 dev = cmd->device->hostdata;
5453 if (!dev) {
5454 cmd->result = DID_NO_CONNECT << 16;
5455 return hpsa_cmd_free_and_done(c->h, c, cmd);
5457 if (c->reset_pending)
5458 return hpsa_cmd_resolve_and_free(c->h, c);
5459 if (c->abort_pending)
5460 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5461 if (c->cmd_type == CMD_IOACCEL2) {
5462 struct ctlr_info *h = c->h;
5463 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5464 int rc;
5466 if (c2->error_data.serv_response ==
5467 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5468 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5469 if (rc == 0)
5470 return;
5471 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5473 * If we get here, it means dma mapping failed.
5474 * Try again via scsi mid layer, which will
5475 * then get SCSI_MLQUEUE_HOST_BUSY.
5477 cmd->result = DID_IMM_RETRY << 16;
5478 return hpsa_cmd_free_and_done(h, c, cmd);
5480 /* else, fall thru and resubmit down CISS path */
5483 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5484 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5486 * If we get here, it means dma mapping failed. Try
5487 * again via scsi mid layer, which will then get
5488 * SCSI_MLQUEUE_HOST_BUSY.
5490 * hpsa_ciss_submit will have already freed c
5491 * if it encountered a dma mapping failure.
5493 cmd->result = DID_IMM_RETRY << 16;
5494 cmd->scsi_done(cmd);
5498 /* Running in struct Scsi_Host->host_lock less mode */
5499 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5501 struct ctlr_info *h;
5502 struct hpsa_scsi_dev_t *dev;
5503 unsigned char scsi3addr[8];
5504 struct CommandList *c;
5505 int rc = 0;
5507 /* Get the ptr to our adapter structure out of cmd->host. */
5508 h = sdev_to_hba(cmd->device);
5510 BUG_ON(cmd->request->tag < 0);
5512 dev = cmd->device->hostdata;
5513 if (!dev) {
5514 cmd->result = DID_NO_CONNECT << 16;
5515 cmd->scsi_done(cmd);
5516 return 0;
5519 if (dev->removed) {
5520 cmd->result = DID_NO_CONNECT << 16;
5521 cmd->scsi_done(cmd);
5522 return 0;
5525 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5527 if (unlikely(lockup_detected(h))) {
5528 cmd->result = DID_NO_CONNECT << 16;
5529 cmd->scsi_done(cmd);
5530 return 0;
5532 c = cmd_tagged_alloc(h, cmd);
5535 * Call alternate submit routine for I/O accelerated commands.
5536 * Retries always go down the normal I/O path.
5538 if (likely(cmd->retries == 0 &&
5539 !blk_rq_is_passthrough(cmd->request) &&
5540 h->acciopath_status)) {
5541 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5542 if (rc == 0)
5543 return 0;
5544 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5545 hpsa_cmd_resolve_and_free(h, c);
5546 return SCSI_MLQUEUE_HOST_BUSY;
5549 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5552 static void hpsa_scan_complete(struct ctlr_info *h)
5554 unsigned long flags;
5556 spin_lock_irqsave(&h->scan_lock, flags);
5557 h->scan_finished = 1;
5558 wake_up(&h->scan_wait_queue);
5559 spin_unlock_irqrestore(&h->scan_lock, flags);
5562 static void hpsa_scan_start(struct Scsi_Host *sh)
5564 struct ctlr_info *h = shost_to_hba(sh);
5565 unsigned long flags;
5568 * Don't let rescans be initiated on a controller known to be locked
5569 * up. If the controller locks up *during* a rescan, that thread is
5570 * probably hosed, but at least we can prevent new rescan threads from
5571 * piling up on a locked up controller.
5573 if (unlikely(lockup_detected(h)))
5574 return hpsa_scan_complete(h);
5577 * If a scan is already waiting to run, no need to add another
5579 spin_lock_irqsave(&h->scan_lock, flags);
5580 if (h->scan_waiting) {
5581 spin_unlock_irqrestore(&h->scan_lock, flags);
5582 return;
5585 spin_unlock_irqrestore(&h->scan_lock, flags);
5587 /* wait until any scan already in progress is finished. */
5588 while (1) {
5589 spin_lock_irqsave(&h->scan_lock, flags);
5590 if (h->scan_finished)
5591 break;
5592 h->scan_waiting = 1;
5593 spin_unlock_irqrestore(&h->scan_lock, flags);
5594 wait_event(h->scan_wait_queue, h->scan_finished);
5595 /* Note: We don't need to worry about a race between this
5596 * thread and driver unload because the midlayer will
5597 * have incremented the reference count, so unload won't
5598 * happen if we're in here.
5601 h->scan_finished = 0; /* mark scan as in progress */
5602 h->scan_waiting = 0;
5603 spin_unlock_irqrestore(&h->scan_lock, flags);
5605 if (unlikely(lockup_detected(h)))
5606 return hpsa_scan_complete(h);
5609 * Do the scan after a reset completion
5611 if (h->reset_in_progress) {
5612 h->drv_req_rescan = 1;
5613 return;
5616 hpsa_update_scsi_devices(h);
5618 hpsa_scan_complete(h);
5621 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5623 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5625 if (!logical_drive)
5626 return -ENODEV;
5628 if (qdepth < 1)
5629 qdepth = 1;
5630 else if (qdepth > logical_drive->queue_depth)
5631 qdepth = logical_drive->queue_depth;
5633 return scsi_change_queue_depth(sdev, qdepth);
5636 static int hpsa_scan_finished(struct Scsi_Host *sh,
5637 unsigned long elapsed_time)
5639 struct ctlr_info *h = shost_to_hba(sh);
5640 unsigned long flags;
5641 int finished;
5643 spin_lock_irqsave(&h->scan_lock, flags);
5644 finished = h->scan_finished;
5645 spin_unlock_irqrestore(&h->scan_lock, flags);
5646 return finished;
5649 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5651 struct Scsi_Host *sh;
5653 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5654 if (sh == NULL) {
5655 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5656 return -ENOMEM;
5659 sh->io_port = 0;
5660 sh->n_io_port = 0;
5661 sh->this_id = -1;
5662 sh->max_channel = 3;
5663 sh->max_cmd_len = MAX_COMMAND_SIZE;
5664 sh->max_lun = HPSA_MAX_LUN;
5665 sh->max_id = HPSA_MAX_LUN;
5666 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5667 sh->cmd_per_lun = sh->can_queue;
5668 sh->sg_tablesize = h->maxsgentries;
5669 sh->transportt = hpsa_sas_transport_template;
5670 sh->hostdata[0] = (unsigned long) h;
5671 sh->irq = pci_irq_vector(h->pdev, 0);
5672 sh->unique_id = sh->irq;
5674 h->scsi_host = sh;
5675 return 0;
5678 static int hpsa_scsi_add_host(struct ctlr_info *h)
5680 int rv;
5682 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5683 if (rv) {
5684 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5685 return rv;
5687 scsi_scan_host(h->scsi_host);
5688 return 0;
5692 * The block layer has already gone to the trouble of picking out a unique,
5693 * small-integer tag for this request. We use an offset from that value as
5694 * an index to select our command block. (The offset allows us to reserve the
5695 * low-numbered entries for our own uses.)
5697 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5699 int idx = scmd->request->tag;
5701 if (idx < 0)
5702 return idx;
5704 /* Offset to leave space for internal cmds. */
5705 return idx += HPSA_NRESERVED_CMDS;
5709 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5710 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5712 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5713 struct CommandList *c, unsigned char lunaddr[],
5714 int reply_queue)
5716 int rc;
5718 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5719 (void) fill_cmd(c, TEST_UNIT_READY, h,
5720 NULL, 0, 0, lunaddr, TYPE_CMD);
5721 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5722 if (rc)
5723 return rc;
5724 /* no unmap needed here because no data xfer. */
5726 /* Check if the unit is already ready. */
5727 if (c->err_info->CommandStatus == CMD_SUCCESS)
5728 return 0;
5731 * The first command sent after reset will receive "unit attention" to
5732 * indicate that the LUN has been reset...this is actually what we're
5733 * looking for (but, success is good too).
5735 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5736 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5737 (c->err_info->SenseInfo[2] == NO_SENSE ||
5738 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5739 return 0;
5741 return 1;
5745 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5746 * returns zero when the unit is ready, and non-zero when giving up.
5748 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5749 struct CommandList *c,
5750 unsigned char lunaddr[], int reply_queue)
5752 int rc;
5753 int count = 0;
5754 int waittime = 1; /* seconds */
5756 /* Send test unit ready until device ready, or give up. */
5757 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5760 * Wait for a bit. do this first, because if we send
5761 * the TUR right away, the reset will just abort it.
5763 msleep(1000 * waittime);
5765 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5766 if (!rc)
5767 break;
5769 /* Increase wait time with each try, up to a point. */
5770 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5771 waittime *= 2;
5773 dev_warn(&h->pdev->dev,
5774 "waiting %d secs for device to become ready.\n",
5775 waittime);
5778 return rc;
5781 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5782 unsigned char lunaddr[],
5783 int reply_queue)
5785 int first_queue;
5786 int last_queue;
5787 int rq;
5788 int rc = 0;
5789 struct CommandList *c;
5791 c = cmd_alloc(h);
5794 * If no specific reply queue was requested, then send the TUR
5795 * repeatedly, requesting a reply on each reply queue; otherwise execute
5796 * the loop exactly once using only the specified queue.
5798 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5799 first_queue = 0;
5800 last_queue = h->nreply_queues - 1;
5801 } else {
5802 first_queue = reply_queue;
5803 last_queue = reply_queue;
5806 for (rq = first_queue; rq <= last_queue; rq++) {
5807 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5808 if (rc)
5809 break;
5812 if (rc)
5813 dev_warn(&h->pdev->dev, "giving up on device.\n");
5814 else
5815 dev_warn(&h->pdev->dev, "device is ready.\n");
5817 cmd_free(h, c);
5818 return rc;
5821 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5822 * complaining. Doing a host- or bus-reset can't do anything good here.
5824 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5826 int rc;
5827 struct ctlr_info *h;
5828 struct hpsa_scsi_dev_t *dev;
5829 u8 reset_type;
5830 char msg[48];
5832 /* find the controller to which the command to be aborted was sent */
5833 h = sdev_to_hba(scsicmd->device);
5834 if (h == NULL) /* paranoia */
5835 return FAILED;
5837 if (lockup_detected(h))
5838 return FAILED;
5840 dev = scsicmd->device->hostdata;
5841 if (!dev) {
5842 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5843 return FAILED;
5846 /* if controller locked up, we can guarantee command won't complete */
5847 if (lockup_detected(h)) {
5848 snprintf(msg, sizeof(msg),
5849 "cmd %d RESET FAILED, lockup detected",
5850 hpsa_get_cmd_index(scsicmd));
5851 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5852 return FAILED;
5855 /* this reset request might be the result of a lockup; check */
5856 if (detect_controller_lockup(h)) {
5857 snprintf(msg, sizeof(msg),
5858 "cmd %d RESET FAILED, new lockup detected",
5859 hpsa_get_cmd_index(scsicmd));
5860 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5861 return FAILED;
5864 /* Do not attempt on controller */
5865 if (is_hba_lunid(dev->scsi3addr))
5866 return SUCCESS;
5868 if (is_logical_dev_addr_mode(dev->scsi3addr))
5869 reset_type = HPSA_DEVICE_RESET_MSG;
5870 else
5871 reset_type = HPSA_PHYS_TARGET_RESET;
5873 sprintf(msg, "resetting %s",
5874 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5875 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5877 h->reset_in_progress = 1;
5879 /* send a reset to the SCSI LUN which the command was sent to */
5880 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5881 DEFAULT_REPLY_QUEUE);
5882 sprintf(msg, "reset %s %s",
5883 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5884 rc == 0 ? "completed successfully" : "failed");
5885 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5886 h->reset_in_progress = 0;
5887 return rc == 0 ? SUCCESS : FAILED;
5890 static void swizzle_abort_tag(u8 *tag)
5892 u8 original_tag[8];
5894 memcpy(original_tag, tag, 8);
5895 tag[0] = original_tag[3];
5896 tag[1] = original_tag[2];
5897 tag[2] = original_tag[1];
5898 tag[3] = original_tag[0];
5899 tag[4] = original_tag[7];
5900 tag[5] = original_tag[6];
5901 tag[6] = original_tag[5];
5902 tag[7] = original_tag[4];
5905 static void hpsa_get_tag(struct ctlr_info *h,
5906 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5908 u64 tag;
5909 if (c->cmd_type == CMD_IOACCEL1) {
5910 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5911 &h->ioaccel_cmd_pool[c->cmdindex];
5912 tag = le64_to_cpu(cm1->tag);
5913 *tagupper = cpu_to_le32(tag >> 32);
5914 *taglower = cpu_to_le32(tag);
5915 return;
5917 if (c->cmd_type == CMD_IOACCEL2) {
5918 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5919 &h->ioaccel2_cmd_pool[c->cmdindex];
5920 /* upper tag not used in ioaccel2 mode */
5921 memset(tagupper, 0, sizeof(*tagupper));
5922 *taglower = cm2->Tag;
5923 return;
5925 tag = le64_to_cpu(c->Header.tag);
5926 *tagupper = cpu_to_le32(tag >> 32);
5927 *taglower = cpu_to_le32(tag);
5930 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5931 struct CommandList *abort, int reply_queue)
5933 int rc = IO_OK;
5934 struct CommandList *c;
5935 struct ErrorInfo *ei;
5936 __le32 tagupper, taglower;
5938 c = cmd_alloc(h);
5940 /* fill_cmd can't fail here, no buffer to map */
5941 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5942 0, 0, scsi3addr, TYPE_MSG);
5943 if (h->needs_abort_tags_swizzled)
5944 swizzle_abort_tag(&c->Request.CDB[4]);
5945 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5946 hpsa_get_tag(h, abort, &taglower, &tagupper);
5947 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5948 __func__, tagupper, taglower);
5949 /* no unmap needed here because no data xfer. */
5951 ei = c->err_info;
5952 switch (ei->CommandStatus) {
5953 case CMD_SUCCESS:
5954 break;
5955 case CMD_TMF_STATUS:
5956 rc = hpsa_evaluate_tmf_status(h, c);
5957 break;
5958 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5959 rc = -1;
5960 break;
5961 default:
5962 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5963 __func__, tagupper, taglower);
5964 hpsa_scsi_interpret_error(h, c);
5965 rc = -1;
5966 break;
5968 cmd_free(h, c);
5969 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5970 __func__, tagupper, taglower);
5971 return rc;
5974 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5975 struct CommandList *command_to_abort, int reply_queue)
5977 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5978 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5979 struct io_accel2_cmd *c2a =
5980 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5981 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5982 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5984 if (!dev)
5985 return;
5988 * We're overlaying struct hpsa_tmf_struct on top of something which
5989 * was allocated as a struct io_accel2_cmd, so we better be sure it
5990 * actually fits, and doesn't overrun the error info space.
5992 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5993 sizeof(struct io_accel2_cmd));
5994 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5995 offsetof(struct hpsa_tmf_struct, error_len) +
5996 sizeof(ac->error_len));
5998 c->cmd_type = IOACCEL2_TMF;
5999 c->scsi_cmd = SCSI_CMD_BUSY;
6001 /* Adjust the DMA address to point to the accelerated command buffer */
6002 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6003 (c->cmdindex * sizeof(struct io_accel2_cmd));
6004 BUG_ON(c->busaddr & 0x0000007F);
6006 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6007 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6008 ac->reply_queue = reply_queue;
6009 ac->tmf = IOACCEL2_TMF_ABORT;
6010 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6011 memset(ac->lun_id, 0, sizeof(ac->lun_id));
6012 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6013 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6014 ac->error_ptr = cpu_to_le64(c->busaddr +
6015 offsetof(struct io_accel2_cmd, error_data));
6016 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6019 /* ioaccel2 path firmware cannot handle abort task requests.
6020 * Change abort requests to physical target reset, and send to the
6021 * address of the physical disk used for the ioaccel 2 command.
6022 * Return 0 on success (IO_OK)
6023 * -1 on failure
6026 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6027 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6029 int rc = IO_OK;
6030 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6031 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6032 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6033 unsigned char *psa = &phys_scsi3addr[0];
6035 /* Get a pointer to the hpsa logical device. */
6036 scmd = abort->scsi_cmd;
6037 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6038 if (dev == NULL) {
6039 dev_warn(&h->pdev->dev,
6040 "Cannot abort: no device pointer for command.\n");
6041 return -1; /* not abortable */
6044 if (h->raid_offload_debug > 0)
6045 dev_info(&h->pdev->dev,
6046 "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6047 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6048 "Reset as abort", scsi3addr);
6050 if (!dev->offload_enabled) {
6051 dev_warn(&h->pdev->dev,
6052 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6053 return -1; /* not abortable */
6056 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6057 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6058 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6059 return -1; /* not abortable */
6062 /* send the reset */
6063 if (h->raid_offload_debug > 0)
6064 dev_info(&h->pdev->dev,
6065 "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6066 psa);
6067 rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6068 if (rc != 0) {
6069 dev_warn(&h->pdev->dev,
6070 "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6071 psa);
6072 return rc; /* failed to reset */
6075 /* wait for device to recover */
6076 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6077 dev_warn(&h->pdev->dev,
6078 "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6079 psa);
6080 return -1; /* failed to recover */
6083 /* device recovered */
6084 dev_info(&h->pdev->dev,
6085 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6086 psa);
6088 return rc; /* success */
6091 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6092 struct CommandList *abort, int reply_queue)
6094 int rc = IO_OK;
6095 struct CommandList *c;
6096 __le32 taglower, tagupper;
6097 struct hpsa_scsi_dev_t *dev;
6098 struct io_accel2_cmd *c2;
6100 dev = abort->scsi_cmd->device->hostdata;
6101 if (!dev)
6102 return -1;
6104 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6105 return -1;
6107 c = cmd_alloc(h);
6108 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6109 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6110 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6111 hpsa_get_tag(h, abort, &taglower, &tagupper);
6112 dev_dbg(&h->pdev->dev,
6113 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6114 __func__, tagupper, taglower);
6115 /* no unmap needed here because no data xfer. */
6117 dev_dbg(&h->pdev->dev,
6118 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6119 __func__, tagupper, taglower, c2->error_data.serv_response);
6120 switch (c2->error_data.serv_response) {
6121 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6122 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6123 rc = 0;
6124 break;
6125 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6126 case IOACCEL2_SERV_RESPONSE_FAILURE:
6127 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6128 rc = -1;
6129 break;
6130 default:
6131 dev_warn(&h->pdev->dev,
6132 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6133 __func__, tagupper, taglower,
6134 c2->error_data.serv_response);
6135 rc = -1;
6137 cmd_free(h, c);
6138 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6139 tagupper, taglower);
6140 return rc;
6143 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6144 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6147 * ioccelerator mode 2 commands should be aborted via the
6148 * accelerated path, since RAID path is unaware of these commands,
6149 * but not all underlying firmware can handle abort TMF.
6150 * Change abort to physical device reset when abort TMF is unsupported.
6152 if (abort->cmd_type == CMD_IOACCEL2) {
6153 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6154 dev->physical_device)
6155 return hpsa_send_abort_ioaccel2(h, abort,
6156 reply_queue);
6157 else
6158 return hpsa_send_reset_as_abort_ioaccel2(h,
6159 dev->scsi3addr,
6160 abort, reply_queue);
6162 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6165 /* Find out which reply queue a command was meant to return on */
6166 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6167 struct CommandList *c)
6169 if (c->cmd_type == CMD_IOACCEL2)
6170 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6171 return c->Header.ReplyQueue;
6175 * Limit concurrency of abort commands to prevent
6176 * over-subscription of commands
6178 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6180 #define ABORT_CMD_WAIT_MSECS 5000
6181 return !wait_event_timeout(h->abort_cmd_wait_queue,
6182 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6183 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6186 /* Send an abort for the specified command.
6187 * If the device and controller support it,
6188 * send a task abort request.
6190 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6193 int rc;
6194 struct ctlr_info *h;
6195 struct hpsa_scsi_dev_t *dev;
6196 struct CommandList *abort; /* pointer to command to be aborted */
6197 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
6198 char msg[256]; /* For debug messaging. */
6199 int ml = 0;
6200 __le32 tagupper, taglower;
6201 int refcount, reply_queue;
6203 if (sc == NULL)
6204 return FAILED;
6206 if (sc->device == NULL)
6207 return FAILED;
6209 /* Find the controller of the command to be aborted */
6210 h = sdev_to_hba(sc->device);
6211 if (h == NULL)
6212 return FAILED;
6214 /* Find the device of the command to be aborted */
6215 dev = sc->device->hostdata;
6216 if (!dev) {
6217 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6218 msg);
6219 return FAILED;
6222 /* If controller locked up, we can guarantee command won't complete */
6223 if (lockup_detected(h)) {
6224 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6225 "ABORT FAILED, lockup detected");
6226 return FAILED;
6229 /* This is a good time to check if controller lockup has occurred */
6230 if (detect_controller_lockup(h)) {
6231 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6232 "ABORT FAILED, new lockup detected");
6233 return FAILED;
6236 /* Check that controller supports some kind of task abort */
6237 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6238 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6239 return FAILED;
6241 memset(msg, 0, sizeof(msg));
6242 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6243 h->scsi_host->host_no, sc->device->channel,
6244 sc->device->id, sc->device->lun,
6245 "Aborting command", sc);
6247 /* Get SCSI command to be aborted */
6248 abort = (struct CommandList *) sc->host_scribble;
6249 if (abort == NULL) {
6250 /* This can happen if the command already completed. */
6251 return SUCCESS;
6253 refcount = atomic_inc_return(&abort->refcount);
6254 if (refcount == 1) { /* Command is done already. */
6255 cmd_free(h, abort);
6256 return SUCCESS;
6259 /* Don't bother trying the abort if we know it won't work. */
6260 if (abort->cmd_type != CMD_IOACCEL2 &&
6261 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6262 cmd_free(h, abort);
6263 return FAILED;
6267 * Check that we're aborting the right command.
6268 * It's possible the CommandList already completed and got re-used.
6270 if (abort->scsi_cmd != sc) {
6271 cmd_free(h, abort);
6272 return SUCCESS;
6275 abort->abort_pending = true;
6276 hpsa_get_tag(h, abort, &taglower, &tagupper);
6277 reply_queue = hpsa_extract_reply_queue(h, abort);
6278 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6279 as = abort->scsi_cmd;
6280 if (as != NULL)
6281 ml += sprintf(msg+ml,
6282 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6283 as->cmd_len, as->cmnd[0], as->cmnd[1],
6284 as->serial_number);
6285 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6286 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6289 * Command is in flight, or possibly already completed
6290 * by the firmware (but not to the scsi mid layer) but we can't
6291 * distinguish which. Send the abort down.
6293 if (wait_for_available_abort_cmd(h)) {
6294 dev_warn(&h->pdev->dev,
6295 "%s FAILED, timeout waiting for an abort command to become available.\n",
6296 msg);
6297 cmd_free(h, abort);
6298 return FAILED;
6300 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6301 atomic_inc(&h->abort_cmds_available);
6302 wake_up_all(&h->abort_cmd_wait_queue);
6303 if (rc != 0) {
6304 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6305 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6306 "FAILED to abort command");
6307 cmd_free(h, abort);
6308 return FAILED;
6310 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6311 wait_event(h->event_sync_wait_queue,
6312 abort->scsi_cmd != sc || lockup_detected(h));
6313 cmd_free(h, abort);
6314 return !lockup_detected(h) ? SUCCESS : FAILED;
6318 * For operations with an associated SCSI command, a command block is allocated
6319 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6320 * block request tag as an index into a table of entries. cmd_tagged_free() is
6321 * the complement, although cmd_free() may be called instead.
6323 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6324 struct scsi_cmnd *scmd)
6326 int idx = hpsa_get_cmd_index(scmd);
6327 struct CommandList *c = h->cmd_pool + idx;
6329 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6330 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6331 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6332 /* The index value comes from the block layer, so if it's out of
6333 * bounds, it's probably not our bug.
6335 BUG();
6338 atomic_inc(&c->refcount);
6339 if (unlikely(!hpsa_is_cmd_idle(c))) {
6341 * We expect that the SCSI layer will hand us a unique tag
6342 * value. Thus, there should never be a collision here between
6343 * two requests...because if the selected command isn't idle
6344 * then someone is going to be very disappointed.
6346 dev_err(&h->pdev->dev,
6347 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6348 idx);
6349 if (c->scsi_cmd != NULL)
6350 scsi_print_command(c->scsi_cmd);
6351 scsi_print_command(scmd);
6354 hpsa_cmd_partial_init(h, idx, c);
6355 return c;
6358 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6361 * Release our reference to the block. We don't need to do anything
6362 * else to free it, because it is accessed by index. (There's no point
6363 * in checking the result of the decrement, since we cannot guarantee
6364 * that there isn't a concurrent abort which is also accessing it.)
6366 (void)atomic_dec(&c->refcount);
6370 * For operations that cannot sleep, a command block is allocated at init,
6371 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6372 * which ones are free or in use. Lock must be held when calling this.
6373 * cmd_free() is the complement.
6374 * This function never gives up and returns NULL. If it hangs,
6375 * another thread must call cmd_free() to free some tags.
6378 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6380 struct CommandList *c;
6381 int refcount, i;
6382 int offset = 0;
6385 * There is some *extremely* small but non-zero chance that that
6386 * multiple threads could get in here, and one thread could
6387 * be scanning through the list of bits looking for a free
6388 * one, but the free ones are always behind him, and other
6389 * threads sneak in behind him and eat them before he can
6390 * get to them, so that while there is always a free one, a
6391 * very unlucky thread might be starved anyway, never able to
6392 * beat the other threads. In reality, this happens so
6393 * infrequently as to be indistinguishable from never.
6395 * Note that we start allocating commands before the SCSI host structure
6396 * is initialized. Since the search starts at bit zero, this
6397 * all works, since we have at least one command structure available;
6398 * however, it means that the structures with the low indexes have to be
6399 * reserved for driver-initiated requests, while requests from the block
6400 * layer will use the higher indexes.
6403 for (;;) {
6404 i = find_next_zero_bit(h->cmd_pool_bits,
6405 HPSA_NRESERVED_CMDS,
6406 offset);
6407 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6408 offset = 0;
6409 continue;
6411 c = h->cmd_pool + i;
6412 refcount = atomic_inc_return(&c->refcount);
6413 if (unlikely(refcount > 1)) {
6414 cmd_free(h, c); /* already in use */
6415 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6416 continue;
6418 set_bit(i & (BITS_PER_LONG - 1),
6419 h->cmd_pool_bits + (i / BITS_PER_LONG));
6420 break; /* it's ours now. */
6422 hpsa_cmd_partial_init(h, i, c);
6423 return c;
6427 * This is the complementary operation to cmd_alloc(). Note, however, in some
6428 * corner cases it may also be used to free blocks allocated by
6429 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6430 * the clear-bit is harmless.
6432 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6434 if (atomic_dec_and_test(&c->refcount)) {
6435 int i;
6437 i = c - h->cmd_pool;
6438 clear_bit(i & (BITS_PER_LONG - 1),
6439 h->cmd_pool_bits + (i / BITS_PER_LONG));
6443 #ifdef CONFIG_COMPAT
6445 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6446 void __user *arg)
6448 IOCTL32_Command_struct __user *arg32 =
6449 (IOCTL32_Command_struct __user *) arg;
6450 IOCTL_Command_struct arg64;
6451 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6452 int err;
6453 u32 cp;
6455 memset(&arg64, 0, sizeof(arg64));
6456 err = 0;
6457 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6458 sizeof(arg64.LUN_info));
6459 err |= copy_from_user(&arg64.Request, &arg32->Request,
6460 sizeof(arg64.Request));
6461 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6462 sizeof(arg64.error_info));
6463 err |= get_user(arg64.buf_size, &arg32->buf_size);
6464 err |= get_user(cp, &arg32->buf);
6465 arg64.buf = compat_ptr(cp);
6466 err |= copy_to_user(p, &arg64, sizeof(arg64));
6468 if (err)
6469 return -EFAULT;
6471 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6472 if (err)
6473 return err;
6474 err |= copy_in_user(&arg32->error_info, &p->error_info,
6475 sizeof(arg32->error_info));
6476 if (err)
6477 return -EFAULT;
6478 return err;
6481 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6482 int cmd, void __user *arg)
6484 BIG_IOCTL32_Command_struct __user *arg32 =
6485 (BIG_IOCTL32_Command_struct __user *) arg;
6486 BIG_IOCTL_Command_struct arg64;
6487 BIG_IOCTL_Command_struct __user *p =
6488 compat_alloc_user_space(sizeof(arg64));
6489 int err;
6490 u32 cp;
6492 memset(&arg64, 0, sizeof(arg64));
6493 err = 0;
6494 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6495 sizeof(arg64.LUN_info));
6496 err |= copy_from_user(&arg64.Request, &arg32->Request,
6497 sizeof(arg64.Request));
6498 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6499 sizeof(arg64.error_info));
6500 err |= get_user(arg64.buf_size, &arg32->buf_size);
6501 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6502 err |= get_user(cp, &arg32->buf);
6503 arg64.buf = compat_ptr(cp);
6504 err |= copy_to_user(p, &arg64, sizeof(arg64));
6506 if (err)
6507 return -EFAULT;
6509 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6510 if (err)
6511 return err;
6512 err |= copy_in_user(&arg32->error_info, &p->error_info,
6513 sizeof(arg32->error_info));
6514 if (err)
6515 return -EFAULT;
6516 return err;
6519 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6521 switch (cmd) {
6522 case CCISS_GETPCIINFO:
6523 case CCISS_GETINTINFO:
6524 case CCISS_SETINTINFO:
6525 case CCISS_GETNODENAME:
6526 case CCISS_SETNODENAME:
6527 case CCISS_GETHEARTBEAT:
6528 case CCISS_GETBUSTYPES:
6529 case CCISS_GETFIRMVER:
6530 case CCISS_GETDRIVVER:
6531 case CCISS_REVALIDVOLS:
6532 case CCISS_DEREGDISK:
6533 case CCISS_REGNEWDISK:
6534 case CCISS_REGNEWD:
6535 case CCISS_RESCANDISK:
6536 case CCISS_GETLUNINFO:
6537 return hpsa_ioctl(dev, cmd, arg);
6539 case CCISS_PASSTHRU32:
6540 return hpsa_ioctl32_passthru(dev, cmd, arg);
6541 case CCISS_BIG_PASSTHRU32:
6542 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6544 default:
6545 return -ENOIOCTLCMD;
6548 #endif
6550 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6552 struct hpsa_pci_info pciinfo;
6554 if (!argp)
6555 return -EINVAL;
6556 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6557 pciinfo.bus = h->pdev->bus->number;
6558 pciinfo.dev_fn = h->pdev->devfn;
6559 pciinfo.board_id = h->board_id;
6560 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6561 return -EFAULT;
6562 return 0;
6565 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6567 DriverVer_type DriverVer;
6568 unsigned char vmaj, vmin, vsubmin;
6569 int rc;
6571 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6572 &vmaj, &vmin, &vsubmin);
6573 if (rc != 3) {
6574 dev_info(&h->pdev->dev, "driver version string '%s' "
6575 "unrecognized.", HPSA_DRIVER_VERSION);
6576 vmaj = 0;
6577 vmin = 0;
6578 vsubmin = 0;
6580 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6581 if (!argp)
6582 return -EINVAL;
6583 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6584 return -EFAULT;
6585 return 0;
6588 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6590 IOCTL_Command_struct iocommand;
6591 struct CommandList *c;
6592 char *buff = NULL;
6593 u64 temp64;
6594 int rc = 0;
6596 if (!argp)
6597 return -EINVAL;
6598 if (!capable(CAP_SYS_RAWIO))
6599 return -EPERM;
6600 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6601 return -EFAULT;
6602 if ((iocommand.buf_size < 1) &&
6603 (iocommand.Request.Type.Direction != XFER_NONE)) {
6604 return -EINVAL;
6606 if (iocommand.buf_size > 0) {
6607 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6608 if (buff == NULL)
6609 return -ENOMEM;
6610 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6611 /* Copy the data into the buffer we created */
6612 if (copy_from_user(buff, iocommand.buf,
6613 iocommand.buf_size)) {
6614 rc = -EFAULT;
6615 goto out_kfree;
6617 } else {
6618 memset(buff, 0, iocommand.buf_size);
6621 c = cmd_alloc(h);
6623 /* Fill in the command type */
6624 c->cmd_type = CMD_IOCTL_PEND;
6625 c->scsi_cmd = SCSI_CMD_BUSY;
6626 /* Fill in Command Header */
6627 c->Header.ReplyQueue = 0; /* unused in simple mode */
6628 if (iocommand.buf_size > 0) { /* buffer to fill */
6629 c->Header.SGList = 1;
6630 c->Header.SGTotal = cpu_to_le16(1);
6631 } else { /* no buffers to fill */
6632 c->Header.SGList = 0;
6633 c->Header.SGTotal = cpu_to_le16(0);
6635 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6637 /* Fill in Request block */
6638 memcpy(&c->Request, &iocommand.Request,
6639 sizeof(c->Request));
6641 /* Fill in the scatter gather information */
6642 if (iocommand.buf_size > 0) {
6643 temp64 = pci_map_single(h->pdev, buff,
6644 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6645 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6646 c->SG[0].Addr = cpu_to_le64(0);
6647 c->SG[0].Len = cpu_to_le32(0);
6648 rc = -ENOMEM;
6649 goto out;
6651 c->SG[0].Addr = cpu_to_le64(temp64);
6652 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6653 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6655 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6656 NO_TIMEOUT);
6657 if (iocommand.buf_size > 0)
6658 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6659 check_ioctl_unit_attention(h, c);
6660 if (rc) {
6661 rc = -EIO;
6662 goto out;
6665 /* Copy the error information out */
6666 memcpy(&iocommand.error_info, c->err_info,
6667 sizeof(iocommand.error_info));
6668 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6669 rc = -EFAULT;
6670 goto out;
6672 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6673 iocommand.buf_size > 0) {
6674 /* Copy the data out of the buffer we created */
6675 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6676 rc = -EFAULT;
6677 goto out;
6680 out:
6681 cmd_free(h, c);
6682 out_kfree:
6683 kfree(buff);
6684 return rc;
6687 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6689 BIG_IOCTL_Command_struct *ioc;
6690 struct CommandList *c;
6691 unsigned char **buff = NULL;
6692 int *buff_size = NULL;
6693 u64 temp64;
6694 BYTE sg_used = 0;
6695 int status = 0;
6696 u32 left;
6697 u32 sz;
6698 BYTE __user *data_ptr;
6700 if (!argp)
6701 return -EINVAL;
6702 if (!capable(CAP_SYS_RAWIO))
6703 return -EPERM;
6704 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6705 if (!ioc) {
6706 status = -ENOMEM;
6707 goto cleanup1;
6709 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6710 status = -EFAULT;
6711 goto cleanup1;
6713 if ((ioc->buf_size < 1) &&
6714 (ioc->Request.Type.Direction != XFER_NONE)) {
6715 status = -EINVAL;
6716 goto cleanup1;
6718 /* Check kmalloc limits using all SGs */
6719 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6720 status = -EINVAL;
6721 goto cleanup1;
6723 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6724 status = -EINVAL;
6725 goto cleanup1;
6727 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6728 if (!buff) {
6729 status = -ENOMEM;
6730 goto cleanup1;
6732 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6733 if (!buff_size) {
6734 status = -ENOMEM;
6735 goto cleanup1;
6737 left = ioc->buf_size;
6738 data_ptr = ioc->buf;
6739 while (left) {
6740 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6741 buff_size[sg_used] = sz;
6742 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6743 if (buff[sg_used] == NULL) {
6744 status = -ENOMEM;
6745 goto cleanup1;
6747 if (ioc->Request.Type.Direction & XFER_WRITE) {
6748 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6749 status = -EFAULT;
6750 goto cleanup1;
6752 } else
6753 memset(buff[sg_used], 0, sz);
6754 left -= sz;
6755 data_ptr += sz;
6756 sg_used++;
6758 c = cmd_alloc(h);
6760 c->cmd_type = CMD_IOCTL_PEND;
6761 c->scsi_cmd = SCSI_CMD_BUSY;
6762 c->Header.ReplyQueue = 0;
6763 c->Header.SGList = (u8) sg_used;
6764 c->Header.SGTotal = cpu_to_le16(sg_used);
6765 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6766 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6767 if (ioc->buf_size > 0) {
6768 int i;
6769 for (i = 0; i < sg_used; i++) {
6770 temp64 = pci_map_single(h->pdev, buff[i],
6771 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6772 if (dma_mapping_error(&h->pdev->dev,
6773 (dma_addr_t) temp64)) {
6774 c->SG[i].Addr = cpu_to_le64(0);
6775 c->SG[i].Len = cpu_to_le32(0);
6776 hpsa_pci_unmap(h->pdev, c, i,
6777 PCI_DMA_BIDIRECTIONAL);
6778 status = -ENOMEM;
6779 goto cleanup0;
6781 c->SG[i].Addr = cpu_to_le64(temp64);
6782 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6783 c->SG[i].Ext = cpu_to_le32(0);
6785 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6787 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6788 NO_TIMEOUT);
6789 if (sg_used)
6790 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6791 check_ioctl_unit_attention(h, c);
6792 if (status) {
6793 status = -EIO;
6794 goto cleanup0;
6797 /* Copy the error information out */
6798 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6799 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6800 status = -EFAULT;
6801 goto cleanup0;
6803 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6804 int i;
6806 /* Copy the data out of the buffer we created */
6807 BYTE __user *ptr = ioc->buf;
6808 for (i = 0; i < sg_used; i++) {
6809 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6810 status = -EFAULT;
6811 goto cleanup0;
6813 ptr += buff_size[i];
6816 status = 0;
6817 cleanup0:
6818 cmd_free(h, c);
6819 cleanup1:
6820 if (buff) {
6821 int i;
6823 for (i = 0; i < sg_used; i++)
6824 kfree(buff[i]);
6825 kfree(buff);
6827 kfree(buff_size);
6828 kfree(ioc);
6829 return status;
6832 static void check_ioctl_unit_attention(struct ctlr_info *h,
6833 struct CommandList *c)
6835 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6836 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6837 (void) check_for_unit_attention(h, c);
6841 * ioctl
6843 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6845 struct ctlr_info *h;
6846 void __user *argp = (void __user *)arg;
6847 int rc;
6849 h = sdev_to_hba(dev);
6851 switch (cmd) {
6852 case CCISS_DEREGDISK:
6853 case CCISS_REGNEWDISK:
6854 case CCISS_REGNEWD:
6855 hpsa_scan_start(h->scsi_host);
6856 return 0;
6857 case CCISS_GETPCIINFO:
6858 return hpsa_getpciinfo_ioctl(h, argp);
6859 case CCISS_GETDRIVVER:
6860 return hpsa_getdrivver_ioctl(h, argp);
6861 case CCISS_PASSTHRU:
6862 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6863 return -EAGAIN;
6864 rc = hpsa_passthru_ioctl(h, argp);
6865 atomic_inc(&h->passthru_cmds_avail);
6866 return rc;
6867 case CCISS_BIG_PASSTHRU:
6868 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6869 return -EAGAIN;
6870 rc = hpsa_big_passthru_ioctl(h, argp);
6871 atomic_inc(&h->passthru_cmds_avail);
6872 return rc;
6873 default:
6874 return -ENOTTY;
6878 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6879 u8 reset_type)
6881 struct CommandList *c;
6883 c = cmd_alloc(h);
6885 /* fill_cmd can't fail here, no data buffer to map */
6886 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6887 RAID_CTLR_LUNID, TYPE_MSG);
6888 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6889 c->waiting = NULL;
6890 enqueue_cmd_and_start_io(h, c);
6891 /* Don't wait for completion, the reset won't complete. Don't free
6892 * the command either. This is the last command we will send before
6893 * re-initializing everything, so it doesn't matter and won't leak.
6895 return;
6898 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6899 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6900 int cmd_type)
6902 int pci_dir = XFER_NONE;
6903 u64 tag; /* for commands to be aborted */
6905 c->cmd_type = CMD_IOCTL_PEND;
6906 c->scsi_cmd = SCSI_CMD_BUSY;
6907 c->Header.ReplyQueue = 0;
6908 if (buff != NULL && size > 0) {
6909 c->Header.SGList = 1;
6910 c->Header.SGTotal = cpu_to_le16(1);
6911 } else {
6912 c->Header.SGList = 0;
6913 c->Header.SGTotal = cpu_to_le16(0);
6915 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6917 if (cmd_type == TYPE_CMD) {
6918 switch (cmd) {
6919 case HPSA_INQUIRY:
6920 /* are we trying to read a vital product page */
6921 if (page_code & VPD_PAGE) {
6922 c->Request.CDB[1] = 0x01;
6923 c->Request.CDB[2] = (page_code & 0xff);
6925 c->Request.CDBLen = 6;
6926 c->Request.type_attr_dir =
6927 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6928 c->Request.Timeout = 0;
6929 c->Request.CDB[0] = HPSA_INQUIRY;
6930 c->Request.CDB[4] = size & 0xFF;
6931 break;
6932 case HPSA_REPORT_LOG:
6933 case HPSA_REPORT_PHYS:
6934 /* Talking to controller so It's a physical command
6935 mode = 00 target = 0. Nothing to write.
6937 c->Request.CDBLen = 12;
6938 c->Request.type_attr_dir =
6939 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6940 c->Request.Timeout = 0;
6941 c->Request.CDB[0] = cmd;
6942 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6943 c->Request.CDB[7] = (size >> 16) & 0xFF;
6944 c->Request.CDB[8] = (size >> 8) & 0xFF;
6945 c->Request.CDB[9] = size & 0xFF;
6946 break;
6947 case BMIC_SENSE_DIAG_OPTIONS:
6948 c->Request.CDBLen = 16;
6949 c->Request.type_attr_dir =
6950 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6951 c->Request.Timeout = 0;
6952 /* Spec says this should be BMIC_WRITE */
6953 c->Request.CDB[0] = BMIC_READ;
6954 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6955 break;
6956 case BMIC_SET_DIAG_OPTIONS:
6957 c->Request.CDBLen = 16;
6958 c->Request.type_attr_dir =
6959 TYPE_ATTR_DIR(cmd_type,
6960 ATTR_SIMPLE, XFER_WRITE);
6961 c->Request.Timeout = 0;
6962 c->Request.CDB[0] = BMIC_WRITE;
6963 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6964 break;
6965 case HPSA_CACHE_FLUSH:
6966 c->Request.CDBLen = 12;
6967 c->Request.type_attr_dir =
6968 TYPE_ATTR_DIR(cmd_type,
6969 ATTR_SIMPLE, XFER_WRITE);
6970 c->Request.Timeout = 0;
6971 c->Request.CDB[0] = BMIC_WRITE;
6972 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6973 c->Request.CDB[7] = (size >> 8) & 0xFF;
6974 c->Request.CDB[8] = size & 0xFF;
6975 break;
6976 case TEST_UNIT_READY:
6977 c->Request.CDBLen = 6;
6978 c->Request.type_attr_dir =
6979 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6980 c->Request.Timeout = 0;
6981 break;
6982 case HPSA_GET_RAID_MAP:
6983 c->Request.CDBLen = 12;
6984 c->Request.type_attr_dir =
6985 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6986 c->Request.Timeout = 0;
6987 c->Request.CDB[0] = HPSA_CISS_READ;
6988 c->Request.CDB[1] = cmd;
6989 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6990 c->Request.CDB[7] = (size >> 16) & 0xFF;
6991 c->Request.CDB[8] = (size >> 8) & 0xFF;
6992 c->Request.CDB[9] = size & 0xFF;
6993 break;
6994 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6995 c->Request.CDBLen = 10;
6996 c->Request.type_attr_dir =
6997 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6998 c->Request.Timeout = 0;
6999 c->Request.CDB[0] = BMIC_READ;
7000 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7001 c->Request.CDB[7] = (size >> 16) & 0xFF;
7002 c->Request.CDB[8] = (size >> 8) & 0xFF;
7003 break;
7004 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7005 c->Request.CDBLen = 10;
7006 c->Request.type_attr_dir =
7007 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7008 c->Request.Timeout = 0;
7009 c->Request.CDB[0] = BMIC_READ;
7010 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7011 c->Request.CDB[7] = (size >> 16) & 0xFF;
7012 c->Request.CDB[8] = (size >> 8) & 0XFF;
7013 break;
7014 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7015 c->Request.CDBLen = 10;
7016 c->Request.type_attr_dir =
7017 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7018 c->Request.Timeout = 0;
7019 c->Request.CDB[0] = BMIC_READ;
7020 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7021 c->Request.CDB[7] = (size >> 16) & 0xFF;
7022 c->Request.CDB[8] = (size >> 8) & 0XFF;
7023 break;
7024 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7025 c->Request.CDBLen = 10;
7026 c->Request.type_attr_dir =
7027 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7028 c->Request.Timeout = 0;
7029 c->Request.CDB[0] = BMIC_READ;
7030 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7031 c->Request.CDB[7] = (size >> 16) & 0xFF;
7032 c->Request.CDB[8] = (size >> 8) & 0XFF;
7033 break;
7034 case BMIC_IDENTIFY_CONTROLLER:
7035 c->Request.CDBLen = 10;
7036 c->Request.type_attr_dir =
7037 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7038 c->Request.Timeout = 0;
7039 c->Request.CDB[0] = BMIC_READ;
7040 c->Request.CDB[1] = 0;
7041 c->Request.CDB[2] = 0;
7042 c->Request.CDB[3] = 0;
7043 c->Request.CDB[4] = 0;
7044 c->Request.CDB[5] = 0;
7045 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7046 c->Request.CDB[7] = (size >> 16) & 0xFF;
7047 c->Request.CDB[8] = (size >> 8) & 0XFF;
7048 c->Request.CDB[9] = 0;
7049 break;
7050 default:
7051 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7052 BUG();
7053 return -1;
7055 } else if (cmd_type == TYPE_MSG) {
7056 switch (cmd) {
7058 case HPSA_PHYS_TARGET_RESET:
7059 c->Request.CDBLen = 16;
7060 c->Request.type_attr_dir =
7061 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7062 c->Request.Timeout = 0; /* Don't time out */
7063 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7064 c->Request.CDB[0] = HPSA_RESET;
7065 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7066 /* Physical target reset needs no control bytes 4-7*/
7067 c->Request.CDB[4] = 0x00;
7068 c->Request.CDB[5] = 0x00;
7069 c->Request.CDB[6] = 0x00;
7070 c->Request.CDB[7] = 0x00;
7071 break;
7072 case HPSA_DEVICE_RESET_MSG:
7073 c->Request.CDBLen = 16;
7074 c->Request.type_attr_dir =
7075 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7076 c->Request.Timeout = 0; /* Don't time out */
7077 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7078 c->Request.CDB[0] = cmd;
7079 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7080 /* If bytes 4-7 are zero, it means reset the */
7081 /* LunID device */
7082 c->Request.CDB[4] = 0x00;
7083 c->Request.CDB[5] = 0x00;
7084 c->Request.CDB[6] = 0x00;
7085 c->Request.CDB[7] = 0x00;
7086 break;
7087 case HPSA_ABORT_MSG:
7088 memcpy(&tag, buff, sizeof(tag));
7089 dev_dbg(&h->pdev->dev,
7090 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7091 tag, c->Header.tag);
7092 c->Request.CDBLen = 16;
7093 c->Request.type_attr_dir =
7094 TYPE_ATTR_DIR(cmd_type,
7095 ATTR_SIMPLE, XFER_WRITE);
7096 c->Request.Timeout = 0; /* Don't time out */
7097 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7098 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7099 c->Request.CDB[2] = 0x00; /* reserved */
7100 c->Request.CDB[3] = 0x00; /* reserved */
7101 /* Tag to abort goes in CDB[4]-CDB[11] */
7102 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7103 c->Request.CDB[12] = 0x00; /* reserved */
7104 c->Request.CDB[13] = 0x00; /* reserved */
7105 c->Request.CDB[14] = 0x00; /* reserved */
7106 c->Request.CDB[15] = 0x00; /* reserved */
7107 break;
7108 default:
7109 dev_warn(&h->pdev->dev, "unknown message type %d\n",
7110 cmd);
7111 BUG();
7113 } else {
7114 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7115 BUG();
7118 switch (GET_DIR(c->Request.type_attr_dir)) {
7119 case XFER_READ:
7120 pci_dir = PCI_DMA_FROMDEVICE;
7121 break;
7122 case XFER_WRITE:
7123 pci_dir = PCI_DMA_TODEVICE;
7124 break;
7125 case XFER_NONE:
7126 pci_dir = PCI_DMA_NONE;
7127 break;
7128 default:
7129 pci_dir = PCI_DMA_BIDIRECTIONAL;
7131 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7132 return -1;
7133 return 0;
7137 * Map (physical) PCI mem into (virtual) kernel space
7139 static void __iomem *remap_pci_mem(ulong base, ulong size)
7141 ulong page_base = ((ulong) base) & PAGE_MASK;
7142 ulong page_offs = ((ulong) base) - page_base;
7143 void __iomem *page_remapped = ioremap_nocache(page_base,
7144 page_offs + size);
7146 return page_remapped ? (page_remapped + page_offs) : NULL;
7149 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7151 return h->access.command_completed(h, q);
7154 static inline bool interrupt_pending(struct ctlr_info *h)
7156 return h->access.intr_pending(h);
7159 static inline long interrupt_not_for_us(struct ctlr_info *h)
7161 return (h->access.intr_pending(h) == 0) ||
7162 (h->interrupts_enabled == 0);
7165 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7166 u32 raw_tag)
7168 if (unlikely(tag_index >= h->nr_cmds)) {
7169 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7170 return 1;
7172 return 0;
7175 static inline void finish_cmd(struct CommandList *c)
7177 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7178 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7179 || c->cmd_type == CMD_IOACCEL2))
7180 complete_scsi_command(c);
7181 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7182 complete(c->waiting);
7185 /* process completion of an indexed ("direct lookup") command */
7186 static inline void process_indexed_cmd(struct ctlr_info *h,
7187 u32 raw_tag)
7189 u32 tag_index;
7190 struct CommandList *c;
7192 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7193 if (!bad_tag(h, tag_index, raw_tag)) {
7194 c = h->cmd_pool + tag_index;
7195 finish_cmd(c);
7199 /* Some controllers, like p400, will give us one interrupt
7200 * after a soft reset, even if we turned interrupts off.
7201 * Only need to check for this in the hpsa_xxx_discard_completions
7202 * functions.
7204 static int ignore_bogus_interrupt(struct ctlr_info *h)
7206 if (likely(!reset_devices))
7207 return 0;
7209 if (likely(h->interrupts_enabled))
7210 return 0;
7212 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7213 "(known firmware bug.) Ignoring.\n");
7215 return 1;
7219 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7220 * Relies on (h-q[x] == x) being true for x such that
7221 * 0 <= x < MAX_REPLY_QUEUES.
7223 static struct ctlr_info *queue_to_hba(u8 *queue)
7225 return container_of((queue - *queue), struct ctlr_info, q[0]);
7228 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7230 struct ctlr_info *h = queue_to_hba(queue);
7231 u8 q = *(u8 *) queue;
7232 u32 raw_tag;
7234 if (ignore_bogus_interrupt(h))
7235 return IRQ_NONE;
7237 if (interrupt_not_for_us(h))
7238 return IRQ_NONE;
7239 h->last_intr_timestamp = get_jiffies_64();
7240 while (interrupt_pending(h)) {
7241 raw_tag = get_next_completion(h, q);
7242 while (raw_tag != FIFO_EMPTY)
7243 raw_tag = next_command(h, q);
7245 return IRQ_HANDLED;
7248 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7250 struct ctlr_info *h = queue_to_hba(queue);
7251 u32 raw_tag;
7252 u8 q = *(u8 *) queue;
7254 if (ignore_bogus_interrupt(h))
7255 return IRQ_NONE;
7257 h->last_intr_timestamp = get_jiffies_64();
7258 raw_tag = get_next_completion(h, q);
7259 while (raw_tag != FIFO_EMPTY)
7260 raw_tag = next_command(h, q);
7261 return IRQ_HANDLED;
7264 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7266 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7267 u32 raw_tag;
7268 u8 q = *(u8 *) queue;
7270 if (interrupt_not_for_us(h))
7271 return IRQ_NONE;
7272 h->last_intr_timestamp = get_jiffies_64();
7273 while (interrupt_pending(h)) {
7274 raw_tag = get_next_completion(h, q);
7275 while (raw_tag != FIFO_EMPTY) {
7276 process_indexed_cmd(h, raw_tag);
7277 raw_tag = next_command(h, q);
7280 return IRQ_HANDLED;
7283 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7285 struct ctlr_info *h = queue_to_hba(queue);
7286 u32 raw_tag;
7287 u8 q = *(u8 *) queue;
7289 h->last_intr_timestamp = get_jiffies_64();
7290 raw_tag = get_next_completion(h, q);
7291 while (raw_tag != FIFO_EMPTY) {
7292 process_indexed_cmd(h, raw_tag);
7293 raw_tag = next_command(h, q);
7295 return IRQ_HANDLED;
7298 /* Send a message CDB to the firmware. Careful, this only works
7299 * in simple mode, not performant mode due to the tag lookup.
7300 * We only ever use this immediately after a controller reset.
7302 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7303 unsigned char type)
7305 struct Command {
7306 struct CommandListHeader CommandHeader;
7307 struct RequestBlock Request;
7308 struct ErrDescriptor ErrorDescriptor;
7310 struct Command *cmd;
7311 static const size_t cmd_sz = sizeof(*cmd) +
7312 sizeof(cmd->ErrorDescriptor);
7313 dma_addr_t paddr64;
7314 __le32 paddr32;
7315 u32 tag;
7316 void __iomem *vaddr;
7317 int i, err;
7319 vaddr = pci_ioremap_bar(pdev, 0);
7320 if (vaddr == NULL)
7321 return -ENOMEM;
7323 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7324 * CCISS commands, so they must be allocated from the lower 4GiB of
7325 * memory.
7327 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7328 if (err) {
7329 iounmap(vaddr);
7330 return err;
7333 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7334 if (cmd == NULL) {
7335 iounmap(vaddr);
7336 return -ENOMEM;
7339 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7340 * although there's no guarantee, we assume that the address is at
7341 * least 4-byte aligned (most likely, it's page-aligned).
7343 paddr32 = cpu_to_le32(paddr64);
7345 cmd->CommandHeader.ReplyQueue = 0;
7346 cmd->CommandHeader.SGList = 0;
7347 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7348 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7349 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7351 cmd->Request.CDBLen = 16;
7352 cmd->Request.type_attr_dir =
7353 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7354 cmd->Request.Timeout = 0; /* Don't time out */
7355 cmd->Request.CDB[0] = opcode;
7356 cmd->Request.CDB[1] = type;
7357 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7358 cmd->ErrorDescriptor.Addr =
7359 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7360 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7362 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7364 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7365 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7366 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7367 break;
7368 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7371 iounmap(vaddr);
7373 /* we leak the DMA buffer here ... no choice since the controller could
7374 * still complete the command.
7376 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7377 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7378 opcode, type);
7379 return -ETIMEDOUT;
7382 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7384 if (tag & HPSA_ERROR_BIT) {
7385 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7386 opcode, type);
7387 return -EIO;
7390 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7391 opcode, type);
7392 return 0;
7395 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7397 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7398 void __iomem *vaddr, u32 use_doorbell)
7401 if (use_doorbell) {
7402 /* For everything after the P600, the PCI power state method
7403 * of resetting the controller doesn't work, so we have this
7404 * other way using the doorbell register.
7406 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7407 writel(use_doorbell, vaddr + SA5_DOORBELL);
7409 /* PMC hardware guys tell us we need a 10 second delay after
7410 * doorbell reset and before any attempt to talk to the board
7411 * at all to ensure that this actually works and doesn't fall
7412 * over in some weird corner cases.
7414 msleep(10000);
7415 } else { /* Try to do it the PCI power state way */
7417 /* Quoting from the Open CISS Specification: "The Power
7418 * Management Control/Status Register (CSR) controls the power
7419 * state of the device. The normal operating state is D0,
7420 * CSR=00h. The software off state is D3, CSR=03h. To reset
7421 * the controller, place the interface device in D3 then to D0,
7422 * this causes a secondary PCI reset which will reset the
7423 * controller." */
7425 int rc = 0;
7427 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7429 /* enter the D3hot power management state */
7430 rc = pci_set_power_state(pdev, PCI_D3hot);
7431 if (rc)
7432 return rc;
7434 msleep(500);
7436 /* enter the D0 power management state */
7437 rc = pci_set_power_state(pdev, PCI_D0);
7438 if (rc)
7439 return rc;
7442 * The P600 requires a small delay when changing states.
7443 * Otherwise we may think the board did not reset and we bail.
7444 * This for kdump only and is particular to the P600.
7446 msleep(500);
7448 return 0;
7451 static void init_driver_version(char *driver_version, int len)
7453 memset(driver_version, 0, len);
7454 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7457 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7459 char *driver_version;
7460 int i, size = sizeof(cfgtable->driver_version);
7462 driver_version = kmalloc(size, GFP_KERNEL);
7463 if (!driver_version)
7464 return -ENOMEM;
7466 init_driver_version(driver_version, size);
7467 for (i = 0; i < size; i++)
7468 writeb(driver_version[i], &cfgtable->driver_version[i]);
7469 kfree(driver_version);
7470 return 0;
7473 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7474 unsigned char *driver_ver)
7476 int i;
7478 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7479 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7482 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7485 char *driver_ver, *old_driver_ver;
7486 int rc, size = sizeof(cfgtable->driver_version);
7488 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7489 if (!old_driver_ver)
7490 return -ENOMEM;
7491 driver_ver = old_driver_ver + size;
7493 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7494 * should have been changed, otherwise we know the reset failed.
7496 init_driver_version(old_driver_ver, size);
7497 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7498 rc = !memcmp(driver_ver, old_driver_ver, size);
7499 kfree(old_driver_ver);
7500 return rc;
7502 /* This does a hard reset of the controller using PCI power management
7503 * states or the using the doorbell register.
7505 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7507 u64 cfg_offset;
7508 u32 cfg_base_addr;
7509 u64 cfg_base_addr_index;
7510 void __iomem *vaddr;
7511 unsigned long paddr;
7512 u32 misc_fw_support;
7513 int rc;
7514 struct CfgTable __iomem *cfgtable;
7515 u32 use_doorbell;
7516 u16 command_register;
7518 /* For controllers as old as the P600, this is very nearly
7519 * the same thing as
7521 * pci_save_state(pci_dev);
7522 * pci_set_power_state(pci_dev, PCI_D3hot);
7523 * pci_set_power_state(pci_dev, PCI_D0);
7524 * pci_restore_state(pci_dev);
7526 * For controllers newer than the P600, the pci power state
7527 * method of resetting doesn't work so we have another way
7528 * using the doorbell register.
7531 if (!ctlr_is_resettable(board_id)) {
7532 dev_warn(&pdev->dev, "Controller not resettable\n");
7533 return -ENODEV;
7536 /* if controller is soft- but not hard resettable... */
7537 if (!ctlr_is_hard_resettable(board_id))
7538 return -ENOTSUPP; /* try soft reset later. */
7540 /* Save the PCI command register */
7541 pci_read_config_word(pdev, 4, &command_register);
7542 pci_save_state(pdev);
7544 /* find the first memory BAR, so we can find the cfg table */
7545 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7546 if (rc)
7547 return rc;
7548 vaddr = remap_pci_mem(paddr, 0x250);
7549 if (!vaddr)
7550 return -ENOMEM;
7552 /* find cfgtable in order to check if reset via doorbell is supported */
7553 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7554 &cfg_base_addr_index, &cfg_offset);
7555 if (rc)
7556 goto unmap_vaddr;
7557 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7558 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7559 if (!cfgtable) {
7560 rc = -ENOMEM;
7561 goto unmap_vaddr;
7563 rc = write_driver_ver_to_cfgtable(cfgtable);
7564 if (rc)
7565 goto unmap_cfgtable;
7567 /* If reset via doorbell register is supported, use that.
7568 * There are two such methods. Favor the newest method.
7570 misc_fw_support = readl(&cfgtable->misc_fw_support);
7571 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7572 if (use_doorbell) {
7573 use_doorbell = DOORBELL_CTLR_RESET2;
7574 } else {
7575 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7576 if (use_doorbell) {
7577 dev_warn(&pdev->dev,
7578 "Soft reset not supported. Firmware update is required.\n");
7579 rc = -ENOTSUPP; /* try soft reset */
7580 goto unmap_cfgtable;
7584 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7585 if (rc)
7586 goto unmap_cfgtable;
7588 pci_restore_state(pdev);
7589 pci_write_config_word(pdev, 4, command_register);
7591 /* Some devices (notably the HP Smart Array 5i Controller)
7592 need a little pause here */
7593 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7595 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7596 if (rc) {
7597 dev_warn(&pdev->dev,
7598 "Failed waiting for board to become ready after hard reset\n");
7599 goto unmap_cfgtable;
7602 rc = controller_reset_failed(vaddr);
7603 if (rc < 0)
7604 goto unmap_cfgtable;
7605 if (rc) {
7606 dev_warn(&pdev->dev, "Unable to successfully reset "
7607 "controller. Will try soft reset.\n");
7608 rc = -ENOTSUPP;
7609 } else {
7610 dev_info(&pdev->dev, "board ready after hard reset.\n");
7613 unmap_cfgtable:
7614 iounmap(cfgtable);
7616 unmap_vaddr:
7617 iounmap(vaddr);
7618 return rc;
7622 * We cannot read the structure directly, for portability we must use
7623 * the io functions.
7624 * This is for debug only.
7626 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7628 #ifdef HPSA_DEBUG
7629 int i;
7630 char temp_name[17];
7632 dev_info(dev, "Controller Configuration information\n");
7633 dev_info(dev, "------------------------------------\n");
7634 for (i = 0; i < 4; i++)
7635 temp_name[i] = readb(&(tb->Signature[i]));
7636 temp_name[4] = '\0';
7637 dev_info(dev, " Signature = %s\n", temp_name);
7638 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7639 dev_info(dev, " Transport methods supported = 0x%x\n",
7640 readl(&(tb->TransportSupport)));
7641 dev_info(dev, " Transport methods active = 0x%x\n",
7642 readl(&(tb->TransportActive)));
7643 dev_info(dev, " Requested transport Method = 0x%x\n",
7644 readl(&(tb->HostWrite.TransportRequest)));
7645 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7646 readl(&(tb->HostWrite.CoalIntDelay)));
7647 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7648 readl(&(tb->HostWrite.CoalIntCount)));
7649 dev_info(dev, " Max outstanding commands = %d\n",
7650 readl(&(tb->CmdsOutMax)));
7651 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7652 for (i = 0; i < 16; i++)
7653 temp_name[i] = readb(&(tb->ServerName[i]));
7654 temp_name[16] = '\0';
7655 dev_info(dev, " Server Name = %s\n", temp_name);
7656 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7657 readl(&(tb->HeartBeat)));
7658 #endif /* HPSA_DEBUG */
7661 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7663 int i, offset, mem_type, bar_type;
7665 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7666 return 0;
7667 offset = 0;
7668 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7669 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7670 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7671 offset += 4;
7672 else {
7673 mem_type = pci_resource_flags(pdev, i) &
7674 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7675 switch (mem_type) {
7676 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7677 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7678 offset += 4; /* 32 bit */
7679 break;
7680 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7681 offset += 8;
7682 break;
7683 default: /* reserved in PCI 2.2 */
7684 dev_warn(&pdev->dev,
7685 "base address is invalid\n");
7686 return -1;
7687 break;
7690 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7691 return i + 1;
7693 return -1;
7696 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7698 pci_free_irq_vectors(h->pdev);
7699 h->msix_vectors = 0;
7702 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7703 * controllers that are capable. If not, we use legacy INTx mode.
7705 static int hpsa_interrupt_mode(struct ctlr_info *h)
7707 unsigned int flags = PCI_IRQ_LEGACY;
7708 int ret;
7710 /* Some boards advertise MSI but don't really support it */
7711 switch (h->board_id) {
7712 case 0x40700E11:
7713 case 0x40800E11:
7714 case 0x40820E11:
7715 case 0x40830E11:
7716 break;
7717 default:
7718 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7719 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7720 if (ret > 0) {
7721 h->msix_vectors = ret;
7722 return 0;
7725 flags |= PCI_IRQ_MSI;
7726 break;
7729 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7730 if (ret < 0)
7731 return ret;
7732 return 0;
7735 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7737 int i;
7738 u32 subsystem_vendor_id, subsystem_device_id;
7740 subsystem_vendor_id = pdev->subsystem_vendor;
7741 subsystem_device_id = pdev->subsystem_device;
7742 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7743 subsystem_vendor_id;
7745 for (i = 0; i < ARRAY_SIZE(products); i++)
7746 if (*board_id == products[i].board_id)
7747 return i;
7749 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7750 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7751 !hpsa_allow_any) {
7752 dev_warn(&pdev->dev, "unrecognized board ID: "
7753 "0x%08x, ignoring.\n", *board_id);
7754 return -ENODEV;
7756 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7759 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7760 unsigned long *memory_bar)
7762 int i;
7764 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7765 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7766 /* addressing mode bits already removed */
7767 *memory_bar = pci_resource_start(pdev, i);
7768 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7769 *memory_bar);
7770 return 0;
7772 dev_warn(&pdev->dev, "no memory BAR found\n");
7773 return -ENODEV;
7776 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7777 int wait_for_ready)
7779 int i, iterations;
7780 u32 scratchpad;
7781 if (wait_for_ready)
7782 iterations = HPSA_BOARD_READY_ITERATIONS;
7783 else
7784 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7786 for (i = 0; i < iterations; i++) {
7787 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7788 if (wait_for_ready) {
7789 if (scratchpad == HPSA_FIRMWARE_READY)
7790 return 0;
7791 } else {
7792 if (scratchpad != HPSA_FIRMWARE_READY)
7793 return 0;
7795 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7797 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7798 return -ENODEV;
7801 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7802 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7803 u64 *cfg_offset)
7805 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7806 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7807 *cfg_base_addr &= (u32) 0x0000ffff;
7808 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7809 if (*cfg_base_addr_index == -1) {
7810 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7811 return -ENODEV;
7813 return 0;
7816 static void hpsa_free_cfgtables(struct ctlr_info *h)
7818 if (h->transtable) {
7819 iounmap(h->transtable);
7820 h->transtable = NULL;
7822 if (h->cfgtable) {
7823 iounmap(h->cfgtable);
7824 h->cfgtable = NULL;
7828 /* Find and map CISS config table and transfer table
7829 + * several items must be unmapped (freed) later
7830 + * */
7831 static int hpsa_find_cfgtables(struct ctlr_info *h)
7833 u64 cfg_offset;
7834 u32 cfg_base_addr;
7835 u64 cfg_base_addr_index;
7836 u32 trans_offset;
7837 int rc;
7839 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7840 &cfg_base_addr_index, &cfg_offset);
7841 if (rc)
7842 return rc;
7843 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7844 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7845 if (!h->cfgtable) {
7846 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7847 return -ENOMEM;
7849 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7850 if (rc)
7851 return rc;
7852 /* Find performant mode table. */
7853 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7854 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7855 cfg_base_addr_index)+cfg_offset+trans_offset,
7856 sizeof(*h->transtable));
7857 if (!h->transtable) {
7858 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7859 hpsa_free_cfgtables(h);
7860 return -ENOMEM;
7862 return 0;
7865 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7867 #define MIN_MAX_COMMANDS 16
7868 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7870 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7872 /* Limit commands in memory limited kdump scenario. */
7873 if (reset_devices && h->max_commands > 32)
7874 h->max_commands = 32;
7876 if (h->max_commands < MIN_MAX_COMMANDS) {
7877 dev_warn(&h->pdev->dev,
7878 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7879 h->max_commands,
7880 MIN_MAX_COMMANDS);
7881 h->max_commands = MIN_MAX_COMMANDS;
7885 /* If the controller reports that the total max sg entries is greater than 512,
7886 * then we know that chained SG blocks work. (Original smart arrays did not
7887 * support chained SG blocks and would return zero for max sg entries.)
7889 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7891 return h->maxsgentries > 512;
7894 /* Interrogate the hardware for some limits:
7895 * max commands, max SG elements without chaining, and with chaining,
7896 * SG chain block size, etc.
7898 static void hpsa_find_board_params(struct ctlr_info *h)
7900 hpsa_get_max_perf_mode_cmds(h);
7901 h->nr_cmds = h->max_commands;
7902 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7903 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7904 if (hpsa_supports_chained_sg_blocks(h)) {
7905 /* Limit in-command s/g elements to 32 save dma'able memory. */
7906 h->max_cmd_sg_entries = 32;
7907 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7908 h->maxsgentries--; /* save one for chain pointer */
7909 } else {
7911 * Original smart arrays supported at most 31 s/g entries
7912 * embedded inline in the command (trying to use more
7913 * would lock up the controller)
7915 h->max_cmd_sg_entries = 31;
7916 h->maxsgentries = 31; /* default to traditional values */
7917 h->chainsize = 0;
7920 /* Find out what task management functions are supported and cache */
7921 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7922 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7923 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7924 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7925 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7926 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7927 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7930 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7932 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7933 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7934 return false;
7936 return true;
7939 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7941 u32 driver_support;
7943 driver_support = readl(&(h->cfgtable->driver_support));
7944 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7945 #ifdef CONFIG_X86
7946 driver_support |= ENABLE_SCSI_PREFETCH;
7947 #endif
7948 driver_support |= ENABLE_UNIT_ATTN;
7949 writel(driver_support, &(h->cfgtable->driver_support));
7952 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7953 * in a prefetch beyond physical memory.
7955 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7957 u32 dma_prefetch;
7959 if (h->board_id != 0x3225103C)
7960 return;
7961 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7962 dma_prefetch |= 0x8000;
7963 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7966 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7968 int i;
7969 u32 doorbell_value;
7970 unsigned long flags;
7971 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7972 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7973 spin_lock_irqsave(&h->lock, flags);
7974 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7975 spin_unlock_irqrestore(&h->lock, flags);
7976 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7977 goto done;
7978 /* delay and try again */
7979 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7981 return -ENODEV;
7982 done:
7983 return 0;
7986 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7988 int i;
7989 u32 doorbell_value;
7990 unsigned long flags;
7992 /* under certain very rare conditions, this can take awhile.
7993 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7994 * as we enter this code.)
7996 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7997 if (h->remove_in_progress)
7998 goto done;
7999 spin_lock_irqsave(&h->lock, flags);
8000 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8001 spin_unlock_irqrestore(&h->lock, flags);
8002 if (!(doorbell_value & CFGTBL_ChangeReq))
8003 goto done;
8004 /* delay and try again */
8005 msleep(MODE_CHANGE_WAIT_INTERVAL);
8007 return -ENODEV;
8008 done:
8009 return 0;
8012 /* return -ENODEV or other reason on error, 0 on success */
8013 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8015 u32 trans_support;
8017 trans_support = readl(&(h->cfgtable->TransportSupport));
8018 if (!(trans_support & SIMPLE_MODE))
8019 return -ENOTSUPP;
8021 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8023 /* Update the field, and then ring the doorbell */
8024 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8025 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8026 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8027 if (hpsa_wait_for_mode_change_ack(h))
8028 goto error;
8029 print_cfg_table(&h->pdev->dev, h->cfgtable);
8030 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8031 goto error;
8032 h->transMethod = CFGTBL_Trans_Simple;
8033 return 0;
8034 error:
8035 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8036 return -ENODEV;
8039 /* free items allocated or mapped by hpsa_pci_init */
8040 static void hpsa_free_pci_init(struct ctlr_info *h)
8042 hpsa_free_cfgtables(h); /* pci_init 4 */
8043 iounmap(h->vaddr); /* pci_init 3 */
8044 h->vaddr = NULL;
8045 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8047 * call pci_disable_device before pci_release_regions per
8048 * Documentation/PCI/pci.txt
8050 pci_disable_device(h->pdev); /* pci_init 1 */
8051 pci_release_regions(h->pdev); /* pci_init 2 */
8054 /* several items must be freed later */
8055 static int hpsa_pci_init(struct ctlr_info *h)
8057 int prod_index, err;
8059 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8060 if (prod_index < 0)
8061 return prod_index;
8062 h->product_name = products[prod_index].product_name;
8063 h->access = *(products[prod_index].access);
8065 h->needs_abort_tags_swizzled =
8066 ctlr_needs_abort_tags_swizzled(h->board_id);
8068 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8069 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8071 err = pci_enable_device(h->pdev);
8072 if (err) {
8073 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8074 pci_disable_device(h->pdev);
8075 return err;
8078 err = pci_request_regions(h->pdev, HPSA);
8079 if (err) {
8080 dev_err(&h->pdev->dev,
8081 "failed to obtain PCI resources\n");
8082 pci_disable_device(h->pdev);
8083 return err;
8086 pci_set_master(h->pdev);
8088 err = hpsa_interrupt_mode(h);
8089 if (err)
8090 goto clean1;
8091 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8092 if (err)
8093 goto clean2; /* intmode+region, pci */
8094 h->vaddr = remap_pci_mem(h->paddr, 0x250);
8095 if (!h->vaddr) {
8096 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8097 err = -ENOMEM;
8098 goto clean2; /* intmode+region, pci */
8100 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8101 if (err)
8102 goto clean3; /* vaddr, intmode+region, pci */
8103 err = hpsa_find_cfgtables(h);
8104 if (err)
8105 goto clean3; /* vaddr, intmode+region, pci */
8106 hpsa_find_board_params(h);
8108 if (!hpsa_CISS_signature_present(h)) {
8109 err = -ENODEV;
8110 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8112 hpsa_set_driver_support_bits(h);
8113 hpsa_p600_dma_prefetch_quirk(h);
8114 err = hpsa_enter_simple_mode(h);
8115 if (err)
8116 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8117 return 0;
8119 clean4: /* cfgtables, vaddr, intmode+region, pci */
8120 hpsa_free_cfgtables(h);
8121 clean3: /* vaddr, intmode+region, pci */
8122 iounmap(h->vaddr);
8123 h->vaddr = NULL;
8124 clean2: /* intmode+region, pci */
8125 hpsa_disable_interrupt_mode(h);
8126 clean1:
8128 * call pci_disable_device before pci_release_regions per
8129 * Documentation/PCI/pci.txt
8131 pci_disable_device(h->pdev);
8132 pci_release_regions(h->pdev);
8133 return err;
8136 static void hpsa_hba_inquiry(struct ctlr_info *h)
8138 int rc;
8140 #define HBA_INQUIRY_BYTE_COUNT 64
8141 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8142 if (!h->hba_inquiry_data)
8143 return;
8144 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8145 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8146 if (rc != 0) {
8147 kfree(h->hba_inquiry_data);
8148 h->hba_inquiry_data = NULL;
8152 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8154 int rc, i;
8155 void __iomem *vaddr;
8157 if (!reset_devices)
8158 return 0;
8160 /* kdump kernel is loading, we don't know in which state is
8161 * the pci interface. The dev->enable_cnt is equal zero
8162 * so we call enable+disable, wait a while and switch it on.
8164 rc = pci_enable_device(pdev);
8165 if (rc) {
8166 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8167 return -ENODEV;
8169 pci_disable_device(pdev);
8170 msleep(260); /* a randomly chosen number */
8171 rc = pci_enable_device(pdev);
8172 if (rc) {
8173 dev_warn(&pdev->dev, "failed to enable device.\n");
8174 return -ENODEV;
8177 pci_set_master(pdev);
8179 vaddr = pci_ioremap_bar(pdev, 0);
8180 if (vaddr == NULL) {
8181 rc = -ENOMEM;
8182 goto out_disable;
8184 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8185 iounmap(vaddr);
8187 /* Reset the controller with a PCI power-cycle or via doorbell */
8188 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8190 /* -ENOTSUPP here means we cannot reset the controller
8191 * but it's already (and still) up and running in
8192 * "performant mode". Or, it might be 640x, which can't reset
8193 * due to concerns about shared bbwc between 6402/6404 pair.
8195 if (rc)
8196 goto out_disable;
8198 /* Now try to get the controller to respond to a no-op */
8199 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8200 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8201 if (hpsa_noop(pdev) == 0)
8202 break;
8203 else
8204 dev_warn(&pdev->dev, "no-op failed%s\n",
8205 (i < 11 ? "; re-trying" : ""));
8208 out_disable:
8210 pci_disable_device(pdev);
8211 return rc;
8214 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8216 kfree(h->cmd_pool_bits);
8217 h->cmd_pool_bits = NULL;
8218 if (h->cmd_pool) {
8219 pci_free_consistent(h->pdev,
8220 h->nr_cmds * sizeof(struct CommandList),
8221 h->cmd_pool,
8222 h->cmd_pool_dhandle);
8223 h->cmd_pool = NULL;
8224 h->cmd_pool_dhandle = 0;
8226 if (h->errinfo_pool) {
8227 pci_free_consistent(h->pdev,
8228 h->nr_cmds * sizeof(struct ErrorInfo),
8229 h->errinfo_pool,
8230 h->errinfo_pool_dhandle);
8231 h->errinfo_pool = NULL;
8232 h->errinfo_pool_dhandle = 0;
8236 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8238 h->cmd_pool_bits = kzalloc(
8239 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8240 sizeof(unsigned long), GFP_KERNEL);
8241 h->cmd_pool = pci_alloc_consistent(h->pdev,
8242 h->nr_cmds * sizeof(*h->cmd_pool),
8243 &(h->cmd_pool_dhandle));
8244 h->errinfo_pool = pci_alloc_consistent(h->pdev,
8245 h->nr_cmds * sizeof(*h->errinfo_pool),
8246 &(h->errinfo_pool_dhandle));
8247 if ((h->cmd_pool_bits == NULL)
8248 || (h->cmd_pool == NULL)
8249 || (h->errinfo_pool == NULL)) {
8250 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8251 goto clean_up;
8253 hpsa_preinitialize_commands(h);
8254 return 0;
8255 clean_up:
8256 hpsa_free_cmd_pool(h);
8257 return -ENOMEM;
8260 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8261 static void hpsa_free_irqs(struct ctlr_info *h)
8263 int i;
8265 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8266 /* Single reply queue, only one irq to free */
8267 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8268 h->q[h->intr_mode] = 0;
8269 return;
8272 for (i = 0; i < h->msix_vectors; i++) {
8273 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8274 h->q[i] = 0;
8276 for (; i < MAX_REPLY_QUEUES; i++)
8277 h->q[i] = 0;
8280 /* returns 0 on success; cleans up and returns -Enn on error */
8281 static int hpsa_request_irqs(struct ctlr_info *h,
8282 irqreturn_t (*msixhandler)(int, void *),
8283 irqreturn_t (*intxhandler)(int, void *))
8285 int rc, i;
8288 * initialize h->q[x] = x so that interrupt handlers know which
8289 * queue to process.
8291 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8292 h->q[i] = (u8) i;
8294 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8295 /* If performant mode and MSI-X, use multiple reply queues */
8296 for (i = 0; i < h->msix_vectors; i++) {
8297 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8298 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8299 0, h->intrname[i],
8300 &h->q[i]);
8301 if (rc) {
8302 int j;
8304 dev_err(&h->pdev->dev,
8305 "failed to get irq %d for %s\n",
8306 pci_irq_vector(h->pdev, i), h->devname);
8307 for (j = 0; j < i; j++) {
8308 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8309 h->q[j] = 0;
8311 for (; j < MAX_REPLY_QUEUES; j++)
8312 h->q[j] = 0;
8313 return rc;
8316 } else {
8317 /* Use single reply pool */
8318 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8319 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8320 h->msix_vectors ? "x" : "");
8321 rc = request_irq(pci_irq_vector(h->pdev, 0),
8322 msixhandler, 0,
8323 h->intrname[0],
8324 &h->q[h->intr_mode]);
8325 } else {
8326 sprintf(h->intrname[h->intr_mode],
8327 "%s-intx", h->devname);
8328 rc = request_irq(pci_irq_vector(h->pdev, 0),
8329 intxhandler, IRQF_SHARED,
8330 h->intrname[0],
8331 &h->q[h->intr_mode]);
8334 if (rc) {
8335 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8336 pci_irq_vector(h->pdev, 0), h->devname);
8337 hpsa_free_irqs(h);
8338 return -ENODEV;
8340 return 0;
8343 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8345 int rc;
8346 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8348 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8349 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8350 if (rc) {
8351 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8352 return rc;
8355 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8356 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8357 if (rc) {
8358 dev_warn(&h->pdev->dev, "Board failed to become ready "
8359 "after soft reset.\n");
8360 return rc;
8363 return 0;
8366 static void hpsa_free_reply_queues(struct ctlr_info *h)
8368 int i;
8370 for (i = 0; i < h->nreply_queues; i++) {
8371 if (!h->reply_queue[i].head)
8372 continue;
8373 pci_free_consistent(h->pdev,
8374 h->reply_queue_size,
8375 h->reply_queue[i].head,
8376 h->reply_queue[i].busaddr);
8377 h->reply_queue[i].head = NULL;
8378 h->reply_queue[i].busaddr = 0;
8380 h->reply_queue_size = 0;
8383 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8385 hpsa_free_performant_mode(h); /* init_one 7 */
8386 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8387 hpsa_free_cmd_pool(h); /* init_one 5 */
8388 hpsa_free_irqs(h); /* init_one 4 */
8389 scsi_host_put(h->scsi_host); /* init_one 3 */
8390 h->scsi_host = NULL; /* init_one 3 */
8391 hpsa_free_pci_init(h); /* init_one 2_5 */
8392 free_percpu(h->lockup_detected); /* init_one 2 */
8393 h->lockup_detected = NULL; /* init_one 2 */
8394 if (h->resubmit_wq) {
8395 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8396 h->resubmit_wq = NULL;
8398 if (h->rescan_ctlr_wq) {
8399 destroy_workqueue(h->rescan_ctlr_wq);
8400 h->rescan_ctlr_wq = NULL;
8402 kfree(h); /* init_one 1 */
8405 /* Called when controller lockup detected. */
8406 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8408 int i, refcount;
8409 struct CommandList *c;
8410 int failcount = 0;
8412 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8413 for (i = 0; i < h->nr_cmds; i++) {
8414 c = h->cmd_pool + i;
8415 refcount = atomic_inc_return(&c->refcount);
8416 if (refcount > 1) {
8417 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8418 finish_cmd(c);
8419 atomic_dec(&h->commands_outstanding);
8420 failcount++;
8422 cmd_free(h, c);
8424 dev_warn(&h->pdev->dev,
8425 "failed %d commands in fail_all\n", failcount);
8428 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8430 int cpu;
8432 for_each_online_cpu(cpu) {
8433 u32 *lockup_detected;
8434 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8435 *lockup_detected = value;
8437 wmb(); /* be sure the per-cpu variables are out to memory */
8440 static void controller_lockup_detected(struct ctlr_info *h)
8442 unsigned long flags;
8443 u32 lockup_detected;
8445 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8446 spin_lock_irqsave(&h->lock, flags);
8447 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8448 if (!lockup_detected) {
8449 /* no heartbeat, but controller gave us a zero. */
8450 dev_warn(&h->pdev->dev,
8451 "lockup detected after %d but scratchpad register is zero\n",
8452 h->heartbeat_sample_interval / HZ);
8453 lockup_detected = 0xffffffff;
8455 set_lockup_detected_for_all_cpus(h, lockup_detected);
8456 spin_unlock_irqrestore(&h->lock, flags);
8457 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8458 lockup_detected, h->heartbeat_sample_interval / HZ);
8459 pci_disable_device(h->pdev);
8460 fail_all_outstanding_cmds(h);
8463 static int detect_controller_lockup(struct ctlr_info *h)
8465 u64 now;
8466 u32 heartbeat;
8467 unsigned long flags;
8469 now = get_jiffies_64();
8470 /* If we've received an interrupt recently, we're ok. */
8471 if (time_after64(h->last_intr_timestamp +
8472 (h->heartbeat_sample_interval), now))
8473 return false;
8476 * If we've already checked the heartbeat recently, we're ok.
8477 * This could happen if someone sends us a signal. We
8478 * otherwise don't care about signals in this thread.
8480 if (time_after64(h->last_heartbeat_timestamp +
8481 (h->heartbeat_sample_interval), now))
8482 return false;
8484 /* If heartbeat has not changed since we last looked, we're not ok. */
8485 spin_lock_irqsave(&h->lock, flags);
8486 heartbeat = readl(&h->cfgtable->HeartBeat);
8487 spin_unlock_irqrestore(&h->lock, flags);
8488 if (h->last_heartbeat == heartbeat) {
8489 controller_lockup_detected(h);
8490 return true;
8493 /* We're ok. */
8494 h->last_heartbeat = heartbeat;
8495 h->last_heartbeat_timestamp = now;
8496 return false;
8499 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8501 int i;
8502 char *event_type;
8504 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8505 return;
8507 /* Ask the controller to clear the events we're handling. */
8508 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8509 | CFGTBL_Trans_io_accel2)) &&
8510 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8511 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8513 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8514 event_type = "state change";
8515 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8516 event_type = "configuration change";
8517 /* Stop sending new RAID offload reqs via the IO accelerator */
8518 scsi_block_requests(h->scsi_host);
8519 for (i = 0; i < h->ndevices; i++) {
8520 h->dev[i]->offload_enabled = 0;
8521 h->dev[i]->offload_to_be_enabled = 0;
8523 hpsa_drain_accel_commands(h);
8524 /* Set 'accelerator path config change' bit */
8525 dev_warn(&h->pdev->dev,
8526 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8527 h->events, event_type);
8528 writel(h->events, &(h->cfgtable->clear_event_notify));
8529 /* Set the "clear event notify field update" bit 6 */
8530 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8531 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8532 hpsa_wait_for_clear_event_notify_ack(h);
8533 scsi_unblock_requests(h->scsi_host);
8534 } else {
8535 /* Acknowledge controller notification events. */
8536 writel(h->events, &(h->cfgtable->clear_event_notify));
8537 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8538 hpsa_wait_for_clear_event_notify_ack(h);
8539 #if 0
8540 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8541 hpsa_wait_for_mode_change_ack(h);
8542 #endif
8544 return;
8547 /* Check a register on the controller to see if there are configuration
8548 * changes (added/changed/removed logical drives, etc.) which mean that
8549 * we should rescan the controller for devices.
8550 * Also check flag for driver-initiated rescan.
8552 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8554 if (h->drv_req_rescan) {
8555 h->drv_req_rescan = 0;
8556 return 1;
8559 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8560 return 0;
8562 h->events = readl(&(h->cfgtable->event_notify));
8563 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8567 * Check if any of the offline devices have become ready
8569 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8571 unsigned long flags;
8572 struct offline_device_entry *d;
8573 struct list_head *this, *tmp;
8575 spin_lock_irqsave(&h->offline_device_lock, flags);
8576 list_for_each_safe(this, tmp, &h->offline_device_list) {
8577 d = list_entry(this, struct offline_device_entry,
8578 offline_list);
8579 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8580 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8581 spin_lock_irqsave(&h->offline_device_lock, flags);
8582 list_del(&d->offline_list);
8583 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8584 return 1;
8586 spin_lock_irqsave(&h->offline_device_lock, flags);
8588 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589 return 0;
8592 static int hpsa_luns_changed(struct ctlr_info *h)
8594 int rc = 1; /* assume there are changes */
8595 struct ReportLUNdata *logdev = NULL;
8597 /* if we can't find out if lun data has changed,
8598 * assume that it has.
8601 if (!h->lastlogicals)
8602 return rc;
8604 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8605 if (!logdev)
8606 return rc;
8608 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8609 dev_warn(&h->pdev->dev,
8610 "report luns failed, can't track lun changes.\n");
8611 goto out;
8613 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8614 dev_info(&h->pdev->dev,
8615 "Lun changes detected.\n");
8616 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8617 goto out;
8618 } else
8619 rc = 0; /* no changes detected. */
8620 out:
8621 kfree(logdev);
8622 return rc;
8625 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8627 unsigned long flags;
8628 struct ctlr_info *h = container_of(to_delayed_work(work),
8629 struct ctlr_info, rescan_ctlr_work);
8632 if (h->remove_in_progress)
8633 return;
8636 * Do the scan after the reset
8638 if (h->reset_in_progress) {
8639 h->drv_req_rescan = 1;
8640 return;
8643 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8644 scsi_host_get(h->scsi_host);
8645 hpsa_ack_ctlr_events(h);
8646 hpsa_scan_start(h->scsi_host);
8647 scsi_host_put(h->scsi_host);
8648 } else if (h->discovery_polling) {
8649 hpsa_disable_rld_caching(h);
8650 if (hpsa_luns_changed(h)) {
8651 struct Scsi_Host *sh = NULL;
8653 dev_info(&h->pdev->dev,
8654 "driver discovery polling rescan.\n");
8655 sh = scsi_host_get(h->scsi_host);
8656 if (sh != NULL) {
8657 hpsa_scan_start(sh);
8658 scsi_host_put(sh);
8662 spin_lock_irqsave(&h->lock, flags);
8663 if (!h->remove_in_progress)
8664 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8665 h->heartbeat_sample_interval);
8666 spin_unlock_irqrestore(&h->lock, flags);
8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8671 unsigned long flags;
8672 struct ctlr_info *h = container_of(to_delayed_work(work),
8673 struct ctlr_info, monitor_ctlr_work);
8675 detect_controller_lockup(h);
8676 if (lockup_detected(h))
8677 return;
8679 spin_lock_irqsave(&h->lock, flags);
8680 if (!h->remove_in_progress)
8681 schedule_delayed_work(&h->monitor_ctlr_work,
8682 h->heartbeat_sample_interval);
8683 spin_unlock_irqrestore(&h->lock, flags);
8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8687 char *name)
8689 struct workqueue_struct *wq = NULL;
8691 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8692 if (!wq)
8693 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8695 return wq;
8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8700 int dac, rc;
8701 struct ctlr_info *h;
8702 int try_soft_reset = 0;
8703 unsigned long flags;
8704 u32 board_id;
8706 if (number_of_controllers == 0)
8707 printk(KERN_INFO DRIVER_NAME "\n");
8709 rc = hpsa_lookup_board_id(pdev, &board_id);
8710 if (rc < 0) {
8711 dev_warn(&pdev->dev, "Board ID not found\n");
8712 return rc;
8715 rc = hpsa_init_reset_devices(pdev, board_id);
8716 if (rc) {
8717 if (rc != -ENOTSUPP)
8718 return rc;
8719 /* If the reset fails in a particular way (it has no way to do
8720 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721 * a soft reset once we get the controller configured up to the
8722 * point that it can accept a command.
8724 try_soft_reset = 1;
8725 rc = 0;
8728 reinit_after_soft_reset:
8730 /* Command structures must be aligned on a 32-byte boundary because
8731 * the 5 lower bits of the address are used by the hardware. and by
8732 * the driver. See comments in hpsa.h for more info.
8734 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8735 h = kzalloc(sizeof(*h), GFP_KERNEL);
8736 if (!h) {
8737 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8738 return -ENOMEM;
8741 h->pdev = pdev;
8743 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8744 INIT_LIST_HEAD(&h->offline_device_list);
8745 spin_lock_init(&h->lock);
8746 spin_lock_init(&h->offline_device_lock);
8747 spin_lock_init(&h->scan_lock);
8748 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8749 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8751 /* Allocate and clear per-cpu variable lockup_detected */
8752 h->lockup_detected = alloc_percpu(u32);
8753 if (!h->lockup_detected) {
8754 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8755 rc = -ENOMEM;
8756 goto clean1; /* aer/h */
8758 set_lockup_detected_for_all_cpus(h, 0);
8760 rc = hpsa_pci_init(h);
8761 if (rc)
8762 goto clean2; /* lu, aer/h */
8764 /* relies on h-> settings made by hpsa_pci_init, including
8765 * interrupt_mode h->intr */
8766 rc = hpsa_scsi_host_alloc(h);
8767 if (rc)
8768 goto clean2_5; /* pci, lu, aer/h */
8770 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8771 h->ctlr = number_of_controllers;
8772 number_of_controllers++;
8774 /* configure PCI DMA stuff */
8775 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8776 if (rc == 0) {
8777 dac = 1;
8778 } else {
8779 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8780 if (rc == 0) {
8781 dac = 0;
8782 } else {
8783 dev_err(&pdev->dev, "no suitable DMA available\n");
8784 goto clean3; /* shost, pci, lu, aer/h */
8788 /* make sure the board interrupts are off */
8789 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8791 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8792 if (rc)
8793 goto clean3; /* shost, pci, lu, aer/h */
8794 rc = hpsa_alloc_cmd_pool(h);
8795 if (rc)
8796 goto clean4; /* irq, shost, pci, lu, aer/h */
8797 rc = hpsa_alloc_sg_chain_blocks(h);
8798 if (rc)
8799 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8800 init_waitqueue_head(&h->scan_wait_queue);
8801 init_waitqueue_head(&h->abort_cmd_wait_queue);
8802 init_waitqueue_head(&h->event_sync_wait_queue);
8803 mutex_init(&h->reset_mutex);
8804 h->scan_finished = 1; /* no scan currently in progress */
8805 h->scan_waiting = 0;
8807 pci_set_drvdata(pdev, h);
8808 h->ndevices = 0;
8810 spin_lock_init(&h->devlock);
8811 rc = hpsa_put_ctlr_into_performant_mode(h);
8812 if (rc)
8813 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8815 /* create the resubmit workqueue */
8816 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8817 if (!h->rescan_ctlr_wq) {
8818 rc = -ENOMEM;
8819 goto clean7;
8822 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8823 if (!h->resubmit_wq) {
8824 rc = -ENOMEM;
8825 goto clean7; /* aer/h */
8829 * At this point, the controller is ready to take commands.
8830 * Now, if reset_devices and the hard reset didn't work, try
8831 * the soft reset and see if that works.
8833 if (try_soft_reset) {
8835 /* This is kind of gross. We may or may not get a completion
8836 * from the soft reset command, and if we do, then the value
8837 * from the fifo may or may not be valid. So, we wait 10 secs
8838 * after the reset throwing away any completions we get during
8839 * that time. Unregister the interrupt handler and register
8840 * fake ones to scoop up any residual completions.
8842 spin_lock_irqsave(&h->lock, flags);
8843 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8844 spin_unlock_irqrestore(&h->lock, flags);
8845 hpsa_free_irqs(h);
8846 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8847 hpsa_intx_discard_completions);
8848 if (rc) {
8849 dev_warn(&h->pdev->dev,
8850 "Failed to request_irq after soft reset.\n");
8852 * cannot goto clean7 or free_irqs will be called
8853 * again. Instead, do its work
8855 hpsa_free_performant_mode(h); /* clean7 */
8856 hpsa_free_sg_chain_blocks(h); /* clean6 */
8857 hpsa_free_cmd_pool(h); /* clean5 */
8859 * skip hpsa_free_irqs(h) clean4 since that
8860 * was just called before request_irqs failed
8862 goto clean3;
8865 rc = hpsa_kdump_soft_reset(h);
8866 if (rc)
8867 /* Neither hard nor soft reset worked, we're hosed. */
8868 goto clean7;
8870 dev_info(&h->pdev->dev, "Board READY.\n");
8871 dev_info(&h->pdev->dev,
8872 "Waiting for stale completions to drain.\n");
8873 h->access.set_intr_mask(h, HPSA_INTR_ON);
8874 msleep(10000);
8875 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8877 rc = controller_reset_failed(h->cfgtable);
8878 if (rc)
8879 dev_info(&h->pdev->dev,
8880 "Soft reset appears to have failed.\n");
8882 /* since the controller's reset, we have to go back and re-init
8883 * everything. Easiest to just forget what we've done and do it
8884 * all over again.
8886 hpsa_undo_allocations_after_kdump_soft_reset(h);
8887 try_soft_reset = 0;
8888 if (rc)
8889 /* don't goto clean, we already unallocated */
8890 return -ENODEV;
8892 goto reinit_after_soft_reset;
8895 /* Enable Accelerated IO path at driver layer */
8896 h->acciopath_status = 1;
8897 /* Disable discovery polling.*/
8898 h->discovery_polling = 0;
8901 /* Turn the interrupts on so we can service requests */
8902 h->access.set_intr_mask(h, HPSA_INTR_ON);
8904 hpsa_hba_inquiry(h);
8906 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8907 if (!h->lastlogicals)
8908 dev_info(&h->pdev->dev,
8909 "Can't track change to report lun data\n");
8911 /* hook into SCSI subsystem */
8912 rc = hpsa_scsi_add_host(h);
8913 if (rc)
8914 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8916 /* Monitor the controller for firmware lockups */
8917 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8918 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8919 schedule_delayed_work(&h->monitor_ctlr_work,
8920 h->heartbeat_sample_interval);
8921 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8922 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8923 h->heartbeat_sample_interval);
8924 return 0;
8926 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8927 hpsa_free_performant_mode(h);
8928 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8929 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8930 hpsa_free_sg_chain_blocks(h);
8931 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8932 hpsa_free_cmd_pool(h);
8933 clean4: /* irq, shost, pci, lu, aer/h */
8934 hpsa_free_irqs(h);
8935 clean3: /* shost, pci, lu, aer/h */
8936 scsi_host_put(h->scsi_host);
8937 h->scsi_host = NULL;
8938 clean2_5: /* pci, lu, aer/h */
8939 hpsa_free_pci_init(h);
8940 clean2: /* lu, aer/h */
8941 if (h->lockup_detected) {
8942 free_percpu(h->lockup_detected);
8943 h->lockup_detected = NULL;
8945 clean1: /* wq/aer/h */
8946 if (h->resubmit_wq) {
8947 destroy_workqueue(h->resubmit_wq);
8948 h->resubmit_wq = NULL;
8950 if (h->rescan_ctlr_wq) {
8951 destroy_workqueue(h->rescan_ctlr_wq);
8952 h->rescan_ctlr_wq = NULL;
8954 kfree(h);
8955 return rc;
8958 static void hpsa_flush_cache(struct ctlr_info *h)
8960 char *flush_buf;
8961 struct CommandList *c;
8962 int rc;
8964 if (unlikely(lockup_detected(h)))
8965 return;
8966 flush_buf = kzalloc(4, GFP_KERNEL);
8967 if (!flush_buf)
8968 return;
8970 c = cmd_alloc(h);
8972 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8973 RAID_CTLR_LUNID, TYPE_CMD)) {
8974 goto out;
8976 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8977 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8978 if (rc)
8979 goto out;
8980 if (c->err_info->CommandStatus != 0)
8981 out:
8982 dev_warn(&h->pdev->dev,
8983 "error flushing cache on controller\n");
8984 cmd_free(h, c);
8985 kfree(flush_buf);
8988 /* Make controller gather fresh report lun data each time we
8989 * send down a report luns request
8991 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8993 u32 *options;
8994 struct CommandList *c;
8995 int rc;
8997 /* Don't bother trying to set diag options if locked up */
8998 if (unlikely(h->lockup_detected))
8999 return;
9001 options = kzalloc(sizeof(*options), GFP_KERNEL);
9002 if (!options)
9003 return;
9005 c = cmd_alloc(h);
9007 /* first, get the current diag options settings */
9008 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9009 RAID_CTLR_LUNID, TYPE_CMD))
9010 goto errout;
9012 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9013 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9014 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9015 goto errout;
9017 /* Now, set the bit for disabling the RLD caching */
9018 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9020 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9021 RAID_CTLR_LUNID, TYPE_CMD))
9022 goto errout;
9024 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9025 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9026 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9027 goto errout;
9029 /* Now verify that it got set: */
9030 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9031 RAID_CTLR_LUNID, TYPE_CMD))
9032 goto errout;
9034 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9035 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9036 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9037 goto errout;
9039 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9040 goto out;
9042 errout:
9043 dev_err(&h->pdev->dev,
9044 "Error: failed to disable report lun data caching.\n");
9045 out:
9046 cmd_free(h, c);
9047 kfree(options);
9050 static void hpsa_shutdown(struct pci_dev *pdev)
9052 struct ctlr_info *h;
9054 h = pci_get_drvdata(pdev);
9055 /* Turn board interrupts off and send the flush cache command
9056 * sendcmd will turn off interrupt, and send the flush...
9057 * To write all data in the battery backed cache to disks
9059 hpsa_flush_cache(h);
9060 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9061 hpsa_free_irqs(h); /* init_one 4 */
9062 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9065 static void hpsa_free_device_info(struct ctlr_info *h)
9067 int i;
9069 for (i = 0; i < h->ndevices; i++) {
9070 kfree(h->dev[i]);
9071 h->dev[i] = NULL;
9075 static void hpsa_remove_one(struct pci_dev *pdev)
9077 struct ctlr_info *h;
9078 unsigned long flags;
9080 if (pci_get_drvdata(pdev) == NULL) {
9081 dev_err(&pdev->dev, "unable to remove device\n");
9082 return;
9084 h = pci_get_drvdata(pdev);
9086 /* Get rid of any controller monitoring work items */
9087 spin_lock_irqsave(&h->lock, flags);
9088 h->remove_in_progress = 1;
9089 spin_unlock_irqrestore(&h->lock, flags);
9090 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9091 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9092 destroy_workqueue(h->rescan_ctlr_wq);
9093 destroy_workqueue(h->resubmit_wq);
9096 * Call before disabling interrupts.
9097 * scsi_remove_host can trigger I/O operations especially
9098 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9099 * operations which cannot complete and will hang the system.
9101 if (h->scsi_host)
9102 scsi_remove_host(h->scsi_host); /* init_one 8 */
9103 /* includes hpsa_free_irqs - init_one 4 */
9104 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9105 hpsa_shutdown(pdev);
9107 hpsa_free_device_info(h); /* scan */
9109 kfree(h->hba_inquiry_data); /* init_one 10 */
9110 h->hba_inquiry_data = NULL; /* init_one 10 */
9111 hpsa_free_ioaccel2_sg_chain_blocks(h);
9112 hpsa_free_performant_mode(h); /* init_one 7 */
9113 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9114 hpsa_free_cmd_pool(h); /* init_one 5 */
9115 kfree(h->lastlogicals);
9117 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9119 scsi_host_put(h->scsi_host); /* init_one 3 */
9120 h->scsi_host = NULL; /* init_one 3 */
9122 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9123 hpsa_free_pci_init(h); /* init_one 2.5 */
9125 free_percpu(h->lockup_detected); /* init_one 2 */
9126 h->lockup_detected = NULL; /* init_one 2 */
9127 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9129 hpsa_delete_sas_host(h);
9131 kfree(h); /* init_one 1 */
9134 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9135 __attribute__((unused)) pm_message_t state)
9137 return -ENOSYS;
9140 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9142 return -ENOSYS;
9145 static struct pci_driver hpsa_pci_driver = {
9146 .name = HPSA,
9147 .probe = hpsa_init_one,
9148 .remove = hpsa_remove_one,
9149 .id_table = hpsa_pci_device_id, /* id_table */
9150 .shutdown = hpsa_shutdown,
9151 .suspend = hpsa_suspend,
9152 .resume = hpsa_resume,
9155 /* Fill in bucket_map[], given nsgs (the max number of
9156 * scatter gather elements supported) and bucket[],
9157 * which is an array of 8 integers. The bucket[] array
9158 * contains 8 different DMA transfer sizes (in 16
9159 * byte increments) which the controller uses to fetch
9160 * commands. This function fills in bucket_map[], which
9161 * maps a given number of scatter gather elements to one of
9162 * the 8 DMA transfer sizes. The point of it is to allow the
9163 * controller to only do as much DMA as needed to fetch the
9164 * command, with the DMA transfer size encoded in the lower
9165 * bits of the command address.
9167 static void calc_bucket_map(int bucket[], int num_buckets,
9168 int nsgs, int min_blocks, u32 *bucket_map)
9170 int i, j, b, size;
9172 /* Note, bucket_map must have nsgs+1 entries. */
9173 for (i = 0; i <= nsgs; i++) {
9174 /* Compute size of a command with i SG entries */
9175 size = i + min_blocks;
9176 b = num_buckets; /* Assume the biggest bucket */
9177 /* Find the bucket that is just big enough */
9178 for (j = 0; j < num_buckets; j++) {
9179 if (bucket[j] >= size) {
9180 b = j;
9181 break;
9184 /* for a command with i SG entries, use bucket b. */
9185 bucket_map[i] = b;
9190 * return -ENODEV on err, 0 on success (or no action)
9191 * allocates numerous items that must be freed later
9193 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9195 int i;
9196 unsigned long register_value;
9197 unsigned long transMethod = CFGTBL_Trans_Performant |
9198 (trans_support & CFGTBL_Trans_use_short_tags) |
9199 CFGTBL_Trans_enable_directed_msix |
9200 (trans_support & (CFGTBL_Trans_io_accel1 |
9201 CFGTBL_Trans_io_accel2));
9202 struct access_method access = SA5_performant_access;
9204 /* This is a bit complicated. There are 8 registers on
9205 * the controller which we write to to tell it 8 different
9206 * sizes of commands which there may be. It's a way of
9207 * reducing the DMA done to fetch each command. Encoded into
9208 * each command's tag are 3 bits which communicate to the controller
9209 * which of the eight sizes that command fits within. The size of
9210 * each command depends on how many scatter gather entries there are.
9211 * Each SG entry requires 16 bytes. The eight registers are programmed
9212 * with the number of 16-byte blocks a command of that size requires.
9213 * The smallest command possible requires 5 such 16 byte blocks.
9214 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9215 * blocks. Note, this only extends to the SG entries contained
9216 * within the command block, and does not extend to chained blocks
9217 * of SG elements. bft[] contains the eight values we write to
9218 * the registers. They are not evenly distributed, but have more
9219 * sizes for small commands, and fewer sizes for larger commands.
9221 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9222 #define MIN_IOACCEL2_BFT_ENTRY 5
9223 #define HPSA_IOACCEL2_HEADER_SZ 4
9224 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9225 13, 14, 15, 16, 17, 18, 19,
9226 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9227 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9228 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9229 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9230 16 * MIN_IOACCEL2_BFT_ENTRY);
9231 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9232 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9233 /* 5 = 1 s/g entry or 4k
9234 * 6 = 2 s/g entry or 8k
9235 * 8 = 4 s/g entry or 16k
9236 * 10 = 6 s/g entry or 24k
9239 /* If the controller supports either ioaccel method then
9240 * we can also use the RAID stack submit path that does not
9241 * perform the superfluous readl() after each command submission.
9243 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9244 access = SA5_performant_access_no_read;
9246 /* Controller spec: zero out this buffer. */
9247 for (i = 0; i < h->nreply_queues; i++)
9248 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9250 bft[7] = SG_ENTRIES_IN_CMD + 4;
9251 calc_bucket_map(bft, ARRAY_SIZE(bft),
9252 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9253 for (i = 0; i < 8; i++)
9254 writel(bft[i], &h->transtable->BlockFetch[i]);
9256 /* size of controller ring buffer */
9257 writel(h->max_commands, &h->transtable->RepQSize);
9258 writel(h->nreply_queues, &h->transtable->RepQCount);
9259 writel(0, &h->transtable->RepQCtrAddrLow32);
9260 writel(0, &h->transtable->RepQCtrAddrHigh32);
9262 for (i = 0; i < h->nreply_queues; i++) {
9263 writel(0, &h->transtable->RepQAddr[i].upper);
9264 writel(h->reply_queue[i].busaddr,
9265 &h->transtable->RepQAddr[i].lower);
9268 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9269 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9271 * enable outbound interrupt coalescing in accelerator mode;
9273 if (trans_support & CFGTBL_Trans_io_accel1) {
9274 access = SA5_ioaccel_mode1_access;
9275 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9276 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9277 } else
9278 if (trans_support & CFGTBL_Trans_io_accel2)
9279 access = SA5_ioaccel_mode2_access;
9280 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9281 if (hpsa_wait_for_mode_change_ack(h)) {
9282 dev_err(&h->pdev->dev,
9283 "performant mode problem - doorbell timeout\n");
9284 return -ENODEV;
9286 register_value = readl(&(h->cfgtable->TransportActive));
9287 if (!(register_value & CFGTBL_Trans_Performant)) {
9288 dev_err(&h->pdev->dev,
9289 "performant mode problem - transport not active\n");
9290 return -ENODEV;
9292 /* Change the access methods to the performant access methods */
9293 h->access = access;
9294 h->transMethod = transMethod;
9296 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9297 (trans_support & CFGTBL_Trans_io_accel2)))
9298 return 0;
9300 if (trans_support & CFGTBL_Trans_io_accel1) {
9301 /* Set up I/O accelerator mode */
9302 for (i = 0; i < h->nreply_queues; i++) {
9303 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9304 h->reply_queue[i].current_entry =
9305 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9307 bft[7] = h->ioaccel_maxsg + 8;
9308 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9309 h->ioaccel1_blockFetchTable);
9311 /* initialize all reply queue entries to unused */
9312 for (i = 0; i < h->nreply_queues; i++)
9313 memset(h->reply_queue[i].head,
9314 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9315 h->reply_queue_size);
9317 /* set all the constant fields in the accelerator command
9318 * frames once at init time to save CPU cycles later.
9320 for (i = 0; i < h->nr_cmds; i++) {
9321 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9323 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9324 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9325 (i * sizeof(struct ErrorInfo)));
9326 cp->err_info_len = sizeof(struct ErrorInfo);
9327 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9328 cp->host_context_flags =
9329 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9330 cp->timeout_sec = 0;
9331 cp->ReplyQueue = 0;
9332 cp->tag =
9333 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9334 cp->host_addr =
9335 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9336 (i * sizeof(struct io_accel1_cmd)));
9338 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9339 u64 cfg_offset, cfg_base_addr_index;
9340 u32 bft2_offset, cfg_base_addr;
9341 int rc;
9343 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9344 &cfg_base_addr_index, &cfg_offset);
9345 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9346 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9347 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9348 4, h->ioaccel2_blockFetchTable);
9349 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9350 BUILD_BUG_ON(offsetof(struct CfgTable,
9351 io_accel_request_size_offset) != 0xb8);
9352 h->ioaccel2_bft2_regs =
9353 remap_pci_mem(pci_resource_start(h->pdev,
9354 cfg_base_addr_index) +
9355 cfg_offset + bft2_offset,
9356 ARRAY_SIZE(bft2) *
9357 sizeof(*h->ioaccel2_bft2_regs));
9358 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9359 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9361 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9362 if (hpsa_wait_for_mode_change_ack(h)) {
9363 dev_err(&h->pdev->dev,
9364 "performant mode problem - enabling ioaccel mode\n");
9365 return -ENODEV;
9367 return 0;
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9373 if (h->ioaccel_cmd_pool) {
9374 pci_free_consistent(h->pdev,
9375 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9376 h->ioaccel_cmd_pool,
9377 h->ioaccel_cmd_pool_dhandle);
9378 h->ioaccel_cmd_pool = NULL;
9379 h->ioaccel_cmd_pool_dhandle = 0;
9381 kfree(h->ioaccel1_blockFetchTable);
9382 h->ioaccel1_blockFetchTable = NULL;
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9388 h->ioaccel_maxsg =
9389 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9390 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9391 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9393 /* Command structures must be aligned on a 128-byte boundary
9394 * because the 7 lower bits of the address are used by the
9395 * hardware.
9397 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9398 IOACCEL1_COMMANDLIST_ALIGNMENT);
9399 h->ioaccel_cmd_pool =
9400 pci_alloc_consistent(h->pdev,
9401 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9402 &(h->ioaccel_cmd_pool_dhandle));
9404 h->ioaccel1_blockFetchTable =
9405 kmalloc(((h->ioaccel_maxsg + 1) *
9406 sizeof(u32)), GFP_KERNEL);
9408 if ((h->ioaccel_cmd_pool == NULL) ||
9409 (h->ioaccel1_blockFetchTable == NULL))
9410 goto clean_up;
9412 memset(h->ioaccel_cmd_pool, 0,
9413 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9414 return 0;
9416 clean_up:
9417 hpsa_free_ioaccel1_cmd_and_bft(h);
9418 return -ENOMEM;
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9424 hpsa_free_ioaccel2_sg_chain_blocks(h);
9426 if (h->ioaccel2_cmd_pool) {
9427 pci_free_consistent(h->pdev,
9428 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9429 h->ioaccel2_cmd_pool,
9430 h->ioaccel2_cmd_pool_dhandle);
9431 h->ioaccel2_cmd_pool = NULL;
9432 h->ioaccel2_cmd_pool_dhandle = 0;
9434 kfree(h->ioaccel2_blockFetchTable);
9435 h->ioaccel2_blockFetchTable = NULL;
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9441 int rc;
9443 /* Allocate ioaccel2 mode command blocks and block fetch table */
9445 h->ioaccel_maxsg =
9446 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9447 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9448 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9450 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9451 IOACCEL2_COMMANDLIST_ALIGNMENT);
9452 h->ioaccel2_cmd_pool =
9453 pci_alloc_consistent(h->pdev,
9454 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9455 &(h->ioaccel2_cmd_pool_dhandle));
9457 h->ioaccel2_blockFetchTable =
9458 kmalloc(((h->ioaccel_maxsg + 1) *
9459 sizeof(u32)), GFP_KERNEL);
9461 if ((h->ioaccel2_cmd_pool == NULL) ||
9462 (h->ioaccel2_blockFetchTable == NULL)) {
9463 rc = -ENOMEM;
9464 goto clean_up;
9467 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9468 if (rc)
9469 goto clean_up;
9471 memset(h->ioaccel2_cmd_pool, 0,
9472 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9473 return 0;
9475 clean_up:
9476 hpsa_free_ioaccel2_cmd_and_bft(h);
9477 return rc;
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info *h)
9483 kfree(h->blockFetchTable);
9484 h->blockFetchTable = NULL;
9485 hpsa_free_reply_queues(h);
9486 hpsa_free_ioaccel1_cmd_and_bft(h);
9487 hpsa_free_ioaccel2_cmd_and_bft(h);
9490 /* return -ENODEV on error, 0 on success (or no action)
9491 * allocates numerous items that must be freed later
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9495 u32 trans_support;
9496 unsigned long transMethod = CFGTBL_Trans_Performant |
9497 CFGTBL_Trans_use_short_tags;
9498 int i, rc;
9500 if (hpsa_simple_mode)
9501 return 0;
9503 trans_support = readl(&(h->cfgtable->TransportSupport));
9504 if (!(trans_support & PERFORMANT_MODE))
9505 return 0;
9507 /* Check for I/O accelerator mode support */
9508 if (trans_support & CFGTBL_Trans_io_accel1) {
9509 transMethod |= CFGTBL_Trans_io_accel1 |
9510 CFGTBL_Trans_enable_directed_msix;
9511 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9512 if (rc)
9513 return rc;
9514 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9515 transMethod |= CFGTBL_Trans_io_accel2 |
9516 CFGTBL_Trans_enable_directed_msix;
9517 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9518 if (rc)
9519 return rc;
9522 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9523 hpsa_get_max_perf_mode_cmds(h);
9524 /* Performant mode ring buffer and supporting data structures */
9525 h->reply_queue_size = h->max_commands * sizeof(u64);
9527 for (i = 0; i < h->nreply_queues; i++) {
9528 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9529 h->reply_queue_size,
9530 &(h->reply_queue[i].busaddr));
9531 if (!h->reply_queue[i].head) {
9532 rc = -ENOMEM;
9533 goto clean1; /* rq, ioaccel */
9535 h->reply_queue[i].size = h->max_commands;
9536 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9537 h->reply_queue[i].current_entry = 0;
9540 /* Need a block fetch table for performant mode */
9541 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9542 sizeof(u32)), GFP_KERNEL);
9543 if (!h->blockFetchTable) {
9544 rc = -ENOMEM;
9545 goto clean1; /* rq, ioaccel */
9548 rc = hpsa_enter_performant_mode(h, trans_support);
9549 if (rc)
9550 goto clean2; /* bft, rq, ioaccel */
9551 return 0;
9553 clean2: /* bft, rq, ioaccel */
9554 kfree(h->blockFetchTable);
9555 h->blockFetchTable = NULL;
9556 clean1: /* rq, ioaccel */
9557 hpsa_free_reply_queues(h);
9558 hpsa_free_ioaccel1_cmd_and_bft(h);
9559 hpsa_free_ioaccel2_cmd_and_bft(h);
9560 return rc;
9563 static int is_accelerated_cmd(struct CommandList *c)
9565 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9568 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9570 struct CommandList *c = NULL;
9571 int i, accel_cmds_out;
9572 int refcount;
9574 do { /* wait for all outstanding ioaccel commands to drain out */
9575 accel_cmds_out = 0;
9576 for (i = 0; i < h->nr_cmds; i++) {
9577 c = h->cmd_pool + i;
9578 refcount = atomic_inc_return(&c->refcount);
9579 if (refcount > 1) /* Command is allocated */
9580 accel_cmds_out += is_accelerated_cmd(c);
9581 cmd_free(h, c);
9583 if (accel_cmds_out <= 0)
9584 break;
9585 msleep(100);
9586 } while (1);
9589 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9590 struct hpsa_sas_port *hpsa_sas_port)
9592 struct hpsa_sas_phy *hpsa_sas_phy;
9593 struct sas_phy *phy;
9595 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9596 if (!hpsa_sas_phy)
9597 return NULL;
9599 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9600 hpsa_sas_port->next_phy_index);
9601 if (!phy) {
9602 kfree(hpsa_sas_phy);
9603 return NULL;
9606 hpsa_sas_port->next_phy_index++;
9607 hpsa_sas_phy->phy = phy;
9608 hpsa_sas_phy->parent_port = hpsa_sas_port;
9610 return hpsa_sas_phy;
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9615 struct sas_phy *phy = hpsa_sas_phy->phy;
9617 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9618 sas_phy_free(phy);
9619 if (hpsa_sas_phy->added_to_port)
9620 list_del(&hpsa_sas_phy->phy_list_entry);
9621 kfree(hpsa_sas_phy);
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9626 int rc;
9627 struct hpsa_sas_port *hpsa_sas_port;
9628 struct sas_phy *phy;
9629 struct sas_identify *identify;
9631 hpsa_sas_port = hpsa_sas_phy->parent_port;
9632 phy = hpsa_sas_phy->phy;
9634 identify = &phy->identify;
9635 memset(identify, 0, sizeof(*identify));
9636 identify->sas_address = hpsa_sas_port->sas_address;
9637 identify->device_type = SAS_END_DEVICE;
9638 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9639 identify->target_port_protocols = SAS_PROTOCOL_STP;
9640 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9641 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9642 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9643 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9644 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9646 rc = sas_phy_add(hpsa_sas_phy->phy);
9647 if (rc)
9648 return rc;
9650 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9651 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9652 &hpsa_sas_port->phy_list_head);
9653 hpsa_sas_phy->added_to_port = true;
9655 return 0;
9658 static int
9659 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9660 struct sas_rphy *rphy)
9662 struct sas_identify *identify;
9664 identify = &rphy->identify;
9665 identify->sas_address = hpsa_sas_port->sas_address;
9666 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9667 identify->target_port_protocols = SAS_PROTOCOL_STP;
9669 return sas_rphy_add(rphy);
9672 static struct hpsa_sas_port
9673 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9674 u64 sas_address)
9676 int rc;
9677 struct hpsa_sas_port *hpsa_sas_port;
9678 struct sas_port *port;
9680 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9681 if (!hpsa_sas_port)
9682 return NULL;
9684 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9685 hpsa_sas_port->parent_node = hpsa_sas_node;
9687 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9688 if (!port)
9689 goto free_hpsa_port;
9691 rc = sas_port_add(port);
9692 if (rc)
9693 goto free_sas_port;
9695 hpsa_sas_port->port = port;
9696 hpsa_sas_port->sas_address = sas_address;
9697 list_add_tail(&hpsa_sas_port->port_list_entry,
9698 &hpsa_sas_node->port_list_head);
9700 return hpsa_sas_port;
9702 free_sas_port:
9703 sas_port_free(port);
9704 free_hpsa_port:
9705 kfree(hpsa_sas_port);
9707 return NULL;
9710 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9712 struct hpsa_sas_phy *hpsa_sas_phy;
9713 struct hpsa_sas_phy *next;
9715 list_for_each_entry_safe(hpsa_sas_phy, next,
9716 &hpsa_sas_port->phy_list_head, phy_list_entry)
9717 hpsa_free_sas_phy(hpsa_sas_phy);
9719 sas_port_delete(hpsa_sas_port->port);
9720 list_del(&hpsa_sas_port->port_list_entry);
9721 kfree(hpsa_sas_port);
9724 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9726 struct hpsa_sas_node *hpsa_sas_node;
9728 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9729 if (hpsa_sas_node) {
9730 hpsa_sas_node->parent_dev = parent_dev;
9731 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9734 return hpsa_sas_node;
9737 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9739 struct hpsa_sas_port *hpsa_sas_port;
9740 struct hpsa_sas_port *next;
9742 if (!hpsa_sas_node)
9743 return;
9745 list_for_each_entry_safe(hpsa_sas_port, next,
9746 &hpsa_sas_node->port_list_head, port_list_entry)
9747 hpsa_free_sas_port(hpsa_sas_port);
9749 kfree(hpsa_sas_node);
9752 static struct hpsa_scsi_dev_t
9753 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9754 struct sas_rphy *rphy)
9756 int i;
9757 struct hpsa_scsi_dev_t *device;
9759 for (i = 0; i < h->ndevices; i++) {
9760 device = h->dev[i];
9761 if (!device->sas_port)
9762 continue;
9763 if (device->sas_port->rphy == rphy)
9764 return device;
9767 return NULL;
9770 static int hpsa_add_sas_host(struct ctlr_info *h)
9772 int rc;
9773 struct device *parent_dev;
9774 struct hpsa_sas_node *hpsa_sas_node;
9775 struct hpsa_sas_port *hpsa_sas_port;
9776 struct hpsa_sas_phy *hpsa_sas_phy;
9778 parent_dev = &h->scsi_host->shost_gendev;
9780 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9781 if (!hpsa_sas_node)
9782 return -ENOMEM;
9784 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9785 if (!hpsa_sas_port) {
9786 rc = -ENODEV;
9787 goto free_sas_node;
9790 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9791 if (!hpsa_sas_phy) {
9792 rc = -ENODEV;
9793 goto free_sas_port;
9796 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9797 if (rc)
9798 goto free_sas_phy;
9800 h->sas_host = hpsa_sas_node;
9802 return 0;
9804 free_sas_phy:
9805 hpsa_free_sas_phy(hpsa_sas_phy);
9806 free_sas_port:
9807 hpsa_free_sas_port(hpsa_sas_port);
9808 free_sas_node:
9809 hpsa_free_sas_node(hpsa_sas_node);
9811 return rc;
9814 static void hpsa_delete_sas_host(struct ctlr_info *h)
9816 hpsa_free_sas_node(h->sas_host);
9819 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9820 struct hpsa_scsi_dev_t *device)
9822 int rc;
9823 struct hpsa_sas_port *hpsa_sas_port;
9824 struct sas_rphy *rphy;
9826 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9827 if (!hpsa_sas_port)
9828 return -ENOMEM;
9830 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9831 if (!rphy) {
9832 rc = -ENODEV;
9833 goto free_sas_port;
9836 hpsa_sas_port->rphy = rphy;
9837 device->sas_port = hpsa_sas_port;
9839 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9840 if (rc)
9841 goto free_sas_port;
9843 return 0;
9845 free_sas_port:
9846 hpsa_free_sas_port(hpsa_sas_port);
9847 device->sas_port = NULL;
9849 return rc;
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9854 if (device->sas_port) {
9855 hpsa_free_sas_port(device->sas_port);
9856 device->sas_port = NULL;
9860 static int
9861 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9863 return 0;
9866 static int
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9869 *identifier = 0;
9870 return 0;
9873 static int
9874 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9876 return -ENXIO;
9879 static int
9880 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9882 return 0;
9885 static int
9886 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9888 return 0;
9891 static int
9892 hpsa_sas_phy_setup(struct sas_phy *phy)
9894 return 0;
9897 static void
9898 hpsa_sas_phy_release(struct sas_phy *phy)
9902 static int
9903 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9905 return -EINVAL;
9908 /* SMP = Serial Management Protocol */
9909 static int
9910 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9911 struct request *req)
9913 return -EINVAL;
9916 static struct sas_function_template hpsa_sas_transport_functions = {
9917 .get_linkerrors = hpsa_sas_get_linkerrors,
9918 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9919 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9920 .phy_reset = hpsa_sas_phy_reset,
9921 .phy_enable = hpsa_sas_phy_enable,
9922 .phy_setup = hpsa_sas_phy_setup,
9923 .phy_release = hpsa_sas_phy_release,
9924 .set_phy_speed = hpsa_sas_phy_speed,
9925 .smp_handler = hpsa_sas_smp_handler,
9929 * This is it. Register the PCI driver information for the cards we control
9930 * the OS will call our registered routines when it finds one of our cards.
9932 static int __init hpsa_init(void)
9934 int rc;
9936 hpsa_sas_transport_template =
9937 sas_attach_transport(&hpsa_sas_transport_functions);
9938 if (!hpsa_sas_transport_template)
9939 return -ENODEV;
9941 rc = pci_register_driver(&hpsa_pci_driver);
9943 if (rc)
9944 sas_release_transport(hpsa_sas_transport_template);
9946 return rc;
9949 static void __exit hpsa_cleanup(void)
9951 pci_unregister_driver(&hpsa_pci_driver);
9952 sas_release_transport(hpsa_sas_transport_template);
9955 static void __attribute__((unused)) verify_offsets(void)
9957 #define VERIFY_OFFSET(member, offset) \
9958 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9960 VERIFY_OFFSET(structure_size, 0);
9961 VERIFY_OFFSET(volume_blk_size, 4);
9962 VERIFY_OFFSET(volume_blk_cnt, 8);
9963 VERIFY_OFFSET(phys_blk_shift, 16);
9964 VERIFY_OFFSET(parity_rotation_shift, 17);
9965 VERIFY_OFFSET(strip_size, 18);
9966 VERIFY_OFFSET(disk_starting_blk, 20);
9967 VERIFY_OFFSET(disk_blk_cnt, 28);
9968 VERIFY_OFFSET(data_disks_per_row, 36);
9969 VERIFY_OFFSET(metadata_disks_per_row, 38);
9970 VERIFY_OFFSET(row_cnt, 40);
9971 VERIFY_OFFSET(layout_map_count, 42);
9972 VERIFY_OFFSET(flags, 44);
9973 VERIFY_OFFSET(dekindex, 46);
9974 /* VERIFY_OFFSET(reserved, 48 */
9975 VERIFY_OFFSET(data, 64);
9977 #undef VERIFY_OFFSET
9979 #define VERIFY_OFFSET(member, offset) \
9980 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9982 VERIFY_OFFSET(IU_type, 0);
9983 VERIFY_OFFSET(direction, 1);
9984 VERIFY_OFFSET(reply_queue, 2);
9985 /* VERIFY_OFFSET(reserved1, 3); */
9986 VERIFY_OFFSET(scsi_nexus, 4);
9987 VERIFY_OFFSET(Tag, 8);
9988 VERIFY_OFFSET(cdb, 16);
9989 VERIFY_OFFSET(cciss_lun, 32);
9990 VERIFY_OFFSET(data_len, 40);
9991 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9992 VERIFY_OFFSET(sg_count, 45);
9993 /* VERIFY_OFFSET(reserved3 */
9994 VERIFY_OFFSET(err_ptr, 48);
9995 VERIFY_OFFSET(err_len, 56);
9996 /* VERIFY_OFFSET(reserved4 */
9997 VERIFY_OFFSET(sg, 64);
9999 #undef VERIFY_OFFSET
10001 #define VERIFY_OFFSET(member, offset) \
10002 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10004 VERIFY_OFFSET(dev_handle, 0x00);
10005 VERIFY_OFFSET(reserved1, 0x02);
10006 VERIFY_OFFSET(function, 0x03);
10007 VERIFY_OFFSET(reserved2, 0x04);
10008 VERIFY_OFFSET(err_info, 0x0C);
10009 VERIFY_OFFSET(reserved3, 0x10);
10010 VERIFY_OFFSET(err_info_len, 0x12);
10011 VERIFY_OFFSET(reserved4, 0x13);
10012 VERIFY_OFFSET(sgl_offset, 0x14);
10013 VERIFY_OFFSET(reserved5, 0x15);
10014 VERIFY_OFFSET(transfer_len, 0x1C);
10015 VERIFY_OFFSET(reserved6, 0x20);
10016 VERIFY_OFFSET(io_flags, 0x24);
10017 VERIFY_OFFSET(reserved7, 0x26);
10018 VERIFY_OFFSET(LUN, 0x34);
10019 VERIFY_OFFSET(control, 0x3C);
10020 VERIFY_OFFSET(CDB, 0x40);
10021 VERIFY_OFFSET(reserved8, 0x50);
10022 VERIFY_OFFSET(host_context_flags, 0x60);
10023 VERIFY_OFFSET(timeout_sec, 0x62);
10024 VERIFY_OFFSET(ReplyQueue, 0x64);
10025 VERIFY_OFFSET(reserved9, 0x65);
10026 VERIFY_OFFSET(tag, 0x68);
10027 VERIFY_OFFSET(host_addr, 0x70);
10028 VERIFY_OFFSET(CISS_LUN, 0x78);
10029 VERIFY_OFFSET(SG, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10033 module_init(hpsa_init);
10034 module_exit(hpsa_cleanup);