2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
152 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products
[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access
},
160 {0x3243103C, "Smart Array P410", &SA5_access
},
161 {0x3245103C, "Smart Array P410i", &SA5_access
},
162 {0x3247103C, "Smart Array P411", &SA5_access
},
163 {0x3249103C, "Smart Array P812", &SA5_access
},
164 {0x324A103C, "Smart Array P712m", &SA5_access
},
165 {0x324B103C, "Smart Array P711m", &SA5_access
},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access
},
168 {0x3351103C, "Smart Array P420", &SA5_access
},
169 {0x3352103C, "Smart Array P421", &SA5_access
},
170 {0x3353103C, "Smart Array P822", &SA5_access
},
171 {0x3354103C, "Smart Array P420i", &SA5_access
},
172 {0x3355103C, "Smart Array P220i", &SA5_access
},
173 {0x3356103C, "Smart Array P721m", &SA5_access
},
174 {0x1921103C, "Smart Array P830i", &SA5_access
},
175 {0x1922103C, "Smart Array P430", &SA5_access
},
176 {0x1923103C, "Smart Array P431", &SA5_access
},
177 {0x1924103C, "Smart Array P830", &SA5_access
},
178 {0x1926103C, "Smart Array P731m", &SA5_access
},
179 {0x1928103C, "Smart Array P230i", &SA5_access
},
180 {0x1929103C, "Smart Array P530", &SA5_access
},
181 {0x21BD103C, "Smart Array P244br", &SA5_access
},
182 {0x21BE103C, "Smart Array P741m", &SA5_access
},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
186 {0x21C2103C, "Smart Array P440", &SA5_access
},
187 {0x21C3103C, "Smart Array P441", &SA5_access
},
188 {0x21C4103C, "Smart Array", &SA5_access
},
189 {0x21C5103C, "Smart Array P841", &SA5_access
},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
191 {0x21C7103C, "Smart HBA H240", &SA5_access
},
192 {0x21C8103C, "Smart HBA H241", &SA5_access
},
193 {0x21C9103C, "Smart Array", &SA5_access
},
194 {0x21CA103C, "Smart Array P246br", &SA5_access
},
195 {0x21CB103C, "Smart Array P840", &SA5_access
},
196 {0x21CC103C, "Smart Array", &SA5_access
},
197 {0x21CD103C, "Smart Array", &SA5_access
},
198 {0x21CE103C, "Smart HBA", &SA5_access
},
199 {0x05809005, "SmartHBA-SA", &SA5_access
},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
213 static struct scsi_transport_template
*hpsa_sas_transport_template
;
214 static int hpsa_add_sas_host(struct ctlr_info
*h
);
215 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
216 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
217 struct hpsa_scsi_dev_t
*device
);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
221 struct sas_rphy
*rphy
);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy
;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle
;
227 static int number_of_controllers
;
229 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
230 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
231 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
234 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
238 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
239 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
240 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
241 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
242 struct scsi_cmnd
*scmd
);
243 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
244 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
246 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
251 static void hpsa_scan_start(struct Scsi_Host
*);
252 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
253 unsigned long elapsed_time
);
254 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
258 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
259 static int hpsa_slave_configure(struct scsi_device
*sdev
);
260 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
262 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
263 static int check_for_unit_attention(struct ctlr_info
*h
,
264 struct CommandList
*c
);
265 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket
, int num_buckets
,
269 int nsgs
, int min_blocks
, u32
*bucket_map
);
270 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
272 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
273 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
274 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
276 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
277 unsigned long *memory_bar
);
278 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
279 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
280 unsigned char lunaddr
[],
282 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
284 static inline void finish_cmd(struct CommandList
*c
);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
289 static void hpsa_flush_cache(struct ctlr_info
*h
);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
291 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
292 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
293 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
294 static u32
lockup_detected(struct ctlr_info
*h
);
295 static int detect_controller_lockup(struct ctlr_info
*h
);
296 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
298 struct ReportExtendedLUNdata
*buf
, int bufsize
);
299 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
300 unsigned char scsi3addr
[], u8 page
);
301 static int hpsa_luns_changed(struct ctlr_info
*h
);
302 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
303 struct hpsa_scsi_dev_t
*dev
,
304 unsigned char *scsi3addr
);
306 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
308 unsigned long *priv
= shost_priv(sdev
->host
);
309 return (struct ctlr_info
*) *priv
;
312 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
314 unsigned long *priv
= shost_priv(sh
);
315 return (struct ctlr_info
*) *priv
;
318 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
320 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
323 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
325 return c
->abort_pending
|| c
->reset_pending
;
328 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
329 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
330 u8
*sense_key
, u8
*asc
, u8
*ascq
)
332 struct scsi_sense_hdr sshdr
;
339 if (sense_data_len
< 1)
342 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
344 *sense_key
= sshdr
.sense_key
;
350 static int check_for_unit_attention(struct ctlr_info
*h
,
351 struct CommandList
*c
)
353 u8 sense_key
, asc
, ascq
;
356 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
357 sense_len
= sizeof(c
->err_info
->SenseInfo
);
359 sense_len
= c
->err_info
->SenseLen
;
361 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
362 &sense_key
, &asc
, &ascq
);
363 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
368 dev_warn(&h
->pdev
->dev
,
369 "%s: a state change detected, command retried\n",
373 dev_warn(&h
->pdev
->dev
,
374 "%s: LUN failure detected\n", h
->devname
);
376 case REPORT_LUNS_CHANGED
:
377 dev_warn(&h
->pdev
->dev
,
378 "%s: report LUN data changed\n", h
->devname
);
380 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381 * target (array) devices.
385 dev_warn(&h
->pdev
->dev
,
386 "%s: a power on or device reset detected\n",
389 case UNIT_ATTENTION_CLEARED
:
390 dev_warn(&h
->pdev
->dev
,
391 "%s: unit attention cleared by another initiator\n",
395 dev_warn(&h
->pdev
->dev
,
396 "%s: unknown unit attention detected\n",
403 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
405 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
406 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
407 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
409 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
413 static u32
lockup_detected(struct ctlr_info
*h
);
414 static ssize_t
host_show_lockup_detected(struct device
*dev
,
415 struct device_attribute
*attr
, char *buf
)
419 struct Scsi_Host
*shost
= class_to_shost(dev
);
421 h
= shost_to_hba(shost
);
422 ld
= lockup_detected(h
);
424 return sprintf(buf
, "ld=%d\n", ld
);
427 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
428 struct device_attribute
*attr
,
429 const char *buf
, size_t count
)
433 struct Scsi_Host
*shost
= class_to_shost(dev
);
436 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
438 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
439 strncpy(tmpbuf
, buf
, len
);
441 if (sscanf(tmpbuf
, "%d", &status
) != 1)
443 h
= shost_to_hba(shost
);
444 h
->acciopath_status
= !!status
;
445 dev_warn(&h
->pdev
->dev
,
446 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447 h
->acciopath_status
? "enabled" : "disabled");
451 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
452 struct device_attribute
*attr
,
453 const char *buf
, size_t count
)
455 int debug_level
, len
;
457 struct Scsi_Host
*shost
= class_to_shost(dev
);
460 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
462 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
463 strncpy(tmpbuf
, buf
, len
);
465 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
469 h
= shost_to_hba(shost
);
470 h
->raid_offload_debug
= debug_level
;
471 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
472 h
->raid_offload_debug
);
476 static ssize_t
host_store_rescan(struct device
*dev
,
477 struct device_attribute
*attr
,
478 const char *buf
, size_t count
)
481 struct Scsi_Host
*shost
= class_to_shost(dev
);
482 h
= shost_to_hba(shost
);
483 hpsa_scan_start(h
->scsi_host
);
487 static ssize_t
host_show_firmware_revision(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
491 struct Scsi_Host
*shost
= class_to_shost(dev
);
492 unsigned char *fwrev
;
494 h
= shost_to_hba(shost
);
495 if (!h
->hba_inquiry_data
)
497 fwrev
= &h
->hba_inquiry_data
[32];
498 return snprintf(buf
, 20, "%c%c%c%c\n",
499 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
502 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
503 struct device_attribute
*attr
, char *buf
)
505 struct Scsi_Host
*shost
= class_to_shost(dev
);
506 struct ctlr_info
*h
= shost_to_hba(shost
);
508 return snprintf(buf
, 20, "%d\n",
509 atomic_read(&h
->commands_outstanding
));
512 static ssize_t
host_show_transport_mode(struct device
*dev
,
513 struct device_attribute
*attr
, char *buf
)
516 struct Scsi_Host
*shost
= class_to_shost(dev
);
518 h
= shost_to_hba(shost
);
519 return snprintf(buf
, 20, "%s\n",
520 h
->transMethod
& CFGTBL_Trans_Performant
?
521 "performant" : "simple");
524 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
525 struct device_attribute
*attr
, char *buf
)
528 struct Scsi_Host
*shost
= class_to_shost(dev
);
530 h
= shost_to_hba(shost
);
531 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
532 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller
[] = {
537 0x324a103C, /* Smart Array P712m */
538 0x324b103C, /* Smart Array P711m */
539 0x3223103C, /* Smart Array P800 */
540 0x3234103C, /* Smart Array P400 */
541 0x3235103C, /* Smart Array P400i */
542 0x3211103C, /* Smart Array E200i */
543 0x3212103C, /* Smart Array E200 */
544 0x3213103C, /* Smart Array E200i */
545 0x3214103C, /* Smart Array E200i */
546 0x3215103C, /* Smart Array E200i */
547 0x3237103C, /* Smart Array E500 */
548 0x323D103C, /* Smart Array P700m */
549 0x40800E11, /* Smart Array 5i */
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
552 0x40700E11, /* Smart Array 5300 */
553 0x40820E11, /* Smart Array 532 */
554 0x40830E11, /* Smart Array 5312 */
555 0x409A0E11, /* Smart Array 641 */
556 0x409B0E11, /* Smart Array 642 */
557 0x40910E11, /* Smart Array 6i */
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller
[] = {
562 0x40800E11, /* Smart Array 5i */
563 0x40700E11, /* Smart Array 5300 */
564 0x40820E11, /* Smart Array 532 */
565 0x40830E11, /* Smart Array 5312 */
566 0x409A0E11, /* Smart Array 641 */
567 0x409B0E11, /* Smart Array 642 */
568 0x40910E11, /* Smart Array 6i */
569 /* Exclude 640x boards. These are two pci devices in one slot
570 * which share a battery backed cache module. One controls the
571 * cache, the other accesses the cache through the one that controls
572 * it. If we reset the one controlling the cache, the other will
573 * likely not be happy. Just forbid resetting this conjoined mess.
574 * The 640x isn't really supported by hpsa anyway.
576 0x409C0E11, /* Smart Array 6400 */
577 0x409D0E11, /* Smart Array 6400 EM */
580 static u32 needs_abort_tags_swizzled
[] = {
581 0x323D103C, /* Smart Array P700m */
582 0x324a103C, /* Smart Array P712m */
583 0x324b103C, /* SmartArray P711m */
586 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
590 for (i
= 0; i
< nelems
; i
++)
591 if (a
[i
] == board_id
)
596 static int ctlr_is_hard_resettable(u32 board_id
)
598 return !board_id_in_array(unresettable_controller
,
599 ARRAY_SIZE(unresettable_controller
), board_id
);
602 static int ctlr_is_soft_resettable(u32 board_id
)
604 return !board_id_in_array(soft_unresettable_controller
,
605 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
608 static int ctlr_is_resettable(u32 board_id
)
610 return ctlr_is_hard_resettable(board_id
) ||
611 ctlr_is_soft_resettable(board_id
);
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
616 return board_id_in_array(needs_abort_tags_swizzled
,
617 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
620 static ssize_t
host_show_resettable(struct device
*dev
,
621 struct device_attribute
*attr
, char *buf
)
624 struct Scsi_Host
*shost
= class_to_shost(dev
);
626 h
= shost_to_hba(shost
);
627 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
632 return (scsi3addr
[3] & 0xC0) == 0x40;
635 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
638 #define HPSA_RAID_0 0
639 #define HPSA_RAID_4 1
640 #define HPSA_RAID_1 2 /* also used for RAID 10 */
641 #define HPSA_RAID_5 3 /* also used for RAID 50 */
642 #define HPSA_RAID_51 4
643 #define HPSA_RAID_6 5 /* also used for RAID 60 */
644 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
650 return !device
->physical_device
;
653 static ssize_t
raid_level_show(struct device
*dev
,
654 struct device_attribute
*attr
, char *buf
)
657 unsigned char rlevel
;
659 struct scsi_device
*sdev
;
660 struct hpsa_scsi_dev_t
*hdev
;
663 sdev
= to_scsi_device(dev
);
664 h
= sdev_to_hba(sdev
);
665 spin_lock_irqsave(&h
->lock
, flags
);
666 hdev
= sdev
->hostdata
;
668 spin_unlock_irqrestore(&h
->lock
, flags
);
672 /* Is this even a logical drive? */
673 if (!is_logical_device(hdev
)) {
674 spin_unlock_irqrestore(&h
->lock
, flags
);
675 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
679 rlevel
= hdev
->raid_level
;
680 spin_unlock_irqrestore(&h
->lock
, flags
);
681 if (rlevel
> RAID_UNKNOWN
)
682 rlevel
= RAID_UNKNOWN
;
683 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
687 static ssize_t
lunid_show(struct device
*dev
,
688 struct device_attribute
*attr
, char *buf
)
691 struct scsi_device
*sdev
;
692 struct hpsa_scsi_dev_t
*hdev
;
694 unsigned char lunid
[8];
696 sdev
= to_scsi_device(dev
);
697 h
= sdev_to_hba(sdev
);
698 spin_lock_irqsave(&h
->lock
, flags
);
699 hdev
= sdev
->hostdata
;
701 spin_unlock_irqrestore(&h
->lock
, flags
);
704 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
705 spin_unlock_irqrestore(&h
->lock
, flags
);
706 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
709 static ssize_t
unique_id_show(struct device
*dev
,
710 struct device_attribute
*attr
, char *buf
)
713 struct scsi_device
*sdev
;
714 struct hpsa_scsi_dev_t
*hdev
;
716 unsigned char sn
[16];
718 sdev
= to_scsi_device(dev
);
719 h
= sdev_to_hba(sdev
);
720 spin_lock_irqsave(&h
->lock
, flags
);
721 hdev
= sdev
->hostdata
;
723 spin_unlock_irqrestore(&h
->lock
, flags
);
726 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
727 spin_unlock_irqrestore(&h
->lock
, flags
);
728 return snprintf(buf
, 16 * 2 + 2,
729 "%02X%02X%02X%02X%02X%02X%02X%02X"
730 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731 sn
[0], sn
[1], sn
[2], sn
[3],
732 sn
[4], sn
[5], sn
[6], sn
[7],
733 sn
[8], sn
[9], sn
[10], sn
[11],
734 sn
[12], sn
[13], sn
[14], sn
[15]);
737 static ssize_t
sas_address_show(struct device
*dev
,
738 struct device_attribute
*attr
, char *buf
)
741 struct scsi_device
*sdev
;
742 struct hpsa_scsi_dev_t
*hdev
;
746 sdev
= to_scsi_device(dev
);
747 h
= sdev_to_hba(sdev
);
748 spin_lock_irqsave(&h
->lock
, flags
);
749 hdev
= sdev
->hostdata
;
750 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
751 spin_unlock_irqrestore(&h
->lock
, flags
);
754 sas_address
= hdev
->sas_address
;
755 spin_unlock_irqrestore(&h
->lock
, flags
);
757 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
760 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
761 struct device_attribute
*attr
, char *buf
)
764 struct scsi_device
*sdev
;
765 struct hpsa_scsi_dev_t
*hdev
;
769 sdev
= to_scsi_device(dev
);
770 h
= sdev_to_hba(sdev
);
771 spin_lock_irqsave(&h
->lock
, flags
);
772 hdev
= sdev
->hostdata
;
774 spin_unlock_irqrestore(&h
->lock
, flags
);
777 offload_enabled
= hdev
->offload_enabled
;
778 spin_unlock_irqrestore(&h
->lock
, flags
);
779 return snprintf(buf
, 20, "%d\n", offload_enabled
);
783 static ssize_t
path_info_show(struct device
*dev
,
784 struct device_attribute
*attr
, char *buf
)
787 struct scsi_device
*sdev
;
788 struct hpsa_scsi_dev_t
*hdev
;
794 u8 path_map_index
= 0;
796 unsigned char phys_connector
[2];
798 sdev
= to_scsi_device(dev
);
799 h
= sdev_to_hba(sdev
);
800 spin_lock_irqsave(&h
->devlock
, flags
);
801 hdev
= sdev
->hostdata
;
803 spin_unlock_irqrestore(&h
->devlock
, flags
);
808 for (i
= 0; i
< MAX_PATHS
; i
++) {
809 path_map_index
= 1<<i
;
810 if (i
== hdev
->active_path_index
)
812 else if (hdev
->path_map
& path_map_index
)
817 output_len
+= scnprintf(buf
+ output_len
,
818 PAGE_SIZE
- output_len
,
819 "[%d:%d:%d:%d] %20.20s ",
820 h
->scsi_host
->host_no
,
821 hdev
->bus
, hdev
->target
, hdev
->lun
,
822 scsi_device_type(hdev
->devtype
));
824 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
825 output_len
+= scnprintf(buf
+ output_len
,
826 PAGE_SIZE
- output_len
,
832 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
833 sizeof(phys_connector
));
834 if (phys_connector
[0] < '0')
835 phys_connector
[0] = '0';
836 if (phys_connector
[1] < '0')
837 phys_connector
[1] = '0';
838 output_len
+= scnprintf(buf
+ output_len
,
839 PAGE_SIZE
- output_len
,
842 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
843 hdev
->expose_device
) {
844 if (box
== 0 || box
== 0xFF) {
845 output_len
+= scnprintf(buf
+ output_len
,
846 PAGE_SIZE
- output_len
,
850 output_len
+= scnprintf(buf
+ output_len
,
851 PAGE_SIZE
- output_len
,
852 "BOX: %hhu BAY: %hhu %s\n",
855 } else if (box
!= 0 && box
!= 0xFF) {
856 output_len
+= scnprintf(buf
+ output_len
,
857 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
860 output_len
+= scnprintf(buf
+ output_len
,
861 PAGE_SIZE
- output_len
, "%s\n", active
);
864 spin_unlock_irqrestore(&h
->devlock
, flags
);
868 static ssize_t
host_show_ctlr_num(struct device
*dev
,
869 struct device_attribute
*attr
, char *buf
)
872 struct Scsi_Host
*shost
= class_to_shost(dev
);
874 h
= shost_to_hba(shost
);
875 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
878 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
879 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
880 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
881 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
882 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
884 host_show_hp_ssd_smart_path_enabled
, NULL
);
885 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
886 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
887 host_show_hp_ssd_smart_path_status
,
888 host_store_hp_ssd_smart_path_status
);
889 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
890 host_store_raid_offload_debug
);
891 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
892 host_show_firmware_revision
, NULL
);
893 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
894 host_show_commands_outstanding
, NULL
);
895 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
896 host_show_transport_mode
, NULL
);
897 static DEVICE_ATTR(resettable
, S_IRUGO
,
898 host_show_resettable
, NULL
);
899 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
900 host_show_lockup_detected
, NULL
);
901 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
902 host_show_ctlr_num
, NULL
);
904 static struct device_attribute
*hpsa_sdev_attrs
[] = {
905 &dev_attr_raid_level
,
908 &dev_attr_hp_ssd_smart_path_enabled
,
910 &dev_attr_sas_address
,
914 static struct device_attribute
*hpsa_shost_attrs
[] = {
916 &dev_attr_firmware_revision
,
917 &dev_attr_commands_outstanding
,
918 &dev_attr_transport_mode
,
919 &dev_attr_resettable
,
920 &dev_attr_hp_ssd_smart_path_status
,
921 &dev_attr_raid_offload_debug
,
922 &dev_attr_lockup_detected
,
927 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
930 static struct scsi_host_template hpsa_driver_template
= {
931 .module
= THIS_MODULE
,
934 .queuecommand
= hpsa_scsi_queue_command
,
935 .scan_start
= hpsa_scan_start
,
936 .scan_finished
= hpsa_scan_finished
,
937 .change_queue_depth
= hpsa_change_queue_depth
,
939 .use_clustering
= ENABLE_CLUSTERING
,
940 .eh_abort_handler
= hpsa_eh_abort_handler
,
941 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
943 .slave_alloc
= hpsa_slave_alloc
,
944 .slave_configure
= hpsa_slave_configure
,
945 .slave_destroy
= hpsa_slave_destroy
,
947 .compat_ioctl
= hpsa_compat_ioctl
,
949 .sdev_attrs
= hpsa_sdev_attrs
,
950 .shost_attrs
= hpsa_shost_attrs
,
955 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
958 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
960 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
961 return h
->access
.command_completed(h
, q
);
963 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
964 return h
->access
.command_completed(h
, q
);
966 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
967 a
= rq
->head
[rq
->current_entry
];
969 atomic_dec(&h
->commands_outstanding
);
973 /* Check for wraparound */
974 if (rq
->current_entry
== h
->max_commands
) {
975 rq
->current_entry
= 0;
982 * There are some special bits in the bus address of the
983 * command that we have to set for the controller to know
984 * how to process the command:
986 * Normal performant mode:
987 * bit 0: 1 means performant mode, 0 means simple mode.
988 * bits 1-3 = block fetch table entry
989 * bits 4-6 = command type (== 0)
992 * bit 0 = "performant mode" bit.
993 * bits 1-3 = block fetch table entry
994 * bits 4-6 = command type (== 110)
995 * (command type is needed because ioaccel1 mode
996 * commands are submitted through the same register as normal
997 * mode commands, so this is how the controller knows whether
998 * the command is normal mode or ioaccel1 mode.)
1001 * bit 0 = "performant mode" bit.
1002 * bits 1-4 = block fetch table entry (note extra bit)
1003 * bits 4-6 = not needed, because ioaccel2 mode has
1004 * a separate special register for submitting commands.
1008 * set_performant_mode: Modify the tag for cciss performant
1009 * set bit 0 for pull model, bits 3-1 for block fetch
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1016 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1017 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1018 if (unlikely(!h
->msix_vectors
))
1020 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1021 c
->Header
.ReplyQueue
=
1022 raw_smp_processor_id() % h
->nreply_queues
;
1024 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1028 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1029 struct CommandList
*c
,
1032 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1035 * Tell the controller to post the reply to the queue for this
1036 * processor. This seems to give the best I/O throughput.
1038 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1039 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1041 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1043 * Set the bits in the address sent down to include:
1044 * - performant mode bit (bit 0)
1045 * - pull count (bits 1-3)
1046 * - command type (bits 4-6)
1048 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1049 IOACCEL1_BUSADDR_CMDTYPE
;
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1053 struct CommandList
*c
,
1056 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1057 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1059 /* Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1062 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1063 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1065 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1066 /* Set the bits in the address sent down to include:
1067 * - performant mode bit not used in ioaccel mode 2
1068 * - pull count (bits 0-3)
1069 * - command type isn't needed for ioaccel2
1071 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1074 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1075 struct CommandList
*c
,
1078 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1081 * Tell the controller to post the reply to the queue for this
1082 * processor. This seems to give the best I/O throughput.
1084 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1085 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1087 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1089 * Set the bits in the address sent down to include:
1090 * - performant mode bit not used in ioaccel mode 2
1091 * - pull count (bits 0-3)
1092 * - command type isn't needed for ioaccel2
1094 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1097 static int is_firmware_flash_cmd(u8
*cdb
)
1099 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1103 * During firmware flash, the heartbeat register may not update as frequently
1104 * as it should. So we dial down lockup detection during firmware flash. and
1105 * dial it back up when firmware flash completes.
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1110 struct CommandList
*c
)
1112 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1114 atomic_inc(&h
->firmware_flash_in_progress
);
1115 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1119 struct CommandList
*c
)
1121 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1122 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1123 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1127 struct CommandList
*c
, int reply_queue
)
1129 dial_down_lockup_detection_during_fw_flash(h
, c
);
1130 atomic_inc(&h
->commands_outstanding
);
1131 switch (c
->cmd_type
) {
1133 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1134 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1137 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1138 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1141 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1142 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1145 set_performant_mode(h
, c
, reply_queue
);
1146 h
->access
.submit_command(h
, c
);
1150 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1152 if (unlikely(hpsa_is_pending_event(c
)))
1153 return finish_cmd(c
);
1155 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1158 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1160 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1163 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1165 if (!h
->hba_inquiry_data
)
1167 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1172 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1173 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1175 /* finds an unused bus, target, lun for a new physical device
1176 * assumes h->devlock is held
1179 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1181 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1183 for (i
= 0; i
< h
->ndevices
; i
++) {
1184 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1185 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1188 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1189 if (i
< HPSA_MAX_DEVICES
) {
1198 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1199 struct hpsa_scsi_dev_t
*dev
, char *description
)
1201 #define LABEL_SIZE 25
1202 char label
[LABEL_SIZE
];
1204 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1207 switch (dev
->devtype
) {
1209 snprintf(label
, LABEL_SIZE
, "controller");
1211 case TYPE_ENCLOSURE
:
1212 snprintf(label
, LABEL_SIZE
, "enclosure");
1217 snprintf(label
, LABEL_SIZE
, "external");
1218 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1219 snprintf(label
, LABEL_SIZE
, "%s",
1220 raid_label
[PHYSICAL_DRIVE
]);
1222 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1223 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1224 raid_label
[dev
->raid_level
]);
1227 snprintf(label
, LABEL_SIZE
, "rom");
1230 snprintf(label
, LABEL_SIZE
, "tape");
1232 case TYPE_MEDIUM_CHANGER
:
1233 snprintf(label
, LABEL_SIZE
, "changer");
1236 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1240 dev_printk(level
, &h
->pdev
->dev
,
1241 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1244 scsi_device_type(dev
->devtype
),
1248 dev
->offload_config
? '+' : '-',
1249 dev
->offload_enabled
? '+' : '-',
1250 dev
->expose_device
);
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1255 struct hpsa_scsi_dev_t
*device
,
1256 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1258 /* assumes h->devlock is held */
1259 int n
= h
->ndevices
;
1261 unsigned char addr1
[8], addr2
[8];
1262 struct hpsa_scsi_dev_t
*sd
;
1264 if (n
>= HPSA_MAX_DEVICES
) {
1265 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1270 /* physical devices do not have lun or target assigned until now. */
1271 if (device
->lun
!= -1)
1272 /* Logical device, lun is already assigned. */
1275 /* If this device a non-zero lun of a multi-lun device
1276 * byte 4 of the 8-byte LUN addr will contain the logical
1277 * unit no, zero otherwise.
1279 if (device
->scsi3addr
[4] == 0) {
1280 /* This is not a non-zero lun of a multi-lun device */
1281 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1282 device
->bus
, &device
->target
, &device
->lun
) != 0)
1287 /* This is a non-zero lun of a multi-lun device.
1288 * Search through our list and find the device which
1289 * has the same 8 byte LUN address, excepting byte 4 and 5.
1290 * Assign the same bus and target for this new LUN.
1291 * Use the logical unit number from the firmware.
1293 memcpy(addr1
, device
->scsi3addr
, 8);
1296 for (i
= 0; i
< n
; i
++) {
1298 memcpy(addr2
, sd
->scsi3addr
, 8);
1301 /* differ only in byte 4 and 5? */
1302 if (memcmp(addr1
, addr2
, 8) == 0) {
1303 device
->bus
= sd
->bus
;
1304 device
->target
= sd
->target
;
1305 device
->lun
= device
->scsi3addr
[4];
1309 if (device
->lun
== -1) {
1310 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1311 " suspect firmware bug or unsupported hardware "
1312 "configuration.\n");
1320 added
[*nadded
] = device
;
1322 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1323 device
->expose_device
? "added" : "masked");
1324 device
->offload_to_be_enabled
= device
->offload_enabled
;
1325 device
->offload_enabled
= 0;
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1331 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1333 int offload_enabled
;
1334 /* assumes h->devlock is held */
1335 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1337 /* Raid level changed. */
1338 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1340 /* Raid offload parameters changed. Careful about the ordering. */
1341 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1343 * if drive is newly offload_enabled, we want to copy the
1344 * raid map data first. If previously offload_enabled and
1345 * offload_config were set, raid map data had better be
1346 * the same as it was before. if raid map data is changed
1347 * then it had better be the case that
1348 * h->dev[entry]->offload_enabled is currently 0.
1350 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1351 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1353 if (new_entry
->hba_ioaccel_enabled
) {
1354 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1355 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1357 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1358 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1359 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1360 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1363 * We can turn off ioaccel offload now, but need to delay turning
1364 * it on until we can update h->dev[entry]->phys_disk[], but we
1365 * can't do that until all the devices are updated.
1367 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1368 if (!new_entry
->offload_enabled
)
1369 h
->dev
[entry
]->offload_enabled
= 0;
1371 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1372 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1373 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1374 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1379 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1380 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1381 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1383 /* assumes h->devlock is held */
1384 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1385 removed
[*nremoved
] = h
->dev
[entry
];
1389 * New physical devices won't have target/lun assigned yet
1390 * so we need to preserve the values in the slot we are replacing.
1392 if (new_entry
->target
== -1) {
1393 new_entry
->target
= h
->dev
[entry
]->target
;
1394 new_entry
->lun
= h
->dev
[entry
]->lun
;
1397 h
->dev
[entry
] = new_entry
;
1398 added
[*nadded
] = new_entry
;
1400 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1401 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1402 new_entry
->offload_enabled
= 0;
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1407 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1409 /* assumes h->devlock is held */
1411 struct hpsa_scsi_dev_t
*sd
;
1413 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1416 removed
[*nremoved
] = h
->dev
[entry
];
1419 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1420 h
->dev
[i
] = h
->dev
[i
+1];
1422 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426 (a)[7] == (b)[7] && \
1427 (a)[6] == (b)[6] && \
1428 (a)[5] == (b)[5] && \
1429 (a)[4] == (b)[4] && \
1430 (a)[3] == (b)[3] && \
1431 (a)[2] == (b)[2] && \
1432 (a)[1] == (b)[1] && \
1435 static void fixup_botched_add(struct ctlr_info
*h
,
1436 struct hpsa_scsi_dev_t
*added
)
1438 /* called when scsi_add_device fails in order to re-adjust
1439 * h->dev[] to match the mid layer's view.
1441 unsigned long flags
;
1444 spin_lock_irqsave(&h
->lock
, flags
);
1445 for (i
= 0; i
< h
->ndevices
; i
++) {
1446 if (h
->dev
[i
] == added
) {
1447 for (j
= i
; j
< h
->ndevices
-1; j
++)
1448 h
->dev
[j
] = h
->dev
[j
+1];
1453 spin_unlock_irqrestore(&h
->lock
, flags
);
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1458 struct hpsa_scsi_dev_t
*dev2
)
1460 /* we compare everything except lun and target as these
1461 * are not yet assigned. Compare parts likely
1464 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1465 sizeof(dev1
->scsi3addr
)) != 0)
1467 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1468 sizeof(dev1
->device_id
)) != 0)
1470 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1472 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1474 if (dev1
->devtype
!= dev2
->devtype
)
1476 if (dev1
->bus
!= dev2
->bus
)
1481 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1482 struct hpsa_scsi_dev_t
*dev2
)
1484 /* Device attributes that can change, but don't mean
1485 * that the device is a different device, nor that the OS
1486 * needs to be told anything about the change.
1488 if (dev1
->raid_level
!= dev2
->raid_level
)
1490 if (dev1
->offload_config
!= dev2
->offload_config
)
1492 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1494 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1495 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1500 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1501 * and return needle location in *index. If scsi3addr matches, but not
1502 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503 * location in *index.
1504 * In the case of a minor device attribute change, such as RAID level, just
1505 * return DEVICE_UPDATED, along with the updated device's location in index.
1506 * If needle not found, return DEVICE_NOT_FOUND.
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1509 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1518 return DEVICE_NOT_FOUND
;
1520 for (i
= 0; i
< haystack_size
; i
++) {
1521 if (haystack
[i
] == NULL
) /* previously removed. */
1523 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1525 if (device_is_the_same(needle
, haystack
[i
])) {
1526 if (device_updated(needle
, haystack
[i
]))
1527 return DEVICE_UPDATED
;
1530 /* Keep offline devices offline */
1531 if (needle
->volume_offline
)
1532 return DEVICE_NOT_FOUND
;
1533 return DEVICE_CHANGED
;
1538 return DEVICE_NOT_FOUND
;
1541 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1542 unsigned char scsi3addr
[])
1544 struct offline_device_entry
*device
;
1545 unsigned long flags
;
1547 /* Check to see if device is already on the list */
1548 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1549 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1550 if (memcmp(device
->scsi3addr
, scsi3addr
,
1551 sizeof(device
->scsi3addr
)) == 0) {
1552 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1556 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1558 /* Device is not on the list, add it. */
1559 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1563 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1564 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1565 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1566 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1569 /* Print a message explaining various offline volume states */
1570 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1571 struct hpsa_scsi_dev_t
*sd
)
1573 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1574 dev_info(&h
->pdev
->dev
,
1575 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1576 h
->scsi_host
->host_no
,
1577 sd
->bus
, sd
->target
, sd
->lun
);
1578 switch (sd
->volume_offline
) {
1581 case HPSA_LV_UNDERGOING_ERASE
:
1582 dev_info(&h
->pdev
->dev
,
1583 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1584 h
->scsi_host
->host_no
,
1585 sd
->bus
, sd
->target
, sd
->lun
);
1587 case HPSA_LV_NOT_AVAILABLE
:
1588 dev_info(&h
->pdev
->dev
,
1589 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1590 h
->scsi_host
->host_no
,
1591 sd
->bus
, sd
->target
, sd
->lun
);
1593 case HPSA_LV_UNDERGOING_RPI
:
1594 dev_info(&h
->pdev
->dev
,
1595 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1596 h
->scsi_host
->host_no
,
1597 sd
->bus
, sd
->target
, sd
->lun
);
1599 case HPSA_LV_PENDING_RPI
:
1600 dev_info(&h
->pdev
->dev
,
1601 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1602 h
->scsi_host
->host_no
,
1603 sd
->bus
, sd
->target
, sd
->lun
);
1605 case HPSA_LV_ENCRYPTED_NO_KEY
:
1606 dev_info(&h
->pdev
->dev
,
1607 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1608 h
->scsi_host
->host_no
,
1609 sd
->bus
, sd
->target
, sd
->lun
);
1611 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1612 dev_info(&h
->pdev
->dev
,
1613 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1614 h
->scsi_host
->host_no
,
1615 sd
->bus
, sd
->target
, sd
->lun
);
1617 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1618 dev_info(&h
->pdev
->dev
,
1619 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1620 h
->scsi_host
->host_no
,
1621 sd
->bus
, sd
->target
, sd
->lun
);
1623 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1624 dev_info(&h
->pdev
->dev
,
1625 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1626 h
->scsi_host
->host_no
,
1627 sd
->bus
, sd
->target
, sd
->lun
);
1629 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1630 dev_info(&h
->pdev
->dev
,
1631 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1632 h
->scsi_host
->host_no
,
1633 sd
->bus
, sd
->target
, sd
->lun
);
1635 case HPSA_LV_PENDING_ENCRYPTION
:
1636 dev_info(&h
->pdev
->dev
,
1637 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1638 h
->scsi_host
->host_no
,
1639 sd
->bus
, sd
->target
, sd
->lun
);
1641 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1642 dev_info(&h
->pdev
->dev
,
1643 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1644 h
->scsi_host
->host_no
,
1645 sd
->bus
, sd
->target
, sd
->lun
);
1651 * Figure the list of physical drive pointers for a logical drive with
1652 * raid offload configured.
1654 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1655 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1656 struct hpsa_scsi_dev_t
*logical_drive
)
1658 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1659 struct raid_map_disk_data
*dd
= &map
->data
[0];
1661 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1662 le16_to_cpu(map
->metadata_disks_per_row
);
1663 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1664 le16_to_cpu(map
->layout_map_count
) *
1665 total_disks_per_row
;
1666 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1667 total_disks_per_row
;
1670 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1671 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1673 logical_drive
->nphysical_disks
= nraid_map_entries
;
1676 for (i
= 0; i
< nraid_map_entries
; i
++) {
1677 logical_drive
->phys_disk
[i
] = NULL
;
1678 if (!logical_drive
->offload_config
)
1680 for (j
= 0; j
< ndevices
; j
++) {
1683 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1684 dev
[j
]->devtype
!= TYPE_ZBC
)
1686 if (is_logical_device(dev
[j
]))
1688 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1691 logical_drive
->phys_disk
[i
] = dev
[j
];
1693 qdepth
= min(h
->nr_cmds
, qdepth
+
1694 logical_drive
->phys_disk
[i
]->queue_depth
);
1699 * This can happen if a physical drive is removed and
1700 * the logical drive is degraded. In that case, the RAID
1701 * map data will refer to a physical disk which isn't actually
1702 * present. And in that case offload_enabled should already
1703 * be 0, but we'll turn it off here just in case
1705 if (!logical_drive
->phys_disk
[i
]) {
1706 logical_drive
->offload_enabled
= 0;
1707 logical_drive
->offload_to_be_enabled
= 0;
1708 logical_drive
->queue_depth
= 8;
1711 if (nraid_map_entries
)
1713 * This is correct for reads, too high for full stripe writes,
1714 * way too high for partial stripe writes
1716 logical_drive
->queue_depth
= qdepth
;
1718 logical_drive
->queue_depth
= h
->nr_cmds
;
1721 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1722 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1726 for (i
= 0; i
< ndevices
; i
++) {
1729 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1730 dev
[i
]->devtype
!= TYPE_ZBC
)
1732 if (!is_logical_device(dev
[i
]))
1736 * If offload is currently enabled, the RAID map and
1737 * phys_disk[] assignment *better* not be changing
1738 * and since it isn't changing, we do not need to
1741 if (dev
[i
]->offload_enabled
)
1744 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1748 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1755 if (is_logical_device(device
)) /* RAID */
1756 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1757 device
->target
, device
->lun
);
1759 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1764 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1765 struct hpsa_scsi_dev_t
*dev
)
1770 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1771 struct CommandList
*c
= h
->cmd_pool
+ i
;
1772 int refcount
= atomic_inc_return(&c
->refcount
);
1774 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1776 unsigned long flags
;
1778 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1779 if (!hpsa_is_cmd_idle(c
))
1781 spin_unlock_irqrestore(&h
->lock
, flags
);
1790 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1791 struct hpsa_scsi_dev_t
*device
)
1797 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1802 dev_warn(&h
->pdev
->dev
,
1803 "%s: removing device with %d outstanding commands!\n",
1809 static void hpsa_remove_device(struct ctlr_info
*h
,
1810 struct hpsa_scsi_dev_t
*device
)
1812 struct scsi_device
*sdev
= NULL
;
1817 if (is_logical_device(device
)) { /* RAID */
1818 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1819 device
->target
, device
->lun
);
1821 scsi_remove_device(sdev
);
1822 scsi_device_put(sdev
);
1825 * We don't expect to get here. Future commands
1826 * to this device will get a selection timeout as
1827 * if the device were gone.
1829 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1830 "didn't find device for removal.");
1834 device
->removed
= 1;
1835 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1837 hpsa_remove_sas_device(device
);
1841 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1842 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1844 /* sd contains scsi3 addresses and devtypes, and inquiry
1845 * data. This function takes what's in sd to be the current
1846 * reality and updates h->dev[] to reflect that reality.
1848 int i
, entry
, device_change
, changes
= 0;
1849 struct hpsa_scsi_dev_t
*csd
;
1850 unsigned long flags
;
1851 struct hpsa_scsi_dev_t
**added
, **removed
;
1852 int nadded
, nremoved
;
1855 * A reset can cause a device status to change
1856 * re-schedule the scan to see what happened.
1858 if (h
->reset_in_progress
) {
1859 h
->drv_req_rescan
= 1;
1863 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1864 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1866 if (!added
|| !removed
) {
1867 dev_warn(&h
->pdev
->dev
, "out of memory in "
1868 "adjust_hpsa_scsi_table\n");
1872 spin_lock_irqsave(&h
->devlock
, flags
);
1874 /* find any devices in h->dev[] that are not in
1875 * sd[] and remove them from h->dev[], and for any
1876 * devices which have changed, remove the old device
1877 * info and add the new device info.
1878 * If minor device attributes change, just update
1879 * the existing device structure.
1884 while (i
< h
->ndevices
) {
1886 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1887 if (device_change
== DEVICE_NOT_FOUND
) {
1889 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1890 continue; /* remove ^^^, hence i not incremented */
1891 } else if (device_change
== DEVICE_CHANGED
) {
1893 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1894 added
, &nadded
, removed
, &nremoved
);
1895 /* Set it to NULL to prevent it from being freed
1896 * at the bottom of hpsa_update_scsi_devices()
1899 } else if (device_change
== DEVICE_UPDATED
) {
1900 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1905 /* Now, make sure every device listed in sd[] is also
1906 * listed in h->dev[], adding them if they aren't found
1909 for (i
= 0; i
< nsds
; i
++) {
1910 if (!sd
[i
]) /* if already added above. */
1913 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1914 * as the SCSI mid-layer does not handle such devices well.
1915 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1916 * at 160Hz, and prevents the system from coming up.
1918 if (sd
[i
]->volume_offline
) {
1919 hpsa_show_volume_status(h
, sd
[i
]);
1920 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1924 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1925 h
->ndevices
, &entry
);
1926 if (device_change
== DEVICE_NOT_FOUND
) {
1928 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1930 sd
[i
] = NULL
; /* prevent from being freed later. */
1931 } else if (device_change
== DEVICE_CHANGED
) {
1932 /* should never happen... */
1934 dev_warn(&h
->pdev
->dev
,
1935 "device unexpectedly changed.\n");
1936 /* but if it does happen, we just ignore that device */
1939 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1941 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1942 * any logical drives that need it enabled.
1944 for (i
= 0; i
< h
->ndevices
; i
++) {
1945 if (h
->dev
[i
] == NULL
)
1947 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1950 spin_unlock_irqrestore(&h
->devlock
, flags
);
1952 /* Monitor devices which are in one of several NOT READY states to be
1953 * brought online later. This must be done without holding h->devlock,
1954 * so don't touch h->dev[]
1956 for (i
= 0; i
< nsds
; i
++) {
1957 if (!sd
[i
]) /* if already added above. */
1959 if (sd
[i
]->volume_offline
)
1960 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1963 /* Don't notify scsi mid layer of any changes the first time through
1964 * (or if there are no changes) scsi_scan_host will do it later the
1965 * first time through.
1970 /* Notify scsi mid layer of any removed devices */
1971 for (i
= 0; i
< nremoved
; i
++) {
1972 if (removed
[i
] == NULL
)
1974 if (removed
[i
]->expose_device
)
1975 hpsa_remove_device(h
, removed
[i
]);
1980 /* Notify scsi mid layer of any added devices */
1981 for (i
= 0; i
< nadded
; i
++) {
1984 if (added
[i
] == NULL
)
1986 if (!(added
[i
]->expose_device
))
1988 rc
= hpsa_add_device(h
, added
[i
]);
1991 dev_warn(&h
->pdev
->dev
,
1992 "addition failed %d, device not added.", rc
);
1993 /* now we have to remove it from h->dev,
1994 * since it didn't get added to scsi mid layer
1996 fixup_botched_add(h
, added
[i
]);
1997 h
->drv_req_rescan
= 1;
2006 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2007 * Assume's h->devlock is held.
2009 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2010 int bus
, int target
, int lun
)
2013 struct hpsa_scsi_dev_t
*sd
;
2015 for (i
= 0; i
< h
->ndevices
; i
++) {
2017 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2023 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2025 struct hpsa_scsi_dev_t
*sd
= NULL
;
2026 unsigned long flags
;
2027 struct ctlr_info
*h
;
2029 h
= sdev_to_hba(sdev
);
2030 spin_lock_irqsave(&h
->devlock
, flags
);
2031 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2032 struct scsi_target
*starget
;
2033 struct sas_rphy
*rphy
;
2035 starget
= scsi_target(sdev
);
2036 rphy
= target_to_rphy(starget
);
2037 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2039 sd
->target
= sdev_id(sdev
);
2040 sd
->lun
= sdev
->lun
;
2044 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2045 sdev_id(sdev
), sdev
->lun
);
2047 if (sd
&& sd
->expose_device
) {
2048 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2049 sdev
->hostdata
= sd
;
2051 sdev
->hostdata
= NULL
;
2052 spin_unlock_irqrestore(&h
->devlock
, flags
);
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2059 struct hpsa_scsi_dev_t
*sd
;
2062 sd
= sdev
->hostdata
;
2063 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2066 queue_depth
= sd
->queue_depth
!= 0 ?
2067 sd
->queue_depth
: sdev
->host
->can_queue
;
2069 queue_depth
= sdev
->host
->can_queue
;
2071 scsi_change_queue_depth(sdev
, queue_depth
);
2076 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2078 /* nothing to do. */
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2085 if (!h
->ioaccel2_cmd_sg_list
)
2087 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2088 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2089 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2091 kfree(h
->ioaccel2_cmd_sg_list
);
2092 h
->ioaccel2_cmd_sg_list
= NULL
;
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2099 if (h
->chainsize
<= 0)
2102 h
->ioaccel2_cmd_sg_list
=
2103 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2105 if (!h
->ioaccel2_cmd_sg_list
)
2107 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2108 h
->ioaccel2_cmd_sg_list
[i
] =
2109 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2110 h
->maxsgentries
, GFP_KERNEL
);
2111 if (!h
->ioaccel2_cmd_sg_list
[i
])
2117 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2125 if (!h
->cmd_sg_list
)
2127 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2128 kfree(h
->cmd_sg_list
[i
]);
2129 h
->cmd_sg_list
[i
] = NULL
;
2131 kfree(h
->cmd_sg_list
);
2132 h
->cmd_sg_list
= NULL
;
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2139 if (h
->chainsize
<= 0)
2142 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2144 if (!h
->cmd_sg_list
)
2147 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2148 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2149 h
->chainsize
, GFP_KERNEL
);
2150 if (!h
->cmd_sg_list
[i
])
2157 hpsa_free_sg_chain_blocks(h
);
2161 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2162 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2164 struct ioaccel2_sg_element
*chain_block
;
2168 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2169 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2170 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2172 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2173 /* prevent subsequent unmapping */
2174 cp
->sg
->address
= 0;
2177 cp
->sg
->address
= cpu_to_le64(temp64
);
2181 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2182 struct io_accel2_cmd
*cp
)
2184 struct ioaccel2_sg_element
*chain_sg
;
2189 temp64
= le64_to_cpu(chain_sg
->address
);
2190 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2191 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2194 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2195 struct CommandList
*c
)
2197 struct SGDescriptor
*chain_sg
, *chain_block
;
2201 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2202 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2203 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2204 chain_len
= sizeof(*chain_sg
) *
2205 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2206 chain_sg
->Len
= cpu_to_le32(chain_len
);
2207 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2209 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2210 /* prevent subsequent unmapping */
2211 chain_sg
->Addr
= cpu_to_le64(0);
2214 chain_sg
->Addr
= cpu_to_le64(temp64
);
2218 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2219 struct CommandList
*c
)
2221 struct SGDescriptor
*chain_sg
;
2223 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2226 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2227 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2228 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2232 /* Decode the various types of errors on ioaccel2 path.
2233 * Return 1 for any error that should generate a RAID path retry.
2234 * Return 0 for errors that don't require a RAID path retry.
2236 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2237 struct CommandList
*c
,
2238 struct scsi_cmnd
*cmd
,
2239 struct io_accel2_cmd
*c2
,
2240 struct hpsa_scsi_dev_t
*dev
)
2244 u32 ioaccel2_resid
= 0;
2246 switch (c2
->error_data
.serv_response
) {
2247 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2248 switch (c2
->error_data
.status
) {
2249 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2251 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2252 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2253 if (c2
->error_data
.data_present
!=
2254 IOACCEL2_SENSE_DATA_PRESENT
) {
2255 memset(cmd
->sense_buffer
, 0,
2256 SCSI_SENSE_BUFFERSIZE
);
2259 /* copy the sense data */
2260 data_len
= c2
->error_data
.sense_data_len
;
2261 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2262 data_len
= SCSI_SENSE_BUFFERSIZE
;
2263 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2265 sizeof(c2
->error_data
.sense_data_buff
);
2266 memcpy(cmd
->sense_buffer
,
2267 c2
->error_data
.sense_data_buff
, data_len
);
2270 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2273 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2276 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2279 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2287 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2288 switch (c2
->error_data
.status
) {
2289 case IOACCEL2_STATUS_SR_IO_ERROR
:
2290 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2291 case IOACCEL2_STATUS_SR_OVERRUN
:
2294 case IOACCEL2_STATUS_SR_UNDERRUN
:
2295 cmd
->result
= (DID_OK
<< 16); /* host byte */
2296 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2297 ioaccel2_resid
= get_unaligned_le32(
2298 &c2
->error_data
.resid_cnt
[0]);
2299 scsi_set_resid(cmd
, ioaccel2_resid
);
2301 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2302 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2303 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2305 * Did an HBA disk disappear? We will eventually
2306 * get a state change event from the controller but
2307 * in the meantime, we need to tell the OS that the
2308 * HBA disk is no longer there and stop I/O
2309 * from going down. This allows the potential re-insert
2310 * of the disk to get the same device node.
2312 if (dev
->physical_device
&& dev
->expose_device
) {
2313 cmd
->result
= DID_NO_CONNECT
<< 16;
2315 h
->drv_req_rescan
= 1;
2316 dev_warn(&h
->pdev
->dev
,
2317 "%s: device is gone!\n", __func__
);
2320 * Retry by sending down the RAID path.
2321 * We will get an event from ctlr to
2322 * trigger rescan regardless.
2330 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2332 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2334 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2337 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2344 return retry
; /* retry on raid path? */
2347 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2348 struct CommandList
*c
)
2350 bool do_wake
= false;
2353 * Prevent the following race in the abort handler:
2355 * 1. LLD is requested to abort a SCSI command
2356 * 2. The SCSI command completes
2357 * 3. The struct CommandList associated with step 2 is made available
2358 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2359 * 5. Abort handler follows scsi_cmnd->host_scribble and
2360 * finds struct CommandList and tries to aborts it
2361 * Now we have aborted the wrong command.
2363 * Reset c->scsi_cmd here so that the abort or reset handler will know
2364 * this command has completed. Then, check to see if the handler is
2365 * waiting for this command, and, if so, wake it.
2367 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2368 mb(); /* Declare command idle before checking for pending events. */
2369 if (c
->abort_pending
) {
2371 c
->abort_pending
= false;
2373 if (c
->reset_pending
) {
2374 unsigned long flags
;
2375 struct hpsa_scsi_dev_t
*dev
;
2378 * There appears to be a reset pending; lock the lock and
2379 * reconfirm. If so, then decrement the count of outstanding
2380 * commands and wake the reset command if this is the last one.
2382 spin_lock_irqsave(&h
->lock
, flags
);
2383 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2384 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2386 c
->reset_pending
= NULL
;
2387 spin_unlock_irqrestore(&h
->lock
, flags
);
2391 wake_up_all(&h
->event_sync_wait_queue
);
2394 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2395 struct CommandList
*c
)
2397 hpsa_cmd_resolve_events(h
, c
);
2398 cmd_tagged_free(h
, c
);
2401 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2402 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2404 hpsa_cmd_resolve_and_free(h
, c
);
2405 if (cmd
&& cmd
->scsi_done
)
2406 cmd
->scsi_done(cmd
);
2409 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2411 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2412 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2415 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2417 cmd
->result
= DID_ABORT
<< 16;
2420 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2421 struct scsi_cmnd
*cmd
)
2423 hpsa_set_scsi_cmd_aborted(cmd
);
2424 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2425 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2426 hpsa_cmd_resolve_and_free(h
, c
);
2429 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2430 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2431 struct hpsa_scsi_dev_t
*dev
)
2433 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2435 /* check for good status */
2436 if (likely(c2
->error_data
.serv_response
== 0 &&
2437 c2
->error_data
.status
== 0))
2438 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2441 * Any RAID offload error results in retry which will use
2442 * the normal I/O path so the controller can handle whatever's
2445 if (is_logical_device(dev
) &&
2446 c2
->error_data
.serv_response
==
2447 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2448 if (c2
->error_data
.status
==
2449 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2450 dev
->offload_enabled
= 0;
2451 dev
->offload_to_be_enabled
= 0;
2454 return hpsa_retry_cmd(h
, c
);
2457 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2458 return hpsa_retry_cmd(h
, c
);
2460 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2463 /* Returns 0 on success, < 0 otherwise. */
2464 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2465 struct CommandList
*cp
)
2467 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2469 switch (tmf_status
) {
2470 case CISS_TMF_COMPLETE
:
2472 * CISS_TMF_COMPLETE never happens, instead,
2473 * ei->CommandStatus == 0 for this case.
2475 case CISS_TMF_SUCCESS
:
2477 case CISS_TMF_INVALID_FRAME
:
2478 case CISS_TMF_NOT_SUPPORTED
:
2479 case CISS_TMF_FAILED
:
2480 case CISS_TMF_WRONG_LUN
:
2481 case CISS_TMF_OVERLAPPED_TAG
:
2484 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2491 static void complete_scsi_command(struct CommandList
*cp
)
2493 struct scsi_cmnd
*cmd
;
2494 struct ctlr_info
*h
;
2495 struct ErrorInfo
*ei
;
2496 struct hpsa_scsi_dev_t
*dev
;
2497 struct io_accel2_cmd
*c2
;
2500 u8 asc
; /* additional sense code */
2501 u8 ascq
; /* additional sense code qualifier */
2502 unsigned long sense_data_size
;
2509 cmd
->result
= DID_NO_CONNECT
<< 16;
2510 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2513 dev
= cmd
->device
->hostdata
;
2515 cmd
->result
= DID_NO_CONNECT
<< 16;
2516 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2518 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2520 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2521 if ((cp
->cmd_type
== CMD_SCSI
) &&
2522 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2523 hpsa_unmap_sg_chain_block(h
, cp
);
2525 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2526 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2527 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2529 cmd
->result
= (DID_OK
<< 16); /* host byte */
2530 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2532 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2533 if (dev
->physical_device
&& dev
->expose_device
&&
2535 cmd
->result
= DID_NO_CONNECT
<< 16;
2536 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2538 if (likely(cp
->phys_disk
!= NULL
))
2539 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2543 * We check for lockup status here as it may be set for
2544 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2545 * fail_all_oustanding_cmds()
2547 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2548 /* DID_NO_CONNECT will prevent a retry */
2549 cmd
->result
= DID_NO_CONNECT
<< 16;
2550 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2553 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2554 if (cp
->reset_pending
)
2555 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2556 if (cp
->abort_pending
)
2557 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2560 if (cp
->cmd_type
== CMD_IOACCEL2
)
2561 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2563 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2564 if (ei
->CommandStatus
== 0)
2565 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2567 /* For I/O accelerator commands, copy over some fields to the normal
2568 * CISS header used below for error handling.
2570 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2571 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2572 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2573 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2574 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2575 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2576 cp
->Header
.tag
= c
->tag
;
2577 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2578 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2580 /* Any RAID offload error results in retry which will use
2581 * the normal I/O path so the controller can handle whatever's
2584 if (is_logical_device(dev
)) {
2585 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2586 dev
->offload_enabled
= 0;
2587 return hpsa_retry_cmd(h
, cp
);
2591 /* an error has occurred */
2592 switch (ei
->CommandStatus
) {
2594 case CMD_TARGET_STATUS
:
2595 cmd
->result
|= ei
->ScsiStatus
;
2596 /* copy the sense data */
2597 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2598 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2600 sense_data_size
= sizeof(ei
->SenseInfo
);
2601 if (ei
->SenseLen
< sense_data_size
)
2602 sense_data_size
= ei
->SenseLen
;
2603 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2605 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2606 &sense_key
, &asc
, &ascq
);
2607 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2608 if (sense_key
== ABORTED_COMMAND
) {
2609 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2614 /* Problem was not a check condition
2615 * Pass it up to the upper layers...
2617 if (ei
->ScsiStatus
) {
2618 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2619 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2620 "Returning result: 0x%x\n",
2622 sense_key
, asc
, ascq
,
2624 } else { /* scsi status is zero??? How??? */
2625 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2626 "Returning no connection.\n", cp
),
2628 /* Ordinarily, this case should never happen,
2629 * but there is a bug in some released firmware
2630 * revisions that allows it to happen if, for
2631 * example, a 4100 backplane loses power and
2632 * the tape drive is in it. We assume that
2633 * it's a fatal error of some kind because we
2634 * can't show that it wasn't. We will make it
2635 * look like selection timeout since that is
2636 * the most common reason for this to occur,
2637 * and it's severe enough.
2640 cmd
->result
= DID_NO_CONNECT
<< 16;
2644 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2646 case CMD_DATA_OVERRUN
:
2647 dev_warn(&h
->pdev
->dev
,
2648 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2651 /* print_bytes(cp, sizeof(*cp), 1, 0);
2653 /* We get CMD_INVALID if you address a non-existent device
2654 * instead of a selection timeout (no response). You will
2655 * see this if you yank out a drive, then try to access it.
2656 * This is kind of a shame because it means that any other
2657 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2658 * missing target. */
2659 cmd
->result
= DID_NO_CONNECT
<< 16;
2662 case CMD_PROTOCOL_ERR
:
2663 cmd
->result
= DID_ERROR
<< 16;
2664 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2667 case CMD_HARDWARE_ERR
:
2668 cmd
->result
= DID_ERROR
<< 16;
2669 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2672 case CMD_CONNECTION_LOST
:
2673 cmd
->result
= DID_ERROR
<< 16;
2674 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2678 /* Return now to avoid calling scsi_done(). */
2679 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2680 case CMD_ABORT_FAILED
:
2681 cmd
->result
= DID_ERROR
<< 16;
2682 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2685 case CMD_UNSOLICITED_ABORT
:
2686 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2687 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2691 cmd
->result
= DID_TIME_OUT
<< 16;
2692 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2695 case CMD_UNABORTABLE
:
2696 cmd
->result
= DID_ERROR
<< 16;
2697 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2699 case CMD_TMF_STATUS
:
2700 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2701 cmd
->result
= DID_ERROR
<< 16;
2703 case CMD_IOACCEL_DISABLED
:
2704 /* This only handles the direct pass-through case since RAID
2705 * offload is handled above. Just attempt a retry.
2707 cmd
->result
= DID_SOFT_ERROR
<< 16;
2708 dev_warn(&h
->pdev
->dev
,
2709 "cp %p had HP SSD Smart Path error\n", cp
);
2712 cmd
->result
= DID_ERROR
<< 16;
2713 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2714 cp
, ei
->CommandStatus
);
2717 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2720 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2721 struct CommandList
*c
, int sg_used
, int data_direction
)
2725 for (i
= 0; i
< sg_used
; i
++)
2726 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2727 le32_to_cpu(c
->SG
[i
].Len
),
2731 static int hpsa_map_one(struct pci_dev
*pdev
,
2732 struct CommandList
*cp
,
2739 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2740 cp
->Header
.SGList
= 0;
2741 cp
->Header
.SGTotal
= cpu_to_le16(0);
2745 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2746 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2747 /* Prevent subsequent unmap of something never mapped */
2748 cp
->Header
.SGList
= 0;
2749 cp
->Header
.SGTotal
= cpu_to_le16(0);
2752 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2753 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2754 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2755 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2756 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2760 #define NO_TIMEOUT ((unsigned long) -1)
2761 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2762 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2763 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2765 DECLARE_COMPLETION_ONSTACK(wait
);
2768 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2769 if (timeout_msecs
== NO_TIMEOUT
) {
2770 /* TODO: get rid of this no-timeout thing */
2771 wait_for_completion_io(&wait
);
2774 if (!wait_for_completion_io_timeout(&wait
,
2775 msecs_to_jiffies(timeout_msecs
))) {
2776 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2782 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2783 int reply_queue
, unsigned long timeout_msecs
)
2785 if (unlikely(lockup_detected(h
))) {
2786 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2789 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2792 static u32
lockup_detected(struct ctlr_info
*h
)
2795 u32 rc
, *lockup_detected
;
2798 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2799 rc
= *lockup_detected
;
2804 #define MAX_DRIVER_CMD_RETRIES 25
2805 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2806 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2808 int backoff_time
= 10, retry_count
= 0;
2812 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2813 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2818 if (retry_count
> 3) {
2819 msleep(backoff_time
);
2820 if (backoff_time
< 1000)
2823 } while ((check_for_unit_attention(h
, c
) ||
2824 check_for_busy(h
, c
)) &&
2825 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2826 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2827 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2832 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2833 struct CommandList
*c
)
2835 const u8
*cdb
= c
->Request
.CDB
;
2836 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2838 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2842 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2843 struct CommandList
*cp
)
2845 const struct ErrorInfo
*ei
= cp
->err_info
;
2846 struct device
*d
= &cp
->h
->pdev
->dev
;
2847 u8 sense_key
, asc
, ascq
;
2850 switch (ei
->CommandStatus
) {
2851 case CMD_TARGET_STATUS
:
2852 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2853 sense_len
= sizeof(ei
->SenseInfo
);
2855 sense_len
= ei
->SenseLen
;
2856 decode_sense_data(ei
->SenseInfo
, sense_len
,
2857 &sense_key
, &asc
, &ascq
);
2858 hpsa_print_cmd(h
, "SCSI status", cp
);
2859 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2860 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2861 sense_key
, asc
, ascq
);
2863 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2864 if (ei
->ScsiStatus
== 0)
2865 dev_warn(d
, "SCSI status is abnormally zero. "
2866 "(probably indicates selection timeout "
2867 "reported incorrectly due to a known "
2868 "firmware bug, circa July, 2001.)\n");
2870 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2872 case CMD_DATA_OVERRUN
:
2873 hpsa_print_cmd(h
, "overrun condition", cp
);
2876 /* controller unfortunately reports SCSI passthru's
2877 * to non-existent targets as invalid commands.
2879 hpsa_print_cmd(h
, "invalid command", cp
);
2880 dev_warn(d
, "probably means device no longer present\n");
2883 case CMD_PROTOCOL_ERR
:
2884 hpsa_print_cmd(h
, "protocol error", cp
);
2886 case CMD_HARDWARE_ERR
:
2887 hpsa_print_cmd(h
, "hardware error", cp
);
2889 case CMD_CONNECTION_LOST
:
2890 hpsa_print_cmd(h
, "connection lost", cp
);
2893 hpsa_print_cmd(h
, "aborted", cp
);
2895 case CMD_ABORT_FAILED
:
2896 hpsa_print_cmd(h
, "abort failed", cp
);
2898 case CMD_UNSOLICITED_ABORT
:
2899 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2902 hpsa_print_cmd(h
, "timed out", cp
);
2904 case CMD_UNABORTABLE
:
2905 hpsa_print_cmd(h
, "unabortable", cp
);
2907 case CMD_CTLR_LOCKUP
:
2908 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2911 hpsa_print_cmd(h
, "unknown status", cp
);
2912 dev_warn(d
, "Unknown command status %x\n",
2917 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2918 u16 page
, unsigned char *buf
,
2919 unsigned char bufsize
)
2922 struct CommandList
*c
;
2923 struct ErrorInfo
*ei
;
2927 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2928 page
, scsi3addr
, TYPE_CMD
)) {
2932 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2933 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2937 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2938 hpsa_scsi_interpret_error(h
, c
);
2946 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2947 u8 reset_type
, int reply_queue
)
2950 struct CommandList
*c
;
2951 struct ErrorInfo
*ei
;
2956 /* fill_cmd can't fail here, no data buffer to map. */
2957 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2958 scsi3addr
, TYPE_MSG
);
2959 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2961 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2964 /* no unmap needed here because no data xfer. */
2967 if (ei
->CommandStatus
!= 0) {
2968 hpsa_scsi_interpret_error(h
, c
);
2976 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2977 struct hpsa_scsi_dev_t
*dev
,
2978 unsigned char *scsi3addr
)
2982 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2983 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2985 if (hpsa_is_cmd_idle(c
))
2988 switch (c
->cmd_type
) {
2990 case CMD_IOCTL_PEND
:
2991 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2992 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2997 if (c
->phys_disk
== dev
) {
2998 /* HBA mode match */
3001 /* Possible RAID mode -- check each phys dev. */
3002 /* FIXME: Do we need to take out a lock here? If
3003 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3005 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3006 /* FIXME: an alternate test might be
3008 * match = dev->phys_disk[i]->ioaccel_handle
3009 * == c2->scsi_nexus; */
3010 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3016 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3017 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3018 le32_to_cpu(ac
->it_nexus
);
3022 case 0: /* The command is in the middle of being initialized. */
3027 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3035 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3036 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3041 /* We can really only handle one reset at a time */
3042 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3043 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3047 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3049 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3050 struct CommandList
*c
= h
->cmd_pool
+ i
;
3051 int refcount
= atomic_inc_return(&c
->refcount
);
3053 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3054 unsigned long flags
;
3057 * Mark the target command as having a reset pending,
3058 * then lock a lock so that the command cannot complete
3059 * while we're considering it. If the command is not
3060 * idle then count it; otherwise revoke the event.
3062 c
->reset_pending
= dev
;
3063 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3064 if (!hpsa_is_cmd_idle(c
))
3065 atomic_inc(&dev
->reset_cmds_out
);
3067 c
->reset_pending
= NULL
;
3068 spin_unlock_irqrestore(&h
->lock
, flags
);
3074 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3076 wait_event(h
->event_sync_wait_queue
,
3077 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3078 lockup_detected(h
));
3080 if (unlikely(lockup_detected(h
))) {
3081 dev_warn(&h
->pdev
->dev
,
3082 "Controller lockup detected during reset wait\n");
3087 atomic_set(&dev
->reset_cmds_out
, 0);
3089 wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3091 mutex_unlock(&h
->reset_mutex
);
3095 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3096 unsigned char *scsi3addr
, unsigned char *raid_level
)
3101 *raid_level
= RAID_UNKNOWN
;
3102 buf
= kzalloc(64, GFP_KERNEL
);
3106 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3107 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3110 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3111 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3114 *raid_level
= buf
[8];
3115 if (*raid_level
> RAID_UNKNOWN
)
3116 *raid_level
= RAID_UNKNOWN
;
3122 #define HPSA_MAP_DEBUG
3123 #ifdef HPSA_MAP_DEBUG
3124 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3125 struct raid_map_data
*map_buff
)
3127 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3129 u16 map_cnt
, row_cnt
, disks_per_row
;
3134 /* Show details only if debugging has been activated. */
3135 if (h
->raid_offload_debug
< 2)
3138 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3139 le32_to_cpu(map_buff
->structure_size
));
3140 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3141 le32_to_cpu(map_buff
->volume_blk_size
));
3142 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3143 le64_to_cpu(map_buff
->volume_blk_cnt
));
3144 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3145 map_buff
->phys_blk_shift
);
3146 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3147 map_buff
->parity_rotation_shift
);
3148 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3149 le16_to_cpu(map_buff
->strip_size
));
3150 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3151 le64_to_cpu(map_buff
->disk_starting_blk
));
3152 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3153 le64_to_cpu(map_buff
->disk_blk_cnt
));
3154 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3155 le16_to_cpu(map_buff
->data_disks_per_row
));
3156 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3157 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3158 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3159 le16_to_cpu(map_buff
->row_cnt
));
3160 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3161 le16_to_cpu(map_buff
->layout_map_count
));
3162 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3163 le16_to_cpu(map_buff
->flags
));
3164 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3165 le16_to_cpu(map_buff
->flags
) &
3166 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3167 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3168 le16_to_cpu(map_buff
->dekindex
));
3169 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3170 for (map
= 0; map
< map_cnt
; map
++) {
3171 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3172 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3173 for (row
= 0; row
< row_cnt
; row
++) {
3174 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3176 le16_to_cpu(map_buff
->data_disks_per_row
);
3177 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3178 dev_info(&h
->pdev
->dev
,
3179 " D%02u: h=0x%04x xor=%u,%u\n",
3180 col
, dd
->ioaccel_handle
,
3181 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3183 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3184 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3185 dev_info(&h
->pdev
->dev
,
3186 " M%02u: h=0x%04x xor=%u,%u\n",
3187 col
, dd
->ioaccel_handle
,
3188 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3193 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3194 __attribute__((unused
)) int rc
,
3195 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3200 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3201 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3204 struct CommandList
*c
;
3205 struct ErrorInfo
*ei
;
3209 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3210 sizeof(this_device
->raid_map
), 0,
3211 scsi3addr
, TYPE_CMD
)) {
3212 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3216 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3217 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3221 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3222 hpsa_scsi_interpret_error(h
, c
);
3228 /* @todo in the future, dynamically allocate RAID map memory */
3229 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3230 sizeof(this_device
->raid_map
)) {
3231 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3234 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3241 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3242 unsigned char scsi3addr
[], u16 bmic_device_index
,
3243 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3246 struct CommandList
*c
;
3247 struct ErrorInfo
*ei
;
3251 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3252 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3256 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3257 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3259 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3260 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3264 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3265 hpsa_scsi_interpret_error(h
, c
);
3273 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3274 struct bmic_identify_controller
*buf
, size_t bufsize
)
3277 struct CommandList
*c
;
3278 struct ErrorInfo
*ei
;
3282 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3283 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3287 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3288 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3292 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3293 hpsa_scsi_interpret_error(h
, c
);
3301 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3302 unsigned char scsi3addr
[], u16 bmic_device_index
,
3303 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3306 struct CommandList
*c
;
3307 struct ErrorInfo
*ei
;
3310 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3311 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3315 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3316 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3318 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3321 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3322 hpsa_scsi_interpret_error(h
, c
);
3332 * get enclosure information
3333 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3334 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3335 * Uses id_physical_device to determine the box_index.
3337 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3338 unsigned char *scsi3addr
,
3339 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3340 struct hpsa_scsi_dev_t
*encl_dev
)
3343 struct CommandList
*c
= NULL
;
3344 struct ErrorInfo
*ei
= NULL
;
3345 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3346 struct bmic_identify_physical_device
*id_phys
= NULL
;
3347 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3348 u16 bmic_device_index
= 0;
3350 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3352 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3357 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3361 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3365 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3366 id_phys
, sizeof(*id_phys
));
3368 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3369 __func__
, encl_dev
->external
, bmic_device_index
);
3375 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3376 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3381 if (id_phys
->phys_connector
[1] == 'E')
3382 c
->Request
.CDB
[5] = id_phys
->box_index
;
3384 c
->Request
.CDB
[5] = 0;
3386 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3392 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3397 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3398 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3399 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3410 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3411 "Error, could not get enclosure information\n");
3414 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3415 unsigned char *scsi3addr
)
3417 struct ReportExtendedLUNdata
*physdev
;
3422 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3426 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3427 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3431 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3433 for (i
= 0; i
< nphysicals
; i
++)
3434 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3435 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3444 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3445 struct hpsa_scsi_dev_t
*dev
)
3450 if (is_hba_lunid(scsi3addr
)) {
3451 struct bmic_sense_subsystem_info
*ssi
;
3453 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3457 rc
= hpsa_bmic_sense_subsystem_information(h
,
3458 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3460 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3461 h
->sas_address
= sa
;
3466 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3468 dev
->sas_address
= sa
;
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3473 unsigned char scsi3addr
[], u8 page
)
3478 unsigned char *buf
, bufsize
;
3480 buf
= kzalloc(256, GFP_KERNEL
);
3484 /* Get the size of the page list first */
3485 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3486 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3487 buf
, HPSA_VPD_HEADER_SZ
);
3489 goto exit_unsupported
;
3491 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3492 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3496 /* Get the whole VPD page list */
3497 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3498 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3501 goto exit_unsupported
;
3504 for (i
= 1; i
<= pages
; i
++)
3505 if (buf
[3 + i
] == page
)
3506 goto exit_supported
;
3515 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3516 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3522 this_device
->offload_config
= 0;
3523 this_device
->offload_enabled
= 0;
3524 this_device
->offload_to_be_enabled
= 0;
3526 buf
= kzalloc(64, GFP_KERNEL
);
3529 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3531 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3532 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3540 this_device
->offload_config
=
3541 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3542 if (this_device
->offload_config
) {
3543 this_device
->offload_enabled
=
3544 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3545 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3546 this_device
->offload_enabled
= 0;
3548 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3556 unsigned char *device_id
, int index
, int buflen
)
3561 /* Does controller have VPD for device id? */
3562 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3563 return 1; /* not supported */
3565 buf
= kzalloc(64, GFP_KERNEL
);
3569 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3570 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3574 memcpy(device_id
, &buf
[8], buflen
);
3579 return rc
; /*0 - got id, otherwise, didn't */
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3583 void *buf
, int bufsize
,
3584 int extended_response
)
3587 struct CommandList
*c
;
3588 unsigned char scsi3addr
[8];
3589 struct ErrorInfo
*ei
;
3593 /* address the controller */
3594 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3595 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3596 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3600 if (extended_response
)
3601 c
->Request
.CDB
[1] = extended_response
;
3602 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3603 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3607 if (ei
->CommandStatus
!= 0 &&
3608 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3609 hpsa_scsi_interpret_error(h
, c
);
3612 struct ReportLUNdata
*rld
= buf
;
3614 if (rld
->extended_response_flag
!= extended_response
) {
3615 dev_err(&h
->pdev
->dev
,
3616 "report luns requested format %u, got %u\n",
3618 rld
->extended_response_flag
);
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3628 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3631 struct ReportLUNdata
*lbuf
;
3633 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3634 HPSA_REPORT_PHYS_EXTENDED
);
3635 if (!rc
|| !hpsa_allow_any
)
3638 /* REPORT PHYS EXTENDED is not supported */
3639 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3643 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3648 /* Copy ReportLUNdata header */
3649 memcpy(buf
, lbuf
, 8);
3650 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3651 for (i
= 0; i
< nphys
; i
++)
3652 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3658 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3659 struct ReportLUNdata
*buf
, int bufsize
)
3661 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3664 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3665 int bus
, int target
, int lun
)
3668 device
->target
= target
;
3672 /* Use VPD inquiry to get details of volume status */
3673 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3674 unsigned char scsi3addr
[])
3681 buf
= kzalloc(64, GFP_KERNEL
);
3683 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3685 /* Does controller have VPD for logical volume status? */
3686 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3689 /* Get the size of the VPD return buffer */
3690 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3691 buf
, HPSA_VPD_HEADER_SZ
);
3696 /* Now get the whole VPD buffer */
3697 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3698 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3701 status
= buf
[4]; /* status byte */
3707 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3710 /* Determine offline status of a volume.
3713 * 0xff (offline for unknown reasons)
3714 * # (integer code indicating one of several NOT READY states
3715 * describing why a volume is to be kept offline)
3717 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3718 unsigned char scsi3addr
[])
3720 struct CommandList
*c
;
3721 unsigned char *sense
;
3722 u8 sense_key
, asc
, ascq
;
3727 #define ASC_LUN_NOT_READY 0x04
3728 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3733 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3734 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3738 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3740 sense
= c
->err_info
->SenseInfo
;
3741 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3742 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3744 sense_len
= c
->err_info
->SenseLen
;
3745 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3746 cmd_status
= c
->err_info
->CommandStatus
;
3747 scsi_status
= c
->err_info
->ScsiStatus
;
3750 /* Determine the reason for not ready state */
3751 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3753 /* Keep volume offline in certain cases: */
3755 case HPSA_LV_FAILED
:
3756 case HPSA_LV_UNDERGOING_ERASE
:
3757 case HPSA_LV_NOT_AVAILABLE
:
3758 case HPSA_LV_UNDERGOING_RPI
:
3759 case HPSA_LV_PENDING_RPI
:
3760 case HPSA_LV_ENCRYPTED_NO_KEY
:
3761 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3762 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3763 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3764 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3766 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3767 /* If VPD status page isn't available,
3768 * use ASC/ASCQ to determine state
3770 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3771 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3781 * Find out if a logical device supports aborts by simply trying one.
3782 * Smart Array may claim not to support aborts on logical drives, but
3783 * if a MSA2000 * is connected, the drives on that will be presented
3784 * by the Smart Array as logical drives, and aborts may be sent to
3785 * those devices successfully. So the simplest way to find out is
3786 * to simply try an abort and see how the device responds.
3788 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3789 unsigned char *scsi3addr
)
3791 struct CommandList
*c
;
3792 struct ErrorInfo
*ei
;
3795 u64 tag
= (u64
) -1; /* bogus tag */
3797 /* Assume that physical devices support aborts */
3798 if (!is_logical_dev_addr_mode(scsi3addr
))
3803 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3804 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3806 /* no unmap needed here because no data xfer. */
3808 switch (ei
->CommandStatus
) {
3812 case CMD_UNABORTABLE
:
3813 case CMD_ABORT_FAILED
:
3816 case CMD_TMF_STATUS
:
3817 rc
= hpsa_evaluate_tmf_status(h
, c
);
3827 static int hpsa_update_device_info(struct ctlr_info
*h
,
3828 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3829 unsigned char *is_OBDR_device
)
3832 #define OBDR_SIG_OFFSET 43
3833 #define OBDR_TAPE_SIG "$DR-10"
3834 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3835 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3837 unsigned char *inq_buff
;
3838 unsigned char *obdr_sig
;
3841 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3847 /* Do an inquiry to the device to see what it is. */
3848 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3849 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3850 dev_err(&h
->pdev
->dev
,
3851 "%s: inquiry failed, device will be skipped.\n",
3853 rc
= HPSA_INQUIRY_FAILED
;
3857 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3858 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3860 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3861 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3862 memcpy(this_device
->vendor
, &inq_buff
[8],
3863 sizeof(this_device
->vendor
));
3864 memcpy(this_device
->model
, &inq_buff
[16],
3865 sizeof(this_device
->model
));
3866 this_device
->rev
= inq_buff
[2];
3867 memset(this_device
->device_id
, 0,
3868 sizeof(this_device
->device_id
));
3869 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3870 sizeof(this_device
->device_id
)))
3871 dev_err(&h
->pdev
->dev
,
3872 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3874 h
->scsi_host
->host_no
,
3875 this_device
->target
, this_device
->lun
,
3876 scsi_device_type(this_device
->devtype
),
3877 this_device
->model
);
3879 if ((this_device
->devtype
== TYPE_DISK
||
3880 this_device
->devtype
== TYPE_ZBC
) &&
3881 is_logical_dev_addr_mode(scsi3addr
)) {
3882 unsigned char volume_offline
;
3884 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3885 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3886 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3887 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3888 if (volume_offline
== HPSA_LV_FAILED
) {
3889 rc
= HPSA_LV_FAILED
;
3890 dev_err(&h
->pdev
->dev
,
3891 "%s: LV failed, device will be skipped.\n",
3896 this_device
->raid_level
= RAID_UNKNOWN
;
3897 this_device
->offload_config
= 0;
3898 this_device
->offload_enabled
= 0;
3899 this_device
->offload_to_be_enabled
= 0;
3900 this_device
->hba_ioaccel_enabled
= 0;
3901 this_device
->volume_offline
= 0;
3902 this_device
->queue_depth
= h
->nr_cmds
;
3905 if (is_OBDR_device
) {
3906 /* See if this is a One-Button-Disaster-Recovery device
3907 * by looking for "$DR-10" at offset 43 in inquiry data.
3909 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3910 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3911 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3912 OBDR_SIG_LEN
) == 0);
3922 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3923 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3925 unsigned long flags
;
3928 * See if this device supports aborts. If we already know
3929 * the device, we already know if it supports aborts, otherwise
3930 * we have to find out if it supports aborts by trying one.
3932 spin_lock_irqsave(&h
->devlock
, flags
);
3933 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3934 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3935 entry
>= 0 && entry
< h
->ndevices
) {
3936 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3937 spin_unlock_irqrestore(&h
->devlock
, flags
);
3939 spin_unlock_irqrestore(&h
->devlock
, flags
);
3940 dev
->supports_aborts
=
3941 hpsa_device_supports_aborts(h
, scsi3addr
);
3942 if (dev
->supports_aborts
< 0)
3943 dev
->supports_aborts
= 0;
3948 * Helper function to assign bus, target, lun mapping of devices.
3949 * Logical drive target and lun are assigned at this time, but
3950 * physical device lun and target assignment are deferred (assigned
3951 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3953 static void figure_bus_target_lun(struct ctlr_info
*h
,
3954 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3956 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3958 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3959 /* physical device, target and lun filled in later */
3960 if (is_hba_lunid(lunaddrbytes
)) {
3961 int bus
= HPSA_HBA_BUS
;
3964 bus
= HPSA_LEGACY_HBA_BUS
;
3965 hpsa_set_bus_target_lun(device
,
3966 bus
, 0, lunid
& 0x3fff);
3968 /* defer target, lun assignment for physical devices */
3969 hpsa_set_bus_target_lun(device
,
3970 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3973 /* It's a logical device */
3974 if (device
->external
) {
3975 hpsa_set_bus_target_lun(device
,
3976 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3980 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3986 * Get address of physical disk used for an ioaccel2 mode command:
3987 * 1. Extract ioaccel2 handle from the command.
3988 * 2. Find a matching ioaccel2 handle from list of physical disks.
3990 * 1 and set scsi3addr to address of matching physical
3991 * 0 if no matching physical disk was found.
3993 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3994 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3996 struct io_accel2_cmd
*c2
=
3997 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3998 unsigned long flags
;
4001 spin_lock_irqsave(&h
->devlock
, flags
);
4002 for (i
= 0; i
< h
->ndevices
; i
++)
4003 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
4004 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
4005 sizeof(h
->dev
[i
]->scsi3addr
));
4006 spin_unlock_irqrestore(&h
->devlock
, flags
);
4009 spin_unlock_irqrestore(&h
->devlock
, flags
);
4013 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4014 int i
, int nphysicals
, int nlocal_logicals
)
4016 /* In report logicals, local logicals are listed first,
4017 * then any externals.
4019 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4021 if (i
== raid_ctlr_position
)
4024 if (i
< logicals_start
)
4027 /* i is in logicals range, but still within local logicals */
4028 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4031 return 1; /* it's an external lun */
4035 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4036 * logdev. The number of luns in physdev and logdev are returned in
4037 * *nphysicals and *nlogicals, respectively.
4038 * Returns 0 on success, -1 otherwise.
4040 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4041 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4042 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4044 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4045 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4048 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4049 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4050 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4051 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4052 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4054 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4055 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4058 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4059 /* Reject Logicals in excess of our max capability. */
4060 if (*nlogicals
> HPSA_MAX_LUN
) {
4061 dev_warn(&h
->pdev
->dev
,
4062 "maximum logical LUNs (%d) exceeded. "
4063 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4064 *nlogicals
- HPSA_MAX_LUN
);
4065 *nlogicals
= HPSA_MAX_LUN
;
4067 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4068 dev_warn(&h
->pdev
->dev
,
4069 "maximum logical + physical LUNs (%d) exceeded. "
4070 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4071 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4072 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4077 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4078 int i
, int nphysicals
, int nlogicals
,
4079 struct ReportExtendedLUNdata
*physdev_list
,
4080 struct ReportLUNdata
*logdev_list
)
4082 /* Helper function, figure out where the LUN ID info is coming from
4083 * given index i, lists of physical and logical devices, where in
4084 * the list the raid controller is supposed to appear (first or last)
4087 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4088 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4090 if (i
== raid_ctlr_position
)
4091 return RAID_CTLR_LUNID
;
4093 if (i
< logicals_start
)
4094 return &physdev_list
->LUN
[i
-
4095 (raid_ctlr_position
== 0)].lunid
[0];
4097 if (i
< last_device
)
4098 return &logdev_list
->LUN
[i
- nphysicals
-
4099 (raid_ctlr_position
== 0)][0];
4104 /* get physical drive ioaccel handle and queue depth */
4105 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4106 struct hpsa_scsi_dev_t
*dev
,
4107 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4108 struct bmic_identify_physical_device
*id_phys
)
4111 struct ext_report_lun_entry
*rle
;
4114 * external targets don't support BMIC
4116 if (dev
->external
) {
4117 dev
->queue_depth
= 7;
4121 rle
= &rlep
->LUN
[rle_index
];
4123 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4124 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4125 dev
->hba_ioaccel_enabled
= 1;
4126 memset(id_phys
, 0, sizeof(*id_phys
));
4127 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4128 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4131 /* Reserve space for FW operations */
4132 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4133 #define DRIVE_QUEUE_DEPTH 7
4135 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4136 DRIVE_CMDS_RESERVED_FOR_FW
;
4138 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4141 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4142 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4143 struct bmic_identify_physical_device
*id_phys
)
4145 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4147 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4148 this_device
->hba_ioaccel_enabled
= 1;
4150 memcpy(&this_device
->active_path_index
,
4151 &id_phys
->active_path_number
,
4152 sizeof(this_device
->active_path_index
));
4153 memcpy(&this_device
->path_map
,
4154 &id_phys
->redundant_path_present_map
,
4155 sizeof(this_device
->path_map
));
4156 memcpy(&this_device
->box
,
4157 &id_phys
->alternate_paths_phys_box_on_port
,
4158 sizeof(this_device
->box
));
4159 memcpy(&this_device
->phys_connector
,
4160 &id_phys
->alternate_paths_phys_connector
,
4161 sizeof(this_device
->phys_connector
));
4162 memcpy(&this_device
->bay
,
4163 &id_phys
->phys_bay_in_box
,
4164 sizeof(this_device
->bay
));
4167 /* get number of local logical disks. */
4168 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4169 struct bmic_identify_controller
*id_ctlr
,
4175 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4179 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4180 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4182 if (id_ctlr
->configured_logical_drive_count
< 256)
4183 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4185 *nlocals
= le16_to_cpu(
4186 id_ctlr
->extended_logical_unit_count
);
4192 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4194 struct bmic_identify_physical_device
*id_phys
;
4195 bool is_spare
= false;
4198 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4202 rc
= hpsa_bmic_id_physical_device(h
,
4204 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4205 id_phys
, sizeof(*id_phys
));
4207 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4213 #define RPL_DEV_FLAG_NON_DISK 0x1
4214 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4215 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4217 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4219 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4220 struct ext_report_lun_entry
*rle
)
4225 if (!MASKED_DEVICE(lunaddrbytes
))
4228 device_flags
= rle
->device_flags
;
4229 device_type
= rle
->device_type
;
4231 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4232 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4237 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4240 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4244 * Spares may be spun down, we do not want to
4245 * do an Inquiry to a RAID set spare drive as
4246 * that would have them spun up, that is a
4247 * performance hit because I/O to the RAID device
4248 * stops while the spin up occurs which can take
4251 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4257 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4259 /* the idea here is we could get notified
4260 * that some devices have changed, so we do a report
4261 * physical luns and report logical luns cmd, and adjust
4262 * our list of devices accordingly.
4264 * The scsi3addr's of devices won't change so long as the
4265 * adapter is not reset. That means we can rescan and
4266 * tell which devices we already know about, vs. new
4267 * devices, vs. disappearing devices.
4269 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4270 struct ReportLUNdata
*logdev_list
= NULL
;
4271 struct bmic_identify_physical_device
*id_phys
= NULL
;
4272 struct bmic_identify_controller
*id_ctlr
= NULL
;
4275 u32 nlocal_logicals
= 0;
4276 u32 ndev_allocated
= 0;
4277 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4279 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4280 int raid_ctlr_position
;
4281 bool physical_device
;
4282 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4284 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4285 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4286 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4287 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4288 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4289 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4291 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4292 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4293 dev_err(&h
->pdev
->dev
, "out of memory\n");
4296 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4298 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4300 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4301 logdev_list
, &nlogicals
)) {
4302 h
->drv_req_rescan
= 1;
4306 /* Set number of local logicals (non PTRAID) */
4307 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4308 dev_warn(&h
->pdev
->dev
,
4309 "%s: Can't determine number of local logical devices.\n",
4313 /* We might see up to the maximum number of logical and physical disks
4314 * plus external target devices, and a device for the local RAID
4317 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4319 /* Allocate the per device structures */
4320 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4321 if (i
>= HPSA_MAX_DEVICES
) {
4322 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4323 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4324 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4328 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4329 if (!currentsd
[i
]) {
4330 h
->drv_req_rescan
= 1;
4336 if (is_scsi_rev_5(h
))
4337 raid_ctlr_position
= 0;
4339 raid_ctlr_position
= nphysicals
+ nlogicals
;
4341 /* adjust our table of devices */
4342 n_ext_target_devs
= 0;
4343 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4344 u8
*lunaddrbytes
, is_OBDR
= 0;
4346 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4347 bool skip_device
= false;
4349 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4351 /* Figure out where the LUN ID info is coming from */
4352 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4353 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4355 /* Determine if this is a lun from an external target array */
4356 tmpdevice
->external
=
4357 figure_external_status(h
, raid_ctlr_position
, i
,
4358 nphysicals
, nlocal_logicals
);
4361 * Skip over some devices such as a spare.
4363 if (!tmpdevice
->external
&& physical_device
) {
4364 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4365 &physdev_list
->LUN
[phys_dev_index
]);
4370 /* Get device type, vendor, model, device id */
4371 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4373 if (rc
== -ENOMEM
) {
4374 dev_warn(&h
->pdev
->dev
,
4375 "Out of memory, rescan deferred.\n");
4376 h
->drv_req_rescan
= 1;
4380 h
->drv_req_rescan
= 1;
4384 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4385 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4386 this_device
= currentsd
[ncurrent
];
4388 /* Turn on discovery_polling if there are ext target devices.
4389 * Event-based change notification is unreliable for those.
4391 if (!h
->discovery_polling
) {
4392 if (tmpdevice
->external
) {
4393 h
->discovery_polling
= 1;
4394 dev_info(&h
->pdev
->dev
,
4395 "External target, activate discovery polling.\n");
4400 *this_device
= *tmpdevice
;
4401 this_device
->physical_device
= physical_device
;
4404 * Expose all devices except for physical devices that
4407 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4408 this_device
->expose_device
= 0;
4410 this_device
->expose_device
= 1;
4414 * Get the SAS address for physical devices that are exposed.
4416 if (this_device
->physical_device
&& this_device
->expose_device
)
4417 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4419 switch (this_device
->devtype
) {
4421 /* We don't *really* support actual CD-ROM devices,
4422 * just "One Button Disaster Recovery" tape drive
4423 * which temporarily pretends to be a CD-ROM drive.
4424 * So we check that the device is really an OBDR tape
4425 * device by checking for "$DR-10" in bytes 43-48 of
4433 if (this_device
->physical_device
) {
4434 /* The disk is in HBA mode. */
4435 /* Never use RAID mapper in HBA mode. */
4436 this_device
->offload_enabled
= 0;
4437 hpsa_get_ioaccel_drive_info(h
, this_device
,
4438 physdev_list
, phys_dev_index
, id_phys
);
4439 hpsa_get_path_info(this_device
,
4440 physdev_list
, phys_dev_index
, id_phys
);
4445 case TYPE_MEDIUM_CHANGER
:
4448 case TYPE_ENCLOSURE
:
4449 if (!this_device
->external
)
4450 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4451 physdev_list
, phys_dev_index
,
4456 /* Only present the Smartarray HBA as a RAID controller.
4457 * If it's a RAID controller other than the HBA itself
4458 * (an external RAID controller, MSA500 or similar)
4461 if (!is_hba_lunid(lunaddrbytes
))
4468 if (ncurrent
>= HPSA_MAX_DEVICES
)
4472 if (h
->sas_host
== NULL
) {
4475 rc
= hpsa_add_sas_host(h
);
4477 dev_warn(&h
->pdev
->dev
,
4478 "Could not add sas host %d\n", rc
);
4483 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4486 for (i
= 0; i
< ndev_allocated
; i
++)
4487 kfree(currentsd
[i
]);
4489 kfree(physdev_list
);
4495 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4496 struct scatterlist
*sg
)
4498 u64 addr64
= (u64
) sg_dma_address(sg
);
4499 unsigned int len
= sg_dma_len(sg
);
4501 desc
->Addr
= cpu_to_le64(addr64
);
4502 desc
->Len
= cpu_to_le32(len
);
4507 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4508 * dma mapping and fills in the scatter gather entries of the
4511 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4512 struct CommandList
*cp
,
4513 struct scsi_cmnd
*cmd
)
4515 struct scatterlist
*sg
;
4516 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4517 struct SGDescriptor
*curr_sg
;
4519 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4521 use_sg
= scsi_dma_map(cmd
);
4526 goto sglist_finished
;
4529 * If the number of entries is greater than the max for a single list,
4530 * then we have a chained list; we will set up all but one entry in the
4531 * first list (the last entry is saved for link information);
4532 * otherwise, we don't have a chained list and we'll set up at each of
4533 * the entries in the one list.
4536 chained
= use_sg
> h
->max_cmd_sg_entries
;
4537 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4538 last_sg
= scsi_sg_count(cmd
) - 1;
4539 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4540 hpsa_set_sg_descriptor(curr_sg
, sg
);
4546 * Continue with the chained list. Set curr_sg to the chained
4547 * list. Modify the limit to the total count less the entries
4548 * we've already set up. Resume the scan at the list entry
4549 * where the previous loop left off.
4551 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4552 sg_limit
= use_sg
- sg_limit
;
4553 for_each_sg(sg
, sg
, sg_limit
, i
) {
4554 hpsa_set_sg_descriptor(curr_sg
, sg
);
4559 /* Back the pointer up to the last entry and mark it as "last". */
4560 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4562 if (use_sg
+ chained
> h
->maxSG
)
4563 h
->maxSG
= use_sg
+ chained
;
4566 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4567 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4568 if (hpsa_map_sg_chain_block(h
, cp
)) {
4569 scsi_dma_unmap(cmd
);
4577 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4578 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4582 #define IO_ACCEL_INELIGIBLE (1)
4583 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4589 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4596 if (*cdb_len
== 6) {
4597 block
= (((cdb
[1] & 0x1F) << 16) |
4604 BUG_ON(*cdb_len
!= 12);
4605 block
= get_unaligned_be32(&cdb
[2]);
4606 block_cnt
= get_unaligned_be32(&cdb
[6]);
4608 if (block_cnt
> 0xffff)
4609 return IO_ACCEL_INELIGIBLE
;
4611 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4613 cdb
[2] = (u8
) (block
>> 24);
4614 cdb
[3] = (u8
) (block
>> 16);
4615 cdb
[4] = (u8
) (block
>> 8);
4616 cdb
[5] = (u8
) (block
);
4618 cdb
[7] = (u8
) (block_cnt
>> 8);
4619 cdb
[8] = (u8
) (block_cnt
);
4627 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4628 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4629 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4631 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4632 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4634 unsigned int total_len
= 0;
4635 struct scatterlist
*sg
;
4638 struct SGDescriptor
*curr_sg
;
4639 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4641 /* TODO: implement chaining support */
4642 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4643 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4644 return IO_ACCEL_INELIGIBLE
;
4647 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4649 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4650 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4651 return IO_ACCEL_INELIGIBLE
;
4654 c
->cmd_type
= CMD_IOACCEL1
;
4656 /* Adjust the DMA address to point to the accelerated command buffer */
4657 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4658 (c
->cmdindex
* sizeof(*cp
));
4659 BUG_ON(c
->busaddr
& 0x0000007F);
4661 use_sg
= scsi_dma_map(cmd
);
4663 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4669 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4670 addr64
= (u64
) sg_dma_address(sg
);
4671 len
= sg_dma_len(sg
);
4673 curr_sg
->Addr
= cpu_to_le64(addr64
);
4674 curr_sg
->Len
= cpu_to_le32(len
);
4675 curr_sg
->Ext
= cpu_to_le32(0);
4678 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4680 switch (cmd
->sc_data_direction
) {
4682 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4684 case DMA_FROM_DEVICE
:
4685 control
|= IOACCEL1_CONTROL_DATA_IN
;
4688 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4691 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4692 cmd
->sc_data_direction
);
4697 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4700 c
->Header
.SGList
= use_sg
;
4701 /* Fill out the command structure to submit */
4702 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4703 cp
->transfer_len
= cpu_to_le32(total_len
);
4704 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4705 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4706 cp
->control
= cpu_to_le32(control
);
4707 memcpy(cp
->CDB
, cdb
, cdb_len
);
4708 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4709 /* Tag was already set at init time. */
4710 enqueue_cmd_and_start_io(h
, c
);
4715 * Queue a command directly to a device behind the controller using the
4716 * I/O accelerator path.
4718 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4719 struct CommandList
*c
)
4721 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4722 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4729 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4730 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4734 * Set encryption parameters for the ioaccel2 request
4736 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4737 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4739 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4740 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4741 struct raid_map_data
*map
= &dev
->raid_map
;
4744 /* Are we doing encryption on this device */
4745 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4747 /* Set the data encryption key index. */
4748 cp
->dekindex
= map
->dekindex
;
4750 /* Set the encryption enable flag, encoded into direction field. */
4751 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4753 /* Set encryption tweak values based on logical block address
4754 * If block size is 512, tweak value is LBA.
4755 * For other block sizes, tweak is (LBA * block size)/ 512)
4757 switch (cmd
->cmnd
[0]) {
4758 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4761 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4762 (cmd
->cmnd
[2] << 8) |
4767 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4770 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4774 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4777 dev_err(&h
->pdev
->dev
,
4778 "ERROR: %s: size (0x%x) not supported for encryption\n",
4779 __func__
, cmd
->cmnd
[0]);
4784 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4785 first_block
= first_block
*
4786 le32_to_cpu(map
->volume_blk_size
)/512;
4788 cp
->tweak_lower
= cpu_to_le32(first_block
);
4789 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4792 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4793 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4794 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4796 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4797 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4798 struct ioaccel2_sg_element
*curr_sg
;
4800 struct scatterlist
*sg
;
4808 if (!cmd
->device
->hostdata
)
4811 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4813 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4814 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4815 return IO_ACCEL_INELIGIBLE
;
4818 c
->cmd_type
= CMD_IOACCEL2
;
4819 /* Adjust the DMA address to point to the accelerated command buffer */
4820 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4821 (c
->cmdindex
* sizeof(*cp
));
4822 BUG_ON(c
->busaddr
& 0x0000007F);
4824 memset(cp
, 0, sizeof(*cp
));
4825 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4827 use_sg
= scsi_dma_map(cmd
);
4829 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4835 if (use_sg
> h
->ioaccel_maxsg
) {
4836 addr64
= le64_to_cpu(
4837 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4838 curr_sg
->address
= cpu_to_le64(addr64
);
4839 curr_sg
->length
= 0;
4840 curr_sg
->reserved
[0] = 0;
4841 curr_sg
->reserved
[1] = 0;
4842 curr_sg
->reserved
[2] = 0;
4843 curr_sg
->chain_indicator
= 0x80;
4845 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4847 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4848 addr64
= (u64
) sg_dma_address(sg
);
4849 len
= sg_dma_len(sg
);
4851 curr_sg
->address
= cpu_to_le64(addr64
);
4852 curr_sg
->length
= cpu_to_le32(len
);
4853 curr_sg
->reserved
[0] = 0;
4854 curr_sg
->reserved
[1] = 0;
4855 curr_sg
->reserved
[2] = 0;
4856 curr_sg
->chain_indicator
= 0;
4860 switch (cmd
->sc_data_direction
) {
4862 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4863 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4865 case DMA_FROM_DEVICE
:
4866 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4867 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4870 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4871 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4874 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4875 cmd
->sc_data_direction
);
4880 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4881 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4884 /* Set encryption parameters, if necessary */
4885 set_encrypt_ioaccel2(h
, c
, cp
);
4887 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4888 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4889 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4891 cp
->data_len
= cpu_to_le32(total_len
);
4892 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4893 offsetof(struct io_accel2_cmd
, error_data
));
4894 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4896 /* fill in sg elements */
4897 if (use_sg
> h
->ioaccel_maxsg
) {
4899 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4900 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4901 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4902 scsi_dma_unmap(cmd
);
4906 cp
->sg_count
= (u8
) use_sg
;
4908 enqueue_cmd_and_start_io(h
, c
);
4913 * Queue a command to the correct I/O accelerator path.
4915 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4916 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4917 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4919 if (!c
->scsi_cmd
->device
)
4922 if (!c
->scsi_cmd
->device
->hostdata
)
4925 /* Try to honor the device's queue depth */
4926 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4927 phys_disk
->queue_depth
) {
4928 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4929 return IO_ACCEL_INELIGIBLE
;
4931 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4932 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4933 cdb
, cdb_len
, scsi3addr
,
4936 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4937 cdb
, cdb_len
, scsi3addr
,
4941 static void raid_map_helper(struct raid_map_data
*map
,
4942 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4944 if (offload_to_mirror
== 0) {
4945 /* use physical disk in the first mirrored group. */
4946 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4950 /* determine mirror group that *map_index indicates */
4951 *current_group
= *map_index
/
4952 le16_to_cpu(map
->data_disks_per_row
);
4953 if (offload_to_mirror
== *current_group
)
4955 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4956 /* select map index from next group */
4957 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4960 /* select map index from first group */
4961 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4964 } while (offload_to_mirror
!= *current_group
);
4968 * Attempt to perform offload RAID mapping for a logical volume I/O.
4970 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4971 struct CommandList
*c
)
4973 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4974 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4975 struct raid_map_data
*map
= &dev
->raid_map
;
4976 struct raid_map_disk_data
*dd
= &map
->data
[0];
4979 u64 first_block
, last_block
;
4982 u64 first_row
, last_row
;
4983 u32 first_row_offset
, last_row_offset
;
4984 u32 first_column
, last_column
;
4985 u64 r0_first_row
, r0_last_row
;
4986 u32 r5or6_blocks_per_row
;
4987 u64 r5or6_first_row
, r5or6_last_row
;
4988 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4989 u32 r5or6_first_column
, r5or6_last_column
;
4990 u32 total_disks_per_row
;
4992 u32 first_group
, last_group
, current_group
;
5000 #if BITS_PER_LONG == 32
5003 int offload_to_mirror
;
5008 /* check for valid opcode, get LBA and block count */
5009 switch (cmd
->cmnd
[0]) {
5013 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5014 (cmd
->cmnd
[2] << 8) |
5016 block_cnt
= cmd
->cmnd
[4];
5024 (((u64
) cmd
->cmnd
[2]) << 24) |
5025 (((u64
) cmd
->cmnd
[3]) << 16) |
5026 (((u64
) cmd
->cmnd
[4]) << 8) |
5029 (((u32
) cmd
->cmnd
[7]) << 8) |
5036 (((u64
) cmd
->cmnd
[2]) << 24) |
5037 (((u64
) cmd
->cmnd
[3]) << 16) |
5038 (((u64
) cmd
->cmnd
[4]) << 8) |
5041 (((u32
) cmd
->cmnd
[6]) << 24) |
5042 (((u32
) cmd
->cmnd
[7]) << 16) |
5043 (((u32
) cmd
->cmnd
[8]) << 8) |
5050 (((u64
) cmd
->cmnd
[2]) << 56) |
5051 (((u64
) cmd
->cmnd
[3]) << 48) |
5052 (((u64
) cmd
->cmnd
[4]) << 40) |
5053 (((u64
) cmd
->cmnd
[5]) << 32) |
5054 (((u64
) cmd
->cmnd
[6]) << 24) |
5055 (((u64
) cmd
->cmnd
[7]) << 16) |
5056 (((u64
) cmd
->cmnd
[8]) << 8) |
5059 (((u32
) cmd
->cmnd
[10]) << 24) |
5060 (((u32
) cmd
->cmnd
[11]) << 16) |
5061 (((u32
) cmd
->cmnd
[12]) << 8) |
5065 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5067 last_block
= first_block
+ block_cnt
- 1;
5069 /* check for write to non-RAID-0 */
5070 if (is_write
&& dev
->raid_level
!= 0)
5071 return IO_ACCEL_INELIGIBLE
;
5073 /* check for invalid block or wraparound */
5074 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5075 last_block
< first_block
)
5076 return IO_ACCEL_INELIGIBLE
;
5078 /* calculate stripe information for the request */
5079 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5080 le16_to_cpu(map
->strip_size
);
5081 strip_size
= le16_to_cpu(map
->strip_size
);
5082 #if BITS_PER_LONG == 32
5083 tmpdiv
= first_block
;
5084 (void) do_div(tmpdiv
, blocks_per_row
);
5086 tmpdiv
= last_block
;
5087 (void) do_div(tmpdiv
, blocks_per_row
);
5089 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5090 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5091 tmpdiv
= first_row_offset
;
5092 (void) do_div(tmpdiv
, strip_size
);
5093 first_column
= tmpdiv
;
5094 tmpdiv
= last_row_offset
;
5095 (void) do_div(tmpdiv
, strip_size
);
5096 last_column
= tmpdiv
;
5098 first_row
= first_block
/ blocks_per_row
;
5099 last_row
= last_block
/ blocks_per_row
;
5100 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5101 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5102 first_column
= first_row_offset
/ strip_size
;
5103 last_column
= last_row_offset
/ strip_size
;
5106 /* if this isn't a single row/column then give to the controller */
5107 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5108 return IO_ACCEL_INELIGIBLE
;
5110 /* proceeding with driver mapping */
5111 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5112 le16_to_cpu(map
->metadata_disks_per_row
);
5113 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5114 le16_to_cpu(map
->row_cnt
);
5115 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5117 switch (dev
->raid_level
) {
5119 break; /* nothing special to do */
5121 /* Handles load balance across RAID 1 members.
5122 * (2-drive R1 and R10 with even # of drives.)
5123 * Appropriate for SSDs, not optimal for HDDs
5125 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5126 if (dev
->offload_to_mirror
)
5127 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5128 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5131 /* Handles N-way mirrors (R1-ADM)
5132 * and R10 with # of drives divisible by 3.)
5134 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5136 offload_to_mirror
= dev
->offload_to_mirror
;
5137 raid_map_helper(map
, offload_to_mirror
,
5138 &map_index
, ¤t_group
);
5139 /* set mirror group to use next time */
5141 (offload_to_mirror
>=
5142 le16_to_cpu(map
->layout_map_count
) - 1)
5143 ? 0 : offload_to_mirror
+ 1;
5144 dev
->offload_to_mirror
= offload_to_mirror
;
5145 /* Avoid direct use of dev->offload_to_mirror within this
5146 * function since multiple threads might simultaneously
5147 * increment it beyond the range of dev->layout_map_count -1.
5152 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5155 /* Verify first and last block are in same RAID group */
5156 r5or6_blocks_per_row
=
5157 le16_to_cpu(map
->strip_size
) *
5158 le16_to_cpu(map
->data_disks_per_row
);
5159 BUG_ON(r5or6_blocks_per_row
== 0);
5160 stripesize
= r5or6_blocks_per_row
*
5161 le16_to_cpu(map
->layout_map_count
);
5162 #if BITS_PER_LONG == 32
5163 tmpdiv
= first_block
;
5164 first_group
= do_div(tmpdiv
, stripesize
);
5165 tmpdiv
= first_group
;
5166 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5167 first_group
= tmpdiv
;
5168 tmpdiv
= last_block
;
5169 last_group
= do_div(tmpdiv
, stripesize
);
5170 tmpdiv
= last_group
;
5171 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5172 last_group
= tmpdiv
;
5174 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5175 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5177 if (first_group
!= last_group
)
5178 return IO_ACCEL_INELIGIBLE
;
5180 /* Verify request is in a single row of RAID 5/6 */
5181 #if BITS_PER_LONG == 32
5182 tmpdiv
= first_block
;
5183 (void) do_div(tmpdiv
, stripesize
);
5184 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5185 tmpdiv
= last_block
;
5186 (void) do_div(tmpdiv
, stripesize
);
5187 r5or6_last_row
= r0_last_row
= tmpdiv
;
5189 first_row
= r5or6_first_row
= r0_first_row
=
5190 first_block
/ stripesize
;
5191 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5193 if (r5or6_first_row
!= r5or6_last_row
)
5194 return IO_ACCEL_INELIGIBLE
;
5197 /* Verify request is in a single column */
5198 #if BITS_PER_LONG == 32
5199 tmpdiv
= first_block
;
5200 first_row_offset
= do_div(tmpdiv
, stripesize
);
5201 tmpdiv
= first_row_offset
;
5202 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5203 r5or6_first_row_offset
= first_row_offset
;
5204 tmpdiv
= last_block
;
5205 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5206 tmpdiv
= r5or6_last_row_offset
;
5207 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5208 tmpdiv
= r5or6_first_row_offset
;
5209 (void) do_div(tmpdiv
, map
->strip_size
);
5210 first_column
= r5or6_first_column
= tmpdiv
;
5211 tmpdiv
= r5or6_last_row_offset
;
5212 (void) do_div(tmpdiv
, map
->strip_size
);
5213 r5or6_last_column
= tmpdiv
;
5215 first_row_offset
= r5or6_first_row_offset
=
5216 (u32
)((first_block
% stripesize
) %
5217 r5or6_blocks_per_row
);
5219 r5or6_last_row_offset
=
5220 (u32
)((last_block
% stripesize
) %
5221 r5or6_blocks_per_row
);
5223 first_column
= r5or6_first_column
=
5224 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5226 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5228 if (r5or6_first_column
!= r5or6_last_column
)
5229 return IO_ACCEL_INELIGIBLE
;
5231 /* Request is eligible */
5232 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5233 le16_to_cpu(map
->row_cnt
);
5235 map_index
= (first_group
*
5236 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5237 (map_row
* total_disks_per_row
) + first_column
;
5240 return IO_ACCEL_INELIGIBLE
;
5243 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5244 return IO_ACCEL_INELIGIBLE
;
5246 c
->phys_disk
= dev
->phys_disk
[map_index
];
5248 return IO_ACCEL_INELIGIBLE
;
5250 disk_handle
= dd
[map_index
].ioaccel_handle
;
5251 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5252 first_row
* le16_to_cpu(map
->strip_size
) +
5253 (first_row_offset
- first_column
*
5254 le16_to_cpu(map
->strip_size
));
5255 disk_block_cnt
= block_cnt
;
5257 /* handle differing logical/physical block sizes */
5258 if (map
->phys_blk_shift
) {
5259 disk_block
<<= map
->phys_blk_shift
;
5260 disk_block_cnt
<<= map
->phys_blk_shift
;
5262 BUG_ON(disk_block_cnt
> 0xffff);
5264 /* build the new CDB for the physical disk I/O */
5265 if (disk_block
> 0xffffffff) {
5266 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5268 cdb
[2] = (u8
) (disk_block
>> 56);
5269 cdb
[3] = (u8
) (disk_block
>> 48);
5270 cdb
[4] = (u8
) (disk_block
>> 40);
5271 cdb
[5] = (u8
) (disk_block
>> 32);
5272 cdb
[6] = (u8
) (disk_block
>> 24);
5273 cdb
[7] = (u8
) (disk_block
>> 16);
5274 cdb
[8] = (u8
) (disk_block
>> 8);
5275 cdb
[9] = (u8
) (disk_block
);
5276 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5277 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5278 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5279 cdb
[13] = (u8
) (disk_block_cnt
);
5284 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5286 cdb
[2] = (u8
) (disk_block
>> 24);
5287 cdb
[3] = (u8
) (disk_block
>> 16);
5288 cdb
[4] = (u8
) (disk_block
>> 8);
5289 cdb
[5] = (u8
) (disk_block
);
5291 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5292 cdb
[8] = (u8
) (disk_block_cnt
);
5296 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5298 dev
->phys_disk
[map_index
]);
5302 * Submit commands down the "normal" RAID stack path
5303 * All callers to hpsa_ciss_submit must check lockup_detected
5304 * beforehand, before (opt.) and after calling cmd_alloc
5306 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5307 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5308 unsigned char scsi3addr
[])
5310 cmd
->host_scribble
= (unsigned char *) c
;
5311 c
->cmd_type
= CMD_SCSI
;
5313 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5314 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5315 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5317 /* Fill in the request block... */
5319 c
->Request
.Timeout
= 0;
5320 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5321 c
->Request
.CDBLen
= cmd
->cmd_len
;
5322 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5323 switch (cmd
->sc_data_direction
) {
5325 c
->Request
.type_attr_dir
=
5326 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5328 case DMA_FROM_DEVICE
:
5329 c
->Request
.type_attr_dir
=
5330 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5333 c
->Request
.type_attr_dir
=
5334 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5336 case DMA_BIDIRECTIONAL
:
5337 /* This can happen if a buggy application does a scsi passthru
5338 * and sets both inlen and outlen to non-zero. ( see
5339 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5342 c
->Request
.type_attr_dir
=
5343 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5344 /* This is technically wrong, and hpsa controllers should
5345 * reject it with CMD_INVALID, which is the most correct
5346 * response, but non-fibre backends appear to let it
5347 * slide by, and give the same results as if this field
5348 * were set correctly. Either way is acceptable for
5349 * our purposes here.
5355 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5356 cmd
->sc_data_direction
);
5361 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5362 hpsa_cmd_resolve_and_free(h
, c
);
5363 return SCSI_MLQUEUE_HOST_BUSY
;
5365 enqueue_cmd_and_start_io(h
, c
);
5366 /* the cmd'll come back via intr handler in complete_scsi_command() */
5370 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5371 struct CommandList
*c
)
5373 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5375 /* Zero out all of commandlist except the last field, refcount */
5376 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5377 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5378 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5379 c
->err_info
= h
->errinfo_pool
+ index
;
5380 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5381 err_dma_handle
= h
->errinfo_pool_dhandle
5382 + index
* sizeof(*c
->err_info
);
5383 c
->cmdindex
= index
;
5384 c
->busaddr
= (u32
) cmd_dma_handle
;
5385 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5386 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5388 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5391 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5395 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5396 struct CommandList
*c
= h
->cmd_pool
+ i
;
5398 hpsa_cmd_init(h
, i
, c
);
5399 atomic_set(&c
->refcount
, 0);
5403 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5404 struct CommandList
*c
)
5406 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5408 BUG_ON(c
->cmdindex
!= index
);
5410 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5411 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5412 c
->busaddr
= (u32
) cmd_dma_handle
;
5415 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5416 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5417 unsigned char *scsi3addr
)
5419 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5420 int rc
= IO_ACCEL_INELIGIBLE
;
5423 return SCSI_MLQUEUE_HOST_BUSY
;
5425 cmd
->host_scribble
= (unsigned char *) c
;
5427 if (dev
->offload_enabled
) {
5428 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5429 c
->cmd_type
= CMD_SCSI
;
5431 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5432 if (rc
< 0) /* scsi_dma_map failed. */
5433 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5434 } else if (dev
->hba_ioaccel_enabled
) {
5435 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5436 c
->cmd_type
= CMD_SCSI
;
5438 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5439 if (rc
< 0) /* scsi_dma_map failed. */
5440 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5445 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5447 struct scsi_cmnd
*cmd
;
5448 struct hpsa_scsi_dev_t
*dev
;
5449 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5452 dev
= cmd
->device
->hostdata
;
5454 cmd
->result
= DID_NO_CONNECT
<< 16;
5455 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5457 if (c
->reset_pending
)
5458 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5459 if (c
->abort_pending
)
5460 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5461 if (c
->cmd_type
== CMD_IOACCEL2
) {
5462 struct ctlr_info
*h
= c
->h
;
5463 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5466 if (c2
->error_data
.serv_response
==
5467 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5468 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5471 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5473 * If we get here, it means dma mapping failed.
5474 * Try again via scsi mid layer, which will
5475 * then get SCSI_MLQUEUE_HOST_BUSY.
5477 cmd
->result
= DID_IMM_RETRY
<< 16;
5478 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5480 /* else, fall thru and resubmit down CISS path */
5483 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5484 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5486 * If we get here, it means dma mapping failed. Try
5487 * again via scsi mid layer, which will then get
5488 * SCSI_MLQUEUE_HOST_BUSY.
5490 * hpsa_ciss_submit will have already freed c
5491 * if it encountered a dma mapping failure.
5493 cmd
->result
= DID_IMM_RETRY
<< 16;
5494 cmd
->scsi_done(cmd
);
5498 /* Running in struct Scsi_Host->host_lock less mode */
5499 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5501 struct ctlr_info
*h
;
5502 struct hpsa_scsi_dev_t
*dev
;
5503 unsigned char scsi3addr
[8];
5504 struct CommandList
*c
;
5507 /* Get the ptr to our adapter structure out of cmd->host. */
5508 h
= sdev_to_hba(cmd
->device
);
5510 BUG_ON(cmd
->request
->tag
< 0);
5512 dev
= cmd
->device
->hostdata
;
5514 cmd
->result
= DID_NO_CONNECT
<< 16;
5515 cmd
->scsi_done(cmd
);
5520 cmd
->result
= DID_NO_CONNECT
<< 16;
5521 cmd
->scsi_done(cmd
);
5525 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5527 if (unlikely(lockup_detected(h
))) {
5528 cmd
->result
= DID_NO_CONNECT
<< 16;
5529 cmd
->scsi_done(cmd
);
5532 c
= cmd_tagged_alloc(h
, cmd
);
5535 * Call alternate submit routine for I/O accelerated commands.
5536 * Retries always go down the normal I/O path.
5538 if (likely(cmd
->retries
== 0 &&
5539 !blk_rq_is_passthrough(cmd
->request
) &&
5540 h
->acciopath_status
)) {
5541 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5544 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5545 hpsa_cmd_resolve_and_free(h
, c
);
5546 return SCSI_MLQUEUE_HOST_BUSY
;
5549 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5552 static void hpsa_scan_complete(struct ctlr_info
*h
)
5554 unsigned long flags
;
5556 spin_lock_irqsave(&h
->scan_lock
, flags
);
5557 h
->scan_finished
= 1;
5558 wake_up(&h
->scan_wait_queue
);
5559 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5562 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5564 struct ctlr_info
*h
= shost_to_hba(sh
);
5565 unsigned long flags
;
5568 * Don't let rescans be initiated on a controller known to be locked
5569 * up. If the controller locks up *during* a rescan, that thread is
5570 * probably hosed, but at least we can prevent new rescan threads from
5571 * piling up on a locked up controller.
5573 if (unlikely(lockup_detected(h
)))
5574 return hpsa_scan_complete(h
);
5577 * If a scan is already waiting to run, no need to add another
5579 spin_lock_irqsave(&h
->scan_lock
, flags
);
5580 if (h
->scan_waiting
) {
5581 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5585 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5587 /* wait until any scan already in progress is finished. */
5589 spin_lock_irqsave(&h
->scan_lock
, flags
);
5590 if (h
->scan_finished
)
5592 h
->scan_waiting
= 1;
5593 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5594 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5595 /* Note: We don't need to worry about a race between this
5596 * thread and driver unload because the midlayer will
5597 * have incremented the reference count, so unload won't
5598 * happen if we're in here.
5601 h
->scan_finished
= 0; /* mark scan as in progress */
5602 h
->scan_waiting
= 0;
5603 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5605 if (unlikely(lockup_detected(h
)))
5606 return hpsa_scan_complete(h
);
5609 * Do the scan after a reset completion
5611 if (h
->reset_in_progress
) {
5612 h
->drv_req_rescan
= 1;
5616 hpsa_update_scsi_devices(h
);
5618 hpsa_scan_complete(h
);
5621 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5623 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5630 else if (qdepth
> logical_drive
->queue_depth
)
5631 qdepth
= logical_drive
->queue_depth
;
5633 return scsi_change_queue_depth(sdev
, qdepth
);
5636 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5637 unsigned long elapsed_time
)
5639 struct ctlr_info
*h
= shost_to_hba(sh
);
5640 unsigned long flags
;
5643 spin_lock_irqsave(&h
->scan_lock
, flags
);
5644 finished
= h
->scan_finished
;
5645 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5649 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5651 struct Scsi_Host
*sh
;
5653 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5655 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5662 sh
->max_channel
= 3;
5663 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5664 sh
->max_lun
= HPSA_MAX_LUN
;
5665 sh
->max_id
= HPSA_MAX_LUN
;
5666 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5667 sh
->cmd_per_lun
= sh
->can_queue
;
5668 sh
->sg_tablesize
= h
->maxsgentries
;
5669 sh
->transportt
= hpsa_sas_transport_template
;
5670 sh
->hostdata
[0] = (unsigned long) h
;
5671 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5672 sh
->unique_id
= sh
->irq
;
5678 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5682 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5684 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5687 scsi_scan_host(h
->scsi_host
);
5692 * The block layer has already gone to the trouble of picking out a unique,
5693 * small-integer tag for this request. We use an offset from that value as
5694 * an index to select our command block. (The offset allows us to reserve the
5695 * low-numbered entries for our own uses.)
5697 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5699 int idx
= scmd
->request
->tag
;
5704 /* Offset to leave space for internal cmds. */
5705 return idx
+= HPSA_NRESERVED_CMDS
;
5709 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5710 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5712 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5713 struct CommandList
*c
, unsigned char lunaddr
[],
5718 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5719 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5720 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5721 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5724 /* no unmap needed here because no data xfer. */
5726 /* Check if the unit is already ready. */
5727 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5731 * The first command sent after reset will receive "unit attention" to
5732 * indicate that the LUN has been reset...this is actually what we're
5733 * looking for (but, success is good too).
5735 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5736 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5737 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5738 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5745 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5746 * returns zero when the unit is ready, and non-zero when giving up.
5748 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5749 struct CommandList
*c
,
5750 unsigned char lunaddr
[], int reply_queue
)
5754 int waittime
= 1; /* seconds */
5756 /* Send test unit ready until device ready, or give up. */
5757 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5760 * Wait for a bit. do this first, because if we send
5761 * the TUR right away, the reset will just abort it.
5763 msleep(1000 * waittime
);
5765 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5769 /* Increase wait time with each try, up to a point. */
5770 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5773 dev_warn(&h
->pdev
->dev
,
5774 "waiting %d secs for device to become ready.\n",
5781 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5782 unsigned char lunaddr
[],
5789 struct CommandList
*c
;
5794 * If no specific reply queue was requested, then send the TUR
5795 * repeatedly, requesting a reply on each reply queue; otherwise execute
5796 * the loop exactly once using only the specified queue.
5798 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5800 last_queue
= h
->nreply_queues
- 1;
5802 first_queue
= reply_queue
;
5803 last_queue
= reply_queue
;
5806 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5807 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5813 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5815 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5821 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5822 * complaining. Doing a host- or bus-reset can't do anything good here.
5824 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5827 struct ctlr_info
*h
;
5828 struct hpsa_scsi_dev_t
*dev
;
5832 /* find the controller to which the command to be aborted was sent */
5833 h
= sdev_to_hba(scsicmd
->device
);
5834 if (h
== NULL
) /* paranoia */
5837 if (lockup_detected(h
))
5840 dev
= scsicmd
->device
->hostdata
;
5842 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5846 /* if controller locked up, we can guarantee command won't complete */
5847 if (lockup_detected(h
)) {
5848 snprintf(msg
, sizeof(msg
),
5849 "cmd %d RESET FAILED, lockup detected",
5850 hpsa_get_cmd_index(scsicmd
));
5851 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5855 /* this reset request might be the result of a lockup; check */
5856 if (detect_controller_lockup(h
)) {
5857 snprintf(msg
, sizeof(msg
),
5858 "cmd %d RESET FAILED, new lockup detected",
5859 hpsa_get_cmd_index(scsicmd
));
5860 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5864 /* Do not attempt on controller */
5865 if (is_hba_lunid(dev
->scsi3addr
))
5868 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5869 reset_type
= HPSA_DEVICE_RESET_MSG
;
5871 reset_type
= HPSA_PHYS_TARGET_RESET
;
5873 sprintf(msg
, "resetting %s",
5874 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5875 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5877 h
->reset_in_progress
= 1;
5879 /* send a reset to the SCSI LUN which the command was sent to */
5880 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5881 DEFAULT_REPLY_QUEUE
);
5882 sprintf(msg
, "reset %s %s",
5883 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5884 rc
== 0 ? "completed successfully" : "failed");
5885 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5886 h
->reset_in_progress
= 0;
5887 return rc
== 0 ? SUCCESS
: FAILED
;
5890 static void swizzle_abort_tag(u8
*tag
)
5894 memcpy(original_tag
, tag
, 8);
5895 tag
[0] = original_tag
[3];
5896 tag
[1] = original_tag
[2];
5897 tag
[2] = original_tag
[1];
5898 tag
[3] = original_tag
[0];
5899 tag
[4] = original_tag
[7];
5900 tag
[5] = original_tag
[6];
5901 tag
[6] = original_tag
[5];
5902 tag
[7] = original_tag
[4];
5905 static void hpsa_get_tag(struct ctlr_info
*h
,
5906 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5909 if (c
->cmd_type
== CMD_IOACCEL1
) {
5910 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5911 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5912 tag
= le64_to_cpu(cm1
->tag
);
5913 *tagupper
= cpu_to_le32(tag
>> 32);
5914 *taglower
= cpu_to_le32(tag
);
5917 if (c
->cmd_type
== CMD_IOACCEL2
) {
5918 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5919 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5920 /* upper tag not used in ioaccel2 mode */
5921 memset(tagupper
, 0, sizeof(*tagupper
));
5922 *taglower
= cm2
->Tag
;
5925 tag
= le64_to_cpu(c
->Header
.tag
);
5926 *tagupper
= cpu_to_le32(tag
>> 32);
5927 *taglower
= cpu_to_le32(tag
);
5930 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5931 struct CommandList
*abort
, int reply_queue
)
5934 struct CommandList
*c
;
5935 struct ErrorInfo
*ei
;
5936 __le32 tagupper
, taglower
;
5940 /* fill_cmd can't fail here, no buffer to map */
5941 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5942 0, 0, scsi3addr
, TYPE_MSG
);
5943 if (h
->needs_abort_tags_swizzled
)
5944 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5945 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5946 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5947 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5948 __func__
, tagupper
, taglower
);
5949 /* no unmap needed here because no data xfer. */
5952 switch (ei
->CommandStatus
) {
5955 case CMD_TMF_STATUS
:
5956 rc
= hpsa_evaluate_tmf_status(h
, c
);
5958 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5962 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5963 __func__
, tagupper
, taglower
);
5964 hpsa_scsi_interpret_error(h
, c
);
5969 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5970 __func__
, tagupper
, taglower
);
5974 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5975 struct CommandList
*command_to_abort
, int reply_queue
)
5977 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5978 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5979 struct io_accel2_cmd
*c2a
=
5980 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5981 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5982 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5988 * We're overlaying struct hpsa_tmf_struct on top of something which
5989 * was allocated as a struct io_accel2_cmd, so we better be sure it
5990 * actually fits, and doesn't overrun the error info space.
5992 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5993 sizeof(struct io_accel2_cmd
));
5994 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5995 offsetof(struct hpsa_tmf_struct
, error_len
) +
5996 sizeof(ac
->error_len
));
5998 c
->cmd_type
= IOACCEL2_TMF
;
5999 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6001 /* Adjust the DMA address to point to the accelerated command buffer */
6002 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
6003 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
6004 BUG_ON(c
->busaddr
& 0x0000007F);
6006 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
6007 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
6008 ac
->reply_queue
= reply_queue
;
6009 ac
->tmf
= IOACCEL2_TMF_ABORT
;
6010 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
6011 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
6012 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
6013 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
6014 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
6015 offsetof(struct io_accel2_cmd
, error_data
));
6016 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
6019 /* ioaccel2 path firmware cannot handle abort task requests.
6020 * Change abort requests to physical target reset, and send to the
6021 * address of the physical disk used for the ioaccel 2 command.
6022 * Return 0 on success (IO_OK)
6026 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
6027 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
6030 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
6031 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
6032 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
6033 unsigned char *psa
= &phys_scsi3addr
[0];
6035 /* Get a pointer to the hpsa logical device. */
6036 scmd
= abort
->scsi_cmd
;
6037 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
6039 dev_warn(&h
->pdev
->dev
,
6040 "Cannot abort: no device pointer for command.\n");
6041 return -1; /* not abortable */
6044 if (h
->raid_offload_debug
> 0)
6045 dev_info(&h
->pdev
->dev
,
6046 "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6047 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
6048 "Reset as abort", scsi3addr
);
6050 if (!dev
->offload_enabled
) {
6051 dev_warn(&h
->pdev
->dev
,
6052 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6053 return -1; /* not abortable */
6056 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6057 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
6058 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
6059 return -1; /* not abortable */
6062 /* send the reset */
6063 if (h
->raid_offload_debug
> 0)
6064 dev_info(&h
->pdev
->dev
,
6065 "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6067 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_PHYS_TARGET_RESET
, reply_queue
);
6069 dev_warn(&h
->pdev
->dev
,
6070 "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6072 return rc
; /* failed to reset */
6075 /* wait for device to recover */
6076 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
6077 dev_warn(&h
->pdev
->dev
,
6078 "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6080 return -1; /* failed to recover */
6083 /* device recovered */
6084 dev_info(&h
->pdev
->dev
,
6085 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6088 return rc
; /* success */
6091 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
6092 struct CommandList
*abort
, int reply_queue
)
6095 struct CommandList
*c
;
6096 __le32 taglower
, tagupper
;
6097 struct hpsa_scsi_dev_t
*dev
;
6098 struct io_accel2_cmd
*c2
;
6100 dev
= abort
->scsi_cmd
->device
->hostdata
;
6104 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
6108 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
6109 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
6110 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
6111 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6112 dev_dbg(&h
->pdev
->dev
,
6113 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6114 __func__
, tagupper
, taglower
);
6115 /* no unmap needed here because no data xfer. */
6117 dev_dbg(&h
->pdev
->dev
,
6118 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6119 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
6120 switch (c2
->error_data
.serv_response
) {
6121 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
6122 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
6125 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
6126 case IOACCEL2_SERV_RESPONSE_FAILURE
:
6127 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
6131 dev_warn(&h
->pdev
->dev
,
6132 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6133 __func__
, tagupper
, taglower
,
6134 c2
->error_data
.serv_response
);
6138 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
6139 tagupper
, taglower
);
6143 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
6144 struct hpsa_scsi_dev_t
*dev
, struct CommandList
*abort
, int reply_queue
)
6147 * ioccelerator mode 2 commands should be aborted via the
6148 * accelerated path, since RAID path is unaware of these commands,
6149 * but not all underlying firmware can handle abort TMF.
6150 * Change abort to physical device reset when abort TMF is unsupported.
6152 if (abort
->cmd_type
== CMD_IOACCEL2
) {
6153 if ((HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
) ||
6154 dev
->physical_device
)
6155 return hpsa_send_abort_ioaccel2(h
, abort
,
6158 return hpsa_send_reset_as_abort_ioaccel2(h
,
6160 abort
, reply_queue
);
6162 return hpsa_send_abort(h
, dev
->scsi3addr
, abort
, reply_queue
);
6165 /* Find out which reply queue a command was meant to return on */
6166 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
6167 struct CommandList
*c
)
6169 if (c
->cmd_type
== CMD_IOACCEL2
)
6170 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
6171 return c
->Header
.ReplyQueue
;
6175 * Limit concurrency of abort commands to prevent
6176 * over-subscription of commands
6178 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
6180 #define ABORT_CMD_WAIT_MSECS 5000
6181 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
6182 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
6183 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
6186 /* Send an abort for the specified command.
6187 * If the device and controller support it,
6188 * send a task abort request.
6190 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
6194 struct ctlr_info
*h
;
6195 struct hpsa_scsi_dev_t
*dev
;
6196 struct CommandList
*abort
; /* pointer to command to be aborted */
6197 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
6198 char msg
[256]; /* For debug messaging. */
6200 __le32 tagupper
, taglower
;
6201 int refcount
, reply_queue
;
6206 if (sc
->device
== NULL
)
6209 /* Find the controller of the command to be aborted */
6210 h
= sdev_to_hba(sc
->device
);
6214 /* Find the device of the command to be aborted */
6215 dev
= sc
->device
->hostdata
;
6217 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
6222 /* If controller locked up, we can guarantee command won't complete */
6223 if (lockup_detected(h
)) {
6224 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6225 "ABORT FAILED, lockup detected");
6229 /* This is a good time to check if controller lockup has occurred */
6230 if (detect_controller_lockup(h
)) {
6231 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6232 "ABORT FAILED, new lockup detected");
6236 /* Check that controller supports some kind of task abort */
6237 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
6238 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6241 memset(msg
, 0, sizeof(msg
));
6242 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
6243 h
->scsi_host
->host_no
, sc
->device
->channel
,
6244 sc
->device
->id
, sc
->device
->lun
,
6245 "Aborting command", sc
);
6247 /* Get SCSI command to be aborted */
6248 abort
= (struct CommandList
*) sc
->host_scribble
;
6249 if (abort
== NULL
) {
6250 /* This can happen if the command already completed. */
6253 refcount
= atomic_inc_return(&abort
->refcount
);
6254 if (refcount
== 1) { /* Command is done already. */
6259 /* Don't bother trying the abort if we know it won't work. */
6260 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
6261 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
6267 * Check that we're aborting the right command.
6268 * It's possible the CommandList already completed and got re-used.
6270 if (abort
->scsi_cmd
!= sc
) {
6275 abort
->abort_pending
= true;
6276 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6277 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
6278 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
6279 as
= abort
->scsi_cmd
;
6281 ml
+= sprintf(msg
+ml
,
6282 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6283 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
6285 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
6286 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
6289 * Command is in flight, or possibly already completed
6290 * by the firmware (but not to the scsi mid layer) but we can't
6291 * distinguish which. Send the abort down.
6293 if (wait_for_available_abort_cmd(h
)) {
6294 dev_warn(&h
->pdev
->dev
,
6295 "%s FAILED, timeout waiting for an abort command to become available.\n",
6300 rc
= hpsa_send_abort_both_ways(h
, dev
, abort
, reply_queue
);
6301 atomic_inc(&h
->abort_cmds_available
);
6302 wake_up_all(&h
->abort_cmd_wait_queue
);
6304 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6305 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6306 "FAILED to abort command");
6310 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6311 wait_event(h
->event_sync_wait_queue
,
6312 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6314 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6318 * For operations with an associated SCSI command, a command block is allocated
6319 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6320 * block request tag as an index into a table of entries. cmd_tagged_free() is
6321 * the complement, although cmd_free() may be called instead.
6323 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6324 struct scsi_cmnd
*scmd
)
6326 int idx
= hpsa_get_cmd_index(scmd
);
6327 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6329 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6330 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6331 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6332 /* The index value comes from the block layer, so if it's out of
6333 * bounds, it's probably not our bug.
6338 atomic_inc(&c
->refcount
);
6339 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6341 * We expect that the SCSI layer will hand us a unique tag
6342 * value. Thus, there should never be a collision here between
6343 * two requests...because if the selected command isn't idle
6344 * then someone is going to be very disappointed.
6346 dev_err(&h
->pdev
->dev
,
6347 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6349 if (c
->scsi_cmd
!= NULL
)
6350 scsi_print_command(c
->scsi_cmd
);
6351 scsi_print_command(scmd
);
6354 hpsa_cmd_partial_init(h
, idx
, c
);
6358 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6361 * Release our reference to the block. We don't need to do anything
6362 * else to free it, because it is accessed by index. (There's no point
6363 * in checking the result of the decrement, since we cannot guarantee
6364 * that there isn't a concurrent abort which is also accessing it.)
6366 (void)atomic_dec(&c
->refcount
);
6370 * For operations that cannot sleep, a command block is allocated at init,
6371 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6372 * which ones are free or in use. Lock must be held when calling this.
6373 * cmd_free() is the complement.
6374 * This function never gives up and returns NULL. If it hangs,
6375 * another thread must call cmd_free() to free some tags.
6378 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6380 struct CommandList
*c
;
6385 * There is some *extremely* small but non-zero chance that that
6386 * multiple threads could get in here, and one thread could
6387 * be scanning through the list of bits looking for a free
6388 * one, but the free ones are always behind him, and other
6389 * threads sneak in behind him and eat them before he can
6390 * get to them, so that while there is always a free one, a
6391 * very unlucky thread might be starved anyway, never able to
6392 * beat the other threads. In reality, this happens so
6393 * infrequently as to be indistinguishable from never.
6395 * Note that we start allocating commands before the SCSI host structure
6396 * is initialized. Since the search starts at bit zero, this
6397 * all works, since we have at least one command structure available;
6398 * however, it means that the structures with the low indexes have to be
6399 * reserved for driver-initiated requests, while requests from the block
6400 * layer will use the higher indexes.
6404 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6405 HPSA_NRESERVED_CMDS
,
6407 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6411 c
= h
->cmd_pool
+ i
;
6412 refcount
= atomic_inc_return(&c
->refcount
);
6413 if (unlikely(refcount
> 1)) {
6414 cmd_free(h
, c
); /* already in use */
6415 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6418 set_bit(i
& (BITS_PER_LONG
- 1),
6419 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6420 break; /* it's ours now. */
6422 hpsa_cmd_partial_init(h
, i
, c
);
6427 * This is the complementary operation to cmd_alloc(). Note, however, in some
6428 * corner cases it may also be used to free blocks allocated by
6429 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6430 * the clear-bit is harmless.
6432 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6434 if (atomic_dec_and_test(&c
->refcount
)) {
6437 i
= c
- h
->cmd_pool
;
6438 clear_bit(i
& (BITS_PER_LONG
- 1),
6439 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6443 #ifdef CONFIG_COMPAT
6445 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6448 IOCTL32_Command_struct __user
*arg32
=
6449 (IOCTL32_Command_struct __user
*) arg
;
6450 IOCTL_Command_struct arg64
;
6451 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6455 memset(&arg64
, 0, sizeof(arg64
));
6457 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6458 sizeof(arg64
.LUN_info
));
6459 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6460 sizeof(arg64
.Request
));
6461 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6462 sizeof(arg64
.error_info
));
6463 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6464 err
|= get_user(cp
, &arg32
->buf
);
6465 arg64
.buf
= compat_ptr(cp
);
6466 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6471 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6474 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6475 sizeof(arg32
->error_info
));
6481 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6482 int cmd
, void __user
*arg
)
6484 BIG_IOCTL32_Command_struct __user
*arg32
=
6485 (BIG_IOCTL32_Command_struct __user
*) arg
;
6486 BIG_IOCTL_Command_struct arg64
;
6487 BIG_IOCTL_Command_struct __user
*p
=
6488 compat_alloc_user_space(sizeof(arg64
));
6492 memset(&arg64
, 0, sizeof(arg64
));
6494 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6495 sizeof(arg64
.LUN_info
));
6496 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6497 sizeof(arg64
.Request
));
6498 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6499 sizeof(arg64
.error_info
));
6500 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6501 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6502 err
|= get_user(cp
, &arg32
->buf
);
6503 arg64
.buf
= compat_ptr(cp
);
6504 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6509 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6512 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6513 sizeof(arg32
->error_info
));
6519 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6522 case CCISS_GETPCIINFO
:
6523 case CCISS_GETINTINFO
:
6524 case CCISS_SETINTINFO
:
6525 case CCISS_GETNODENAME
:
6526 case CCISS_SETNODENAME
:
6527 case CCISS_GETHEARTBEAT
:
6528 case CCISS_GETBUSTYPES
:
6529 case CCISS_GETFIRMVER
:
6530 case CCISS_GETDRIVVER
:
6531 case CCISS_REVALIDVOLS
:
6532 case CCISS_DEREGDISK
:
6533 case CCISS_REGNEWDISK
:
6535 case CCISS_RESCANDISK
:
6536 case CCISS_GETLUNINFO
:
6537 return hpsa_ioctl(dev
, cmd
, arg
);
6539 case CCISS_PASSTHRU32
:
6540 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6541 case CCISS_BIG_PASSTHRU32
:
6542 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6545 return -ENOIOCTLCMD
;
6550 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6552 struct hpsa_pci_info pciinfo
;
6556 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6557 pciinfo
.bus
= h
->pdev
->bus
->number
;
6558 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6559 pciinfo
.board_id
= h
->board_id
;
6560 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6565 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6567 DriverVer_type DriverVer
;
6568 unsigned char vmaj
, vmin
, vsubmin
;
6571 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6572 &vmaj
, &vmin
, &vsubmin
);
6574 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6575 "unrecognized.", HPSA_DRIVER_VERSION
);
6580 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6583 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6588 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6590 IOCTL_Command_struct iocommand
;
6591 struct CommandList
*c
;
6598 if (!capable(CAP_SYS_RAWIO
))
6600 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6602 if ((iocommand
.buf_size
< 1) &&
6603 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6606 if (iocommand
.buf_size
> 0) {
6607 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6610 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6611 /* Copy the data into the buffer we created */
6612 if (copy_from_user(buff
, iocommand
.buf
,
6613 iocommand
.buf_size
)) {
6618 memset(buff
, 0, iocommand
.buf_size
);
6623 /* Fill in the command type */
6624 c
->cmd_type
= CMD_IOCTL_PEND
;
6625 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6626 /* Fill in Command Header */
6627 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6628 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6629 c
->Header
.SGList
= 1;
6630 c
->Header
.SGTotal
= cpu_to_le16(1);
6631 } else { /* no buffers to fill */
6632 c
->Header
.SGList
= 0;
6633 c
->Header
.SGTotal
= cpu_to_le16(0);
6635 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6637 /* Fill in Request block */
6638 memcpy(&c
->Request
, &iocommand
.Request
,
6639 sizeof(c
->Request
));
6641 /* Fill in the scatter gather information */
6642 if (iocommand
.buf_size
> 0) {
6643 temp64
= pci_map_single(h
->pdev
, buff
,
6644 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6645 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6646 c
->SG
[0].Addr
= cpu_to_le64(0);
6647 c
->SG
[0].Len
= cpu_to_le32(0);
6651 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6652 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6653 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6655 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6657 if (iocommand
.buf_size
> 0)
6658 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6659 check_ioctl_unit_attention(h
, c
);
6665 /* Copy the error information out */
6666 memcpy(&iocommand
.error_info
, c
->err_info
,
6667 sizeof(iocommand
.error_info
));
6668 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6672 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6673 iocommand
.buf_size
> 0) {
6674 /* Copy the data out of the buffer we created */
6675 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6687 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6689 BIG_IOCTL_Command_struct
*ioc
;
6690 struct CommandList
*c
;
6691 unsigned char **buff
= NULL
;
6692 int *buff_size
= NULL
;
6698 BYTE __user
*data_ptr
;
6702 if (!capable(CAP_SYS_RAWIO
))
6704 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6709 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6713 if ((ioc
->buf_size
< 1) &&
6714 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6718 /* Check kmalloc limits using all SGs */
6719 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6723 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6727 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6732 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6737 left
= ioc
->buf_size
;
6738 data_ptr
= ioc
->buf
;
6740 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6741 buff_size
[sg_used
] = sz
;
6742 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6743 if (buff
[sg_used
] == NULL
) {
6747 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6748 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6753 memset(buff
[sg_used
], 0, sz
);
6760 c
->cmd_type
= CMD_IOCTL_PEND
;
6761 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6762 c
->Header
.ReplyQueue
= 0;
6763 c
->Header
.SGList
= (u8
) sg_used
;
6764 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6765 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6766 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6767 if (ioc
->buf_size
> 0) {
6769 for (i
= 0; i
< sg_used
; i
++) {
6770 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6771 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6772 if (dma_mapping_error(&h
->pdev
->dev
,
6773 (dma_addr_t
) temp64
)) {
6774 c
->SG
[i
].Addr
= cpu_to_le64(0);
6775 c
->SG
[i
].Len
= cpu_to_le32(0);
6776 hpsa_pci_unmap(h
->pdev
, c
, i
,
6777 PCI_DMA_BIDIRECTIONAL
);
6781 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6782 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6783 c
->SG
[i
].Ext
= cpu_to_le32(0);
6785 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6787 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6790 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6791 check_ioctl_unit_attention(h
, c
);
6797 /* Copy the error information out */
6798 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6799 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6803 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6806 /* Copy the data out of the buffer we created */
6807 BYTE __user
*ptr
= ioc
->buf
;
6808 for (i
= 0; i
< sg_used
; i
++) {
6809 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6813 ptr
+= buff_size
[i
];
6823 for (i
= 0; i
< sg_used
; i
++)
6832 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6833 struct CommandList
*c
)
6835 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6836 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6837 (void) check_for_unit_attention(h
, c
);
6843 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6845 struct ctlr_info
*h
;
6846 void __user
*argp
= (void __user
*)arg
;
6849 h
= sdev_to_hba(dev
);
6852 case CCISS_DEREGDISK
:
6853 case CCISS_REGNEWDISK
:
6855 hpsa_scan_start(h
->scsi_host
);
6857 case CCISS_GETPCIINFO
:
6858 return hpsa_getpciinfo_ioctl(h
, argp
);
6859 case CCISS_GETDRIVVER
:
6860 return hpsa_getdrivver_ioctl(h
, argp
);
6861 case CCISS_PASSTHRU
:
6862 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6864 rc
= hpsa_passthru_ioctl(h
, argp
);
6865 atomic_inc(&h
->passthru_cmds_avail
);
6867 case CCISS_BIG_PASSTHRU
:
6868 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6870 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6871 atomic_inc(&h
->passthru_cmds_avail
);
6878 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6881 struct CommandList
*c
;
6885 /* fill_cmd can't fail here, no data buffer to map */
6886 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6887 RAID_CTLR_LUNID
, TYPE_MSG
);
6888 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6890 enqueue_cmd_and_start_io(h
, c
);
6891 /* Don't wait for completion, the reset won't complete. Don't free
6892 * the command either. This is the last command we will send before
6893 * re-initializing everything, so it doesn't matter and won't leak.
6898 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6899 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6902 int pci_dir
= XFER_NONE
;
6903 u64 tag
; /* for commands to be aborted */
6905 c
->cmd_type
= CMD_IOCTL_PEND
;
6906 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6907 c
->Header
.ReplyQueue
= 0;
6908 if (buff
!= NULL
&& size
> 0) {
6909 c
->Header
.SGList
= 1;
6910 c
->Header
.SGTotal
= cpu_to_le16(1);
6912 c
->Header
.SGList
= 0;
6913 c
->Header
.SGTotal
= cpu_to_le16(0);
6915 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6917 if (cmd_type
== TYPE_CMD
) {
6920 /* are we trying to read a vital product page */
6921 if (page_code
& VPD_PAGE
) {
6922 c
->Request
.CDB
[1] = 0x01;
6923 c
->Request
.CDB
[2] = (page_code
& 0xff);
6925 c
->Request
.CDBLen
= 6;
6926 c
->Request
.type_attr_dir
=
6927 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6928 c
->Request
.Timeout
= 0;
6929 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6930 c
->Request
.CDB
[4] = size
& 0xFF;
6932 case HPSA_REPORT_LOG
:
6933 case HPSA_REPORT_PHYS
:
6934 /* Talking to controller so It's a physical command
6935 mode = 00 target = 0. Nothing to write.
6937 c
->Request
.CDBLen
= 12;
6938 c
->Request
.type_attr_dir
=
6939 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6940 c
->Request
.Timeout
= 0;
6941 c
->Request
.CDB
[0] = cmd
;
6942 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6943 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6944 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6945 c
->Request
.CDB
[9] = size
& 0xFF;
6947 case BMIC_SENSE_DIAG_OPTIONS
:
6948 c
->Request
.CDBLen
= 16;
6949 c
->Request
.type_attr_dir
=
6950 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6951 c
->Request
.Timeout
= 0;
6952 /* Spec says this should be BMIC_WRITE */
6953 c
->Request
.CDB
[0] = BMIC_READ
;
6954 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6956 case BMIC_SET_DIAG_OPTIONS
:
6957 c
->Request
.CDBLen
= 16;
6958 c
->Request
.type_attr_dir
=
6959 TYPE_ATTR_DIR(cmd_type
,
6960 ATTR_SIMPLE
, XFER_WRITE
);
6961 c
->Request
.Timeout
= 0;
6962 c
->Request
.CDB
[0] = BMIC_WRITE
;
6963 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6965 case HPSA_CACHE_FLUSH
:
6966 c
->Request
.CDBLen
= 12;
6967 c
->Request
.type_attr_dir
=
6968 TYPE_ATTR_DIR(cmd_type
,
6969 ATTR_SIMPLE
, XFER_WRITE
);
6970 c
->Request
.Timeout
= 0;
6971 c
->Request
.CDB
[0] = BMIC_WRITE
;
6972 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6973 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6974 c
->Request
.CDB
[8] = size
& 0xFF;
6976 case TEST_UNIT_READY
:
6977 c
->Request
.CDBLen
= 6;
6978 c
->Request
.type_attr_dir
=
6979 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6980 c
->Request
.Timeout
= 0;
6982 case HPSA_GET_RAID_MAP
:
6983 c
->Request
.CDBLen
= 12;
6984 c
->Request
.type_attr_dir
=
6985 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6986 c
->Request
.Timeout
= 0;
6987 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6988 c
->Request
.CDB
[1] = cmd
;
6989 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6990 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6991 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6992 c
->Request
.CDB
[9] = size
& 0xFF;
6994 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6995 c
->Request
.CDBLen
= 10;
6996 c
->Request
.type_attr_dir
=
6997 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6998 c
->Request
.Timeout
= 0;
6999 c
->Request
.CDB
[0] = BMIC_READ
;
7000 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
7001 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7002 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
7004 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
7005 c
->Request
.CDBLen
= 10;
7006 c
->Request
.type_attr_dir
=
7007 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7008 c
->Request
.Timeout
= 0;
7009 c
->Request
.CDB
[0] = BMIC_READ
;
7010 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
7011 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7012 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7014 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
7015 c
->Request
.CDBLen
= 10;
7016 c
->Request
.type_attr_dir
=
7017 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7018 c
->Request
.Timeout
= 0;
7019 c
->Request
.CDB
[0] = BMIC_READ
;
7020 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
7021 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7022 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7024 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
7025 c
->Request
.CDBLen
= 10;
7026 c
->Request
.type_attr_dir
=
7027 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7028 c
->Request
.Timeout
= 0;
7029 c
->Request
.CDB
[0] = BMIC_READ
;
7030 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
7031 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7032 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7034 case BMIC_IDENTIFY_CONTROLLER
:
7035 c
->Request
.CDBLen
= 10;
7036 c
->Request
.type_attr_dir
=
7037 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7038 c
->Request
.Timeout
= 0;
7039 c
->Request
.CDB
[0] = BMIC_READ
;
7040 c
->Request
.CDB
[1] = 0;
7041 c
->Request
.CDB
[2] = 0;
7042 c
->Request
.CDB
[3] = 0;
7043 c
->Request
.CDB
[4] = 0;
7044 c
->Request
.CDB
[5] = 0;
7045 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
7046 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7047 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7048 c
->Request
.CDB
[9] = 0;
7051 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
7055 } else if (cmd_type
== TYPE_MSG
) {
7058 case HPSA_PHYS_TARGET_RESET
:
7059 c
->Request
.CDBLen
= 16;
7060 c
->Request
.type_attr_dir
=
7061 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
7062 c
->Request
.Timeout
= 0; /* Don't time out */
7063 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
7064 c
->Request
.CDB
[0] = HPSA_RESET
;
7065 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
7066 /* Physical target reset needs no control bytes 4-7*/
7067 c
->Request
.CDB
[4] = 0x00;
7068 c
->Request
.CDB
[5] = 0x00;
7069 c
->Request
.CDB
[6] = 0x00;
7070 c
->Request
.CDB
[7] = 0x00;
7072 case HPSA_DEVICE_RESET_MSG
:
7073 c
->Request
.CDBLen
= 16;
7074 c
->Request
.type_attr_dir
=
7075 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
7076 c
->Request
.Timeout
= 0; /* Don't time out */
7077 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
7078 c
->Request
.CDB
[0] = cmd
;
7079 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
7080 /* If bytes 4-7 are zero, it means reset the */
7082 c
->Request
.CDB
[4] = 0x00;
7083 c
->Request
.CDB
[5] = 0x00;
7084 c
->Request
.CDB
[6] = 0x00;
7085 c
->Request
.CDB
[7] = 0x00;
7087 case HPSA_ABORT_MSG
:
7088 memcpy(&tag
, buff
, sizeof(tag
));
7089 dev_dbg(&h
->pdev
->dev
,
7090 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7091 tag
, c
->Header
.tag
);
7092 c
->Request
.CDBLen
= 16;
7093 c
->Request
.type_attr_dir
=
7094 TYPE_ATTR_DIR(cmd_type
,
7095 ATTR_SIMPLE
, XFER_WRITE
);
7096 c
->Request
.Timeout
= 0; /* Don't time out */
7097 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
7098 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
7099 c
->Request
.CDB
[2] = 0x00; /* reserved */
7100 c
->Request
.CDB
[3] = 0x00; /* reserved */
7101 /* Tag to abort goes in CDB[4]-CDB[11] */
7102 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
7103 c
->Request
.CDB
[12] = 0x00; /* reserved */
7104 c
->Request
.CDB
[13] = 0x00; /* reserved */
7105 c
->Request
.CDB
[14] = 0x00; /* reserved */
7106 c
->Request
.CDB
[15] = 0x00; /* reserved */
7109 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
7114 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
7118 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
7120 pci_dir
= PCI_DMA_FROMDEVICE
;
7123 pci_dir
= PCI_DMA_TODEVICE
;
7126 pci_dir
= PCI_DMA_NONE
;
7129 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
7131 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
7137 * Map (physical) PCI mem into (virtual) kernel space
7139 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
7141 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
7142 ulong page_offs
= ((ulong
) base
) - page_base
;
7143 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
7146 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
7149 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
7151 return h
->access
.command_completed(h
, q
);
7154 static inline bool interrupt_pending(struct ctlr_info
*h
)
7156 return h
->access
.intr_pending(h
);
7159 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
7161 return (h
->access
.intr_pending(h
) == 0) ||
7162 (h
->interrupts_enabled
== 0);
7165 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
7168 if (unlikely(tag_index
>= h
->nr_cmds
)) {
7169 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
7175 static inline void finish_cmd(struct CommandList
*c
)
7177 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
7178 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
7179 || c
->cmd_type
== CMD_IOACCEL2
))
7180 complete_scsi_command(c
);
7181 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
7182 complete(c
->waiting
);
7185 /* process completion of an indexed ("direct lookup") command */
7186 static inline void process_indexed_cmd(struct ctlr_info
*h
,
7190 struct CommandList
*c
;
7192 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
7193 if (!bad_tag(h
, tag_index
, raw_tag
)) {
7194 c
= h
->cmd_pool
+ tag_index
;
7199 /* Some controllers, like p400, will give us one interrupt
7200 * after a soft reset, even if we turned interrupts off.
7201 * Only need to check for this in the hpsa_xxx_discard_completions
7204 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
7206 if (likely(!reset_devices
))
7209 if (likely(h
->interrupts_enabled
))
7212 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
7213 "(known firmware bug.) Ignoring.\n");
7219 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7220 * Relies on (h-q[x] == x) being true for x such that
7221 * 0 <= x < MAX_REPLY_QUEUES.
7223 static struct ctlr_info
*queue_to_hba(u8
*queue
)
7225 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
7228 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
7230 struct ctlr_info
*h
= queue_to_hba(queue
);
7231 u8 q
= *(u8
*) queue
;
7234 if (ignore_bogus_interrupt(h
))
7237 if (interrupt_not_for_us(h
))
7239 h
->last_intr_timestamp
= get_jiffies_64();
7240 while (interrupt_pending(h
)) {
7241 raw_tag
= get_next_completion(h
, q
);
7242 while (raw_tag
!= FIFO_EMPTY
)
7243 raw_tag
= next_command(h
, q
);
7248 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7250 struct ctlr_info
*h
= queue_to_hba(queue
);
7252 u8 q
= *(u8
*) queue
;
7254 if (ignore_bogus_interrupt(h
))
7257 h
->last_intr_timestamp
= get_jiffies_64();
7258 raw_tag
= get_next_completion(h
, q
);
7259 while (raw_tag
!= FIFO_EMPTY
)
7260 raw_tag
= next_command(h
, q
);
7264 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7266 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7268 u8 q
= *(u8
*) queue
;
7270 if (interrupt_not_for_us(h
))
7272 h
->last_intr_timestamp
= get_jiffies_64();
7273 while (interrupt_pending(h
)) {
7274 raw_tag
= get_next_completion(h
, q
);
7275 while (raw_tag
!= FIFO_EMPTY
) {
7276 process_indexed_cmd(h
, raw_tag
);
7277 raw_tag
= next_command(h
, q
);
7283 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7285 struct ctlr_info
*h
= queue_to_hba(queue
);
7287 u8 q
= *(u8
*) queue
;
7289 h
->last_intr_timestamp
= get_jiffies_64();
7290 raw_tag
= get_next_completion(h
, q
);
7291 while (raw_tag
!= FIFO_EMPTY
) {
7292 process_indexed_cmd(h
, raw_tag
);
7293 raw_tag
= next_command(h
, q
);
7298 /* Send a message CDB to the firmware. Careful, this only works
7299 * in simple mode, not performant mode due to the tag lookup.
7300 * We only ever use this immediately after a controller reset.
7302 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7306 struct CommandListHeader CommandHeader
;
7307 struct RequestBlock Request
;
7308 struct ErrDescriptor ErrorDescriptor
;
7310 struct Command
*cmd
;
7311 static const size_t cmd_sz
= sizeof(*cmd
) +
7312 sizeof(cmd
->ErrorDescriptor
);
7316 void __iomem
*vaddr
;
7319 vaddr
= pci_ioremap_bar(pdev
, 0);
7323 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7324 * CCISS commands, so they must be allocated from the lower 4GiB of
7327 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7333 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7339 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7340 * although there's no guarantee, we assume that the address is at
7341 * least 4-byte aligned (most likely, it's page-aligned).
7343 paddr32
= cpu_to_le32(paddr64
);
7345 cmd
->CommandHeader
.ReplyQueue
= 0;
7346 cmd
->CommandHeader
.SGList
= 0;
7347 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7348 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7349 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7351 cmd
->Request
.CDBLen
= 16;
7352 cmd
->Request
.type_attr_dir
=
7353 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7354 cmd
->Request
.Timeout
= 0; /* Don't time out */
7355 cmd
->Request
.CDB
[0] = opcode
;
7356 cmd
->Request
.CDB
[1] = type
;
7357 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7358 cmd
->ErrorDescriptor
.Addr
=
7359 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7360 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7362 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7364 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7365 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7366 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7368 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7373 /* we leak the DMA buffer here ... no choice since the controller could
7374 * still complete the command.
7376 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7377 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7382 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7384 if (tag
& HPSA_ERROR_BIT
) {
7385 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7390 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7395 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7397 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7398 void __iomem
*vaddr
, u32 use_doorbell
)
7402 /* For everything after the P600, the PCI power state method
7403 * of resetting the controller doesn't work, so we have this
7404 * other way using the doorbell register.
7406 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7407 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7409 /* PMC hardware guys tell us we need a 10 second delay after
7410 * doorbell reset and before any attempt to talk to the board
7411 * at all to ensure that this actually works and doesn't fall
7412 * over in some weird corner cases.
7415 } else { /* Try to do it the PCI power state way */
7417 /* Quoting from the Open CISS Specification: "The Power
7418 * Management Control/Status Register (CSR) controls the power
7419 * state of the device. The normal operating state is D0,
7420 * CSR=00h. The software off state is D3, CSR=03h. To reset
7421 * the controller, place the interface device in D3 then to D0,
7422 * this causes a secondary PCI reset which will reset the
7427 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7429 /* enter the D3hot power management state */
7430 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7436 /* enter the D0 power management state */
7437 rc
= pci_set_power_state(pdev
, PCI_D0
);
7442 * The P600 requires a small delay when changing states.
7443 * Otherwise we may think the board did not reset and we bail.
7444 * This for kdump only and is particular to the P600.
7451 static void init_driver_version(char *driver_version
, int len
)
7453 memset(driver_version
, 0, len
);
7454 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7457 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7459 char *driver_version
;
7460 int i
, size
= sizeof(cfgtable
->driver_version
);
7462 driver_version
= kmalloc(size
, GFP_KERNEL
);
7463 if (!driver_version
)
7466 init_driver_version(driver_version
, size
);
7467 for (i
= 0; i
< size
; i
++)
7468 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7469 kfree(driver_version
);
7473 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7474 unsigned char *driver_ver
)
7478 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7479 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7482 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7485 char *driver_ver
, *old_driver_ver
;
7486 int rc
, size
= sizeof(cfgtable
->driver_version
);
7488 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7489 if (!old_driver_ver
)
7491 driver_ver
= old_driver_ver
+ size
;
7493 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7494 * should have been changed, otherwise we know the reset failed.
7496 init_driver_version(old_driver_ver
, size
);
7497 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7498 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7499 kfree(old_driver_ver
);
7502 /* This does a hard reset of the controller using PCI power management
7503 * states or the using the doorbell register.
7505 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7509 u64 cfg_base_addr_index
;
7510 void __iomem
*vaddr
;
7511 unsigned long paddr
;
7512 u32 misc_fw_support
;
7514 struct CfgTable __iomem
*cfgtable
;
7516 u16 command_register
;
7518 /* For controllers as old as the P600, this is very nearly
7521 * pci_save_state(pci_dev);
7522 * pci_set_power_state(pci_dev, PCI_D3hot);
7523 * pci_set_power_state(pci_dev, PCI_D0);
7524 * pci_restore_state(pci_dev);
7526 * For controllers newer than the P600, the pci power state
7527 * method of resetting doesn't work so we have another way
7528 * using the doorbell register.
7531 if (!ctlr_is_resettable(board_id
)) {
7532 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7536 /* if controller is soft- but not hard resettable... */
7537 if (!ctlr_is_hard_resettable(board_id
))
7538 return -ENOTSUPP
; /* try soft reset later. */
7540 /* Save the PCI command register */
7541 pci_read_config_word(pdev
, 4, &command_register
);
7542 pci_save_state(pdev
);
7544 /* find the first memory BAR, so we can find the cfg table */
7545 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7548 vaddr
= remap_pci_mem(paddr
, 0x250);
7552 /* find cfgtable in order to check if reset via doorbell is supported */
7553 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7554 &cfg_base_addr_index
, &cfg_offset
);
7557 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7558 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7563 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7565 goto unmap_cfgtable
;
7567 /* If reset via doorbell register is supported, use that.
7568 * There are two such methods. Favor the newest method.
7570 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7571 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7573 use_doorbell
= DOORBELL_CTLR_RESET2
;
7575 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7577 dev_warn(&pdev
->dev
,
7578 "Soft reset not supported. Firmware update is required.\n");
7579 rc
= -ENOTSUPP
; /* try soft reset */
7580 goto unmap_cfgtable
;
7584 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7586 goto unmap_cfgtable
;
7588 pci_restore_state(pdev
);
7589 pci_write_config_word(pdev
, 4, command_register
);
7591 /* Some devices (notably the HP Smart Array 5i Controller)
7592 need a little pause here */
7593 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7595 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7597 dev_warn(&pdev
->dev
,
7598 "Failed waiting for board to become ready after hard reset\n");
7599 goto unmap_cfgtable
;
7602 rc
= controller_reset_failed(vaddr
);
7604 goto unmap_cfgtable
;
7606 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7607 "controller. Will try soft reset.\n");
7610 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7622 * We cannot read the structure directly, for portability we must use
7624 * This is for debug only.
7626 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7632 dev_info(dev
, "Controller Configuration information\n");
7633 dev_info(dev
, "------------------------------------\n");
7634 for (i
= 0; i
< 4; i
++)
7635 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7636 temp_name
[4] = '\0';
7637 dev_info(dev
, " Signature = %s\n", temp_name
);
7638 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7639 dev_info(dev
, " Transport methods supported = 0x%x\n",
7640 readl(&(tb
->TransportSupport
)));
7641 dev_info(dev
, " Transport methods active = 0x%x\n",
7642 readl(&(tb
->TransportActive
)));
7643 dev_info(dev
, " Requested transport Method = 0x%x\n",
7644 readl(&(tb
->HostWrite
.TransportRequest
)));
7645 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7646 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7647 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7648 readl(&(tb
->HostWrite
.CoalIntCount
)));
7649 dev_info(dev
, " Max outstanding commands = %d\n",
7650 readl(&(tb
->CmdsOutMax
)));
7651 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7652 for (i
= 0; i
< 16; i
++)
7653 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7654 temp_name
[16] = '\0';
7655 dev_info(dev
, " Server Name = %s\n", temp_name
);
7656 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7657 readl(&(tb
->HeartBeat
)));
7658 #endif /* HPSA_DEBUG */
7661 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7663 int i
, offset
, mem_type
, bar_type
;
7665 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7668 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7669 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7670 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7673 mem_type
= pci_resource_flags(pdev
, i
) &
7674 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7676 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7677 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7678 offset
+= 4; /* 32 bit */
7680 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7683 default: /* reserved in PCI 2.2 */
7684 dev_warn(&pdev
->dev
,
7685 "base address is invalid\n");
7690 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7696 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7698 pci_free_irq_vectors(h
->pdev
);
7699 h
->msix_vectors
= 0;
7702 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7703 * controllers that are capable. If not, we use legacy INTx mode.
7705 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7707 unsigned int flags
= PCI_IRQ_LEGACY
;
7710 /* Some boards advertise MSI but don't really support it */
7711 switch (h
->board_id
) {
7718 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7719 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7721 h
->msix_vectors
= ret
;
7725 flags
|= PCI_IRQ_MSI
;
7729 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7735 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7738 u32 subsystem_vendor_id
, subsystem_device_id
;
7740 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7741 subsystem_device_id
= pdev
->subsystem_device
;
7742 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7743 subsystem_vendor_id
;
7745 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7746 if (*board_id
== products
[i
].board_id
)
7749 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7750 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7752 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7753 "0x%08x, ignoring.\n", *board_id
);
7756 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7759 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7760 unsigned long *memory_bar
)
7764 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7765 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7766 /* addressing mode bits already removed */
7767 *memory_bar
= pci_resource_start(pdev
, i
);
7768 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7772 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7776 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7782 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7784 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7786 for (i
= 0; i
< iterations
; i
++) {
7787 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7788 if (wait_for_ready
) {
7789 if (scratchpad
== HPSA_FIRMWARE_READY
)
7792 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7795 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7797 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7801 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7802 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7805 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7806 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7807 *cfg_base_addr
&= (u32
) 0x0000ffff;
7808 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7809 if (*cfg_base_addr_index
== -1) {
7810 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7816 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7818 if (h
->transtable
) {
7819 iounmap(h
->transtable
);
7820 h
->transtable
= NULL
;
7823 iounmap(h
->cfgtable
);
7828 /* Find and map CISS config table and transfer table
7829 + * several items must be unmapped (freed) later
7831 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7835 u64 cfg_base_addr_index
;
7839 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7840 &cfg_base_addr_index
, &cfg_offset
);
7843 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7844 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7846 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7849 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7852 /* Find performant mode table. */
7853 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7854 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7855 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7856 sizeof(*h
->transtable
));
7857 if (!h
->transtable
) {
7858 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7859 hpsa_free_cfgtables(h
);
7865 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7867 #define MIN_MAX_COMMANDS 16
7868 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7870 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7872 /* Limit commands in memory limited kdump scenario. */
7873 if (reset_devices
&& h
->max_commands
> 32)
7874 h
->max_commands
= 32;
7876 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7877 dev_warn(&h
->pdev
->dev
,
7878 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7881 h
->max_commands
= MIN_MAX_COMMANDS
;
7885 /* If the controller reports that the total max sg entries is greater than 512,
7886 * then we know that chained SG blocks work. (Original smart arrays did not
7887 * support chained SG blocks and would return zero for max sg entries.)
7889 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7891 return h
->maxsgentries
> 512;
7894 /* Interrogate the hardware for some limits:
7895 * max commands, max SG elements without chaining, and with chaining,
7896 * SG chain block size, etc.
7898 static void hpsa_find_board_params(struct ctlr_info
*h
)
7900 hpsa_get_max_perf_mode_cmds(h
);
7901 h
->nr_cmds
= h
->max_commands
;
7902 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7903 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7904 if (hpsa_supports_chained_sg_blocks(h
)) {
7905 /* Limit in-command s/g elements to 32 save dma'able memory. */
7906 h
->max_cmd_sg_entries
= 32;
7907 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7908 h
->maxsgentries
--; /* save one for chain pointer */
7911 * Original smart arrays supported at most 31 s/g entries
7912 * embedded inline in the command (trying to use more
7913 * would lock up the controller)
7915 h
->max_cmd_sg_entries
= 31;
7916 h
->maxsgentries
= 31; /* default to traditional values */
7920 /* Find out what task management functions are supported and cache */
7921 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7922 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7923 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7924 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7925 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7926 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7927 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7930 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7932 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7933 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7939 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7943 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7944 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7946 driver_support
|= ENABLE_SCSI_PREFETCH
;
7948 driver_support
|= ENABLE_UNIT_ATTN
;
7949 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7952 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7953 * in a prefetch beyond physical memory.
7955 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7959 if (h
->board_id
!= 0x3225103C)
7961 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7962 dma_prefetch
|= 0x8000;
7963 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7966 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7970 unsigned long flags
;
7971 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7972 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7973 spin_lock_irqsave(&h
->lock
, flags
);
7974 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7975 spin_unlock_irqrestore(&h
->lock
, flags
);
7976 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7978 /* delay and try again */
7979 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7986 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7990 unsigned long flags
;
7992 /* under certain very rare conditions, this can take awhile.
7993 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7994 * as we enter this code.)
7996 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7997 if (h
->remove_in_progress
)
7999 spin_lock_irqsave(&h
->lock
, flags
);
8000 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
8001 spin_unlock_irqrestore(&h
->lock
, flags
);
8002 if (!(doorbell_value
& CFGTBL_ChangeReq
))
8004 /* delay and try again */
8005 msleep(MODE_CHANGE_WAIT_INTERVAL
);
8012 /* return -ENODEV or other reason on error, 0 on success */
8013 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
8017 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
8018 if (!(trans_support
& SIMPLE_MODE
))
8021 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
8023 /* Update the field, and then ring the doorbell */
8024 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8025 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8026 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8027 if (hpsa_wait_for_mode_change_ack(h
))
8029 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
8030 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
8032 h
->transMethod
= CFGTBL_Trans_Simple
;
8035 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
8039 /* free items allocated or mapped by hpsa_pci_init */
8040 static void hpsa_free_pci_init(struct ctlr_info
*h
)
8042 hpsa_free_cfgtables(h
); /* pci_init 4 */
8043 iounmap(h
->vaddr
); /* pci_init 3 */
8045 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8047 * call pci_disable_device before pci_release_regions per
8048 * Documentation/PCI/pci.txt
8050 pci_disable_device(h
->pdev
); /* pci_init 1 */
8051 pci_release_regions(h
->pdev
); /* pci_init 2 */
8054 /* several items must be freed later */
8055 static int hpsa_pci_init(struct ctlr_info
*h
)
8057 int prod_index
, err
;
8059 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
8062 h
->product_name
= products
[prod_index
].product_name
;
8063 h
->access
= *(products
[prod_index
].access
);
8065 h
->needs_abort_tags_swizzled
=
8066 ctlr_needs_abort_tags_swizzled(h
->board_id
);
8068 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
8069 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
8071 err
= pci_enable_device(h
->pdev
);
8073 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
8074 pci_disable_device(h
->pdev
);
8078 err
= pci_request_regions(h
->pdev
, HPSA
);
8080 dev_err(&h
->pdev
->dev
,
8081 "failed to obtain PCI resources\n");
8082 pci_disable_device(h
->pdev
);
8086 pci_set_master(h
->pdev
);
8088 err
= hpsa_interrupt_mode(h
);
8091 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
8093 goto clean2
; /* intmode+region, pci */
8094 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
8096 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
8098 goto clean2
; /* intmode+region, pci */
8100 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8102 goto clean3
; /* vaddr, intmode+region, pci */
8103 err
= hpsa_find_cfgtables(h
);
8105 goto clean3
; /* vaddr, intmode+region, pci */
8106 hpsa_find_board_params(h
);
8108 if (!hpsa_CISS_signature_present(h
)) {
8110 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8112 hpsa_set_driver_support_bits(h
);
8113 hpsa_p600_dma_prefetch_quirk(h
);
8114 err
= hpsa_enter_simple_mode(h
);
8116 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8119 clean4
: /* cfgtables, vaddr, intmode+region, pci */
8120 hpsa_free_cfgtables(h
);
8121 clean3
: /* vaddr, intmode+region, pci */
8124 clean2
: /* intmode+region, pci */
8125 hpsa_disable_interrupt_mode(h
);
8128 * call pci_disable_device before pci_release_regions per
8129 * Documentation/PCI/pci.txt
8131 pci_disable_device(h
->pdev
);
8132 pci_release_regions(h
->pdev
);
8136 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
8140 #define HBA_INQUIRY_BYTE_COUNT 64
8141 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
8142 if (!h
->hba_inquiry_data
)
8144 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
8145 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
8147 kfree(h
->hba_inquiry_data
);
8148 h
->hba_inquiry_data
= NULL
;
8152 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
8155 void __iomem
*vaddr
;
8160 /* kdump kernel is loading, we don't know in which state is
8161 * the pci interface. The dev->enable_cnt is equal zero
8162 * so we call enable+disable, wait a while and switch it on.
8164 rc
= pci_enable_device(pdev
);
8166 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
8169 pci_disable_device(pdev
);
8170 msleep(260); /* a randomly chosen number */
8171 rc
= pci_enable_device(pdev
);
8173 dev_warn(&pdev
->dev
, "failed to enable device.\n");
8177 pci_set_master(pdev
);
8179 vaddr
= pci_ioremap_bar(pdev
, 0);
8180 if (vaddr
== NULL
) {
8184 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
8187 /* Reset the controller with a PCI power-cycle or via doorbell */
8188 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
8190 /* -ENOTSUPP here means we cannot reset the controller
8191 * but it's already (and still) up and running in
8192 * "performant mode". Or, it might be 640x, which can't reset
8193 * due to concerns about shared bbwc between 6402/6404 pair.
8198 /* Now try to get the controller to respond to a no-op */
8199 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
8200 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
8201 if (hpsa_noop(pdev
) == 0)
8204 dev_warn(&pdev
->dev
, "no-op failed%s\n",
8205 (i
< 11 ? "; re-trying" : ""));
8210 pci_disable_device(pdev
);
8214 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
8216 kfree(h
->cmd_pool_bits
);
8217 h
->cmd_pool_bits
= NULL
;
8219 pci_free_consistent(h
->pdev
,
8220 h
->nr_cmds
* sizeof(struct CommandList
),
8222 h
->cmd_pool_dhandle
);
8224 h
->cmd_pool_dhandle
= 0;
8226 if (h
->errinfo_pool
) {
8227 pci_free_consistent(h
->pdev
,
8228 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8230 h
->errinfo_pool_dhandle
);
8231 h
->errinfo_pool
= NULL
;
8232 h
->errinfo_pool_dhandle
= 0;
8236 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8238 h
->cmd_pool_bits
= kzalloc(
8239 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
8240 sizeof(unsigned long), GFP_KERNEL
);
8241 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
8242 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8243 &(h
->cmd_pool_dhandle
));
8244 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
8245 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8246 &(h
->errinfo_pool_dhandle
));
8247 if ((h
->cmd_pool_bits
== NULL
)
8248 || (h
->cmd_pool
== NULL
)
8249 || (h
->errinfo_pool
== NULL
)) {
8250 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8253 hpsa_preinitialize_commands(h
);
8256 hpsa_free_cmd_pool(h
);
8260 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8261 static void hpsa_free_irqs(struct ctlr_info
*h
)
8265 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
8266 /* Single reply queue, only one irq to free */
8267 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
8268 h
->q
[h
->intr_mode
] = 0;
8272 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8273 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
8276 for (; i
< MAX_REPLY_QUEUES
; i
++)
8280 /* returns 0 on success; cleans up and returns -Enn on error */
8281 static int hpsa_request_irqs(struct ctlr_info
*h
,
8282 irqreturn_t (*msixhandler
)(int, void *),
8283 irqreturn_t (*intxhandler
)(int, void *))
8288 * initialize h->q[x] = x so that interrupt handlers know which
8291 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8294 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
8295 /* If performant mode and MSI-X, use multiple reply queues */
8296 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8297 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8298 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8304 dev_err(&h
->pdev
->dev
,
8305 "failed to get irq %d for %s\n",
8306 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8307 for (j
= 0; j
< i
; j
++) {
8308 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8311 for (; j
< MAX_REPLY_QUEUES
; j
++)
8317 /* Use single reply pool */
8318 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8319 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8320 h
->msix_vectors
? "x" : "");
8321 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8324 &h
->q
[h
->intr_mode
]);
8326 sprintf(h
->intrname
[h
->intr_mode
],
8327 "%s-intx", h
->devname
);
8328 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8329 intxhandler
, IRQF_SHARED
,
8331 &h
->q
[h
->intr_mode
]);
8335 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8336 pci_irq_vector(h
->pdev
, 0), h
->devname
);
8343 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8346 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8348 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8349 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8351 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8355 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8356 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8358 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8359 "after soft reset.\n");
8366 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8370 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8371 if (!h
->reply_queue
[i
].head
)
8373 pci_free_consistent(h
->pdev
,
8374 h
->reply_queue_size
,
8375 h
->reply_queue
[i
].head
,
8376 h
->reply_queue
[i
].busaddr
);
8377 h
->reply_queue
[i
].head
= NULL
;
8378 h
->reply_queue
[i
].busaddr
= 0;
8380 h
->reply_queue_size
= 0;
8383 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8385 hpsa_free_performant_mode(h
); /* init_one 7 */
8386 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8387 hpsa_free_cmd_pool(h
); /* init_one 5 */
8388 hpsa_free_irqs(h
); /* init_one 4 */
8389 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8390 h
->scsi_host
= NULL
; /* init_one 3 */
8391 hpsa_free_pci_init(h
); /* init_one 2_5 */
8392 free_percpu(h
->lockup_detected
); /* init_one 2 */
8393 h
->lockup_detected
= NULL
; /* init_one 2 */
8394 if (h
->resubmit_wq
) {
8395 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8396 h
->resubmit_wq
= NULL
;
8398 if (h
->rescan_ctlr_wq
) {
8399 destroy_workqueue(h
->rescan_ctlr_wq
);
8400 h
->rescan_ctlr_wq
= NULL
;
8402 kfree(h
); /* init_one 1 */
8405 /* Called when controller lockup detected. */
8406 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8409 struct CommandList
*c
;
8412 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8413 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8414 c
= h
->cmd_pool
+ i
;
8415 refcount
= atomic_inc_return(&c
->refcount
);
8417 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8419 atomic_dec(&h
->commands_outstanding
);
8424 dev_warn(&h
->pdev
->dev
,
8425 "failed %d commands in fail_all\n", failcount
);
8428 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8432 for_each_online_cpu(cpu
) {
8433 u32
*lockup_detected
;
8434 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8435 *lockup_detected
= value
;
8437 wmb(); /* be sure the per-cpu variables are out to memory */
8440 static void controller_lockup_detected(struct ctlr_info
*h
)
8442 unsigned long flags
;
8443 u32 lockup_detected
;
8445 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8446 spin_lock_irqsave(&h
->lock
, flags
);
8447 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8448 if (!lockup_detected
) {
8449 /* no heartbeat, but controller gave us a zero. */
8450 dev_warn(&h
->pdev
->dev
,
8451 "lockup detected after %d but scratchpad register is zero\n",
8452 h
->heartbeat_sample_interval
/ HZ
);
8453 lockup_detected
= 0xffffffff;
8455 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8456 spin_unlock_irqrestore(&h
->lock
, flags
);
8457 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8458 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8459 pci_disable_device(h
->pdev
);
8460 fail_all_outstanding_cmds(h
);
8463 static int detect_controller_lockup(struct ctlr_info
*h
)
8467 unsigned long flags
;
8469 now
= get_jiffies_64();
8470 /* If we've received an interrupt recently, we're ok. */
8471 if (time_after64(h
->last_intr_timestamp
+
8472 (h
->heartbeat_sample_interval
), now
))
8476 * If we've already checked the heartbeat recently, we're ok.
8477 * This could happen if someone sends us a signal. We
8478 * otherwise don't care about signals in this thread.
8480 if (time_after64(h
->last_heartbeat_timestamp
+
8481 (h
->heartbeat_sample_interval
), now
))
8484 /* If heartbeat has not changed since we last looked, we're not ok. */
8485 spin_lock_irqsave(&h
->lock
, flags
);
8486 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8487 spin_unlock_irqrestore(&h
->lock
, flags
);
8488 if (h
->last_heartbeat
== heartbeat
) {
8489 controller_lockup_detected(h
);
8494 h
->last_heartbeat
= heartbeat
;
8495 h
->last_heartbeat_timestamp
= now
;
8499 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8504 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8507 /* Ask the controller to clear the events we're handling. */
8508 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8509 | CFGTBL_Trans_io_accel2
)) &&
8510 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8511 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8513 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8514 event_type
= "state change";
8515 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8516 event_type
= "configuration change";
8517 /* Stop sending new RAID offload reqs via the IO accelerator */
8518 scsi_block_requests(h
->scsi_host
);
8519 for (i
= 0; i
< h
->ndevices
; i
++) {
8520 h
->dev
[i
]->offload_enabled
= 0;
8521 h
->dev
[i
]->offload_to_be_enabled
= 0;
8523 hpsa_drain_accel_commands(h
);
8524 /* Set 'accelerator path config change' bit */
8525 dev_warn(&h
->pdev
->dev
,
8526 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8527 h
->events
, event_type
);
8528 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8529 /* Set the "clear event notify field update" bit 6 */
8530 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8531 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8532 hpsa_wait_for_clear_event_notify_ack(h
);
8533 scsi_unblock_requests(h
->scsi_host
);
8535 /* Acknowledge controller notification events. */
8536 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8537 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8538 hpsa_wait_for_clear_event_notify_ack(h
);
8540 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8541 hpsa_wait_for_mode_change_ack(h
);
8547 /* Check a register on the controller to see if there are configuration
8548 * changes (added/changed/removed logical drives, etc.) which mean that
8549 * we should rescan the controller for devices.
8550 * Also check flag for driver-initiated rescan.
8552 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8554 if (h
->drv_req_rescan
) {
8555 h
->drv_req_rescan
= 0;
8559 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8562 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8563 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8567 * Check if any of the offline devices have become ready
8569 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8571 unsigned long flags
;
8572 struct offline_device_entry
*d
;
8573 struct list_head
*this, *tmp
;
8575 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8576 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8577 d
= list_entry(this, struct offline_device_entry
,
8579 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8580 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8581 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8582 list_del(&d
->offline_list
);
8583 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8586 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8588 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8592 static int hpsa_luns_changed(struct ctlr_info
*h
)
8594 int rc
= 1; /* assume there are changes */
8595 struct ReportLUNdata
*logdev
= NULL
;
8597 /* if we can't find out if lun data has changed,
8598 * assume that it has.
8601 if (!h
->lastlogicals
)
8604 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8608 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8609 dev_warn(&h
->pdev
->dev
,
8610 "report luns failed, can't track lun changes.\n");
8613 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8614 dev_info(&h
->pdev
->dev
,
8615 "Lun changes detected.\n");
8616 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8619 rc
= 0; /* no changes detected. */
8625 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8627 unsigned long flags
;
8628 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8629 struct ctlr_info
, rescan_ctlr_work
);
8632 if (h
->remove_in_progress
)
8636 * Do the scan after the reset
8638 if (h
->reset_in_progress
) {
8639 h
->drv_req_rescan
= 1;
8643 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8644 scsi_host_get(h
->scsi_host
);
8645 hpsa_ack_ctlr_events(h
);
8646 hpsa_scan_start(h
->scsi_host
);
8647 scsi_host_put(h
->scsi_host
);
8648 } else if (h
->discovery_polling
) {
8649 hpsa_disable_rld_caching(h
);
8650 if (hpsa_luns_changed(h
)) {
8651 struct Scsi_Host
*sh
= NULL
;
8653 dev_info(&h
->pdev
->dev
,
8654 "driver discovery polling rescan.\n");
8655 sh
= scsi_host_get(h
->scsi_host
);
8657 hpsa_scan_start(sh
);
8662 spin_lock_irqsave(&h
->lock
, flags
);
8663 if (!h
->remove_in_progress
)
8664 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8665 h
->heartbeat_sample_interval
);
8666 spin_unlock_irqrestore(&h
->lock
, flags
);
8669 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8671 unsigned long flags
;
8672 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8673 struct ctlr_info
, monitor_ctlr_work
);
8675 detect_controller_lockup(h
);
8676 if (lockup_detected(h
))
8679 spin_lock_irqsave(&h
->lock
, flags
);
8680 if (!h
->remove_in_progress
)
8681 schedule_delayed_work(&h
->monitor_ctlr_work
,
8682 h
->heartbeat_sample_interval
);
8683 spin_unlock_irqrestore(&h
->lock
, flags
);
8686 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8689 struct workqueue_struct
*wq
= NULL
;
8691 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8693 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8698 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8701 struct ctlr_info
*h
;
8702 int try_soft_reset
= 0;
8703 unsigned long flags
;
8706 if (number_of_controllers
== 0)
8707 printk(KERN_INFO DRIVER_NAME
"\n");
8709 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8711 dev_warn(&pdev
->dev
, "Board ID not found\n");
8715 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8717 if (rc
!= -ENOTSUPP
)
8719 /* If the reset fails in a particular way (it has no way to do
8720 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721 * a soft reset once we get the controller configured up to the
8722 * point that it can accept a command.
8728 reinit_after_soft_reset
:
8730 /* Command structures must be aligned on a 32-byte boundary because
8731 * the 5 lower bits of the address are used by the hardware. and by
8732 * the driver. See comments in hpsa.h for more info.
8734 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8735 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8737 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8743 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8744 INIT_LIST_HEAD(&h
->offline_device_list
);
8745 spin_lock_init(&h
->lock
);
8746 spin_lock_init(&h
->offline_device_lock
);
8747 spin_lock_init(&h
->scan_lock
);
8748 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8749 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8751 /* Allocate and clear per-cpu variable lockup_detected */
8752 h
->lockup_detected
= alloc_percpu(u32
);
8753 if (!h
->lockup_detected
) {
8754 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8756 goto clean1
; /* aer/h */
8758 set_lockup_detected_for_all_cpus(h
, 0);
8760 rc
= hpsa_pci_init(h
);
8762 goto clean2
; /* lu, aer/h */
8764 /* relies on h-> settings made by hpsa_pci_init, including
8765 * interrupt_mode h->intr */
8766 rc
= hpsa_scsi_host_alloc(h
);
8768 goto clean2_5
; /* pci, lu, aer/h */
8770 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8771 h
->ctlr
= number_of_controllers
;
8772 number_of_controllers
++;
8774 /* configure PCI DMA stuff */
8775 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8779 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8783 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8784 goto clean3
; /* shost, pci, lu, aer/h */
8788 /* make sure the board interrupts are off */
8789 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8791 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8793 goto clean3
; /* shost, pci, lu, aer/h */
8794 rc
= hpsa_alloc_cmd_pool(h
);
8796 goto clean4
; /* irq, shost, pci, lu, aer/h */
8797 rc
= hpsa_alloc_sg_chain_blocks(h
);
8799 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8800 init_waitqueue_head(&h
->scan_wait_queue
);
8801 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8802 init_waitqueue_head(&h
->event_sync_wait_queue
);
8803 mutex_init(&h
->reset_mutex
);
8804 h
->scan_finished
= 1; /* no scan currently in progress */
8805 h
->scan_waiting
= 0;
8807 pci_set_drvdata(pdev
, h
);
8810 spin_lock_init(&h
->devlock
);
8811 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8813 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8815 /* create the resubmit workqueue */
8816 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8817 if (!h
->rescan_ctlr_wq
) {
8822 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8823 if (!h
->resubmit_wq
) {
8825 goto clean7
; /* aer/h */
8829 * At this point, the controller is ready to take commands.
8830 * Now, if reset_devices and the hard reset didn't work, try
8831 * the soft reset and see if that works.
8833 if (try_soft_reset
) {
8835 /* This is kind of gross. We may or may not get a completion
8836 * from the soft reset command, and if we do, then the value
8837 * from the fifo may or may not be valid. So, we wait 10 secs
8838 * after the reset throwing away any completions we get during
8839 * that time. Unregister the interrupt handler and register
8840 * fake ones to scoop up any residual completions.
8842 spin_lock_irqsave(&h
->lock
, flags
);
8843 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8844 spin_unlock_irqrestore(&h
->lock
, flags
);
8846 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8847 hpsa_intx_discard_completions
);
8849 dev_warn(&h
->pdev
->dev
,
8850 "Failed to request_irq after soft reset.\n");
8852 * cannot goto clean7 or free_irqs will be called
8853 * again. Instead, do its work
8855 hpsa_free_performant_mode(h
); /* clean7 */
8856 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8857 hpsa_free_cmd_pool(h
); /* clean5 */
8859 * skip hpsa_free_irqs(h) clean4 since that
8860 * was just called before request_irqs failed
8865 rc
= hpsa_kdump_soft_reset(h
);
8867 /* Neither hard nor soft reset worked, we're hosed. */
8870 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8871 dev_info(&h
->pdev
->dev
,
8872 "Waiting for stale completions to drain.\n");
8873 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8875 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8877 rc
= controller_reset_failed(h
->cfgtable
);
8879 dev_info(&h
->pdev
->dev
,
8880 "Soft reset appears to have failed.\n");
8882 /* since the controller's reset, we have to go back and re-init
8883 * everything. Easiest to just forget what we've done and do it
8886 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8889 /* don't goto clean, we already unallocated */
8892 goto reinit_after_soft_reset
;
8895 /* Enable Accelerated IO path at driver layer */
8896 h
->acciopath_status
= 1;
8897 /* Disable discovery polling.*/
8898 h
->discovery_polling
= 0;
8901 /* Turn the interrupts on so we can service requests */
8902 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8904 hpsa_hba_inquiry(h
);
8906 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8907 if (!h
->lastlogicals
)
8908 dev_info(&h
->pdev
->dev
,
8909 "Can't track change to report lun data\n");
8911 /* hook into SCSI subsystem */
8912 rc
= hpsa_scsi_add_host(h
);
8914 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8916 /* Monitor the controller for firmware lockups */
8917 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8918 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8919 schedule_delayed_work(&h
->monitor_ctlr_work
,
8920 h
->heartbeat_sample_interval
);
8921 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8922 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8923 h
->heartbeat_sample_interval
);
8926 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8927 hpsa_free_performant_mode(h
);
8928 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8929 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8930 hpsa_free_sg_chain_blocks(h
);
8931 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8932 hpsa_free_cmd_pool(h
);
8933 clean4
: /* irq, shost, pci, lu, aer/h */
8935 clean3
: /* shost, pci, lu, aer/h */
8936 scsi_host_put(h
->scsi_host
);
8937 h
->scsi_host
= NULL
;
8938 clean2_5
: /* pci, lu, aer/h */
8939 hpsa_free_pci_init(h
);
8940 clean2
: /* lu, aer/h */
8941 if (h
->lockup_detected
) {
8942 free_percpu(h
->lockup_detected
);
8943 h
->lockup_detected
= NULL
;
8945 clean1
: /* wq/aer/h */
8946 if (h
->resubmit_wq
) {
8947 destroy_workqueue(h
->resubmit_wq
);
8948 h
->resubmit_wq
= NULL
;
8950 if (h
->rescan_ctlr_wq
) {
8951 destroy_workqueue(h
->rescan_ctlr_wq
);
8952 h
->rescan_ctlr_wq
= NULL
;
8958 static void hpsa_flush_cache(struct ctlr_info
*h
)
8961 struct CommandList
*c
;
8964 if (unlikely(lockup_detected(h
)))
8966 flush_buf
= kzalloc(4, GFP_KERNEL
);
8972 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8973 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8976 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8977 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8980 if (c
->err_info
->CommandStatus
!= 0)
8982 dev_warn(&h
->pdev
->dev
,
8983 "error flushing cache on controller\n");
8988 /* Make controller gather fresh report lun data each time we
8989 * send down a report luns request
8991 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8994 struct CommandList
*c
;
8997 /* Don't bother trying to set diag options if locked up */
8998 if (unlikely(h
->lockup_detected
))
9001 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
9007 /* first, get the current diag options settings */
9008 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
9009 RAID_CTLR_LUNID
, TYPE_CMD
))
9012 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9013 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
9014 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9017 /* Now, set the bit for disabling the RLD caching */
9018 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
9020 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
9021 RAID_CTLR_LUNID
, TYPE_CMD
))
9024 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9025 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
9026 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9029 /* Now verify that it got set: */
9030 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
9031 RAID_CTLR_LUNID
, TYPE_CMD
))
9034 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9035 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
9036 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9039 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
9043 dev_err(&h
->pdev
->dev
,
9044 "Error: failed to disable report lun data caching.\n");
9050 static void hpsa_shutdown(struct pci_dev
*pdev
)
9052 struct ctlr_info
*h
;
9054 h
= pci_get_drvdata(pdev
);
9055 /* Turn board interrupts off and send the flush cache command
9056 * sendcmd will turn off interrupt, and send the flush...
9057 * To write all data in the battery backed cache to disks
9059 hpsa_flush_cache(h
);
9060 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
9061 hpsa_free_irqs(h
); /* init_one 4 */
9062 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
9065 static void hpsa_free_device_info(struct ctlr_info
*h
)
9069 for (i
= 0; i
< h
->ndevices
; i
++) {
9075 static void hpsa_remove_one(struct pci_dev
*pdev
)
9077 struct ctlr_info
*h
;
9078 unsigned long flags
;
9080 if (pci_get_drvdata(pdev
) == NULL
) {
9081 dev_err(&pdev
->dev
, "unable to remove device\n");
9084 h
= pci_get_drvdata(pdev
);
9086 /* Get rid of any controller monitoring work items */
9087 spin_lock_irqsave(&h
->lock
, flags
);
9088 h
->remove_in_progress
= 1;
9089 spin_unlock_irqrestore(&h
->lock
, flags
);
9090 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9091 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9092 destroy_workqueue(h
->rescan_ctlr_wq
);
9093 destroy_workqueue(h
->resubmit_wq
);
9096 * Call before disabling interrupts.
9097 * scsi_remove_host can trigger I/O operations especially
9098 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9099 * operations which cannot complete and will hang the system.
9102 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9103 /* includes hpsa_free_irqs - init_one 4 */
9104 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9105 hpsa_shutdown(pdev
);
9107 hpsa_free_device_info(h
); /* scan */
9109 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9110 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9111 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9112 hpsa_free_performant_mode(h
); /* init_one 7 */
9113 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9114 hpsa_free_cmd_pool(h
); /* init_one 5 */
9115 kfree(h
->lastlogicals
);
9117 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9119 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9120 h
->scsi_host
= NULL
; /* init_one 3 */
9122 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9123 hpsa_free_pci_init(h
); /* init_one 2.5 */
9125 free_percpu(h
->lockup_detected
); /* init_one 2 */
9126 h
->lockup_detected
= NULL
; /* init_one 2 */
9127 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9129 hpsa_delete_sas_host(h
);
9131 kfree(h
); /* init_one 1 */
9134 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
9135 __attribute__((unused
)) pm_message_t state
)
9140 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
9145 static struct pci_driver hpsa_pci_driver
= {
9147 .probe
= hpsa_init_one
,
9148 .remove
= hpsa_remove_one
,
9149 .id_table
= hpsa_pci_device_id
, /* id_table */
9150 .shutdown
= hpsa_shutdown
,
9151 .suspend
= hpsa_suspend
,
9152 .resume
= hpsa_resume
,
9155 /* Fill in bucket_map[], given nsgs (the max number of
9156 * scatter gather elements supported) and bucket[],
9157 * which is an array of 8 integers. The bucket[] array
9158 * contains 8 different DMA transfer sizes (in 16
9159 * byte increments) which the controller uses to fetch
9160 * commands. This function fills in bucket_map[], which
9161 * maps a given number of scatter gather elements to one of
9162 * the 8 DMA transfer sizes. The point of it is to allow the
9163 * controller to only do as much DMA as needed to fetch the
9164 * command, with the DMA transfer size encoded in the lower
9165 * bits of the command address.
9167 static void calc_bucket_map(int bucket
[], int num_buckets
,
9168 int nsgs
, int min_blocks
, u32
*bucket_map
)
9172 /* Note, bucket_map must have nsgs+1 entries. */
9173 for (i
= 0; i
<= nsgs
; i
++) {
9174 /* Compute size of a command with i SG entries */
9175 size
= i
+ min_blocks
;
9176 b
= num_buckets
; /* Assume the biggest bucket */
9177 /* Find the bucket that is just big enough */
9178 for (j
= 0; j
< num_buckets
; j
++) {
9179 if (bucket
[j
] >= size
) {
9184 /* for a command with i SG entries, use bucket b. */
9190 * return -ENODEV on err, 0 on success (or no action)
9191 * allocates numerous items that must be freed later
9193 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9196 unsigned long register_value
;
9197 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9198 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9199 CFGTBL_Trans_enable_directed_msix
|
9200 (trans_support
& (CFGTBL_Trans_io_accel1
|
9201 CFGTBL_Trans_io_accel2
));
9202 struct access_method access
= SA5_performant_access
;
9204 /* This is a bit complicated. There are 8 registers on
9205 * the controller which we write to to tell it 8 different
9206 * sizes of commands which there may be. It's a way of
9207 * reducing the DMA done to fetch each command. Encoded into
9208 * each command's tag are 3 bits which communicate to the controller
9209 * which of the eight sizes that command fits within. The size of
9210 * each command depends on how many scatter gather entries there are.
9211 * Each SG entry requires 16 bytes. The eight registers are programmed
9212 * with the number of 16-byte blocks a command of that size requires.
9213 * The smallest command possible requires 5 such 16 byte blocks.
9214 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9215 * blocks. Note, this only extends to the SG entries contained
9216 * within the command block, and does not extend to chained blocks
9217 * of SG elements. bft[] contains the eight values we write to
9218 * the registers. They are not evenly distributed, but have more
9219 * sizes for small commands, and fewer sizes for larger commands.
9221 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9222 #define MIN_IOACCEL2_BFT_ENTRY 5
9223 #define HPSA_IOACCEL2_HEADER_SZ 4
9224 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9225 13, 14, 15, 16, 17, 18, 19,
9226 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9227 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9228 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9229 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9230 16 * MIN_IOACCEL2_BFT_ENTRY
);
9231 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9232 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9233 /* 5 = 1 s/g entry or 4k
9234 * 6 = 2 s/g entry or 8k
9235 * 8 = 4 s/g entry or 16k
9236 * 10 = 6 s/g entry or 24k
9239 /* If the controller supports either ioaccel method then
9240 * we can also use the RAID stack submit path that does not
9241 * perform the superfluous readl() after each command submission.
9243 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9244 access
= SA5_performant_access_no_read
;
9246 /* Controller spec: zero out this buffer. */
9247 for (i
= 0; i
< h
->nreply_queues
; i
++)
9248 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9250 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9251 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9252 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9253 for (i
= 0; i
< 8; i
++)
9254 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9256 /* size of controller ring buffer */
9257 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9258 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9259 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9260 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9262 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9263 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9264 writel(h
->reply_queue
[i
].busaddr
,
9265 &h
->transtable
->RepQAddr
[i
].lower
);
9268 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9269 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9271 * enable outbound interrupt coalescing in accelerator mode;
9273 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9274 access
= SA5_ioaccel_mode1_access
;
9275 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9276 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9278 if (trans_support
& CFGTBL_Trans_io_accel2
)
9279 access
= SA5_ioaccel_mode2_access
;
9280 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9281 if (hpsa_wait_for_mode_change_ack(h
)) {
9282 dev_err(&h
->pdev
->dev
,
9283 "performant mode problem - doorbell timeout\n");
9286 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9287 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9288 dev_err(&h
->pdev
->dev
,
9289 "performant mode problem - transport not active\n");
9292 /* Change the access methods to the performant access methods */
9294 h
->transMethod
= transMethod
;
9296 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9297 (trans_support
& CFGTBL_Trans_io_accel2
)))
9300 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9301 /* Set up I/O accelerator mode */
9302 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9303 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9304 h
->reply_queue
[i
].current_entry
=
9305 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9307 bft
[7] = h
->ioaccel_maxsg
+ 8;
9308 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9309 h
->ioaccel1_blockFetchTable
);
9311 /* initialize all reply queue entries to unused */
9312 for (i
= 0; i
< h
->nreply_queues
; i
++)
9313 memset(h
->reply_queue
[i
].head
,
9314 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9315 h
->reply_queue_size
);
9317 /* set all the constant fields in the accelerator command
9318 * frames once at init time to save CPU cycles later.
9320 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9321 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9323 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9324 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9325 (i
* sizeof(struct ErrorInfo
)));
9326 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9327 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9328 cp
->host_context_flags
=
9329 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9330 cp
->timeout_sec
= 0;
9333 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9335 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9336 (i
* sizeof(struct io_accel1_cmd
)));
9338 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9339 u64 cfg_offset
, cfg_base_addr_index
;
9340 u32 bft2_offset
, cfg_base_addr
;
9343 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9344 &cfg_base_addr_index
, &cfg_offset
);
9345 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9346 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9347 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9348 4, h
->ioaccel2_blockFetchTable
);
9349 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9350 BUILD_BUG_ON(offsetof(struct CfgTable
,
9351 io_accel_request_size_offset
) != 0xb8);
9352 h
->ioaccel2_bft2_regs
=
9353 remap_pci_mem(pci_resource_start(h
->pdev
,
9354 cfg_base_addr_index
) +
9355 cfg_offset
+ bft2_offset
,
9357 sizeof(*h
->ioaccel2_bft2_regs
));
9358 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9359 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9361 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9362 if (hpsa_wait_for_mode_change_ack(h
)) {
9363 dev_err(&h
->pdev
->dev
,
9364 "performant mode problem - enabling ioaccel mode\n");
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9373 if (h
->ioaccel_cmd_pool
) {
9374 pci_free_consistent(h
->pdev
,
9375 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9376 h
->ioaccel_cmd_pool
,
9377 h
->ioaccel_cmd_pool_dhandle
);
9378 h
->ioaccel_cmd_pool
= NULL
;
9379 h
->ioaccel_cmd_pool_dhandle
= 0;
9381 kfree(h
->ioaccel1_blockFetchTable
);
9382 h
->ioaccel1_blockFetchTable
= NULL
;
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9389 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9390 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9391 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9393 /* Command structures must be aligned on a 128-byte boundary
9394 * because the 7 lower bits of the address are used by the
9397 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9398 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9399 h
->ioaccel_cmd_pool
=
9400 pci_alloc_consistent(h
->pdev
,
9401 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9402 &(h
->ioaccel_cmd_pool_dhandle
));
9404 h
->ioaccel1_blockFetchTable
=
9405 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9406 sizeof(u32
)), GFP_KERNEL
);
9408 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9409 (h
->ioaccel1_blockFetchTable
== NULL
))
9412 memset(h
->ioaccel_cmd_pool
, 0,
9413 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9417 hpsa_free_ioaccel1_cmd_and_bft(h
);
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9424 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9426 if (h
->ioaccel2_cmd_pool
) {
9427 pci_free_consistent(h
->pdev
,
9428 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9429 h
->ioaccel2_cmd_pool
,
9430 h
->ioaccel2_cmd_pool_dhandle
);
9431 h
->ioaccel2_cmd_pool
= NULL
;
9432 h
->ioaccel2_cmd_pool_dhandle
= 0;
9434 kfree(h
->ioaccel2_blockFetchTable
);
9435 h
->ioaccel2_blockFetchTable
= NULL
;
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9443 /* Allocate ioaccel2 mode command blocks and block fetch table */
9446 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9447 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9448 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9450 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9451 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9452 h
->ioaccel2_cmd_pool
=
9453 pci_alloc_consistent(h
->pdev
,
9454 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9455 &(h
->ioaccel2_cmd_pool_dhandle
));
9457 h
->ioaccel2_blockFetchTable
=
9458 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9459 sizeof(u32
)), GFP_KERNEL
);
9461 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9462 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9467 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9471 memset(h
->ioaccel2_cmd_pool
, 0,
9472 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9476 hpsa_free_ioaccel2_cmd_and_bft(h
);
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9483 kfree(h
->blockFetchTable
);
9484 h
->blockFetchTable
= NULL
;
9485 hpsa_free_reply_queues(h
);
9486 hpsa_free_ioaccel1_cmd_and_bft(h
);
9487 hpsa_free_ioaccel2_cmd_and_bft(h
);
9490 /* return -ENODEV on error, 0 on success (or no action)
9491 * allocates numerous items that must be freed later
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9496 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9497 CFGTBL_Trans_use_short_tags
;
9500 if (hpsa_simple_mode
)
9503 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9504 if (!(trans_support
& PERFORMANT_MODE
))
9507 /* Check for I/O accelerator mode support */
9508 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9509 transMethod
|= CFGTBL_Trans_io_accel1
|
9510 CFGTBL_Trans_enable_directed_msix
;
9511 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9514 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9515 transMethod
|= CFGTBL_Trans_io_accel2
|
9516 CFGTBL_Trans_enable_directed_msix
;
9517 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9522 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9523 hpsa_get_max_perf_mode_cmds(h
);
9524 /* Performant mode ring buffer and supporting data structures */
9525 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9527 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9528 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9529 h
->reply_queue_size
,
9530 &(h
->reply_queue
[i
].busaddr
));
9531 if (!h
->reply_queue
[i
].head
) {
9533 goto clean1
; /* rq, ioaccel */
9535 h
->reply_queue
[i
].size
= h
->max_commands
;
9536 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9537 h
->reply_queue
[i
].current_entry
= 0;
9540 /* Need a block fetch table for performant mode */
9541 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9542 sizeof(u32
)), GFP_KERNEL
);
9543 if (!h
->blockFetchTable
) {
9545 goto clean1
; /* rq, ioaccel */
9548 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9550 goto clean2
; /* bft, rq, ioaccel */
9553 clean2
: /* bft, rq, ioaccel */
9554 kfree(h
->blockFetchTable
);
9555 h
->blockFetchTable
= NULL
;
9556 clean1
: /* rq, ioaccel */
9557 hpsa_free_reply_queues(h
);
9558 hpsa_free_ioaccel1_cmd_and_bft(h
);
9559 hpsa_free_ioaccel2_cmd_and_bft(h
);
9563 static int is_accelerated_cmd(struct CommandList
*c
)
9565 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9568 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9570 struct CommandList
*c
= NULL
;
9571 int i
, accel_cmds_out
;
9574 do { /* wait for all outstanding ioaccel commands to drain out */
9576 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9577 c
= h
->cmd_pool
+ i
;
9578 refcount
= atomic_inc_return(&c
->refcount
);
9579 if (refcount
> 1) /* Command is allocated */
9580 accel_cmds_out
+= is_accelerated_cmd(c
);
9583 if (accel_cmds_out
<= 0)
9589 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9590 struct hpsa_sas_port
*hpsa_sas_port
)
9592 struct hpsa_sas_phy
*hpsa_sas_phy
;
9593 struct sas_phy
*phy
;
9595 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9599 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9600 hpsa_sas_port
->next_phy_index
);
9602 kfree(hpsa_sas_phy
);
9606 hpsa_sas_port
->next_phy_index
++;
9607 hpsa_sas_phy
->phy
= phy
;
9608 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9610 return hpsa_sas_phy
;
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9615 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9617 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9619 if (hpsa_sas_phy
->added_to_port
)
9620 list_del(&hpsa_sas_phy
->phy_list_entry
);
9621 kfree(hpsa_sas_phy
);
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9627 struct hpsa_sas_port
*hpsa_sas_port
;
9628 struct sas_phy
*phy
;
9629 struct sas_identify
*identify
;
9631 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9632 phy
= hpsa_sas_phy
->phy
;
9634 identify
= &phy
->identify
;
9635 memset(identify
, 0, sizeof(*identify
));
9636 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9637 identify
->device_type
= SAS_END_DEVICE
;
9638 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9639 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9640 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9641 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9642 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9643 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9644 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9646 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9650 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9651 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9652 &hpsa_sas_port
->phy_list_head
);
9653 hpsa_sas_phy
->added_to_port
= true;
9659 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9660 struct sas_rphy
*rphy
)
9662 struct sas_identify
*identify
;
9664 identify
= &rphy
->identify
;
9665 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9666 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9667 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9669 return sas_rphy_add(rphy
);
9672 static struct hpsa_sas_port
9673 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9677 struct hpsa_sas_port
*hpsa_sas_port
;
9678 struct sas_port
*port
;
9680 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9684 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9685 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9687 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9689 goto free_hpsa_port
;
9691 rc
= sas_port_add(port
);
9695 hpsa_sas_port
->port
= port
;
9696 hpsa_sas_port
->sas_address
= sas_address
;
9697 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9698 &hpsa_sas_node
->port_list_head
);
9700 return hpsa_sas_port
;
9703 sas_port_free(port
);
9705 kfree(hpsa_sas_port
);
9710 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9712 struct hpsa_sas_phy
*hpsa_sas_phy
;
9713 struct hpsa_sas_phy
*next
;
9715 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9716 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9717 hpsa_free_sas_phy(hpsa_sas_phy
);
9719 sas_port_delete(hpsa_sas_port
->port
);
9720 list_del(&hpsa_sas_port
->port_list_entry
);
9721 kfree(hpsa_sas_port
);
9724 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9726 struct hpsa_sas_node
*hpsa_sas_node
;
9728 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9729 if (hpsa_sas_node
) {
9730 hpsa_sas_node
->parent_dev
= parent_dev
;
9731 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9734 return hpsa_sas_node
;
9737 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9739 struct hpsa_sas_port
*hpsa_sas_port
;
9740 struct hpsa_sas_port
*next
;
9745 list_for_each_entry_safe(hpsa_sas_port
, next
,
9746 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9747 hpsa_free_sas_port(hpsa_sas_port
);
9749 kfree(hpsa_sas_node
);
9752 static struct hpsa_scsi_dev_t
9753 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9754 struct sas_rphy
*rphy
)
9757 struct hpsa_scsi_dev_t
*device
;
9759 for (i
= 0; i
< h
->ndevices
; i
++) {
9761 if (!device
->sas_port
)
9763 if (device
->sas_port
->rphy
== rphy
)
9770 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9773 struct device
*parent_dev
;
9774 struct hpsa_sas_node
*hpsa_sas_node
;
9775 struct hpsa_sas_port
*hpsa_sas_port
;
9776 struct hpsa_sas_phy
*hpsa_sas_phy
;
9778 parent_dev
= &h
->scsi_host
->shost_gendev
;
9780 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9784 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9785 if (!hpsa_sas_port
) {
9790 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9791 if (!hpsa_sas_phy
) {
9796 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9800 h
->sas_host
= hpsa_sas_node
;
9805 hpsa_free_sas_phy(hpsa_sas_phy
);
9807 hpsa_free_sas_port(hpsa_sas_port
);
9809 hpsa_free_sas_node(hpsa_sas_node
);
9814 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9816 hpsa_free_sas_node(h
->sas_host
);
9819 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9820 struct hpsa_scsi_dev_t
*device
)
9823 struct hpsa_sas_port
*hpsa_sas_port
;
9824 struct sas_rphy
*rphy
;
9826 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9830 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9836 hpsa_sas_port
->rphy
= rphy
;
9837 device
->sas_port
= hpsa_sas_port
;
9839 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9846 hpsa_free_sas_port(hpsa_sas_port
);
9847 device
->sas_port
= NULL
;
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9854 if (device
->sas_port
) {
9855 hpsa_free_sas_port(device
->sas_port
);
9856 device
->sas_port
= NULL
;
9861 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9874 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9880 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9886 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9892 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9898 hpsa_sas_phy_release(struct sas_phy
*phy
)
9903 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9908 /* SMP = Serial Management Protocol */
9910 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9911 struct request
*req
)
9916 static struct sas_function_template hpsa_sas_transport_functions
= {
9917 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9918 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9919 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9920 .phy_reset
= hpsa_sas_phy_reset
,
9921 .phy_enable
= hpsa_sas_phy_enable
,
9922 .phy_setup
= hpsa_sas_phy_setup
,
9923 .phy_release
= hpsa_sas_phy_release
,
9924 .set_phy_speed
= hpsa_sas_phy_speed
,
9925 .smp_handler
= hpsa_sas_smp_handler
,
9929 * This is it. Register the PCI driver information for the cards we control
9930 * the OS will call our registered routines when it finds one of our cards.
9932 static int __init
hpsa_init(void)
9936 hpsa_sas_transport_template
=
9937 sas_attach_transport(&hpsa_sas_transport_functions
);
9938 if (!hpsa_sas_transport_template
)
9941 rc
= pci_register_driver(&hpsa_pci_driver
);
9944 sas_release_transport(hpsa_sas_transport_template
);
9949 static void __exit
hpsa_cleanup(void)
9951 pci_unregister_driver(&hpsa_pci_driver
);
9952 sas_release_transport(hpsa_sas_transport_template
);
9955 static void __attribute__((unused
)) verify_offsets(void)
9957 #define VERIFY_OFFSET(member, offset) \
9958 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9960 VERIFY_OFFSET(structure_size
, 0);
9961 VERIFY_OFFSET(volume_blk_size
, 4);
9962 VERIFY_OFFSET(volume_blk_cnt
, 8);
9963 VERIFY_OFFSET(phys_blk_shift
, 16);
9964 VERIFY_OFFSET(parity_rotation_shift
, 17);
9965 VERIFY_OFFSET(strip_size
, 18);
9966 VERIFY_OFFSET(disk_starting_blk
, 20);
9967 VERIFY_OFFSET(disk_blk_cnt
, 28);
9968 VERIFY_OFFSET(data_disks_per_row
, 36);
9969 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9970 VERIFY_OFFSET(row_cnt
, 40);
9971 VERIFY_OFFSET(layout_map_count
, 42);
9972 VERIFY_OFFSET(flags
, 44);
9973 VERIFY_OFFSET(dekindex
, 46);
9974 /* VERIFY_OFFSET(reserved, 48 */
9975 VERIFY_OFFSET(data
, 64);
9977 #undef VERIFY_OFFSET
9979 #define VERIFY_OFFSET(member, offset) \
9980 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9982 VERIFY_OFFSET(IU_type
, 0);
9983 VERIFY_OFFSET(direction
, 1);
9984 VERIFY_OFFSET(reply_queue
, 2);
9985 /* VERIFY_OFFSET(reserved1, 3); */
9986 VERIFY_OFFSET(scsi_nexus
, 4);
9987 VERIFY_OFFSET(Tag
, 8);
9988 VERIFY_OFFSET(cdb
, 16);
9989 VERIFY_OFFSET(cciss_lun
, 32);
9990 VERIFY_OFFSET(data_len
, 40);
9991 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9992 VERIFY_OFFSET(sg_count
, 45);
9993 /* VERIFY_OFFSET(reserved3 */
9994 VERIFY_OFFSET(err_ptr
, 48);
9995 VERIFY_OFFSET(err_len
, 56);
9996 /* VERIFY_OFFSET(reserved4 */
9997 VERIFY_OFFSET(sg
, 64);
9999 #undef VERIFY_OFFSET
10001 #define VERIFY_OFFSET(member, offset) \
10002 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10004 VERIFY_OFFSET(dev_handle
, 0x00);
10005 VERIFY_OFFSET(reserved1
, 0x02);
10006 VERIFY_OFFSET(function
, 0x03);
10007 VERIFY_OFFSET(reserved2
, 0x04);
10008 VERIFY_OFFSET(err_info
, 0x0C);
10009 VERIFY_OFFSET(reserved3
, 0x10);
10010 VERIFY_OFFSET(err_info_len
, 0x12);
10011 VERIFY_OFFSET(reserved4
, 0x13);
10012 VERIFY_OFFSET(sgl_offset
, 0x14);
10013 VERIFY_OFFSET(reserved5
, 0x15);
10014 VERIFY_OFFSET(transfer_len
, 0x1C);
10015 VERIFY_OFFSET(reserved6
, 0x20);
10016 VERIFY_OFFSET(io_flags
, 0x24);
10017 VERIFY_OFFSET(reserved7
, 0x26);
10018 VERIFY_OFFSET(LUN
, 0x34);
10019 VERIFY_OFFSET(control
, 0x3C);
10020 VERIFY_OFFSET(CDB
, 0x40);
10021 VERIFY_OFFSET(reserved8
, 0x50);
10022 VERIFY_OFFSET(host_context_flags
, 0x60);
10023 VERIFY_OFFSET(timeout_sec
, 0x62);
10024 VERIFY_OFFSET(ReplyQueue
, 0x64);
10025 VERIFY_OFFSET(reserved9
, 0x65);
10026 VERIFY_OFFSET(tag
, 0x68);
10027 VERIFY_OFFSET(host_addr
, 0x70);
10028 VERIFY_OFFSET(CISS_LUN
, 0x78);
10029 VERIFY_OFFSET(SG
, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10033 module_init(hpsa_init
);
10034 module_exit(hpsa_cleanup
);