2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
53 #include "timekeeping.h"
56 * Management arrays for POSIX timers. Timers are now kept in static hash table
58 * Timer ids are allocated by local routine, which selects proper hash head by
59 * key, constructed from current->signal address and per signal struct counter.
60 * This keeps timer ids unique per process, but now they can intersect between
65 * Lets keep our timers in a slab cache :-)
67 static struct kmem_cache
*posix_timers_cache
;
69 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
70 static DEFINE_SPINLOCK(hash_lock
);
73 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
74 * SIGEV values. Here we put out an error if this assumption fails.
76 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
77 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
78 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 * parisc wants ENOTSUP instead of EOPNOTSUPP
85 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
87 # define ENANOSLEEP_NOTSUP ENOTSUP
91 * The timer ID is turned into a timer address by idr_find().
92 * Verifying a valid ID consists of:
94 * a) checking that idr_find() returns other than -1.
95 * b) checking that the timer id matches the one in the timer itself.
96 * c) that the timer owner is in the callers thread group.
100 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
101 * to implement others. This structure defines the various
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
112 * FUNCTIONS: The CLOCKs structure defines possible functions to
113 * handle various clock functions.
115 * The standard POSIX timer management code assumes the
116 * following: 1.) The k_itimer struct (sched.h) is used for
117 * the timer. 2.) The list, it_lock, it_clock, it_id and
118 * it_pid fields are not modified by timer code.
120 * Permissions: It is assumed that the clock_settime() function defined
121 * for each clock will take care of permission checks. Some
122 * clocks may be set able by any user (i.e. local process
123 * clocks) others not. Currently the only set able clock we
124 * have is CLOCK_REALTIME and its high res counter part, both of
125 * which we beg off on and pass to do_sys_settimeofday().
128 static struct k_clock posix_clocks
[MAX_CLOCKS
];
131 * These ones are defined below.
133 static int common_nsleep(const clockid_t
, int flags
, struct timespec
*t
,
134 struct timespec __user
*rmtp
);
135 static int common_timer_create(struct k_itimer
*new_timer
);
136 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
137 static int common_timer_set(struct k_itimer
*, int,
138 struct itimerspec
*, struct itimerspec
*);
139 static int common_timer_del(struct k_itimer
*timer
);
141 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*data
);
143 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
145 #define lock_timer(tid, flags) \
146 ({ struct k_itimer *__timr; \
147 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
151 static int hash(struct signal_struct
*sig
, unsigned int nr
)
153 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
156 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
157 struct signal_struct
*sig
,
160 struct k_itimer
*timer
;
162 hlist_for_each_entry_rcu(timer
, head
, t_hash
) {
163 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
169 static struct k_itimer
*posix_timer_by_id(timer_t id
)
171 struct signal_struct
*sig
= current
->signal
;
172 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
174 return __posix_timers_find(head
, sig
, id
);
177 static int posix_timer_add(struct k_itimer
*timer
)
179 struct signal_struct
*sig
= current
->signal
;
180 int first_free_id
= sig
->posix_timer_id
;
181 struct hlist_head
*head
;
185 spin_lock(&hash_lock
);
186 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
187 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
188 hlist_add_head_rcu(&timer
->t_hash
, head
);
189 ret
= sig
->posix_timer_id
;
191 if (++sig
->posix_timer_id
< 0)
192 sig
->posix_timer_id
= 0;
193 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
194 /* Loop over all possible ids completed */
196 spin_unlock(&hash_lock
);
197 } while (ret
== -ENOENT
);
201 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
203 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
206 /* Get clock_realtime */
207 static int posix_clock_realtime_get(clockid_t which_clock
, struct timespec
*tp
)
209 ktime_get_real_ts(tp
);
213 /* Set clock_realtime */
214 static int posix_clock_realtime_set(const clockid_t which_clock
,
215 const struct timespec
*tp
)
217 return do_sys_settimeofday(tp
, NULL
);
220 static int posix_clock_realtime_adj(const clockid_t which_clock
,
223 return do_adjtimex(t
);
227 * Get monotonic time for posix timers
229 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec
*tp
)
236 * Get monotonic-raw time for posix timers
238 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec
*tp
)
245 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec
*tp
)
247 *tp
= current_kernel_time();
251 static int posix_get_monotonic_coarse(clockid_t which_clock
,
254 *tp
= get_monotonic_coarse();
258 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec
*tp
)
260 *tp
= ktime_to_timespec(KTIME_LOW_RES
);
264 static int posix_get_boottime(const clockid_t which_clock
, struct timespec
*tp
)
266 get_monotonic_boottime(tp
);
270 static int posix_get_tai(clockid_t which_clock
, struct timespec
*tp
)
272 timekeeping_clocktai(tp
);
276 static int posix_get_hrtimer_res(clockid_t which_clock
, struct timespec
*tp
)
279 tp
->tv_nsec
= hrtimer_resolution
;
284 * Initialize everything, well, just everything in Posix clocks/timers ;)
286 static __init
int init_posix_timers(void)
288 struct k_clock clock_realtime
= {
289 .clock_getres
= posix_get_hrtimer_res
,
290 .clock_get
= posix_clock_realtime_get
,
291 .clock_set
= posix_clock_realtime_set
,
292 .clock_adj
= posix_clock_realtime_adj
,
293 .nsleep
= common_nsleep
,
294 .nsleep_restart
= hrtimer_nanosleep_restart
,
295 .timer_create
= common_timer_create
,
296 .timer_set
= common_timer_set
,
297 .timer_get
= common_timer_get
,
298 .timer_del
= common_timer_del
,
300 struct k_clock clock_monotonic
= {
301 .clock_getres
= posix_get_hrtimer_res
,
302 .clock_get
= posix_ktime_get_ts
,
303 .nsleep
= common_nsleep
,
304 .nsleep_restart
= hrtimer_nanosleep_restart
,
305 .timer_create
= common_timer_create
,
306 .timer_set
= common_timer_set
,
307 .timer_get
= common_timer_get
,
308 .timer_del
= common_timer_del
,
310 struct k_clock clock_monotonic_raw
= {
311 .clock_getres
= posix_get_hrtimer_res
,
312 .clock_get
= posix_get_monotonic_raw
,
314 struct k_clock clock_realtime_coarse
= {
315 .clock_getres
= posix_get_coarse_res
,
316 .clock_get
= posix_get_realtime_coarse
,
318 struct k_clock clock_monotonic_coarse
= {
319 .clock_getres
= posix_get_coarse_res
,
320 .clock_get
= posix_get_monotonic_coarse
,
322 struct k_clock clock_tai
= {
323 .clock_getres
= posix_get_hrtimer_res
,
324 .clock_get
= posix_get_tai
,
325 .nsleep
= common_nsleep
,
326 .nsleep_restart
= hrtimer_nanosleep_restart
,
327 .timer_create
= common_timer_create
,
328 .timer_set
= common_timer_set
,
329 .timer_get
= common_timer_get
,
330 .timer_del
= common_timer_del
,
332 struct k_clock clock_boottime
= {
333 .clock_getres
= posix_get_hrtimer_res
,
334 .clock_get
= posix_get_boottime
,
335 .nsleep
= common_nsleep
,
336 .nsleep_restart
= hrtimer_nanosleep_restart
,
337 .timer_create
= common_timer_create
,
338 .timer_set
= common_timer_set
,
339 .timer_get
= common_timer_get
,
340 .timer_del
= common_timer_del
,
343 posix_timers_register_clock(CLOCK_REALTIME
, &clock_realtime
);
344 posix_timers_register_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
345 posix_timers_register_clock(CLOCK_MONOTONIC_RAW
, &clock_monotonic_raw
);
346 posix_timers_register_clock(CLOCK_REALTIME_COARSE
, &clock_realtime_coarse
);
347 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE
, &clock_monotonic_coarse
);
348 posix_timers_register_clock(CLOCK_BOOTTIME
, &clock_boottime
);
349 posix_timers_register_clock(CLOCK_TAI
, &clock_tai
);
351 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
352 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
357 __initcall(init_posix_timers
);
359 static void schedule_next_timer(struct k_itimer
*timr
)
361 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
363 if (timr
->it
.real
.interval
== 0)
366 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
,
367 timer
->base
->get_time(),
368 timr
->it
.real
.interval
);
370 timr
->it_overrun_last
= timr
->it_overrun
;
371 timr
->it_overrun
= -1;
372 ++timr
->it_requeue_pending
;
373 hrtimer_restart(timer
);
377 * This function is exported for use by the signal deliver code. It is
378 * called just prior to the info block being released and passes that
379 * block to us. It's function is to update the overrun entry AND to
380 * restart the timer. It should only be called if the timer is to be
381 * restarted (i.e. we have flagged this in the sys_private entry of the
384 * To protect against the timer going away while the interrupt is queued,
385 * we require that the it_requeue_pending flag be set.
387 void do_schedule_next_timer(struct siginfo
*info
)
389 struct k_itimer
*timr
;
392 timr
= lock_timer(info
->si_tid
, &flags
);
394 if (timr
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
395 if (timr
->it_clock
< 0)
396 posix_cpu_timer_schedule(timr
);
398 schedule_next_timer(timr
);
400 info
->si_overrun
+= timr
->it_overrun_last
;
404 unlock_timer(timr
, flags
);
407 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
409 struct task_struct
*task
;
410 int shared
, ret
= -1;
412 * FIXME: if ->sigq is queued we can race with
413 * dequeue_signal()->do_schedule_next_timer().
415 * If dequeue_signal() sees the "right" value of
416 * si_sys_private it calls do_schedule_next_timer().
417 * We re-queue ->sigq and drop ->it_lock().
418 * do_schedule_next_timer() locks the timer
419 * and re-schedules it while ->sigq is pending.
420 * Not really bad, but not that we want.
422 timr
->sigq
->info
.si_sys_private
= si_private
;
425 task
= pid_task(timr
->it_pid
, PIDTYPE_PID
);
427 shared
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
);
428 ret
= send_sigqueue(timr
->sigq
, task
, shared
);
431 /* If we failed to send the signal the timer stops. */
434 EXPORT_SYMBOL_GPL(posix_timer_event
);
437 * This function gets called when a POSIX.1b interval timer expires. It
438 * is used as a callback from the kernel internal timer. The
439 * run_timer_list code ALWAYS calls with interrupts on.
441 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
443 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
445 struct k_itimer
*timr
;
448 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
450 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
451 spin_lock_irqsave(&timr
->it_lock
, flags
);
453 if (timr
->it
.real
.interval
!= 0)
454 si_private
= ++timr
->it_requeue_pending
;
456 if (posix_timer_event(timr
, si_private
)) {
458 * signal was not sent because of sig_ignor
459 * we will not get a call back to restart it AND
460 * it should be restarted.
462 if (timr
->it
.real
.interval
!= 0) {
463 ktime_t now
= hrtimer_cb_get_time(timer
);
466 * FIXME: What we really want, is to stop this
467 * timer completely and restart it in case the
468 * SIG_IGN is removed. This is a non trivial
469 * change which involves sighand locking
470 * (sigh !), which we don't want to do late in
473 * For now we just let timers with an interval
474 * less than a jiffie expire every jiffie to
475 * avoid softirq starvation in case of SIG_IGN
476 * and a very small interval, which would put
477 * the timer right back on the softirq pending
478 * list. By moving now ahead of time we trick
479 * hrtimer_forward() to expire the timer
480 * later, while we still maintain the overrun
481 * accuracy, but have some inconsistency in
482 * the timer_gettime() case. This is at least
483 * better than a starved softirq. A more
484 * complex fix which solves also another related
485 * inconsistency is already in the pipeline.
487 #ifdef CONFIG_HIGH_RES_TIMERS
489 ktime_t kj
= NSEC_PER_SEC
/ HZ
;
491 if (timr
->it
.real
.interval
< kj
)
492 now
= ktime_add(now
, kj
);
495 timr
->it_overrun
+= (unsigned int)
496 hrtimer_forward(timer
, now
,
497 timr
->it
.real
.interval
);
498 ret
= HRTIMER_RESTART
;
499 ++timr
->it_requeue_pending
;
503 unlock_timer(timr
, flags
);
507 static struct pid
*good_sigevent(sigevent_t
* event
)
509 struct task_struct
*rtn
= current
->group_leader
;
511 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
512 (!(rtn
= find_task_by_vpid(event
->sigev_notify_thread_id
)) ||
513 !same_thread_group(rtn
, current
) ||
514 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
517 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
518 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
521 return task_pid(rtn
);
524 void posix_timers_register_clock(const clockid_t clock_id
,
525 struct k_clock
*new_clock
)
527 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
528 printk(KERN_WARNING
"POSIX clock register failed for clock_id %d\n",
533 if (!new_clock
->clock_get
) {
534 printk(KERN_WARNING
"POSIX clock id %d lacks clock_get()\n",
538 if (!new_clock
->clock_getres
) {
539 printk(KERN_WARNING
"POSIX clock id %d lacks clock_getres()\n",
544 posix_clocks
[clock_id
] = *new_clock
;
546 EXPORT_SYMBOL_GPL(posix_timers_register_clock
);
548 static struct k_itimer
* alloc_posix_timer(void)
550 struct k_itimer
*tmr
;
551 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
554 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
555 kmem_cache_free(posix_timers_cache
, tmr
);
558 memset(&tmr
->sigq
->info
, 0, sizeof(siginfo_t
));
562 static void k_itimer_rcu_free(struct rcu_head
*head
)
564 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, it
.rcu
);
566 kmem_cache_free(posix_timers_cache
, tmr
);
570 #define IT_ID_NOT_SET 0
571 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
575 spin_lock_irqsave(&hash_lock
, flags
);
576 hlist_del_rcu(&tmr
->t_hash
);
577 spin_unlock_irqrestore(&hash_lock
, flags
);
579 put_pid(tmr
->it_pid
);
580 sigqueue_free(tmr
->sigq
);
581 call_rcu(&tmr
->it
.rcu
, k_itimer_rcu_free
);
584 static struct k_clock
*clockid_to_kclock(const clockid_t id
)
587 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
588 &clock_posix_dynamic
: &clock_posix_cpu
;
590 if (id
>= MAX_CLOCKS
|| !posix_clocks
[id
].clock_getres
)
592 return &posix_clocks
[id
];
595 static int common_timer_create(struct k_itimer
*new_timer
)
597 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
601 /* Create a POSIX.1b interval timer. */
603 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
604 struct sigevent __user
*, timer_event_spec
,
605 timer_t __user
*, created_timer_id
)
607 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
608 struct k_itimer
*new_timer
;
609 int error
, new_timer_id
;
611 int it_id_set
= IT_ID_NOT_SET
;
615 if (!kc
->timer_create
)
618 new_timer
= alloc_posix_timer();
619 if (unlikely(!new_timer
))
622 spin_lock_init(&new_timer
->it_lock
);
623 new_timer_id
= posix_timer_add(new_timer
);
624 if (new_timer_id
< 0) {
625 error
= new_timer_id
;
629 it_id_set
= IT_ID_SET
;
630 new_timer
->it_id
= (timer_t
) new_timer_id
;
631 new_timer
->it_clock
= which_clock
;
632 new_timer
->it_overrun
= -1;
634 if (timer_event_spec
) {
635 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
640 new_timer
->it_pid
= get_pid(good_sigevent(&event
));
642 if (!new_timer
->it_pid
) {
647 memset(&event
.sigev_value
, 0, sizeof(event
.sigev_value
));
648 event
.sigev_notify
= SIGEV_SIGNAL
;
649 event
.sigev_signo
= SIGALRM
;
650 event
.sigev_value
.sival_int
= new_timer
->it_id
;
651 new_timer
->it_pid
= get_pid(task_tgid(current
));
654 new_timer
->it_sigev_notify
= event
.sigev_notify
;
655 new_timer
->sigq
->info
.si_signo
= event
.sigev_signo
;
656 new_timer
->sigq
->info
.si_value
= event
.sigev_value
;
657 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
658 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
660 if (copy_to_user(created_timer_id
,
661 &new_timer_id
, sizeof (new_timer_id
))) {
666 error
= kc
->timer_create(new_timer
);
670 spin_lock_irq(¤t
->sighand
->siglock
);
671 new_timer
->it_signal
= current
->signal
;
672 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
673 spin_unlock_irq(¤t
->sighand
->siglock
);
677 * In the case of the timer belonging to another task, after
678 * the task is unlocked, the timer is owned by the other task
679 * and may cease to exist at any time. Don't use or modify
680 * new_timer after the unlock call.
683 release_posix_timer(new_timer
, it_id_set
);
688 * Locking issues: We need to protect the result of the id look up until
689 * we get the timer locked down so it is not deleted under us. The
690 * removal is done under the idr spinlock so we use that here to bridge
691 * the find to the timer lock. To avoid a dead lock, the timer id MUST
692 * be release with out holding the timer lock.
694 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
696 struct k_itimer
*timr
;
699 * timer_t could be any type >= int and we want to make sure any
700 * @timer_id outside positive int range fails lookup.
702 if ((unsigned long long)timer_id
> INT_MAX
)
706 timr
= posix_timer_by_id(timer_id
);
708 spin_lock_irqsave(&timr
->it_lock
, *flags
);
709 if (timr
->it_signal
== current
->signal
) {
713 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
721 * Get the time remaining on a POSIX.1b interval timer. This function
722 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
725 * We have a couple of messes to clean up here. First there is the case
726 * of a timer that has a requeue pending. These timers should appear to
727 * be in the timer list with an expiry as if we were to requeue them
730 * The second issue is the SIGEV_NONE timer which may be active but is
731 * not really ever put in the timer list (to save system resources).
732 * This timer may be expired, and if so, we will do it here. Otherwise
733 * it is the same as a requeue pending timer WRT to what we should
737 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
739 ktime_t now
, remaining
, iv
;
740 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
742 memset(cur_setting
, 0, sizeof(struct itimerspec
));
744 iv
= timr
->it
.real
.interval
;
746 /* interval timer ? */
748 cur_setting
->it_interval
= ktime_to_timespec(iv
);
749 else if (!hrtimer_active(timer
) &&
750 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
753 now
= timer
->base
->get_time();
756 * When a requeue is pending or this is a SIGEV_NONE
757 * timer move the expiry time forward by intervals, so
760 if (iv
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
||
761 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
))
762 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
, now
, iv
);
764 remaining
= __hrtimer_expires_remaining_adjusted(timer
, now
);
765 /* Return 0 only, when the timer is expired and not pending */
766 if (remaining
<= 0) {
768 * A single shot SIGEV_NONE timer must return 0, when
771 if ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
772 cur_setting
->it_value
.tv_nsec
= 1;
774 cur_setting
->it_value
= ktime_to_timespec(remaining
);
777 /* Get the time remaining on a POSIX.1b interval timer. */
778 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
779 struct itimerspec __user
*, setting
)
781 struct itimerspec cur_setting
;
782 struct k_itimer
*timr
;
787 timr
= lock_timer(timer_id
, &flags
);
791 kc
= clockid_to_kclock(timr
->it_clock
);
792 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
795 kc
->timer_get(timr
, &cur_setting
);
797 unlock_timer(timr
, flags
);
799 if (!ret
&& copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
806 * Get the number of overruns of a POSIX.1b interval timer. This is to
807 * be the overrun of the timer last delivered. At the same time we are
808 * accumulating overruns on the next timer. The overrun is frozen when
809 * the signal is delivered, either at the notify time (if the info block
810 * is not queued) or at the actual delivery time (as we are informed by
811 * the call back to do_schedule_next_timer(). So all we need to do is
812 * to pick up the frozen overrun.
814 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
816 struct k_itimer
*timr
;
820 timr
= lock_timer(timer_id
, &flags
);
824 overrun
= timr
->it_overrun_last
;
825 unlock_timer(timr
, flags
);
830 /* Set a POSIX.1b interval timer. */
831 /* timr->it_lock is taken. */
833 common_timer_set(struct k_itimer
*timr
, int flags
,
834 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
836 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
837 enum hrtimer_mode mode
;
840 common_timer_get(timr
, old_setting
);
842 /* disable the timer */
843 timr
->it
.real
.interval
= 0;
845 * careful here. If smp we could be in the "fire" routine which will
846 * be spinning as we hold the lock. But this is ONLY an SMP issue.
848 if (hrtimer_try_to_cancel(timer
) < 0)
851 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
853 timr
->it_overrun_last
= 0;
855 /* switch off the timer when it_value is zero */
856 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
859 mode
= flags
& TIMER_ABSTIME
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
860 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
861 timr
->it
.real
.timer
.function
= posix_timer_fn
;
863 hrtimer_set_expires(timer
, timespec_to_ktime(new_setting
->it_value
));
865 /* Convert interval */
866 timr
->it
.real
.interval
= timespec_to_ktime(new_setting
->it_interval
);
868 /* SIGEV_NONE timers are not queued ! See common_timer_get */
869 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
)) {
870 /* Setup correct expiry time for relative timers */
871 if (mode
== HRTIMER_MODE_REL
) {
872 hrtimer_add_expires(timer
, timer
->base
->get_time());
877 hrtimer_start_expires(timer
, mode
);
881 /* Set a POSIX.1b interval timer */
882 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
883 const struct itimerspec __user
*, new_setting
,
884 struct itimerspec __user
*, old_setting
)
886 struct k_itimer
*timr
;
887 struct itimerspec new_spec
, old_spec
;
890 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
896 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
899 if (!timespec_valid(&new_spec
.it_interval
) ||
900 !timespec_valid(&new_spec
.it_value
))
903 timr
= lock_timer(timer_id
, &flag
);
907 kc
= clockid_to_kclock(timr
->it_clock
);
908 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
911 error
= kc
->timer_set(timr
, flags
, &new_spec
, rtn
);
913 unlock_timer(timr
, flag
);
914 if (error
== TIMER_RETRY
) {
915 rtn
= NULL
; // We already got the old time...
919 if (old_setting
&& !error
&&
920 copy_to_user(old_setting
, &old_spec
, sizeof (old_spec
)))
926 static int common_timer_del(struct k_itimer
*timer
)
928 timer
->it
.real
.interval
= 0;
930 if (hrtimer_try_to_cancel(&timer
->it
.real
.timer
) < 0)
935 static inline int timer_delete_hook(struct k_itimer
*timer
)
937 struct k_clock
*kc
= clockid_to_kclock(timer
->it_clock
);
939 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
941 return kc
->timer_del(timer
);
944 /* Delete a POSIX.1b interval timer. */
945 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
947 struct k_itimer
*timer
;
951 timer
= lock_timer(timer_id
, &flags
);
955 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
956 unlock_timer(timer
, flags
);
960 spin_lock(¤t
->sighand
->siglock
);
961 list_del(&timer
->list
);
962 spin_unlock(¤t
->sighand
->siglock
);
964 * This keeps any tasks waiting on the spin lock from thinking
965 * they got something (see the lock code above).
967 timer
->it_signal
= NULL
;
969 unlock_timer(timer
, flags
);
970 release_posix_timer(timer
, IT_ID_SET
);
975 * return timer owned by the process, used by exit_itimers
977 static void itimer_delete(struct k_itimer
*timer
)
982 spin_lock_irqsave(&timer
->it_lock
, flags
);
984 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
985 unlock_timer(timer
, flags
);
988 list_del(&timer
->list
);
990 * This keeps any tasks waiting on the spin lock from thinking
991 * they got something (see the lock code above).
993 timer
->it_signal
= NULL
;
995 unlock_timer(timer
, flags
);
996 release_posix_timer(timer
, IT_ID_SET
);
1000 * This is called by do_exit or de_thread, only when there are no more
1001 * references to the shared signal_struct.
1003 void exit_itimers(struct signal_struct
*sig
)
1005 struct k_itimer
*tmr
;
1007 while (!list_empty(&sig
->posix_timers
)) {
1008 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1013 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1014 const struct timespec __user
*, tp
)
1016 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1017 struct timespec new_tp
;
1019 if (!kc
|| !kc
->clock_set
)
1022 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
1025 return kc
->clock_set(which_clock
, &new_tp
);
1028 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1029 struct timespec __user
*,tp
)
1031 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1032 struct timespec kernel_tp
;
1038 error
= kc
->clock_get(which_clock
, &kernel_tp
);
1040 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
1046 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1047 struct timex __user
*, utx
)
1049 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1058 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1061 err
= kc
->clock_adj(which_clock
, &ktx
);
1063 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1069 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1070 struct timespec __user
*, tp
)
1072 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1073 struct timespec rtn_tp
;
1079 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1081 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
)))
1088 * nanosleep for monotonic and realtime clocks
1090 static int common_nsleep(const clockid_t which_clock
, int flags
,
1091 struct timespec
*tsave
, struct timespec __user
*rmtp
)
1093 return hrtimer_nanosleep(tsave
, rmtp
, flags
& TIMER_ABSTIME
?
1094 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1098 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1099 const struct timespec __user
*, rqtp
,
1100 struct timespec __user
*, rmtp
)
1102 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1108 return -ENANOSLEEP_NOTSUP
;
1110 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
1113 if (!timespec_valid(&t
))
1116 return kc
->nsleep(which_clock
, flags
, &t
, rmtp
);
1120 * This will restart clock_nanosleep. This is required only by
1121 * compat_clock_nanosleep_restart for now.
1123 long clock_nanosleep_restart(struct restart_block
*restart_block
)
1125 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1126 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1128 if (WARN_ON_ONCE(!kc
|| !kc
->nsleep_restart
))
1131 return kc
->nsleep_restart(restart_block
);