1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
91 /* number of audit rules */
94 /* determines whether we collect data for signals sent */
97 struct audit_aux_data
{
98 struct audit_aux_data
*next
;
102 #define AUDIT_AUX_IPCPERM 0
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS 16
107 struct audit_aux_data_pids
{
108 struct audit_aux_data d
;
109 pid_t target_pid
[AUDIT_AUX_PIDS
];
110 kuid_t target_auid
[AUDIT_AUX_PIDS
];
111 kuid_t target_uid
[AUDIT_AUX_PIDS
];
112 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
113 u32 target_sid
[AUDIT_AUX_PIDS
];
114 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
118 struct audit_aux_data_bprm_fcaps
{
119 struct audit_aux_data d
;
120 struct audit_cap_data fcap
;
121 unsigned int fcap_ver
;
122 struct audit_cap_data old_pcap
;
123 struct audit_cap_data new_pcap
;
126 struct audit_tree_refs
{
127 struct audit_tree_refs
*next
;
128 struct audit_chunk
*c
[31];
131 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
138 switch (audit_classify_syscall(ctx
->arch
, n
)) {
140 if ((mask
& AUDIT_PERM_WRITE
) &&
141 audit_match_class(AUDIT_CLASS_WRITE
, n
))
143 if ((mask
& AUDIT_PERM_READ
) &&
144 audit_match_class(AUDIT_CLASS_READ
, n
))
146 if ((mask
& AUDIT_PERM_ATTR
) &&
147 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
150 case 1: /* 32bit on biarch */
151 if ((mask
& AUDIT_PERM_WRITE
) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
154 if ((mask
& AUDIT_PERM_READ
) &&
155 audit_match_class(AUDIT_CLASS_READ_32
, n
))
157 if ((mask
& AUDIT_PERM_ATTR
) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
162 return mask
& ACC_MODE(ctx
->argv
[1]);
164 return mask
& ACC_MODE(ctx
->argv
[2]);
165 case 4: /* socketcall */
166 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
168 return mask
& AUDIT_PERM_EXEC
;
174 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
176 struct audit_names
*n
;
177 umode_t mode
= (umode_t
)val
;
182 list_for_each_entry(n
, &ctx
->names_list
, list
) {
183 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
184 ((n
->mode
& S_IFMT
) == mode
))
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context
*ctx
)
206 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
210 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
212 struct audit_tree_refs
*p
= ctx
->trees
;
213 int left
= ctx
->tree_count
;
215 p
->c
[--left
] = chunk
;
216 ctx
->tree_count
= left
;
225 ctx
->tree_count
= 30;
231 static int grow_tree_refs(struct audit_context
*ctx
)
233 struct audit_tree_refs
*p
= ctx
->trees
;
234 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
240 p
->next
= ctx
->trees
;
242 ctx
->first_trees
= ctx
->trees
;
243 ctx
->tree_count
= 31;
248 static void unroll_tree_refs(struct audit_context
*ctx
,
249 struct audit_tree_refs
*p
, int count
)
251 #ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs
*q
;
255 /* we started with empty chain */
256 p
= ctx
->first_trees
;
258 /* if the very first allocation has failed, nothing to do */
263 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
265 audit_put_chunk(q
->c
[n
]);
269 while (n
-- > ctx
->tree_count
) {
270 audit_put_chunk(q
->c
[n
]);
274 ctx
->tree_count
= count
;
278 static void free_tree_refs(struct audit_context
*ctx
)
280 struct audit_tree_refs
*p
, *q
;
281 for (p
= ctx
->first_trees
; p
; p
= q
) {
287 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
289 #ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs
*p
;
295 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
296 for (n
= 0; n
< 31; n
++)
297 if (audit_tree_match(p
->c
[n
], tree
))
302 for (n
= ctx
->tree_count
; n
< 31; n
++)
303 if (audit_tree_match(p
->c
[n
], tree
))
310 static int audit_compare_uid(kuid_t uid
,
311 struct audit_names
*name
,
312 struct audit_field
*f
,
313 struct audit_context
*ctx
)
315 struct audit_names
*n
;
319 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
325 list_for_each_entry(n
, &ctx
->names_list
, list
) {
326 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
334 static int audit_compare_gid(kgid_t gid
,
335 struct audit_names
*name
,
336 struct audit_field
*f
,
337 struct audit_context
*ctx
)
339 struct audit_names
*n
;
343 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
349 list_for_each_entry(n
, &ctx
->names_list
, list
) {
350 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
358 static int audit_field_compare(struct task_struct
*tsk
,
359 const struct cred
*cred
,
360 struct audit_field
*f
,
361 struct audit_context
*ctx
,
362 struct audit_names
*name
)
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
367 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
369 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
371 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
373 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
375 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
377 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
379 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
381 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
383 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID
:
386 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
387 case AUDIT_COMPARE_UID_TO_EUID
:
388 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
389 case AUDIT_COMPARE_UID_TO_SUID
:
390 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
391 case AUDIT_COMPARE_UID_TO_FSUID
:
392 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID
:
395 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
396 case AUDIT_COMPARE_AUID_TO_SUID
:
397 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
398 case AUDIT_COMPARE_AUID_TO_FSUID
:
399 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID
:
402 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_EUID_TO_FSUID
:
404 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID
:
407 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID
:
410 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
411 case AUDIT_COMPARE_GID_TO_SGID
:
412 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
413 case AUDIT_COMPARE_GID_TO_FSGID
:
414 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID
:
417 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
418 case AUDIT_COMPARE_EGID_TO_FSGID
:
419 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID
:
422 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 static int audit_filter_rules(struct task_struct
*tsk
,
439 struct audit_krule
*rule
,
440 struct audit_context
*ctx
,
441 struct audit_names
*name
,
442 enum audit_state
*state
,
445 const struct cred
*cred
;
449 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
451 for (i
= 0; i
< rule
->field_count
; i
++) {
452 struct audit_field
*f
= &rule
->fields
[i
];
453 struct audit_names
*n
;
459 pid
= task_pid_nr(tsk
);
460 result
= audit_comparator(pid
, f
->op
, f
->val
);
465 ctx
->ppid
= task_ppid_nr(tsk
);
466 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
470 result
= audit_exe_compare(tsk
, rule
->exe
);
473 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
476 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
479 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
482 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
485 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
486 if (f
->op
== Audit_equal
) {
488 result
= in_group_p(f
->gid
);
489 } else if (f
->op
== Audit_not_equal
) {
491 result
= !in_group_p(f
->gid
);
495 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
496 if (f
->op
== Audit_equal
) {
498 result
= in_egroup_p(f
->gid
);
499 } else if (f
->op
== Audit_not_equal
) {
501 result
= !in_egroup_p(f
->gid
);
505 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
508 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
511 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
515 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
519 if (ctx
&& ctx
->return_valid
)
520 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
523 if (ctx
&& ctx
->return_valid
) {
525 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
527 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
532 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
533 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
536 list_for_each_entry(n
, &ctx
->names_list
, list
) {
537 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
538 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
547 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
548 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
551 list_for_each_entry(n
, &ctx
->names_list
, list
) {
552 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
553 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
562 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
564 list_for_each_entry(n
, &ctx
->names_list
, list
) {
565 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
574 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
576 list_for_each_entry(n
, &ctx
->names_list
, list
) {
577 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
586 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
588 list_for_each_entry(n
, &ctx
->names_list
, list
) {
589 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
598 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
602 result
= match_tree_refs(ctx
, rule
->tree
);
605 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
607 case AUDIT_LOGINUID_SET
:
608 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
610 case AUDIT_SUBJ_USER
:
611 case AUDIT_SUBJ_ROLE
:
612 case AUDIT_SUBJ_TYPE
:
615 /* NOTE: this may return negative values indicating
616 a temporary error. We simply treat this as a
617 match for now to avoid losing information that
618 may be wanted. An error message will also be
622 security_task_getsecid(tsk
, &sid
);
625 result
= security_audit_rule_match(sid
, f
->type
,
634 case AUDIT_OBJ_LEV_LOW
:
635 case AUDIT_OBJ_LEV_HIGH
:
636 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
639 /* Find files that match */
641 result
= security_audit_rule_match(
642 name
->osid
, f
->type
, f
->op
,
645 list_for_each_entry(n
, &ctx
->names_list
, list
) {
646 if (security_audit_rule_match(n
->osid
, f
->type
,
654 /* Find ipc objects that match */
655 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
657 if (security_audit_rule_match(ctx
->ipc
.osid
,
668 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
670 case AUDIT_FILTERKEY
:
671 /* ignore this field for filtering */
675 result
= audit_match_perm(ctx
, f
->val
);
678 result
= audit_match_filetype(ctx
, f
->val
);
680 case AUDIT_FIELD_COMPARE
:
681 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
689 if (rule
->prio
<= ctx
->prio
)
691 if (rule
->filterkey
) {
692 kfree(ctx
->filterkey
);
693 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
695 ctx
->prio
= rule
->prio
;
697 switch (rule
->action
) {
698 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
699 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
704 /* At process creation time, we can determine if system-call auditing is
705 * completely disabled for this task. Since we only have the task
706 * structure at this point, we can only check uid and gid.
708 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
710 struct audit_entry
*e
;
711 enum audit_state state
;
714 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
715 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
717 if (state
== AUDIT_RECORD_CONTEXT
)
718 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
724 return AUDIT_BUILD_CONTEXT
;
727 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
731 if (val
> 0xffffffff)
734 word
= AUDIT_WORD(val
);
735 if (word
>= AUDIT_BITMASK_SIZE
)
738 bit
= AUDIT_BIT(val
);
740 return rule
->mask
[word
] & bit
;
743 /* At syscall entry and exit time, this filter is called if the
744 * audit_state is not low enough that auditing cannot take place, but is
745 * also not high enough that we already know we have to write an audit
746 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
748 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
749 struct audit_context
*ctx
,
750 struct list_head
*list
)
752 struct audit_entry
*e
;
753 enum audit_state state
;
755 if (audit_pid
&& tsk
->tgid
== audit_pid
)
756 return AUDIT_DISABLED
;
759 if (!list_empty(list
)) {
760 list_for_each_entry_rcu(e
, list
, list
) {
761 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
762 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
765 ctx
->current_state
= state
;
771 return AUDIT_BUILD_CONTEXT
;
775 * Given an audit_name check the inode hash table to see if they match.
776 * Called holding the rcu read lock to protect the use of audit_inode_hash
778 static int audit_filter_inode_name(struct task_struct
*tsk
,
779 struct audit_names
*n
,
780 struct audit_context
*ctx
) {
781 int h
= audit_hash_ino((u32
)n
->ino
);
782 struct list_head
*list
= &audit_inode_hash
[h
];
783 struct audit_entry
*e
;
784 enum audit_state state
;
786 if (list_empty(list
))
789 list_for_each_entry_rcu(e
, list
, list
) {
790 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
791 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
792 ctx
->current_state
= state
;
800 /* At syscall exit time, this filter is called if any audit_names have been
801 * collected during syscall processing. We only check rules in sublists at hash
802 * buckets applicable to the inode numbers in audit_names.
803 * Regarding audit_state, same rules apply as for audit_filter_syscall().
805 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
807 struct audit_names
*n
;
809 if (audit_pid
&& tsk
->tgid
== audit_pid
)
814 list_for_each_entry(n
, &ctx
->names_list
, list
) {
815 if (audit_filter_inode_name(tsk
, n
, ctx
))
821 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
822 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
826 struct audit_context
*context
= tsk
->audit_context
;
830 context
->return_valid
= return_valid
;
833 * we need to fix up the return code in the audit logs if the actual
834 * return codes are later going to be fixed up by the arch specific
837 * This is actually a test for:
838 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
839 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
841 * but is faster than a bunch of ||
843 if (unlikely(return_code
<= -ERESTARTSYS
) &&
844 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
845 (return_code
!= -ENOIOCTLCMD
))
846 context
->return_code
= -EINTR
;
848 context
->return_code
= return_code
;
850 if (context
->in_syscall
&& !context
->dummy
) {
851 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
852 audit_filter_inodes(tsk
, context
);
855 tsk
->audit_context
= NULL
;
859 static inline void audit_proctitle_free(struct audit_context
*context
)
861 kfree(context
->proctitle
.value
);
862 context
->proctitle
.value
= NULL
;
863 context
->proctitle
.len
= 0;
866 static inline void audit_free_names(struct audit_context
*context
)
868 struct audit_names
*n
, *next
;
870 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
877 context
->name_count
= 0;
878 path_put(&context
->pwd
);
879 context
->pwd
.dentry
= NULL
;
880 context
->pwd
.mnt
= NULL
;
883 static inline void audit_free_aux(struct audit_context
*context
)
885 struct audit_aux_data
*aux
;
887 while ((aux
= context
->aux
)) {
888 context
->aux
= aux
->next
;
891 while ((aux
= context
->aux_pids
)) {
892 context
->aux_pids
= aux
->next
;
897 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
899 struct audit_context
*context
;
901 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
904 context
->state
= state
;
905 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
906 INIT_LIST_HEAD(&context
->killed_trees
);
907 INIT_LIST_HEAD(&context
->names_list
);
912 * audit_alloc - allocate an audit context block for a task
915 * Filter on the task information and allocate a per-task audit context
916 * if necessary. Doing so turns on system call auditing for the
917 * specified task. This is called from copy_process, so no lock is
920 int audit_alloc(struct task_struct
*tsk
)
922 struct audit_context
*context
;
923 enum audit_state state
;
926 if (likely(!audit_ever_enabled
))
927 return 0; /* Return if not auditing. */
929 state
= audit_filter_task(tsk
, &key
);
930 if (state
== AUDIT_DISABLED
) {
931 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
935 if (!(context
= audit_alloc_context(state
))) {
937 audit_log_lost("out of memory in audit_alloc");
940 context
->filterkey
= key
;
942 tsk
->audit_context
= context
;
943 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
947 static inline void audit_free_context(struct audit_context
*context
)
949 audit_free_names(context
);
950 unroll_tree_refs(context
, NULL
, 0);
951 free_tree_refs(context
);
952 audit_free_aux(context
);
953 kfree(context
->filterkey
);
954 kfree(context
->sockaddr
);
955 audit_proctitle_free(context
);
959 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
960 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
963 struct audit_buffer
*ab
;
968 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
972 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
973 from_kuid(&init_user_ns
, auid
),
974 from_kuid(&init_user_ns
, uid
), sessionid
);
976 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
977 audit_log_format(ab
, " obj=(none)");
980 audit_log_format(ab
, " obj=%s", ctx
);
981 security_release_secctx(ctx
, len
);
984 audit_log_format(ab
, " ocomm=");
985 audit_log_untrustedstring(ab
, comm
);
992 * to_send and len_sent accounting are very loose estimates. We aren't
993 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
994 * within about 500 bytes (next page boundary)
996 * why snprintf? an int is up to 12 digits long. if we just assumed when
997 * logging that a[%d]= was going to be 16 characters long we would be wasting
998 * space in every audit message. In one 7500 byte message we can log up to
999 * about 1000 min size arguments. That comes down to about 50% waste of space
1000 * if we didn't do the snprintf to find out how long arg_num_len was.
1002 static int audit_log_single_execve_arg(struct audit_context
*context
,
1003 struct audit_buffer
**ab
,
1006 const char __user
*p
,
1009 char arg_num_len_buf
[12];
1010 const char __user
*tmp_p
= p
;
1011 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1012 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1013 size_t len
, len_left
, to_send
;
1014 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1015 unsigned int i
, has_cntl
= 0, too_long
= 0;
1018 /* strnlen_user includes the null we don't want to send */
1019 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1022 * We just created this mm, if we can't find the strings
1023 * we just copied into it something is _very_ wrong. Similar
1024 * for strings that are too long, we should not have created
1027 if (WARN_ON_ONCE(len
< 0 || len
> MAX_ARG_STRLEN
- 1)) {
1028 send_sig(SIGKILL
, current
, 0);
1032 /* walk the whole argument looking for non-ascii chars */
1034 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1035 to_send
= MAX_EXECVE_AUDIT_LEN
;
1038 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1040 * There is no reason for this copy to be short. We just
1041 * copied them here, and the mm hasn't been exposed to user-
1046 send_sig(SIGKILL
, current
, 0);
1049 buf
[to_send
] = '\0';
1050 has_cntl
= audit_string_contains_control(buf
, to_send
);
1053 * hex messages get logged as 2 bytes, so we can only
1054 * send half as much in each message
1056 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1059 len_left
-= to_send
;
1061 } while (len_left
> 0);
1065 if (len
> max_execve_audit_len
)
1068 /* rewalk the argument actually logging the message */
1069 for (i
= 0; len_left
> 0; i
++) {
1072 if (len_left
> max_execve_audit_len
)
1073 to_send
= max_execve_audit_len
;
1077 /* do we have space left to send this argument in this ab? */
1078 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1080 room_left
-= (to_send
* 2);
1082 room_left
-= to_send
;
1083 if (room_left
< 0) {
1086 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1092 * first record needs to say how long the original string was
1093 * so we can be sure nothing was lost.
1095 if ((i
== 0) && (too_long
))
1096 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1097 has_cntl
? 2*len
: len
);
1100 * normally arguments are small enough to fit and we already
1101 * filled buf above when we checked for control characters
1102 * so don't bother with another copy_from_user
1104 if (len
>= max_execve_audit_len
)
1105 ret
= copy_from_user(buf
, p
, to_send
);
1110 send_sig(SIGKILL
, current
, 0);
1113 buf
[to_send
] = '\0';
1115 /* actually log it */
1116 audit_log_format(*ab
, " a%d", arg_num
);
1118 audit_log_format(*ab
, "[%d]", i
);
1119 audit_log_format(*ab
, "=");
1121 audit_log_n_hex(*ab
, buf
, to_send
);
1123 audit_log_string(*ab
, buf
);
1126 len_left
-= to_send
;
1127 *len_sent
+= arg_num_len
;
1129 *len_sent
+= to_send
* 2;
1131 *len_sent
+= to_send
;
1133 /* include the null we didn't log */
1137 static void audit_log_execve_info(struct audit_context
*context
,
1138 struct audit_buffer
**ab
)
1141 size_t len_sent
= 0;
1142 const char __user
*p
;
1145 p
= (const char __user
*)current
->mm
->arg_start
;
1147 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1150 * we need some kernel buffer to hold the userspace args. Just
1151 * allocate one big one rather than allocating one of the right size
1152 * for every single argument inside audit_log_single_execve_arg()
1153 * should be <8k allocation so should be pretty safe.
1155 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1157 audit_panic("out of memory for argv string");
1161 for (i
= 0; i
< context
->execve
.argc
; i
++) {
1162 len
= audit_log_single_execve_arg(context
, ab
, i
,
1171 static void show_special(struct audit_context
*context
, int *call_panic
)
1173 struct audit_buffer
*ab
;
1176 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1180 switch (context
->type
) {
1181 case AUDIT_SOCKETCALL
: {
1182 int nargs
= context
->socketcall
.nargs
;
1183 audit_log_format(ab
, "nargs=%d", nargs
);
1184 for (i
= 0; i
< nargs
; i
++)
1185 audit_log_format(ab
, " a%d=%lx", i
,
1186 context
->socketcall
.args
[i
]);
1189 u32 osid
= context
->ipc
.osid
;
1191 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1192 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1193 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1198 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1199 audit_log_format(ab
, " osid=%u", osid
);
1202 audit_log_format(ab
, " obj=%s", ctx
);
1203 security_release_secctx(ctx
, len
);
1206 if (context
->ipc
.has_perm
) {
1208 ab
= audit_log_start(context
, GFP_KERNEL
,
1209 AUDIT_IPC_SET_PERM
);
1212 audit_log_format(ab
,
1213 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214 context
->ipc
.qbytes
,
1215 context
->ipc
.perm_uid
,
1216 context
->ipc
.perm_gid
,
1217 context
->ipc
.perm_mode
);
1220 case AUDIT_MQ_OPEN
: {
1221 audit_log_format(ab
,
1222 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223 "mq_msgsize=%ld mq_curmsgs=%ld",
1224 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1225 context
->mq_open
.attr
.mq_flags
,
1226 context
->mq_open
.attr
.mq_maxmsg
,
1227 context
->mq_open
.attr
.mq_msgsize
,
1228 context
->mq_open
.attr
.mq_curmsgs
);
1230 case AUDIT_MQ_SENDRECV
: {
1231 audit_log_format(ab
,
1232 "mqdes=%d msg_len=%zd msg_prio=%u "
1233 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1234 context
->mq_sendrecv
.mqdes
,
1235 context
->mq_sendrecv
.msg_len
,
1236 context
->mq_sendrecv
.msg_prio
,
1237 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1238 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1240 case AUDIT_MQ_NOTIFY
: {
1241 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1242 context
->mq_notify
.mqdes
,
1243 context
->mq_notify
.sigev_signo
);
1245 case AUDIT_MQ_GETSETATTR
: {
1246 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1247 audit_log_format(ab
,
1248 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1250 context
->mq_getsetattr
.mqdes
,
1251 attr
->mq_flags
, attr
->mq_maxmsg
,
1252 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1254 case AUDIT_CAPSET
: {
1255 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1256 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1257 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1258 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1261 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1262 context
->mmap
.flags
);
1264 case AUDIT_EXECVE
: {
1265 audit_log_execve_info(context
, &ab
);
1271 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1273 char *end
= proctitle
+ len
- 1;
1274 while (end
> proctitle
&& !isprint(*end
))
1277 /* catch the case where proctitle is only 1 non-print character */
1278 len
= end
- proctitle
+ 1;
1279 len
-= isprint(proctitle
[len
-1]) == 0;
1283 static void audit_log_proctitle(struct task_struct
*tsk
,
1284 struct audit_context
*context
)
1288 char *msg
= "(null)";
1289 int len
= strlen(msg
);
1290 struct audit_buffer
*ab
;
1292 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1294 return; /* audit_panic or being filtered */
1296 audit_log_format(ab
, "proctitle=");
1299 if (!context
->proctitle
.value
) {
1300 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1303 /* Historically called this from procfs naming */
1304 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1309 res
= audit_proctitle_rtrim(buf
, res
);
1314 context
->proctitle
.value
= buf
;
1315 context
->proctitle
.len
= res
;
1317 msg
= context
->proctitle
.value
;
1318 len
= context
->proctitle
.len
;
1320 audit_log_n_untrustedstring(ab
, msg
, len
);
1324 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1326 int i
, call_panic
= 0;
1327 struct audit_buffer
*ab
;
1328 struct audit_aux_data
*aux
;
1329 struct audit_names
*n
;
1331 /* tsk == current */
1332 context
->personality
= tsk
->personality
;
1334 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1336 return; /* audit_panic has been called */
1337 audit_log_format(ab
, "arch=%x syscall=%d",
1338 context
->arch
, context
->major
);
1339 if (context
->personality
!= PER_LINUX
)
1340 audit_log_format(ab
, " per=%lx", context
->personality
);
1341 if (context
->return_valid
)
1342 audit_log_format(ab
, " success=%s exit=%ld",
1343 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1344 context
->return_code
);
1346 audit_log_format(ab
,
1347 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352 context
->name_count
);
1354 audit_log_task_info(ab
, tsk
);
1355 audit_log_key(ab
, context
->filterkey
);
1358 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1360 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1362 continue; /* audit_panic has been called */
1364 switch (aux
->type
) {
1366 case AUDIT_BPRM_FCAPS
: {
1367 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1368 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1369 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1370 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1371 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1372 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1373 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1374 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1375 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1376 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1377 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1385 show_special(context
, &call_panic
);
1387 if (context
->fds
[0] >= 0) {
1388 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1390 audit_log_format(ab
, "fd0=%d fd1=%d",
1391 context
->fds
[0], context
->fds
[1]);
1396 if (context
->sockaddr_len
) {
1397 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1399 audit_log_format(ab
, "saddr=");
1400 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1401 context
->sockaddr_len
);
1406 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1407 struct audit_aux_data_pids
*axs
= (void *)aux
;
1409 for (i
= 0; i
< axs
->pid_count
; i
++)
1410 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1411 axs
->target_auid
[i
],
1413 axs
->target_sessionid
[i
],
1415 axs
->target_comm
[i
]))
1419 if (context
->target_pid
&&
1420 audit_log_pid_context(context
, context
->target_pid
,
1421 context
->target_auid
, context
->target_uid
,
1422 context
->target_sessionid
,
1423 context
->target_sid
, context
->target_comm
))
1426 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1427 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1429 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1435 list_for_each_entry(n
, &context
->names_list
, list
) {
1438 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1441 audit_log_proctitle(tsk
, context
);
1443 /* Send end of event record to help user space know we are finished */
1444 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1448 audit_panic("error converting sid to string");
1452 * audit_free - free a per-task audit context
1453 * @tsk: task whose audit context block to free
1455 * Called from copy_process and do_exit
1457 void __audit_free(struct task_struct
*tsk
)
1459 struct audit_context
*context
;
1461 context
= audit_take_context(tsk
, 0, 0);
1465 /* Check for system calls that do not go through the exit
1466 * function (e.g., exit_group), then free context block.
1467 * We use GFP_ATOMIC here because we might be doing this
1468 * in the context of the idle thread */
1469 /* that can happen only if we are called from do_exit() */
1470 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1471 audit_log_exit(context
, tsk
);
1472 if (!list_empty(&context
->killed_trees
))
1473 audit_kill_trees(&context
->killed_trees
);
1475 audit_free_context(context
);
1479 * audit_syscall_entry - fill in an audit record at syscall entry
1480 * @major: major syscall type (function)
1481 * @a1: additional syscall register 1
1482 * @a2: additional syscall register 2
1483 * @a3: additional syscall register 3
1484 * @a4: additional syscall register 4
1486 * Fill in audit context at syscall entry. This only happens if the
1487 * audit context was created when the task was created and the state or
1488 * filters demand the audit context be built. If the state from the
1489 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1490 * then the record will be written at syscall exit time (otherwise, it
1491 * will only be written if another part of the kernel requests that it
1494 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1495 unsigned long a3
, unsigned long a4
)
1497 struct task_struct
*tsk
= current
;
1498 struct audit_context
*context
= tsk
->audit_context
;
1499 enum audit_state state
;
1504 BUG_ON(context
->in_syscall
|| context
->name_count
);
1509 context
->arch
= syscall_get_arch();
1510 context
->major
= major
;
1511 context
->argv
[0] = a1
;
1512 context
->argv
[1] = a2
;
1513 context
->argv
[2] = a3
;
1514 context
->argv
[3] = a4
;
1516 state
= context
->state
;
1517 context
->dummy
= !audit_n_rules
;
1518 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1520 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1522 if (state
== AUDIT_DISABLED
)
1525 context
->serial
= 0;
1526 context
->ctime
= CURRENT_TIME
;
1527 context
->in_syscall
= 1;
1528 context
->current_state
= state
;
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @success: success value of the syscall
1535 * @return_code: return value of the syscall
1537 * Tear down after system call. If the audit context has been marked as
1538 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1539 * filtering, or because some other part of the kernel wrote an audit
1540 * message), then write out the syscall information. In call cases,
1541 * free the names stored from getname().
1543 void __audit_syscall_exit(int success
, long return_code
)
1545 struct task_struct
*tsk
= current
;
1546 struct audit_context
*context
;
1549 success
= AUDITSC_SUCCESS
;
1551 success
= AUDITSC_FAILURE
;
1553 context
= audit_take_context(tsk
, success
, return_code
);
1557 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1558 audit_log_exit(context
, tsk
);
1560 context
->in_syscall
= 0;
1561 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1563 if (!list_empty(&context
->killed_trees
))
1564 audit_kill_trees(&context
->killed_trees
);
1566 audit_free_names(context
);
1567 unroll_tree_refs(context
, NULL
, 0);
1568 audit_free_aux(context
);
1569 context
->aux
= NULL
;
1570 context
->aux_pids
= NULL
;
1571 context
->target_pid
= 0;
1572 context
->target_sid
= 0;
1573 context
->sockaddr_len
= 0;
1575 context
->fds
[0] = -1;
1576 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1577 kfree(context
->filterkey
);
1578 context
->filterkey
= NULL
;
1580 tsk
->audit_context
= context
;
1583 static inline void handle_one(const struct inode
*inode
)
1585 #ifdef CONFIG_AUDIT_TREE
1586 struct audit_context
*context
;
1587 struct audit_tree_refs
*p
;
1588 struct audit_chunk
*chunk
;
1590 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1592 context
= current
->audit_context
;
1594 count
= context
->tree_count
;
1596 chunk
= audit_tree_lookup(inode
);
1600 if (likely(put_tree_ref(context
, chunk
)))
1602 if (unlikely(!grow_tree_refs(context
))) {
1603 pr_warn("out of memory, audit has lost a tree reference\n");
1604 audit_set_auditable(context
);
1605 audit_put_chunk(chunk
);
1606 unroll_tree_refs(context
, p
, count
);
1609 put_tree_ref(context
, chunk
);
1613 static void handle_path(const struct dentry
*dentry
)
1615 #ifdef CONFIG_AUDIT_TREE
1616 struct audit_context
*context
;
1617 struct audit_tree_refs
*p
;
1618 const struct dentry
*d
, *parent
;
1619 struct audit_chunk
*drop
;
1623 context
= current
->audit_context
;
1625 count
= context
->tree_count
;
1630 seq
= read_seqbegin(&rename_lock
);
1632 struct inode
*inode
= d_backing_inode(d
);
1633 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1634 struct audit_chunk
*chunk
;
1635 chunk
= audit_tree_lookup(inode
);
1637 if (unlikely(!put_tree_ref(context
, chunk
))) {
1643 parent
= d
->d_parent
;
1648 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1651 /* just a race with rename */
1652 unroll_tree_refs(context
, p
, count
);
1655 audit_put_chunk(drop
);
1656 if (grow_tree_refs(context
)) {
1657 /* OK, got more space */
1658 unroll_tree_refs(context
, p
, count
);
1662 pr_warn("out of memory, audit has lost a tree reference\n");
1663 unroll_tree_refs(context
, p
, count
);
1664 audit_set_auditable(context
);
1671 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1674 struct audit_names
*aname
;
1676 if (context
->name_count
< AUDIT_NAMES
) {
1677 aname
= &context
->preallocated_names
[context
->name_count
];
1678 memset(aname
, 0, sizeof(*aname
));
1680 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1683 aname
->should_free
= true;
1686 aname
->ino
= AUDIT_INO_UNSET
;
1688 list_add_tail(&aname
->list
, &context
->names_list
);
1690 context
->name_count
++;
1695 * audit_reusename - fill out filename with info from existing entry
1696 * @uptr: userland ptr to pathname
1698 * Search the audit_names list for the current audit context. If there is an
1699 * existing entry with a matching "uptr" then return the filename
1700 * associated with that audit_name. If not, return NULL.
1703 __audit_reusename(const __user
char *uptr
)
1705 struct audit_context
*context
= current
->audit_context
;
1706 struct audit_names
*n
;
1708 list_for_each_entry(n
, &context
->names_list
, list
) {
1711 if (n
->name
->uptr
== uptr
) {
1720 * audit_getname - add a name to the list
1721 * @name: name to add
1723 * Add a name to the list of audit names for this context.
1724 * Called from fs/namei.c:getname().
1726 void __audit_getname(struct filename
*name
)
1728 struct audit_context
*context
= current
->audit_context
;
1729 struct audit_names
*n
;
1731 if (!context
->in_syscall
)
1734 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1739 n
->name_len
= AUDIT_NAME_FULL
;
1743 if (!context
->pwd
.dentry
)
1744 get_fs_pwd(current
->fs
, &context
->pwd
);
1748 * __audit_inode - store the inode and device from a lookup
1749 * @name: name being audited
1750 * @dentry: dentry being audited
1751 * @flags: attributes for this particular entry
1753 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1756 struct audit_context
*context
= current
->audit_context
;
1757 const struct inode
*inode
= d_backing_inode(dentry
);
1758 struct audit_names
*n
;
1759 bool parent
= flags
& AUDIT_INODE_PARENT
;
1761 if (!context
->in_syscall
)
1768 * If we have a pointer to an audit_names entry already, then we can
1769 * just use it directly if the type is correct.
1774 if (n
->type
== AUDIT_TYPE_PARENT
||
1775 n
->type
== AUDIT_TYPE_UNKNOWN
)
1778 if (n
->type
!= AUDIT_TYPE_PARENT
)
1783 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1785 /* valid inode number, use that for the comparison */
1786 if (n
->ino
!= inode
->i_ino
||
1787 n
->dev
!= inode
->i_sb
->s_dev
)
1789 } else if (n
->name
) {
1790 /* inode number has not been set, check the name */
1791 if (strcmp(n
->name
->name
, name
->name
))
1794 /* no inode and no name (?!) ... this is odd ... */
1797 /* match the correct record type */
1799 if (n
->type
== AUDIT_TYPE_PARENT
||
1800 n
->type
== AUDIT_TYPE_UNKNOWN
)
1803 if (n
->type
!= AUDIT_TYPE_PARENT
)
1809 /* unable to find an entry with both a matching name and type */
1810 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1820 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1821 n
->type
= AUDIT_TYPE_PARENT
;
1822 if (flags
& AUDIT_INODE_HIDDEN
)
1825 n
->name_len
= AUDIT_NAME_FULL
;
1826 n
->type
= AUDIT_TYPE_NORMAL
;
1828 handle_path(dentry
);
1829 audit_copy_inode(n
, dentry
, inode
);
1832 void __audit_file(const struct file
*file
)
1834 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1838 * __audit_inode_child - collect inode info for created/removed objects
1839 * @parent: inode of dentry parent
1840 * @dentry: dentry being audited
1841 * @type: AUDIT_TYPE_* value that we're looking for
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1851 void __audit_inode_child(const struct inode
*parent
,
1852 const struct dentry
*dentry
,
1853 const unsigned char type
)
1855 struct audit_context
*context
= current
->audit_context
;
1856 const struct inode
*inode
= d_backing_inode(dentry
);
1857 const char *dname
= dentry
->d_name
.name
;
1858 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1860 if (!context
->in_syscall
)
1866 /* look for a parent entry first */
1867 list_for_each_entry(n
, &context
->names_list
, list
) {
1869 (n
->type
!= AUDIT_TYPE_PARENT
&&
1870 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1873 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1874 !audit_compare_dname_path(dname
,
1875 n
->name
->name
, n
->name_len
)) {
1876 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1877 n
->type
= AUDIT_TYPE_PARENT
;
1883 /* is there a matching child entry? */
1884 list_for_each_entry(n
, &context
->names_list
, list
) {
1885 /* can only match entries that have a name */
1887 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1890 if (!strcmp(dname
, n
->name
->name
) ||
1891 !audit_compare_dname_path(dname
, n
->name
->name
,
1893 found_parent
->name_len
:
1895 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1902 if (!found_parent
) {
1903 /* create a new, "anonymous" parent record */
1904 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1907 audit_copy_inode(n
, NULL
, parent
);
1911 found_child
= audit_alloc_name(context
, type
);
1915 /* Re-use the name belonging to the slot for a matching parent
1916 * directory. All names for this context are relinquished in
1917 * audit_free_names() */
1919 found_child
->name
= found_parent
->name
;
1920 found_child
->name_len
= AUDIT_NAME_FULL
;
1921 found_child
->name
->refcnt
++;
1926 audit_copy_inode(found_child
, dentry
, inode
);
1928 found_child
->ino
= AUDIT_INO_UNSET
;
1930 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1933 * auditsc_get_stamp - get local copies of audit_context values
1934 * @ctx: audit_context for the task
1935 * @t: timespec to store time recorded in the audit_context
1936 * @serial: serial value that is recorded in the audit_context
1938 * Also sets the context as auditable.
1940 int auditsc_get_stamp(struct audit_context
*ctx
,
1941 struct timespec
*t
, unsigned int *serial
)
1943 if (!ctx
->in_syscall
)
1946 ctx
->serial
= audit_serial();
1947 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1948 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1949 *serial
= ctx
->serial
;
1952 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1957 /* global counter which is incremented every time something logs in */
1958 static atomic_t session_id
= ATOMIC_INIT(0);
1960 static int audit_set_loginuid_perm(kuid_t loginuid
)
1962 /* if we are unset, we don't need privs */
1963 if (!audit_loginuid_set(current
))
1965 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1966 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1968 /* it is set, you need permission */
1969 if (!capable(CAP_AUDIT_CONTROL
))
1971 /* reject if this is not an unset and we don't allow that */
1972 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
1977 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
1978 unsigned int oldsessionid
, unsigned int sessionid
,
1981 struct audit_buffer
*ab
;
1982 uid_t uid
, oldloginuid
, loginuid
;
1987 uid
= from_kuid(&init_user_ns
, task_uid(current
));
1988 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
1989 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
1991 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1994 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
1995 audit_log_task_context(ab
);
1996 audit_log_format(ab
, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1997 oldloginuid
, loginuid
, oldsessionid
, sessionid
, !rc
);
2002 * audit_set_loginuid - set current task's audit_context loginuid
2003 * @loginuid: loginuid value
2007 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2009 int audit_set_loginuid(kuid_t loginuid
)
2011 struct task_struct
*task
= current
;
2012 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2016 oldloginuid
= audit_get_loginuid(current
);
2017 oldsessionid
= audit_get_sessionid(current
);
2019 rc
= audit_set_loginuid_perm(loginuid
);
2023 /* are we setting or clearing? */
2024 if (uid_valid(loginuid
))
2025 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2027 task
->sessionid
= sessionid
;
2028 task
->loginuid
= loginuid
;
2030 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2035 * __audit_mq_open - record audit data for a POSIX MQ open
2038 * @attr: queue attributes
2041 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2043 struct audit_context
*context
= current
->audit_context
;
2046 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2048 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2050 context
->mq_open
.oflag
= oflag
;
2051 context
->mq_open
.mode
= mode
;
2053 context
->type
= AUDIT_MQ_OPEN
;
2057 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @msg_prio: Message priority
2061 * @abs_timeout: Message timeout in absolute time
2064 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2065 const struct timespec
*abs_timeout
)
2067 struct audit_context
*context
= current
->audit_context
;
2068 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2071 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2073 memset(p
, 0, sizeof(struct timespec
));
2075 context
->mq_sendrecv
.mqdes
= mqdes
;
2076 context
->mq_sendrecv
.msg_len
= msg_len
;
2077 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2079 context
->type
= AUDIT_MQ_SENDRECV
;
2083 * __audit_mq_notify - record audit data for a POSIX MQ notify
2084 * @mqdes: MQ descriptor
2085 * @notification: Notification event
2089 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2091 struct audit_context
*context
= current
->audit_context
;
2094 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2096 context
->mq_notify
.sigev_signo
= 0;
2098 context
->mq_notify
.mqdes
= mqdes
;
2099 context
->type
= AUDIT_MQ_NOTIFY
;
2103 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2104 * @mqdes: MQ descriptor
2108 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2110 struct audit_context
*context
= current
->audit_context
;
2111 context
->mq_getsetattr
.mqdes
= mqdes
;
2112 context
->mq_getsetattr
.mqstat
= *mqstat
;
2113 context
->type
= AUDIT_MQ_GETSETATTR
;
2117 * audit_ipc_obj - record audit data for ipc object
2118 * @ipcp: ipc permissions
2121 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2123 struct audit_context
*context
= current
->audit_context
;
2124 context
->ipc
.uid
= ipcp
->uid
;
2125 context
->ipc
.gid
= ipcp
->gid
;
2126 context
->ipc
.mode
= ipcp
->mode
;
2127 context
->ipc
.has_perm
= 0;
2128 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2129 context
->type
= AUDIT_IPC
;
2133 * audit_ipc_set_perm - record audit data for new ipc permissions
2134 * @qbytes: msgq bytes
2135 * @uid: msgq user id
2136 * @gid: msgq group id
2137 * @mode: msgq mode (permissions)
2139 * Called only after audit_ipc_obj().
2141 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2143 struct audit_context
*context
= current
->audit_context
;
2145 context
->ipc
.qbytes
= qbytes
;
2146 context
->ipc
.perm_uid
= uid
;
2147 context
->ipc
.perm_gid
= gid
;
2148 context
->ipc
.perm_mode
= mode
;
2149 context
->ipc
.has_perm
= 1;
2152 void __audit_bprm(struct linux_binprm
*bprm
)
2154 struct audit_context
*context
= current
->audit_context
;
2156 context
->type
= AUDIT_EXECVE
;
2157 context
->execve
.argc
= bprm
->argc
;
2162 * audit_socketcall - record audit data for sys_socketcall
2163 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2167 int __audit_socketcall(int nargs
, unsigned long *args
)
2169 struct audit_context
*context
= current
->audit_context
;
2171 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2173 context
->type
= AUDIT_SOCKETCALL
;
2174 context
->socketcall
.nargs
= nargs
;
2175 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2180 * __audit_fd_pair - record audit data for pipe and socketpair
2181 * @fd1: the first file descriptor
2182 * @fd2: the second file descriptor
2185 void __audit_fd_pair(int fd1
, int fd2
)
2187 struct audit_context
*context
= current
->audit_context
;
2188 context
->fds
[0] = fd1
;
2189 context
->fds
[1] = fd2
;
2193 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2194 * @len: data length in user space
2195 * @a: data address in kernel space
2197 * Returns 0 for success or NULL context or < 0 on error.
2199 int __audit_sockaddr(int len
, void *a
)
2201 struct audit_context
*context
= current
->audit_context
;
2203 if (!context
->sockaddr
) {
2204 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2207 context
->sockaddr
= p
;
2210 context
->sockaddr_len
= len
;
2211 memcpy(context
->sockaddr
, a
, len
);
2215 void __audit_ptrace(struct task_struct
*t
)
2217 struct audit_context
*context
= current
->audit_context
;
2219 context
->target_pid
= task_pid_nr(t
);
2220 context
->target_auid
= audit_get_loginuid(t
);
2221 context
->target_uid
= task_uid(t
);
2222 context
->target_sessionid
= audit_get_sessionid(t
);
2223 security_task_getsecid(t
, &context
->target_sid
);
2224 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2228 * audit_signal_info - record signal info for shutting down audit subsystem
2229 * @sig: signal value
2230 * @t: task being signaled
2232 * If the audit subsystem is being terminated, record the task (pid)
2233 * and uid that is doing that.
2235 int __audit_signal_info(int sig
, struct task_struct
*t
)
2237 struct audit_aux_data_pids
*axp
;
2238 struct task_struct
*tsk
= current
;
2239 struct audit_context
*ctx
= tsk
->audit_context
;
2240 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2242 if (audit_pid
&& t
->tgid
== audit_pid
) {
2243 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2244 audit_sig_pid
= task_pid_nr(tsk
);
2245 if (uid_valid(tsk
->loginuid
))
2246 audit_sig_uid
= tsk
->loginuid
;
2248 audit_sig_uid
= uid
;
2249 security_task_getsecid(tsk
, &audit_sig_sid
);
2251 if (!audit_signals
|| audit_dummy_context())
2255 /* optimize the common case by putting first signal recipient directly
2256 * in audit_context */
2257 if (!ctx
->target_pid
) {
2258 ctx
->target_pid
= task_tgid_nr(t
);
2259 ctx
->target_auid
= audit_get_loginuid(t
);
2260 ctx
->target_uid
= t_uid
;
2261 ctx
->target_sessionid
= audit_get_sessionid(t
);
2262 security_task_getsecid(t
, &ctx
->target_sid
);
2263 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2267 axp
= (void *)ctx
->aux_pids
;
2268 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2269 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2273 axp
->d
.type
= AUDIT_OBJ_PID
;
2274 axp
->d
.next
= ctx
->aux_pids
;
2275 ctx
->aux_pids
= (void *)axp
;
2277 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2279 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2280 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2281 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2282 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2283 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2284 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2291 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2292 * @bprm: pointer to the bprm being processed
2293 * @new: the proposed new credentials
2294 * @old: the old credentials
2296 * Simply check if the proc already has the caps given by the file and if not
2297 * store the priv escalation info for later auditing at the end of the syscall
2301 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2302 const struct cred
*new, const struct cred
*old
)
2304 struct audit_aux_data_bprm_fcaps
*ax
;
2305 struct audit_context
*context
= current
->audit_context
;
2306 struct cpu_vfs_cap_data vcaps
;
2308 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2312 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2313 ax
->d
.next
= context
->aux
;
2314 context
->aux
= (void *)ax
;
2316 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2318 ax
->fcap
.permitted
= vcaps
.permitted
;
2319 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2320 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2321 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2323 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2324 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2325 ax
->old_pcap
.effective
= old
->cap_effective
;
2327 ax
->new_pcap
.permitted
= new->cap_permitted
;
2328 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2329 ax
->new_pcap
.effective
= new->cap_effective
;
2334 * __audit_log_capset - store information about the arguments to the capset syscall
2335 * @new: the new credentials
2336 * @old: the old (current) credentials
2338 * Record the arguments userspace sent to sys_capset for later printing by the
2339 * audit system if applicable
2341 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2343 struct audit_context
*context
= current
->audit_context
;
2344 context
->capset
.pid
= task_pid_nr(current
);
2345 context
->capset
.cap
.effective
= new->cap_effective
;
2346 context
->capset
.cap
.inheritable
= new->cap_effective
;
2347 context
->capset
.cap
.permitted
= new->cap_permitted
;
2348 context
->type
= AUDIT_CAPSET
;
2351 void __audit_mmap_fd(int fd
, int flags
)
2353 struct audit_context
*context
= current
->audit_context
;
2354 context
->mmap
.fd
= fd
;
2355 context
->mmap
.flags
= flags
;
2356 context
->type
= AUDIT_MMAP
;
2359 static void audit_log_task(struct audit_buffer
*ab
)
2363 unsigned int sessionid
;
2364 char comm
[sizeof(current
->comm
)];
2366 auid
= audit_get_loginuid(current
);
2367 sessionid
= audit_get_sessionid(current
);
2368 current_uid_gid(&uid
, &gid
);
2370 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2371 from_kuid(&init_user_ns
, auid
),
2372 from_kuid(&init_user_ns
, uid
),
2373 from_kgid(&init_user_ns
, gid
),
2375 audit_log_task_context(ab
);
2376 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2377 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2378 audit_log_d_path_exe(ab
, current
->mm
);
2382 * audit_core_dumps - record information about processes that end abnormally
2383 * @signr: signal value
2385 * If a process ends with a core dump, something fishy is going on and we
2386 * should record the event for investigation.
2388 void audit_core_dumps(long signr
)
2390 struct audit_buffer
*ab
;
2395 if (signr
== SIGQUIT
) /* don't care for those */
2398 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2402 audit_log_format(ab
, " sig=%ld", signr
);
2406 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2408 struct audit_buffer
*ab
;
2410 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2414 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2415 signr
, syscall_get_arch(), syscall
, is_compat_task(),
2416 KSTK_EIP(current
), code
);
2420 struct list_head
*audit_killed_trees(void)
2422 struct audit_context
*ctx
= current
->audit_context
;
2423 if (likely(!ctx
|| !ctx
->in_syscall
))
2425 return &ctx
->killed_trees
;