efivars: Refactor sanity checking code into separate function
[linux/fpc-iii.git] / arch / powerpc / perf / core-book3s.c
blob4520c9356b5473bdf5ae880d214bb4076cee2c3d
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
39 unsigned long mmcr[3];
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned int group_flag;
47 int n_txn_start;
49 /* BHRB bits */
50 u64 bhrb_filter; /* BHRB HW branch filter */
51 int bhrb_users;
52 void *bhrb_context;
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
59 struct power_pmu *ppmu;
62 * Normally, to ignore kernel events we set the FCS (freeze counters
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
68 static unsigned int freeze_events_kernel = MMCR0_FCS;
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
74 #ifdef CONFIG_PPC32
76 #define MMCR0_FCHV 0
77 #define MMCR0_PMCjCE MMCR0_PMCnCE
78 #define MMCR0_FC56 0
79 #define MMCR0_PMAO 0
80 #define MMCR0_EBE 0
81 #define MMCR0_BHRBA 0
82 #define MMCR0_PMCC 0
83 #define MMCR0_PMCC_U6 0
85 #define SPRN_MMCRA SPRN_MMCR2
86 #define MMCRA_SAMPLE_ENABLE 0
88 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 return 0;
92 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
93 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
95 return 0;
97 static inline void perf_read_regs(struct pt_regs *regs)
99 regs->result = 0;
101 static inline int perf_intr_is_nmi(struct pt_regs *regs)
103 return 0;
106 static inline int siar_valid(struct pt_regs *regs)
108 return 1;
111 static bool is_ebb_event(struct perf_event *event) { return false; }
112 static int ebb_event_check(struct perf_event *event) { return 0; }
113 static void ebb_event_add(struct perf_event *event) { }
114 static void ebb_switch_out(unsigned long mmcr0) { }
115 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
117 return mmcr0;
120 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
121 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
122 void power_pmu_flush_branch_stack(void) {}
123 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
124 static void pmao_restore_workaround(bool ebb) { }
125 #endif /* CONFIG_PPC32 */
127 static bool regs_use_siar(struct pt_regs *regs)
129 return !!regs->result;
133 * Things that are specific to 64-bit implementations.
135 #ifdef CONFIG_PPC64
137 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
139 unsigned long mmcra = regs->dsisr;
141 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
142 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
143 if (slot > 1)
144 return 4 * (slot - 1);
147 return 0;
151 * The user wants a data address recorded.
152 * If we're not doing instruction sampling, give them the SDAR
153 * (sampled data address). If we are doing instruction sampling, then
154 * only give them the SDAR if it corresponds to the instruction
155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
158 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
160 unsigned long mmcra = regs->dsisr;
161 bool sdar_valid;
163 if (ppmu->flags & PPMU_HAS_SIER)
164 sdar_valid = regs->dar & SIER_SDAR_VALID;
165 else {
166 unsigned long sdsync;
168 if (ppmu->flags & PPMU_SIAR_VALID)
169 sdsync = POWER7P_MMCRA_SDAR_VALID;
170 else if (ppmu->flags & PPMU_ALT_SIPR)
171 sdsync = POWER6_MMCRA_SDSYNC;
172 else
173 sdsync = MMCRA_SDSYNC;
175 sdar_valid = mmcra & sdsync;
178 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
179 *addrp = mfspr(SPRN_SDAR);
182 static bool regs_sihv(struct pt_regs *regs)
184 unsigned long sihv = MMCRA_SIHV;
186 if (ppmu->flags & PPMU_HAS_SIER)
187 return !!(regs->dar & SIER_SIHV);
189 if (ppmu->flags & PPMU_ALT_SIPR)
190 sihv = POWER6_MMCRA_SIHV;
192 return !!(regs->dsisr & sihv);
195 static bool regs_sipr(struct pt_regs *regs)
197 unsigned long sipr = MMCRA_SIPR;
199 if (ppmu->flags & PPMU_HAS_SIER)
200 return !!(regs->dar & SIER_SIPR);
202 if (ppmu->flags & PPMU_ALT_SIPR)
203 sipr = POWER6_MMCRA_SIPR;
205 return !!(regs->dsisr & sipr);
208 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
210 if (regs->msr & MSR_PR)
211 return PERF_RECORD_MISC_USER;
212 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
213 return PERF_RECORD_MISC_HYPERVISOR;
214 return PERF_RECORD_MISC_KERNEL;
217 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
219 bool use_siar = regs_use_siar(regs);
221 if (!use_siar)
222 return perf_flags_from_msr(regs);
225 * If we don't have flags in MMCRA, rather than using
226 * the MSR, we intuit the flags from the address in
227 * SIAR which should give slightly more reliable
228 * results
230 if (ppmu->flags & PPMU_NO_SIPR) {
231 unsigned long siar = mfspr(SPRN_SIAR);
232 if (siar >= PAGE_OFFSET)
233 return PERF_RECORD_MISC_KERNEL;
234 return PERF_RECORD_MISC_USER;
237 /* PR has priority over HV, so order below is important */
238 if (regs_sipr(regs))
239 return PERF_RECORD_MISC_USER;
241 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
242 return PERF_RECORD_MISC_HYPERVISOR;
244 return PERF_RECORD_MISC_KERNEL;
248 * Overload regs->dsisr to store MMCRA so we only need to read it once
249 * on each interrupt.
250 * Overload regs->dar to store SIER if we have it.
251 * Overload regs->result to specify whether we should use the MSR (result
252 * is zero) or the SIAR (result is non zero).
254 static inline void perf_read_regs(struct pt_regs *regs)
256 unsigned long mmcra = mfspr(SPRN_MMCRA);
257 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
258 int use_siar;
260 regs->dsisr = mmcra;
262 if (ppmu->flags & PPMU_HAS_SIER)
263 regs->dar = mfspr(SPRN_SIER);
266 * If this isn't a PMU exception (eg a software event) the SIAR is
267 * not valid. Use pt_regs.
269 * If it is a marked event use the SIAR.
271 * If the PMU doesn't update the SIAR for non marked events use
272 * pt_regs.
274 * If the PMU has HV/PR flags then check to see if they
275 * place the exception in userspace. If so, use pt_regs. In
276 * continuous sampling mode the SIAR and the PMU exception are
277 * not synchronised, so they may be many instructions apart.
278 * This can result in confusing backtraces. We still want
279 * hypervisor samples as well as samples in the kernel with
280 * interrupts off hence the userspace check.
282 if (TRAP(regs) != 0xf00)
283 use_siar = 0;
284 else if (marked)
285 use_siar = 1;
286 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
287 use_siar = 0;
288 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
289 use_siar = 0;
290 else
291 use_siar = 1;
293 regs->result = use_siar;
297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298 * it as an NMI.
300 static inline int perf_intr_is_nmi(struct pt_regs *regs)
302 return !regs->softe;
306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307 * must be sampled only if the SIAR-valid bit is set.
309 * For unmarked instructions and for processors that don't have the SIAR-Valid
310 * bit, assume that SIAR is valid.
312 static inline int siar_valid(struct pt_regs *regs)
314 unsigned long mmcra = regs->dsisr;
315 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
317 if (marked) {
318 if (ppmu->flags & PPMU_HAS_SIER)
319 return regs->dar & SIER_SIAR_VALID;
321 if (ppmu->flags & PPMU_SIAR_VALID)
322 return mmcra & POWER7P_MMCRA_SIAR_VALID;
325 return 1;
329 /* Reset all possible BHRB entries */
330 static void power_pmu_bhrb_reset(void)
332 asm volatile(PPC_CLRBHRB);
335 static void power_pmu_bhrb_enable(struct perf_event *event)
337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
339 if (!ppmu->bhrb_nr)
340 return;
342 /* Clear BHRB if we changed task context to avoid data leaks */
343 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
344 power_pmu_bhrb_reset();
345 cpuhw->bhrb_context = event->ctx;
347 cpuhw->bhrb_users++;
350 static void power_pmu_bhrb_disable(struct perf_event *event)
352 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
354 if (!ppmu->bhrb_nr)
355 return;
357 cpuhw->bhrb_users--;
358 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
360 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
361 /* BHRB cannot be turned off when other
362 * events are active on the PMU.
365 /* avoid stale pointer */
366 cpuhw->bhrb_context = NULL;
370 /* Called from ctxsw to prevent one process's branch entries to
371 * mingle with the other process's entries during context switch.
373 void power_pmu_flush_branch_stack(void)
375 if (ppmu->bhrb_nr)
376 power_pmu_bhrb_reset();
378 /* Calculate the to address for a branch */
379 static __u64 power_pmu_bhrb_to(u64 addr)
381 unsigned int instr;
382 int ret;
383 __u64 target;
385 if (is_kernel_addr(addr))
386 return branch_target((unsigned int *)addr);
388 /* Userspace: need copy instruction here then translate it */
389 pagefault_disable();
390 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
391 if (ret) {
392 pagefault_enable();
393 return 0;
395 pagefault_enable();
397 target = branch_target(&instr);
398 if ((!target) || (instr & BRANCH_ABSOLUTE))
399 return target;
401 /* Translate relative branch target from kernel to user address */
402 return target - (unsigned long)&instr + addr;
405 /* Processing BHRB entries */
406 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
408 u64 val;
409 u64 addr;
410 int r_index, u_index, pred;
412 r_index = 0;
413 u_index = 0;
414 while (r_index < ppmu->bhrb_nr) {
415 /* Assembly read function */
416 val = read_bhrb(r_index++);
417 if (!val)
418 /* Terminal marker: End of valid BHRB entries */
419 break;
420 else {
421 addr = val & BHRB_EA;
422 pred = val & BHRB_PREDICTION;
424 if (!addr)
425 /* invalid entry */
426 continue;
428 /* Branches are read most recent first (ie. mfbhrb 0 is
429 * the most recent branch).
430 * There are two types of valid entries:
431 * 1) a target entry which is the to address of a
432 * computed goto like a blr,bctr,btar. The next
433 * entry read from the bhrb will be branch
434 * corresponding to this target (ie. the actual
435 * blr/bctr/btar instruction).
436 * 2) a from address which is an actual branch. If a
437 * target entry proceeds this, then this is the
438 * matching branch for that target. If this is not
439 * following a target entry, then this is a branch
440 * where the target is given as an immediate field
441 * in the instruction (ie. an i or b form branch).
442 * In this case we need to read the instruction from
443 * memory to determine the target/to address.
446 if (val & BHRB_TARGET) {
447 /* Target branches use two entries
448 * (ie. computed gotos/XL form)
450 cpuhw->bhrb_entries[u_index].to = addr;
451 cpuhw->bhrb_entries[u_index].mispred = pred;
452 cpuhw->bhrb_entries[u_index].predicted = ~pred;
454 /* Get from address in next entry */
455 val = read_bhrb(r_index++);
456 addr = val & BHRB_EA;
457 if (val & BHRB_TARGET) {
458 /* Shouldn't have two targets in a
459 row.. Reset index and try again */
460 r_index--;
461 addr = 0;
463 cpuhw->bhrb_entries[u_index].from = addr;
464 } else {
465 /* Branches to immediate field
466 (ie I or B form) */
467 cpuhw->bhrb_entries[u_index].from = addr;
468 cpuhw->bhrb_entries[u_index].to =
469 power_pmu_bhrb_to(addr);
470 cpuhw->bhrb_entries[u_index].mispred = pred;
471 cpuhw->bhrb_entries[u_index].predicted = ~pred;
473 u_index++;
477 cpuhw->bhrb_stack.nr = u_index;
478 return;
481 static bool is_ebb_event(struct perf_event *event)
484 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 * check that the PMU supports EBB, meaning those that don't can still
486 * use bit 63 of the event code for something else if they wish.
488 return (ppmu->flags & PPMU_EBB) &&
489 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
492 static int ebb_event_check(struct perf_event *event)
494 struct perf_event *leader = event->group_leader;
496 /* Event and group leader must agree on EBB */
497 if (is_ebb_event(leader) != is_ebb_event(event))
498 return -EINVAL;
500 if (is_ebb_event(event)) {
501 if (!(event->attach_state & PERF_ATTACH_TASK))
502 return -EINVAL;
504 if (!leader->attr.pinned || !leader->attr.exclusive)
505 return -EINVAL;
507 if (event->attr.freq ||
508 event->attr.inherit ||
509 event->attr.sample_type ||
510 event->attr.sample_period ||
511 event->attr.enable_on_exec)
512 return -EINVAL;
515 return 0;
518 static void ebb_event_add(struct perf_event *event)
520 if (!is_ebb_event(event) || current->thread.used_ebb)
521 return;
524 * IFF this is the first time we've added an EBB event, set
525 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 * userspace. We need this so that we can context switch while
527 * userspace is in the EBB handler (where PMXE is 0).
529 current->thread.used_ebb = 1;
530 current->thread.mmcr0 |= MMCR0_PMXE;
533 static void ebb_switch_out(unsigned long mmcr0)
535 if (!(mmcr0 & MMCR0_EBE))
536 return;
538 current->thread.siar = mfspr(SPRN_SIAR);
539 current->thread.sier = mfspr(SPRN_SIER);
540 current->thread.sdar = mfspr(SPRN_SDAR);
541 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
542 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
545 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
547 if (!ebb)
548 goto out;
550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 * with pmao_restore_workaround() because we may add PMAO but we never
556 * clear it here.
558 mmcr0 |= current->thread.mmcr0;
561 * Be careful not to set PMXE if userspace had it cleared. This is also
562 * compatible with pmao_restore_workaround() because it has already
563 * cleared PMXE and we leave PMAO alone.
565 if (!(current->thread.mmcr0 & MMCR0_PMXE))
566 mmcr0 &= ~MMCR0_PMXE;
568 mtspr(SPRN_SIAR, current->thread.siar);
569 mtspr(SPRN_SIER, current->thread.sier);
570 mtspr(SPRN_SDAR, current->thread.sdar);
571 mtspr(SPRN_MMCR2, current->thread.mmcr2);
572 out:
573 return mmcr0;
576 static void pmao_restore_workaround(bool ebb)
578 unsigned pmcs[6];
580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
581 return;
584 * On POWER8E there is a hardware defect which affects the PMU context
585 * switch logic, ie. power_pmu_disable/enable().
587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 * by the hardware. Sometime later the actual PMU exception is
589 * delivered.
591 * If we context switch, or simply disable/enable, the PMU prior to the
592 * exception arriving, the exception will be lost when we clear PMAO.
594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 * set, and this _should_ generate an exception. However because of the
596 * defect no exception is generated when we write PMAO, and we get
597 * stuck with no counters counting but no exception delivered.
599 * The workaround is to detect this case and tweak the hardware to
600 * create another pending PMU exception.
602 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 * enabling the PMU. That causes a new exception to be generated in the
604 * chip, but we don't take it yet because we have interrupts hard
605 * disabled. We then write back the PMU state as we want it to be seen
606 * by the exception handler. When we reenable interrupts the exception
607 * handler will be called and see the correct state.
609 * The logic is the same for EBB, except that the exception is gated by
610 * us having interrupts hard disabled as well as the fact that we are
611 * not in userspace. The exception is finally delivered when we return
612 * to userspace.
615 /* Only if PMAO is set and PMAO_SYNC is clear */
616 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
617 return;
619 /* If we're doing EBB, only if BESCR[GE] is set */
620 if (ebb && !(current->thread.bescr & BESCR_GE))
621 return;
624 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 * enable to actually prevent the PMU exception from firing.
627 hard_irq_disable();
630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 * Using read/write_pmc() in a for loop adds 12 function calls and
632 * almost doubles our code size.
634 pmcs[0] = mfspr(SPRN_PMC1);
635 pmcs[1] = mfspr(SPRN_PMC2);
636 pmcs[2] = mfspr(SPRN_PMC3);
637 pmcs[3] = mfspr(SPRN_PMC4);
638 pmcs[4] = mfspr(SPRN_PMC5);
639 pmcs[5] = mfspr(SPRN_PMC6);
641 /* Ensure all freeze bits are unset */
642 mtspr(SPRN_MMCR2, 0);
644 /* Set up PMC6 to overflow in one cycle */
645 mtspr(SPRN_PMC6, 0x7FFFFFFE);
647 /* Enable exceptions and unfreeze PMC6 */
648 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
650 /* Now we need to refreeze and restore the PMCs */
651 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
653 mtspr(SPRN_PMC1, pmcs[0]);
654 mtspr(SPRN_PMC2, pmcs[1]);
655 mtspr(SPRN_PMC3, pmcs[2]);
656 mtspr(SPRN_PMC4, pmcs[3]);
657 mtspr(SPRN_PMC5, pmcs[4]);
658 mtspr(SPRN_PMC6, pmcs[5]);
660 #endif /* CONFIG_PPC64 */
662 static void perf_event_interrupt(struct pt_regs *regs);
665 * Read one performance monitor counter (PMC).
667 static unsigned long read_pmc(int idx)
669 unsigned long val;
671 switch (idx) {
672 case 1:
673 val = mfspr(SPRN_PMC1);
674 break;
675 case 2:
676 val = mfspr(SPRN_PMC2);
677 break;
678 case 3:
679 val = mfspr(SPRN_PMC3);
680 break;
681 case 4:
682 val = mfspr(SPRN_PMC4);
683 break;
684 case 5:
685 val = mfspr(SPRN_PMC5);
686 break;
687 case 6:
688 val = mfspr(SPRN_PMC6);
689 break;
690 #ifdef CONFIG_PPC64
691 case 7:
692 val = mfspr(SPRN_PMC7);
693 break;
694 case 8:
695 val = mfspr(SPRN_PMC8);
696 break;
697 #endif /* CONFIG_PPC64 */
698 default:
699 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
700 val = 0;
702 return val;
706 * Write one PMC.
708 static void write_pmc(int idx, unsigned long val)
710 switch (idx) {
711 case 1:
712 mtspr(SPRN_PMC1, val);
713 break;
714 case 2:
715 mtspr(SPRN_PMC2, val);
716 break;
717 case 3:
718 mtspr(SPRN_PMC3, val);
719 break;
720 case 4:
721 mtspr(SPRN_PMC4, val);
722 break;
723 case 5:
724 mtspr(SPRN_PMC5, val);
725 break;
726 case 6:
727 mtspr(SPRN_PMC6, val);
728 break;
729 #ifdef CONFIG_PPC64
730 case 7:
731 mtspr(SPRN_PMC7, val);
732 break;
733 case 8:
734 mtspr(SPRN_PMC8, val);
735 break;
736 #endif /* CONFIG_PPC64 */
737 default:
738 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
742 /* Called from sysrq_handle_showregs() */
743 void perf_event_print_debug(void)
745 unsigned long sdar, sier, flags;
746 u32 pmcs[MAX_HWEVENTS];
747 int i;
749 if (!ppmu->n_counter)
750 return;
752 local_irq_save(flags);
754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 smp_processor_id(), ppmu->name, ppmu->n_counter);
757 for (i = 0; i < ppmu->n_counter; i++)
758 pmcs[i] = read_pmc(i + 1);
760 for (; i < MAX_HWEVENTS; i++)
761 pmcs[i] = 0xdeadbeef;
763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
766 if (ppmu->n_counter > 4)
767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
773 sdar = sier = 0;
774 #ifdef CONFIG_PPC64
775 sdar = mfspr(SPRN_SDAR);
777 if (ppmu->flags & PPMU_HAS_SIER)
778 sier = mfspr(SPRN_SIER);
780 if (ppmu->flags & PPMU_EBB) {
781 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
783 pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
786 #endif
787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
788 mfspr(SPRN_SIAR), sdar, sier);
790 local_irq_restore(flags);
794 * Check if a set of events can all go on the PMU at once.
795 * If they can't, this will look at alternative codes for the events
796 * and see if any combination of alternative codes is feasible.
797 * The feasible set is returned in event_id[].
799 static int power_check_constraints(struct cpu_hw_events *cpuhw,
800 u64 event_id[], unsigned int cflags[],
801 int n_ev)
803 unsigned long mask, value, nv;
804 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
805 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
806 int i, j;
807 unsigned long addf = ppmu->add_fields;
808 unsigned long tadd = ppmu->test_adder;
810 if (n_ev > ppmu->n_counter)
811 return -1;
813 /* First see if the events will go on as-is */
814 for (i = 0; i < n_ev; ++i) {
815 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
816 && !ppmu->limited_pmc_event(event_id[i])) {
817 ppmu->get_alternatives(event_id[i], cflags[i],
818 cpuhw->alternatives[i]);
819 event_id[i] = cpuhw->alternatives[i][0];
821 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
822 &cpuhw->avalues[i][0]))
823 return -1;
825 value = mask = 0;
826 for (i = 0; i < n_ev; ++i) {
827 nv = (value | cpuhw->avalues[i][0]) +
828 (value & cpuhw->avalues[i][0] & addf);
829 if ((((nv + tadd) ^ value) & mask) != 0 ||
830 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
831 cpuhw->amasks[i][0]) != 0)
832 break;
833 value = nv;
834 mask |= cpuhw->amasks[i][0];
836 if (i == n_ev)
837 return 0; /* all OK */
839 /* doesn't work, gather alternatives... */
840 if (!ppmu->get_alternatives)
841 return -1;
842 for (i = 0; i < n_ev; ++i) {
843 choice[i] = 0;
844 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
845 cpuhw->alternatives[i]);
846 for (j = 1; j < n_alt[i]; ++j)
847 ppmu->get_constraint(cpuhw->alternatives[i][j],
848 &cpuhw->amasks[i][j],
849 &cpuhw->avalues[i][j]);
852 /* enumerate all possibilities and see if any will work */
853 i = 0;
854 j = -1;
855 value = mask = nv = 0;
856 while (i < n_ev) {
857 if (j >= 0) {
858 /* we're backtracking, restore context */
859 value = svalues[i];
860 mask = smasks[i];
861 j = choice[i];
864 * See if any alternative k for event_id i,
865 * where k > j, will satisfy the constraints.
867 while (++j < n_alt[i]) {
868 nv = (value | cpuhw->avalues[i][j]) +
869 (value & cpuhw->avalues[i][j] & addf);
870 if ((((nv + tadd) ^ value) & mask) == 0 &&
871 (((nv + tadd) ^ cpuhw->avalues[i][j])
872 & cpuhw->amasks[i][j]) == 0)
873 break;
875 if (j >= n_alt[i]) {
877 * No feasible alternative, backtrack
878 * to event_id i-1 and continue enumerating its
879 * alternatives from where we got up to.
881 if (--i < 0)
882 return -1;
883 } else {
885 * Found a feasible alternative for event_id i,
886 * remember where we got up to with this event_id,
887 * go on to the next event_id, and start with
888 * the first alternative for it.
890 choice[i] = j;
891 svalues[i] = value;
892 smasks[i] = mask;
893 value = nv;
894 mask |= cpuhw->amasks[i][j];
895 ++i;
896 j = -1;
900 /* OK, we have a feasible combination, tell the caller the solution */
901 for (i = 0; i < n_ev; ++i)
902 event_id[i] = cpuhw->alternatives[i][choice[i]];
903 return 0;
907 * Check if newly-added events have consistent settings for
908 * exclude_{user,kernel,hv} with each other and any previously
909 * added events.
911 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
912 int n_prev, int n_new)
914 int eu = 0, ek = 0, eh = 0;
915 int i, n, first;
916 struct perf_event *event;
918 n = n_prev + n_new;
919 if (n <= 1)
920 return 0;
922 first = 1;
923 for (i = 0; i < n; ++i) {
924 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
925 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
926 continue;
928 event = ctrs[i];
929 if (first) {
930 eu = event->attr.exclude_user;
931 ek = event->attr.exclude_kernel;
932 eh = event->attr.exclude_hv;
933 first = 0;
934 } else if (event->attr.exclude_user != eu ||
935 event->attr.exclude_kernel != ek ||
936 event->attr.exclude_hv != eh) {
937 return -EAGAIN;
941 if (eu || ek || eh)
942 for (i = 0; i < n; ++i)
943 if (cflags[i] & PPMU_LIMITED_PMC_OK)
944 cflags[i] |= PPMU_LIMITED_PMC_REQD;
946 return 0;
949 static u64 check_and_compute_delta(u64 prev, u64 val)
951 u64 delta = (val - prev) & 0xfffffffful;
954 * POWER7 can roll back counter values, if the new value is smaller
955 * than the previous value it will cause the delta and the counter to
956 * have bogus values unless we rolled a counter over. If a coutner is
957 * rolled back, it will be smaller, but within 256, which is the maximum
958 * number of events to rollback at once. If we dectect a rollback
959 * return 0. This can lead to a small lack of precision in the
960 * counters.
962 if (prev > val && (prev - val) < 256)
963 delta = 0;
965 return delta;
968 static void power_pmu_read(struct perf_event *event)
970 s64 val, delta, prev;
972 if (event->hw.state & PERF_HES_STOPPED)
973 return;
975 if (!event->hw.idx)
976 return;
978 if (is_ebb_event(event)) {
979 val = read_pmc(event->hw.idx);
980 local64_set(&event->hw.prev_count, val);
981 return;
985 * Performance monitor interrupts come even when interrupts
986 * are soft-disabled, as long as interrupts are hard-enabled.
987 * Therefore we treat them like NMIs.
989 do {
990 prev = local64_read(&event->hw.prev_count);
991 barrier();
992 val = read_pmc(event->hw.idx);
993 delta = check_and_compute_delta(prev, val);
994 if (!delta)
995 return;
996 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
998 local64_add(delta, &event->count);
999 local64_sub(delta, &event->hw.period_left);
1003 * On some machines, PMC5 and PMC6 can't be written, don't respect
1004 * the freeze conditions, and don't generate interrupts. This tells
1005 * us if `event' is using such a PMC.
1007 static int is_limited_pmc(int pmcnum)
1009 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1010 && (pmcnum == 5 || pmcnum == 6);
1013 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1014 unsigned long pmc5, unsigned long pmc6)
1016 struct perf_event *event;
1017 u64 val, prev, delta;
1018 int i;
1020 for (i = 0; i < cpuhw->n_limited; ++i) {
1021 event = cpuhw->limited_counter[i];
1022 if (!event->hw.idx)
1023 continue;
1024 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1025 prev = local64_read(&event->hw.prev_count);
1026 event->hw.idx = 0;
1027 delta = check_and_compute_delta(prev, val);
1028 if (delta)
1029 local64_add(delta, &event->count);
1033 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1034 unsigned long pmc5, unsigned long pmc6)
1036 struct perf_event *event;
1037 u64 val, prev;
1038 int i;
1040 for (i = 0; i < cpuhw->n_limited; ++i) {
1041 event = cpuhw->limited_counter[i];
1042 event->hw.idx = cpuhw->limited_hwidx[i];
1043 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1044 prev = local64_read(&event->hw.prev_count);
1045 if (check_and_compute_delta(prev, val))
1046 local64_set(&event->hw.prev_count, val);
1047 perf_event_update_userpage(event);
1052 * Since limited events don't respect the freeze conditions, we
1053 * have to read them immediately after freezing or unfreezing the
1054 * other events. We try to keep the values from the limited
1055 * events as consistent as possible by keeping the delay (in
1056 * cycles and instructions) between freezing/unfreezing and reading
1057 * the limited events as small and consistent as possible.
1058 * Therefore, if any limited events are in use, we read them
1059 * both, and always in the same order, to minimize variability,
1060 * and do it inside the same asm that writes MMCR0.
1062 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1064 unsigned long pmc5, pmc6;
1066 if (!cpuhw->n_limited) {
1067 mtspr(SPRN_MMCR0, mmcr0);
1068 return;
1072 * Write MMCR0, then read PMC5 and PMC6 immediately.
1073 * To ensure we don't get a performance monitor interrupt
1074 * between writing MMCR0 and freezing/thawing the limited
1075 * events, we first write MMCR0 with the event overflow
1076 * interrupt enable bits turned off.
1078 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1079 : "=&r" (pmc5), "=&r" (pmc6)
1080 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1081 "i" (SPRN_MMCR0),
1082 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1084 if (mmcr0 & MMCR0_FC)
1085 freeze_limited_counters(cpuhw, pmc5, pmc6);
1086 else
1087 thaw_limited_counters(cpuhw, pmc5, pmc6);
1090 * Write the full MMCR0 including the event overflow interrupt
1091 * enable bits, if necessary.
1093 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1094 mtspr(SPRN_MMCR0, mmcr0);
1098 * Disable all events to prevent PMU interrupts and to allow
1099 * events to be added or removed.
1101 static void power_pmu_disable(struct pmu *pmu)
1103 struct cpu_hw_events *cpuhw;
1104 unsigned long flags, mmcr0, val;
1106 if (!ppmu)
1107 return;
1108 local_irq_save(flags);
1109 cpuhw = &__get_cpu_var(cpu_hw_events);
1111 if (!cpuhw->disabled) {
1113 * Check if we ever enabled the PMU on this cpu.
1115 if (!cpuhw->pmcs_enabled) {
1116 ppc_enable_pmcs();
1117 cpuhw->pmcs_enabled = 1;
1121 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1123 val = mmcr0 = mfspr(SPRN_MMCR0);
1124 val |= MMCR0_FC;
1125 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1126 MMCR0_FC56);
1129 * The barrier is to make sure the mtspr has been
1130 * executed and the PMU has frozen the events etc.
1131 * before we return.
1133 write_mmcr0(cpuhw, val);
1134 mb();
1137 * Disable instruction sampling if it was enabled
1139 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1140 mtspr(SPRN_MMCRA,
1141 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1142 mb();
1145 cpuhw->disabled = 1;
1146 cpuhw->n_added = 0;
1148 ebb_switch_out(mmcr0);
1151 local_irq_restore(flags);
1155 * Re-enable all events if disable == 0.
1156 * If we were previously disabled and events were added, then
1157 * put the new config on the PMU.
1159 static void power_pmu_enable(struct pmu *pmu)
1161 struct perf_event *event;
1162 struct cpu_hw_events *cpuhw;
1163 unsigned long flags;
1164 long i;
1165 unsigned long val, mmcr0;
1166 s64 left;
1167 unsigned int hwc_index[MAX_HWEVENTS];
1168 int n_lim;
1169 int idx;
1170 bool ebb;
1172 if (!ppmu)
1173 return;
1174 local_irq_save(flags);
1176 cpuhw = &__get_cpu_var(cpu_hw_events);
1177 if (!cpuhw->disabled)
1178 goto out;
1180 if (cpuhw->n_events == 0) {
1181 ppc_set_pmu_inuse(0);
1182 goto out;
1185 cpuhw->disabled = 0;
1188 * EBB requires an exclusive group and all events must have the EBB
1189 * flag set, or not set, so we can just check a single event. Also we
1190 * know we have at least one event.
1192 ebb = is_ebb_event(cpuhw->event[0]);
1195 * If we didn't change anything, or only removed events,
1196 * no need to recalculate MMCR* settings and reset the PMCs.
1197 * Just reenable the PMU with the current MMCR* settings
1198 * (possibly updated for removal of events).
1200 if (!cpuhw->n_added) {
1201 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1202 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1203 goto out_enable;
1207 * Compute MMCR* values for the new set of events
1209 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1210 cpuhw->mmcr)) {
1211 /* shouldn't ever get here */
1212 printk(KERN_ERR "oops compute_mmcr failed\n");
1213 goto out;
1217 * Add in MMCR0 freeze bits corresponding to the
1218 * attr.exclude_* bits for the first event.
1219 * We have already checked that all events have the
1220 * same values for these bits as the first event.
1222 event = cpuhw->event[0];
1223 if (event->attr.exclude_user)
1224 cpuhw->mmcr[0] |= MMCR0_FCP;
1225 if (event->attr.exclude_kernel)
1226 cpuhw->mmcr[0] |= freeze_events_kernel;
1227 if (event->attr.exclude_hv)
1228 cpuhw->mmcr[0] |= MMCR0_FCHV;
1231 * Write the new configuration to MMCR* with the freeze
1232 * bit set and set the hardware events to their initial values.
1233 * Then unfreeze the events.
1235 ppc_set_pmu_inuse(1);
1236 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1237 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1238 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1239 | MMCR0_FC);
1242 * Read off any pre-existing events that need to move
1243 * to another PMC.
1245 for (i = 0; i < cpuhw->n_events; ++i) {
1246 event = cpuhw->event[i];
1247 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1248 power_pmu_read(event);
1249 write_pmc(event->hw.idx, 0);
1250 event->hw.idx = 0;
1255 * Initialize the PMCs for all the new and moved events.
1257 cpuhw->n_limited = n_lim = 0;
1258 for (i = 0; i < cpuhw->n_events; ++i) {
1259 event = cpuhw->event[i];
1260 if (event->hw.idx)
1261 continue;
1262 idx = hwc_index[i] + 1;
1263 if (is_limited_pmc(idx)) {
1264 cpuhw->limited_counter[n_lim] = event;
1265 cpuhw->limited_hwidx[n_lim] = idx;
1266 ++n_lim;
1267 continue;
1270 if (ebb)
1271 val = local64_read(&event->hw.prev_count);
1272 else {
1273 val = 0;
1274 if (event->hw.sample_period) {
1275 left = local64_read(&event->hw.period_left);
1276 if (left < 0x80000000L)
1277 val = 0x80000000L - left;
1279 local64_set(&event->hw.prev_count, val);
1282 event->hw.idx = idx;
1283 if (event->hw.state & PERF_HES_STOPPED)
1284 val = 0;
1285 write_pmc(idx, val);
1287 perf_event_update_userpage(event);
1289 cpuhw->n_limited = n_lim;
1290 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1292 out_enable:
1293 pmao_restore_workaround(ebb);
1295 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1297 mb();
1298 if (cpuhw->bhrb_users)
1299 ppmu->config_bhrb(cpuhw->bhrb_filter);
1301 write_mmcr0(cpuhw, mmcr0);
1304 * Enable instruction sampling if necessary
1306 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1307 mb();
1308 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1311 out:
1313 local_irq_restore(flags);
1316 static int collect_events(struct perf_event *group, int max_count,
1317 struct perf_event *ctrs[], u64 *events,
1318 unsigned int *flags)
1320 int n = 0;
1321 struct perf_event *event;
1323 if (!is_software_event(group)) {
1324 if (n >= max_count)
1325 return -1;
1326 ctrs[n] = group;
1327 flags[n] = group->hw.event_base;
1328 events[n++] = group->hw.config;
1330 list_for_each_entry(event, &group->sibling_list, group_entry) {
1331 if (!is_software_event(event) &&
1332 event->state != PERF_EVENT_STATE_OFF) {
1333 if (n >= max_count)
1334 return -1;
1335 ctrs[n] = event;
1336 flags[n] = event->hw.event_base;
1337 events[n++] = event->hw.config;
1340 return n;
1344 * Add a event to the PMU.
1345 * If all events are not already frozen, then we disable and
1346 * re-enable the PMU in order to get hw_perf_enable to do the
1347 * actual work of reconfiguring the PMU.
1349 static int power_pmu_add(struct perf_event *event, int ef_flags)
1351 struct cpu_hw_events *cpuhw;
1352 unsigned long flags;
1353 int n0;
1354 int ret = -EAGAIN;
1356 local_irq_save(flags);
1357 perf_pmu_disable(event->pmu);
1360 * Add the event to the list (if there is room)
1361 * and check whether the total set is still feasible.
1363 cpuhw = &__get_cpu_var(cpu_hw_events);
1364 n0 = cpuhw->n_events;
1365 if (n0 >= ppmu->n_counter)
1366 goto out;
1367 cpuhw->event[n0] = event;
1368 cpuhw->events[n0] = event->hw.config;
1369 cpuhw->flags[n0] = event->hw.event_base;
1372 * This event may have been disabled/stopped in record_and_restart()
1373 * because we exceeded the ->event_limit. If re-starting the event,
1374 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1375 * notification is re-enabled.
1377 if (!(ef_flags & PERF_EF_START))
1378 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1379 else
1380 event->hw.state = 0;
1383 * If group events scheduling transaction was started,
1384 * skip the schedulability test here, it will be performed
1385 * at commit time(->commit_txn) as a whole
1387 if (cpuhw->group_flag & PERF_EVENT_TXN)
1388 goto nocheck;
1390 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1391 goto out;
1392 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1393 goto out;
1394 event->hw.config = cpuhw->events[n0];
1396 nocheck:
1397 ebb_event_add(event);
1399 ++cpuhw->n_events;
1400 ++cpuhw->n_added;
1402 ret = 0;
1403 out:
1404 if (has_branch_stack(event)) {
1405 power_pmu_bhrb_enable(event);
1406 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1407 event->attr.branch_sample_type);
1410 perf_pmu_enable(event->pmu);
1411 local_irq_restore(flags);
1412 return ret;
1416 * Remove a event from the PMU.
1418 static void power_pmu_del(struct perf_event *event, int ef_flags)
1420 struct cpu_hw_events *cpuhw;
1421 long i;
1422 unsigned long flags;
1424 local_irq_save(flags);
1425 perf_pmu_disable(event->pmu);
1427 power_pmu_read(event);
1429 cpuhw = &__get_cpu_var(cpu_hw_events);
1430 for (i = 0; i < cpuhw->n_events; ++i) {
1431 if (event == cpuhw->event[i]) {
1432 while (++i < cpuhw->n_events) {
1433 cpuhw->event[i-1] = cpuhw->event[i];
1434 cpuhw->events[i-1] = cpuhw->events[i];
1435 cpuhw->flags[i-1] = cpuhw->flags[i];
1437 --cpuhw->n_events;
1438 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1439 if (event->hw.idx) {
1440 write_pmc(event->hw.idx, 0);
1441 event->hw.idx = 0;
1443 perf_event_update_userpage(event);
1444 break;
1447 for (i = 0; i < cpuhw->n_limited; ++i)
1448 if (event == cpuhw->limited_counter[i])
1449 break;
1450 if (i < cpuhw->n_limited) {
1451 while (++i < cpuhw->n_limited) {
1452 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1453 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1455 --cpuhw->n_limited;
1457 if (cpuhw->n_events == 0) {
1458 /* disable exceptions if no events are running */
1459 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1462 if (has_branch_stack(event))
1463 power_pmu_bhrb_disable(event);
1465 perf_pmu_enable(event->pmu);
1466 local_irq_restore(flags);
1470 * POWER-PMU does not support disabling individual counters, hence
1471 * program their cycle counter to their max value and ignore the interrupts.
1474 static void power_pmu_start(struct perf_event *event, int ef_flags)
1476 unsigned long flags;
1477 s64 left;
1478 unsigned long val;
1480 if (!event->hw.idx || !event->hw.sample_period)
1481 return;
1483 if (!(event->hw.state & PERF_HES_STOPPED))
1484 return;
1486 if (ef_flags & PERF_EF_RELOAD)
1487 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1489 local_irq_save(flags);
1490 perf_pmu_disable(event->pmu);
1492 event->hw.state = 0;
1493 left = local64_read(&event->hw.period_left);
1495 val = 0;
1496 if (left < 0x80000000L)
1497 val = 0x80000000L - left;
1499 write_pmc(event->hw.idx, val);
1501 perf_event_update_userpage(event);
1502 perf_pmu_enable(event->pmu);
1503 local_irq_restore(flags);
1506 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1508 unsigned long flags;
1510 if (!event->hw.idx || !event->hw.sample_period)
1511 return;
1513 if (event->hw.state & PERF_HES_STOPPED)
1514 return;
1516 local_irq_save(flags);
1517 perf_pmu_disable(event->pmu);
1519 power_pmu_read(event);
1520 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1521 write_pmc(event->hw.idx, 0);
1523 perf_event_update_userpage(event);
1524 perf_pmu_enable(event->pmu);
1525 local_irq_restore(flags);
1529 * Start group events scheduling transaction
1530 * Set the flag to make pmu::enable() not perform the
1531 * schedulability test, it will be performed at commit time
1533 void power_pmu_start_txn(struct pmu *pmu)
1535 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1537 perf_pmu_disable(pmu);
1538 cpuhw->group_flag |= PERF_EVENT_TXN;
1539 cpuhw->n_txn_start = cpuhw->n_events;
1543 * Stop group events scheduling transaction
1544 * Clear the flag and pmu::enable() will perform the
1545 * schedulability test.
1547 void power_pmu_cancel_txn(struct pmu *pmu)
1549 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1551 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1552 perf_pmu_enable(pmu);
1556 * Commit group events scheduling transaction
1557 * Perform the group schedulability test as a whole
1558 * Return 0 if success
1560 int power_pmu_commit_txn(struct pmu *pmu)
1562 struct cpu_hw_events *cpuhw;
1563 long i, n;
1565 if (!ppmu)
1566 return -EAGAIN;
1567 cpuhw = &__get_cpu_var(cpu_hw_events);
1568 n = cpuhw->n_events;
1569 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1570 return -EAGAIN;
1571 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1572 if (i < 0)
1573 return -EAGAIN;
1575 for (i = cpuhw->n_txn_start; i < n; ++i)
1576 cpuhw->event[i]->hw.config = cpuhw->events[i];
1578 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1579 perf_pmu_enable(pmu);
1580 return 0;
1584 * Return 1 if we might be able to put event on a limited PMC,
1585 * or 0 if not.
1586 * A event can only go on a limited PMC if it counts something
1587 * that a limited PMC can count, doesn't require interrupts, and
1588 * doesn't exclude any processor mode.
1590 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1591 unsigned int flags)
1593 int n;
1594 u64 alt[MAX_EVENT_ALTERNATIVES];
1596 if (event->attr.exclude_user
1597 || event->attr.exclude_kernel
1598 || event->attr.exclude_hv
1599 || event->attr.sample_period)
1600 return 0;
1602 if (ppmu->limited_pmc_event(ev))
1603 return 1;
1606 * The requested event_id isn't on a limited PMC already;
1607 * see if any alternative code goes on a limited PMC.
1609 if (!ppmu->get_alternatives)
1610 return 0;
1612 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1613 n = ppmu->get_alternatives(ev, flags, alt);
1615 return n > 0;
1619 * Find an alternative event_id that goes on a normal PMC, if possible,
1620 * and return the event_id code, or 0 if there is no such alternative.
1621 * (Note: event_id code 0 is "don't count" on all machines.)
1623 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1625 u64 alt[MAX_EVENT_ALTERNATIVES];
1626 int n;
1628 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1629 n = ppmu->get_alternatives(ev, flags, alt);
1630 if (!n)
1631 return 0;
1632 return alt[0];
1635 /* Number of perf_events counting hardware events */
1636 static atomic_t num_events;
1637 /* Used to avoid races in calling reserve/release_pmc_hardware */
1638 static DEFINE_MUTEX(pmc_reserve_mutex);
1641 * Release the PMU if this is the last perf_event.
1643 static void hw_perf_event_destroy(struct perf_event *event)
1645 if (!atomic_add_unless(&num_events, -1, 1)) {
1646 mutex_lock(&pmc_reserve_mutex);
1647 if (atomic_dec_return(&num_events) == 0)
1648 release_pmc_hardware();
1649 mutex_unlock(&pmc_reserve_mutex);
1654 * Translate a generic cache event_id config to a raw event_id code.
1656 static int hw_perf_cache_event(u64 config, u64 *eventp)
1658 unsigned long type, op, result;
1659 int ev;
1661 if (!ppmu->cache_events)
1662 return -EINVAL;
1664 /* unpack config */
1665 type = config & 0xff;
1666 op = (config >> 8) & 0xff;
1667 result = (config >> 16) & 0xff;
1669 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1670 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1671 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1672 return -EINVAL;
1674 ev = (*ppmu->cache_events)[type][op][result];
1675 if (ev == 0)
1676 return -EOPNOTSUPP;
1677 if (ev == -1)
1678 return -EINVAL;
1679 *eventp = ev;
1680 return 0;
1683 static int power_pmu_event_init(struct perf_event *event)
1685 u64 ev;
1686 unsigned long flags;
1687 struct perf_event *ctrs[MAX_HWEVENTS];
1688 u64 events[MAX_HWEVENTS];
1689 unsigned int cflags[MAX_HWEVENTS];
1690 int n;
1691 int err;
1692 struct cpu_hw_events *cpuhw;
1694 if (!ppmu)
1695 return -ENOENT;
1697 if (has_branch_stack(event)) {
1698 /* PMU has BHRB enabled */
1699 if (!(ppmu->flags & PPMU_BHRB))
1700 return -EOPNOTSUPP;
1703 switch (event->attr.type) {
1704 case PERF_TYPE_HARDWARE:
1705 ev = event->attr.config;
1706 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1707 return -EOPNOTSUPP;
1708 ev = ppmu->generic_events[ev];
1709 break;
1710 case PERF_TYPE_HW_CACHE:
1711 err = hw_perf_cache_event(event->attr.config, &ev);
1712 if (err)
1713 return err;
1714 break;
1715 case PERF_TYPE_RAW:
1716 ev = event->attr.config;
1717 break;
1718 default:
1719 return -ENOENT;
1722 event->hw.config_base = ev;
1723 event->hw.idx = 0;
1726 * If we are not running on a hypervisor, force the
1727 * exclude_hv bit to 0 so that we don't care what
1728 * the user set it to.
1730 if (!firmware_has_feature(FW_FEATURE_LPAR))
1731 event->attr.exclude_hv = 0;
1734 * If this is a per-task event, then we can use
1735 * PM_RUN_* events interchangeably with their non RUN_*
1736 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1737 * XXX we should check if the task is an idle task.
1739 flags = 0;
1740 if (event->attach_state & PERF_ATTACH_TASK)
1741 flags |= PPMU_ONLY_COUNT_RUN;
1744 * If this machine has limited events, check whether this
1745 * event_id could go on a limited event.
1747 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1748 if (can_go_on_limited_pmc(event, ev, flags)) {
1749 flags |= PPMU_LIMITED_PMC_OK;
1750 } else if (ppmu->limited_pmc_event(ev)) {
1752 * The requested event_id is on a limited PMC,
1753 * but we can't use a limited PMC; see if any
1754 * alternative goes on a normal PMC.
1756 ev = normal_pmc_alternative(ev, flags);
1757 if (!ev)
1758 return -EINVAL;
1762 /* Extra checks for EBB */
1763 err = ebb_event_check(event);
1764 if (err)
1765 return err;
1768 * If this is in a group, check if it can go on with all the
1769 * other hardware events in the group. We assume the event
1770 * hasn't been linked into its leader's sibling list at this point.
1772 n = 0;
1773 if (event->group_leader != event) {
1774 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1775 ctrs, events, cflags);
1776 if (n < 0)
1777 return -EINVAL;
1779 events[n] = ev;
1780 ctrs[n] = event;
1781 cflags[n] = flags;
1782 if (check_excludes(ctrs, cflags, n, 1))
1783 return -EINVAL;
1785 cpuhw = &get_cpu_var(cpu_hw_events);
1786 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1788 if (has_branch_stack(event)) {
1789 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1790 event->attr.branch_sample_type);
1792 if(cpuhw->bhrb_filter == -1)
1793 return -EOPNOTSUPP;
1796 put_cpu_var(cpu_hw_events);
1797 if (err)
1798 return -EINVAL;
1800 event->hw.config = events[n];
1801 event->hw.event_base = cflags[n];
1802 event->hw.last_period = event->hw.sample_period;
1803 local64_set(&event->hw.period_left, event->hw.last_period);
1806 * For EBB events we just context switch the PMC value, we don't do any
1807 * of the sample_period logic. We use hw.prev_count for this.
1809 if (is_ebb_event(event))
1810 local64_set(&event->hw.prev_count, 0);
1813 * See if we need to reserve the PMU.
1814 * If no events are currently in use, then we have to take a
1815 * mutex to ensure that we don't race with another task doing
1816 * reserve_pmc_hardware or release_pmc_hardware.
1818 err = 0;
1819 if (!atomic_inc_not_zero(&num_events)) {
1820 mutex_lock(&pmc_reserve_mutex);
1821 if (atomic_read(&num_events) == 0 &&
1822 reserve_pmc_hardware(perf_event_interrupt))
1823 err = -EBUSY;
1824 else
1825 atomic_inc(&num_events);
1826 mutex_unlock(&pmc_reserve_mutex);
1828 event->destroy = hw_perf_event_destroy;
1830 return err;
1833 static int power_pmu_event_idx(struct perf_event *event)
1835 return event->hw.idx;
1838 ssize_t power_events_sysfs_show(struct device *dev,
1839 struct device_attribute *attr, char *page)
1841 struct perf_pmu_events_attr *pmu_attr;
1843 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1845 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1848 struct pmu power_pmu = {
1849 .pmu_enable = power_pmu_enable,
1850 .pmu_disable = power_pmu_disable,
1851 .event_init = power_pmu_event_init,
1852 .add = power_pmu_add,
1853 .del = power_pmu_del,
1854 .start = power_pmu_start,
1855 .stop = power_pmu_stop,
1856 .read = power_pmu_read,
1857 .start_txn = power_pmu_start_txn,
1858 .cancel_txn = power_pmu_cancel_txn,
1859 .commit_txn = power_pmu_commit_txn,
1860 .event_idx = power_pmu_event_idx,
1861 .flush_branch_stack = power_pmu_flush_branch_stack,
1865 * A counter has overflowed; update its count and record
1866 * things if requested. Note that interrupts are hard-disabled
1867 * here so there is no possibility of being interrupted.
1869 static void record_and_restart(struct perf_event *event, unsigned long val,
1870 struct pt_regs *regs)
1872 u64 period = event->hw.sample_period;
1873 s64 prev, delta, left;
1874 int record = 0;
1876 if (event->hw.state & PERF_HES_STOPPED) {
1877 write_pmc(event->hw.idx, 0);
1878 return;
1881 /* we don't have to worry about interrupts here */
1882 prev = local64_read(&event->hw.prev_count);
1883 delta = check_and_compute_delta(prev, val);
1884 local64_add(delta, &event->count);
1887 * See if the total period for this event has expired,
1888 * and update for the next period.
1890 val = 0;
1891 left = local64_read(&event->hw.period_left) - delta;
1892 if (delta == 0)
1893 left++;
1894 if (period) {
1895 if (left <= 0) {
1896 left += period;
1897 if (left <= 0)
1898 left = period;
1899 record = siar_valid(regs);
1900 event->hw.last_period = event->hw.sample_period;
1902 if (left < 0x80000000LL)
1903 val = 0x80000000LL - left;
1906 write_pmc(event->hw.idx, val);
1907 local64_set(&event->hw.prev_count, val);
1908 local64_set(&event->hw.period_left, left);
1909 perf_event_update_userpage(event);
1912 * Finally record data if requested.
1914 if (record) {
1915 struct perf_sample_data data;
1917 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1919 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1920 perf_get_data_addr(regs, &data.addr);
1922 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1923 struct cpu_hw_events *cpuhw;
1924 cpuhw = &__get_cpu_var(cpu_hw_events);
1925 power_pmu_bhrb_read(cpuhw);
1926 data.br_stack = &cpuhw->bhrb_stack;
1929 if (perf_event_overflow(event, &data, regs))
1930 power_pmu_stop(event, 0);
1935 * Called from generic code to get the misc flags (i.e. processor mode)
1936 * for an event_id.
1938 unsigned long perf_misc_flags(struct pt_regs *regs)
1940 u32 flags = perf_get_misc_flags(regs);
1942 if (flags)
1943 return flags;
1944 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1945 PERF_RECORD_MISC_KERNEL;
1949 * Called from generic code to get the instruction pointer
1950 * for an event_id.
1952 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1954 bool use_siar = regs_use_siar(regs);
1956 if (use_siar && siar_valid(regs))
1957 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1958 else if (use_siar)
1959 return 0; // no valid instruction pointer
1960 else
1961 return regs->nip;
1964 static bool pmc_overflow_power7(unsigned long val)
1967 * Events on POWER7 can roll back if a speculative event doesn't
1968 * eventually complete. Unfortunately in some rare cases they will
1969 * raise a performance monitor exception. We need to catch this to
1970 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1971 * cycles from overflow.
1973 * We only do this if the first pass fails to find any overflowing
1974 * PMCs because a user might set a period of less than 256 and we
1975 * don't want to mistakenly reset them.
1977 if ((0x80000000 - val) <= 256)
1978 return true;
1980 return false;
1983 static bool pmc_overflow(unsigned long val)
1985 if ((int)val < 0)
1986 return true;
1988 return false;
1992 * Performance monitor interrupt stuff
1994 static void perf_event_interrupt(struct pt_regs *regs)
1996 int i, j;
1997 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1998 struct perf_event *event;
1999 unsigned long val[8];
2000 int found, active;
2001 int nmi;
2003 if (cpuhw->n_limited)
2004 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2005 mfspr(SPRN_PMC6));
2007 perf_read_regs(regs);
2009 nmi = perf_intr_is_nmi(regs);
2010 if (nmi)
2011 nmi_enter();
2012 else
2013 irq_enter();
2015 /* Read all the PMCs since we'll need them a bunch of times */
2016 for (i = 0; i < ppmu->n_counter; ++i)
2017 val[i] = read_pmc(i + 1);
2019 /* Try to find what caused the IRQ */
2020 found = 0;
2021 for (i = 0; i < ppmu->n_counter; ++i) {
2022 if (!pmc_overflow(val[i]))
2023 continue;
2024 if (is_limited_pmc(i + 1))
2025 continue; /* these won't generate IRQs */
2027 * We've found one that's overflowed. For active
2028 * counters we need to log this. For inactive
2029 * counters, we need to reset it anyway
2031 found = 1;
2032 active = 0;
2033 for (j = 0; j < cpuhw->n_events; ++j) {
2034 event = cpuhw->event[j];
2035 if (event->hw.idx == (i + 1)) {
2036 active = 1;
2037 record_and_restart(event, val[i], regs);
2038 break;
2041 if (!active)
2042 /* reset non active counters that have overflowed */
2043 write_pmc(i + 1, 0);
2045 if (!found && pvr_version_is(PVR_POWER7)) {
2046 /* check active counters for special buggy p7 overflow */
2047 for (i = 0; i < cpuhw->n_events; ++i) {
2048 event = cpuhw->event[i];
2049 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2050 continue;
2051 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2052 /* event has overflowed in a buggy way*/
2053 found = 1;
2054 record_and_restart(event,
2055 val[event->hw.idx - 1],
2056 regs);
2060 if (!found && !nmi && printk_ratelimit())
2061 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2064 * Reset MMCR0 to its normal value. This will set PMXE and
2065 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2066 * and thus allow interrupts to occur again.
2067 * XXX might want to use MSR.PM to keep the events frozen until
2068 * we get back out of this interrupt.
2070 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2072 if (nmi)
2073 nmi_exit();
2074 else
2075 irq_exit();
2078 static void power_pmu_setup(int cpu)
2080 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2082 if (!ppmu)
2083 return;
2084 memset(cpuhw, 0, sizeof(*cpuhw));
2085 cpuhw->mmcr[0] = MMCR0_FC;
2088 static int
2089 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2091 unsigned int cpu = (long)hcpu;
2093 switch (action & ~CPU_TASKS_FROZEN) {
2094 case CPU_UP_PREPARE:
2095 power_pmu_setup(cpu);
2096 break;
2098 default:
2099 break;
2102 return NOTIFY_OK;
2105 int register_power_pmu(struct power_pmu *pmu)
2107 if (ppmu)
2108 return -EBUSY; /* something's already registered */
2110 ppmu = pmu;
2111 pr_info("%s performance monitor hardware support registered\n",
2112 pmu->name);
2114 power_pmu.attr_groups = ppmu->attr_groups;
2116 #ifdef MSR_HV
2118 * Use FCHV to ignore kernel events if MSR.HV is set.
2120 if (mfmsr() & MSR_HV)
2121 freeze_events_kernel = MMCR0_FCHV;
2122 #endif /* CONFIG_PPC64 */
2124 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2125 perf_cpu_notifier(power_pmu_notifier);
2127 return 0;