watchdog/core: Rename some softlockup_* functions
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_si_intf.c
blob36f47e8d06a3b90918a5ecb8433a04122bb0c0e8
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
79 #define PFX "ipmi_si: "
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
89 short timeout */
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_GETTING_MESSAGES,
97 SI_CHECKING_ENABLES,
98 SI_SETTING_ENABLES
99 /* FIXME - add watchdog stuff. */
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG 2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107 enum si_type {
108 SI_KCS, SI_SMIC, SI_BT
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
113 #define DEVICE_NAME "ipmi_si"
115 static struct platform_driver ipmi_driver;
118 * Indexes into stats[] in smi_info below.
120 enum si_stat_indexes {
122 * Number of times the driver requested a timer while an operation
123 * was in progress.
125 SI_STAT_short_timeouts = 0,
128 * Number of times the driver requested a timer while nothing was in
129 * progress.
131 SI_STAT_long_timeouts,
133 /* Number of times the interface was idle while being polled. */
134 SI_STAT_idles,
136 /* Number of interrupts the driver handled. */
137 SI_STAT_interrupts,
139 /* Number of time the driver got an ATTN from the hardware. */
140 SI_STAT_attentions,
142 /* Number of times the driver requested flags from the hardware. */
143 SI_STAT_flag_fetches,
145 /* Number of times the hardware didn't follow the state machine. */
146 SI_STAT_hosed_count,
148 /* Number of completed messages. */
149 SI_STAT_complete_transactions,
151 /* Number of IPMI events received from the hardware. */
152 SI_STAT_events,
154 /* Number of watchdog pretimeouts. */
155 SI_STAT_watchdog_pretimeouts,
157 /* Number of asynchronous messages received. */
158 SI_STAT_incoming_messages,
161 /* This *must* remain last, add new values above this. */
162 SI_NUM_STATS
165 struct smi_info {
166 int intf_num;
167 ipmi_smi_t intf;
168 struct si_sm_data *si_sm;
169 const struct si_sm_handlers *handlers;
170 enum si_type si_type;
171 spinlock_t si_lock;
172 struct ipmi_smi_msg *waiting_msg;
173 struct ipmi_smi_msg *curr_msg;
174 enum si_intf_state si_state;
177 * Used to handle the various types of I/O that can occur with
178 * IPMI
180 struct si_sm_io io;
181 int (*io_setup)(struct smi_info *info);
182 void (*io_cleanup)(struct smi_info *info);
183 int (*irq_setup)(struct smi_info *info);
184 void (*irq_cleanup)(struct smi_info *info);
185 unsigned int io_size;
186 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 void (*addr_source_cleanup)(struct smi_info *info);
188 void *addr_source_data;
191 * Per-OEM handler, called from handle_flags(). Returns 1
192 * when handle_flags() needs to be re-run or 0 indicating it
193 * set si_state itself.
195 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 * is set to hold the flags until we are done handling everything
200 * from the flags.
202 #define RECEIVE_MSG_AVAIL 0x01
203 #define EVENT_MSG_BUFFER_FULL 0x02
204 #define WDT_PRE_TIMEOUT_INT 0x08
205 #define OEM0_DATA_AVAIL 0x20
206 #define OEM1_DATA_AVAIL 0x40
207 #define OEM2_DATA_AVAIL 0x80
208 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
209 OEM1_DATA_AVAIL | \
210 OEM2_DATA_AVAIL)
211 unsigned char msg_flags;
213 /* Does the BMC have an event buffer? */
214 bool has_event_buffer;
217 * If set to true, this will request events the next time the
218 * state machine is idle.
220 atomic_t req_events;
223 * If true, run the state machine to completion on every send
224 * call. Generally used after a panic to make sure stuff goes
225 * out.
227 bool run_to_completion;
229 /* The I/O port of an SI interface. */
230 int port;
233 * The space between start addresses of the two ports. For
234 * instance, if the first port is 0xca2 and the spacing is 4, then
235 * the second port is 0xca6.
237 unsigned int spacing;
239 /* zero if no irq; */
240 int irq;
242 /* The timer for this si. */
243 struct timer_list si_timer;
245 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
246 bool timer_running;
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies;
251 /* Are we waiting for the events, pretimeouts, received msgs? */
252 atomic_t need_watch;
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
258 * interrupts.
260 bool interrupt_disabled;
263 * Does the BMC support events?
265 bool supports_event_msg_buff;
268 * Can we disable interrupts the global enables receive irq
269 * bit? There are currently two forms of brokenness, some
270 * systems cannot disable the bit (which is technically within
271 * the spec but a bad idea) and some systems have the bit
272 * forced to zero even though interrupts work (which is
273 * clearly outside the spec). The next bool tells which form
274 * of brokenness is present.
276 bool cannot_disable_irq;
279 * Some systems are broken and cannot set the irq enable
280 * bit, even if they support interrupts.
282 bool irq_enable_broken;
285 * Did we get an attention that we did not handle?
287 bool got_attn;
289 /* From the get device id response... */
290 struct ipmi_device_id device_id;
292 /* Driver model stuff. */
293 struct device *dev;
294 struct platform_device *pdev;
297 * True if we allocated the device, false if it came from
298 * someplace else (like PCI).
300 bool dev_registered;
302 /* Slave address, could be reported from DMI. */
303 unsigned char slave_addr;
305 /* Counters and things for the proc filesystem. */
306 atomic_t stats[SI_NUM_STATS];
308 struct task_struct *thread;
310 struct list_head link;
311 union ipmi_smi_info_union addr_info;
314 #define smi_inc_stat(smi, stat) \
315 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
319 #define SI_MAX_PARMS 4
321 static int force_kipmid[SI_MAX_PARMS];
322 static int num_force_kipmid;
323 #ifdef CONFIG_PCI
324 static bool pci_registered;
325 #endif
326 #ifdef CONFIG_PARISC
327 static bool parisc_registered;
328 #endif
330 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
331 static int num_max_busy_us;
333 static bool unload_when_empty = true;
335 static int add_smi(struct smi_info *smi);
336 static int try_smi_init(struct smi_info *smi);
337 static void cleanup_one_si(struct smi_info *to_clean);
338 static void cleanup_ipmi_si(void);
340 #ifdef DEBUG_TIMING
341 void debug_timestamp(char *msg)
343 struct timespec64 t;
345 getnstimeofday64(&t);
346 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
348 #else
349 #define debug_timestamp(x)
350 #endif
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
353 static int register_xaction_notifier(struct notifier_block *nb)
355 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
358 static void deliver_recv_msg(struct smi_info *smi_info,
359 struct ipmi_smi_msg *msg)
361 /* Deliver the message to the upper layer. */
362 if (smi_info->intf)
363 ipmi_smi_msg_received(smi_info->intf, msg);
364 else
365 ipmi_free_smi_msg(msg);
368 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
370 struct ipmi_smi_msg *msg = smi_info->curr_msg;
372 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
373 cCode = IPMI_ERR_UNSPECIFIED;
374 /* else use it as is */
376 /* Make it a response */
377 msg->rsp[0] = msg->data[0] | 4;
378 msg->rsp[1] = msg->data[1];
379 msg->rsp[2] = cCode;
380 msg->rsp_size = 3;
382 smi_info->curr_msg = NULL;
383 deliver_recv_msg(smi_info, msg);
386 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
388 int rv;
390 if (!smi_info->waiting_msg) {
391 smi_info->curr_msg = NULL;
392 rv = SI_SM_IDLE;
393 } else {
394 int err;
396 smi_info->curr_msg = smi_info->waiting_msg;
397 smi_info->waiting_msg = NULL;
398 debug_timestamp("Start2");
399 err = atomic_notifier_call_chain(&xaction_notifier_list,
400 0, smi_info);
401 if (err & NOTIFY_STOP_MASK) {
402 rv = SI_SM_CALL_WITHOUT_DELAY;
403 goto out;
405 err = smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
409 if (err)
410 return_hosed_msg(smi_info, err);
412 rv = SI_SM_CALL_WITHOUT_DELAY;
414 out:
415 return rv;
418 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
420 smi_info->last_timeout_jiffies = jiffies;
421 mod_timer(&smi_info->si_timer, new_val);
422 smi_info->timer_running = true;
426 * Start a new message and (re)start the timer and thread.
428 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
429 unsigned int size)
431 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
433 if (smi_info->thread)
434 wake_up_process(smi_info->thread);
436 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
439 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
441 unsigned char msg[2];
443 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
446 if (start_timer)
447 start_new_msg(smi_info, msg, 2);
448 else
449 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
450 smi_info->si_state = SI_CHECKING_ENABLES;
453 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
455 unsigned char msg[3];
457 /* Make sure the watchdog pre-timeout flag is not set at startup. */
458 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
459 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
460 msg[2] = WDT_PRE_TIMEOUT_INT;
462 if (start_timer)
463 start_new_msg(smi_info, msg, 3);
464 else
465 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
466 smi_info->si_state = SI_CLEARING_FLAGS;
469 static void start_getting_msg_queue(struct smi_info *smi_info)
471 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
473 smi_info->curr_msg->data_size = 2;
475 start_new_msg(smi_info, smi_info->curr_msg->data,
476 smi_info->curr_msg->data_size);
477 smi_info->si_state = SI_GETTING_MESSAGES;
480 static void start_getting_events(struct smi_info *smi_info)
482 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
483 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
484 smi_info->curr_msg->data_size = 2;
486 start_new_msg(smi_info, smi_info->curr_msg->data,
487 smi_info->curr_msg->data_size);
488 smi_info->si_state = SI_GETTING_EVENTS;
492 * When we have a situtaion where we run out of memory and cannot
493 * allocate messages, we just leave them in the BMC and run the system
494 * polled until we can allocate some memory. Once we have some
495 * memory, we will re-enable the interrupt.
497 * Note that we cannot just use disable_irq(), since the interrupt may
498 * be shared.
500 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
502 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
503 smi_info->interrupt_disabled = true;
504 start_check_enables(smi_info, start_timer);
505 return true;
507 return false;
510 static inline bool enable_si_irq(struct smi_info *smi_info)
512 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
513 smi_info->interrupt_disabled = false;
514 start_check_enables(smi_info, true);
515 return true;
517 return false;
521 * Allocate a message. If unable to allocate, start the interrupt
522 * disable process and return NULL. If able to allocate but
523 * interrupts are disabled, free the message and return NULL after
524 * starting the interrupt enable process.
526 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
528 struct ipmi_smi_msg *msg;
530 msg = ipmi_alloc_smi_msg();
531 if (!msg) {
532 if (!disable_si_irq(smi_info, true))
533 smi_info->si_state = SI_NORMAL;
534 } else if (enable_si_irq(smi_info)) {
535 ipmi_free_smi_msg(msg);
536 msg = NULL;
538 return msg;
541 static void handle_flags(struct smi_info *smi_info)
543 retry:
544 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
545 /* Watchdog pre-timeout */
546 smi_inc_stat(smi_info, watchdog_pretimeouts);
548 start_clear_flags(smi_info, true);
549 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
550 if (smi_info->intf)
551 ipmi_smi_watchdog_pretimeout(smi_info->intf);
552 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
553 /* Messages available. */
554 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
555 if (!smi_info->curr_msg)
556 return;
558 start_getting_msg_queue(smi_info);
559 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
560 /* Events available. */
561 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
562 if (!smi_info->curr_msg)
563 return;
565 start_getting_events(smi_info);
566 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
567 smi_info->oem_data_avail_handler) {
568 if (smi_info->oem_data_avail_handler(smi_info))
569 goto retry;
570 } else
571 smi_info->si_state = SI_NORMAL;
575 * Global enables we care about.
577 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
578 IPMI_BMC_EVT_MSG_INTR)
580 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
581 bool *irq_on)
583 u8 enables = 0;
585 if (smi_info->supports_event_msg_buff)
586 enables |= IPMI_BMC_EVT_MSG_BUFF;
588 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
589 smi_info->cannot_disable_irq) &&
590 !smi_info->irq_enable_broken)
591 enables |= IPMI_BMC_RCV_MSG_INTR;
593 if (smi_info->supports_event_msg_buff &&
594 smi_info->irq && !smi_info->interrupt_disabled &&
595 !smi_info->irq_enable_broken)
596 enables |= IPMI_BMC_EVT_MSG_INTR;
598 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
600 return enables;
603 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
605 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
607 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
609 if ((bool)irqstate == irq_on)
610 return;
612 if (irq_on)
613 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
614 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
615 else
616 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
619 static void handle_transaction_done(struct smi_info *smi_info)
621 struct ipmi_smi_msg *msg;
623 debug_timestamp("Done");
624 switch (smi_info->si_state) {
625 case SI_NORMAL:
626 if (!smi_info->curr_msg)
627 break;
629 smi_info->curr_msg->rsp_size
630 = smi_info->handlers->get_result(
631 smi_info->si_sm,
632 smi_info->curr_msg->rsp,
633 IPMI_MAX_MSG_LENGTH);
636 * Do this here becase deliver_recv_msg() releases the
637 * lock, and a new message can be put in during the
638 * time the lock is released.
640 msg = smi_info->curr_msg;
641 smi_info->curr_msg = NULL;
642 deliver_recv_msg(smi_info, msg);
643 break;
645 case SI_GETTING_FLAGS:
647 unsigned char msg[4];
648 unsigned int len;
650 /* We got the flags from the SMI, now handle them. */
651 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
652 if (msg[2] != 0) {
653 /* Error fetching flags, just give up for now. */
654 smi_info->si_state = SI_NORMAL;
655 } else if (len < 4) {
657 * Hmm, no flags. That's technically illegal, but
658 * don't use uninitialized data.
660 smi_info->si_state = SI_NORMAL;
661 } else {
662 smi_info->msg_flags = msg[3];
663 handle_flags(smi_info);
665 break;
668 case SI_CLEARING_FLAGS:
670 unsigned char msg[3];
672 /* We cleared the flags. */
673 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
674 if (msg[2] != 0) {
675 /* Error clearing flags */
676 dev_warn(smi_info->dev,
677 "Error clearing flags: %2.2x\n", msg[2]);
679 smi_info->si_state = SI_NORMAL;
680 break;
683 case SI_GETTING_EVENTS:
685 smi_info->curr_msg->rsp_size
686 = smi_info->handlers->get_result(
687 smi_info->si_sm,
688 smi_info->curr_msg->rsp,
689 IPMI_MAX_MSG_LENGTH);
692 * Do this here becase deliver_recv_msg() releases the
693 * lock, and a new message can be put in during the
694 * time the lock is released.
696 msg = smi_info->curr_msg;
697 smi_info->curr_msg = NULL;
698 if (msg->rsp[2] != 0) {
699 /* Error getting event, probably done. */
700 msg->done(msg);
702 /* Take off the event flag. */
703 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
704 handle_flags(smi_info);
705 } else {
706 smi_inc_stat(smi_info, events);
709 * Do this before we deliver the message
710 * because delivering the message releases the
711 * lock and something else can mess with the
712 * state.
714 handle_flags(smi_info);
716 deliver_recv_msg(smi_info, msg);
718 break;
721 case SI_GETTING_MESSAGES:
723 smi_info->curr_msg->rsp_size
724 = smi_info->handlers->get_result(
725 smi_info->si_sm,
726 smi_info->curr_msg->rsp,
727 IPMI_MAX_MSG_LENGTH);
730 * Do this here becase deliver_recv_msg() releases the
731 * lock, and a new message can be put in during the
732 * time the lock is released.
734 msg = smi_info->curr_msg;
735 smi_info->curr_msg = NULL;
736 if (msg->rsp[2] != 0) {
737 /* Error getting event, probably done. */
738 msg->done(msg);
740 /* Take off the msg flag. */
741 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
742 handle_flags(smi_info);
743 } else {
744 smi_inc_stat(smi_info, incoming_messages);
747 * Do this before we deliver the message
748 * because delivering the message releases the
749 * lock and something else can mess with the
750 * state.
752 handle_flags(smi_info);
754 deliver_recv_msg(smi_info, msg);
756 break;
759 case SI_CHECKING_ENABLES:
761 unsigned char msg[4];
762 u8 enables;
763 bool irq_on;
765 /* We got the flags from the SMI, now handle them. */
766 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
767 if (msg[2] != 0) {
768 dev_warn(smi_info->dev,
769 "Couldn't get irq info: %x.\n", msg[2]);
770 dev_warn(smi_info->dev,
771 "Maybe ok, but ipmi might run very slowly.\n");
772 smi_info->si_state = SI_NORMAL;
773 break;
775 enables = current_global_enables(smi_info, 0, &irq_on);
776 if (smi_info->si_type == SI_BT)
777 /* BT has its own interrupt enable bit. */
778 check_bt_irq(smi_info, irq_on);
779 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
780 /* Enables are not correct, fix them. */
781 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
782 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
783 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
784 smi_info->handlers->start_transaction(
785 smi_info->si_sm, msg, 3);
786 smi_info->si_state = SI_SETTING_ENABLES;
787 } else if (smi_info->supports_event_msg_buff) {
788 smi_info->curr_msg = ipmi_alloc_smi_msg();
789 if (!smi_info->curr_msg) {
790 smi_info->si_state = SI_NORMAL;
791 break;
793 start_getting_events(smi_info);
794 } else {
795 smi_info->si_state = SI_NORMAL;
797 break;
800 case SI_SETTING_ENABLES:
802 unsigned char msg[4];
804 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
805 if (msg[2] != 0)
806 dev_warn(smi_info->dev,
807 "Could not set the global enables: 0x%x.\n",
808 msg[2]);
810 if (smi_info->supports_event_msg_buff) {
811 smi_info->curr_msg = ipmi_alloc_smi_msg();
812 if (!smi_info->curr_msg) {
813 smi_info->si_state = SI_NORMAL;
814 break;
816 start_getting_events(smi_info);
817 } else {
818 smi_info->si_state = SI_NORMAL;
820 break;
826 * Called on timeouts and events. Timeouts should pass the elapsed
827 * time, interrupts should pass in zero. Must be called with
828 * si_lock held and interrupts disabled.
830 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
831 int time)
833 enum si_sm_result si_sm_result;
835 restart:
837 * There used to be a loop here that waited a little while
838 * (around 25us) before giving up. That turned out to be
839 * pointless, the minimum delays I was seeing were in the 300us
840 * range, which is far too long to wait in an interrupt. So
841 * we just run until the state machine tells us something
842 * happened or it needs a delay.
844 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
845 time = 0;
846 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
847 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
849 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
850 smi_inc_stat(smi_info, complete_transactions);
852 handle_transaction_done(smi_info);
853 goto restart;
854 } else if (si_sm_result == SI_SM_HOSED) {
855 smi_inc_stat(smi_info, hosed_count);
858 * Do the before return_hosed_msg, because that
859 * releases the lock.
861 smi_info->si_state = SI_NORMAL;
862 if (smi_info->curr_msg != NULL) {
864 * If we were handling a user message, format
865 * a response to send to the upper layer to
866 * tell it about the error.
868 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
870 goto restart;
874 * We prefer handling attn over new messages. But don't do
875 * this if there is not yet an upper layer to handle anything.
877 if (likely(smi_info->intf) &&
878 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
879 unsigned char msg[2];
881 if (smi_info->si_state != SI_NORMAL) {
883 * We got an ATTN, but we are doing something else.
884 * Handle the ATTN later.
886 smi_info->got_attn = true;
887 } else {
888 smi_info->got_attn = false;
889 smi_inc_stat(smi_info, attentions);
892 * Got a attn, send down a get message flags to see
893 * what's causing it. It would be better to handle
894 * this in the upper layer, but due to the way
895 * interrupts work with the SMI, that's not really
896 * possible.
898 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
899 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
901 start_new_msg(smi_info, msg, 2);
902 smi_info->si_state = SI_GETTING_FLAGS;
903 goto restart;
907 /* If we are currently idle, try to start the next message. */
908 if (si_sm_result == SI_SM_IDLE) {
909 smi_inc_stat(smi_info, idles);
911 si_sm_result = start_next_msg(smi_info);
912 if (si_sm_result != SI_SM_IDLE)
913 goto restart;
916 if ((si_sm_result == SI_SM_IDLE)
917 && (atomic_read(&smi_info->req_events))) {
919 * We are idle and the upper layer requested that I fetch
920 * events, so do so.
922 atomic_set(&smi_info->req_events, 0);
925 * Take this opportunity to check the interrupt and
926 * message enable state for the BMC. The BMC can be
927 * asynchronously reset, and may thus get interrupts
928 * disable and messages disabled.
930 if (smi_info->supports_event_msg_buff || smi_info->irq) {
931 start_check_enables(smi_info, true);
932 } else {
933 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
934 if (!smi_info->curr_msg)
935 goto out;
937 start_getting_events(smi_info);
939 goto restart;
942 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
943 /* Ok it if fails, the timer will just go off. */
944 if (del_timer(&smi_info->si_timer))
945 smi_info->timer_running = false;
948 out:
949 return si_sm_result;
952 static void check_start_timer_thread(struct smi_info *smi_info)
954 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
955 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
957 if (smi_info->thread)
958 wake_up_process(smi_info->thread);
960 start_next_msg(smi_info);
961 smi_event_handler(smi_info, 0);
965 static void flush_messages(void *send_info)
967 struct smi_info *smi_info = send_info;
968 enum si_sm_result result;
971 * Currently, this function is called only in run-to-completion
972 * mode. This means we are single-threaded, no need for locks.
974 result = smi_event_handler(smi_info, 0);
975 while (result != SI_SM_IDLE) {
976 udelay(SI_SHORT_TIMEOUT_USEC);
977 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
981 static void sender(void *send_info,
982 struct ipmi_smi_msg *msg)
984 struct smi_info *smi_info = send_info;
985 unsigned long flags;
987 debug_timestamp("Enqueue");
989 if (smi_info->run_to_completion) {
991 * If we are running to completion, start it. Upper
992 * layer will call flush_messages to clear it out.
994 smi_info->waiting_msg = msg;
995 return;
998 spin_lock_irqsave(&smi_info->si_lock, flags);
1000 * The following two lines don't need to be under the lock for
1001 * the lock's sake, but they do need SMP memory barriers to
1002 * avoid getting things out of order. We are already claiming
1003 * the lock, anyway, so just do it under the lock to avoid the
1004 * ordering problem.
1006 BUG_ON(smi_info->waiting_msg);
1007 smi_info->waiting_msg = msg;
1008 check_start_timer_thread(smi_info);
1009 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1012 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1014 struct smi_info *smi_info = send_info;
1016 smi_info->run_to_completion = i_run_to_completion;
1017 if (i_run_to_completion)
1018 flush_messages(smi_info);
1022 * Use -1 in the nsec value of the busy waiting timespec to tell that
1023 * we are spinning in kipmid looking for something and not delaying
1024 * between checks
1026 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1028 ts->tv_nsec = -1;
1030 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1032 return ts->tv_nsec != -1;
1035 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1036 const struct smi_info *smi_info,
1037 struct timespec64 *busy_until)
1039 unsigned int max_busy_us = 0;
1041 if (smi_info->intf_num < num_max_busy_us)
1042 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1043 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1044 ipmi_si_set_not_busy(busy_until);
1045 else if (!ipmi_si_is_busy(busy_until)) {
1046 getnstimeofday64(busy_until);
1047 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1048 } else {
1049 struct timespec64 now;
1051 getnstimeofday64(&now);
1052 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1053 ipmi_si_set_not_busy(busy_until);
1054 return 0;
1057 return 1;
1062 * A busy-waiting loop for speeding up IPMI operation.
1064 * Lousy hardware makes this hard. This is only enabled for systems
1065 * that are not BT and do not have interrupts. It starts spinning
1066 * when an operation is complete or until max_busy tells it to stop
1067 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1068 * Documentation/IPMI.txt for details.
1070 static int ipmi_thread(void *data)
1072 struct smi_info *smi_info = data;
1073 unsigned long flags;
1074 enum si_sm_result smi_result;
1075 struct timespec64 busy_until;
1077 ipmi_si_set_not_busy(&busy_until);
1078 set_user_nice(current, MAX_NICE);
1079 while (!kthread_should_stop()) {
1080 int busy_wait;
1082 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 smi_result = smi_event_handler(smi_info, 0);
1086 * If the driver is doing something, there is a possible
1087 * race with the timer. If the timer handler see idle,
1088 * and the thread here sees something else, the timer
1089 * handler won't restart the timer even though it is
1090 * required. So start it here if necessary.
1092 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1093 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1095 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1097 &busy_until);
1098 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1099 ; /* do nothing */
1100 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1101 schedule();
1102 else if (smi_result == SI_SM_IDLE) {
1103 if (atomic_read(&smi_info->need_watch)) {
1104 schedule_timeout_interruptible(100);
1105 } else {
1106 /* Wait to be woken up when we are needed. */
1107 __set_current_state(TASK_INTERRUPTIBLE);
1108 schedule();
1110 } else
1111 schedule_timeout_interruptible(1);
1113 return 0;
1117 static void poll(void *send_info)
1119 struct smi_info *smi_info = send_info;
1120 unsigned long flags = 0;
1121 bool run_to_completion = smi_info->run_to_completion;
1124 * Make sure there is some delay in the poll loop so we can
1125 * drive time forward and timeout things.
1127 udelay(10);
1128 if (!run_to_completion)
1129 spin_lock_irqsave(&smi_info->si_lock, flags);
1130 smi_event_handler(smi_info, 10);
1131 if (!run_to_completion)
1132 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1135 static void request_events(void *send_info)
1137 struct smi_info *smi_info = send_info;
1139 if (!smi_info->has_event_buffer)
1140 return;
1142 atomic_set(&smi_info->req_events, 1);
1145 static void set_need_watch(void *send_info, bool enable)
1147 struct smi_info *smi_info = send_info;
1148 unsigned long flags;
1150 atomic_set(&smi_info->need_watch, enable);
1151 spin_lock_irqsave(&smi_info->si_lock, flags);
1152 check_start_timer_thread(smi_info);
1153 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1156 static int initialized;
1158 static void smi_timeout(unsigned long data)
1160 struct smi_info *smi_info = (struct smi_info *) data;
1161 enum si_sm_result smi_result;
1162 unsigned long flags;
1163 unsigned long jiffies_now;
1164 long time_diff;
1165 long timeout;
1167 spin_lock_irqsave(&(smi_info->si_lock), flags);
1168 debug_timestamp("Timer");
1170 jiffies_now = jiffies;
1171 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1172 * SI_USEC_PER_JIFFY);
1173 smi_result = smi_event_handler(smi_info, time_diff);
1175 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1176 /* Running with interrupts, only do long timeouts. */
1177 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1178 smi_inc_stat(smi_info, long_timeouts);
1179 goto do_mod_timer;
1183 * If the state machine asks for a short delay, then shorten
1184 * the timer timeout.
1186 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1187 smi_inc_stat(smi_info, short_timeouts);
1188 timeout = jiffies + 1;
1189 } else {
1190 smi_inc_stat(smi_info, long_timeouts);
1191 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1194 do_mod_timer:
1195 if (smi_result != SI_SM_IDLE)
1196 smi_mod_timer(smi_info, timeout);
1197 else
1198 smi_info->timer_running = false;
1199 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1202 static irqreturn_t si_irq_handler(int irq, void *data)
1204 struct smi_info *smi_info = data;
1205 unsigned long flags;
1207 spin_lock_irqsave(&(smi_info->si_lock), flags);
1209 smi_inc_stat(smi_info, interrupts);
1211 debug_timestamp("Interrupt");
1213 smi_event_handler(smi_info, 0);
1214 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1215 return IRQ_HANDLED;
1218 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1220 struct smi_info *smi_info = data;
1221 /* We need to clear the IRQ flag for the BT interface. */
1222 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1223 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1224 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1225 return si_irq_handler(irq, data);
1228 static int smi_start_processing(void *send_info,
1229 ipmi_smi_t intf)
1231 struct smi_info *new_smi = send_info;
1232 int enable = 0;
1234 new_smi->intf = intf;
1236 /* Set up the timer that drives the interface. */
1237 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1238 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1240 /* Try to claim any interrupts. */
1241 if (new_smi->irq_setup)
1242 new_smi->irq_setup(new_smi);
1245 * Check if the user forcefully enabled the daemon.
1247 if (new_smi->intf_num < num_force_kipmid)
1248 enable = force_kipmid[new_smi->intf_num];
1250 * The BT interface is efficient enough to not need a thread,
1251 * and there is no need for a thread if we have interrupts.
1253 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1254 enable = 1;
1256 if (enable) {
1257 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1258 "kipmi%d", new_smi->intf_num);
1259 if (IS_ERR(new_smi->thread)) {
1260 dev_notice(new_smi->dev, "Could not start"
1261 " kernel thread due to error %ld, only using"
1262 " timers to drive the interface\n",
1263 PTR_ERR(new_smi->thread));
1264 new_smi->thread = NULL;
1268 return 0;
1271 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1273 struct smi_info *smi = send_info;
1275 data->addr_src = smi->addr_source;
1276 data->dev = smi->dev;
1277 data->addr_info = smi->addr_info;
1278 get_device(smi->dev);
1280 return 0;
1283 static void set_maintenance_mode(void *send_info, bool enable)
1285 struct smi_info *smi_info = send_info;
1287 if (!enable)
1288 atomic_set(&smi_info->req_events, 0);
1291 static const struct ipmi_smi_handlers handlers = {
1292 .owner = THIS_MODULE,
1293 .start_processing = smi_start_processing,
1294 .get_smi_info = get_smi_info,
1295 .sender = sender,
1296 .request_events = request_events,
1297 .set_need_watch = set_need_watch,
1298 .set_maintenance_mode = set_maintenance_mode,
1299 .set_run_to_completion = set_run_to_completion,
1300 .flush_messages = flush_messages,
1301 .poll = poll,
1305 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1309 static LIST_HEAD(smi_infos);
1310 static DEFINE_MUTEX(smi_infos_lock);
1311 static int smi_num; /* Used to sequence the SMIs */
1313 #define DEFAULT_REGSPACING 1
1314 #define DEFAULT_REGSIZE 1
1316 #ifdef CONFIG_ACPI
1317 static bool si_tryacpi = true;
1318 #endif
1319 #ifdef CONFIG_DMI
1320 static bool si_trydmi = true;
1321 #endif
1322 static bool si_tryplatform = true;
1323 #ifdef CONFIG_PCI
1324 static bool si_trypci = true;
1325 #endif
1326 static char *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1344 #define IPMI_IO_ADDR_SPACE 0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1353 " gory details.");
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1375 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1376 " interface separated by commas. The types are 'kcs',"
1377 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1378 " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1380 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1381 " addresses separated by commas. Only use if an interface"
1382 " is in memory. Otherwise, set it to zero or leave"
1383 " it blank.");
1384 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1385 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1386 " addresses separated by commas. Only use if an interface"
1387 " is a port. Otherwise, set it to zero or leave"
1388 " it blank.");
1389 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1390 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1391 " addresses separated by commas. Only use if an interface"
1392 " has an interrupt. Otherwise, set it to zero or leave"
1393 " it blank.");
1394 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1395 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1396 " and each successive register used by the interface. For"
1397 " instance, if the start address is 0xca2 and the spacing"
1398 " is 2, then the second address is at 0xca4. Defaults"
1399 " to 1.");
1400 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1401 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1402 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1404 " the 8-bit IPMI register has to be read from a larger"
1405 " register.");
1406 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1407 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1408 " IPMI register, in bits. For instance, if the data"
1409 " is read from a 32-bit word and the IPMI data is in"
1410 " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1412 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1413 " the controller. Normally this is 0x20, but can be"
1414 " overridden by this parm. This is an array indexed"
1415 " by interface number.");
1416 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1417 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1418 " disabled(0). Normally the IPMI driver auto-detects"
1419 " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1422 " specified or found, default is 1. Setting to 0"
1423 " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us,
1426 "Max time (in microseconds) to busy-wait for IPMI data before"
1427 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428 " if kipmid is using up a lot of CPU time.");
1431 static void std_irq_cleanup(struct smi_info *info)
1433 if (info->si_type == SI_BT)
1434 /* Disable the interrupt in the BT interface. */
1435 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1436 free_irq(info->irq, info);
1439 static int std_irq_setup(struct smi_info *info)
1441 int rv;
1443 if (!info->irq)
1444 return 0;
1446 if (info->si_type == SI_BT) {
1447 rv = request_irq(info->irq,
1448 si_bt_irq_handler,
1449 IRQF_SHARED,
1450 DEVICE_NAME,
1451 info);
1452 if (!rv)
1453 /* Enable the interrupt in the BT interface. */
1454 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1455 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1456 } else
1457 rv = request_irq(info->irq,
1458 si_irq_handler,
1459 IRQF_SHARED,
1460 DEVICE_NAME,
1461 info);
1462 if (rv) {
1463 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1464 " running polled\n",
1465 DEVICE_NAME, info->irq);
1466 info->irq = 0;
1467 } else {
1468 info->irq_cleanup = std_irq_cleanup;
1469 dev_info(info->dev, "Using irq %d\n", info->irq);
1472 return rv;
1475 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1477 unsigned int addr = io->addr_data;
1479 return inb(addr + (offset * io->regspacing));
1482 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1483 unsigned char b)
1485 unsigned int addr = io->addr_data;
1487 outb(b, addr + (offset * io->regspacing));
1490 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1492 unsigned int addr = io->addr_data;
1494 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1497 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1498 unsigned char b)
1500 unsigned int addr = io->addr_data;
1502 outw(b << io->regshift, addr + (offset * io->regspacing));
1505 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1507 unsigned int addr = io->addr_data;
1509 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1512 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1513 unsigned char b)
1515 unsigned int addr = io->addr_data;
1517 outl(b << io->regshift, addr+(offset * io->regspacing));
1520 static void port_cleanup(struct smi_info *info)
1522 unsigned int addr = info->io.addr_data;
1523 int idx;
1525 if (addr) {
1526 for (idx = 0; idx < info->io_size; idx++)
1527 release_region(addr + idx * info->io.regspacing,
1528 info->io.regsize);
1532 static int port_setup(struct smi_info *info)
1534 unsigned int addr = info->io.addr_data;
1535 int idx;
1537 if (!addr)
1538 return -ENODEV;
1540 info->io_cleanup = port_cleanup;
1543 * Figure out the actual inb/inw/inl/etc routine to use based
1544 * upon the register size.
1546 switch (info->io.regsize) {
1547 case 1:
1548 info->io.inputb = port_inb;
1549 info->io.outputb = port_outb;
1550 break;
1551 case 2:
1552 info->io.inputb = port_inw;
1553 info->io.outputb = port_outw;
1554 break;
1555 case 4:
1556 info->io.inputb = port_inl;
1557 info->io.outputb = port_outl;
1558 break;
1559 default:
1560 dev_warn(info->dev, "Invalid register size: %d\n",
1561 info->io.regsize);
1562 return -EINVAL;
1566 * Some BIOSes reserve disjoint I/O regions in their ACPI
1567 * tables. This causes problems when trying to register the
1568 * entire I/O region. Therefore we must register each I/O
1569 * port separately.
1571 for (idx = 0; idx < info->io_size; idx++) {
1572 if (request_region(addr + idx * info->io.regspacing,
1573 info->io.regsize, DEVICE_NAME) == NULL) {
1574 /* Undo allocations */
1575 while (idx--)
1576 release_region(addr + idx * info->io.regspacing,
1577 info->io.regsize);
1578 return -EIO;
1581 return 0;
1584 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1585 unsigned int offset)
1587 return readb((io->addr)+(offset * io->regspacing));
1590 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1591 unsigned char b)
1593 writeb(b, (io->addr)+(offset * io->regspacing));
1596 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1597 unsigned int offset)
1599 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600 & 0xff;
1603 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1604 unsigned char b)
1606 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1609 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1610 unsigned int offset)
1612 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613 & 0xff;
1616 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1617 unsigned char b)
1619 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1622 #ifdef readq
1623 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1625 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626 & 0xff;
1629 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1630 unsigned char b)
1632 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1634 #endif
1636 static void mem_region_cleanup(struct smi_info *info, int num)
1638 unsigned long addr = info->io.addr_data;
1639 int idx;
1641 for (idx = 0; idx < num; idx++)
1642 release_mem_region(addr + idx * info->io.regspacing,
1643 info->io.regsize);
1646 static void mem_cleanup(struct smi_info *info)
1648 if (info->io.addr) {
1649 iounmap(info->io.addr);
1650 mem_region_cleanup(info, info->io_size);
1654 static int mem_setup(struct smi_info *info)
1656 unsigned long addr = info->io.addr_data;
1657 int mapsize, idx;
1659 if (!addr)
1660 return -ENODEV;
1662 info->io_cleanup = mem_cleanup;
1665 * Figure out the actual readb/readw/readl/etc routine to use based
1666 * upon the register size.
1668 switch (info->io.regsize) {
1669 case 1:
1670 info->io.inputb = intf_mem_inb;
1671 info->io.outputb = intf_mem_outb;
1672 break;
1673 case 2:
1674 info->io.inputb = intf_mem_inw;
1675 info->io.outputb = intf_mem_outw;
1676 break;
1677 case 4:
1678 info->io.inputb = intf_mem_inl;
1679 info->io.outputb = intf_mem_outl;
1680 break;
1681 #ifdef readq
1682 case 8:
1683 info->io.inputb = mem_inq;
1684 info->io.outputb = mem_outq;
1685 break;
1686 #endif
1687 default:
1688 dev_warn(info->dev, "Invalid register size: %d\n",
1689 info->io.regsize);
1690 return -EINVAL;
1694 * Some BIOSes reserve disjoint memory regions in their ACPI
1695 * tables. This causes problems when trying to request the
1696 * entire region. Therefore we must request each register
1697 * separately.
1699 for (idx = 0; idx < info->io_size; idx++) {
1700 if (request_mem_region(addr + idx * info->io.regspacing,
1701 info->io.regsize, DEVICE_NAME) == NULL) {
1702 /* Undo allocations */
1703 mem_region_cleanup(info, idx);
1704 return -EIO;
1709 * Calculate the total amount of memory to claim. This is an
1710 * unusual looking calculation, but it avoids claiming any
1711 * more memory than it has to. It will claim everything
1712 * between the first address to the end of the last full
1713 * register.
1715 mapsize = ((info->io_size * info->io.regspacing)
1716 - (info->io.regspacing - info->io.regsize));
1717 info->io.addr = ioremap(addr, mapsize);
1718 if (info->io.addr == NULL) {
1719 mem_region_cleanup(info, info->io_size);
1720 return -EIO;
1722 return 0;
1726 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1727 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1728 * Options are:
1729 * rsp=<regspacing>
1730 * rsi=<regsize>
1731 * rsh=<regshift>
1732 * irq=<irq>
1733 * ipmb=<ipmb addr>
1735 enum hotmod_op { HM_ADD, HM_REMOVE };
1736 struct hotmod_vals {
1737 const char *name;
1738 const int val;
1741 static const struct hotmod_vals hotmod_ops[] = {
1742 { "add", HM_ADD },
1743 { "remove", HM_REMOVE },
1744 { NULL }
1747 static const struct hotmod_vals hotmod_si[] = {
1748 { "kcs", SI_KCS },
1749 { "smic", SI_SMIC },
1750 { "bt", SI_BT },
1751 { NULL }
1754 static const struct hotmod_vals hotmod_as[] = {
1755 { "mem", IPMI_MEM_ADDR_SPACE },
1756 { "i/o", IPMI_IO_ADDR_SPACE },
1757 { NULL }
1760 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1761 char **curr)
1763 char *s;
1764 int i;
1766 s = strchr(*curr, ',');
1767 if (!s) {
1768 pr_warn(PFX "No hotmod %s given.\n", name);
1769 return -EINVAL;
1771 *s = '\0';
1772 s++;
1773 for (i = 0; v[i].name; i++) {
1774 if (strcmp(*curr, v[i].name) == 0) {
1775 *val = v[i].val;
1776 *curr = s;
1777 return 0;
1781 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1782 return -EINVAL;
1785 static int check_hotmod_int_op(const char *curr, const char *option,
1786 const char *name, int *val)
1788 char *n;
1790 if (strcmp(curr, name) == 0) {
1791 if (!option) {
1792 pr_warn(PFX "No option given for '%s'\n", curr);
1793 return -EINVAL;
1795 *val = simple_strtoul(option, &n, 0);
1796 if ((*n != '\0') || (*option == '\0')) {
1797 pr_warn(PFX "Bad option given for '%s'\n", curr);
1798 return -EINVAL;
1800 return 1;
1802 return 0;
1805 static struct smi_info *smi_info_alloc(void)
1807 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1809 if (info)
1810 spin_lock_init(&info->si_lock);
1811 return info;
1814 static int hotmod_handler(const char *val, struct kernel_param *kp)
1816 char *str = kstrdup(val, GFP_KERNEL);
1817 int rv;
1818 char *next, *curr, *s, *n, *o;
1819 enum hotmod_op op;
1820 enum si_type si_type;
1821 int addr_space;
1822 unsigned long addr;
1823 int regspacing;
1824 int regsize;
1825 int regshift;
1826 int irq;
1827 int ipmb;
1828 int ival;
1829 int len;
1830 struct smi_info *info;
1832 if (!str)
1833 return -ENOMEM;
1835 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1836 len = strlen(str);
1837 ival = len - 1;
1838 while ((ival >= 0) && isspace(str[ival])) {
1839 str[ival] = '\0';
1840 ival--;
1843 for (curr = str; curr; curr = next) {
1844 regspacing = 1;
1845 regsize = 1;
1846 regshift = 0;
1847 irq = 0;
1848 ipmb = 0; /* Choose the default if not specified */
1850 next = strchr(curr, ':');
1851 if (next) {
1852 *next = '\0';
1853 next++;
1856 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1857 if (rv)
1858 break;
1859 op = ival;
1861 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1862 if (rv)
1863 break;
1864 si_type = ival;
1866 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1867 if (rv)
1868 break;
1870 s = strchr(curr, ',');
1871 if (s) {
1872 *s = '\0';
1873 s++;
1875 addr = simple_strtoul(curr, &n, 0);
1876 if ((*n != '\0') || (*curr == '\0')) {
1877 pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1878 break;
1881 while (s) {
1882 curr = s;
1883 s = strchr(curr, ',');
1884 if (s) {
1885 *s = '\0';
1886 s++;
1888 o = strchr(curr, '=');
1889 if (o) {
1890 *o = '\0';
1891 o++;
1893 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1894 if (rv < 0)
1895 goto out;
1896 else if (rv)
1897 continue;
1898 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1899 if (rv < 0)
1900 goto out;
1901 else if (rv)
1902 continue;
1903 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1904 if (rv < 0)
1905 goto out;
1906 else if (rv)
1907 continue;
1908 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1909 if (rv < 0)
1910 goto out;
1911 else if (rv)
1912 continue;
1913 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1914 if (rv < 0)
1915 goto out;
1916 else if (rv)
1917 continue;
1919 rv = -EINVAL;
1920 pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1921 goto out;
1924 if (op == HM_ADD) {
1925 info = smi_info_alloc();
1926 if (!info) {
1927 rv = -ENOMEM;
1928 goto out;
1931 info->addr_source = SI_HOTMOD;
1932 info->si_type = si_type;
1933 info->io.addr_data = addr;
1934 info->io.addr_type = addr_space;
1935 if (addr_space == IPMI_MEM_ADDR_SPACE)
1936 info->io_setup = mem_setup;
1937 else
1938 info->io_setup = port_setup;
1940 info->io.addr = NULL;
1941 info->io.regspacing = regspacing;
1942 if (!info->io.regspacing)
1943 info->io.regspacing = DEFAULT_REGSPACING;
1944 info->io.regsize = regsize;
1945 if (!info->io.regsize)
1946 info->io.regsize = DEFAULT_REGSIZE;
1947 info->io.regshift = regshift;
1948 info->irq = irq;
1949 if (info->irq)
1950 info->irq_setup = std_irq_setup;
1951 info->slave_addr = ipmb;
1953 rv = add_smi(info);
1954 if (rv) {
1955 kfree(info);
1956 goto out;
1958 mutex_lock(&smi_infos_lock);
1959 rv = try_smi_init(info);
1960 mutex_unlock(&smi_infos_lock);
1961 if (rv) {
1962 cleanup_one_si(info);
1963 goto out;
1965 } else {
1966 /* remove */
1967 struct smi_info *e, *tmp_e;
1969 mutex_lock(&smi_infos_lock);
1970 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1971 if (e->io.addr_type != addr_space)
1972 continue;
1973 if (e->si_type != si_type)
1974 continue;
1975 if (e->io.addr_data == addr)
1976 cleanup_one_si(e);
1978 mutex_unlock(&smi_infos_lock);
1981 rv = len;
1982 out:
1983 kfree(str);
1984 return rv;
1987 static int hardcode_find_bmc(void)
1989 int ret = -ENODEV;
1990 int i;
1991 struct smi_info *info;
1993 for (i = 0; i < SI_MAX_PARMS; i++) {
1994 if (!ports[i] && !addrs[i])
1995 continue;
1997 info = smi_info_alloc();
1998 if (!info)
1999 return -ENOMEM;
2001 info->addr_source = SI_HARDCODED;
2002 pr_info(PFX "probing via hardcoded address\n");
2004 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2005 info->si_type = SI_KCS;
2006 } else if (strcmp(si_type[i], "smic") == 0) {
2007 info->si_type = SI_SMIC;
2008 } else if (strcmp(si_type[i], "bt") == 0) {
2009 info->si_type = SI_BT;
2010 } else {
2011 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2012 i, si_type[i]);
2013 kfree(info);
2014 continue;
2017 if (ports[i]) {
2018 /* An I/O port */
2019 info->io_setup = port_setup;
2020 info->io.addr_data = ports[i];
2021 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2022 } else if (addrs[i]) {
2023 /* A memory port */
2024 info->io_setup = mem_setup;
2025 info->io.addr_data = addrs[i];
2026 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2027 } else {
2028 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2030 kfree(info);
2031 continue;
2034 info->io.addr = NULL;
2035 info->io.regspacing = regspacings[i];
2036 if (!info->io.regspacing)
2037 info->io.regspacing = DEFAULT_REGSPACING;
2038 info->io.regsize = regsizes[i];
2039 if (!info->io.regsize)
2040 info->io.regsize = DEFAULT_REGSIZE;
2041 info->io.regshift = regshifts[i];
2042 info->irq = irqs[i];
2043 if (info->irq)
2044 info->irq_setup = std_irq_setup;
2045 info->slave_addr = slave_addrs[i];
2047 if (!add_smi(info)) {
2048 mutex_lock(&smi_infos_lock);
2049 if (try_smi_init(info))
2050 cleanup_one_si(info);
2051 mutex_unlock(&smi_infos_lock);
2052 ret = 0;
2053 } else {
2054 kfree(info);
2057 return ret;
2060 #ifdef CONFIG_ACPI
2063 * Once we get an ACPI failure, we don't try any more, because we go
2064 * through the tables sequentially. Once we don't find a table, there
2065 * are no more.
2067 static int acpi_failure;
2069 /* For GPE-type interrupts. */
2070 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2071 u32 gpe_number, void *context)
2073 struct smi_info *smi_info = context;
2074 unsigned long flags;
2076 spin_lock_irqsave(&(smi_info->si_lock), flags);
2078 smi_inc_stat(smi_info, interrupts);
2080 debug_timestamp("ACPI_GPE");
2082 smi_event_handler(smi_info, 0);
2083 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2085 return ACPI_INTERRUPT_HANDLED;
2088 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2090 if (!info->irq)
2091 return;
2093 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2096 static int acpi_gpe_irq_setup(struct smi_info *info)
2098 acpi_status status;
2100 if (!info->irq)
2101 return 0;
2103 status = acpi_install_gpe_handler(NULL,
2104 info->irq,
2105 ACPI_GPE_LEVEL_TRIGGERED,
2106 &ipmi_acpi_gpe,
2107 info);
2108 if (status != AE_OK) {
2109 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2110 " running polled\n", DEVICE_NAME, info->irq);
2111 info->irq = 0;
2112 return -EINVAL;
2113 } else {
2114 info->irq_cleanup = acpi_gpe_irq_cleanup;
2115 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2116 return 0;
2121 * Defined at
2122 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2124 struct SPMITable {
2125 s8 Signature[4];
2126 u32 Length;
2127 u8 Revision;
2128 u8 Checksum;
2129 s8 OEMID[6];
2130 s8 OEMTableID[8];
2131 s8 OEMRevision[4];
2132 s8 CreatorID[4];
2133 s8 CreatorRevision[4];
2134 u8 InterfaceType;
2135 u8 IPMIlegacy;
2136 s16 SpecificationRevision;
2139 * Bit 0 - SCI interrupt supported
2140 * Bit 1 - I/O APIC/SAPIC
2142 u8 InterruptType;
2145 * If bit 0 of InterruptType is set, then this is the SCI
2146 * interrupt in the GPEx_STS register.
2148 u8 GPE;
2150 s16 Reserved;
2153 * If bit 1 of InterruptType is set, then this is the I/O
2154 * APIC/SAPIC interrupt.
2156 u32 GlobalSystemInterrupt;
2158 /* The actual register address. */
2159 struct acpi_generic_address addr;
2161 u8 UID[4];
2163 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2166 static int try_init_spmi(struct SPMITable *spmi)
2168 struct smi_info *info;
2169 int rv;
2171 if (spmi->IPMIlegacy != 1) {
2172 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2173 return -ENODEV;
2176 info = smi_info_alloc();
2177 if (!info) {
2178 pr_err(PFX "Could not allocate SI data (3)\n");
2179 return -ENOMEM;
2182 info->addr_source = SI_SPMI;
2183 pr_info(PFX "probing via SPMI\n");
2185 /* Figure out the interface type. */
2186 switch (spmi->InterfaceType) {
2187 case 1: /* KCS */
2188 info->si_type = SI_KCS;
2189 break;
2190 case 2: /* SMIC */
2191 info->si_type = SI_SMIC;
2192 break;
2193 case 3: /* BT */
2194 info->si_type = SI_BT;
2195 break;
2196 case 4: /* SSIF, just ignore */
2197 kfree(info);
2198 return -EIO;
2199 default:
2200 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2201 spmi->InterfaceType);
2202 kfree(info);
2203 return -EIO;
2206 if (spmi->InterruptType & 1) {
2207 /* We've got a GPE interrupt. */
2208 info->irq = spmi->GPE;
2209 info->irq_setup = acpi_gpe_irq_setup;
2210 } else if (spmi->InterruptType & 2) {
2211 /* We've got an APIC/SAPIC interrupt. */
2212 info->irq = spmi->GlobalSystemInterrupt;
2213 info->irq_setup = std_irq_setup;
2214 } else {
2215 /* Use the default interrupt setting. */
2216 info->irq = 0;
2217 info->irq_setup = NULL;
2220 if (spmi->addr.bit_width) {
2221 /* A (hopefully) properly formed register bit width. */
2222 info->io.regspacing = spmi->addr.bit_width / 8;
2223 } else {
2224 info->io.regspacing = DEFAULT_REGSPACING;
2226 info->io.regsize = info->io.regspacing;
2227 info->io.regshift = spmi->addr.bit_offset;
2229 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2230 info->io_setup = mem_setup;
2231 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2233 info->io_setup = port_setup;
2234 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235 } else {
2236 kfree(info);
2237 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2238 return -EIO;
2240 info->io.addr_data = spmi->addr.address;
2242 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2244 info->io.addr_data, info->io.regsize, info->io.regspacing,
2245 info->irq);
2247 rv = add_smi(info);
2248 if (rv)
2249 kfree(info);
2251 return rv;
2254 static void spmi_find_bmc(void)
2256 acpi_status status;
2257 struct SPMITable *spmi;
2258 int i;
2260 if (acpi_disabled)
2261 return;
2263 if (acpi_failure)
2264 return;
2266 for (i = 0; ; i++) {
2267 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2268 (struct acpi_table_header **)&spmi);
2269 if (status != AE_OK)
2270 return;
2272 try_init_spmi(spmi);
2275 #endif
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2279 struct smi_info *info)
2281 struct resource *res, *res_second;
2283 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2284 if (res) {
2285 info->io_setup = port_setup;
2286 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2287 } else {
2288 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2289 if (res) {
2290 info->io_setup = mem_setup;
2291 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2294 if (!res) {
2295 dev_err(&pdev->dev, "no I/O or memory address\n");
2296 return NULL;
2298 info->io.addr_data = res->start;
2300 info->io.regspacing = DEFAULT_REGSPACING;
2301 res_second = platform_get_resource(pdev,
2302 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2303 IORESOURCE_IO : IORESOURCE_MEM,
2305 if (res_second) {
2306 if (res_second->start > info->io.addr_data)
2307 info->io.regspacing =
2308 res_second->start - info->io.addr_data;
2310 info->io.regsize = DEFAULT_REGSIZE;
2311 info->io.regshift = 0;
2313 return res;
2316 #endif
2318 #ifdef CONFIG_DMI
2319 static int dmi_ipmi_probe(struct platform_device *pdev)
2321 struct smi_info *info;
2322 u8 type, slave_addr;
2323 int rv;
2325 if (!si_trydmi)
2326 return -ENODEV;
2328 rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2329 if (rv)
2330 return -ENODEV;
2332 info = smi_info_alloc();
2333 if (!info) {
2334 pr_err(PFX "Could not allocate SI data\n");
2335 return -ENOMEM;
2338 info->addr_source = SI_SMBIOS;
2339 pr_info(PFX "probing via SMBIOS\n");
2341 switch (type) {
2342 case IPMI_DMI_TYPE_KCS:
2343 info->si_type = SI_KCS;
2344 break;
2345 case IPMI_DMI_TYPE_SMIC:
2346 info->si_type = SI_SMIC;
2347 break;
2348 case IPMI_DMI_TYPE_BT:
2349 info->si_type = SI_BT;
2350 break;
2351 default:
2352 kfree(info);
2353 return -EINVAL;
2356 if (!ipmi_get_info_from_resources(pdev, info)) {
2357 rv = -EINVAL;
2358 goto err_free;
2361 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2362 if (rv) {
2363 dev_warn(&pdev->dev, "device has no slave-addr property");
2364 info->slave_addr = 0x20;
2365 } else {
2366 info->slave_addr = slave_addr;
2369 info->irq = platform_get_irq(pdev, 0);
2370 if (info->irq > 0)
2371 info->irq_setup = std_irq_setup;
2372 else
2373 info->irq = 0;
2375 info->dev = &pdev->dev;
2377 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380 info->irq);
2382 if (add_smi(info))
2383 kfree(info);
2385 return 0;
2387 err_free:
2388 kfree(info);
2389 return rv;
2391 #else
2392 static int dmi_ipmi_probe(struct platform_device *pdev)
2394 return -ENODEV;
2396 #endif /* CONFIG_DMI */
2398 #ifdef CONFIG_PCI
2400 #define PCI_ERMC_CLASSCODE 0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2407 #define PCI_HP_VENDOR_ID 0x103C
2408 #define PCI_MMC_DEVICE_ID 0x121A
2409 #define PCI_MMC_ADDR_CW 0x10
2411 static void ipmi_pci_cleanup(struct smi_info *info)
2413 struct pci_dev *pdev = info->addr_source_data;
2415 pci_disable_device(pdev);
2418 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2420 if (info->si_type == SI_KCS) {
2421 unsigned char status;
2422 int regspacing;
2424 info->io.regsize = DEFAULT_REGSIZE;
2425 info->io.regshift = 0;
2426 info->io_size = 2;
2427 info->handlers = &kcs_smi_handlers;
2429 /* detect 1, 4, 16byte spacing */
2430 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2431 info->io.regspacing = regspacing;
2432 if (info->io_setup(info)) {
2433 dev_err(info->dev,
2434 "Could not setup I/O space\n");
2435 return DEFAULT_REGSPACING;
2437 /* write invalid cmd */
2438 info->io.outputb(&info->io, 1, 0x10);
2439 /* read status back */
2440 status = info->io.inputb(&info->io, 1);
2441 info->io_cleanup(info);
2442 if (status)
2443 return regspacing;
2444 regspacing *= 4;
2447 return DEFAULT_REGSPACING;
2450 static int ipmi_pci_probe(struct pci_dev *pdev,
2451 const struct pci_device_id *ent)
2453 int rv;
2454 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455 struct smi_info *info;
2457 info = smi_info_alloc();
2458 if (!info)
2459 return -ENOMEM;
2461 info->addr_source = SI_PCI;
2462 dev_info(&pdev->dev, "probing via PCI");
2464 switch (class_type) {
2465 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466 info->si_type = SI_SMIC;
2467 break;
2469 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470 info->si_type = SI_KCS;
2471 break;
2473 case PCI_ERMC_CLASSCODE_TYPE_BT:
2474 info->si_type = SI_BT;
2475 break;
2477 default:
2478 kfree(info);
2479 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2480 return -ENOMEM;
2483 rv = pci_enable_device(pdev);
2484 if (rv) {
2485 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2486 kfree(info);
2487 return rv;
2490 info->addr_source_cleanup = ipmi_pci_cleanup;
2491 info->addr_source_data = pdev;
2493 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494 info->io_setup = port_setup;
2495 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2496 } else {
2497 info->io_setup = mem_setup;
2498 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2500 info->io.addr_data = pci_resource_start(pdev, 0);
2502 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2503 info->io.regsize = DEFAULT_REGSIZE;
2504 info->io.regshift = 0;
2506 info->irq = pdev->irq;
2507 if (info->irq)
2508 info->irq_setup = std_irq_setup;
2510 info->dev = &pdev->dev;
2511 pci_set_drvdata(pdev, info);
2513 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2515 info->irq);
2517 rv = add_smi(info);
2518 if (rv) {
2519 kfree(info);
2520 pci_disable_device(pdev);
2523 return rv;
2526 static void ipmi_pci_remove(struct pci_dev *pdev)
2528 struct smi_info *info = pci_get_drvdata(pdev);
2529 cleanup_one_si(info);
2532 static const struct pci_device_id ipmi_pci_devices[] = {
2533 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2534 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2535 { 0, }
2537 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2539 static struct pci_driver ipmi_pci_driver = {
2540 .name = DEVICE_NAME,
2541 .id_table = ipmi_pci_devices,
2542 .probe = ipmi_pci_probe,
2543 .remove = ipmi_pci_remove,
2545 #endif /* CONFIG_PCI */
2547 #ifdef CONFIG_OF
2548 static const struct of_device_id of_ipmi_match[] = {
2549 { .type = "ipmi", .compatible = "ipmi-kcs",
2550 .data = (void *)(unsigned long) SI_KCS },
2551 { .type = "ipmi", .compatible = "ipmi-smic",
2552 .data = (void *)(unsigned long) SI_SMIC },
2553 { .type = "ipmi", .compatible = "ipmi-bt",
2554 .data = (void *)(unsigned long) SI_BT },
2557 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2559 static int of_ipmi_probe(struct platform_device *dev)
2561 const struct of_device_id *match;
2562 struct smi_info *info;
2563 struct resource resource;
2564 const __be32 *regsize, *regspacing, *regshift;
2565 struct device_node *np = dev->dev.of_node;
2566 int ret;
2567 int proplen;
2569 dev_info(&dev->dev, "probing via device tree\n");
2571 match = of_match_device(of_ipmi_match, &dev->dev);
2572 if (!match)
2573 return -ENODEV;
2575 if (!of_device_is_available(np))
2576 return -EINVAL;
2578 ret = of_address_to_resource(np, 0, &resource);
2579 if (ret) {
2580 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2581 return ret;
2584 regsize = of_get_property(np, "reg-size", &proplen);
2585 if (regsize && proplen != 4) {
2586 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2587 return -EINVAL;
2590 regspacing = of_get_property(np, "reg-spacing", &proplen);
2591 if (regspacing && proplen != 4) {
2592 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2593 return -EINVAL;
2596 regshift = of_get_property(np, "reg-shift", &proplen);
2597 if (regshift && proplen != 4) {
2598 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2599 return -EINVAL;
2602 info = smi_info_alloc();
2604 if (!info) {
2605 dev_err(&dev->dev,
2606 "could not allocate memory for OF probe\n");
2607 return -ENOMEM;
2610 info->si_type = (enum si_type) match->data;
2611 info->addr_source = SI_DEVICETREE;
2612 info->irq_setup = std_irq_setup;
2614 if (resource.flags & IORESOURCE_IO) {
2615 info->io_setup = port_setup;
2616 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2617 } else {
2618 info->io_setup = mem_setup;
2619 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2622 info->io.addr_data = resource.start;
2624 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2628 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2629 info->dev = &dev->dev;
2631 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632 info->io.addr_data, info->io.regsize, info->io.regspacing,
2633 info->irq);
2635 dev_set_drvdata(&dev->dev, info);
2637 ret = add_smi(info);
2638 if (ret) {
2639 kfree(info);
2640 return ret;
2642 return 0;
2644 #else
2645 #define of_ipmi_match NULL
2646 static int of_ipmi_probe(struct platform_device *dev)
2648 return -ENODEV;
2650 #endif
2652 #ifdef CONFIG_ACPI
2653 static int find_slave_address(struct smi_info *info, int slave_addr)
2655 #ifdef CONFIG_IPMI_DMI_DECODE
2656 if (!slave_addr) {
2657 int type = -1;
2658 u32 flags = IORESOURCE_IO;
2660 switch (info->si_type) {
2661 case SI_KCS:
2662 type = IPMI_DMI_TYPE_KCS;
2663 break;
2664 case SI_BT:
2665 type = IPMI_DMI_TYPE_BT;
2666 break;
2667 case SI_SMIC:
2668 type = IPMI_DMI_TYPE_SMIC;
2669 break;
2672 if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2673 flags = IORESOURCE_MEM;
2675 slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2676 info->io.addr_data);
2678 #endif
2680 return slave_addr;
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2685 struct smi_info *info;
2686 acpi_handle handle;
2687 acpi_status status;
2688 unsigned long long tmp;
2689 struct resource *res;
2690 int rv = -EINVAL;
2692 if (!si_tryacpi)
2693 return -ENODEV;
2695 handle = ACPI_HANDLE(&dev->dev);
2696 if (!handle)
2697 return -ENODEV;
2699 info = smi_info_alloc();
2700 if (!info)
2701 return -ENOMEM;
2703 info->addr_source = SI_ACPI;
2704 dev_info(&dev->dev, PFX "probing via ACPI\n");
2706 info->addr_info.acpi_info.acpi_handle = handle;
2708 /* _IFT tells us the interface type: KCS, BT, etc */
2709 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710 if (ACPI_FAILURE(status)) {
2711 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712 goto err_free;
2715 switch (tmp) {
2716 case 1:
2717 info->si_type = SI_KCS;
2718 break;
2719 case 2:
2720 info->si_type = SI_SMIC;
2721 break;
2722 case 3:
2723 info->si_type = SI_BT;
2724 break;
2725 case 4: /* SSIF, just ignore */
2726 rv = -ENODEV;
2727 goto err_free;
2728 default:
2729 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730 goto err_free;
2733 res = ipmi_get_info_from_resources(dev, info);
2734 if (!res) {
2735 rv = -EINVAL;
2736 goto err_free;
2739 /* If _GPE exists, use it; otherwise use standard interrupts */
2740 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2741 if (ACPI_SUCCESS(status)) {
2742 info->irq = tmp;
2743 info->irq_setup = acpi_gpe_irq_setup;
2744 } else {
2745 int irq = platform_get_irq(dev, 0);
2747 if (irq > 0) {
2748 info->irq = irq;
2749 info->irq_setup = std_irq_setup;
2753 info->slave_addr = find_slave_address(info, info->slave_addr);
2755 info->dev = &dev->dev;
2756 platform_set_drvdata(dev, info);
2758 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2759 res, info->io.regsize, info->io.regspacing,
2760 info->irq);
2762 rv = add_smi(info);
2763 if (rv)
2764 kfree(info);
2766 return rv;
2768 err_free:
2769 kfree(info);
2770 return rv;
2773 static const struct acpi_device_id acpi_ipmi_match[] = {
2774 { "IPI0001", 0 },
2775 { },
2777 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2778 #else
2779 static int acpi_ipmi_probe(struct platform_device *dev)
2781 return -ENODEV;
2783 #endif
2785 static int ipmi_probe(struct platform_device *dev)
2787 if (of_ipmi_probe(dev) == 0)
2788 return 0;
2790 if (acpi_ipmi_probe(dev) == 0)
2791 return 0;
2793 return dmi_ipmi_probe(dev);
2796 static int ipmi_remove(struct platform_device *dev)
2798 struct smi_info *info = dev_get_drvdata(&dev->dev);
2800 cleanup_one_si(info);
2801 return 0;
2804 static struct platform_driver ipmi_driver = {
2805 .driver = {
2806 .name = DEVICE_NAME,
2807 .of_match_table = of_ipmi_match,
2808 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2810 .probe = ipmi_probe,
2811 .remove = ipmi_remove,
2814 #ifdef CONFIG_PARISC
2815 static int __init ipmi_parisc_probe(struct parisc_device *dev)
2817 struct smi_info *info;
2818 int rv;
2820 info = smi_info_alloc();
2822 if (!info) {
2823 dev_err(&dev->dev,
2824 "could not allocate memory for PARISC probe\n");
2825 return -ENOMEM;
2828 info->si_type = SI_KCS;
2829 info->addr_source = SI_DEVICETREE;
2830 info->io_setup = mem_setup;
2831 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2832 info->io.addr_data = dev->hpa.start;
2833 info->io.regsize = 1;
2834 info->io.regspacing = 1;
2835 info->io.regshift = 0;
2836 info->irq = 0; /* no interrupt */
2837 info->irq_setup = NULL;
2838 info->dev = &dev->dev;
2840 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2842 dev_set_drvdata(&dev->dev, info);
2844 rv = add_smi(info);
2845 if (rv) {
2846 kfree(info);
2847 return rv;
2850 return 0;
2853 static int __exit ipmi_parisc_remove(struct parisc_device *dev)
2855 cleanup_one_si(dev_get_drvdata(&dev->dev));
2856 return 0;
2859 static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
2860 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2861 { 0, }
2864 MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
2866 static struct parisc_driver ipmi_parisc_driver __refdata = {
2867 .name = "ipmi",
2868 .id_table = ipmi_parisc_tbl,
2869 .probe = ipmi_parisc_probe,
2870 .remove = __exit_p(ipmi_parisc_remove),
2872 #endif /* CONFIG_PARISC */
2874 static int wait_for_msg_done(struct smi_info *smi_info)
2876 enum si_sm_result smi_result;
2878 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2879 for (;;) {
2880 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2881 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2882 schedule_timeout_uninterruptible(1);
2883 smi_result = smi_info->handlers->event(
2884 smi_info->si_sm, jiffies_to_usecs(1));
2885 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2886 smi_result = smi_info->handlers->event(
2887 smi_info->si_sm, 0);
2888 } else
2889 break;
2891 if (smi_result == SI_SM_HOSED)
2893 * We couldn't get the state machine to run, so whatever's at
2894 * the port is probably not an IPMI SMI interface.
2896 return -ENODEV;
2898 return 0;
2901 static int try_get_dev_id(struct smi_info *smi_info)
2903 unsigned char msg[2];
2904 unsigned char *resp;
2905 unsigned long resp_len;
2906 int rv = 0;
2908 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2909 if (!resp)
2910 return -ENOMEM;
2913 * Do a Get Device ID command, since it comes back with some
2914 * useful info.
2916 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2917 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2918 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2920 rv = wait_for_msg_done(smi_info);
2921 if (rv)
2922 goto out;
2924 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2925 resp, IPMI_MAX_MSG_LENGTH);
2927 /* Check and record info from the get device id, in case we need it. */
2928 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2930 out:
2931 kfree(resp);
2932 return rv;
2935 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2937 unsigned char msg[3];
2938 unsigned char *resp;
2939 unsigned long resp_len;
2940 int rv;
2942 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2943 if (!resp)
2944 return -ENOMEM;
2946 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2947 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2948 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2950 rv = wait_for_msg_done(smi_info);
2951 if (rv) {
2952 dev_warn(smi_info->dev,
2953 "Error getting response from get global enables command: %d\n",
2954 rv);
2955 goto out;
2958 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2959 resp, IPMI_MAX_MSG_LENGTH);
2961 if (resp_len < 4 ||
2962 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2963 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2964 resp[2] != 0) {
2965 dev_warn(smi_info->dev,
2966 "Invalid return from get global enables command: %ld %x %x %x\n",
2967 resp_len, resp[0], resp[1], resp[2]);
2968 rv = -EINVAL;
2969 goto out;
2970 } else {
2971 *enables = resp[3];
2974 out:
2975 kfree(resp);
2976 return rv;
2980 * Returns 1 if it gets an error from the command.
2982 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2984 unsigned char msg[3];
2985 unsigned char *resp;
2986 unsigned long resp_len;
2987 int rv;
2989 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2990 if (!resp)
2991 return -ENOMEM;
2993 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2994 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2995 msg[2] = enables;
2996 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2998 rv = wait_for_msg_done(smi_info);
2999 if (rv) {
3000 dev_warn(smi_info->dev,
3001 "Error getting response from set global enables command: %d\n",
3002 rv);
3003 goto out;
3006 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3007 resp, IPMI_MAX_MSG_LENGTH);
3009 if (resp_len < 3 ||
3010 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3011 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3012 dev_warn(smi_info->dev,
3013 "Invalid return from set global enables command: %ld %x %x\n",
3014 resp_len, resp[0], resp[1]);
3015 rv = -EINVAL;
3016 goto out;
3019 if (resp[2] != 0)
3020 rv = 1;
3022 out:
3023 kfree(resp);
3024 return rv;
3028 * Some BMCs do not support clearing the receive irq bit in the global
3029 * enables (even if they don't support interrupts on the BMC). Check
3030 * for this and handle it properly.
3032 static void check_clr_rcv_irq(struct smi_info *smi_info)
3034 u8 enables = 0;
3035 int rv;
3037 rv = get_global_enables(smi_info, &enables);
3038 if (!rv) {
3039 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3040 /* Already clear, should work ok. */
3041 return;
3043 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3044 rv = set_global_enables(smi_info, enables);
3047 if (rv < 0) {
3048 dev_err(smi_info->dev,
3049 "Cannot check clearing the rcv irq: %d\n", rv);
3050 return;
3053 if (rv) {
3055 * An error when setting the event buffer bit means
3056 * clearing the bit is not supported.
3058 dev_warn(smi_info->dev,
3059 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3060 smi_info->cannot_disable_irq = true;
3065 * Some BMCs do not support setting the interrupt bits in the global
3066 * enables even if they support interrupts. Clearly bad, but we can
3067 * compensate.
3069 static void check_set_rcv_irq(struct smi_info *smi_info)
3071 u8 enables = 0;
3072 int rv;
3074 if (!smi_info->irq)
3075 return;
3077 rv = get_global_enables(smi_info, &enables);
3078 if (!rv) {
3079 enables |= IPMI_BMC_RCV_MSG_INTR;
3080 rv = set_global_enables(smi_info, enables);
3083 if (rv < 0) {
3084 dev_err(smi_info->dev,
3085 "Cannot check setting the rcv irq: %d\n", rv);
3086 return;
3089 if (rv) {
3091 * An error when setting the event buffer bit means
3092 * setting the bit is not supported.
3094 dev_warn(smi_info->dev,
3095 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3096 smi_info->cannot_disable_irq = true;
3097 smi_info->irq_enable_broken = true;
3101 static int try_enable_event_buffer(struct smi_info *smi_info)
3103 unsigned char msg[3];
3104 unsigned char *resp;
3105 unsigned long resp_len;
3106 int rv = 0;
3108 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3109 if (!resp)
3110 return -ENOMEM;
3112 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3113 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3114 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3116 rv = wait_for_msg_done(smi_info);
3117 if (rv) {
3118 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3119 goto out;
3122 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3123 resp, IPMI_MAX_MSG_LENGTH);
3125 if (resp_len < 4 ||
3126 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3127 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3128 resp[2] != 0) {
3129 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3130 rv = -EINVAL;
3131 goto out;
3134 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3135 /* buffer is already enabled, nothing to do. */
3136 smi_info->supports_event_msg_buff = true;
3137 goto out;
3140 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3141 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3142 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3143 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3145 rv = wait_for_msg_done(smi_info);
3146 if (rv) {
3147 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3148 goto out;
3151 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3152 resp, IPMI_MAX_MSG_LENGTH);
3154 if (resp_len < 3 ||
3155 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3156 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3157 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3158 rv = -EINVAL;
3159 goto out;
3162 if (resp[2] != 0)
3164 * An error when setting the event buffer bit means
3165 * that the event buffer is not supported.
3167 rv = -ENOENT;
3168 else
3169 smi_info->supports_event_msg_buff = true;
3171 out:
3172 kfree(resp);
3173 return rv;
3176 static int smi_type_proc_show(struct seq_file *m, void *v)
3178 struct smi_info *smi = m->private;
3180 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3182 return 0;
3185 static int smi_type_proc_open(struct inode *inode, struct file *file)
3187 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3190 static const struct file_operations smi_type_proc_ops = {
3191 .open = smi_type_proc_open,
3192 .read = seq_read,
3193 .llseek = seq_lseek,
3194 .release = single_release,
3197 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3199 struct smi_info *smi = m->private;
3201 seq_printf(m, "interrupts_enabled: %d\n",
3202 smi->irq && !smi->interrupt_disabled);
3203 seq_printf(m, "short_timeouts: %u\n",
3204 smi_get_stat(smi, short_timeouts));
3205 seq_printf(m, "long_timeouts: %u\n",
3206 smi_get_stat(smi, long_timeouts));
3207 seq_printf(m, "idles: %u\n",
3208 smi_get_stat(smi, idles));
3209 seq_printf(m, "interrupts: %u\n",
3210 smi_get_stat(smi, interrupts));
3211 seq_printf(m, "attentions: %u\n",
3212 smi_get_stat(smi, attentions));
3213 seq_printf(m, "flag_fetches: %u\n",
3214 smi_get_stat(smi, flag_fetches));
3215 seq_printf(m, "hosed_count: %u\n",
3216 smi_get_stat(smi, hosed_count));
3217 seq_printf(m, "complete_transactions: %u\n",
3218 smi_get_stat(smi, complete_transactions));
3219 seq_printf(m, "events: %u\n",
3220 smi_get_stat(smi, events));
3221 seq_printf(m, "watchdog_pretimeouts: %u\n",
3222 smi_get_stat(smi, watchdog_pretimeouts));
3223 seq_printf(m, "incoming_messages: %u\n",
3224 smi_get_stat(smi, incoming_messages));
3225 return 0;
3228 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3230 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3233 static const struct file_operations smi_si_stats_proc_ops = {
3234 .open = smi_si_stats_proc_open,
3235 .read = seq_read,
3236 .llseek = seq_lseek,
3237 .release = single_release,
3240 static int smi_params_proc_show(struct seq_file *m, void *v)
3242 struct smi_info *smi = m->private;
3244 seq_printf(m,
3245 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3246 si_to_str[smi->si_type],
3247 addr_space_to_str[smi->io.addr_type],
3248 smi->io.addr_data,
3249 smi->io.regspacing,
3250 smi->io.regsize,
3251 smi->io.regshift,
3252 smi->irq,
3253 smi->slave_addr);
3255 return 0;
3258 static int smi_params_proc_open(struct inode *inode, struct file *file)
3260 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3263 static const struct file_operations smi_params_proc_ops = {
3264 .open = smi_params_proc_open,
3265 .read = seq_read,
3266 .llseek = seq_lseek,
3267 .release = single_release,
3271 * oem_data_avail_to_receive_msg_avail
3272 * @info - smi_info structure with msg_flags set
3274 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3275 * Returns 1 indicating need to re-run handle_flags().
3277 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3279 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3280 RECEIVE_MSG_AVAIL);
3281 return 1;
3285 * setup_dell_poweredge_oem_data_handler
3286 * @info - smi_info.device_id must be populated
3288 * Systems that match, but have firmware version < 1.40 may assert
3289 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3290 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3291 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3292 * as RECEIVE_MSG_AVAIL instead.
3294 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3295 * assert the OEM[012] bits, and if it did, the driver would have to
3296 * change to handle that properly, we don't actually check for the
3297 * firmware version.
3298 * Device ID = 0x20 BMC on PowerEdge 8G servers
3299 * Device Revision = 0x80
3300 * Firmware Revision1 = 0x01 BMC version 1.40
3301 * Firmware Revision2 = 0x40 BCD encoded
3302 * IPMI Version = 0x51 IPMI 1.5
3303 * Manufacturer ID = A2 02 00 Dell IANA
3305 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3306 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3309 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3310 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3311 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3312 #define DELL_IANA_MFR_ID 0x0002a2
3313 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3315 struct ipmi_device_id *id = &smi_info->device_id;
3316 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3317 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3318 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3319 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3320 smi_info->oem_data_avail_handler =
3321 oem_data_avail_to_receive_msg_avail;
3322 } else if (ipmi_version_major(id) < 1 ||
3323 (ipmi_version_major(id) == 1 &&
3324 ipmi_version_minor(id) < 5)) {
3325 smi_info->oem_data_avail_handler =
3326 oem_data_avail_to_receive_msg_avail;
3331 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3332 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3334 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3336 /* Make it a response */
3337 msg->rsp[0] = msg->data[0] | 4;
3338 msg->rsp[1] = msg->data[1];
3339 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3340 msg->rsp_size = 3;
3341 smi_info->curr_msg = NULL;
3342 deliver_recv_msg(smi_info, msg);
3346 * dell_poweredge_bt_xaction_handler
3347 * @info - smi_info.device_id must be populated
3349 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3350 * not respond to a Get SDR command if the length of the data
3351 * requested is exactly 0x3A, which leads to command timeouts and no
3352 * data returned. This intercepts such commands, and causes userspace
3353 * callers to try again with a different-sized buffer, which succeeds.
3356 #define STORAGE_NETFN 0x0A
3357 #define STORAGE_CMD_GET_SDR 0x23
3358 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3359 unsigned long unused,
3360 void *in)
3362 struct smi_info *smi_info = in;
3363 unsigned char *data = smi_info->curr_msg->data;
3364 unsigned int size = smi_info->curr_msg->data_size;
3365 if (size >= 8 &&
3366 (data[0]>>2) == STORAGE_NETFN &&
3367 data[1] == STORAGE_CMD_GET_SDR &&
3368 data[7] == 0x3A) {
3369 return_hosed_msg_badsize(smi_info);
3370 return NOTIFY_STOP;
3372 return NOTIFY_DONE;
3375 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3376 .notifier_call = dell_poweredge_bt_xaction_handler,
3380 * setup_dell_poweredge_bt_xaction_handler
3381 * @info - smi_info.device_id must be filled in already
3383 * Fills in smi_info.device_id.start_transaction_pre_hook
3384 * when we know what function to use there.
3386 static void
3387 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3389 struct ipmi_device_id *id = &smi_info->device_id;
3390 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3391 smi_info->si_type == SI_BT)
3392 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3396 * setup_oem_data_handler
3397 * @info - smi_info.device_id must be filled in already
3399 * Fills in smi_info.device_id.oem_data_available_handler
3400 * when we know what function to use there.
3403 static void setup_oem_data_handler(struct smi_info *smi_info)
3405 setup_dell_poweredge_oem_data_handler(smi_info);
3408 static void setup_xaction_handlers(struct smi_info *smi_info)
3410 setup_dell_poweredge_bt_xaction_handler(smi_info);
3413 static void check_for_broken_irqs(struct smi_info *smi_info)
3415 check_clr_rcv_irq(smi_info);
3416 check_set_rcv_irq(smi_info);
3419 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3421 if (smi_info->thread != NULL)
3422 kthread_stop(smi_info->thread);
3423 if (smi_info->timer_running)
3424 del_timer_sync(&smi_info->si_timer);
3427 static int is_new_interface(struct smi_info *info)
3429 struct smi_info *e;
3431 list_for_each_entry(e, &smi_infos, link) {
3432 if (e->io.addr_type != info->io.addr_type)
3433 continue;
3434 if (e->io.addr_data == info->io.addr_data) {
3436 * This is a cheap hack, ACPI doesn't have a defined
3437 * slave address but SMBIOS does. Pick it up from
3438 * any source that has it available.
3440 if (info->slave_addr && !e->slave_addr)
3441 e->slave_addr = info->slave_addr;
3442 return 0;
3446 return 1;
3449 static int add_smi(struct smi_info *new_smi)
3451 int rv = 0;
3453 mutex_lock(&smi_infos_lock);
3454 if (!is_new_interface(new_smi)) {
3455 pr_info(PFX "%s-specified %s state machine: duplicate\n",
3456 ipmi_addr_src_to_str(new_smi->addr_source),
3457 si_to_str[new_smi->si_type]);
3458 rv = -EBUSY;
3459 goto out_err;
3462 pr_info(PFX "Adding %s-specified %s state machine\n",
3463 ipmi_addr_src_to_str(new_smi->addr_source),
3464 si_to_str[new_smi->si_type]);
3466 /* So we know not to free it unless we have allocated one. */
3467 new_smi->intf = NULL;
3468 new_smi->si_sm = NULL;
3469 new_smi->handlers = NULL;
3471 list_add_tail(&new_smi->link, &smi_infos);
3473 out_err:
3474 mutex_unlock(&smi_infos_lock);
3475 return rv;
3479 * Try to start up an interface. Must be called with smi_infos_lock
3480 * held, primarily to keep smi_num consistent, we only one to do these
3481 * one at a time.
3483 static int try_smi_init(struct smi_info *new_smi)
3485 int rv = 0;
3486 int i;
3487 char *init_name = NULL;
3489 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3490 ipmi_addr_src_to_str(new_smi->addr_source),
3491 si_to_str[new_smi->si_type],
3492 addr_space_to_str[new_smi->io.addr_type],
3493 new_smi->io.addr_data,
3494 new_smi->slave_addr, new_smi->irq);
3496 switch (new_smi->si_type) {
3497 case SI_KCS:
3498 new_smi->handlers = &kcs_smi_handlers;
3499 break;
3501 case SI_SMIC:
3502 new_smi->handlers = &smic_smi_handlers;
3503 break;
3505 case SI_BT:
3506 new_smi->handlers = &bt_smi_handlers;
3507 break;
3509 default:
3510 /* No support for anything else yet. */
3511 rv = -EIO;
3512 goto out_err;
3515 new_smi->intf_num = smi_num;
3517 /* Do this early so it's available for logs. */
3518 if (!new_smi->dev) {
3519 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3520 new_smi->intf_num);
3523 * If we don't already have a device from something
3524 * else (like PCI), then register a new one.
3526 new_smi->pdev = platform_device_alloc("ipmi_si",
3527 new_smi->intf_num);
3528 if (!new_smi->pdev) {
3529 pr_err(PFX "Unable to allocate platform device\n");
3530 goto out_err;
3532 new_smi->dev = &new_smi->pdev->dev;
3533 new_smi->dev->driver = &ipmi_driver.driver;
3534 /* Nulled by device_add() */
3535 new_smi->dev->init_name = init_name;
3538 /* Allocate the state machine's data and initialize it. */
3539 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3540 if (!new_smi->si_sm) {
3541 pr_err(PFX "Could not allocate state machine memory\n");
3542 rv = -ENOMEM;
3543 goto out_err;
3545 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3546 &new_smi->io);
3548 /* Now that we know the I/O size, we can set up the I/O. */
3549 rv = new_smi->io_setup(new_smi);
3550 if (rv) {
3551 dev_err(new_smi->dev, "Could not set up I/O space\n");
3552 goto out_err;
3555 /* Do low-level detection first. */
3556 if (new_smi->handlers->detect(new_smi->si_sm)) {
3557 if (new_smi->addr_source)
3558 dev_err(new_smi->dev, "Interface detection failed\n");
3559 rv = -ENODEV;
3560 goto out_err;
3564 * Attempt a get device id command. If it fails, we probably
3565 * don't have a BMC here.
3567 rv = try_get_dev_id(new_smi);
3568 if (rv) {
3569 if (new_smi->addr_source)
3570 dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3571 goto out_err;
3574 setup_oem_data_handler(new_smi);
3575 setup_xaction_handlers(new_smi);
3576 check_for_broken_irqs(new_smi);
3578 new_smi->waiting_msg = NULL;
3579 new_smi->curr_msg = NULL;
3580 atomic_set(&new_smi->req_events, 0);
3581 new_smi->run_to_completion = false;
3582 for (i = 0; i < SI_NUM_STATS; i++)
3583 atomic_set(&new_smi->stats[i], 0);
3585 new_smi->interrupt_disabled = true;
3586 atomic_set(&new_smi->need_watch, 0);
3588 rv = try_enable_event_buffer(new_smi);
3589 if (rv == 0)
3590 new_smi->has_event_buffer = true;
3593 * Start clearing the flags before we enable interrupts or the
3594 * timer to avoid racing with the timer.
3596 start_clear_flags(new_smi, false);
3599 * IRQ is defined to be set when non-zero. req_events will
3600 * cause a global flags check that will enable interrupts.
3602 if (new_smi->irq) {
3603 new_smi->interrupt_disabled = false;
3604 atomic_set(&new_smi->req_events, 1);
3607 if (new_smi->pdev) {
3608 rv = platform_device_add(new_smi->pdev);
3609 if (rv) {
3610 dev_err(new_smi->dev,
3611 "Unable to register system interface device: %d\n",
3612 rv);
3613 goto out_err;
3615 new_smi->dev_registered = true;
3618 rv = ipmi_register_smi(&handlers,
3619 new_smi,
3620 &new_smi->device_id,
3621 new_smi->dev,
3622 new_smi->slave_addr);
3623 if (rv) {
3624 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3625 rv);
3626 goto out_err_stop_timer;
3629 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3630 &smi_type_proc_ops,
3631 new_smi);
3632 if (rv) {
3633 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3634 goto out_err_stop_timer;
3637 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3638 &smi_si_stats_proc_ops,
3639 new_smi);
3640 if (rv) {
3641 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3642 goto out_err_stop_timer;
3645 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3646 &smi_params_proc_ops,
3647 new_smi);
3648 if (rv) {
3649 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3650 goto out_err_stop_timer;
3653 /* Don't increment till we know we have succeeded. */
3654 smi_num++;
3656 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3657 si_to_str[new_smi->si_type]);
3659 WARN_ON(new_smi->dev->init_name != NULL);
3660 kfree(init_name);
3662 return 0;
3664 out_err_stop_timer:
3665 wait_for_timer_and_thread(new_smi);
3667 out_err:
3668 new_smi->interrupt_disabled = true;
3670 if (new_smi->intf) {
3671 ipmi_smi_t intf = new_smi->intf;
3672 new_smi->intf = NULL;
3673 ipmi_unregister_smi(intf);
3676 if (new_smi->irq_cleanup) {
3677 new_smi->irq_cleanup(new_smi);
3678 new_smi->irq_cleanup = NULL;
3682 * Wait until we know that we are out of any interrupt
3683 * handlers might have been running before we freed the
3684 * interrupt.
3686 synchronize_sched();
3688 if (new_smi->si_sm) {
3689 if (new_smi->handlers)
3690 new_smi->handlers->cleanup(new_smi->si_sm);
3691 kfree(new_smi->si_sm);
3692 new_smi->si_sm = NULL;
3694 if (new_smi->addr_source_cleanup) {
3695 new_smi->addr_source_cleanup(new_smi);
3696 new_smi->addr_source_cleanup = NULL;
3698 if (new_smi->io_cleanup) {
3699 new_smi->io_cleanup(new_smi);
3700 new_smi->io_cleanup = NULL;
3703 if (new_smi->dev_registered) {
3704 platform_device_unregister(new_smi->pdev);
3705 new_smi->dev_registered = false;
3706 new_smi->pdev = NULL;
3707 } else if (new_smi->pdev) {
3708 platform_device_put(new_smi->pdev);
3709 new_smi->pdev = NULL;
3712 kfree(init_name);
3714 return rv;
3717 static int init_ipmi_si(void)
3719 int i;
3720 char *str;
3721 int rv;
3722 struct smi_info *e;
3723 enum ipmi_addr_src type = SI_INVALID;
3725 if (initialized)
3726 return 0;
3727 initialized = 1;
3729 if (si_tryplatform) {
3730 rv = platform_driver_register(&ipmi_driver);
3731 if (rv) {
3732 pr_err(PFX "Unable to register driver: %d\n", rv);
3733 return rv;
3737 /* Parse out the si_type string into its components. */
3738 str = si_type_str;
3739 if (*str != '\0') {
3740 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3741 si_type[i] = str;
3742 str = strchr(str, ',');
3743 if (str) {
3744 *str = '\0';
3745 str++;
3746 } else {
3747 break;
3752 pr_info("IPMI System Interface driver.\n");
3754 /* If the user gave us a device, they presumably want us to use it */
3755 if (!hardcode_find_bmc())
3756 return 0;
3758 #ifdef CONFIG_PCI
3759 if (si_trypci) {
3760 rv = pci_register_driver(&ipmi_pci_driver);
3761 if (rv)
3762 pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3763 else
3764 pci_registered = true;
3766 #endif
3768 #ifdef CONFIG_ACPI
3769 if (si_tryacpi)
3770 spmi_find_bmc();
3771 #endif
3773 #ifdef CONFIG_PARISC
3774 register_parisc_driver(&ipmi_parisc_driver);
3775 parisc_registered = true;
3776 #endif
3778 /* We prefer devices with interrupts, but in the case of a machine
3779 with multiple BMCs we assume that there will be several instances
3780 of a given type so if we succeed in registering a type then also
3781 try to register everything else of the same type */
3783 mutex_lock(&smi_infos_lock);
3784 list_for_each_entry(e, &smi_infos, link) {
3785 /* Try to register a device if it has an IRQ and we either
3786 haven't successfully registered a device yet or this
3787 device has the same type as one we successfully registered */
3788 if (e->irq && (!type || e->addr_source == type)) {
3789 if (!try_smi_init(e)) {
3790 type = e->addr_source;
3795 /* type will only have been set if we successfully registered an si */
3796 if (type) {
3797 mutex_unlock(&smi_infos_lock);
3798 return 0;
3801 /* Fall back to the preferred device */
3803 list_for_each_entry(e, &smi_infos, link) {
3804 if (!e->irq && (!type || e->addr_source == type)) {
3805 if (!try_smi_init(e)) {
3806 type = e->addr_source;
3810 mutex_unlock(&smi_infos_lock);
3812 if (type)
3813 return 0;
3815 mutex_lock(&smi_infos_lock);
3816 if (unload_when_empty && list_empty(&smi_infos)) {
3817 mutex_unlock(&smi_infos_lock);
3818 cleanup_ipmi_si();
3819 pr_warn(PFX "Unable to find any System Interface(s)\n");
3820 return -ENODEV;
3821 } else {
3822 mutex_unlock(&smi_infos_lock);
3823 return 0;
3826 module_init(init_ipmi_si);
3828 static void cleanup_one_si(struct smi_info *to_clean)
3830 int rv = 0;
3832 if (!to_clean)
3833 return;
3835 if (to_clean->intf) {
3836 ipmi_smi_t intf = to_clean->intf;
3838 to_clean->intf = NULL;
3839 rv = ipmi_unregister_smi(intf);
3840 if (rv) {
3841 pr_err(PFX "Unable to unregister device: errno=%d\n",
3842 rv);
3846 if (to_clean->dev)
3847 dev_set_drvdata(to_clean->dev, NULL);
3849 list_del(&to_clean->link);
3852 * Make sure that interrupts, the timer and the thread are
3853 * stopped and will not run again.
3855 if (to_clean->irq_cleanup)
3856 to_clean->irq_cleanup(to_clean);
3857 wait_for_timer_and_thread(to_clean);
3860 * Timeouts are stopped, now make sure the interrupts are off
3861 * in the BMC. Note that timers and CPU interrupts are off,
3862 * so no need for locks.
3864 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3865 poll(to_clean);
3866 schedule_timeout_uninterruptible(1);
3868 disable_si_irq(to_clean, false);
3869 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3870 poll(to_clean);
3871 schedule_timeout_uninterruptible(1);
3874 if (to_clean->handlers)
3875 to_clean->handlers->cleanup(to_clean->si_sm);
3877 kfree(to_clean->si_sm);
3879 if (to_clean->addr_source_cleanup)
3880 to_clean->addr_source_cleanup(to_clean);
3881 if (to_clean->io_cleanup)
3882 to_clean->io_cleanup(to_clean);
3884 if (to_clean->dev_registered)
3885 platform_device_unregister(to_clean->pdev);
3887 kfree(to_clean);
3890 static void cleanup_ipmi_si(void)
3892 struct smi_info *e, *tmp_e;
3894 if (!initialized)
3895 return;
3897 #ifdef CONFIG_PCI
3898 if (pci_registered)
3899 pci_unregister_driver(&ipmi_pci_driver);
3900 #endif
3901 #ifdef CONFIG_PARISC
3902 if (parisc_registered)
3903 unregister_parisc_driver(&ipmi_parisc_driver);
3904 #endif
3906 platform_driver_unregister(&ipmi_driver);
3908 mutex_lock(&smi_infos_lock);
3909 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3910 cleanup_one_si(e);
3911 mutex_unlock(&smi_infos_lock);
3913 module_exit(cleanup_ipmi_si);
3915 MODULE_ALIAS("platform:dmi-ipmi-si");
3916 MODULE_LICENSE("GPL");
3917 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3918 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3919 " system interfaces.");