4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
79 #define PFX "ipmi_si: "
81 /* Measure times between events in the driver. */
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
99 /* FIXME - add watchdog stuff. */
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG 2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
108 SI_KCS
, SI_SMIC
, SI_BT
111 static const char * const si_to_str
[] = { "kcs", "smic", "bt" };
113 #define DEVICE_NAME "ipmi_si"
115 static struct platform_driver ipmi_driver
;
118 * Indexes into stats[] in smi_info below.
120 enum si_stat_indexes
{
122 * Number of times the driver requested a timer while an operation
125 SI_STAT_short_timeouts
= 0,
128 * Number of times the driver requested a timer while nothing was in
131 SI_STAT_long_timeouts
,
133 /* Number of times the interface was idle while being polled. */
136 /* Number of interrupts the driver handled. */
139 /* Number of time the driver got an ATTN from the hardware. */
142 /* Number of times the driver requested flags from the hardware. */
143 SI_STAT_flag_fetches
,
145 /* Number of times the hardware didn't follow the state machine. */
148 /* Number of completed messages. */
149 SI_STAT_complete_transactions
,
151 /* Number of IPMI events received from the hardware. */
154 /* Number of watchdog pretimeouts. */
155 SI_STAT_watchdog_pretimeouts
,
157 /* Number of asynchronous messages received. */
158 SI_STAT_incoming_messages
,
161 /* This *must* remain last, add new values above this. */
168 struct si_sm_data
*si_sm
;
169 const struct si_sm_handlers
*handlers
;
170 enum si_type si_type
;
172 struct ipmi_smi_msg
*waiting_msg
;
173 struct ipmi_smi_msg
*curr_msg
;
174 enum si_intf_state si_state
;
177 * Used to handle the various types of I/O that can occur with
181 int (*io_setup
)(struct smi_info
*info
);
182 void (*io_cleanup
)(struct smi_info
*info
);
183 int (*irq_setup
)(struct smi_info
*info
);
184 void (*irq_cleanup
)(struct smi_info
*info
);
185 unsigned int io_size
;
186 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 void (*addr_source_cleanup
)(struct smi_info
*info
);
188 void *addr_source_data
;
191 * Per-OEM handler, called from handle_flags(). Returns 1
192 * when handle_flags() needs to be re-run or 0 indicating it
193 * set si_state itself.
195 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
198 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 * is set to hold the flags until we are done handling everything
202 #define RECEIVE_MSG_AVAIL 0x01
203 #define EVENT_MSG_BUFFER_FULL 0x02
204 #define WDT_PRE_TIMEOUT_INT 0x08
205 #define OEM0_DATA_AVAIL 0x20
206 #define OEM1_DATA_AVAIL 0x40
207 #define OEM2_DATA_AVAIL 0x80
208 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211 unsigned char msg_flags
;
213 /* Does the BMC have an event buffer? */
214 bool has_event_buffer
;
217 * If set to true, this will request events the next time the
218 * state machine is idle.
223 * If true, run the state machine to completion on every send
224 * call. Generally used after a panic to make sure stuff goes
227 bool run_to_completion
;
229 /* The I/O port of an SI interface. */
233 * The space between start addresses of the two ports. For
234 * instance, if the first port is 0xca2 and the spacing is 4, then
235 * the second port is 0xca6.
237 unsigned int spacing
;
239 /* zero if no irq; */
242 /* The timer for this si. */
243 struct timer_list si_timer
;
245 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies
;
251 /* Are we waiting for the events, pretimeouts, received msgs? */
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
260 bool interrupt_disabled
;
263 * Does the BMC support events?
265 bool supports_event_msg_buff
;
268 * Can we disable interrupts the global enables receive irq
269 * bit? There are currently two forms of brokenness, some
270 * systems cannot disable the bit (which is technically within
271 * the spec but a bad idea) and some systems have the bit
272 * forced to zero even though interrupts work (which is
273 * clearly outside the spec). The next bool tells which form
274 * of brokenness is present.
276 bool cannot_disable_irq
;
279 * Some systems are broken and cannot set the irq enable
280 * bit, even if they support interrupts.
282 bool irq_enable_broken
;
285 * Did we get an attention that we did not handle?
289 /* From the get device id response... */
290 struct ipmi_device_id device_id
;
292 /* Driver model stuff. */
294 struct platform_device
*pdev
;
297 * True if we allocated the device, false if it came from
298 * someplace else (like PCI).
302 /* Slave address, could be reported from DMI. */
303 unsigned char slave_addr
;
305 /* Counters and things for the proc filesystem. */
306 atomic_t stats
[SI_NUM_STATS
];
308 struct task_struct
*thread
;
310 struct list_head link
;
311 union ipmi_smi_info_union addr_info
;
314 #define smi_inc_stat(smi, stat) \
315 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
319 #define SI_MAX_PARMS 4
321 static int force_kipmid
[SI_MAX_PARMS
];
322 static int num_force_kipmid
;
324 static bool pci_registered
;
327 static bool parisc_registered
;
330 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
331 static int num_max_busy_us
;
333 static bool unload_when_empty
= true;
335 static int add_smi(struct smi_info
*smi
);
336 static int try_smi_init(struct smi_info
*smi
);
337 static void cleanup_one_si(struct smi_info
*to_clean
);
338 static void cleanup_ipmi_si(void);
341 void debug_timestamp(char *msg
)
345 getnstimeofday64(&t
);
346 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
349 #define debug_timestamp(x)
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
353 static int register_xaction_notifier(struct notifier_block
*nb
)
355 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
358 static void deliver_recv_msg(struct smi_info
*smi_info
,
359 struct ipmi_smi_msg
*msg
)
361 /* Deliver the message to the upper layer. */
363 ipmi_smi_msg_received(smi_info
->intf
, msg
);
365 ipmi_free_smi_msg(msg
);
368 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
370 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
372 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
373 cCode
= IPMI_ERR_UNSPECIFIED
;
374 /* else use it as is */
376 /* Make it a response */
377 msg
->rsp
[0] = msg
->data
[0] | 4;
378 msg
->rsp
[1] = msg
->data
[1];
382 smi_info
->curr_msg
= NULL
;
383 deliver_recv_msg(smi_info
, msg
);
386 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
390 if (!smi_info
->waiting_msg
) {
391 smi_info
->curr_msg
= NULL
;
396 smi_info
->curr_msg
= smi_info
->waiting_msg
;
397 smi_info
->waiting_msg
= NULL
;
398 debug_timestamp("Start2");
399 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
401 if (err
& NOTIFY_STOP_MASK
) {
402 rv
= SI_SM_CALL_WITHOUT_DELAY
;
405 err
= smi_info
->handlers
->start_transaction(
407 smi_info
->curr_msg
->data
,
408 smi_info
->curr_msg
->data_size
);
410 return_hosed_msg(smi_info
, err
);
412 rv
= SI_SM_CALL_WITHOUT_DELAY
;
418 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
420 smi_info
->last_timeout_jiffies
= jiffies
;
421 mod_timer(&smi_info
->si_timer
, new_val
);
422 smi_info
->timer_running
= true;
426 * Start a new message and (re)start the timer and thread.
428 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
431 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
433 if (smi_info
->thread
)
434 wake_up_process(smi_info
->thread
);
436 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
439 static void start_check_enables(struct smi_info
*smi_info
, bool start_timer
)
441 unsigned char msg
[2];
443 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
444 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
447 start_new_msg(smi_info
, msg
, 2);
449 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
450 smi_info
->si_state
= SI_CHECKING_ENABLES
;
453 static void start_clear_flags(struct smi_info
*smi_info
, bool start_timer
)
455 unsigned char msg
[3];
457 /* Make sure the watchdog pre-timeout flag is not set at startup. */
458 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
459 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
460 msg
[2] = WDT_PRE_TIMEOUT_INT
;
463 start_new_msg(smi_info
, msg
, 3);
465 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
466 smi_info
->si_state
= SI_CLEARING_FLAGS
;
469 static void start_getting_msg_queue(struct smi_info
*smi_info
)
471 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
472 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
473 smi_info
->curr_msg
->data_size
= 2;
475 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
476 smi_info
->curr_msg
->data_size
);
477 smi_info
->si_state
= SI_GETTING_MESSAGES
;
480 static void start_getting_events(struct smi_info
*smi_info
)
482 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
483 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
484 smi_info
->curr_msg
->data_size
= 2;
486 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
487 smi_info
->curr_msg
->data_size
);
488 smi_info
->si_state
= SI_GETTING_EVENTS
;
492 * When we have a situtaion where we run out of memory and cannot
493 * allocate messages, we just leave them in the BMC and run the system
494 * polled until we can allocate some memory. Once we have some
495 * memory, we will re-enable the interrupt.
497 * Note that we cannot just use disable_irq(), since the interrupt may
500 static inline bool disable_si_irq(struct smi_info
*smi_info
, bool start_timer
)
502 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
503 smi_info
->interrupt_disabled
= true;
504 start_check_enables(smi_info
, start_timer
);
510 static inline bool enable_si_irq(struct smi_info
*smi_info
)
512 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
513 smi_info
->interrupt_disabled
= false;
514 start_check_enables(smi_info
, true);
521 * Allocate a message. If unable to allocate, start the interrupt
522 * disable process and return NULL. If able to allocate but
523 * interrupts are disabled, free the message and return NULL after
524 * starting the interrupt enable process.
526 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
528 struct ipmi_smi_msg
*msg
;
530 msg
= ipmi_alloc_smi_msg();
532 if (!disable_si_irq(smi_info
, true))
533 smi_info
->si_state
= SI_NORMAL
;
534 } else if (enable_si_irq(smi_info
)) {
535 ipmi_free_smi_msg(msg
);
541 static void handle_flags(struct smi_info
*smi_info
)
544 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
545 /* Watchdog pre-timeout */
546 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
548 start_clear_flags(smi_info
, true);
549 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
551 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
552 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
553 /* Messages available. */
554 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
555 if (!smi_info
->curr_msg
)
558 start_getting_msg_queue(smi_info
);
559 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
560 /* Events available. */
561 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
562 if (!smi_info
->curr_msg
)
565 start_getting_events(smi_info
);
566 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
567 smi_info
->oem_data_avail_handler
) {
568 if (smi_info
->oem_data_avail_handler(smi_info
))
571 smi_info
->si_state
= SI_NORMAL
;
575 * Global enables we care about.
577 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
578 IPMI_BMC_EVT_MSG_INTR)
580 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
585 if (smi_info
->supports_event_msg_buff
)
586 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
588 if (((smi_info
->irq
&& !smi_info
->interrupt_disabled
) ||
589 smi_info
->cannot_disable_irq
) &&
590 !smi_info
->irq_enable_broken
)
591 enables
|= IPMI_BMC_RCV_MSG_INTR
;
593 if (smi_info
->supports_event_msg_buff
&&
594 smi_info
->irq
&& !smi_info
->interrupt_disabled
&&
595 !smi_info
->irq_enable_broken
)
596 enables
|= IPMI_BMC_EVT_MSG_INTR
;
598 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
603 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
605 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
607 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
609 if ((bool)irqstate
== irq_on
)
613 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
614 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
616 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
619 static void handle_transaction_done(struct smi_info
*smi_info
)
621 struct ipmi_smi_msg
*msg
;
623 debug_timestamp("Done");
624 switch (smi_info
->si_state
) {
626 if (!smi_info
->curr_msg
)
629 smi_info
->curr_msg
->rsp_size
630 = smi_info
->handlers
->get_result(
632 smi_info
->curr_msg
->rsp
,
633 IPMI_MAX_MSG_LENGTH
);
636 * Do this here becase deliver_recv_msg() releases the
637 * lock, and a new message can be put in during the
638 * time the lock is released.
640 msg
= smi_info
->curr_msg
;
641 smi_info
->curr_msg
= NULL
;
642 deliver_recv_msg(smi_info
, msg
);
645 case SI_GETTING_FLAGS
:
647 unsigned char msg
[4];
650 /* We got the flags from the SMI, now handle them. */
651 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
653 /* Error fetching flags, just give up for now. */
654 smi_info
->si_state
= SI_NORMAL
;
655 } else if (len
< 4) {
657 * Hmm, no flags. That's technically illegal, but
658 * don't use uninitialized data.
660 smi_info
->si_state
= SI_NORMAL
;
662 smi_info
->msg_flags
= msg
[3];
663 handle_flags(smi_info
);
668 case SI_CLEARING_FLAGS
:
670 unsigned char msg
[3];
672 /* We cleared the flags. */
673 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
675 /* Error clearing flags */
676 dev_warn(smi_info
->dev
,
677 "Error clearing flags: %2.2x\n", msg
[2]);
679 smi_info
->si_state
= SI_NORMAL
;
683 case SI_GETTING_EVENTS
:
685 smi_info
->curr_msg
->rsp_size
686 = smi_info
->handlers
->get_result(
688 smi_info
->curr_msg
->rsp
,
689 IPMI_MAX_MSG_LENGTH
);
692 * Do this here becase deliver_recv_msg() releases the
693 * lock, and a new message can be put in during the
694 * time the lock is released.
696 msg
= smi_info
->curr_msg
;
697 smi_info
->curr_msg
= NULL
;
698 if (msg
->rsp
[2] != 0) {
699 /* Error getting event, probably done. */
702 /* Take off the event flag. */
703 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
704 handle_flags(smi_info
);
706 smi_inc_stat(smi_info
, events
);
709 * Do this before we deliver the message
710 * because delivering the message releases the
711 * lock and something else can mess with the
714 handle_flags(smi_info
);
716 deliver_recv_msg(smi_info
, msg
);
721 case SI_GETTING_MESSAGES
:
723 smi_info
->curr_msg
->rsp_size
724 = smi_info
->handlers
->get_result(
726 smi_info
->curr_msg
->rsp
,
727 IPMI_MAX_MSG_LENGTH
);
730 * Do this here becase deliver_recv_msg() releases the
731 * lock, and a new message can be put in during the
732 * time the lock is released.
734 msg
= smi_info
->curr_msg
;
735 smi_info
->curr_msg
= NULL
;
736 if (msg
->rsp
[2] != 0) {
737 /* Error getting event, probably done. */
740 /* Take off the msg flag. */
741 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
742 handle_flags(smi_info
);
744 smi_inc_stat(smi_info
, incoming_messages
);
747 * Do this before we deliver the message
748 * because delivering the message releases the
749 * lock and something else can mess with the
752 handle_flags(smi_info
);
754 deliver_recv_msg(smi_info
, msg
);
759 case SI_CHECKING_ENABLES
:
761 unsigned char msg
[4];
765 /* We got the flags from the SMI, now handle them. */
766 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
768 dev_warn(smi_info
->dev
,
769 "Couldn't get irq info: %x.\n", msg
[2]);
770 dev_warn(smi_info
->dev
,
771 "Maybe ok, but ipmi might run very slowly.\n");
772 smi_info
->si_state
= SI_NORMAL
;
775 enables
= current_global_enables(smi_info
, 0, &irq_on
);
776 if (smi_info
->si_type
== SI_BT
)
777 /* BT has its own interrupt enable bit. */
778 check_bt_irq(smi_info
, irq_on
);
779 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
780 /* Enables are not correct, fix them. */
781 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
782 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
783 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
784 smi_info
->handlers
->start_transaction(
785 smi_info
->si_sm
, msg
, 3);
786 smi_info
->si_state
= SI_SETTING_ENABLES
;
787 } else if (smi_info
->supports_event_msg_buff
) {
788 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
789 if (!smi_info
->curr_msg
) {
790 smi_info
->si_state
= SI_NORMAL
;
793 start_getting_events(smi_info
);
795 smi_info
->si_state
= SI_NORMAL
;
800 case SI_SETTING_ENABLES
:
802 unsigned char msg
[4];
804 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
806 dev_warn(smi_info
->dev
,
807 "Could not set the global enables: 0x%x.\n",
810 if (smi_info
->supports_event_msg_buff
) {
811 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
812 if (!smi_info
->curr_msg
) {
813 smi_info
->si_state
= SI_NORMAL
;
816 start_getting_events(smi_info
);
818 smi_info
->si_state
= SI_NORMAL
;
826 * Called on timeouts and events. Timeouts should pass the elapsed
827 * time, interrupts should pass in zero. Must be called with
828 * si_lock held and interrupts disabled.
830 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
833 enum si_sm_result si_sm_result
;
837 * There used to be a loop here that waited a little while
838 * (around 25us) before giving up. That turned out to be
839 * pointless, the minimum delays I was seeing were in the 300us
840 * range, which is far too long to wait in an interrupt. So
841 * we just run until the state machine tells us something
842 * happened or it needs a delay.
844 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
846 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
847 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
849 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
850 smi_inc_stat(smi_info
, complete_transactions
);
852 handle_transaction_done(smi_info
);
854 } else if (si_sm_result
== SI_SM_HOSED
) {
855 smi_inc_stat(smi_info
, hosed_count
);
858 * Do the before return_hosed_msg, because that
861 smi_info
->si_state
= SI_NORMAL
;
862 if (smi_info
->curr_msg
!= NULL
) {
864 * If we were handling a user message, format
865 * a response to send to the upper layer to
866 * tell it about the error.
868 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
874 * We prefer handling attn over new messages. But don't do
875 * this if there is not yet an upper layer to handle anything.
877 if (likely(smi_info
->intf
) &&
878 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
879 unsigned char msg
[2];
881 if (smi_info
->si_state
!= SI_NORMAL
) {
883 * We got an ATTN, but we are doing something else.
884 * Handle the ATTN later.
886 smi_info
->got_attn
= true;
888 smi_info
->got_attn
= false;
889 smi_inc_stat(smi_info
, attentions
);
892 * Got a attn, send down a get message flags to see
893 * what's causing it. It would be better to handle
894 * this in the upper layer, but due to the way
895 * interrupts work with the SMI, that's not really
898 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
899 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
901 start_new_msg(smi_info
, msg
, 2);
902 smi_info
->si_state
= SI_GETTING_FLAGS
;
907 /* If we are currently idle, try to start the next message. */
908 if (si_sm_result
== SI_SM_IDLE
) {
909 smi_inc_stat(smi_info
, idles
);
911 si_sm_result
= start_next_msg(smi_info
);
912 if (si_sm_result
!= SI_SM_IDLE
)
916 if ((si_sm_result
== SI_SM_IDLE
)
917 && (atomic_read(&smi_info
->req_events
))) {
919 * We are idle and the upper layer requested that I fetch
922 atomic_set(&smi_info
->req_events
, 0);
925 * Take this opportunity to check the interrupt and
926 * message enable state for the BMC. The BMC can be
927 * asynchronously reset, and may thus get interrupts
928 * disable and messages disabled.
930 if (smi_info
->supports_event_msg_buff
|| smi_info
->irq
) {
931 start_check_enables(smi_info
, true);
933 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
934 if (!smi_info
->curr_msg
)
937 start_getting_events(smi_info
);
942 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
943 /* Ok it if fails, the timer will just go off. */
944 if (del_timer(&smi_info
->si_timer
))
945 smi_info
->timer_running
= false;
952 static void check_start_timer_thread(struct smi_info
*smi_info
)
954 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
955 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
957 if (smi_info
->thread
)
958 wake_up_process(smi_info
->thread
);
960 start_next_msg(smi_info
);
961 smi_event_handler(smi_info
, 0);
965 static void flush_messages(void *send_info
)
967 struct smi_info
*smi_info
= send_info
;
968 enum si_sm_result result
;
971 * Currently, this function is called only in run-to-completion
972 * mode. This means we are single-threaded, no need for locks.
974 result
= smi_event_handler(smi_info
, 0);
975 while (result
!= SI_SM_IDLE
) {
976 udelay(SI_SHORT_TIMEOUT_USEC
);
977 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
981 static void sender(void *send_info
,
982 struct ipmi_smi_msg
*msg
)
984 struct smi_info
*smi_info
= send_info
;
987 debug_timestamp("Enqueue");
989 if (smi_info
->run_to_completion
) {
991 * If we are running to completion, start it. Upper
992 * layer will call flush_messages to clear it out.
994 smi_info
->waiting_msg
= msg
;
998 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1000 * The following two lines don't need to be under the lock for
1001 * the lock's sake, but they do need SMP memory barriers to
1002 * avoid getting things out of order. We are already claiming
1003 * the lock, anyway, so just do it under the lock to avoid the
1006 BUG_ON(smi_info
->waiting_msg
);
1007 smi_info
->waiting_msg
= msg
;
1008 check_start_timer_thread(smi_info
);
1009 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1012 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
1014 struct smi_info
*smi_info
= send_info
;
1016 smi_info
->run_to_completion
= i_run_to_completion
;
1017 if (i_run_to_completion
)
1018 flush_messages(smi_info
);
1022 * Use -1 in the nsec value of the busy waiting timespec to tell that
1023 * we are spinning in kipmid looking for something and not delaying
1026 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
1030 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
1032 return ts
->tv_nsec
!= -1;
1035 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
1036 const struct smi_info
*smi_info
,
1037 struct timespec64
*busy_until
)
1039 unsigned int max_busy_us
= 0;
1041 if (smi_info
->intf_num
< num_max_busy_us
)
1042 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
1043 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
1044 ipmi_si_set_not_busy(busy_until
);
1045 else if (!ipmi_si_is_busy(busy_until
)) {
1046 getnstimeofday64(busy_until
);
1047 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
1049 struct timespec64 now
;
1051 getnstimeofday64(&now
);
1052 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
1053 ipmi_si_set_not_busy(busy_until
);
1062 * A busy-waiting loop for speeding up IPMI operation.
1064 * Lousy hardware makes this hard. This is only enabled for systems
1065 * that are not BT and do not have interrupts. It starts spinning
1066 * when an operation is complete or until max_busy tells it to stop
1067 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1068 * Documentation/IPMI.txt for details.
1070 static int ipmi_thread(void *data
)
1072 struct smi_info
*smi_info
= data
;
1073 unsigned long flags
;
1074 enum si_sm_result smi_result
;
1075 struct timespec64 busy_until
;
1077 ipmi_si_set_not_busy(&busy_until
);
1078 set_user_nice(current
, MAX_NICE
);
1079 while (!kthread_should_stop()) {
1082 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1083 smi_result
= smi_event_handler(smi_info
, 0);
1086 * If the driver is doing something, there is a possible
1087 * race with the timer. If the timer handler see idle,
1088 * and the thread here sees something else, the timer
1089 * handler won't restart the timer even though it is
1090 * required. So start it here if necessary.
1092 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1093 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1095 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1096 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1098 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1100 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1102 else if (smi_result
== SI_SM_IDLE
) {
1103 if (atomic_read(&smi_info
->need_watch
)) {
1104 schedule_timeout_interruptible(100);
1106 /* Wait to be woken up when we are needed. */
1107 __set_current_state(TASK_INTERRUPTIBLE
);
1111 schedule_timeout_interruptible(1);
1117 static void poll(void *send_info
)
1119 struct smi_info
*smi_info
= send_info
;
1120 unsigned long flags
= 0;
1121 bool run_to_completion
= smi_info
->run_to_completion
;
1124 * Make sure there is some delay in the poll loop so we can
1125 * drive time forward and timeout things.
1128 if (!run_to_completion
)
1129 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1130 smi_event_handler(smi_info
, 10);
1131 if (!run_to_completion
)
1132 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1135 static void request_events(void *send_info
)
1137 struct smi_info
*smi_info
= send_info
;
1139 if (!smi_info
->has_event_buffer
)
1142 atomic_set(&smi_info
->req_events
, 1);
1145 static void set_need_watch(void *send_info
, bool enable
)
1147 struct smi_info
*smi_info
= send_info
;
1148 unsigned long flags
;
1150 atomic_set(&smi_info
->need_watch
, enable
);
1151 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1152 check_start_timer_thread(smi_info
);
1153 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1156 static int initialized
;
1158 static void smi_timeout(unsigned long data
)
1160 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1161 enum si_sm_result smi_result
;
1162 unsigned long flags
;
1163 unsigned long jiffies_now
;
1167 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1168 debug_timestamp("Timer");
1170 jiffies_now
= jiffies
;
1171 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1172 * SI_USEC_PER_JIFFY
);
1173 smi_result
= smi_event_handler(smi_info
, time_diff
);
1175 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1176 /* Running with interrupts, only do long timeouts. */
1177 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1178 smi_inc_stat(smi_info
, long_timeouts
);
1183 * If the state machine asks for a short delay, then shorten
1184 * the timer timeout.
1186 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1187 smi_inc_stat(smi_info
, short_timeouts
);
1188 timeout
= jiffies
+ 1;
1190 smi_inc_stat(smi_info
, long_timeouts
);
1191 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1195 if (smi_result
!= SI_SM_IDLE
)
1196 smi_mod_timer(smi_info
, timeout
);
1198 smi_info
->timer_running
= false;
1199 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1202 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1204 struct smi_info
*smi_info
= data
;
1205 unsigned long flags
;
1207 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1209 smi_inc_stat(smi_info
, interrupts
);
1211 debug_timestamp("Interrupt");
1213 smi_event_handler(smi_info
, 0);
1214 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1218 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1220 struct smi_info
*smi_info
= data
;
1221 /* We need to clear the IRQ flag for the BT interface. */
1222 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1223 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1224 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1225 return si_irq_handler(irq
, data
);
1228 static int smi_start_processing(void *send_info
,
1231 struct smi_info
*new_smi
= send_info
;
1234 new_smi
->intf
= intf
;
1236 /* Set up the timer that drives the interface. */
1237 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1238 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1240 /* Try to claim any interrupts. */
1241 if (new_smi
->irq_setup
)
1242 new_smi
->irq_setup(new_smi
);
1245 * Check if the user forcefully enabled the daemon.
1247 if (new_smi
->intf_num
< num_force_kipmid
)
1248 enable
= force_kipmid
[new_smi
->intf_num
];
1250 * The BT interface is efficient enough to not need a thread,
1251 * and there is no need for a thread if we have interrupts.
1253 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1257 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1258 "kipmi%d", new_smi
->intf_num
);
1259 if (IS_ERR(new_smi
->thread
)) {
1260 dev_notice(new_smi
->dev
, "Could not start"
1261 " kernel thread due to error %ld, only using"
1262 " timers to drive the interface\n",
1263 PTR_ERR(new_smi
->thread
));
1264 new_smi
->thread
= NULL
;
1271 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1273 struct smi_info
*smi
= send_info
;
1275 data
->addr_src
= smi
->addr_source
;
1276 data
->dev
= smi
->dev
;
1277 data
->addr_info
= smi
->addr_info
;
1278 get_device(smi
->dev
);
1283 static void set_maintenance_mode(void *send_info
, bool enable
)
1285 struct smi_info
*smi_info
= send_info
;
1288 atomic_set(&smi_info
->req_events
, 0);
1291 static const struct ipmi_smi_handlers handlers
= {
1292 .owner
= THIS_MODULE
,
1293 .start_processing
= smi_start_processing
,
1294 .get_smi_info
= get_smi_info
,
1296 .request_events
= request_events
,
1297 .set_need_watch
= set_need_watch
,
1298 .set_maintenance_mode
= set_maintenance_mode
,
1299 .set_run_to_completion
= set_run_to_completion
,
1300 .flush_messages
= flush_messages
,
1305 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1309 static LIST_HEAD(smi_infos
);
1310 static DEFINE_MUTEX(smi_infos_lock
);
1311 static int smi_num
; /* Used to sequence the SMIs */
1313 #define DEFAULT_REGSPACING 1
1314 #define DEFAULT_REGSIZE 1
1317 static bool si_tryacpi
= true;
1320 static bool si_trydmi
= true;
1322 static bool si_tryplatform
= true;
1324 static bool si_trypci
= true;
1326 static char *si_type
[SI_MAX_PARMS
];
1327 #define MAX_SI_TYPE_STR 30
1328 static char si_type_str
[MAX_SI_TYPE_STR
];
1329 static unsigned long addrs
[SI_MAX_PARMS
];
1330 static unsigned int num_addrs
;
1331 static unsigned int ports
[SI_MAX_PARMS
];
1332 static unsigned int num_ports
;
1333 static int irqs
[SI_MAX_PARMS
];
1334 static unsigned int num_irqs
;
1335 static int regspacings
[SI_MAX_PARMS
];
1336 static unsigned int num_regspacings
;
1337 static int regsizes
[SI_MAX_PARMS
];
1338 static unsigned int num_regsizes
;
1339 static int regshifts
[SI_MAX_PARMS
];
1340 static unsigned int num_regshifts
;
1341 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs
;
1344 #define IPMI_IO_ADDR_SPACE 0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1348 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1350 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1351 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1356 module_param_named(tryacpi
, si_tryacpi
, bool, 0);
1357 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1361 module_param_named(trydmi
, si_trydmi
, bool, 0);
1362 MODULE_PARM_DESC(trydmi
, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1365 module_param_named(tryplatform
, si_tryplatform
, bool, 0);
1366 MODULE_PARM_DESC(tryplatform
, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1370 module_param_named(trypci
, si_trypci
, bool, 0);
1371 MODULE_PARM_DESC(trypci
, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1374 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1375 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1376 " interface separated by commas. The types are 'kcs',"
1377 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1378 " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs
, ulong
, iomem
, &num_addrs
, 0);
1380 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1381 " addresses separated by commas. Only use if an interface"
1382 " is in memory. Otherwise, set it to zero or leave"
1384 module_param_hw_array(ports
, uint
, ioport
, &num_ports
, 0);
1385 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1386 " addresses separated by commas. Only use if an interface"
1387 " is a port. Otherwise, set it to zero or leave"
1389 module_param_hw_array(irqs
, int, irq
, &num_irqs
, 0);
1390 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1391 " addresses separated by commas. Only use if an interface"
1392 " has an interrupt. Otherwise, set it to zero or leave"
1394 module_param_hw_array(regspacings
, int, other
, &num_regspacings
, 0);
1395 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1396 " and each successive register used by the interface. For"
1397 " instance, if the start address is 0xca2 and the spacing"
1398 " is 2, then the second address is at 0xca4. Defaults"
1400 module_param_hw_array(regsizes
, int, other
, &num_regsizes
, 0);
1401 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1402 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1404 " the 8-bit IPMI register has to be read from a larger"
1406 module_param_hw_array(regshifts
, int, other
, &num_regshifts
, 0);
1407 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1408 " IPMI register, in bits. For instance, if the data"
1409 " is read from a 32-bit word and the IPMI data is in"
1410 " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs
, int, other
, &num_slave_addrs
, 0);
1412 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1413 " the controller. Normally this is 0x20, but can be"
1414 " overridden by this parm. This is an array indexed"
1415 " by interface number.");
1416 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1417 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1418 " disabled(0). Normally the IPMI driver auto-detects"
1419 " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty
, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1422 " specified or found, default is 1. Setting to 0"
1423 " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us
,
1426 "Max time (in microseconds) to busy-wait for IPMI data before"
1427 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428 " if kipmid is using up a lot of CPU time.");
1431 static void std_irq_cleanup(struct smi_info
*info
)
1433 if (info
->si_type
== SI_BT
)
1434 /* Disable the interrupt in the BT interface. */
1435 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1436 free_irq(info
->irq
, info
);
1439 static int std_irq_setup(struct smi_info
*info
)
1446 if (info
->si_type
== SI_BT
) {
1447 rv
= request_irq(info
->irq
,
1453 /* Enable the interrupt in the BT interface. */
1454 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1455 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1457 rv
= request_irq(info
->irq
,
1463 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1464 " running polled\n",
1465 DEVICE_NAME
, info
->irq
);
1468 info
->irq_cleanup
= std_irq_cleanup
;
1469 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1475 static unsigned char port_inb(const struct si_sm_io
*io
, unsigned int offset
)
1477 unsigned int addr
= io
->addr_data
;
1479 return inb(addr
+ (offset
* io
->regspacing
));
1482 static void port_outb(const struct si_sm_io
*io
, unsigned int offset
,
1485 unsigned int addr
= io
->addr_data
;
1487 outb(b
, addr
+ (offset
* io
->regspacing
));
1490 static unsigned char port_inw(const struct si_sm_io
*io
, unsigned int offset
)
1492 unsigned int addr
= io
->addr_data
;
1494 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1497 static void port_outw(const struct si_sm_io
*io
, unsigned int offset
,
1500 unsigned int addr
= io
->addr_data
;
1502 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1505 static unsigned char port_inl(const struct si_sm_io
*io
, unsigned int offset
)
1507 unsigned int addr
= io
->addr_data
;
1509 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1512 static void port_outl(const struct si_sm_io
*io
, unsigned int offset
,
1515 unsigned int addr
= io
->addr_data
;
1517 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1520 static void port_cleanup(struct smi_info
*info
)
1522 unsigned int addr
= info
->io
.addr_data
;
1526 for (idx
= 0; idx
< info
->io_size
; idx
++)
1527 release_region(addr
+ idx
* info
->io
.regspacing
,
1532 static int port_setup(struct smi_info
*info
)
1534 unsigned int addr
= info
->io
.addr_data
;
1540 info
->io_cleanup
= port_cleanup
;
1543 * Figure out the actual inb/inw/inl/etc routine to use based
1544 * upon the register size.
1546 switch (info
->io
.regsize
) {
1548 info
->io
.inputb
= port_inb
;
1549 info
->io
.outputb
= port_outb
;
1552 info
->io
.inputb
= port_inw
;
1553 info
->io
.outputb
= port_outw
;
1556 info
->io
.inputb
= port_inl
;
1557 info
->io
.outputb
= port_outl
;
1560 dev_warn(info
->dev
, "Invalid register size: %d\n",
1566 * Some BIOSes reserve disjoint I/O regions in their ACPI
1567 * tables. This causes problems when trying to register the
1568 * entire I/O region. Therefore we must register each I/O
1571 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1572 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1573 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1574 /* Undo allocations */
1576 release_region(addr
+ idx
* info
->io
.regspacing
,
1584 static unsigned char intf_mem_inb(const struct si_sm_io
*io
,
1585 unsigned int offset
)
1587 return readb((io
->addr
)+(offset
* io
->regspacing
));
1590 static void intf_mem_outb(const struct si_sm_io
*io
, unsigned int offset
,
1593 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1596 static unsigned char intf_mem_inw(const struct si_sm_io
*io
,
1597 unsigned int offset
)
1599 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1603 static void intf_mem_outw(const struct si_sm_io
*io
, unsigned int offset
,
1606 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1609 static unsigned char intf_mem_inl(const struct si_sm_io
*io
,
1610 unsigned int offset
)
1612 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1616 static void intf_mem_outl(const struct si_sm_io
*io
, unsigned int offset
,
1619 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1623 static unsigned char mem_inq(const struct si_sm_io
*io
, unsigned int offset
)
1625 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1629 static void mem_outq(const struct si_sm_io
*io
, unsigned int offset
,
1632 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1636 static void mem_region_cleanup(struct smi_info
*info
, int num
)
1638 unsigned long addr
= info
->io
.addr_data
;
1641 for (idx
= 0; idx
< num
; idx
++)
1642 release_mem_region(addr
+ idx
* info
->io
.regspacing
,
1646 static void mem_cleanup(struct smi_info
*info
)
1648 if (info
->io
.addr
) {
1649 iounmap(info
->io
.addr
);
1650 mem_region_cleanup(info
, info
->io_size
);
1654 static int mem_setup(struct smi_info
*info
)
1656 unsigned long addr
= info
->io
.addr_data
;
1662 info
->io_cleanup
= mem_cleanup
;
1665 * Figure out the actual readb/readw/readl/etc routine to use based
1666 * upon the register size.
1668 switch (info
->io
.regsize
) {
1670 info
->io
.inputb
= intf_mem_inb
;
1671 info
->io
.outputb
= intf_mem_outb
;
1674 info
->io
.inputb
= intf_mem_inw
;
1675 info
->io
.outputb
= intf_mem_outw
;
1678 info
->io
.inputb
= intf_mem_inl
;
1679 info
->io
.outputb
= intf_mem_outl
;
1683 info
->io
.inputb
= mem_inq
;
1684 info
->io
.outputb
= mem_outq
;
1688 dev_warn(info
->dev
, "Invalid register size: %d\n",
1694 * Some BIOSes reserve disjoint memory regions in their ACPI
1695 * tables. This causes problems when trying to request the
1696 * entire region. Therefore we must request each register
1699 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1700 if (request_mem_region(addr
+ idx
* info
->io
.regspacing
,
1701 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1702 /* Undo allocations */
1703 mem_region_cleanup(info
, idx
);
1709 * Calculate the total amount of memory to claim. This is an
1710 * unusual looking calculation, but it avoids claiming any
1711 * more memory than it has to. It will claim everything
1712 * between the first address to the end of the last full
1715 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1716 - (info
->io
.regspacing
- info
->io
.regsize
));
1717 info
->io
.addr
= ioremap(addr
, mapsize
);
1718 if (info
->io
.addr
== NULL
) {
1719 mem_region_cleanup(info
, info
->io_size
);
1726 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1727 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1735 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1736 struct hotmod_vals
{
1741 static const struct hotmod_vals hotmod_ops
[] = {
1743 { "remove", HM_REMOVE
},
1747 static const struct hotmod_vals hotmod_si
[] = {
1749 { "smic", SI_SMIC
},
1754 static const struct hotmod_vals hotmod_as
[] = {
1755 { "mem", IPMI_MEM_ADDR_SPACE
},
1756 { "i/o", IPMI_IO_ADDR_SPACE
},
1760 static int parse_str(const struct hotmod_vals
*v
, int *val
, char *name
,
1766 s
= strchr(*curr
, ',');
1768 pr_warn(PFX
"No hotmod %s given.\n", name
);
1773 for (i
= 0; v
[i
].name
; i
++) {
1774 if (strcmp(*curr
, v
[i
].name
) == 0) {
1781 pr_warn(PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1785 static int check_hotmod_int_op(const char *curr
, const char *option
,
1786 const char *name
, int *val
)
1790 if (strcmp(curr
, name
) == 0) {
1792 pr_warn(PFX
"No option given for '%s'\n", curr
);
1795 *val
= simple_strtoul(option
, &n
, 0);
1796 if ((*n
!= '\0') || (*option
== '\0')) {
1797 pr_warn(PFX
"Bad option given for '%s'\n", curr
);
1805 static struct smi_info
*smi_info_alloc(void)
1807 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1810 spin_lock_init(&info
->si_lock
);
1814 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1816 char *str
= kstrdup(val
, GFP_KERNEL
);
1818 char *next
, *curr
, *s
, *n
, *o
;
1820 enum si_type si_type
;
1830 struct smi_info
*info
;
1835 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1838 while ((ival
>= 0) && isspace(str
[ival
])) {
1843 for (curr
= str
; curr
; curr
= next
) {
1848 ipmb
= 0; /* Choose the default if not specified */
1850 next
= strchr(curr
, ':');
1856 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1861 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1866 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1870 s
= strchr(curr
, ',');
1875 addr
= simple_strtoul(curr
, &n
, 0);
1876 if ((*n
!= '\0') || (*curr
== '\0')) {
1877 pr_warn(PFX
"Invalid hotmod address '%s'\n", curr
);
1883 s
= strchr(curr
, ',');
1888 o
= strchr(curr
, '=');
1893 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1898 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1903 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1908 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1913 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1920 pr_warn(PFX
"Invalid hotmod option '%s'\n", curr
);
1925 info
= smi_info_alloc();
1931 info
->addr_source
= SI_HOTMOD
;
1932 info
->si_type
= si_type
;
1933 info
->io
.addr_data
= addr
;
1934 info
->io
.addr_type
= addr_space
;
1935 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1936 info
->io_setup
= mem_setup
;
1938 info
->io_setup
= port_setup
;
1940 info
->io
.addr
= NULL
;
1941 info
->io
.regspacing
= regspacing
;
1942 if (!info
->io
.regspacing
)
1943 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1944 info
->io
.regsize
= regsize
;
1945 if (!info
->io
.regsize
)
1946 info
->io
.regsize
= DEFAULT_REGSIZE
;
1947 info
->io
.regshift
= regshift
;
1950 info
->irq_setup
= std_irq_setup
;
1951 info
->slave_addr
= ipmb
;
1958 mutex_lock(&smi_infos_lock
);
1959 rv
= try_smi_init(info
);
1960 mutex_unlock(&smi_infos_lock
);
1962 cleanup_one_si(info
);
1967 struct smi_info
*e
, *tmp_e
;
1969 mutex_lock(&smi_infos_lock
);
1970 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1971 if (e
->io
.addr_type
!= addr_space
)
1973 if (e
->si_type
!= si_type
)
1975 if (e
->io
.addr_data
== addr
)
1978 mutex_unlock(&smi_infos_lock
);
1987 static int hardcode_find_bmc(void)
1991 struct smi_info
*info
;
1993 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1994 if (!ports
[i
] && !addrs
[i
])
1997 info
= smi_info_alloc();
2001 info
->addr_source
= SI_HARDCODED
;
2002 pr_info(PFX
"probing via hardcoded address\n");
2004 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
2005 info
->si_type
= SI_KCS
;
2006 } else if (strcmp(si_type
[i
], "smic") == 0) {
2007 info
->si_type
= SI_SMIC
;
2008 } else if (strcmp(si_type
[i
], "bt") == 0) {
2009 info
->si_type
= SI_BT
;
2011 pr_warn(PFX
"Interface type specified for interface %d, was invalid: %s\n",
2019 info
->io_setup
= port_setup
;
2020 info
->io
.addr_data
= ports
[i
];
2021 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2022 } else if (addrs
[i
]) {
2024 info
->io_setup
= mem_setup
;
2025 info
->io
.addr_data
= addrs
[i
];
2026 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2028 pr_warn(PFX
"Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2034 info
->io
.addr
= NULL
;
2035 info
->io
.regspacing
= regspacings
[i
];
2036 if (!info
->io
.regspacing
)
2037 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2038 info
->io
.regsize
= regsizes
[i
];
2039 if (!info
->io
.regsize
)
2040 info
->io
.regsize
= DEFAULT_REGSIZE
;
2041 info
->io
.regshift
= regshifts
[i
];
2042 info
->irq
= irqs
[i
];
2044 info
->irq_setup
= std_irq_setup
;
2045 info
->slave_addr
= slave_addrs
[i
];
2047 if (!add_smi(info
)) {
2048 mutex_lock(&smi_infos_lock
);
2049 if (try_smi_init(info
))
2050 cleanup_one_si(info
);
2051 mutex_unlock(&smi_infos_lock
);
2063 * Once we get an ACPI failure, we don't try any more, because we go
2064 * through the tables sequentially. Once we don't find a table, there
2067 static int acpi_failure
;
2069 /* For GPE-type interrupts. */
2070 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
2071 u32 gpe_number
, void *context
)
2073 struct smi_info
*smi_info
= context
;
2074 unsigned long flags
;
2076 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
2078 smi_inc_stat(smi_info
, interrupts
);
2080 debug_timestamp("ACPI_GPE");
2082 smi_event_handler(smi_info
, 0);
2083 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
2085 return ACPI_INTERRUPT_HANDLED
;
2088 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
2093 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
2096 static int acpi_gpe_irq_setup(struct smi_info
*info
)
2103 status
= acpi_install_gpe_handler(NULL
,
2105 ACPI_GPE_LEVEL_TRIGGERED
,
2108 if (status
!= AE_OK
) {
2109 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
2110 " running polled\n", DEVICE_NAME
, info
->irq
);
2114 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
2115 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2122 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2133 s8 CreatorRevision
[4];
2136 s16 SpecificationRevision
;
2139 * Bit 0 - SCI interrupt supported
2140 * Bit 1 - I/O APIC/SAPIC
2145 * If bit 0 of InterruptType is set, then this is the SCI
2146 * interrupt in the GPEx_STS register.
2153 * If bit 1 of InterruptType is set, then this is the I/O
2154 * APIC/SAPIC interrupt.
2156 u32 GlobalSystemInterrupt
;
2158 /* The actual register address. */
2159 struct acpi_generic_address addr
;
2163 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2166 static int try_init_spmi(struct SPMITable
*spmi
)
2168 struct smi_info
*info
;
2171 if (spmi
->IPMIlegacy
!= 1) {
2172 pr_info(PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2176 info
= smi_info_alloc();
2178 pr_err(PFX
"Could not allocate SI data (3)\n");
2182 info
->addr_source
= SI_SPMI
;
2183 pr_info(PFX
"probing via SPMI\n");
2185 /* Figure out the interface type. */
2186 switch (spmi
->InterfaceType
) {
2188 info
->si_type
= SI_KCS
;
2191 info
->si_type
= SI_SMIC
;
2194 info
->si_type
= SI_BT
;
2196 case 4: /* SSIF, just ignore */
2200 pr_info(PFX
"Unknown ACPI/SPMI SI type %d\n",
2201 spmi
->InterfaceType
);
2206 if (spmi
->InterruptType
& 1) {
2207 /* We've got a GPE interrupt. */
2208 info
->irq
= spmi
->GPE
;
2209 info
->irq_setup
= acpi_gpe_irq_setup
;
2210 } else if (spmi
->InterruptType
& 2) {
2211 /* We've got an APIC/SAPIC interrupt. */
2212 info
->irq
= spmi
->GlobalSystemInterrupt
;
2213 info
->irq_setup
= std_irq_setup
;
2215 /* Use the default interrupt setting. */
2217 info
->irq_setup
= NULL
;
2220 if (spmi
->addr
.bit_width
) {
2221 /* A (hopefully) properly formed register bit width. */
2222 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2224 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2226 info
->io
.regsize
= info
->io
.regspacing
;
2227 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2229 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2230 info
->io_setup
= mem_setup
;
2231 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2232 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2233 info
->io_setup
= port_setup
;
2234 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2237 pr_warn(PFX
"Unknown ACPI I/O Address type\n");
2240 info
->io
.addr_data
= spmi
->addr
.address
;
2242 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2244 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2254 static void spmi_find_bmc(void)
2257 struct SPMITable
*spmi
;
2266 for (i
= 0; ; i
++) {
2267 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2268 (struct acpi_table_header
**)&spmi
);
2269 if (status
!= AE_OK
)
2272 try_init_spmi(spmi
);
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource
*ipmi_get_info_from_resources(struct platform_device
*pdev
,
2279 struct smi_info
*info
)
2281 struct resource
*res
, *res_second
;
2283 res
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
2285 info
->io_setup
= port_setup
;
2286 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2288 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2290 info
->io_setup
= mem_setup
;
2291 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2295 dev_err(&pdev
->dev
, "no I/O or memory address\n");
2298 info
->io
.addr_data
= res
->start
;
2300 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2301 res_second
= platform_get_resource(pdev
,
2302 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2303 IORESOURCE_IO
: IORESOURCE_MEM
,
2306 if (res_second
->start
> info
->io
.addr_data
)
2307 info
->io
.regspacing
=
2308 res_second
->start
- info
->io
.addr_data
;
2310 info
->io
.regsize
= DEFAULT_REGSIZE
;
2311 info
->io
.regshift
= 0;
2319 static int dmi_ipmi_probe(struct platform_device
*pdev
)
2321 struct smi_info
*info
;
2322 u8 type
, slave_addr
;
2328 rv
= device_property_read_u8(&pdev
->dev
, "ipmi-type", &type
);
2332 info
= smi_info_alloc();
2334 pr_err(PFX
"Could not allocate SI data\n");
2338 info
->addr_source
= SI_SMBIOS
;
2339 pr_info(PFX
"probing via SMBIOS\n");
2342 case IPMI_DMI_TYPE_KCS
:
2343 info
->si_type
= SI_KCS
;
2345 case IPMI_DMI_TYPE_SMIC
:
2346 info
->si_type
= SI_SMIC
;
2348 case IPMI_DMI_TYPE_BT
:
2349 info
->si_type
= SI_BT
;
2356 if (!ipmi_get_info_from_resources(pdev
, info
)) {
2361 rv
= device_property_read_u8(&pdev
->dev
, "slave-addr", &slave_addr
);
2363 dev_warn(&pdev
->dev
, "device has no slave-addr property");
2364 info
->slave_addr
= 0x20;
2366 info
->slave_addr
= slave_addr
;
2369 info
->irq
= platform_get_irq(pdev
, 0);
2371 info
->irq_setup
= std_irq_setup
;
2375 info
->dev
= &pdev
->dev
;
2377 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2379 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2392 static int dmi_ipmi_probe(struct platform_device
*pdev
)
2396 #endif /* CONFIG_DMI */
2400 #define PCI_ERMC_CLASSCODE 0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2407 #define PCI_HP_VENDOR_ID 0x103C
2408 #define PCI_MMC_DEVICE_ID 0x121A
2409 #define PCI_MMC_ADDR_CW 0x10
2411 static void ipmi_pci_cleanup(struct smi_info
*info
)
2413 struct pci_dev
*pdev
= info
->addr_source_data
;
2415 pci_disable_device(pdev
);
2418 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2420 if (info
->si_type
== SI_KCS
) {
2421 unsigned char status
;
2424 info
->io
.regsize
= DEFAULT_REGSIZE
;
2425 info
->io
.regshift
= 0;
2427 info
->handlers
= &kcs_smi_handlers
;
2429 /* detect 1, 4, 16byte spacing */
2430 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2431 info
->io
.regspacing
= regspacing
;
2432 if (info
->io_setup(info
)) {
2434 "Could not setup I/O space\n");
2435 return DEFAULT_REGSPACING
;
2437 /* write invalid cmd */
2438 info
->io
.outputb(&info
->io
, 1, 0x10);
2439 /* read status back */
2440 status
= info
->io
.inputb(&info
->io
, 1);
2441 info
->io_cleanup(info
);
2447 return DEFAULT_REGSPACING
;
2450 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2451 const struct pci_device_id
*ent
)
2454 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2455 struct smi_info
*info
;
2457 info
= smi_info_alloc();
2461 info
->addr_source
= SI_PCI
;
2462 dev_info(&pdev
->dev
, "probing via PCI");
2464 switch (class_type
) {
2465 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2466 info
->si_type
= SI_SMIC
;
2469 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2470 info
->si_type
= SI_KCS
;
2473 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2474 info
->si_type
= SI_BT
;
2479 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2483 rv
= pci_enable_device(pdev
);
2485 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2490 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2491 info
->addr_source_data
= pdev
;
2493 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2494 info
->io_setup
= port_setup
;
2495 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2497 info
->io_setup
= mem_setup
;
2498 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2500 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2502 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2503 info
->io
.regsize
= DEFAULT_REGSIZE
;
2504 info
->io
.regshift
= 0;
2506 info
->irq
= pdev
->irq
;
2508 info
->irq_setup
= std_irq_setup
;
2510 info
->dev
= &pdev
->dev
;
2511 pci_set_drvdata(pdev
, info
);
2513 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2514 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2520 pci_disable_device(pdev
);
2526 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2528 struct smi_info
*info
= pci_get_drvdata(pdev
);
2529 cleanup_one_si(info
);
2532 static const struct pci_device_id ipmi_pci_devices
[] = {
2533 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2534 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2537 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2539 static struct pci_driver ipmi_pci_driver
= {
2540 .name
= DEVICE_NAME
,
2541 .id_table
= ipmi_pci_devices
,
2542 .probe
= ipmi_pci_probe
,
2543 .remove
= ipmi_pci_remove
,
2545 #endif /* CONFIG_PCI */
2548 static const struct of_device_id of_ipmi_match
[] = {
2549 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2550 .data
= (void *)(unsigned long) SI_KCS
},
2551 { .type
= "ipmi", .compatible
= "ipmi-smic",
2552 .data
= (void *)(unsigned long) SI_SMIC
},
2553 { .type
= "ipmi", .compatible
= "ipmi-bt",
2554 .data
= (void *)(unsigned long) SI_BT
},
2557 MODULE_DEVICE_TABLE(of
, of_ipmi_match
);
2559 static int of_ipmi_probe(struct platform_device
*dev
)
2561 const struct of_device_id
*match
;
2562 struct smi_info
*info
;
2563 struct resource resource
;
2564 const __be32
*regsize
, *regspacing
, *regshift
;
2565 struct device_node
*np
= dev
->dev
.of_node
;
2569 dev_info(&dev
->dev
, "probing via device tree\n");
2571 match
= of_match_device(of_ipmi_match
, &dev
->dev
);
2575 if (!of_device_is_available(np
))
2578 ret
= of_address_to_resource(np
, 0, &resource
);
2580 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2584 regsize
= of_get_property(np
, "reg-size", &proplen
);
2585 if (regsize
&& proplen
!= 4) {
2586 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2590 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2591 if (regspacing
&& proplen
!= 4) {
2592 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2596 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2597 if (regshift
&& proplen
!= 4) {
2598 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2602 info
= smi_info_alloc();
2606 "could not allocate memory for OF probe\n");
2610 info
->si_type
= (enum si_type
) match
->data
;
2611 info
->addr_source
= SI_DEVICETREE
;
2612 info
->irq_setup
= std_irq_setup
;
2614 if (resource
.flags
& IORESOURCE_IO
) {
2615 info
->io_setup
= port_setup
;
2616 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2618 info
->io_setup
= mem_setup
;
2619 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2622 info
->io
.addr_data
= resource
.start
;
2624 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2625 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2626 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2628 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2629 info
->dev
= &dev
->dev
;
2631 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2635 dev_set_drvdata(&dev
->dev
, info
);
2637 ret
= add_smi(info
);
2645 #define of_ipmi_match NULL
2646 static int of_ipmi_probe(struct platform_device
*dev
)
2653 static int find_slave_address(struct smi_info
*info
, int slave_addr
)
2655 #ifdef CONFIG_IPMI_DMI_DECODE
2658 u32 flags
= IORESOURCE_IO
;
2660 switch (info
->si_type
) {
2662 type
= IPMI_DMI_TYPE_KCS
;
2665 type
= IPMI_DMI_TYPE_BT
;
2668 type
= IPMI_DMI_TYPE_SMIC
;
2672 if (info
->io
.addr_type
== IPMI_MEM_ADDR_SPACE
)
2673 flags
= IORESOURCE_MEM
;
2675 slave_addr
= ipmi_dmi_get_slave_addr(type
, flags
,
2676 info
->io
.addr_data
);
2683 static int acpi_ipmi_probe(struct platform_device
*dev
)
2685 struct smi_info
*info
;
2688 unsigned long long tmp
;
2689 struct resource
*res
;
2695 handle
= ACPI_HANDLE(&dev
->dev
);
2699 info
= smi_info_alloc();
2703 info
->addr_source
= SI_ACPI
;
2704 dev_info(&dev
->dev
, PFX
"probing via ACPI\n");
2706 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2708 /* _IFT tells us the interface type: KCS, BT, etc */
2709 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2710 if (ACPI_FAILURE(status
)) {
2711 dev_err(&dev
->dev
, "Could not find ACPI IPMI interface type\n");
2717 info
->si_type
= SI_KCS
;
2720 info
->si_type
= SI_SMIC
;
2723 info
->si_type
= SI_BT
;
2725 case 4: /* SSIF, just ignore */
2729 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2733 res
= ipmi_get_info_from_resources(dev
, info
);
2739 /* If _GPE exists, use it; otherwise use standard interrupts */
2740 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2741 if (ACPI_SUCCESS(status
)) {
2743 info
->irq_setup
= acpi_gpe_irq_setup
;
2745 int irq
= platform_get_irq(dev
, 0);
2749 info
->irq_setup
= std_irq_setup
;
2753 info
->slave_addr
= find_slave_address(info
, info
->slave_addr
);
2755 info
->dev
= &dev
->dev
;
2756 platform_set_drvdata(dev
, info
);
2758 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2759 res
, info
->io
.regsize
, info
->io
.regspacing
,
2773 static const struct acpi_device_id acpi_ipmi_match
[] = {
2777 MODULE_DEVICE_TABLE(acpi
, acpi_ipmi_match
);
2779 static int acpi_ipmi_probe(struct platform_device
*dev
)
2785 static int ipmi_probe(struct platform_device
*dev
)
2787 if (of_ipmi_probe(dev
) == 0)
2790 if (acpi_ipmi_probe(dev
) == 0)
2793 return dmi_ipmi_probe(dev
);
2796 static int ipmi_remove(struct platform_device
*dev
)
2798 struct smi_info
*info
= dev_get_drvdata(&dev
->dev
);
2800 cleanup_one_si(info
);
2804 static struct platform_driver ipmi_driver
= {
2806 .name
= DEVICE_NAME
,
2807 .of_match_table
= of_ipmi_match
,
2808 .acpi_match_table
= ACPI_PTR(acpi_ipmi_match
),
2810 .probe
= ipmi_probe
,
2811 .remove
= ipmi_remove
,
2814 #ifdef CONFIG_PARISC
2815 static int __init
ipmi_parisc_probe(struct parisc_device
*dev
)
2817 struct smi_info
*info
;
2820 info
= smi_info_alloc();
2824 "could not allocate memory for PARISC probe\n");
2828 info
->si_type
= SI_KCS
;
2829 info
->addr_source
= SI_DEVICETREE
;
2830 info
->io_setup
= mem_setup
;
2831 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2832 info
->io
.addr_data
= dev
->hpa
.start
;
2833 info
->io
.regsize
= 1;
2834 info
->io
.regspacing
= 1;
2835 info
->io
.regshift
= 0;
2836 info
->irq
= 0; /* no interrupt */
2837 info
->irq_setup
= NULL
;
2838 info
->dev
= &dev
->dev
;
2840 dev_dbg(&dev
->dev
, "addr 0x%lx\n", info
->io
.addr_data
);
2842 dev_set_drvdata(&dev
->dev
, info
);
2853 static int __exit
ipmi_parisc_remove(struct parisc_device
*dev
)
2855 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2859 static const struct parisc_device_id ipmi_parisc_tbl
[] __initconst
= {
2860 { HPHW_MC
, HVERSION_REV_ANY_ID
, 0x004, 0xC0 },
2864 MODULE_DEVICE_TABLE(parisc
, ipmi_parisc_tbl
);
2866 static struct parisc_driver ipmi_parisc_driver __refdata
= {
2868 .id_table
= ipmi_parisc_tbl
,
2869 .probe
= ipmi_parisc_probe
,
2870 .remove
= __exit_p(ipmi_parisc_remove
),
2872 #endif /* CONFIG_PARISC */
2874 static int wait_for_msg_done(struct smi_info
*smi_info
)
2876 enum si_sm_result smi_result
;
2878 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2880 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2881 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2882 schedule_timeout_uninterruptible(1);
2883 smi_result
= smi_info
->handlers
->event(
2884 smi_info
->si_sm
, jiffies_to_usecs(1));
2885 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2886 smi_result
= smi_info
->handlers
->event(
2887 smi_info
->si_sm
, 0);
2891 if (smi_result
== SI_SM_HOSED
)
2893 * We couldn't get the state machine to run, so whatever's at
2894 * the port is probably not an IPMI SMI interface.
2901 static int try_get_dev_id(struct smi_info
*smi_info
)
2903 unsigned char msg
[2];
2904 unsigned char *resp
;
2905 unsigned long resp_len
;
2908 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2913 * Do a Get Device ID command, since it comes back with some
2916 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2917 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2918 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2920 rv
= wait_for_msg_done(smi_info
);
2924 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2925 resp
, IPMI_MAX_MSG_LENGTH
);
2927 /* Check and record info from the get device id, in case we need it. */
2928 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2935 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
2937 unsigned char msg
[3];
2938 unsigned char *resp
;
2939 unsigned long resp_len
;
2942 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2946 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2947 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2948 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2950 rv
= wait_for_msg_done(smi_info
);
2952 dev_warn(smi_info
->dev
,
2953 "Error getting response from get global enables command: %d\n",
2958 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2959 resp
, IPMI_MAX_MSG_LENGTH
);
2962 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2963 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2965 dev_warn(smi_info
->dev
,
2966 "Invalid return from get global enables command: %ld %x %x %x\n",
2967 resp_len
, resp
[0], resp
[1], resp
[2]);
2980 * Returns 1 if it gets an error from the command.
2982 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
2984 unsigned char msg
[3];
2985 unsigned char *resp
;
2986 unsigned long resp_len
;
2989 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2993 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2994 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2996 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2998 rv
= wait_for_msg_done(smi_info
);
3000 dev_warn(smi_info
->dev
,
3001 "Error getting response from set global enables command: %d\n",
3006 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3007 resp
, IPMI_MAX_MSG_LENGTH
);
3010 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3011 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3012 dev_warn(smi_info
->dev
,
3013 "Invalid return from set global enables command: %ld %x %x\n",
3014 resp_len
, resp
[0], resp
[1]);
3028 * Some BMCs do not support clearing the receive irq bit in the global
3029 * enables (even if they don't support interrupts on the BMC). Check
3030 * for this and handle it properly.
3032 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
3037 rv
= get_global_enables(smi_info
, &enables
);
3039 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
3040 /* Already clear, should work ok. */
3043 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
3044 rv
= set_global_enables(smi_info
, enables
);
3048 dev_err(smi_info
->dev
,
3049 "Cannot check clearing the rcv irq: %d\n", rv
);
3055 * An error when setting the event buffer bit means
3056 * clearing the bit is not supported.
3058 dev_warn(smi_info
->dev
,
3059 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3060 smi_info
->cannot_disable_irq
= true;
3065 * Some BMCs do not support setting the interrupt bits in the global
3066 * enables even if they support interrupts. Clearly bad, but we can
3069 static void check_set_rcv_irq(struct smi_info
*smi_info
)
3077 rv
= get_global_enables(smi_info
, &enables
);
3079 enables
|= IPMI_BMC_RCV_MSG_INTR
;
3080 rv
= set_global_enables(smi_info
, enables
);
3084 dev_err(smi_info
->dev
,
3085 "Cannot check setting the rcv irq: %d\n", rv
);
3091 * An error when setting the event buffer bit means
3092 * setting the bit is not supported.
3094 dev_warn(smi_info
->dev
,
3095 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3096 smi_info
->cannot_disable_irq
= true;
3097 smi_info
->irq_enable_broken
= true;
3101 static int try_enable_event_buffer(struct smi_info
*smi_info
)
3103 unsigned char msg
[3];
3104 unsigned char *resp
;
3105 unsigned long resp_len
;
3108 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3112 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3113 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
3114 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
3116 rv
= wait_for_msg_done(smi_info
);
3118 pr_warn(PFX
"Error getting response from get global enables command, the event buffer is not enabled.\n");
3122 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3123 resp
, IPMI_MAX_MSG_LENGTH
);
3126 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3127 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
3129 pr_warn(PFX
"Invalid return from get global enables command, cannot enable the event buffer.\n");
3134 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
3135 /* buffer is already enabled, nothing to do. */
3136 smi_info
->supports_event_msg_buff
= true;
3140 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3141 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3142 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
3143 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3145 rv
= wait_for_msg_done(smi_info
);
3147 pr_warn(PFX
"Error getting response from set global, enables command, the event buffer is not enabled.\n");
3151 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3152 resp
, IPMI_MAX_MSG_LENGTH
);
3155 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3156 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3157 pr_warn(PFX
"Invalid return from get global, enables command, not enable the event buffer.\n");
3164 * An error when setting the event buffer bit means
3165 * that the event buffer is not supported.
3169 smi_info
->supports_event_msg_buff
= true;
3176 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
3178 struct smi_info
*smi
= m
->private;
3180 seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
3185 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
3187 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
3190 static const struct file_operations smi_type_proc_ops
= {
3191 .open
= smi_type_proc_open
,
3193 .llseek
= seq_lseek
,
3194 .release
= single_release
,
3197 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
3199 struct smi_info
*smi
= m
->private;
3201 seq_printf(m
, "interrupts_enabled: %d\n",
3202 smi
->irq
&& !smi
->interrupt_disabled
);
3203 seq_printf(m
, "short_timeouts: %u\n",
3204 smi_get_stat(smi
, short_timeouts
));
3205 seq_printf(m
, "long_timeouts: %u\n",
3206 smi_get_stat(smi
, long_timeouts
));
3207 seq_printf(m
, "idles: %u\n",
3208 smi_get_stat(smi
, idles
));
3209 seq_printf(m
, "interrupts: %u\n",
3210 smi_get_stat(smi
, interrupts
));
3211 seq_printf(m
, "attentions: %u\n",
3212 smi_get_stat(smi
, attentions
));
3213 seq_printf(m
, "flag_fetches: %u\n",
3214 smi_get_stat(smi
, flag_fetches
));
3215 seq_printf(m
, "hosed_count: %u\n",
3216 smi_get_stat(smi
, hosed_count
));
3217 seq_printf(m
, "complete_transactions: %u\n",
3218 smi_get_stat(smi
, complete_transactions
));
3219 seq_printf(m
, "events: %u\n",
3220 smi_get_stat(smi
, events
));
3221 seq_printf(m
, "watchdog_pretimeouts: %u\n",
3222 smi_get_stat(smi
, watchdog_pretimeouts
));
3223 seq_printf(m
, "incoming_messages: %u\n",
3224 smi_get_stat(smi
, incoming_messages
));
3228 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
3230 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
3233 static const struct file_operations smi_si_stats_proc_ops
= {
3234 .open
= smi_si_stats_proc_open
,
3236 .llseek
= seq_lseek
,
3237 .release
= single_release
,
3240 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
3242 struct smi_info
*smi
= m
->private;
3245 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3246 si_to_str
[smi
->si_type
],
3247 addr_space_to_str
[smi
->io
.addr_type
],
3258 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
3260 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
3263 static const struct file_operations smi_params_proc_ops
= {
3264 .open
= smi_params_proc_open
,
3266 .llseek
= seq_lseek
,
3267 .release
= single_release
,
3271 * oem_data_avail_to_receive_msg_avail
3272 * @info - smi_info structure with msg_flags set
3274 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3275 * Returns 1 indicating need to re-run handle_flags().
3277 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
3279 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
3285 * setup_dell_poweredge_oem_data_handler
3286 * @info - smi_info.device_id must be populated
3288 * Systems that match, but have firmware version < 1.40 may assert
3289 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3290 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3291 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3292 * as RECEIVE_MSG_AVAIL instead.
3294 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3295 * assert the OEM[012] bits, and if it did, the driver would have to
3296 * change to handle that properly, we don't actually check for the
3298 * Device ID = 0x20 BMC on PowerEdge 8G servers
3299 * Device Revision = 0x80
3300 * Firmware Revision1 = 0x01 BMC version 1.40
3301 * Firmware Revision2 = 0x40 BCD encoded
3302 * IPMI Version = 0x51 IPMI 1.5
3303 * Manufacturer ID = A2 02 00 Dell IANA
3305 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3306 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3309 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3310 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3311 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3312 #define DELL_IANA_MFR_ID 0x0002a2
3313 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
3315 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3316 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
3317 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
3318 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
3319 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
3320 smi_info
->oem_data_avail_handler
=
3321 oem_data_avail_to_receive_msg_avail
;
3322 } else if (ipmi_version_major(id
) < 1 ||
3323 (ipmi_version_major(id
) == 1 &&
3324 ipmi_version_minor(id
) < 5)) {
3325 smi_info
->oem_data_avail_handler
=
3326 oem_data_avail_to_receive_msg_avail
;
3331 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3332 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
3334 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
3336 /* Make it a response */
3337 msg
->rsp
[0] = msg
->data
[0] | 4;
3338 msg
->rsp
[1] = msg
->data
[1];
3339 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
3341 smi_info
->curr_msg
= NULL
;
3342 deliver_recv_msg(smi_info
, msg
);
3346 * dell_poweredge_bt_xaction_handler
3347 * @info - smi_info.device_id must be populated
3349 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3350 * not respond to a Get SDR command if the length of the data
3351 * requested is exactly 0x3A, which leads to command timeouts and no
3352 * data returned. This intercepts such commands, and causes userspace
3353 * callers to try again with a different-sized buffer, which succeeds.
3356 #define STORAGE_NETFN 0x0A
3357 #define STORAGE_CMD_GET_SDR 0x23
3358 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
3359 unsigned long unused
,
3362 struct smi_info
*smi_info
= in
;
3363 unsigned char *data
= smi_info
->curr_msg
->data
;
3364 unsigned int size
= smi_info
->curr_msg
->data_size
;
3366 (data
[0]>>2) == STORAGE_NETFN
&&
3367 data
[1] == STORAGE_CMD_GET_SDR
&&
3369 return_hosed_msg_badsize(smi_info
);
3375 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3376 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3380 * setup_dell_poweredge_bt_xaction_handler
3381 * @info - smi_info.device_id must be filled in already
3383 * Fills in smi_info.device_id.start_transaction_pre_hook
3384 * when we know what function to use there.
3387 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3389 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3390 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3391 smi_info
->si_type
== SI_BT
)
3392 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3396 * setup_oem_data_handler
3397 * @info - smi_info.device_id must be filled in already
3399 * Fills in smi_info.device_id.oem_data_available_handler
3400 * when we know what function to use there.
3403 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3405 setup_dell_poweredge_oem_data_handler(smi_info
);
3408 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3410 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3413 static void check_for_broken_irqs(struct smi_info
*smi_info
)
3415 check_clr_rcv_irq(smi_info
);
3416 check_set_rcv_irq(smi_info
);
3419 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
3421 if (smi_info
->thread
!= NULL
)
3422 kthread_stop(smi_info
->thread
);
3423 if (smi_info
->timer_running
)
3424 del_timer_sync(&smi_info
->si_timer
);
3427 static int is_new_interface(struct smi_info
*info
)
3431 list_for_each_entry(e
, &smi_infos
, link
) {
3432 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3434 if (e
->io
.addr_data
== info
->io
.addr_data
) {
3436 * This is a cheap hack, ACPI doesn't have a defined
3437 * slave address but SMBIOS does. Pick it up from
3438 * any source that has it available.
3440 if (info
->slave_addr
&& !e
->slave_addr
)
3441 e
->slave_addr
= info
->slave_addr
;
3449 static int add_smi(struct smi_info
*new_smi
)
3453 mutex_lock(&smi_infos_lock
);
3454 if (!is_new_interface(new_smi
)) {
3455 pr_info(PFX
"%s-specified %s state machine: duplicate\n",
3456 ipmi_addr_src_to_str(new_smi
->addr_source
),
3457 si_to_str
[new_smi
->si_type
]);
3462 pr_info(PFX
"Adding %s-specified %s state machine\n",
3463 ipmi_addr_src_to_str(new_smi
->addr_source
),
3464 si_to_str
[new_smi
->si_type
]);
3466 /* So we know not to free it unless we have allocated one. */
3467 new_smi
->intf
= NULL
;
3468 new_smi
->si_sm
= NULL
;
3469 new_smi
->handlers
= NULL
;
3471 list_add_tail(&new_smi
->link
, &smi_infos
);
3474 mutex_unlock(&smi_infos_lock
);
3479 * Try to start up an interface. Must be called with smi_infos_lock
3480 * held, primarily to keep smi_num consistent, we only one to do these
3483 static int try_smi_init(struct smi_info
*new_smi
)
3487 char *init_name
= NULL
;
3489 pr_info(PFX
"Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3490 ipmi_addr_src_to_str(new_smi
->addr_source
),
3491 si_to_str
[new_smi
->si_type
],
3492 addr_space_to_str
[new_smi
->io
.addr_type
],
3493 new_smi
->io
.addr_data
,
3494 new_smi
->slave_addr
, new_smi
->irq
);
3496 switch (new_smi
->si_type
) {
3498 new_smi
->handlers
= &kcs_smi_handlers
;
3502 new_smi
->handlers
= &smic_smi_handlers
;
3506 new_smi
->handlers
= &bt_smi_handlers
;
3510 /* No support for anything else yet. */
3515 new_smi
->intf_num
= smi_num
;
3517 /* Do this early so it's available for logs. */
3518 if (!new_smi
->dev
) {
3519 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d",
3523 * If we don't already have a device from something
3524 * else (like PCI), then register a new one.
3526 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3528 if (!new_smi
->pdev
) {
3529 pr_err(PFX
"Unable to allocate platform device\n");
3532 new_smi
->dev
= &new_smi
->pdev
->dev
;
3533 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3534 /* Nulled by device_add() */
3535 new_smi
->dev
->init_name
= init_name
;
3538 /* Allocate the state machine's data and initialize it. */
3539 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3540 if (!new_smi
->si_sm
) {
3541 pr_err(PFX
"Could not allocate state machine memory\n");
3545 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3548 /* Now that we know the I/O size, we can set up the I/O. */
3549 rv
= new_smi
->io_setup(new_smi
);
3551 dev_err(new_smi
->dev
, "Could not set up I/O space\n");
3555 /* Do low-level detection first. */
3556 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3557 if (new_smi
->addr_source
)
3558 dev_err(new_smi
->dev
, "Interface detection failed\n");
3564 * Attempt a get device id command. If it fails, we probably
3565 * don't have a BMC here.
3567 rv
= try_get_dev_id(new_smi
);
3569 if (new_smi
->addr_source
)
3570 dev_err(new_smi
->dev
, "There appears to be no BMC at this location\n");
3574 setup_oem_data_handler(new_smi
);
3575 setup_xaction_handlers(new_smi
);
3576 check_for_broken_irqs(new_smi
);
3578 new_smi
->waiting_msg
= NULL
;
3579 new_smi
->curr_msg
= NULL
;
3580 atomic_set(&new_smi
->req_events
, 0);
3581 new_smi
->run_to_completion
= false;
3582 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3583 atomic_set(&new_smi
->stats
[i
], 0);
3585 new_smi
->interrupt_disabled
= true;
3586 atomic_set(&new_smi
->need_watch
, 0);
3588 rv
= try_enable_event_buffer(new_smi
);
3590 new_smi
->has_event_buffer
= true;
3593 * Start clearing the flags before we enable interrupts or the
3594 * timer to avoid racing with the timer.
3596 start_clear_flags(new_smi
, false);
3599 * IRQ is defined to be set when non-zero. req_events will
3600 * cause a global flags check that will enable interrupts.
3603 new_smi
->interrupt_disabled
= false;
3604 atomic_set(&new_smi
->req_events
, 1);
3607 if (new_smi
->pdev
) {
3608 rv
= platform_device_add(new_smi
->pdev
);
3610 dev_err(new_smi
->dev
,
3611 "Unable to register system interface device: %d\n",
3615 new_smi
->dev_registered
= true;
3618 rv
= ipmi_register_smi(&handlers
,
3620 &new_smi
->device_id
,
3622 new_smi
->slave_addr
);
3624 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3626 goto out_err_stop_timer
;
3629 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3633 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3634 goto out_err_stop_timer
;
3637 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3638 &smi_si_stats_proc_ops
,
3641 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3642 goto out_err_stop_timer
;
3645 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3646 &smi_params_proc_ops
,
3649 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3650 goto out_err_stop_timer
;
3653 /* Don't increment till we know we have succeeded. */
3656 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3657 si_to_str
[new_smi
->si_type
]);
3659 WARN_ON(new_smi
->dev
->init_name
!= NULL
);
3665 wait_for_timer_and_thread(new_smi
);
3668 new_smi
->interrupt_disabled
= true;
3670 if (new_smi
->intf
) {
3671 ipmi_smi_t intf
= new_smi
->intf
;
3672 new_smi
->intf
= NULL
;
3673 ipmi_unregister_smi(intf
);
3676 if (new_smi
->irq_cleanup
) {
3677 new_smi
->irq_cleanup(new_smi
);
3678 new_smi
->irq_cleanup
= NULL
;
3682 * Wait until we know that we are out of any interrupt
3683 * handlers might have been running before we freed the
3686 synchronize_sched();
3688 if (new_smi
->si_sm
) {
3689 if (new_smi
->handlers
)
3690 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3691 kfree(new_smi
->si_sm
);
3692 new_smi
->si_sm
= NULL
;
3694 if (new_smi
->addr_source_cleanup
) {
3695 new_smi
->addr_source_cleanup(new_smi
);
3696 new_smi
->addr_source_cleanup
= NULL
;
3698 if (new_smi
->io_cleanup
) {
3699 new_smi
->io_cleanup(new_smi
);
3700 new_smi
->io_cleanup
= NULL
;
3703 if (new_smi
->dev_registered
) {
3704 platform_device_unregister(new_smi
->pdev
);
3705 new_smi
->dev_registered
= false;
3706 new_smi
->pdev
= NULL
;
3707 } else if (new_smi
->pdev
) {
3708 platform_device_put(new_smi
->pdev
);
3709 new_smi
->pdev
= NULL
;
3717 static int init_ipmi_si(void)
3723 enum ipmi_addr_src type
= SI_INVALID
;
3729 if (si_tryplatform
) {
3730 rv
= platform_driver_register(&ipmi_driver
);
3732 pr_err(PFX
"Unable to register driver: %d\n", rv
);
3737 /* Parse out the si_type string into its components. */
3740 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3742 str
= strchr(str
, ',');
3752 pr_info("IPMI System Interface driver.\n");
3754 /* If the user gave us a device, they presumably want us to use it */
3755 if (!hardcode_find_bmc())
3760 rv
= pci_register_driver(&ipmi_pci_driver
);
3762 pr_err(PFX
"Unable to register PCI driver: %d\n", rv
);
3764 pci_registered
= true;
3773 #ifdef CONFIG_PARISC
3774 register_parisc_driver(&ipmi_parisc_driver
);
3775 parisc_registered
= true;
3778 /* We prefer devices with interrupts, but in the case of a machine
3779 with multiple BMCs we assume that there will be several instances
3780 of a given type so if we succeed in registering a type then also
3781 try to register everything else of the same type */
3783 mutex_lock(&smi_infos_lock
);
3784 list_for_each_entry(e
, &smi_infos
, link
) {
3785 /* Try to register a device if it has an IRQ and we either
3786 haven't successfully registered a device yet or this
3787 device has the same type as one we successfully registered */
3788 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3789 if (!try_smi_init(e
)) {
3790 type
= e
->addr_source
;
3795 /* type will only have been set if we successfully registered an si */
3797 mutex_unlock(&smi_infos_lock
);
3801 /* Fall back to the preferred device */
3803 list_for_each_entry(e
, &smi_infos
, link
) {
3804 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3805 if (!try_smi_init(e
)) {
3806 type
= e
->addr_source
;
3810 mutex_unlock(&smi_infos_lock
);
3815 mutex_lock(&smi_infos_lock
);
3816 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3817 mutex_unlock(&smi_infos_lock
);
3819 pr_warn(PFX
"Unable to find any System Interface(s)\n");
3822 mutex_unlock(&smi_infos_lock
);
3826 module_init(init_ipmi_si
);
3828 static void cleanup_one_si(struct smi_info
*to_clean
)
3835 if (to_clean
->intf
) {
3836 ipmi_smi_t intf
= to_clean
->intf
;
3838 to_clean
->intf
= NULL
;
3839 rv
= ipmi_unregister_smi(intf
);
3841 pr_err(PFX
"Unable to unregister device: errno=%d\n",
3847 dev_set_drvdata(to_clean
->dev
, NULL
);
3849 list_del(&to_clean
->link
);
3852 * Make sure that interrupts, the timer and the thread are
3853 * stopped and will not run again.
3855 if (to_clean
->irq_cleanup
)
3856 to_clean
->irq_cleanup(to_clean
);
3857 wait_for_timer_and_thread(to_clean
);
3860 * Timeouts are stopped, now make sure the interrupts are off
3861 * in the BMC. Note that timers and CPU interrupts are off,
3862 * so no need for locks.
3864 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3866 schedule_timeout_uninterruptible(1);
3868 disable_si_irq(to_clean
, false);
3869 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3871 schedule_timeout_uninterruptible(1);
3874 if (to_clean
->handlers
)
3875 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3877 kfree(to_clean
->si_sm
);
3879 if (to_clean
->addr_source_cleanup
)
3880 to_clean
->addr_source_cleanup(to_clean
);
3881 if (to_clean
->io_cleanup
)
3882 to_clean
->io_cleanup(to_clean
);
3884 if (to_clean
->dev_registered
)
3885 platform_device_unregister(to_clean
->pdev
);
3890 static void cleanup_ipmi_si(void)
3892 struct smi_info
*e
, *tmp_e
;
3899 pci_unregister_driver(&ipmi_pci_driver
);
3901 #ifdef CONFIG_PARISC
3902 if (parisc_registered
)
3903 unregister_parisc_driver(&ipmi_parisc_driver
);
3906 platform_driver_unregister(&ipmi_driver
);
3908 mutex_lock(&smi_infos_lock
);
3909 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3911 mutex_unlock(&smi_infos_lock
);
3913 module_exit(cleanup_ipmi_si
);
3915 MODULE_ALIAS("platform:dmi-ipmi-si");
3916 MODULE_LICENSE("GPL");
3917 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3918 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3919 " system interfaces.");