3 * Copyright 1995 (C) David S. Miller (davem@davemloft.net)
6 #ifndef _ASM_SPARC_DMA_H
7 #define _ASM_SPARC_DMA_H
9 #include <linux/kernel.h>
10 #include <linux/types.h>
12 #include <asm/vac-ops.h> /* for invalidate's, etc. */
14 #include <asm/delay.h>
15 #include <asm/oplib.h>
16 #include <asm/system.h>
18 #include <linux/spinlock.h>
21 extern spinlock_t dma_spin_lock
;
23 static inline unsigned long claim_dma_lock(void)
26 spin_lock_irqsave(&dma_spin_lock
, flags
);
30 static inline void release_dma_lock(unsigned long flags
)
32 spin_unlock_irqrestore(&dma_spin_lock
, flags
);
35 /* These are irrelevant for Sparc DMA, but we leave it in so that
38 #define MAX_DMA_CHANNELS 8
39 #define MAX_DMA_ADDRESS (~0UL)
40 #define DMA_MODE_READ 1
41 #define DMA_MODE_WRITE 2
43 /* Useful constants */
44 #define SIZE_16MB (16*1024*1024)
45 #define SIZE_64K (64*1024)
47 /* SBUS DMA controller reg offsets */
48 #define DMA_CSR 0x00UL /* rw DMA control/status register 0x00 */
49 #define DMA_ADDR 0x04UL /* rw DMA transfer address register 0x04 */
50 #define DMA_COUNT 0x08UL /* rw DMA transfer count register 0x08 */
51 #define DMA_TEST 0x0cUL /* rw DMA test/debug register 0x0c */
53 /* DVMA chip revisions */
64 #define DMA_HASCOUNT(rev) ((rev)==dvmaesc1)
66 /* Linux DMA information structure, filled during probe. */
68 struct sbus_dma
*next
;
69 struct sbus_dev
*sdev
;
72 /* Status, misc info */
73 int node
; /* Prom node for this DMA device */
74 int running
; /* Are we doing DMA now? */
75 int allocated
; /* Are we "owned" by anyone yet? */
77 /* Transfer information. */
78 unsigned long addr
; /* Start address of current transfer */
79 int nbytes
; /* Size of current transfer */
80 int realbytes
; /* For splitting up large transfers, etc. */
83 enum dvma_rev revision
;
86 extern struct sbus_dma
*dma_chain
;
88 /* Broken hardware... */
90 /* Have to sort this out. Does rev0 work fine on sun4[cmd] without isbroken?
91 * Or is rev0 present only on sun4 boxes? -jj */
92 #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev0 || (dma)->revision == dvmarev1)
94 #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1)
96 #define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1)
98 /* Main routines in dma.c */
99 extern void dvma_init(struct sbus_bus
*);
101 /* Fields in the cond_reg register */
102 /* First, the version identification bits */
103 #define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */
104 #define DMA_VERS0 0x00000000 /* Sunray DMA version */
105 #define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */
106 #define DMA_VERS1 0x80000000 /* DMA rev 1 */
107 #define DMA_VERS2 0xa0000000 /* DMA rev 2 */
108 #define DMA_VERHME 0xb0000000 /* DMA hme gate array */
109 #define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */
111 #define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */
112 #define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */
113 #define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */
114 #define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */
115 #define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */
116 #define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */
117 #define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */
118 #define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */
119 #define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */
120 #define DMA_RST_BPP DMA_RST_SCSI /* Reset the BPP controller */
121 #define DMA_ST_WRITE 0x00000100 /* write from device to memory */
122 #define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */
123 #define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */
124 #define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */
125 #define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */
126 #define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */
127 #define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */
128 #define DMA_TERM_CNTR 0x00004000 /* Terminal counter */
129 #define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */
130 #define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */
131 #define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */
132 #define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */
133 #define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */
134 #define DMA_E_BURSTS 0x000c0000 /* ENET: SBUS r/w burst mask */
135 #define DMA_E_BURST32 0x00040000 /* ENET: SBUS 32 byte r/w burst */
136 #define DMA_E_BURST16 0x00000000 /* ENET: SBUS 16 byte r/w burst */
137 #define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */
138 #define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */
139 #define DMA_BRST32 0x00040000 /* SCSI/BPP: 32byte bursts */
140 #define DMA_BRST16 0x00000000 /* SCSI/BPP: 16byte bursts */
141 #define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */
142 #define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */
143 #define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */
144 #define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */
145 #define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */
146 #define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */
147 #define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */
148 #define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */
149 #define DMA_BPP_ON DMA_SCSI_ON /* Enable BPP dma */
150 #define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */
151 #define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */
152 #define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */
153 #define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */
155 /* Values describing the burst-size property from the PROM */
156 #define DMA_BURST1 0x01
157 #define DMA_BURST2 0x02
158 #define DMA_BURST4 0x04
159 #define DMA_BURST8 0x08
160 #define DMA_BURST16 0x10
161 #define DMA_BURST32 0x20
162 #define DMA_BURST64 0x40
163 #define DMA_BURSTBITS 0x7f
165 /* Determine highest possible final transfer address given a base */
166 #define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL))
168 /* Yes, I hack a lot of elisp in my spare time... */
169 #define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR))
170 #define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)))
171 #define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE))
172 #define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE)))
173 #define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB)))
174 #define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB)))
175 #define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV))
176 #define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr))
177 #define DMA_BEGINDMA_W(regs) \
178 ((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB))))
179 #define DMA_BEGINDMA_R(regs) \
180 ((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE)))))
182 /* For certain DMA chips, we need to disable ints upon irq entry
183 * and turn them back on when we are done. So in any ESP interrupt
184 * handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT
185 * when leaving the handler. You have been warned...
187 #define DMA_IRQ_ENTRY(dma, dregs) do { \
188 if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \
191 #define DMA_IRQ_EXIT(dma, dregs) do { \
192 if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \
195 #if 0 /* P3 this stuff is inline in ledma.c:init_restart_ledma() */
196 /* Pause until counter runs out or BIT isn't set in the DMA condition
199 static inline void sparc_dma_pause(struct sparc_dma_registers
*regs
,
202 int ctr
= 50000; /* Let's find some bugs ;) */
204 /* Busy wait until the bit is not set any more */
205 while((regs
->cond_reg
&bit
) && (ctr
>0)) {
210 /* Check for bogus outcome. */
212 panic("DMA timeout");
215 /* Reset the friggin' thing... */
216 #define DMA_RESET(dma) do { \
217 struct sparc_dma_registers *regs = dma->regs; \
218 /* Let the current FIFO drain itself */ \
219 sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \
220 /* Reset the logic */ \
221 regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \
222 __delay(400); /* let the bits set ;) */ \
223 regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \
224 sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \
225 /* Enable FAST transfers if available */ \
226 if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \
231 #define for_each_dvma(dma) \
232 for((dma) = dma_chain; (dma); (dma) = (dma)->next)
234 extern int get_dma_list(char *);
235 extern int request_dma(unsigned int, __const__
char *);
236 extern void free_dma(unsigned int);
241 extern int isa_dma_bridge_buggy
;
243 #define isa_dma_bridge_buggy (0)
246 /* Routines for data transfer buffers. */
247 BTFIXUPDEF_CALL(char *, mmu_lockarea
, char *, unsigned long)
248 BTFIXUPDEF_CALL(void, mmu_unlockarea
, char *, unsigned long)
250 #define mmu_lockarea(vaddr,len) BTFIXUP_CALL(mmu_lockarea)(vaddr,len)
251 #define mmu_unlockarea(vaddr,len) BTFIXUP_CALL(mmu_unlockarea)(vaddr,len)
253 /* These are implementations for sbus_map_sg/sbus_unmap_sg... collapse later */
254 BTFIXUPDEF_CALL(__u32
, mmu_get_scsi_one
, char *, unsigned long, struct sbus_bus
*sbus
)
255 BTFIXUPDEF_CALL(void, mmu_get_scsi_sgl
, struct scatterlist
*, int, struct sbus_bus
*sbus
)
256 BTFIXUPDEF_CALL(void, mmu_release_scsi_one
, __u32
, unsigned long, struct sbus_bus
*sbus
)
257 BTFIXUPDEF_CALL(void, mmu_release_scsi_sgl
, struct scatterlist
*, int, struct sbus_bus
*sbus
)
259 #define mmu_get_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_get_scsi_one)(vaddr,len,sbus)
260 #define mmu_get_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_get_scsi_sgl)(sg,sz,sbus)
261 #define mmu_release_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_release_scsi_one)(vaddr,len,sbus)
262 #define mmu_release_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_release_scsi_sgl)(sg,sz,sbus)
265 * mmu_map/unmap are provided by iommu/iounit; Invalid to call on IIep.
267 * The mmu_map_dma_area establishes two mappings in one go.
268 * These mappings point to pages normally mapped at 'va' (linear address).
269 * First mapping is for CPU visible address at 'a', uncached.
270 * This is an alias, but it works because it is an uncached mapping.
271 * Second mapping is for device visible address, or "bus" address.
272 * The bus address is returned at '*pba'.
274 * These functions seem distinct, but are hard to split. On sun4c,
275 * at least for now, 'a' is equal to bus address, and retured in *pba.
276 * On sun4m, page attributes depend on the CPU type, so we have to
277 * know if we are mapping RAM or I/O, so it has to be an additional argument
278 * to a separate mapping function for CPU visible mappings.
280 BTFIXUPDEF_CALL(int, mmu_map_dma_area
, dma_addr_t
*, unsigned long, unsigned long, int len
)
281 BTFIXUPDEF_CALL(struct page
*, mmu_translate_dvma
, unsigned long busa
)
282 BTFIXUPDEF_CALL(void, mmu_unmap_dma_area
, unsigned long busa
, int len
)
284 #define mmu_map_dma_area(pba,va,a,len) BTFIXUP_CALL(mmu_map_dma_area)(pba,va,a,len)
285 #define mmu_unmap_dma_area(ba,len) BTFIXUP_CALL(mmu_unmap_dma_area)(ba,len)
286 #define mmu_translate_dvma(ba) BTFIXUP_CALL(mmu_translate_dvma)(ba)
288 #endif /* !(_ASM_SPARC_DMA_H) */