2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
22 #include <asm/pgtable.h>
25 #include <linux/hugetlb.h>
28 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
29 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
30 unsigned long hugepages_treat_as_movable
;
32 static int max_hstate
;
33 unsigned int default_hstate_idx
;
34 struct hstate hstates
[HUGE_MAX_HSTATE
];
36 __initdata
LIST_HEAD(huge_boot_pages
);
38 /* for command line parsing */
39 static struct hstate
* __initdata parsed_hstate
;
40 static unsigned long __initdata default_hstate_max_huge_pages
;
41 static unsigned long __initdata default_hstate_size
;
43 #define for_each_hstate(h) \
44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 static DEFINE_SPINLOCK(hugetlb_lock
);
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 * across the pages in a mapping.
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex. To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
60 * down_write(&mm->mmap_sem);
62 * down_read(&mm->mmap_sem);
63 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct list_head link
;
71 static long region_add(struct list_head
*head
, long f
, long t
)
73 struct file_region
*rg
, *nrg
, *trg
;
75 /* Locate the region we are either in or before. */
76 list_for_each_entry(rg
, head
, link
)
80 /* Round our left edge to the current segment if it encloses us. */
84 /* Check for and consume any regions we now overlap with. */
86 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
87 if (&rg
->link
== head
)
92 /* If this area reaches higher then extend our area to
93 * include it completely. If this is not the first area
94 * which we intend to reuse, free it. */
107 static long region_chg(struct list_head
*head
, long f
, long t
)
109 struct file_region
*rg
, *nrg
;
112 /* Locate the region we are before or in. */
113 list_for_each_entry(rg
, head
, link
)
117 /* If we are below the current region then a new region is required.
118 * Subtle, allocate a new region at the position but make it zero
119 * size such that we can guarantee to record the reservation. */
120 if (&rg
->link
== head
|| t
< rg
->from
) {
121 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
126 INIT_LIST_HEAD(&nrg
->link
);
127 list_add(&nrg
->link
, rg
->link
.prev
);
132 /* Round our left edge to the current segment if it encloses us. */
137 /* Check for and consume any regions we now overlap with. */
138 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
139 if (&rg
->link
== head
)
144 /* We overlap with this area, if it extends futher than
145 * us then we must extend ourselves. Account for its
146 * existing reservation. */
151 chg
-= rg
->to
- rg
->from
;
156 static long region_truncate(struct list_head
*head
, long end
)
158 struct file_region
*rg
, *trg
;
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg
, head
, link
)
165 if (&rg
->link
== head
)
168 /* If we are in the middle of a region then adjust it. */
169 if (end
> rg
->from
) {
172 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
175 /* Drop any remaining regions. */
176 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
177 if (&rg
->link
== head
)
179 chg
+= rg
->to
- rg
->from
;
186 static long region_count(struct list_head
*head
, long f
, long t
)
188 struct file_region
*rg
;
191 /* Locate each segment we overlap with, and count that overlap. */
192 list_for_each_entry(rg
, head
, link
) {
201 seg_from
= max(rg
->from
, f
);
202 seg_to
= min(rg
->to
, t
);
204 chg
+= seg_to
- seg_from
;
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
214 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
215 struct vm_area_struct
*vma
, unsigned long address
)
217 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
218 (vma
->vm_pgoff
>> huge_page_order(h
));
222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
226 #define HPAGE_RESV_OWNER (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping. A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated. A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
249 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
251 return (unsigned long)vma
->vm_private_data
;
254 static void set_vma_private_data(struct vm_area_struct
*vma
,
257 vma
->vm_private_data
= (void *)value
;
262 struct list_head regions
;
265 struct resv_map
*resv_map_alloc(void)
267 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
271 kref_init(&resv_map
->refs
);
272 INIT_LIST_HEAD(&resv_map
->regions
);
277 void resv_map_release(struct kref
*ref
)
279 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
281 /* Clear out any active regions before we release the map. */
282 region_truncate(&resv_map
->regions
, 0);
286 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
288 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
289 if (!(vma
->vm_flags
& VM_SHARED
))
290 return (struct resv_map
*)(get_vma_private_data(vma
) &
295 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
297 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
298 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
300 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
301 HPAGE_RESV_MASK
) | (unsigned long)map
);
304 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
306 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
307 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
309 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
312 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
314 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
316 return (get_vma_private_data(vma
) & flag
) != 0;
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate
*h
,
321 struct vm_area_struct
*vma
)
323 if (vma
->vm_flags
& VM_NORESERVE
)
326 if (vma
->vm_flags
& VM_SHARED
) {
327 /* Shared mappings always use reserves */
328 h
->resv_huge_pages
--;
329 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
331 * Only the process that called mmap() has reserves for
334 h
->resv_huge_pages
--;
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
341 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
342 if (!(vma
->vm_flags
& VM_SHARED
))
343 vma
->vm_private_data
= (void *)0;
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct
*vma
)
349 if (vma
->vm_flags
& VM_SHARED
)
351 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
356 static void clear_gigantic_page(struct page
*page
,
357 unsigned long addr
, unsigned long sz
)
360 struct page
*p
= page
;
363 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
365 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
368 static void clear_huge_page(struct page
*page
,
369 unsigned long addr
, unsigned long sz
)
373 if (unlikely(sz
> MAX_ORDER_NR_PAGES
))
374 return clear_gigantic_page(page
, addr
, sz
);
377 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
379 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
383 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
384 unsigned long addr
, struct vm_area_struct
*vma
)
387 struct hstate
*h
= hstate_vma(vma
);
388 struct page
*dst_base
= dst
;
389 struct page
*src_base
= src
;
391 for (i
= 0; i
< pages_per_huge_page(h
); ) {
393 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
396 dst
= mem_map_next(dst
, dst_base
, i
);
397 src
= mem_map_next(src
, src_base
, i
);
400 static void copy_huge_page(struct page
*dst
, struct page
*src
,
401 unsigned long addr
, struct vm_area_struct
*vma
)
404 struct hstate
*h
= hstate_vma(vma
);
406 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
))
407 return copy_gigantic_page(dst
, src
, addr
, vma
);
410 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
412 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
416 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
418 int nid
= page_to_nid(page
);
419 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
420 h
->free_huge_pages
++;
421 h
->free_huge_pages_node
[nid
]++;
424 static struct page
*dequeue_huge_page(struct hstate
*h
)
427 struct page
*page
= NULL
;
429 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
430 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
431 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
433 list_del(&page
->lru
);
434 h
->free_huge_pages
--;
435 h
->free_huge_pages_node
[nid
]--;
442 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
443 struct vm_area_struct
*vma
,
444 unsigned long address
, int avoid_reserve
)
447 struct page
*page
= NULL
;
448 struct mempolicy
*mpol
;
449 nodemask_t
*nodemask
;
450 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
451 htlb_alloc_mask
, &mpol
, &nodemask
);
456 * A child process with MAP_PRIVATE mappings created by their parent
457 * have no page reserves. This check ensures that reservations are
458 * not "stolen". The child may still get SIGKILLed
460 if (!vma_has_reserves(vma
) &&
461 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
464 /* If reserves cannot be used, ensure enough pages are in the pool */
465 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
468 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
469 MAX_NR_ZONES
- 1, nodemask
) {
470 nid
= zone_to_nid(zone
);
471 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
472 !list_empty(&h
->hugepage_freelists
[nid
])) {
473 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
475 list_del(&page
->lru
);
476 h
->free_huge_pages
--;
477 h
->free_huge_pages_node
[nid
]--;
480 decrement_hugepage_resv_vma(h
, vma
);
489 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
493 VM_BUG_ON(h
->order
>= MAX_ORDER
);
496 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
497 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
498 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
499 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
500 1 << PG_private
| 1<< PG_writeback
);
502 set_compound_page_dtor(page
, NULL
);
503 set_page_refcounted(page
);
504 arch_release_hugepage(page
);
505 __free_pages(page
, huge_page_order(h
));
508 struct hstate
*size_to_hstate(unsigned long size
)
513 if (huge_page_size(h
) == size
)
519 static void free_huge_page(struct page
*page
)
522 * Can't pass hstate in here because it is called from the
523 * compound page destructor.
525 struct hstate
*h
= page_hstate(page
);
526 int nid
= page_to_nid(page
);
527 struct address_space
*mapping
;
529 mapping
= (struct address_space
*) page_private(page
);
530 set_page_private(page
, 0);
531 BUG_ON(page_count(page
));
532 INIT_LIST_HEAD(&page
->lru
);
534 spin_lock(&hugetlb_lock
);
535 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
536 update_and_free_page(h
, page
);
537 h
->surplus_huge_pages
--;
538 h
->surplus_huge_pages_node
[nid
]--;
540 enqueue_huge_page(h
, page
);
542 spin_unlock(&hugetlb_lock
);
544 hugetlb_put_quota(mapping
, 1);
548 * Increment or decrement surplus_huge_pages. Keep node-specific counters
549 * balanced by operating on them in a round-robin fashion.
550 * Returns 1 if an adjustment was made.
552 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
558 VM_BUG_ON(delta
!= -1 && delta
!= 1);
560 nid
= next_node(nid
, node_online_map
);
561 if (nid
== MAX_NUMNODES
)
562 nid
= first_node(node_online_map
);
564 /* To shrink on this node, there must be a surplus page */
565 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
567 /* Surplus cannot exceed the total number of pages */
568 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
569 h
->nr_huge_pages_node
[nid
])
572 h
->surplus_huge_pages
+= delta
;
573 h
->surplus_huge_pages_node
[nid
] += delta
;
576 } while (nid
!= prev_nid
);
582 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
584 set_compound_page_dtor(page
, free_huge_page
);
585 spin_lock(&hugetlb_lock
);
587 h
->nr_huge_pages_node
[nid
]++;
588 spin_unlock(&hugetlb_lock
);
589 put_page(page
); /* free it into the hugepage allocator */
592 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
596 if (h
->order
>= MAX_ORDER
)
599 page
= alloc_pages_node(nid
,
600 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
601 __GFP_REPEAT
|__GFP_NOWARN
,
604 if (arch_prepare_hugepage(page
)) {
605 __free_pages(page
, huge_page_order(h
));
608 prep_new_huge_page(h
, page
, nid
);
615 * Use a helper variable to find the next node and then
616 * copy it back to hugetlb_next_nid afterwards:
617 * otherwise there's a window in which a racer might
618 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
619 * But we don't need to use a spin_lock here: it really
620 * doesn't matter if occasionally a racer chooses the
621 * same nid as we do. Move nid forward in the mask even
622 * if we just successfully allocated a hugepage so that
623 * the next caller gets hugepages on the next node.
625 static int hstate_next_node(struct hstate
*h
)
628 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
629 if (next_nid
== MAX_NUMNODES
)
630 next_nid
= first_node(node_online_map
);
631 h
->hugetlb_next_nid
= next_nid
;
635 static int alloc_fresh_huge_page(struct hstate
*h
)
642 start_nid
= h
->hugetlb_next_nid
;
645 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
648 next_nid
= hstate_next_node(h
);
649 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
652 count_vm_event(HTLB_BUDDY_PGALLOC
);
654 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
659 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
660 struct vm_area_struct
*vma
, unsigned long address
)
665 if (h
->order
>= MAX_ORDER
)
669 * Assume we will successfully allocate the surplus page to
670 * prevent racing processes from causing the surplus to exceed
673 * This however introduces a different race, where a process B
674 * tries to grow the static hugepage pool while alloc_pages() is
675 * called by process A. B will only examine the per-node
676 * counters in determining if surplus huge pages can be
677 * converted to normal huge pages in adjust_pool_surplus(). A
678 * won't be able to increment the per-node counter, until the
679 * lock is dropped by B, but B doesn't drop hugetlb_lock until
680 * no more huge pages can be converted from surplus to normal
681 * state (and doesn't try to convert again). Thus, we have a
682 * case where a surplus huge page exists, the pool is grown, and
683 * the surplus huge page still exists after, even though it
684 * should just have been converted to a normal huge page. This
685 * does not leak memory, though, as the hugepage will be freed
686 * once it is out of use. It also does not allow the counters to
687 * go out of whack in adjust_pool_surplus() as we don't modify
688 * the node values until we've gotten the hugepage and only the
689 * per-node value is checked there.
691 spin_lock(&hugetlb_lock
);
692 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
693 spin_unlock(&hugetlb_lock
);
697 h
->surplus_huge_pages
++;
699 spin_unlock(&hugetlb_lock
);
701 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
702 __GFP_REPEAT
|__GFP_NOWARN
,
705 if (page
&& arch_prepare_hugepage(page
)) {
706 __free_pages(page
, huge_page_order(h
));
710 spin_lock(&hugetlb_lock
);
713 * This page is now managed by the hugetlb allocator and has
714 * no users -- drop the buddy allocator's reference.
716 put_page_testzero(page
);
717 VM_BUG_ON(page_count(page
));
718 nid
= page_to_nid(page
);
719 set_compound_page_dtor(page
, free_huge_page
);
721 * We incremented the global counters already
723 h
->nr_huge_pages_node
[nid
]++;
724 h
->surplus_huge_pages_node
[nid
]++;
725 __count_vm_event(HTLB_BUDDY_PGALLOC
);
728 h
->surplus_huge_pages
--;
729 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
731 spin_unlock(&hugetlb_lock
);
737 * Increase the hugetlb pool such that it can accomodate a reservation
740 static int gather_surplus_pages(struct hstate
*h
, int delta
)
742 struct list_head surplus_list
;
743 struct page
*page
, *tmp
;
745 int needed
, allocated
;
747 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
749 h
->resv_huge_pages
+= delta
;
754 INIT_LIST_HEAD(&surplus_list
);
758 spin_unlock(&hugetlb_lock
);
759 for (i
= 0; i
< needed
; i
++) {
760 page
= alloc_buddy_huge_page(h
, NULL
, 0);
763 * We were not able to allocate enough pages to
764 * satisfy the entire reservation so we free what
765 * we've allocated so far.
767 spin_lock(&hugetlb_lock
);
772 list_add(&page
->lru
, &surplus_list
);
777 * After retaking hugetlb_lock, we need to recalculate 'needed'
778 * because either resv_huge_pages or free_huge_pages may have changed.
780 spin_lock(&hugetlb_lock
);
781 needed
= (h
->resv_huge_pages
+ delta
) -
782 (h
->free_huge_pages
+ allocated
);
787 * The surplus_list now contains _at_least_ the number of extra pages
788 * needed to accomodate the reservation. Add the appropriate number
789 * of pages to the hugetlb pool and free the extras back to the buddy
790 * allocator. Commit the entire reservation here to prevent another
791 * process from stealing the pages as they are added to the pool but
792 * before they are reserved.
795 h
->resv_huge_pages
+= delta
;
798 /* Free the needed pages to the hugetlb pool */
799 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
802 list_del(&page
->lru
);
803 enqueue_huge_page(h
, page
);
806 /* Free unnecessary surplus pages to the buddy allocator */
807 if (!list_empty(&surplus_list
)) {
808 spin_unlock(&hugetlb_lock
);
809 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
810 list_del(&page
->lru
);
812 * The page has a reference count of zero already, so
813 * call free_huge_page directly instead of using
814 * put_page. This must be done with hugetlb_lock
815 * unlocked which is safe because free_huge_page takes
816 * hugetlb_lock before deciding how to free the page.
818 free_huge_page(page
);
820 spin_lock(&hugetlb_lock
);
827 * When releasing a hugetlb pool reservation, any surplus pages that were
828 * allocated to satisfy the reservation must be explicitly freed if they were
831 static void return_unused_surplus_pages(struct hstate
*h
,
832 unsigned long unused_resv_pages
)
836 unsigned long nr_pages
;
839 * We want to release as many surplus pages as possible, spread
840 * evenly across all nodes. Iterate across all nodes until we
841 * can no longer free unreserved surplus pages. This occurs when
842 * the nodes with surplus pages have no free pages.
844 unsigned long remaining_iterations
= num_online_nodes();
846 /* Uncommit the reservation */
847 h
->resv_huge_pages
-= unused_resv_pages
;
849 /* Cannot return gigantic pages currently */
850 if (h
->order
>= MAX_ORDER
)
853 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
855 while (remaining_iterations
-- && nr_pages
) {
856 nid
= next_node(nid
, node_online_map
);
857 if (nid
== MAX_NUMNODES
)
858 nid
= first_node(node_online_map
);
860 if (!h
->surplus_huge_pages_node
[nid
])
863 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
864 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
866 list_del(&page
->lru
);
867 update_and_free_page(h
, page
);
868 h
->free_huge_pages
--;
869 h
->free_huge_pages_node
[nid
]--;
870 h
->surplus_huge_pages
--;
871 h
->surplus_huge_pages_node
[nid
]--;
873 remaining_iterations
= num_online_nodes();
879 * Determine if the huge page at addr within the vma has an associated
880 * reservation. Where it does not we will need to logically increase
881 * reservation and actually increase quota before an allocation can occur.
882 * Where any new reservation would be required the reservation change is
883 * prepared, but not committed. Once the page has been quota'd allocated
884 * an instantiated the change should be committed via vma_commit_reservation.
885 * No action is required on failure.
887 static int vma_needs_reservation(struct hstate
*h
,
888 struct vm_area_struct
*vma
, unsigned long addr
)
890 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
891 struct inode
*inode
= mapping
->host
;
893 if (vma
->vm_flags
& VM_SHARED
) {
894 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
895 return region_chg(&inode
->i_mapping
->private_list
,
898 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
903 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
904 struct resv_map
*reservations
= vma_resv_map(vma
);
906 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
912 static void vma_commit_reservation(struct hstate
*h
,
913 struct vm_area_struct
*vma
, unsigned long addr
)
915 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
916 struct inode
*inode
= mapping
->host
;
918 if (vma
->vm_flags
& VM_SHARED
) {
919 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
920 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
922 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
923 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
924 struct resv_map
*reservations
= vma_resv_map(vma
);
926 /* Mark this page used in the map. */
927 region_add(&reservations
->regions
, idx
, idx
+ 1);
931 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
932 unsigned long addr
, int avoid_reserve
)
934 struct hstate
*h
= hstate_vma(vma
);
936 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
937 struct inode
*inode
= mapping
->host
;
941 * Processes that did not create the mapping will have no reserves and
942 * will not have accounted against quota. Check that the quota can be
943 * made before satisfying the allocation
944 * MAP_NORESERVE mappings may also need pages and quota allocated
945 * if no reserve mapping overlaps.
947 chg
= vma_needs_reservation(h
, vma
, addr
);
951 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
952 return ERR_PTR(-ENOSPC
);
954 spin_lock(&hugetlb_lock
);
955 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
956 spin_unlock(&hugetlb_lock
);
959 page
= alloc_buddy_huge_page(h
, vma
, addr
);
961 hugetlb_put_quota(inode
->i_mapping
, chg
);
962 return ERR_PTR(-VM_FAULT_OOM
);
966 set_page_refcounted(page
);
967 set_page_private(page
, (unsigned long) mapping
);
969 vma_commit_reservation(h
, vma
, addr
);
974 __attribute__((weak
)) int alloc_bootmem_huge_page(struct hstate
*h
)
976 struct huge_bootmem_page
*m
;
977 int nr_nodes
= nodes_weight(node_online_map
);
982 addr
= __alloc_bootmem_node_nopanic(
983 NODE_DATA(h
->hugetlb_next_nid
),
984 huge_page_size(h
), huge_page_size(h
), 0);
988 * Use the beginning of the huge page to store the
989 * huge_bootmem_page struct (until gather_bootmem
990 * puts them into the mem_map).
1002 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1003 /* Put them into a private list first because mem_map is not up yet */
1004 list_add(&m
->list
, &huge_boot_pages
);
1009 static void prep_compound_huge_page(struct page
*page
, int order
)
1011 if (unlikely(order
> (MAX_ORDER
- 1)))
1012 prep_compound_gigantic_page(page
, order
);
1014 prep_compound_page(page
, order
);
1017 /* Put bootmem huge pages into the standard lists after mem_map is up */
1018 static void __init
gather_bootmem_prealloc(void)
1020 struct huge_bootmem_page
*m
;
1022 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1023 struct page
*page
= virt_to_page(m
);
1024 struct hstate
*h
= m
->hstate
;
1025 __ClearPageReserved(page
);
1026 WARN_ON(page_count(page
) != 1);
1027 prep_compound_huge_page(page
, h
->order
);
1028 prep_new_huge_page(h
, page
, page_to_nid(page
));
1032 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1036 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1037 if (h
->order
>= MAX_ORDER
) {
1038 if (!alloc_bootmem_huge_page(h
))
1040 } else if (!alloc_fresh_huge_page(h
))
1043 h
->max_huge_pages
= i
;
1046 static void __init
hugetlb_init_hstates(void)
1050 for_each_hstate(h
) {
1051 /* oversize hugepages were init'ed in early boot */
1052 if (h
->order
< MAX_ORDER
)
1053 hugetlb_hstate_alloc_pages(h
);
1057 static char * __init
memfmt(char *buf
, unsigned long n
)
1059 if (n
>= (1UL << 30))
1060 sprintf(buf
, "%lu GB", n
>> 30);
1061 else if (n
>= (1UL << 20))
1062 sprintf(buf
, "%lu MB", n
>> 20);
1064 sprintf(buf
, "%lu KB", n
>> 10);
1068 static void __init
report_hugepages(void)
1072 for_each_hstate(h
) {
1074 printk(KERN_INFO
"HugeTLB registered %s page size, "
1075 "pre-allocated %ld pages\n",
1076 memfmt(buf
, huge_page_size(h
)),
1077 h
->free_huge_pages
);
1081 #ifdef CONFIG_HIGHMEM
1082 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1086 if (h
->order
>= MAX_ORDER
)
1089 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1090 struct page
*page
, *next
;
1091 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1092 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1093 if (count
>= h
->nr_huge_pages
)
1095 if (PageHighMem(page
))
1097 list_del(&page
->lru
);
1098 update_and_free_page(h
, page
);
1099 h
->free_huge_pages
--;
1100 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1105 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1110 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1111 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1113 unsigned long min_count
, ret
;
1115 if (h
->order
>= MAX_ORDER
)
1116 return h
->max_huge_pages
;
1119 * Increase the pool size
1120 * First take pages out of surplus state. Then make up the
1121 * remaining difference by allocating fresh huge pages.
1123 * We might race with alloc_buddy_huge_page() here and be unable
1124 * to convert a surplus huge page to a normal huge page. That is
1125 * not critical, though, it just means the overall size of the
1126 * pool might be one hugepage larger than it needs to be, but
1127 * within all the constraints specified by the sysctls.
1129 spin_lock(&hugetlb_lock
);
1130 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1131 if (!adjust_pool_surplus(h
, -1))
1135 while (count
> persistent_huge_pages(h
)) {
1137 * If this allocation races such that we no longer need the
1138 * page, free_huge_page will handle it by freeing the page
1139 * and reducing the surplus.
1141 spin_unlock(&hugetlb_lock
);
1142 ret
= alloc_fresh_huge_page(h
);
1143 spin_lock(&hugetlb_lock
);
1150 * Decrease the pool size
1151 * First return free pages to the buddy allocator (being careful
1152 * to keep enough around to satisfy reservations). Then place
1153 * pages into surplus state as needed so the pool will shrink
1154 * to the desired size as pages become free.
1156 * By placing pages into the surplus state independent of the
1157 * overcommit value, we are allowing the surplus pool size to
1158 * exceed overcommit. There are few sane options here. Since
1159 * alloc_buddy_huge_page() is checking the global counter,
1160 * though, we'll note that we're not allowed to exceed surplus
1161 * and won't grow the pool anywhere else. Not until one of the
1162 * sysctls are changed, or the surplus pages go out of use.
1164 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1165 min_count
= max(count
, min_count
);
1166 try_to_free_low(h
, min_count
);
1167 while (min_count
< persistent_huge_pages(h
)) {
1168 struct page
*page
= dequeue_huge_page(h
);
1171 update_and_free_page(h
, page
);
1173 while (count
< persistent_huge_pages(h
)) {
1174 if (!adjust_pool_surplus(h
, 1))
1178 ret
= persistent_huge_pages(h
);
1179 spin_unlock(&hugetlb_lock
);
1183 #define HSTATE_ATTR_RO(_name) \
1184 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1186 #define HSTATE_ATTR(_name) \
1187 static struct kobj_attribute _name##_attr = \
1188 __ATTR(_name, 0644, _name##_show, _name##_store)
1190 static struct kobject
*hugepages_kobj
;
1191 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1193 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1196 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1197 if (hstate_kobjs
[i
] == kobj
)
1203 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1204 struct kobj_attribute
*attr
, char *buf
)
1206 struct hstate
*h
= kobj_to_hstate(kobj
);
1207 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1209 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1210 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1213 unsigned long input
;
1214 struct hstate
*h
= kobj_to_hstate(kobj
);
1216 err
= strict_strtoul(buf
, 10, &input
);
1220 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1224 HSTATE_ATTR(nr_hugepages
);
1226 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1227 struct kobj_attribute
*attr
, char *buf
)
1229 struct hstate
*h
= kobj_to_hstate(kobj
);
1230 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1232 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1233 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1236 unsigned long input
;
1237 struct hstate
*h
= kobj_to_hstate(kobj
);
1239 err
= strict_strtoul(buf
, 10, &input
);
1243 spin_lock(&hugetlb_lock
);
1244 h
->nr_overcommit_huge_pages
= input
;
1245 spin_unlock(&hugetlb_lock
);
1249 HSTATE_ATTR(nr_overcommit_hugepages
);
1251 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1252 struct kobj_attribute
*attr
, char *buf
)
1254 struct hstate
*h
= kobj_to_hstate(kobj
);
1255 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1257 HSTATE_ATTR_RO(free_hugepages
);
1259 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1260 struct kobj_attribute
*attr
, char *buf
)
1262 struct hstate
*h
= kobj_to_hstate(kobj
);
1263 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1265 HSTATE_ATTR_RO(resv_hugepages
);
1267 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1268 struct kobj_attribute
*attr
, char *buf
)
1270 struct hstate
*h
= kobj_to_hstate(kobj
);
1271 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1273 HSTATE_ATTR_RO(surplus_hugepages
);
1275 static struct attribute
*hstate_attrs
[] = {
1276 &nr_hugepages_attr
.attr
,
1277 &nr_overcommit_hugepages_attr
.attr
,
1278 &free_hugepages_attr
.attr
,
1279 &resv_hugepages_attr
.attr
,
1280 &surplus_hugepages_attr
.attr
,
1284 static struct attribute_group hstate_attr_group
= {
1285 .attrs
= hstate_attrs
,
1288 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1292 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1294 if (!hstate_kobjs
[h
- hstates
])
1297 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1298 &hstate_attr_group
);
1300 kobject_put(hstate_kobjs
[h
- hstates
]);
1305 static void __init
hugetlb_sysfs_init(void)
1310 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1311 if (!hugepages_kobj
)
1314 for_each_hstate(h
) {
1315 err
= hugetlb_sysfs_add_hstate(h
);
1317 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1322 static void __exit
hugetlb_exit(void)
1326 for_each_hstate(h
) {
1327 kobject_put(hstate_kobjs
[h
- hstates
]);
1330 kobject_put(hugepages_kobj
);
1332 module_exit(hugetlb_exit
);
1334 static int __init
hugetlb_init(void)
1336 /* Some platform decide whether they support huge pages at boot
1337 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1338 * there is no such support
1340 if (HPAGE_SHIFT
== 0)
1343 if (!size_to_hstate(default_hstate_size
)) {
1344 default_hstate_size
= HPAGE_SIZE
;
1345 if (!size_to_hstate(default_hstate_size
))
1346 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1348 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1349 if (default_hstate_max_huge_pages
)
1350 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1352 hugetlb_init_hstates();
1354 gather_bootmem_prealloc();
1358 hugetlb_sysfs_init();
1362 module_init(hugetlb_init
);
1364 /* Should be called on processing a hugepagesz=... option */
1365 void __init
hugetlb_add_hstate(unsigned order
)
1370 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1371 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1374 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1376 h
= &hstates
[max_hstate
++];
1378 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1379 h
->nr_huge_pages
= 0;
1380 h
->free_huge_pages
= 0;
1381 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1382 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1383 h
->hugetlb_next_nid
= first_node(node_online_map
);
1384 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1385 huge_page_size(h
)/1024);
1390 static int __init
hugetlb_nrpages_setup(char *s
)
1393 static unsigned long *last_mhp
;
1396 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1397 * so this hugepages= parameter goes to the "default hstate".
1400 mhp
= &default_hstate_max_huge_pages
;
1402 mhp
= &parsed_hstate
->max_huge_pages
;
1404 if (mhp
== last_mhp
) {
1405 printk(KERN_WARNING
"hugepages= specified twice without "
1406 "interleaving hugepagesz=, ignoring\n");
1410 if (sscanf(s
, "%lu", mhp
) <= 0)
1414 * Global state is always initialized later in hugetlb_init.
1415 * But we need to allocate >= MAX_ORDER hstates here early to still
1416 * use the bootmem allocator.
1418 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1419 hugetlb_hstate_alloc_pages(parsed_hstate
);
1425 __setup("hugepages=", hugetlb_nrpages_setup
);
1427 static int __init
hugetlb_default_setup(char *s
)
1429 default_hstate_size
= memparse(s
, &s
);
1432 __setup("default_hugepagesz=", hugetlb_default_setup
);
1434 static unsigned int cpuset_mems_nr(unsigned int *array
)
1437 unsigned int nr
= 0;
1439 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1445 #ifdef CONFIG_SYSCTL
1446 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1447 struct file
*file
, void __user
*buffer
,
1448 size_t *length
, loff_t
*ppos
)
1450 struct hstate
*h
= &default_hstate
;
1454 tmp
= h
->max_huge_pages
;
1457 table
->maxlen
= sizeof(unsigned long);
1458 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1461 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1466 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1467 struct file
*file
, void __user
*buffer
,
1468 size_t *length
, loff_t
*ppos
)
1470 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1471 if (hugepages_treat_as_movable
)
1472 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1474 htlb_alloc_mask
= GFP_HIGHUSER
;
1478 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1479 struct file
*file
, void __user
*buffer
,
1480 size_t *length
, loff_t
*ppos
)
1482 struct hstate
*h
= &default_hstate
;
1486 tmp
= h
->nr_overcommit_huge_pages
;
1489 table
->maxlen
= sizeof(unsigned long);
1490 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1493 spin_lock(&hugetlb_lock
);
1494 h
->nr_overcommit_huge_pages
= tmp
;
1495 spin_unlock(&hugetlb_lock
);
1501 #endif /* CONFIG_SYSCTL */
1503 int hugetlb_report_meminfo(char *buf
)
1505 struct hstate
*h
= &default_hstate
;
1507 "HugePages_Total: %5lu\n"
1508 "HugePages_Free: %5lu\n"
1509 "HugePages_Rsvd: %5lu\n"
1510 "HugePages_Surp: %5lu\n"
1511 "Hugepagesize: %5lu kB\n",
1515 h
->surplus_huge_pages
,
1516 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1519 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1521 struct hstate
*h
= &default_hstate
;
1523 "Node %d HugePages_Total: %5u\n"
1524 "Node %d HugePages_Free: %5u\n"
1525 "Node %d HugePages_Surp: %5u\n",
1526 nid
, h
->nr_huge_pages_node
[nid
],
1527 nid
, h
->free_huge_pages_node
[nid
],
1528 nid
, h
->surplus_huge_pages_node
[nid
]);
1531 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1532 unsigned long hugetlb_total_pages(void)
1534 struct hstate
*h
= &default_hstate
;
1535 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1538 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1542 spin_lock(&hugetlb_lock
);
1544 * When cpuset is configured, it breaks the strict hugetlb page
1545 * reservation as the accounting is done on a global variable. Such
1546 * reservation is completely rubbish in the presence of cpuset because
1547 * the reservation is not checked against page availability for the
1548 * current cpuset. Application can still potentially OOM'ed by kernel
1549 * with lack of free htlb page in cpuset that the task is in.
1550 * Attempt to enforce strict accounting with cpuset is almost
1551 * impossible (or too ugly) because cpuset is too fluid that
1552 * task or memory node can be dynamically moved between cpusets.
1554 * The change of semantics for shared hugetlb mapping with cpuset is
1555 * undesirable. However, in order to preserve some of the semantics,
1556 * we fall back to check against current free page availability as
1557 * a best attempt and hopefully to minimize the impact of changing
1558 * semantics that cpuset has.
1561 if (gather_surplus_pages(h
, delta
) < 0)
1564 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1565 return_unused_surplus_pages(h
, delta
);
1572 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1575 spin_unlock(&hugetlb_lock
);
1579 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1581 struct resv_map
*reservations
= vma_resv_map(vma
);
1584 * This new VMA should share its siblings reservation map if present.
1585 * The VMA will only ever have a valid reservation map pointer where
1586 * it is being copied for another still existing VMA. As that VMA
1587 * has a reference to the reservation map it cannot dissappear until
1588 * after this open call completes. It is therefore safe to take a
1589 * new reference here without additional locking.
1592 kref_get(&reservations
->refs
);
1595 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1597 struct hstate
*h
= hstate_vma(vma
);
1598 struct resv_map
*reservations
= vma_resv_map(vma
);
1599 unsigned long reserve
;
1600 unsigned long start
;
1604 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1605 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1607 reserve
= (end
- start
) -
1608 region_count(&reservations
->regions
, start
, end
);
1610 kref_put(&reservations
->refs
, resv_map_release
);
1613 hugetlb_acct_memory(h
, -reserve
);
1614 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1620 * We cannot handle pagefaults against hugetlb pages at all. They cause
1621 * handle_mm_fault() to try to instantiate regular-sized pages in the
1622 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1625 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1631 struct vm_operations_struct hugetlb_vm_ops
= {
1632 .fault
= hugetlb_vm_op_fault
,
1633 .open
= hugetlb_vm_op_open
,
1634 .close
= hugetlb_vm_op_close
,
1637 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1644 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1646 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1648 entry
= pte_mkyoung(entry
);
1649 entry
= pte_mkhuge(entry
);
1654 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1655 unsigned long address
, pte_t
*ptep
)
1659 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1660 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1661 update_mmu_cache(vma
, address
, entry
);
1666 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1667 struct vm_area_struct
*vma
)
1669 pte_t
*src_pte
, *dst_pte
, entry
;
1670 struct page
*ptepage
;
1673 struct hstate
*h
= hstate_vma(vma
);
1674 unsigned long sz
= huge_page_size(h
);
1676 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1678 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1679 src_pte
= huge_pte_offset(src
, addr
);
1682 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1686 /* If the pagetables are shared don't copy or take references */
1687 if (dst_pte
== src_pte
)
1690 spin_lock(&dst
->page_table_lock
);
1691 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1692 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1694 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1695 entry
= huge_ptep_get(src_pte
);
1696 ptepage
= pte_page(entry
);
1698 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1700 spin_unlock(&src
->page_table_lock
);
1701 spin_unlock(&dst
->page_table_lock
);
1709 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1710 unsigned long end
, struct page
*ref_page
)
1712 struct mm_struct
*mm
= vma
->vm_mm
;
1713 unsigned long address
;
1718 struct hstate
*h
= hstate_vma(vma
);
1719 unsigned long sz
= huge_page_size(h
);
1722 * A page gathering list, protected by per file i_mmap_lock. The
1723 * lock is used to avoid list corruption from multiple unmapping
1724 * of the same page since we are using page->lru.
1726 LIST_HEAD(page_list
);
1728 WARN_ON(!is_vm_hugetlb_page(vma
));
1729 BUG_ON(start
& ~huge_page_mask(h
));
1730 BUG_ON(end
& ~huge_page_mask(h
));
1732 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1733 spin_lock(&mm
->page_table_lock
);
1734 for (address
= start
; address
< end
; address
+= sz
) {
1735 ptep
= huge_pte_offset(mm
, address
);
1739 if (huge_pmd_unshare(mm
, &address
, ptep
))
1743 * If a reference page is supplied, it is because a specific
1744 * page is being unmapped, not a range. Ensure the page we
1745 * are about to unmap is the actual page of interest.
1748 pte
= huge_ptep_get(ptep
);
1749 if (huge_pte_none(pte
))
1751 page
= pte_page(pte
);
1752 if (page
!= ref_page
)
1756 * Mark the VMA as having unmapped its page so that
1757 * future faults in this VMA will fail rather than
1758 * looking like data was lost
1760 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1763 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1764 if (huge_pte_none(pte
))
1767 page
= pte_page(pte
);
1769 set_page_dirty(page
);
1770 list_add(&page
->lru
, &page_list
);
1772 spin_unlock(&mm
->page_table_lock
);
1773 flush_tlb_range(vma
, start
, end
);
1774 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1775 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1776 list_del(&page
->lru
);
1781 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1782 unsigned long end
, struct page
*ref_page
)
1784 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1785 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1786 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1790 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1791 * mappping it owns the reserve page for. The intention is to unmap the page
1792 * from other VMAs and let the children be SIGKILLed if they are faulting the
1795 int unmap_ref_private(struct mm_struct
*mm
,
1796 struct vm_area_struct
*vma
,
1798 unsigned long address
)
1800 struct hstate
*h
= hstate_vma(vma
);
1801 struct vm_area_struct
*iter_vma
;
1802 struct address_space
*mapping
;
1803 struct prio_tree_iter iter
;
1807 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1808 * from page cache lookup which is in HPAGE_SIZE units.
1810 address
= address
& huge_page_mask(h
);
1811 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1812 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1813 mapping
= (struct address_space
*)page_private(page
);
1815 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1816 /* Do not unmap the current VMA */
1817 if (iter_vma
== vma
)
1821 * Unmap the page from other VMAs without their own reserves.
1822 * They get marked to be SIGKILLed if they fault in these
1823 * areas. This is because a future no-page fault on this VMA
1824 * could insert a zeroed page instead of the data existing
1825 * from the time of fork. This would look like data corruption
1827 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1828 unmap_hugepage_range(iter_vma
,
1829 address
, address
+ huge_page_size(h
),
1836 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1837 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1838 struct page
*pagecache_page
)
1840 struct hstate
*h
= hstate_vma(vma
);
1841 struct page
*old_page
, *new_page
;
1843 int outside_reserve
= 0;
1845 old_page
= pte_page(pte
);
1848 /* If no-one else is actually using this page, avoid the copy
1849 * and just make the page writable */
1850 avoidcopy
= (page_count(old_page
) == 1);
1852 set_huge_ptep_writable(vma
, address
, ptep
);
1857 * If the process that created a MAP_PRIVATE mapping is about to
1858 * perform a COW due to a shared page count, attempt to satisfy
1859 * the allocation without using the existing reserves. The pagecache
1860 * page is used to determine if the reserve at this address was
1861 * consumed or not. If reserves were used, a partial faulted mapping
1862 * at the time of fork() could consume its reserves on COW instead
1863 * of the full address range.
1865 if (!(vma
->vm_flags
& VM_SHARED
) &&
1866 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1867 old_page
!= pagecache_page
)
1868 outside_reserve
= 1;
1870 page_cache_get(old_page
);
1871 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1873 if (IS_ERR(new_page
)) {
1874 page_cache_release(old_page
);
1877 * If a process owning a MAP_PRIVATE mapping fails to COW,
1878 * it is due to references held by a child and an insufficient
1879 * huge page pool. To guarantee the original mappers
1880 * reliability, unmap the page from child processes. The child
1881 * may get SIGKILLed if it later faults.
1883 if (outside_reserve
) {
1884 BUG_ON(huge_pte_none(pte
));
1885 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1886 BUG_ON(page_count(old_page
) != 1);
1887 BUG_ON(huge_pte_none(pte
));
1888 goto retry_avoidcopy
;
1893 return -PTR_ERR(new_page
);
1896 spin_unlock(&mm
->page_table_lock
);
1897 copy_huge_page(new_page
, old_page
, address
, vma
);
1898 __SetPageUptodate(new_page
);
1899 spin_lock(&mm
->page_table_lock
);
1901 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1902 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1904 huge_ptep_clear_flush(vma
, address
, ptep
);
1905 set_huge_pte_at(mm
, address
, ptep
,
1906 make_huge_pte(vma
, new_page
, 1));
1907 /* Make the old page be freed below */
1908 new_page
= old_page
;
1910 page_cache_release(new_page
);
1911 page_cache_release(old_page
);
1915 /* Return the pagecache page at a given address within a VMA */
1916 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1917 struct vm_area_struct
*vma
, unsigned long address
)
1919 struct address_space
*mapping
;
1922 mapping
= vma
->vm_file
->f_mapping
;
1923 idx
= vma_hugecache_offset(h
, vma
, address
);
1925 return find_lock_page(mapping
, idx
);
1928 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1929 unsigned long address
, pte_t
*ptep
, int write_access
)
1931 struct hstate
*h
= hstate_vma(vma
);
1932 int ret
= VM_FAULT_SIGBUS
;
1936 struct address_space
*mapping
;
1940 * Currently, we are forced to kill the process in the event the
1941 * original mapper has unmapped pages from the child due to a failed
1942 * COW. Warn that such a situation has occured as it may not be obvious
1944 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1946 "PID %d killed due to inadequate hugepage pool\n",
1951 mapping
= vma
->vm_file
->f_mapping
;
1952 idx
= vma_hugecache_offset(h
, vma
, address
);
1955 * Use page lock to guard against racing truncation
1956 * before we get page_table_lock.
1959 page
= find_lock_page(mapping
, idx
);
1961 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1964 page
= alloc_huge_page(vma
, address
, 0);
1966 ret
= -PTR_ERR(page
);
1969 clear_huge_page(page
, address
, huge_page_size(h
));
1970 __SetPageUptodate(page
);
1972 if (vma
->vm_flags
& VM_SHARED
) {
1974 struct inode
*inode
= mapping
->host
;
1976 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1984 spin_lock(&inode
->i_lock
);
1985 inode
->i_blocks
+= blocks_per_huge_page(h
);
1986 spin_unlock(&inode
->i_lock
);
1992 * If we are going to COW a private mapping later, we examine the
1993 * pending reservations for this page now. This will ensure that
1994 * any allocations necessary to record that reservation occur outside
1997 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
))
1998 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2000 goto backout_unlocked
;
2003 spin_lock(&mm
->page_table_lock
);
2004 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2009 if (!huge_pte_none(huge_ptep_get(ptep
)))
2012 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2013 && (vma
->vm_flags
& VM_SHARED
)));
2014 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2016 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
2017 /* Optimization, do the COW without a second fault */
2018 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2021 spin_unlock(&mm
->page_table_lock
);
2027 spin_unlock(&mm
->page_table_lock
);
2034 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2035 unsigned long address
, int write_access
)
2040 struct page
*pagecache_page
= NULL
;
2041 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2042 struct hstate
*h
= hstate_vma(vma
);
2044 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2046 return VM_FAULT_OOM
;
2049 * Serialize hugepage allocation and instantiation, so that we don't
2050 * get spurious allocation failures if two CPUs race to instantiate
2051 * the same page in the page cache.
2053 mutex_lock(&hugetlb_instantiation_mutex
);
2054 entry
= huge_ptep_get(ptep
);
2055 if (huge_pte_none(entry
)) {
2056 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
2063 * If we are going to COW the mapping later, we examine the pending
2064 * reservations for this page now. This will ensure that any
2065 * allocations necessary to record that reservation occur outside the
2066 * spinlock. For private mappings, we also lookup the pagecache
2067 * page now as it is used to determine if a reservation has been
2070 if (write_access
&& !pte_write(entry
)) {
2071 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2076 if (!(vma
->vm_flags
& VM_SHARED
))
2077 pagecache_page
= hugetlbfs_pagecache_page(h
,
2081 spin_lock(&mm
->page_table_lock
);
2082 /* Check for a racing update before calling hugetlb_cow */
2083 if (likely(pte_same(entry
, huge_ptep_get(ptep
))))
2084 if (write_access
&& !pte_write(entry
))
2085 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2087 spin_unlock(&mm
->page_table_lock
);
2089 if (pagecache_page
) {
2090 unlock_page(pagecache_page
);
2091 put_page(pagecache_page
);
2095 mutex_unlock(&hugetlb_instantiation_mutex
);
2100 /* Can be overriden by architectures */
2101 __attribute__((weak
)) struct page
*
2102 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2103 pud_t
*pud
, int write
)
2109 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2110 struct page
**pages
, struct vm_area_struct
**vmas
,
2111 unsigned long *position
, int *length
, int i
,
2114 unsigned long pfn_offset
;
2115 unsigned long vaddr
= *position
;
2116 int remainder
= *length
;
2117 struct hstate
*h
= hstate_vma(vma
);
2119 spin_lock(&mm
->page_table_lock
);
2120 while (vaddr
< vma
->vm_end
&& remainder
) {
2125 * Some archs (sparc64, sh*) have multiple pte_ts to
2126 * each hugepage. We have to make * sure we get the
2127 * first, for the page indexing below to work.
2129 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2131 if (!pte
|| huge_pte_none(huge_ptep_get(pte
)) ||
2132 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2135 spin_unlock(&mm
->page_table_lock
);
2136 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2137 spin_lock(&mm
->page_table_lock
);
2138 if (!(ret
& VM_FAULT_ERROR
))
2147 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2148 page
= pte_page(huge_ptep_get(pte
));
2152 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2162 if (vaddr
< vma
->vm_end
&& remainder
&&
2163 pfn_offset
< pages_per_huge_page(h
)) {
2165 * We use pfn_offset to avoid touching the pageframes
2166 * of this compound page.
2171 spin_unlock(&mm
->page_table_lock
);
2172 *length
= remainder
;
2178 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2179 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2181 struct mm_struct
*mm
= vma
->vm_mm
;
2182 unsigned long start
= address
;
2185 struct hstate
*h
= hstate_vma(vma
);
2187 BUG_ON(address
>= end
);
2188 flush_cache_range(vma
, address
, end
);
2190 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2191 spin_lock(&mm
->page_table_lock
);
2192 for (; address
< end
; address
+= huge_page_size(h
)) {
2193 ptep
= huge_pte_offset(mm
, address
);
2196 if (huge_pmd_unshare(mm
, &address
, ptep
))
2198 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2199 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2200 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2201 set_huge_pte_at(mm
, address
, ptep
, pte
);
2204 spin_unlock(&mm
->page_table_lock
);
2205 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2207 flush_tlb_range(vma
, start
, end
);
2210 int hugetlb_reserve_pages(struct inode
*inode
,
2212 struct vm_area_struct
*vma
)
2215 struct hstate
*h
= hstate_inode(inode
);
2217 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
2221 * Shared mappings base their reservation on the number of pages that
2222 * are already allocated on behalf of the file. Private mappings need
2223 * to reserve the full area even if read-only as mprotect() may be
2224 * called to make the mapping read-write. Assume !vma is a shm mapping
2226 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2227 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2229 struct resv_map
*resv_map
= resv_map_alloc();
2235 set_vma_resv_map(vma
, resv_map
);
2236 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2242 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2244 ret
= hugetlb_acct_memory(h
, chg
);
2246 hugetlb_put_quota(inode
->i_mapping
, chg
);
2249 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2250 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2254 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2256 struct hstate
*h
= hstate_inode(inode
);
2257 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2259 spin_lock(&inode
->i_lock
);
2260 inode
->i_blocks
-= blocks_per_huge_page(h
);
2261 spin_unlock(&inode
->i_lock
);
2263 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2264 hugetlb_acct_memory(h
, -(chg
- freed
));