powerpc: Fix data-corrupting bug in __futex_atomic_op
[linux/fpc-iii.git] / mm / hugetlb.c
blob81e9a82bfe38ba3f645006c62ee09f4f44a1fa08
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
21 #include <asm/page.h>
22 #include <asm/pgtable.h>
23 #include <asm/io.h>
25 #include <linux/hugetlb.h>
26 #include "internal.h"
28 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
30 unsigned long hugepages_treat_as_movable;
32 static int max_hstate;
33 unsigned int default_hstate_idx;
34 struct hstate hstates[HUGE_MAX_HSTATE];
36 __initdata LIST_HEAD(huge_boot_pages);
38 /* for command line parsing */
39 static struct hstate * __initdata parsed_hstate;
40 static unsigned long __initdata default_hstate_max_huge_pages;
41 static unsigned long __initdata default_hstate_size;
43 #define for_each_hstate(h) \
44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 static DEFINE_SPINLOCK(hugetlb_lock);
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 * across the pages in a mapping.
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex. To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
60 * down_write(&mm->mmap_sem);
61 * or
62 * down_read(&mm->mmap_sem);
63 * mutex_lock(&hugetlb_instantiation_mutex);
65 struct file_region {
66 struct list_head link;
67 long from;
68 long to;
71 static long region_add(struct list_head *head, long f, long t)
73 struct file_region *rg, *nrg, *trg;
75 /* Locate the region we are either in or before. */
76 list_for_each_entry(rg, head, link)
77 if (f <= rg->to)
78 break;
80 /* Round our left edge to the current segment if it encloses us. */
81 if (f > rg->from)
82 f = rg->from;
84 /* Check for and consume any regions we now overlap with. */
85 nrg = rg;
86 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87 if (&rg->link == head)
88 break;
89 if (rg->from > t)
90 break;
92 /* If this area reaches higher then extend our area to
93 * include it completely. If this is not the first area
94 * which we intend to reuse, free it. */
95 if (rg->to > t)
96 t = rg->to;
97 if (rg != nrg) {
98 list_del(&rg->link);
99 kfree(rg);
102 nrg->from = f;
103 nrg->to = t;
104 return 0;
107 static long region_chg(struct list_head *head, long f, long t)
109 struct file_region *rg, *nrg;
110 long chg = 0;
112 /* Locate the region we are before or in. */
113 list_for_each_entry(rg, head, link)
114 if (f <= rg->to)
115 break;
117 /* If we are below the current region then a new region is required.
118 * Subtle, allocate a new region at the position but make it zero
119 * size such that we can guarantee to record the reservation. */
120 if (&rg->link == head || t < rg->from) {
121 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122 if (!nrg)
123 return -ENOMEM;
124 nrg->from = f;
125 nrg->to = f;
126 INIT_LIST_HEAD(&nrg->link);
127 list_add(&nrg->link, rg->link.prev);
129 return t - f;
132 /* Round our left edge to the current segment if it encloses us. */
133 if (f > rg->from)
134 f = rg->from;
135 chg = t - f;
137 /* Check for and consume any regions we now overlap with. */
138 list_for_each_entry(rg, rg->link.prev, link) {
139 if (&rg->link == head)
140 break;
141 if (rg->from > t)
142 return chg;
144 /* We overlap with this area, if it extends futher than
145 * us then we must extend ourselves. Account for its
146 * existing reservation. */
147 if (rg->to > t) {
148 chg += rg->to - t;
149 t = rg->to;
151 chg -= rg->to - rg->from;
153 return chg;
156 static long region_truncate(struct list_head *head, long end)
158 struct file_region *rg, *trg;
159 long chg = 0;
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (end <= rg->to)
164 break;
165 if (&rg->link == head)
166 return 0;
168 /* If we are in the middle of a region then adjust it. */
169 if (end > rg->from) {
170 chg = rg->to - end;
171 rg->to = end;
172 rg = list_entry(rg->link.next, typeof(*rg), link);
175 /* Drop any remaining regions. */
176 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177 if (&rg->link == head)
178 break;
179 chg += rg->to - rg->from;
180 list_del(&rg->link);
181 kfree(rg);
183 return chg;
186 static long region_count(struct list_head *head, long f, long t)
188 struct file_region *rg;
189 long chg = 0;
191 /* Locate each segment we overlap with, and count that overlap. */
192 list_for_each_entry(rg, head, link) {
193 int seg_from;
194 int seg_to;
196 if (rg->to <= f)
197 continue;
198 if (rg->from >= t)
199 break;
201 seg_from = max(rg->from, f);
202 seg_to = min(rg->to, t);
204 chg += seg_to - seg_from;
207 return chg;
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
214 static pgoff_t vma_hugecache_offset(struct hstate *h,
215 struct vm_area_struct *vma, unsigned long address)
217 return ((address - vma->vm_start) >> huge_page_shift(h)) +
218 (vma->vm_pgoff >> huge_page_order(h));
222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
224 * alignment.
226 #define HPAGE_RESV_OWNER (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping. A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated. A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
249 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
251 return (unsigned long)vma->vm_private_data;
254 static void set_vma_private_data(struct vm_area_struct *vma,
255 unsigned long value)
257 vma->vm_private_data = (void *)value;
260 struct resv_map {
261 struct kref refs;
262 struct list_head regions;
265 struct resv_map *resv_map_alloc(void)
267 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
268 if (!resv_map)
269 return NULL;
271 kref_init(&resv_map->refs);
272 INIT_LIST_HEAD(&resv_map->regions);
274 return resv_map;
277 void resv_map_release(struct kref *ref)
279 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
281 /* Clear out any active regions before we release the map. */
282 region_truncate(&resv_map->regions, 0);
283 kfree(resv_map);
286 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288 VM_BUG_ON(!is_vm_hugetlb_page(vma));
289 if (!(vma->vm_flags & VM_SHARED))
290 return (struct resv_map *)(get_vma_private_data(vma) &
291 ~HPAGE_RESV_MASK);
292 return 0;
295 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297 VM_BUG_ON(!is_vm_hugetlb_page(vma));
298 VM_BUG_ON(vma->vm_flags & VM_SHARED);
300 set_vma_private_data(vma, (get_vma_private_data(vma) &
301 HPAGE_RESV_MASK) | (unsigned long)map);
304 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
306 VM_BUG_ON(!is_vm_hugetlb_page(vma));
307 VM_BUG_ON(vma->vm_flags & VM_SHARED);
309 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
312 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
314 VM_BUG_ON(!is_vm_hugetlb_page(vma));
316 return (get_vma_private_data(vma) & flag) != 0;
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate *h,
321 struct vm_area_struct *vma)
323 if (vma->vm_flags & VM_NORESERVE)
324 return;
326 if (vma->vm_flags & VM_SHARED) {
327 /* Shared mappings always use reserves */
328 h->resv_huge_pages--;
329 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331 * Only the process that called mmap() has reserves for
332 * private mappings.
334 h->resv_huge_pages--;
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
341 VM_BUG_ON(!is_vm_hugetlb_page(vma));
342 if (!(vma->vm_flags & VM_SHARED))
343 vma->vm_private_data = (void *)0;
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct *vma)
349 if (vma->vm_flags & VM_SHARED)
350 return 1;
351 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352 return 1;
353 return 0;
356 static void clear_gigantic_page(struct page *page,
357 unsigned long addr, unsigned long sz)
359 int i;
360 struct page *p = page;
362 might_sleep();
363 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
364 cond_resched();
365 clear_user_highpage(p, addr + i * PAGE_SIZE);
368 static void clear_huge_page(struct page *page,
369 unsigned long addr, unsigned long sz)
371 int i;
373 if (unlikely(sz > MAX_ORDER_NR_PAGES))
374 return clear_gigantic_page(page, addr, sz);
376 might_sleep();
377 for (i = 0; i < sz/PAGE_SIZE; i++) {
378 cond_resched();
379 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
383 static void copy_gigantic_page(struct page *dst, struct page *src,
384 unsigned long addr, struct vm_area_struct *vma)
386 int i;
387 struct hstate *h = hstate_vma(vma);
388 struct page *dst_base = dst;
389 struct page *src_base = src;
390 might_sleep();
391 for (i = 0; i < pages_per_huge_page(h); ) {
392 cond_resched();
393 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
395 i++;
396 dst = mem_map_next(dst, dst_base, i);
397 src = mem_map_next(src, src_base, i);
400 static void copy_huge_page(struct page *dst, struct page *src,
401 unsigned long addr, struct vm_area_struct *vma)
403 int i;
404 struct hstate *h = hstate_vma(vma);
406 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
407 return copy_gigantic_page(dst, src, addr, vma);
409 might_sleep();
410 for (i = 0; i < pages_per_huge_page(h); i++) {
411 cond_resched();
412 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
416 static void enqueue_huge_page(struct hstate *h, struct page *page)
418 int nid = page_to_nid(page);
419 list_add(&page->lru, &h->hugepage_freelists[nid]);
420 h->free_huge_pages++;
421 h->free_huge_pages_node[nid]++;
424 static struct page *dequeue_huge_page(struct hstate *h)
426 int nid;
427 struct page *page = NULL;
429 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
430 if (!list_empty(&h->hugepage_freelists[nid])) {
431 page = list_entry(h->hugepage_freelists[nid].next,
432 struct page, lru);
433 list_del(&page->lru);
434 h->free_huge_pages--;
435 h->free_huge_pages_node[nid]--;
436 break;
439 return page;
442 static struct page *dequeue_huge_page_vma(struct hstate *h,
443 struct vm_area_struct *vma,
444 unsigned long address, int avoid_reserve)
446 int nid;
447 struct page *page = NULL;
448 struct mempolicy *mpol;
449 nodemask_t *nodemask;
450 struct zonelist *zonelist = huge_zonelist(vma, address,
451 htlb_alloc_mask, &mpol, &nodemask);
452 struct zone *zone;
453 struct zoneref *z;
456 * A child process with MAP_PRIVATE mappings created by their parent
457 * have no page reserves. This check ensures that reservations are
458 * not "stolen". The child may still get SIGKILLed
460 if (!vma_has_reserves(vma) &&
461 h->free_huge_pages - h->resv_huge_pages == 0)
462 return NULL;
464 /* If reserves cannot be used, ensure enough pages are in the pool */
465 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
466 return NULL;
468 for_each_zone_zonelist_nodemask(zone, z, zonelist,
469 MAX_NR_ZONES - 1, nodemask) {
470 nid = zone_to_nid(zone);
471 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
472 !list_empty(&h->hugepage_freelists[nid])) {
473 page = list_entry(h->hugepage_freelists[nid].next,
474 struct page, lru);
475 list_del(&page->lru);
476 h->free_huge_pages--;
477 h->free_huge_pages_node[nid]--;
479 if (!avoid_reserve)
480 decrement_hugepage_resv_vma(h, vma);
482 break;
485 mpol_cond_put(mpol);
486 return page;
489 static void update_and_free_page(struct hstate *h, struct page *page)
491 int i;
493 VM_BUG_ON(h->order >= MAX_ORDER);
495 h->nr_huge_pages--;
496 h->nr_huge_pages_node[page_to_nid(page)]--;
497 for (i = 0; i < pages_per_huge_page(h); i++) {
498 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
499 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
500 1 << PG_private | 1<< PG_writeback);
502 set_compound_page_dtor(page, NULL);
503 set_page_refcounted(page);
504 arch_release_hugepage(page);
505 __free_pages(page, huge_page_order(h));
508 struct hstate *size_to_hstate(unsigned long size)
510 struct hstate *h;
512 for_each_hstate(h) {
513 if (huge_page_size(h) == size)
514 return h;
516 return NULL;
519 static void free_huge_page(struct page *page)
522 * Can't pass hstate in here because it is called from the
523 * compound page destructor.
525 struct hstate *h = page_hstate(page);
526 int nid = page_to_nid(page);
527 struct address_space *mapping;
529 mapping = (struct address_space *) page_private(page);
530 set_page_private(page, 0);
531 BUG_ON(page_count(page));
532 INIT_LIST_HEAD(&page->lru);
534 spin_lock(&hugetlb_lock);
535 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
536 update_and_free_page(h, page);
537 h->surplus_huge_pages--;
538 h->surplus_huge_pages_node[nid]--;
539 } else {
540 enqueue_huge_page(h, page);
542 spin_unlock(&hugetlb_lock);
543 if (mapping)
544 hugetlb_put_quota(mapping, 1);
548 * Increment or decrement surplus_huge_pages. Keep node-specific counters
549 * balanced by operating on them in a round-robin fashion.
550 * Returns 1 if an adjustment was made.
552 static int adjust_pool_surplus(struct hstate *h, int delta)
554 static int prev_nid;
555 int nid = prev_nid;
556 int ret = 0;
558 VM_BUG_ON(delta != -1 && delta != 1);
559 do {
560 nid = next_node(nid, node_online_map);
561 if (nid == MAX_NUMNODES)
562 nid = first_node(node_online_map);
564 /* To shrink on this node, there must be a surplus page */
565 if (delta < 0 && !h->surplus_huge_pages_node[nid])
566 continue;
567 /* Surplus cannot exceed the total number of pages */
568 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
569 h->nr_huge_pages_node[nid])
570 continue;
572 h->surplus_huge_pages += delta;
573 h->surplus_huge_pages_node[nid] += delta;
574 ret = 1;
575 break;
576 } while (nid != prev_nid);
578 prev_nid = nid;
579 return ret;
582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
584 set_compound_page_dtor(page, free_huge_page);
585 spin_lock(&hugetlb_lock);
586 h->nr_huge_pages++;
587 h->nr_huge_pages_node[nid]++;
588 spin_unlock(&hugetlb_lock);
589 put_page(page); /* free it into the hugepage allocator */
592 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
594 struct page *page;
596 if (h->order >= MAX_ORDER)
597 return NULL;
599 page = alloc_pages_node(nid,
600 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
601 __GFP_REPEAT|__GFP_NOWARN,
602 huge_page_order(h));
603 if (page) {
604 if (arch_prepare_hugepage(page)) {
605 __free_pages(page, huge_page_order(h));
606 return NULL;
608 prep_new_huge_page(h, page, nid);
611 return page;
615 * Use a helper variable to find the next node and then
616 * copy it back to hugetlb_next_nid afterwards:
617 * otherwise there's a window in which a racer might
618 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
619 * But we don't need to use a spin_lock here: it really
620 * doesn't matter if occasionally a racer chooses the
621 * same nid as we do. Move nid forward in the mask even
622 * if we just successfully allocated a hugepage so that
623 * the next caller gets hugepages on the next node.
625 static int hstate_next_node(struct hstate *h)
627 int next_nid;
628 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
629 if (next_nid == MAX_NUMNODES)
630 next_nid = first_node(node_online_map);
631 h->hugetlb_next_nid = next_nid;
632 return next_nid;
635 static int alloc_fresh_huge_page(struct hstate *h)
637 struct page *page;
638 int start_nid;
639 int next_nid;
640 int ret = 0;
642 start_nid = h->hugetlb_next_nid;
644 do {
645 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
646 if (page)
647 ret = 1;
648 next_nid = hstate_next_node(h);
649 } while (!page && h->hugetlb_next_nid != start_nid);
651 if (ret)
652 count_vm_event(HTLB_BUDDY_PGALLOC);
653 else
654 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
656 return ret;
659 static struct page *alloc_buddy_huge_page(struct hstate *h,
660 struct vm_area_struct *vma, unsigned long address)
662 struct page *page;
663 unsigned int nid;
665 if (h->order >= MAX_ORDER)
666 return NULL;
669 * Assume we will successfully allocate the surplus page to
670 * prevent racing processes from causing the surplus to exceed
671 * overcommit
673 * This however introduces a different race, where a process B
674 * tries to grow the static hugepage pool while alloc_pages() is
675 * called by process A. B will only examine the per-node
676 * counters in determining if surplus huge pages can be
677 * converted to normal huge pages in adjust_pool_surplus(). A
678 * won't be able to increment the per-node counter, until the
679 * lock is dropped by B, but B doesn't drop hugetlb_lock until
680 * no more huge pages can be converted from surplus to normal
681 * state (and doesn't try to convert again). Thus, we have a
682 * case where a surplus huge page exists, the pool is grown, and
683 * the surplus huge page still exists after, even though it
684 * should just have been converted to a normal huge page. This
685 * does not leak memory, though, as the hugepage will be freed
686 * once it is out of use. It also does not allow the counters to
687 * go out of whack in adjust_pool_surplus() as we don't modify
688 * the node values until we've gotten the hugepage and only the
689 * per-node value is checked there.
691 spin_lock(&hugetlb_lock);
692 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
693 spin_unlock(&hugetlb_lock);
694 return NULL;
695 } else {
696 h->nr_huge_pages++;
697 h->surplus_huge_pages++;
699 spin_unlock(&hugetlb_lock);
701 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
702 __GFP_REPEAT|__GFP_NOWARN,
703 huge_page_order(h));
705 if (page && arch_prepare_hugepage(page)) {
706 __free_pages(page, huge_page_order(h));
707 return NULL;
710 spin_lock(&hugetlb_lock);
711 if (page) {
713 * This page is now managed by the hugetlb allocator and has
714 * no users -- drop the buddy allocator's reference.
716 put_page_testzero(page);
717 VM_BUG_ON(page_count(page));
718 nid = page_to_nid(page);
719 set_compound_page_dtor(page, free_huge_page);
721 * We incremented the global counters already
723 h->nr_huge_pages_node[nid]++;
724 h->surplus_huge_pages_node[nid]++;
725 __count_vm_event(HTLB_BUDDY_PGALLOC);
726 } else {
727 h->nr_huge_pages--;
728 h->surplus_huge_pages--;
729 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
731 spin_unlock(&hugetlb_lock);
733 return page;
737 * Increase the hugetlb pool such that it can accomodate a reservation
738 * of size 'delta'.
740 static int gather_surplus_pages(struct hstate *h, int delta)
742 struct list_head surplus_list;
743 struct page *page, *tmp;
744 int ret, i;
745 int needed, allocated;
747 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
748 if (needed <= 0) {
749 h->resv_huge_pages += delta;
750 return 0;
753 allocated = 0;
754 INIT_LIST_HEAD(&surplus_list);
756 ret = -ENOMEM;
757 retry:
758 spin_unlock(&hugetlb_lock);
759 for (i = 0; i < needed; i++) {
760 page = alloc_buddy_huge_page(h, NULL, 0);
761 if (!page) {
763 * We were not able to allocate enough pages to
764 * satisfy the entire reservation so we free what
765 * we've allocated so far.
767 spin_lock(&hugetlb_lock);
768 needed = 0;
769 goto free;
772 list_add(&page->lru, &surplus_list);
774 allocated += needed;
777 * After retaking hugetlb_lock, we need to recalculate 'needed'
778 * because either resv_huge_pages or free_huge_pages may have changed.
780 spin_lock(&hugetlb_lock);
781 needed = (h->resv_huge_pages + delta) -
782 (h->free_huge_pages + allocated);
783 if (needed > 0)
784 goto retry;
787 * The surplus_list now contains _at_least_ the number of extra pages
788 * needed to accomodate the reservation. Add the appropriate number
789 * of pages to the hugetlb pool and free the extras back to the buddy
790 * allocator. Commit the entire reservation here to prevent another
791 * process from stealing the pages as they are added to the pool but
792 * before they are reserved.
794 needed += allocated;
795 h->resv_huge_pages += delta;
796 ret = 0;
797 free:
798 /* Free the needed pages to the hugetlb pool */
799 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
800 if ((--needed) < 0)
801 break;
802 list_del(&page->lru);
803 enqueue_huge_page(h, page);
806 /* Free unnecessary surplus pages to the buddy allocator */
807 if (!list_empty(&surplus_list)) {
808 spin_unlock(&hugetlb_lock);
809 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
810 list_del(&page->lru);
812 * The page has a reference count of zero already, so
813 * call free_huge_page directly instead of using
814 * put_page. This must be done with hugetlb_lock
815 * unlocked which is safe because free_huge_page takes
816 * hugetlb_lock before deciding how to free the page.
818 free_huge_page(page);
820 spin_lock(&hugetlb_lock);
823 return ret;
827 * When releasing a hugetlb pool reservation, any surplus pages that were
828 * allocated to satisfy the reservation must be explicitly freed if they were
829 * never used.
831 static void return_unused_surplus_pages(struct hstate *h,
832 unsigned long unused_resv_pages)
834 static int nid = -1;
835 struct page *page;
836 unsigned long nr_pages;
839 * We want to release as many surplus pages as possible, spread
840 * evenly across all nodes. Iterate across all nodes until we
841 * can no longer free unreserved surplus pages. This occurs when
842 * the nodes with surplus pages have no free pages.
844 unsigned long remaining_iterations = num_online_nodes();
846 /* Uncommit the reservation */
847 h->resv_huge_pages -= unused_resv_pages;
849 /* Cannot return gigantic pages currently */
850 if (h->order >= MAX_ORDER)
851 return;
853 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
855 while (remaining_iterations-- && nr_pages) {
856 nid = next_node(nid, node_online_map);
857 if (nid == MAX_NUMNODES)
858 nid = first_node(node_online_map);
860 if (!h->surplus_huge_pages_node[nid])
861 continue;
863 if (!list_empty(&h->hugepage_freelists[nid])) {
864 page = list_entry(h->hugepage_freelists[nid].next,
865 struct page, lru);
866 list_del(&page->lru);
867 update_and_free_page(h, page);
868 h->free_huge_pages--;
869 h->free_huge_pages_node[nid]--;
870 h->surplus_huge_pages--;
871 h->surplus_huge_pages_node[nid]--;
872 nr_pages--;
873 remaining_iterations = num_online_nodes();
879 * Determine if the huge page at addr within the vma has an associated
880 * reservation. Where it does not we will need to logically increase
881 * reservation and actually increase quota before an allocation can occur.
882 * Where any new reservation would be required the reservation change is
883 * prepared, but not committed. Once the page has been quota'd allocated
884 * an instantiated the change should be committed via vma_commit_reservation.
885 * No action is required on failure.
887 static int vma_needs_reservation(struct hstate *h,
888 struct vm_area_struct *vma, unsigned long addr)
890 struct address_space *mapping = vma->vm_file->f_mapping;
891 struct inode *inode = mapping->host;
893 if (vma->vm_flags & VM_SHARED) {
894 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
895 return region_chg(&inode->i_mapping->private_list,
896 idx, idx + 1);
898 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
899 return 1;
901 } else {
902 int err;
903 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
904 struct resv_map *reservations = vma_resv_map(vma);
906 err = region_chg(&reservations->regions, idx, idx + 1);
907 if (err < 0)
908 return err;
909 return 0;
912 static void vma_commit_reservation(struct hstate *h,
913 struct vm_area_struct *vma, unsigned long addr)
915 struct address_space *mapping = vma->vm_file->f_mapping;
916 struct inode *inode = mapping->host;
918 if (vma->vm_flags & VM_SHARED) {
919 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
920 region_add(&inode->i_mapping->private_list, idx, idx + 1);
922 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
923 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
924 struct resv_map *reservations = vma_resv_map(vma);
926 /* Mark this page used in the map. */
927 region_add(&reservations->regions, idx, idx + 1);
931 static struct page *alloc_huge_page(struct vm_area_struct *vma,
932 unsigned long addr, int avoid_reserve)
934 struct hstate *h = hstate_vma(vma);
935 struct page *page;
936 struct address_space *mapping = vma->vm_file->f_mapping;
937 struct inode *inode = mapping->host;
938 unsigned int chg;
941 * Processes that did not create the mapping will have no reserves and
942 * will not have accounted against quota. Check that the quota can be
943 * made before satisfying the allocation
944 * MAP_NORESERVE mappings may also need pages and quota allocated
945 * if no reserve mapping overlaps.
947 chg = vma_needs_reservation(h, vma, addr);
948 if (chg < 0)
949 return ERR_PTR(chg);
950 if (chg)
951 if (hugetlb_get_quota(inode->i_mapping, chg))
952 return ERR_PTR(-ENOSPC);
954 spin_lock(&hugetlb_lock);
955 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
956 spin_unlock(&hugetlb_lock);
958 if (!page) {
959 page = alloc_buddy_huge_page(h, vma, addr);
960 if (!page) {
961 hugetlb_put_quota(inode->i_mapping, chg);
962 return ERR_PTR(-VM_FAULT_OOM);
966 set_page_refcounted(page);
967 set_page_private(page, (unsigned long) mapping);
969 vma_commit_reservation(h, vma, addr);
971 return page;
974 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
976 struct huge_bootmem_page *m;
977 int nr_nodes = nodes_weight(node_online_map);
979 while (nr_nodes) {
980 void *addr;
982 addr = __alloc_bootmem_node_nopanic(
983 NODE_DATA(h->hugetlb_next_nid),
984 huge_page_size(h), huge_page_size(h), 0);
986 if (addr) {
988 * Use the beginning of the huge page to store the
989 * huge_bootmem_page struct (until gather_bootmem
990 * puts them into the mem_map).
992 m = addr;
993 if (m)
994 goto found;
996 hstate_next_node(h);
997 nr_nodes--;
999 return 0;
1001 found:
1002 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1003 /* Put them into a private list first because mem_map is not up yet */
1004 list_add(&m->list, &huge_boot_pages);
1005 m->hstate = h;
1006 return 1;
1009 static void prep_compound_huge_page(struct page *page, int order)
1011 if (unlikely(order > (MAX_ORDER - 1)))
1012 prep_compound_gigantic_page(page, order);
1013 else
1014 prep_compound_page(page, order);
1017 /* Put bootmem huge pages into the standard lists after mem_map is up */
1018 static void __init gather_bootmem_prealloc(void)
1020 struct huge_bootmem_page *m;
1022 list_for_each_entry(m, &huge_boot_pages, list) {
1023 struct page *page = virt_to_page(m);
1024 struct hstate *h = m->hstate;
1025 __ClearPageReserved(page);
1026 WARN_ON(page_count(page) != 1);
1027 prep_compound_huge_page(page, h->order);
1028 prep_new_huge_page(h, page, page_to_nid(page));
1032 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1034 unsigned long i;
1036 for (i = 0; i < h->max_huge_pages; ++i) {
1037 if (h->order >= MAX_ORDER) {
1038 if (!alloc_bootmem_huge_page(h))
1039 break;
1040 } else if (!alloc_fresh_huge_page(h))
1041 break;
1043 h->max_huge_pages = i;
1046 static void __init hugetlb_init_hstates(void)
1048 struct hstate *h;
1050 for_each_hstate(h) {
1051 /* oversize hugepages were init'ed in early boot */
1052 if (h->order < MAX_ORDER)
1053 hugetlb_hstate_alloc_pages(h);
1057 static char * __init memfmt(char *buf, unsigned long n)
1059 if (n >= (1UL << 30))
1060 sprintf(buf, "%lu GB", n >> 30);
1061 else if (n >= (1UL << 20))
1062 sprintf(buf, "%lu MB", n >> 20);
1063 else
1064 sprintf(buf, "%lu KB", n >> 10);
1065 return buf;
1068 static void __init report_hugepages(void)
1070 struct hstate *h;
1072 for_each_hstate(h) {
1073 char buf[32];
1074 printk(KERN_INFO "HugeTLB registered %s page size, "
1075 "pre-allocated %ld pages\n",
1076 memfmt(buf, huge_page_size(h)),
1077 h->free_huge_pages);
1081 #ifdef CONFIG_HIGHMEM
1082 static void try_to_free_low(struct hstate *h, unsigned long count)
1084 int i;
1086 if (h->order >= MAX_ORDER)
1087 return;
1089 for (i = 0; i < MAX_NUMNODES; ++i) {
1090 struct page *page, *next;
1091 struct list_head *freel = &h->hugepage_freelists[i];
1092 list_for_each_entry_safe(page, next, freel, lru) {
1093 if (count >= h->nr_huge_pages)
1094 return;
1095 if (PageHighMem(page))
1096 continue;
1097 list_del(&page->lru);
1098 update_and_free_page(h, page);
1099 h->free_huge_pages--;
1100 h->free_huge_pages_node[page_to_nid(page)]--;
1104 #else
1105 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1108 #endif
1110 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1111 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1113 unsigned long min_count, ret;
1115 if (h->order >= MAX_ORDER)
1116 return h->max_huge_pages;
1119 * Increase the pool size
1120 * First take pages out of surplus state. Then make up the
1121 * remaining difference by allocating fresh huge pages.
1123 * We might race with alloc_buddy_huge_page() here and be unable
1124 * to convert a surplus huge page to a normal huge page. That is
1125 * not critical, though, it just means the overall size of the
1126 * pool might be one hugepage larger than it needs to be, but
1127 * within all the constraints specified by the sysctls.
1129 spin_lock(&hugetlb_lock);
1130 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1131 if (!adjust_pool_surplus(h, -1))
1132 break;
1135 while (count > persistent_huge_pages(h)) {
1137 * If this allocation races such that we no longer need the
1138 * page, free_huge_page will handle it by freeing the page
1139 * and reducing the surplus.
1141 spin_unlock(&hugetlb_lock);
1142 ret = alloc_fresh_huge_page(h);
1143 spin_lock(&hugetlb_lock);
1144 if (!ret)
1145 goto out;
1150 * Decrease the pool size
1151 * First return free pages to the buddy allocator (being careful
1152 * to keep enough around to satisfy reservations). Then place
1153 * pages into surplus state as needed so the pool will shrink
1154 * to the desired size as pages become free.
1156 * By placing pages into the surplus state independent of the
1157 * overcommit value, we are allowing the surplus pool size to
1158 * exceed overcommit. There are few sane options here. Since
1159 * alloc_buddy_huge_page() is checking the global counter,
1160 * though, we'll note that we're not allowed to exceed surplus
1161 * and won't grow the pool anywhere else. Not until one of the
1162 * sysctls are changed, or the surplus pages go out of use.
1164 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1165 min_count = max(count, min_count);
1166 try_to_free_low(h, min_count);
1167 while (min_count < persistent_huge_pages(h)) {
1168 struct page *page = dequeue_huge_page(h);
1169 if (!page)
1170 break;
1171 update_and_free_page(h, page);
1173 while (count < persistent_huge_pages(h)) {
1174 if (!adjust_pool_surplus(h, 1))
1175 break;
1177 out:
1178 ret = persistent_huge_pages(h);
1179 spin_unlock(&hugetlb_lock);
1180 return ret;
1183 #define HSTATE_ATTR_RO(_name) \
1184 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1186 #define HSTATE_ATTR(_name) \
1187 static struct kobj_attribute _name##_attr = \
1188 __ATTR(_name, 0644, _name##_show, _name##_store)
1190 static struct kobject *hugepages_kobj;
1191 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1193 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1195 int i;
1196 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1197 if (hstate_kobjs[i] == kobj)
1198 return &hstates[i];
1199 BUG();
1200 return NULL;
1203 static ssize_t nr_hugepages_show(struct kobject *kobj,
1204 struct kobj_attribute *attr, char *buf)
1206 struct hstate *h = kobj_to_hstate(kobj);
1207 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1209 static ssize_t nr_hugepages_store(struct kobject *kobj,
1210 struct kobj_attribute *attr, const char *buf, size_t count)
1212 int err;
1213 unsigned long input;
1214 struct hstate *h = kobj_to_hstate(kobj);
1216 err = strict_strtoul(buf, 10, &input);
1217 if (err)
1218 return 0;
1220 h->max_huge_pages = set_max_huge_pages(h, input);
1222 return count;
1224 HSTATE_ATTR(nr_hugepages);
1226 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1227 struct kobj_attribute *attr, char *buf)
1229 struct hstate *h = kobj_to_hstate(kobj);
1230 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1232 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1233 struct kobj_attribute *attr, const char *buf, size_t count)
1235 int err;
1236 unsigned long input;
1237 struct hstate *h = kobj_to_hstate(kobj);
1239 err = strict_strtoul(buf, 10, &input);
1240 if (err)
1241 return 0;
1243 spin_lock(&hugetlb_lock);
1244 h->nr_overcommit_huge_pages = input;
1245 spin_unlock(&hugetlb_lock);
1247 return count;
1249 HSTATE_ATTR(nr_overcommit_hugepages);
1251 static ssize_t free_hugepages_show(struct kobject *kobj,
1252 struct kobj_attribute *attr, char *buf)
1254 struct hstate *h = kobj_to_hstate(kobj);
1255 return sprintf(buf, "%lu\n", h->free_huge_pages);
1257 HSTATE_ATTR_RO(free_hugepages);
1259 static ssize_t resv_hugepages_show(struct kobject *kobj,
1260 struct kobj_attribute *attr, char *buf)
1262 struct hstate *h = kobj_to_hstate(kobj);
1263 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1265 HSTATE_ATTR_RO(resv_hugepages);
1267 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1268 struct kobj_attribute *attr, char *buf)
1270 struct hstate *h = kobj_to_hstate(kobj);
1271 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1273 HSTATE_ATTR_RO(surplus_hugepages);
1275 static struct attribute *hstate_attrs[] = {
1276 &nr_hugepages_attr.attr,
1277 &nr_overcommit_hugepages_attr.attr,
1278 &free_hugepages_attr.attr,
1279 &resv_hugepages_attr.attr,
1280 &surplus_hugepages_attr.attr,
1281 NULL,
1284 static struct attribute_group hstate_attr_group = {
1285 .attrs = hstate_attrs,
1288 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1290 int retval;
1292 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1293 hugepages_kobj);
1294 if (!hstate_kobjs[h - hstates])
1295 return -ENOMEM;
1297 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1298 &hstate_attr_group);
1299 if (retval)
1300 kobject_put(hstate_kobjs[h - hstates]);
1302 return retval;
1305 static void __init hugetlb_sysfs_init(void)
1307 struct hstate *h;
1308 int err;
1310 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1311 if (!hugepages_kobj)
1312 return;
1314 for_each_hstate(h) {
1315 err = hugetlb_sysfs_add_hstate(h);
1316 if (err)
1317 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1318 h->name);
1322 static void __exit hugetlb_exit(void)
1324 struct hstate *h;
1326 for_each_hstate(h) {
1327 kobject_put(hstate_kobjs[h - hstates]);
1330 kobject_put(hugepages_kobj);
1332 module_exit(hugetlb_exit);
1334 static int __init hugetlb_init(void)
1336 /* Some platform decide whether they support huge pages at boot
1337 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1338 * there is no such support
1340 if (HPAGE_SHIFT == 0)
1341 return 0;
1343 if (!size_to_hstate(default_hstate_size)) {
1344 default_hstate_size = HPAGE_SIZE;
1345 if (!size_to_hstate(default_hstate_size))
1346 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1348 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1349 if (default_hstate_max_huge_pages)
1350 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1352 hugetlb_init_hstates();
1354 gather_bootmem_prealloc();
1356 report_hugepages();
1358 hugetlb_sysfs_init();
1360 return 0;
1362 module_init(hugetlb_init);
1364 /* Should be called on processing a hugepagesz=... option */
1365 void __init hugetlb_add_hstate(unsigned order)
1367 struct hstate *h;
1368 unsigned long i;
1370 if (size_to_hstate(PAGE_SIZE << order)) {
1371 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1372 return;
1374 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1375 BUG_ON(order == 0);
1376 h = &hstates[max_hstate++];
1377 h->order = order;
1378 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1379 h->nr_huge_pages = 0;
1380 h->free_huge_pages = 0;
1381 for (i = 0; i < MAX_NUMNODES; ++i)
1382 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1383 h->hugetlb_next_nid = first_node(node_online_map);
1384 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1385 huge_page_size(h)/1024);
1387 parsed_hstate = h;
1390 static int __init hugetlb_nrpages_setup(char *s)
1392 unsigned long *mhp;
1393 static unsigned long *last_mhp;
1396 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1397 * so this hugepages= parameter goes to the "default hstate".
1399 if (!max_hstate)
1400 mhp = &default_hstate_max_huge_pages;
1401 else
1402 mhp = &parsed_hstate->max_huge_pages;
1404 if (mhp == last_mhp) {
1405 printk(KERN_WARNING "hugepages= specified twice without "
1406 "interleaving hugepagesz=, ignoring\n");
1407 return 1;
1410 if (sscanf(s, "%lu", mhp) <= 0)
1411 *mhp = 0;
1414 * Global state is always initialized later in hugetlb_init.
1415 * But we need to allocate >= MAX_ORDER hstates here early to still
1416 * use the bootmem allocator.
1418 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1419 hugetlb_hstate_alloc_pages(parsed_hstate);
1421 last_mhp = mhp;
1423 return 1;
1425 __setup("hugepages=", hugetlb_nrpages_setup);
1427 static int __init hugetlb_default_setup(char *s)
1429 default_hstate_size = memparse(s, &s);
1430 return 1;
1432 __setup("default_hugepagesz=", hugetlb_default_setup);
1434 static unsigned int cpuset_mems_nr(unsigned int *array)
1436 int node;
1437 unsigned int nr = 0;
1439 for_each_node_mask(node, cpuset_current_mems_allowed)
1440 nr += array[node];
1442 return nr;
1445 #ifdef CONFIG_SYSCTL
1446 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1447 struct file *file, void __user *buffer,
1448 size_t *length, loff_t *ppos)
1450 struct hstate *h = &default_hstate;
1451 unsigned long tmp;
1453 if (!write)
1454 tmp = h->max_huge_pages;
1456 table->data = &tmp;
1457 table->maxlen = sizeof(unsigned long);
1458 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1460 if (write)
1461 h->max_huge_pages = set_max_huge_pages(h, tmp);
1463 return 0;
1466 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1467 struct file *file, void __user *buffer,
1468 size_t *length, loff_t *ppos)
1470 proc_dointvec(table, write, file, buffer, length, ppos);
1471 if (hugepages_treat_as_movable)
1472 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1473 else
1474 htlb_alloc_mask = GFP_HIGHUSER;
1475 return 0;
1478 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1479 struct file *file, void __user *buffer,
1480 size_t *length, loff_t *ppos)
1482 struct hstate *h = &default_hstate;
1483 unsigned long tmp;
1485 if (!write)
1486 tmp = h->nr_overcommit_huge_pages;
1488 table->data = &tmp;
1489 table->maxlen = sizeof(unsigned long);
1490 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1492 if (write) {
1493 spin_lock(&hugetlb_lock);
1494 h->nr_overcommit_huge_pages = tmp;
1495 spin_unlock(&hugetlb_lock);
1498 return 0;
1501 #endif /* CONFIG_SYSCTL */
1503 int hugetlb_report_meminfo(char *buf)
1505 struct hstate *h = &default_hstate;
1506 return sprintf(buf,
1507 "HugePages_Total: %5lu\n"
1508 "HugePages_Free: %5lu\n"
1509 "HugePages_Rsvd: %5lu\n"
1510 "HugePages_Surp: %5lu\n"
1511 "Hugepagesize: %5lu kB\n",
1512 h->nr_huge_pages,
1513 h->free_huge_pages,
1514 h->resv_huge_pages,
1515 h->surplus_huge_pages,
1516 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1519 int hugetlb_report_node_meminfo(int nid, char *buf)
1521 struct hstate *h = &default_hstate;
1522 return sprintf(buf,
1523 "Node %d HugePages_Total: %5u\n"
1524 "Node %d HugePages_Free: %5u\n"
1525 "Node %d HugePages_Surp: %5u\n",
1526 nid, h->nr_huge_pages_node[nid],
1527 nid, h->free_huge_pages_node[nid],
1528 nid, h->surplus_huge_pages_node[nid]);
1531 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1532 unsigned long hugetlb_total_pages(void)
1534 struct hstate *h = &default_hstate;
1535 return h->nr_huge_pages * pages_per_huge_page(h);
1538 static int hugetlb_acct_memory(struct hstate *h, long delta)
1540 int ret = -ENOMEM;
1542 spin_lock(&hugetlb_lock);
1544 * When cpuset is configured, it breaks the strict hugetlb page
1545 * reservation as the accounting is done on a global variable. Such
1546 * reservation is completely rubbish in the presence of cpuset because
1547 * the reservation is not checked against page availability for the
1548 * current cpuset. Application can still potentially OOM'ed by kernel
1549 * with lack of free htlb page in cpuset that the task is in.
1550 * Attempt to enforce strict accounting with cpuset is almost
1551 * impossible (or too ugly) because cpuset is too fluid that
1552 * task or memory node can be dynamically moved between cpusets.
1554 * The change of semantics for shared hugetlb mapping with cpuset is
1555 * undesirable. However, in order to preserve some of the semantics,
1556 * we fall back to check against current free page availability as
1557 * a best attempt and hopefully to minimize the impact of changing
1558 * semantics that cpuset has.
1560 if (delta > 0) {
1561 if (gather_surplus_pages(h, delta) < 0)
1562 goto out;
1564 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1565 return_unused_surplus_pages(h, delta);
1566 goto out;
1570 ret = 0;
1571 if (delta < 0)
1572 return_unused_surplus_pages(h, (unsigned long) -delta);
1574 out:
1575 spin_unlock(&hugetlb_lock);
1576 return ret;
1579 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1581 struct resv_map *reservations = vma_resv_map(vma);
1584 * This new VMA should share its siblings reservation map if present.
1585 * The VMA will only ever have a valid reservation map pointer where
1586 * it is being copied for another still existing VMA. As that VMA
1587 * has a reference to the reservation map it cannot dissappear until
1588 * after this open call completes. It is therefore safe to take a
1589 * new reference here without additional locking.
1591 if (reservations)
1592 kref_get(&reservations->refs);
1595 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1597 struct hstate *h = hstate_vma(vma);
1598 struct resv_map *reservations = vma_resv_map(vma);
1599 unsigned long reserve;
1600 unsigned long start;
1601 unsigned long end;
1603 if (reservations) {
1604 start = vma_hugecache_offset(h, vma, vma->vm_start);
1605 end = vma_hugecache_offset(h, vma, vma->vm_end);
1607 reserve = (end - start) -
1608 region_count(&reservations->regions, start, end);
1610 kref_put(&reservations->refs, resv_map_release);
1612 if (reserve) {
1613 hugetlb_acct_memory(h, -reserve);
1614 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1620 * We cannot handle pagefaults against hugetlb pages at all. They cause
1621 * handle_mm_fault() to try to instantiate regular-sized pages in the
1622 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1623 * this far.
1625 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1627 BUG();
1628 return 0;
1631 struct vm_operations_struct hugetlb_vm_ops = {
1632 .fault = hugetlb_vm_op_fault,
1633 .open = hugetlb_vm_op_open,
1634 .close = hugetlb_vm_op_close,
1637 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1638 int writable)
1640 pte_t entry;
1642 if (writable) {
1643 entry =
1644 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1645 } else {
1646 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1648 entry = pte_mkyoung(entry);
1649 entry = pte_mkhuge(entry);
1651 return entry;
1654 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1655 unsigned long address, pte_t *ptep)
1657 pte_t entry;
1659 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1660 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1661 update_mmu_cache(vma, address, entry);
1666 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1667 struct vm_area_struct *vma)
1669 pte_t *src_pte, *dst_pte, entry;
1670 struct page *ptepage;
1671 unsigned long addr;
1672 int cow;
1673 struct hstate *h = hstate_vma(vma);
1674 unsigned long sz = huge_page_size(h);
1676 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1678 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1679 src_pte = huge_pte_offset(src, addr);
1680 if (!src_pte)
1681 continue;
1682 dst_pte = huge_pte_alloc(dst, addr, sz);
1683 if (!dst_pte)
1684 goto nomem;
1686 /* If the pagetables are shared don't copy or take references */
1687 if (dst_pte == src_pte)
1688 continue;
1690 spin_lock(&dst->page_table_lock);
1691 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1692 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1693 if (cow)
1694 huge_ptep_set_wrprotect(src, addr, src_pte);
1695 entry = huge_ptep_get(src_pte);
1696 ptepage = pte_page(entry);
1697 get_page(ptepage);
1698 set_huge_pte_at(dst, addr, dst_pte, entry);
1700 spin_unlock(&src->page_table_lock);
1701 spin_unlock(&dst->page_table_lock);
1703 return 0;
1705 nomem:
1706 return -ENOMEM;
1709 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1710 unsigned long end, struct page *ref_page)
1712 struct mm_struct *mm = vma->vm_mm;
1713 unsigned long address;
1714 pte_t *ptep;
1715 pte_t pte;
1716 struct page *page;
1717 struct page *tmp;
1718 struct hstate *h = hstate_vma(vma);
1719 unsigned long sz = huge_page_size(h);
1722 * A page gathering list, protected by per file i_mmap_lock. The
1723 * lock is used to avoid list corruption from multiple unmapping
1724 * of the same page since we are using page->lru.
1726 LIST_HEAD(page_list);
1728 WARN_ON(!is_vm_hugetlb_page(vma));
1729 BUG_ON(start & ~huge_page_mask(h));
1730 BUG_ON(end & ~huge_page_mask(h));
1732 mmu_notifier_invalidate_range_start(mm, start, end);
1733 spin_lock(&mm->page_table_lock);
1734 for (address = start; address < end; address += sz) {
1735 ptep = huge_pte_offset(mm, address);
1736 if (!ptep)
1737 continue;
1739 if (huge_pmd_unshare(mm, &address, ptep))
1740 continue;
1743 * If a reference page is supplied, it is because a specific
1744 * page is being unmapped, not a range. Ensure the page we
1745 * are about to unmap is the actual page of interest.
1747 if (ref_page) {
1748 pte = huge_ptep_get(ptep);
1749 if (huge_pte_none(pte))
1750 continue;
1751 page = pte_page(pte);
1752 if (page != ref_page)
1753 continue;
1756 * Mark the VMA as having unmapped its page so that
1757 * future faults in this VMA will fail rather than
1758 * looking like data was lost
1760 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1763 pte = huge_ptep_get_and_clear(mm, address, ptep);
1764 if (huge_pte_none(pte))
1765 continue;
1767 page = pte_page(pte);
1768 if (pte_dirty(pte))
1769 set_page_dirty(page);
1770 list_add(&page->lru, &page_list);
1772 spin_unlock(&mm->page_table_lock);
1773 flush_tlb_range(vma, start, end);
1774 mmu_notifier_invalidate_range_end(mm, start, end);
1775 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1776 list_del(&page->lru);
1777 put_page(page);
1781 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1782 unsigned long end, struct page *ref_page)
1784 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1785 __unmap_hugepage_range(vma, start, end, ref_page);
1786 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1790 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1791 * mappping it owns the reserve page for. The intention is to unmap the page
1792 * from other VMAs and let the children be SIGKILLed if they are faulting the
1793 * same region.
1795 int unmap_ref_private(struct mm_struct *mm,
1796 struct vm_area_struct *vma,
1797 struct page *page,
1798 unsigned long address)
1800 struct hstate *h = hstate_vma(vma);
1801 struct vm_area_struct *iter_vma;
1802 struct address_space *mapping;
1803 struct prio_tree_iter iter;
1804 pgoff_t pgoff;
1807 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1808 * from page cache lookup which is in HPAGE_SIZE units.
1810 address = address & huge_page_mask(h);
1811 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1812 + (vma->vm_pgoff >> PAGE_SHIFT);
1813 mapping = (struct address_space *)page_private(page);
1815 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1816 /* Do not unmap the current VMA */
1817 if (iter_vma == vma)
1818 continue;
1821 * Unmap the page from other VMAs without their own reserves.
1822 * They get marked to be SIGKILLed if they fault in these
1823 * areas. This is because a future no-page fault on this VMA
1824 * could insert a zeroed page instead of the data existing
1825 * from the time of fork. This would look like data corruption
1827 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1828 unmap_hugepage_range(iter_vma,
1829 address, address + huge_page_size(h),
1830 page);
1833 return 1;
1836 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1837 unsigned long address, pte_t *ptep, pte_t pte,
1838 struct page *pagecache_page)
1840 struct hstate *h = hstate_vma(vma);
1841 struct page *old_page, *new_page;
1842 int avoidcopy;
1843 int outside_reserve = 0;
1845 old_page = pte_page(pte);
1847 retry_avoidcopy:
1848 /* If no-one else is actually using this page, avoid the copy
1849 * and just make the page writable */
1850 avoidcopy = (page_count(old_page) == 1);
1851 if (avoidcopy) {
1852 set_huge_ptep_writable(vma, address, ptep);
1853 return 0;
1857 * If the process that created a MAP_PRIVATE mapping is about to
1858 * perform a COW due to a shared page count, attempt to satisfy
1859 * the allocation without using the existing reserves. The pagecache
1860 * page is used to determine if the reserve at this address was
1861 * consumed or not. If reserves were used, a partial faulted mapping
1862 * at the time of fork() could consume its reserves on COW instead
1863 * of the full address range.
1865 if (!(vma->vm_flags & VM_SHARED) &&
1866 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1867 old_page != pagecache_page)
1868 outside_reserve = 1;
1870 page_cache_get(old_page);
1871 new_page = alloc_huge_page(vma, address, outside_reserve);
1873 if (IS_ERR(new_page)) {
1874 page_cache_release(old_page);
1877 * If a process owning a MAP_PRIVATE mapping fails to COW,
1878 * it is due to references held by a child and an insufficient
1879 * huge page pool. To guarantee the original mappers
1880 * reliability, unmap the page from child processes. The child
1881 * may get SIGKILLed if it later faults.
1883 if (outside_reserve) {
1884 BUG_ON(huge_pte_none(pte));
1885 if (unmap_ref_private(mm, vma, old_page, address)) {
1886 BUG_ON(page_count(old_page) != 1);
1887 BUG_ON(huge_pte_none(pte));
1888 goto retry_avoidcopy;
1890 WARN_ON_ONCE(1);
1893 return -PTR_ERR(new_page);
1896 spin_unlock(&mm->page_table_lock);
1897 copy_huge_page(new_page, old_page, address, vma);
1898 __SetPageUptodate(new_page);
1899 spin_lock(&mm->page_table_lock);
1901 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1902 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1903 /* Break COW */
1904 huge_ptep_clear_flush(vma, address, ptep);
1905 set_huge_pte_at(mm, address, ptep,
1906 make_huge_pte(vma, new_page, 1));
1907 /* Make the old page be freed below */
1908 new_page = old_page;
1910 page_cache_release(new_page);
1911 page_cache_release(old_page);
1912 return 0;
1915 /* Return the pagecache page at a given address within a VMA */
1916 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1917 struct vm_area_struct *vma, unsigned long address)
1919 struct address_space *mapping;
1920 pgoff_t idx;
1922 mapping = vma->vm_file->f_mapping;
1923 idx = vma_hugecache_offset(h, vma, address);
1925 return find_lock_page(mapping, idx);
1928 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1929 unsigned long address, pte_t *ptep, int write_access)
1931 struct hstate *h = hstate_vma(vma);
1932 int ret = VM_FAULT_SIGBUS;
1933 pgoff_t idx;
1934 unsigned long size;
1935 struct page *page;
1936 struct address_space *mapping;
1937 pte_t new_pte;
1940 * Currently, we are forced to kill the process in the event the
1941 * original mapper has unmapped pages from the child due to a failed
1942 * COW. Warn that such a situation has occured as it may not be obvious
1944 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1945 printk(KERN_WARNING
1946 "PID %d killed due to inadequate hugepage pool\n",
1947 current->pid);
1948 return ret;
1951 mapping = vma->vm_file->f_mapping;
1952 idx = vma_hugecache_offset(h, vma, address);
1955 * Use page lock to guard against racing truncation
1956 * before we get page_table_lock.
1958 retry:
1959 page = find_lock_page(mapping, idx);
1960 if (!page) {
1961 size = i_size_read(mapping->host) >> huge_page_shift(h);
1962 if (idx >= size)
1963 goto out;
1964 page = alloc_huge_page(vma, address, 0);
1965 if (IS_ERR(page)) {
1966 ret = -PTR_ERR(page);
1967 goto out;
1969 clear_huge_page(page, address, huge_page_size(h));
1970 __SetPageUptodate(page);
1972 if (vma->vm_flags & VM_SHARED) {
1973 int err;
1974 struct inode *inode = mapping->host;
1976 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1977 if (err) {
1978 put_page(page);
1979 if (err == -EEXIST)
1980 goto retry;
1981 goto out;
1984 spin_lock(&inode->i_lock);
1985 inode->i_blocks += blocks_per_huge_page(h);
1986 spin_unlock(&inode->i_lock);
1987 } else
1988 lock_page(page);
1992 * If we are going to COW a private mapping later, we examine the
1993 * pending reservations for this page now. This will ensure that
1994 * any allocations necessary to record that reservation occur outside
1995 * the spinlock.
1997 if (write_access && !(vma->vm_flags & VM_SHARED))
1998 if (vma_needs_reservation(h, vma, address) < 0) {
1999 ret = VM_FAULT_OOM;
2000 goto backout_unlocked;
2003 spin_lock(&mm->page_table_lock);
2004 size = i_size_read(mapping->host) >> huge_page_shift(h);
2005 if (idx >= size)
2006 goto backout;
2008 ret = 0;
2009 if (!huge_pte_none(huge_ptep_get(ptep)))
2010 goto backout;
2012 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2013 && (vma->vm_flags & VM_SHARED)));
2014 set_huge_pte_at(mm, address, ptep, new_pte);
2016 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2017 /* Optimization, do the COW without a second fault */
2018 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2021 spin_unlock(&mm->page_table_lock);
2022 unlock_page(page);
2023 out:
2024 return ret;
2026 backout:
2027 spin_unlock(&mm->page_table_lock);
2028 backout_unlocked:
2029 unlock_page(page);
2030 put_page(page);
2031 goto out;
2034 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2035 unsigned long address, int write_access)
2037 pte_t *ptep;
2038 pte_t entry;
2039 int ret;
2040 struct page *pagecache_page = NULL;
2041 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2042 struct hstate *h = hstate_vma(vma);
2044 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2045 if (!ptep)
2046 return VM_FAULT_OOM;
2049 * Serialize hugepage allocation and instantiation, so that we don't
2050 * get spurious allocation failures if two CPUs race to instantiate
2051 * the same page in the page cache.
2053 mutex_lock(&hugetlb_instantiation_mutex);
2054 entry = huge_ptep_get(ptep);
2055 if (huge_pte_none(entry)) {
2056 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2057 goto out_unlock;
2060 ret = 0;
2063 * If we are going to COW the mapping later, we examine the pending
2064 * reservations for this page now. This will ensure that any
2065 * allocations necessary to record that reservation occur outside the
2066 * spinlock. For private mappings, we also lookup the pagecache
2067 * page now as it is used to determine if a reservation has been
2068 * consumed.
2070 if (write_access && !pte_write(entry)) {
2071 if (vma_needs_reservation(h, vma, address) < 0) {
2072 ret = VM_FAULT_OOM;
2073 goto out_unlock;
2076 if (!(vma->vm_flags & VM_SHARED))
2077 pagecache_page = hugetlbfs_pagecache_page(h,
2078 vma, address);
2081 spin_lock(&mm->page_table_lock);
2082 /* Check for a racing update before calling hugetlb_cow */
2083 if (likely(pte_same(entry, huge_ptep_get(ptep))))
2084 if (write_access && !pte_write(entry))
2085 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2086 pagecache_page);
2087 spin_unlock(&mm->page_table_lock);
2089 if (pagecache_page) {
2090 unlock_page(pagecache_page);
2091 put_page(pagecache_page);
2094 out_unlock:
2095 mutex_unlock(&hugetlb_instantiation_mutex);
2097 return ret;
2100 /* Can be overriden by architectures */
2101 __attribute__((weak)) struct page *
2102 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2103 pud_t *pud, int write)
2105 BUG();
2106 return NULL;
2109 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2110 struct page **pages, struct vm_area_struct **vmas,
2111 unsigned long *position, int *length, int i,
2112 int write)
2114 unsigned long pfn_offset;
2115 unsigned long vaddr = *position;
2116 int remainder = *length;
2117 struct hstate *h = hstate_vma(vma);
2119 spin_lock(&mm->page_table_lock);
2120 while (vaddr < vma->vm_end && remainder) {
2121 pte_t *pte;
2122 struct page *page;
2125 * Some archs (sparc64, sh*) have multiple pte_ts to
2126 * each hugepage. We have to make * sure we get the
2127 * first, for the page indexing below to work.
2129 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2131 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2132 (write && !pte_write(huge_ptep_get(pte)))) {
2133 int ret;
2135 spin_unlock(&mm->page_table_lock);
2136 ret = hugetlb_fault(mm, vma, vaddr, write);
2137 spin_lock(&mm->page_table_lock);
2138 if (!(ret & VM_FAULT_ERROR))
2139 continue;
2141 remainder = 0;
2142 if (!i)
2143 i = -EFAULT;
2144 break;
2147 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2148 page = pte_page(huge_ptep_get(pte));
2149 same_page:
2150 if (pages) {
2151 get_page(page);
2152 pages[i] = mem_map_offset(page, pfn_offset);
2155 if (vmas)
2156 vmas[i] = vma;
2158 vaddr += PAGE_SIZE;
2159 ++pfn_offset;
2160 --remainder;
2161 ++i;
2162 if (vaddr < vma->vm_end && remainder &&
2163 pfn_offset < pages_per_huge_page(h)) {
2165 * We use pfn_offset to avoid touching the pageframes
2166 * of this compound page.
2168 goto same_page;
2171 spin_unlock(&mm->page_table_lock);
2172 *length = remainder;
2173 *position = vaddr;
2175 return i;
2178 void hugetlb_change_protection(struct vm_area_struct *vma,
2179 unsigned long address, unsigned long end, pgprot_t newprot)
2181 struct mm_struct *mm = vma->vm_mm;
2182 unsigned long start = address;
2183 pte_t *ptep;
2184 pte_t pte;
2185 struct hstate *h = hstate_vma(vma);
2187 BUG_ON(address >= end);
2188 flush_cache_range(vma, address, end);
2190 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2191 spin_lock(&mm->page_table_lock);
2192 for (; address < end; address += huge_page_size(h)) {
2193 ptep = huge_pte_offset(mm, address);
2194 if (!ptep)
2195 continue;
2196 if (huge_pmd_unshare(mm, &address, ptep))
2197 continue;
2198 if (!huge_pte_none(huge_ptep_get(ptep))) {
2199 pte = huge_ptep_get_and_clear(mm, address, ptep);
2200 pte = pte_mkhuge(pte_modify(pte, newprot));
2201 set_huge_pte_at(mm, address, ptep, pte);
2204 spin_unlock(&mm->page_table_lock);
2205 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2207 flush_tlb_range(vma, start, end);
2210 int hugetlb_reserve_pages(struct inode *inode,
2211 long from, long to,
2212 struct vm_area_struct *vma)
2214 long ret, chg;
2215 struct hstate *h = hstate_inode(inode);
2217 if (vma && vma->vm_flags & VM_NORESERVE)
2218 return 0;
2221 * Shared mappings base their reservation on the number of pages that
2222 * are already allocated on behalf of the file. Private mappings need
2223 * to reserve the full area even if read-only as mprotect() may be
2224 * called to make the mapping read-write. Assume !vma is a shm mapping
2226 if (!vma || vma->vm_flags & VM_SHARED)
2227 chg = region_chg(&inode->i_mapping->private_list, from, to);
2228 else {
2229 struct resv_map *resv_map = resv_map_alloc();
2230 if (!resv_map)
2231 return -ENOMEM;
2233 chg = to - from;
2235 set_vma_resv_map(vma, resv_map);
2236 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2239 if (chg < 0)
2240 return chg;
2242 if (hugetlb_get_quota(inode->i_mapping, chg))
2243 return -ENOSPC;
2244 ret = hugetlb_acct_memory(h, chg);
2245 if (ret < 0) {
2246 hugetlb_put_quota(inode->i_mapping, chg);
2247 return ret;
2249 if (!vma || vma->vm_flags & VM_SHARED)
2250 region_add(&inode->i_mapping->private_list, from, to);
2251 return 0;
2254 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2256 struct hstate *h = hstate_inode(inode);
2257 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2259 spin_lock(&inode->i_lock);
2260 inode->i_blocks -= blocks_per_huge_page(h);
2261 spin_unlock(&inode->i_lock);
2263 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2264 hugetlb_acct_memory(h, -(chg - freed));