2 * POWERNV cpufreq driver for the IBM POWER processors
4 * (C) Copyright IBM 2014
6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <linux/timer.h>
41 #define POWERNV_MAX_PSTATES 256
42 #define PMSR_PSAFE_ENABLE (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE (1UL << 31)
44 #define MAX_PSTATE_SHIFT 32
45 #define LPSTATE_SHIFT 48
46 #define GPSTATE_SHIFT 56
48 #define MAX_RAMP_DOWN_TIME 5120
50 * On an idle system we want the global pstate to ramp-down from max value to
51 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
52 * then ramp-down rapidly later on.
54 * This gives a percentage rampdown for time elapsed in milliseconds.
55 * ramp_down_percentage = ((ms * ms) >> 18)
56 * ~= 3.8 * (sec * sec)
58 * At 0 ms ramp_down_percent = 0
59 * At 5120 ms ramp_down_percent = 100
61 #define ramp_down_percent(time) ((time * time) >> 18)
63 /* Interval after which the timer is queued to bring down global pstate */
64 #define GPSTATE_TIMER_INTERVAL 2000
67 * struct global_pstate_info - Per policy data structure to maintain history of
69 * @highest_lpstate_idx: The local pstate index from which we are
71 * @elapsed_time: Time in ms spent in ramping down from
73 * @last_sampled_time: Time from boot in ms when global pstates were
75 * @last_lpstate_idx, Last set value of local pstate and global
76 * last_gpstate_idx pstate in terms of cpufreq table index
77 * @timer: Is used for ramping down if cpu goes idle for
78 * a long time with global pstate held high
79 * @gpstate_lock: A spinlock to maintain synchronization between
80 * routines called by the timer handler and
81 * governer's target_index calls
83 struct global_pstate_info
{
84 int highest_lpstate_idx
;
85 unsigned int elapsed_time
;
86 unsigned int last_sampled_time
;
89 spinlock_t gpstate_lock
;
90 struct timer_list timer
;
93 static struct cpufreq_frequency_table powernv_freqs
[POWERNV_MAX_PSTATES
+1];
94 u32 pstate_sign_prefix
;
95 static bool rebooting
, throttled
, occ_reset
;
97 static const char * const throttle_reason
[] = {
100 "Processor Over Temperature",
101 "Power Supply Failure",
106 enum throttle_reason_type
{
110 POWER_SUPPLY_FAILURE
,
122 struct work_struct throttle
;
124 int throttle_sub_turbo
;
125 int reason
[OCC_MAX_REASON
];
129 static DEFINE_PER_CPU(struct chip
*, chip_info
);
133 * The set of pstates consists of contiguous integers.
134 * powernv_pstate_info stores the index of the frequency table for
135 * max, min and nominal frequencies. It also stores number of
136 * available frequencies.
138 * powernv_pstate_info.nominal indicates the index to the highest
139 * non-turbo frequency.
141 static struct powernv_pstate_info
{
144 unsigned int nominal
;
145 unsigned int nr_pstates
;
147 } powernv_pstate_info
;
149 static inline int extract_pstate(u64 pmsr_val
, unsigned int shift
)
151 int ret
= ((pmsr_val
>> shift
) & 0xFF);
156 return (pstate_sign_prefix
| ret
);
159 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
160 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
161 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
163 /* Use following macros for conversions between pstate_id and index */
164 static inline int idx_to_pstate(unsigned int i
)
166 if (unlikely(i
>= powernv_pstate_info
.nr_pstates
)) {
167 pr_warn_once("index %u is out of bound\n", i
);
168 return powernv_freqs
[powernv_pstate_info
.nominal
].driver_data
;
171 return powernv_freqs
[i
].driver_data
;
174 static inline unsigned int pstate_to_idx(int pstate
)
176 int min
= powernv_freqs
[powernv_pstate_info
.min
].driver_data
;
177 int max
= powernv_freqs
[powernv_pstate_info
.max
].driver_data
;
180 if (unlikely((pstate
< max
) || (pstate
> min
))) {
181 pr_warn_once("pstate %d is out of bound\n", pstate
);
182 return powernv_pstate_info
.nominal
;
185 if (unlikely((pstate
> max
) || (pstate
< min
))) {
186 pr_warn_once("pstate %d is out of bound\n", pstate
);
187 return powernv_pstate_info
.nominal
;
191 * abs() is deliberately used so that is works with
192 * both monotonically increasing and decreasing
195 return abs(pstate
- idx_to_pstate(powernv_pstate_info
.max
));
198 static inline void reset_gpstates(struct cpufreq_policy
*policy
)
200 struct global_pstate_info
*gpstates
= policy
->driver_data
;
202 gpstates
->highest_lpstate_idx
= 0;
203 gpstates
->elapsed_time
= 0;
204 gpstates
->last_sampled_time
= 0;
205 gpstates
->last_lpstate_idx
= 0;
206 gpstates
->last_gpstate_idx
= 0;
210 * Initialize the freq table based on data obtained
211 * from the firmware passed via device-tree
213 static int init_powernv_pstates(void)
215 struct device_node
*power_mgt
;
216 int i
, nr_pstates
= 0;
217 const __be32
*pstate_ids
, *pstate_freqs
;
218 u32 len_ids
, len_freqs
;
219 u32 pstate_min
, pstate_max
, pstate_nominal
;
220 u32 pstate_turbo
, pstate_ultra_turbo
;
222 power_mgt
= of_find_node_by_path("/ibm,opal/power-mgt");
224 pr_warn("power-mgt node not found\n");
228 if (of_property_read_u32(power_mgt
, "ibm,pstate-min", &pstate_min
)) {
229 pr_warn("ibm,pstate-min node not found\n");
233 if (of_property_read_u32(power_mgt
, "ibm,pstate-max", &pstate_max
)) {
234 pr_warn("ibm,pstate-max node not found\n");
238 if (of_property_read_u32(power_mgt
, "ibm,pstate-nominal",
240 pr_warn("ibm,pstate-nominal not found\n");
244 if (of_property_read_u32(power_mgt
, "ibm,pstate-ultra-turbo",
245 &pstate_ultra_turbo
)) {
246 powernv_pstate_info
.wof_enabled
= false;
250 if (of_property_read_u32(power_mgt
, "ibm,pstate-turbo",
252 powernv_pstate_info
.wof_enabled
= false;
256 if (pstate_turbo
== pstate_ultra_turbo
)
257 powernv_pstate_info
.wof_enabled
= false;
259 powernv_pstate_info
.wof_enabled
= true;
262 pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min
,
263 pstate_nominal
, pstate_max
);
264 pr_info("Workload Optimized Frequency is %s in the platform\n",
265 (powernv_pstate_info
.wof_enabled
) ? "enabled" : "disabled");
267 pstate_ids
= of_get_property(power_mgt
, "ibm,pstate-ids", &len_ids
);
269 pr_warn("ibm,pstate-ids not found\n");
273 pstate_freqs
= of_get_property(power_mgt
, "ibm,pstate-frequencies-mhz",
276 pr_warn("ibm,pstate-frequencies-mhz not found\n");
280 if (len_ids
!= len_freqs
) {
281 pr_warn("Entries in ibm,pstate-ids and "
282 "ibm,pstate-frequencies-mhz does not match\n");
285 nr_pstates
= min(len_ids
, len_freqs
) / sizeof(u32
);
287 pr_warn("No PStates found\n");
291 powernv_pstate_info
.nr_pstates
= nr_pstates
;
292 pr_debug("NR PStates %d\n", nr_pstates
);
294 pstate_sign_prefix
= pstate_min
& ~0xFF;
296 for (i
= 0; i
< nr_pstates
; i
++) {
297 u32 id
= be32_to_cpu(pstate_ids
[i
]);
298 u32 freq
= be32_to_cpu(pstate_freqs
[i
]);
300 pr_debug("PState id %d freq %d MHz\n", id
, freq
);
301 powernv_freqs
[i
].frequency
= freq
* 1000; /* kHz */
302 powernv_freqs
[i
].driver_data
= id
;
304 if (id
== pstate_max
)
305 powernv_pstate_info
.max
= i
;
306 if (id
== pstate_nominal
)
307 powernv_pstate_info
.nominal
= i
;
308 if (id
== pstate_min
)
309 powernv_pstate_info
.min
= i
;
311 if (powernv_pstate_info
.wof_enabled
&& id
== pstate_turbo
) {
314 for (j
= i
- 1; j
>= (int)powernv_pstate_info
.max
; j
--)
315 powernv_freqs
[j
].flags
= CPUFREQ_BOOST_FREQ
;
319 /* End of list marker entry */
320 powernv_freqs
[i
].frequency
= CPUFREQ_TABLE_END
;
324 /* Returns the CPU frequency corresponding to the pstate_id. */
325 static unsigned int pstate_id_to_freq(int pstate_id
)
329 i
= pstate_to_idx(pstate_id
);
330 if (i
>= powernv_pstate_info
.nr_pstates
|| i
< 0) {
331 pr_warn("PState id %d outside of PState table, "
332 "reporting nominal id %d instead\n",
333 pstate_id
, idx_to_pstate(powernv_pstate_info
.nominal
));
334 i
= powernv_pstate_info
.nominal
;
337 return powernv_freqs
[i
].frequency
;
341 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
344 static ssize_t
cpuinfo_nominal_freq_show(struct cpufreq_policy
*policy
,
347 return sprintf(buf
, "%u\n",
348 powernv_freqs
[powernv_pstate_info
.nominal
].frequency
);
351 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq
=
352 __ATTR_RO(cpuinfo_nominal_freq
);
354 #define SCALING_BOOST_FREQS_ATTR_INDEX 2
356 static struct freq_attr
*powernv_cpu_freq_attr
[] = {
357 &cpufreq_freq_attr_scaling_available_freqs
,
358 &cpufreq_freq_attr_cpuinfo_nominal_freq
,
359 &cpufreq_freq_attr_scaling_boost_freqs
,
363 #define throttle_attr(name, member) \
364 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
366 struct chip *chip = per_cpu(chip_info, policy->cpu); \
368 return sprintf(buf, "%u\n", chip->member); \
371 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
373 throttle_attr(unthrottle, reason[NO_THROTTLE]);
374 throttle_attr(powercap
, reason
[POWERCAP
]);
375 throttle_attr(overtemp
, reason
[CPU_OVERTEMP
]);
376 throttle_attr(supply_fault
, reason
[POWER_SUPPLY_FAILURE
]);
377 throttle_attr(overcurrent
, reason
[OVERCURRENT
]);
378 throttle_attr(occ_reset
, reason
[OCC_RESET_THROTTLE
]);
379 throttle_attr(turbo_stat
, throttle_turbo
);
380 throttle_attr(sub_turbo_stat
, throttle_sub_turbo
);
382 static struct attribute
*throttle_attrs
[] = {
383 &throttle_attr_unthrottle
.attr
,
384 &throttle_attr_powercap
.attr
,
385 &throttle_attr_overtemp
.attr
,
386 &throttle_attr_supply_fault
.attr
,
387 &throttle_attr_overcurrent
.attr
,
388 &throttle_attr_occ_reset
.attr
,
389 &throttle_attr_turbo_stat
.attr
,
390 &throttle_attr_sub_turbo_stat
.attr
,
394 static const struct attribute_group throttle_attr_grp
= {
395 .name
= "throttle_stats",
396 .attrs
= throttle_attrs
,
399 /* Helper routines */
401 /* Access helpers to power mgt SPR */
403 static inline unsigned long get_pmspr(unsigned long sprn
)
407 return mfspr(SPRN_PMCR
);
410 return mfspr(SPRN_PMICR
);
413 return mfspr(SPRN_PMSR
);
418 static inline void set_pmspr(unsigned long sprn
, unsigned long val
)
422 mtspr(SPRN_PMCR
, val
);
426 mtspr(SPRN_PMICR
, val
);
433 * Use objects of this type to query/update
434 * pstates on a remote CPU via smp_call_function.
436 struct powernv_smp_call_data
{
443 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
445 * Called via smp_call_function.
447 * Note: The caller of the smp_call_function should pass an argument of
448 * the type 'struct powernv_smp_call_data *' along with this function.
450 * The current frequency on this CPU will be returned via
451 * ((struct powernv_smp_call_data *)arg)->freq;
453 static void powernv_read_cpu_freq(void *arg
)
455 unsigned long pmspr_val
;
456 struct powernv_smp_call_data
*freq_data
= arg
;
458 pmspr_val
= get_pmspr(SPRN_PMSR
);
459 freq_data
->pstate_id
= extract_local_pstate(pmspr_val
);
460 freq_data
->freq
= pstate_id_to_freq(freq_data
->pstate_id
);
462 pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
463 raw_smp_processor_id(), pmspr_val
, freq_data
->pstate_id
,
468 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
469 * firmware for CPU 'cpu'. This value is reported through the sysfs
470 * file cpuinfo_cur_freq.
472 static unsigned int powernv_cpufreq_get(unsigned int cpu
)
474 struct powernv_smp_call_data freq_data
;
476 smp_call_function_any(cpu_sibling_mask(cpu
), powernv_read_cpu_freq
,
479 return freq_data
.freq
;
483 * set_pstate: Sets the pstate on this CPU.
485 * This is called via an smp_call_function.
487 * The caller must ensure that freq_data is of the type
488 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
489 * on this CPU should be present in freq_data->pstate_id.
491 static void set_pstate(void *data
)
494 struct powernv_smp_call_data
*freq_data
= data
;
495 unsigned long pstate_ul
= freq_data
->pstate_id
;
496 unsigned long gpstate_ul
= freq_data
->gpstate_id
;
498 val
= get_pmspr(SPRN_PMCR
);
499 val
= val
& 0x0000FFFFFFFFFFFFULL
;
501 pstate_ul
= pstate_ul
& 0xFF;
502 gpstate_ul
= gpstate_ul
& 0xFF;
504 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
505 val
= val
| (gpstate_ul
<< 56) | (pstate_ul
<< 48);
507 pr_debug("Setting cpu %d pmcr to %016lX\n",
508 raw_smp_processor_id(), val
);
509 set_pmspr(SPRN_PMCR
, val
);
513 * get_nominal_index: Returns the index corresponding to the nominal
514 * pstate in the cpufreq table
516 static inline unsigned int get_nominal_index(void)
518 return powernv_pstate_info
.nominal
;
521 static void powernv_cpufreq_throttle_check(void *data
)
524 unsigned int cpu
= smp_processor_id();
527 unsigned int pmsr_pmax_idx
;
529 pmsr
= get_pmspr(SPRN_PMSR
);
530 chip
= this_cpu_read(chip_info
);
532 /* Check for Pmax Capping */
533 pmsr_pmax
= extract_max_pstate(pmsr
);
534 pmsr_pmax_idx
= pstate_to_idx(pmsr_pmax
);
535 if (pmsr_pmax_idx
!= powernv_pstate_info
.max
) {
538 chip
->throttled
= true;
539 if (pmsr_pmax_idx
> powernv_pstate_info
.nominal
) {
540 pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
541 cpu
, chip
->id
, pmsr_pmax
,
542 idx_to_pstate(powernv_pstate_info
.nominal
));
543 chip
->throttle_sub_turbo
++;
545 chip
->throttle_turbo
++;
547 trace_powernv_throttle(chip
->id
,
548 throttle_reason
[chip
->throttle_reason
],
550 } else if (chip
->throttled
) {
551 chip
->throttled
= false;
552 trace_powernv_throttle(chip
->id
,
553 throttle_reason
[chip
->throttle_reason
],
557 /* Check if Psafe_mode_active is set in PMSR. */
559 if (pmsr
& PMSR_PSAFE_ENABLE
) {
561 pr_info("Pstate set to safe frequency\n");
564 /* Check if SPR_EM_DISABLE is set in PMSR */
565 if (pmsr
& PMSR_SPR_EM_DISABLE
) {
567 pr_info("Frequency Control disabled from OS\n");
571 pr_info("PMSR = %16lx\n", pmsr
);
572 pr_warn("CPU Frequency could be throttled\n");
577 * calc_global_pstate - Calculate global pstate
578 * @elapsed_time: Elapsed time in milliseconds
579 * @local_pstate_idx: New local pstate
580 * @highest_lpstate_idx: pstate from which its ramping down
582 * Finds the appropriate global pstate based on the pstate from which its
583 * ramping down and the time elapsed in ramping down. It follows a quadratic
584 * equation which ensures that it reaches ramping down to pmin in 5sec.
586 static inline int calc_global_pstate(unsigned int elapsed_time
,
587 int highest_lpstate_idx
,
588 int local_pstate_idx
)
593 * Using ramp_down_percent we get the percentage of rampdown
594 * that we are expecting to be dropping. Difference between
595 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
596 * number of how many pstates we will drop eventually by the end of
597 * 5 seconds, then just scale it get the number pstates to be dropped.
599 index_diff
= ((int)ramp_down_percent(elapsed_time
) *
600 (powernv_pstate_info
.min
- highest_lpstate_idx
)) / 100;
602 /* Ensure that global pstate is >= to local pstate */
603 if (highest_lpstate_idx
+ index_diff
>= local_pstate_idx
)
604 return local_pstate_idx
;
606 return highest_lpstate_idx
+ index_diff
;
609 static inline void queue_gpstate_timer(struct global_pstate_info
*gpstates
)
611 unsigned int timer_interval
;
614 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
615 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
616 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
617 * seconds of ramp down time.
619 if ((gpstates
->elapsed_time
+ GPSTATE_TIMER_INTERVAL
)
620 > MAX_RAMP_DOWN_TIME
)
621 timer_interval
= MAX_RAMP_DOWN_TIME
- gpstates
->elapsed_time
;
623 timer_interval
= GPSTATE_TIMER_INTERVAL
;
625 mod_timer(&gpstates
->timer
, jiffies
+ msecs_to_jiffies(timer_interval
));
629 * gpstate_timer_handler
631 * @data: pointer to cpufreq_policy on which timer was queued
633 * This handler brings down the global pstate closer to the local pstate
634 * according quadratic equation. Queues a new timer if it is still not equal
637 void gpstate_timer_handler(unsigned long data
)
639 struct cpufreq_policy
*policy
= (struct cpufreq_policy
*)data
;
640 struct global_pstate_info
*gpstates
= policy
->driver_data
;
641 int gpstate_idx
, lpstate_idx
;
643 unsigned int time_diff
= jiffies_to_msecs(jiffies
)
644 - gpstates
->last_sampled_time
;
645 struct powernv_smp_call_data freq_data
;
647 if (!spin_trylock(&gpstates
->gpstate_lock
))
650 * If the timer has migrated to the different cpu then bring
651 * it back to one of the policy->cpus
653 if (!cpumask_test_cpu(raw_smp_processor_id(), policy
->cpus
)) {
654 gpstates
->timer
.expires
= jiffies
+ msecs_to_jiffies(1);
655 add_timer_on(&gpstates
->timer
, cpumask_first(policy
->cpus
));
656 spin_unlock(&gpstates
->gpstate_lock
);
661 * If PMCR was last updated was using fast_swtich then
662 * We may have wrong in gpstate->last_lpstate_idx
663 * value. Hence, read from PMCR to get correct data.
665 val
= get_pmspr(SPRN_PMCR
);
666 freq_data
.gpstate_id
= extract_global_pstate(val
);
667 freq_data
.pstate_id
= extract_local_pstate(val
);
668 if (freq_data
.gpstate_id
== freq_data
.pstate_id
) {
669 reset_gpstates(policy
);
670 spin_unlock(&gpstates
->gpstate_lock
);
674 gpstates
->last_sampled_time
+= time_diff
;
675 gpstates
->elapsed_time
+= time_diff
;
677 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
678 gpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
679 lpstate_idx
= gpstate_idx
;
680 reset_gpstates(policy
);
681 gpstates
->highest_lpstate_idx
= gpstate_idx
;
683 lpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
684 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
685 gpstates
->highest_lpstate_idx
,
688 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
689 gpstates
->last_gpstate_idx
= gpstate_idx
;
690 gpstates
->last_lpstate_idx
= lpstate_idx
;
692 * If local pstate is equal to global pstate, rampdown is over
693 * So timer is not required to be queued.
695 if (gpstate_idx
!= gpstates
->last_lpstate_idx
)
696 queue_gpstate_timer(gpstates
);
698 set_pstate(&freq_data
);
699 spin_unlock(&gpstates
->gpstate_lock
);
703 * powernv_cpufreq_target_index: Sets the frequency corresponding to
704 * the cpufreq table entry indexed by new_index on the cpus in the
707 static int powernv_cpufreq_target_index(struct cpufreq_policy
*policy
,
708 unsigned int new_index
)
710 struct powernv_smp_call_data freq_data
;
711 unsigned int cur_msec
, gpstate_idx
;
712 struct global_pstate_info
*gpstates
= policy
->driver_data
;
714 if (unlikely(rebooting
) && new_index
!= get_nominal_index())
718 /* we don't want to be preempted while
719 * checking if the CPU frequency has been throttled
722 powernv_cpufreq_throttle_check(NULL
);
726 cur_msec
= jiffies_to_msecs(get_jiffies_64());
728 spin_lock(&gpstates
->gpstate_lock
);
729 freq_data
.pstate_id
= idx_to_pstate(new_index
);
731 if (!gpstates
->last_sampled_time
) {
732 gpstate_idx
= new_index
;
733 gpstates
->highest_lpstate_idx
= new_index
;
737 if (gpstates
->last_gpstate_idx
< new_index
) {
738 gpstates
->elapsed_time
+= cur_msec
-
739 gpstates
->last_sampled_time
;
742 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
743 * we should be resetting all global pstate related data. Set it
744 * equal to local pstate to start fresh.
746 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
747 reset_gpstates(policy
);
748 gpstates
->highest_lpstate_idx
= new_index
;
749 gpstate_idx
= new_index
;
751 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
752 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
753 gpstates
->highest_lpstate_idx
,
757 reset_gpstates(policy
);
758 gpstates
->highest_lpstate_idx
= new_index
;
759 gpstate_idx
= new_index
;
763 * If local pstate is equal to global pstate, rampdown is over
764 * So timer is not required to be queued.
766 if (gpstate_idx
!= new_index
)
767 queue_gpstate_timer(gpstates
);
769 del_timer_sync(&gpstates
->timer
);
772 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
773 gpstates
->last_sampled_time
= cur_msec
;
774 gpstates
->last_gpstate_idx
= gpstate_idx
;
775 gpstates
->last_lpstate_idx
= new_index
;
777 spin_unlock(&gpstates
->gpstate_lock
);
780 * Use smp_call_function to send IPI and execute the
781 * mtspr on target CPU. We could do that without IPI
782 * if current CPU is within policy->cpus (core)
784 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
788 static int powernv_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
791 struct kernfs_node
*kn
;
792 struct global_pstate_info
*gpstates
;
794 base
= cpu_first_thread_sibling(policy
->cpu
);
796 for (i
= 0; i
< threads_per_core
; i
++)
797 cpumask_set_cpu(base
+ i
, policy
->cpus
);
799 kn
= kernfs_find_and_get(policy
->kobj
.sd
, throttle_attr_grp
.name
);
803 ret
= sysfs_create_group(&policy
->kobj
, &throttle_attr_grp
);
805 pr_info("Failed to create throttle stats directory for cpu %d\n",
813 gpstates
= kzalloc(sizeof(*gpstates
), GFP_KERNEL
);
817 policy
->driver_data
= gpstates
;
819 /* initialize timer */
820 init_timer_pinned_deferrable(&gpstates
->timer
);
821 gpstates
->timer
.data
= (unsigned long)policy
;
822 gpstates
->timer
.function
= gpstate_timer_handler
;
823 gpstates
->timer
.expires
= jiffies
+
824 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL
);
825 spin_lock_init(&gpstates
->gpstate_lock
);
826 ret
= cpufreq_table_validate_and_show(policy
, powernv_freqs
);
829 kfree(policy
->driver_data
);
833 policy
->fast_switch_possible
= true;
837 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
839 /* timer is deleted in cpufreq_cpu_stop() */
840 kfree(policy
->driver_data
);
845 static int powernv_cpufreq_reboot_notifier(struct notifier_block
*nb
,
846 unsigned long action
, void *unused
)
849 struct cpufreq_policy cpu_policy
;
852 for_each_online_cpu(cpu
) {
853 cpufreq_get_policy(&cpu_policy
, cpu
);
854 powernv_cpufreq_target_index(&cpu_policy
, get_nominal_index());
860 static struct notifier_block powernv_cpufreq_reboot_nb
= {
861 .notifier_call
= powernv_cpufreq_reboot_notifier
,
864 void powernv_cpufreq_work_fn(struct work_struct
*work
)
866 struct chip
*chip
= container_of(work
, struct chip
, throttle
);
871 cpumask_and(&mask
, &chip
->mask
, cpu_online_mask
);
872 smp_call_function_any(&mask
,
873 powernv_cpufreq_throttle_check
, NULL
, 0);
878 chip
->restore
= false;
879 for_each_cpu(cpu
, &mask
) {
881 struct cpufreq_policy policy
;
883 cpufreq_get_policy(&policy
, cpu
);
884 index
= cpufreq_table_find_index_c(&policy
, policy
.cur
);
885 powernv_cpufreq_target_index(&policy
, index
);
886 cpumask_andnot(&mask
, &mask
, policy
.cpus
);
892 static int powernv_cpufreq_occ_msg(struct notifier_block
*nb
,
893 unsigned long msg_type
, void *_msg
)
895 struct opal_msg
*msg
= _msg
;
896 struct opal_occ_msg omsg
;
899 if (msg_type
!= OPAL_MSG_OCC
)
902 omsg
.type
= be64_to_cpu(msg
->params
[0]);
907 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
909 * powernv_cpufreq_throttle_check() is called in
910 * target() callback which can detect the throttle state
911 * for governors like ondemand.
912 * But static governors will not call target() often thus
913 * report throttling here.
917 pr_warn("CPU frequency is throttled for duration\n");
922 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
925 omsg
.chip
= be64_to_cpu(msg
->params
[1]);
926 omsg
.throttle_status
= be64_to_cpu(msg
->params
[2]);
931 pr_info("OCC Active, CPU frequency is no longer throttled\n");
933 for (i
= 0; i
< nr_chips
; i
++) {
934 chips
[i
].restore
= true;
935 schedule_work(&chips
[i
].throttle
);
941 for (i
= 0; i
< nr_chips
; i
++)
942 if (chips
[i
].id
== omsg
.chip
)
945 if (omsg
.throttle_status
>= 0 &&
946 omsg
.throttle_status
<= OCC_MAX_THROTTLE_STATUS
) {
947 chips
[i
].throttle_reason
= omsg
.throttle_status
;
948 chips
[i
].reason
[omsg
.throttle_status
]++;
951 if (!omsg
.throttle_status
)
952 chips
[i
].restore
= true;
954 schedule_work(&chips
[i
].throttle
);
959 static struct notifier_block powernv_cpufreq_opal_nb
= {
960 .notifier_call
= powernv_cpufreq_occ_msg
,
965 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
967 struct powernv_smp_call_data freq_data
;
968 struct global_pstate_info
*gpstates
= policy
->driver_data
;
970 freq_data
.pstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
971 freq_data
.gpstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
972 smp_call_function_single(policy
->cpu
, set_pstate
, &freq_data
, 1);
973 del_timer_sync(&gpstates
->timer
);
976 static unsigned int powernv_fast_switch(struct cpufreq_policy
*policy
,
977 unsigned int target_freq
)
980 struct powernv_smp_call_data freq_data
;
982 index
= cpufreq_table_find_index_dl(policy
, target_freq
);
983 freq_data
.pstate_id
= powernv_freqs
[index
].driver_data
;
984 freq_data
.gpstate_id
= powernv_freqs
[index
].driver_data
;
985 set_pstate(&freq_data
);
987 return powernv_freqs
[index
].frequency
;
990 static struct cpufreq_driver powernv_cpufreq_driver
= {
991 .name
= "powernv-cpufreq",
992 .flags
= CPUFREQ_CONST_LOOPS
,
993 .init
= powernv_cpufreq_cpu_init
,
994 .exit
= powernv_cpufreq_cpu_exit
,
995 .verify
= cpufreq_generic_frequency_table_verify
,
996 .target_index
= powernv_cpufreq_target_index
,
997 .fast_switch
= powernv_fast_switch
,
998 .get
= powernv_cpufreq_get
,
999 .stop_cpu
= powernv_cpufreq_stop_cpu
,
1000 .attr
= powernv_cpu_freq_attr
,
1003 static int init_chip_info(void)
1005 unsigned int chip
[256];
1006 unsigned int cpu
, i
;
1007 unsigned int prev_chip_id
= UINT_MAX
;
1009 for_each_possible_cpu(cpu
) {
1010 unsigned int id
= cpu_to_chip_id(cpu
);
1012 if (prev_chip_id
!= id
) {
1014 chip
[nr_chips
++] = id
;
1018 chips
= kcalloc(nr_chips
, sizeof(struct chip
), GFP_KERNEL
);
1022 for (i
= 0; i
< nr_chips
; i
++) {
1023 chips
[i
].id
= chip
[i
];
1024 cpumask_copy(&chips
[i
].mask
, cpumask_of_node(chip
[i
]));
1025 INIT_WORK(&chips
[i
].throttle
, powernv_cpufreq_work_fn
);
1026 for_each_cpu(cpu
, &chips
[i
].mask
)
1027 per_cpu(chip_info
, cpu
) = &chips
[i
];
1033 static inline void clean_chip_info(void)
1038 static inline void unregister_all_notifiers(void)
1040 opal_message_notifier_unregister(OPAL_MSG_OCC
,
1041 &powernv_cpufreq_opal_nb
);
1042 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb
);
1045 static int __init
powernv_cpufreq_init(void)
1049 /* Don't probe on pseries (guest) platforms */
1050 if (!firmware_has_feature(FW_FEATURE_OPAL
))
1053 /* Discover pstates from device tree and init */
1054 rc
= init_powernv_pstates();
1058 /* Populate chip info */
1059 rc
= init_chip_info();
1063 register_reboot_notifier(&powernv_cpufreq_reboot_nb
);
1064 opal_message_notifier_register(OPAL_MSG_OCC
, &powernv_cpufreq_opal_nb
);
1066 if (powernv_pstate_info
.wof_enabled
)
1067 powernv_cpufreq_driver
.boost_enabled
= true;
1069 powernv_cpu_freq_attr
[SCALING_BOOST_FREQS_ATTR_INDEX
] = NULL
;
1071 rc
= cpufreq_register_driver(&powernv_cpufreq_driver
);
1073 pr_info("Failed to register the cpufreq driver (%d)\n", rc
);
1074 goto cleanup_notifiers
;
1077 if (powernv_pstate_info
.wof_enabled
)
1078 cpufreq_enable_boost_support();
1082 unregister_all_notifiers();
1085 pr_info("Platform driver disabled. System does not support PState control\n");
1088 module_init(powernv_cpufreq_init
);
1090 static void __exit
powernv_cpufreq_exit(void)
1092 cpufreq_unregister_driver(&powernv_cpufreq_driver
);
1093 unregister_all_notifiers();
1096 module_exit(powernv_cpufreq_exit
);
1098 MODULE_LICENSE("GPL");
1099 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");