1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
50 #include <asm/tlbflush.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
58 * migrate_prep() needs to be called before we start compiling a list of pages
59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60 * undesirable, use migrate_prep_local()
62 int migrate_prep(void)
65 * Clear the LRU lists so pages can be isolated.
66 * Note that pages may be moved off the LRU after we have
67 * drained them. Those pages will fail to migrate like other
68 * pages that may be busy.
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
83 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
85 struct address_space
*mapping
;
88 * Avoid burning cycles with pages that are yet under __free_pages(),
89 * or just got freed under us.
91 * In case we 'win' a race for a movable page being freed under us and
92 * raise its refcount preventing __free_pages() from doing its job
93 * the put_page() at the end of this block will take care of
94 * release this page, thus avoiding a nasty leakage.
96 if (unlikely(!get_page_unless_zero(page
)))
100 * Check PageMovable before holding a PG_lock because page's owner
101 * assumes anybody doesn't touch PG_lock of newly allocated page
102 * so unconditionally grapping the lock ruins page's owner side.
104 if (unlikely(!__PageMovable(page
)))
107 * As movable pages are not isolated from LRU lists, concurrent
108 * compaction threads can race against page migration functions
109 * as well as race against the releasing a page.
111 * In order to avoid having an already isolated movable page
112 * being (wrongly) re-isolated while it is under migration,
113 * or to avoid attempting to isolate pages being released,
114 * lets be sure we have the page lock
115 * before proceeding with the movable page isolation steps.
117 if (unlikely(!trylock_page(page
)))
120 if (!PageMovable(page
) || PageIsolated(page
))
121 goto out_no_isolated
;
123 mapping
= page_mapping(page
);
124 VM_BUG_ON_PAGE(!mapping
, page
);
126 if (!mapping
->a_ops
->isolate_page(page
, mode
))
127 goto out_no_isolated
;
129 /* Driver shouldn't use PG_isolated bit of page->flags */
130 WARN_ON_ONCE(PageIsolated(page
));
131 __SetPageIsolated(page
);
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page
*page
)
147 struct address_space
*mapping
;
149 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
150 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
151 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
153 mapping
= page_mapping(page
);
154 mapping
->a_ops
->putback_page(page
);
155 __ClearPageIsolated(page
);
159 * Put previously isolated pages back onto the appropriate lists
160 * from where they were once taken off for compaction/migration.
162 * This function shall be used whenever the isolated pageset has been
163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164 * and isolate_huge_page().
166 void putback_movable_pages(struct list_head
*l
)
171 list_for_each_entry_safe(page
, page2
, l
, lru
) {
172 if (unlikely(PageHuge(page
))) {
173 putback_active_hugepage(page
);
176 list_del(&page
->lru
);
178 * We isolated non-lru movable page so here we can use
179 * __PageMovable because LRU page's mapping cannot have
180 * PAGE_MAPPING_MOVABLE.
182 if (unlikely(__PageMovable(page
))) {
183 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
185 if (PageMovable(page
))
186 putback_movable_page(page
);
188 __ClearPageIsolated(page
);
192 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
193 page_is_file_cache(page
), -hpage_nr_pages(page
));
194 putback_lru_page(page
);
200 * Restore a potential migration pte to a working pte entry
202 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
203 unsigned long addr
, void *old
)
205 struct page_vma_mapped_walk pvmw
= {
209 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
215 VM_BUG_ON_PAGE(PageTail(page
), page
);
216 while (page_vma_mapped_walk(&pvmw
)) {
220 new = page
- pvmw
.page
->index
+
221 linear_page_index(vma
, pvmw
.address
);
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 /* PMD-mapped THP migration entry */
226 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
227 remove_migration_pmd(&pvmw
, new);
233 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
234 if (pte_swp_soft_dirty(*pvmw
.pte
))
235 pte
= pte_mksoft_dirty(pte
);
238 * Recheck VMA as permissions can change since migration started
240 entry
= pte_to_swp_entry(*pvmw
.pte
);
241 if (is_write_migration_entry(entry
))
242 pte
= maybe_mkwrite(pte
, vma
);
244 if (unlikely(is_zone_device_page(new))) {
245 if (is_device_private_page(new)) {
246 entry
= make_device_private_entry(new, pte_write(pte
));
247 pte
= swp_entry_to_pte(entry
);
248 } else if (is_device_public_page(new)) {
249 pte
= pte_mkdevmap(pte
);
253 #ifdef CONFIG_HUGETLB_PAGE
255 pte
= pte_mkhuge(pte
);
256 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
257 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
259 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
261 page_dup_rmap(new, true);
265 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
268 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
270 page_add_file_rmap(new, false);
272 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
275 if (PageTransHuge(page
) && PageMlocked(page
))
276 clear_page_mlock(page
);
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
291 struct rmap_walk_control rwc
= {
292 .rmap_one
= remove_migration_pte
,
297 rmap_walk_locked(new, &rwc
);
299 rmap_walk(new, &rwc
);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
316 if (!is_swap_pte(pte
))
319 entry
= pte_to_swp_entry(pte
);
320 if (!is_migration_entry(entry
))
323 page
= migration_entry_to_page(entry
);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
332 if (!get_page_unless_zero(page
))
334 pte_unmap_unlock(ptep
, ptl
);
335 wait_on_page_locked(page
);
339 pte_unmap_unlock(ptep
, ptl
);
342 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
343 unsigned long address
)
345 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
346 pte_t
*ptep
= pte_offset_map(pmd
, address
);
347 __migration_entry_wait(mm
, ptep
, ptl
);
350 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
351 struct mm_struct
*mm
, pte_t
*pte
)
353 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
354 __migration_entry_wait(mm
, pte
, ptl
);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
363 ptl
= pmd_lock(mm
, pmd
);
364 if (!is_pmd_migration_entry(*pmd
))
366 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
367 if (!get_page_unless_zero(page
))
370 wait_on_page_locked(page
);
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
381 enum migrate_mode mode
)
383 struct buffer_head
*bh
= head
;
385 /* Simple case, sync compaction */
386 if (mode
!= MIGRATE_ASYNC
) {
390 bh
= bh
->b_this_page
;
392 } while (bh
!= head
);
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
400 if (!trylock_buffer(bh
)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head
*failed_bh
= bh
;
408 while (bh
!= failed_bh
) {
411 bh
= bh
->b_this_page
;
416 bh
= bh
->b_this_page
;
417 } while (bh
!= head
);
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
422 enum migrate_mode mode
)
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space
*mapping
,
437 struct page
*newpage
, struct page
*page
,
438 struct buffer_head
*head
, enum migrate_mode mode
,
441 struct zone
*oldzone
, *newzone
;
443 int expected_count
= 1 + extra_count
;
447 * Device public or private pages have an extra refcount as they are
450 expected_count
+= is_device_private_page(page
);
451 expected_count
+= is_device_public_page(page
);
454 /* Anonymous page without mapping */
455 if (page_count(page
) != expected_count
)
458 /* No turning back from here */
459 newpage
->index
= page
->index
;
460 newpage
->mapping
= page
->mapping
;
461 if (PageSwapBacked(page
))
462 __SetPageSwapBacked(newpage
);
464 return MIGRATEPAGE_SUCCESS
;
467 oldzone
= page_zone(page
);
468 newzone
= page_zone(newpage
);
470 spin_lock_irq(&mapping
->tree_lock
);
472 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
475 expected_count
+= 1 + page_has_private(page
);
476 if (page_count(page
) != expected_count
||
477 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
478 spin_unlock_irq(&mapping
->tree_lock
);
482 if (!page_ref_freeze(page
, expected_count
)) {
483 spin_unlock_irq(&mapping
->tree_lock
);
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
494 if (mode
== MIGRATE_ASYNC
&& head
&&
495 !buffer_migrate_lock_buffers(head
, mode
)) {
496 page_ref_unfreeze(page
, expected_count
);
497 spin_unlock_irq(&mapping
->tree_lock
);
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
505 newpage
->index
= page
->index
;
506 newpage
->mapping
= page
->mapping
;
507 get_page(newpage
); /* add cache reference */
508 if (PageSwapBacked(page
)) {
509 __SetPageSwapBacked(newpage
);
510 if (PageSwapCache(page
)) {
511 SetPageSwapCache(newpage
);
512 set_page_private(newpage
, page_private(page
));
515 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty
= PageDirty(page
);
521 ClearPageDirty(page
);
522 SetPageDirty(newpage
);
525 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
530 * We know this isn't the last reference.
532 page_ref_unfreeze(page
, expected_count
- 1);
534 spin_unlock(&mapping
->tree_lock
);
535 /* Leave irq disabled to prevent preemption while updating stats */
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
543 * Note that anonymous pages are accounted for
544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545 * are mapped to swap space.
547 if (newzone
!= oldzone
) {
548 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
549 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
550 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
551 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
552 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
554 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
555 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
556 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
557 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
558 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
563 return MIGRATEPAGE_SUCCESS
;
565 EXPORT_SYMBOL(migrate_page_move_mapping
);
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
571 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
572 struct page
*newpage
, struct page
*page
)
577 spin_lock_irq(&mapping
->tree_lock
);
579 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
582 expected_count
= 2 + page_has_private(page
);
583 if (page_count(page
) != expected_count
||
584 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
585 spin_unlock_irq(&mapping
->tree_lock
);
589 if (!page_ref_freeze(page
, expected_count
)) {
590 spin_unlock_irq(&mapping
->tree_lock
);
594 newpage
->index
= page
->index
;
595 newpage
->mapping
= page
->mapping
;
599 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
601 page_ref_unfreeze(page
, expected_count
- 1);
603 spin_unlock_irq(&mapping
->tree_lock
);
605 return MIGRATEPAGE_SUCCESS
;
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
613 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
617 struct page
*dst_base
= dst
;
618 struct page
*src_base
= src
;
620 for (i
= 0; i
< nr_pages
; ) {
622 copy_highpage(dst
, src
);
625 dst
= mem_map_next(dst
, dst_base
, i
);
626 src
= mem_map_next(src
, src_base
, i
);
630 static void copy_huge_page(struct page
*dst
, struct page
*src
)
637 struct hstate
*h
= page_hstate(src
);
638 nr_pages
= pages_per_huge_page(h
);
640 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
641 __copy_gigantic_page(dst
, src
, nr_pages
);
646 BUG_ON(!PageTransHuge(src
));
647 nr_pages
= hpage_nr_pages(src
);
650 for (i
= 0; i
< nr_pages
; i
++) {
652 copy_highpage(dst
+ i
, src
+ i
);
657 * Copy the page to its new location
659 void migrate_page_states(struct page
*newpage
, struct page
*page
)
664 SetPageError(newpage
);
665 if (PageReferenced(page
))
666 SetPageReferenced(newpage
);
667 if (PageUptodate(page
))
668 SetPageUptodate(newpage
);
669 if (TestClearPageActive(page
)) {
670 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
671 SetPageActive(newpage
);
672 } else if (TestClearPageUnevictable(page
))
673 SetPageUnevictable(newpage
);
674 if (PageChecked(page
))
675 SetPageChecked(newpage
);
676 if (PageMappedToDisk(page
))
677 SetPageMappedToDisk(newpage
);
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
681 SetPageDirty(newpage
);
683 if (page_is_young(page
))
684 set_page_young(newpage
);
685 if (page_is_idle(page
))
686 set_page_idle(newpage
);
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
692 cpupid
= page_cpupid_xchg_last(page
, -1);
693 page_cpupid_xchg_last(newpage
, cpupid
);
695 ksm_migrate_page(newpage
, page
);
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
700 if (PageSwapCache(page
))
701 ClearPageSwapCache(page
);
702 ClearPagePrivate(page
);
703 set_page_private(page
, 0);
706 * If any waiters have accumulated on the new page then
709 if (PageWriteback(newpage
))
710 end_page_writeback(newpage
);
712 copy_page_owner(page
, newpage
);
714 mem_cgroup_migrate(page
, newpage
);
716 EXPORT_SYMBOL(migrate_page_states
);
718 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
720 if (PageHuge(page
) || PageTransHuge(page
))
721 copy_huge_page(newpage
, page
);
723 copy_highpage(newpage
, page
);
725 migrate_page_states(newpage
, page
);
727 EXPORT_SYMBOL(migrate_page_copy
);
729 /************************************************************
730 * Migration functions
731 ***********************************************************/
734 * Common logic to directly migrate a single LRU page suitable for
735 * pages that do not use PagePrivate/PagePrivate2.
737 * Pages are locked upon entry and exit.
739 int migrate_page(struct address_space
*mapping
,
740 struct page
*newpage
, struct page
*page
,
741 enum migrate_mode mode
)
745 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
747 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
749 if (rc
!= MIGRATEPAGE_SUCCESS
)
752 if (mode
!= MIGRATE_SYNC_NO_COPY
)
753 migrate_page_copy(newpage
, page
);
755 migrate_page_states(newpage
, page
);
756 return MIGRATEPAGE_SUCCESS
;
758 EXPORT_SYMBOL(migrate_page
);
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
766 int buffer_migrate_page(struct address_space
*mapping
,
767 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
769 struct buffer_head
*bh
, *head
;
772 if (!page_has_buffers(page
))
773 return migrate_page(mapping
, newpage
, page
, mode
);
775 head
= page_buffers(page
);
777 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
779 if (rc
!= MIGRATEPAGE_SUCCESS
)
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
787 if (mode
!= MIGRATE_ASYNC
)
788 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
790 ClearPagePrivate(page
);
791 set_page_private(newpage
, page_private(page
));
792 set_page_private(page
, 0);
798 set_bh_page(bh
, newpage
, bh_offset(bh
));
799 bh
= bh
->b_this_page
;
801 } while (bh
!= head
);
803 SetPagePrivate(newpage
);
805 if (mode
!= MIGRATE_SYNC_NO_COPY
)
806 migrate_page_copy(newpage
, page
);
808 migrate_page_states(newpage
, page
);
814 bh
= bh
->b_this_page
;
816 } while (bh
!= head
);
818 return MIGRATEPAGE_SUCCESS
;
820 EXPORT_SYMBOL(buffer_migrate_page
);
824 * Writeback a page to clean the dirty state
826 static int writeout(struct address_space
*mapping
, struct page
*page
)
828 struct writeback_control wbc
= {
829 .sync_mode
= WB_SYNC_NONE
,
832 .range_end
= LLONG_MAX
,
837 if (!mapping
->a_ops
->writepage
)
838 /* No write method for the address space */
841 if (!clear_page_dirty_for_io(page
))
842 /* Someone else already triggered a write */
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
853 remove_migration_ptes(page
, page
, false);
855 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
857 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
858 /* unlocked. Relock */
861 return (rc
< 0) ? -EIO
: -EAGAIN
;
865 * Default handling if a filesystem does not provide a migration function.
867 static int fallback_migrate_page(struct address_space
*mapping
,
868 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
870 if (PageDirty(page
)) {
871 /* Only writeback pages in full synchronous migration */
874 case MIGRATE_SYNC_NO_COPY
:
879 return writeout(mapping
, page
);
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
886 if (page_has_private(page
) &&
887 !try_to_release_page(page
, GFP_KERNEL
))
890 return migrate_page(mapping
, newpage
, page
, mode
);
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
897 * The new page will have replaced the old page if this function
902 * MIGRATEPAGE_SUCCESS - success
904 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
905 enum migrate_mode mode
)
907 struct address_space
*mapping
;
909 bool is_lru
= !__PageMovable(page
);
911 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
912 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
914 mapping
= page_mapping(page
);
916 if (likely(is_lru
)) {
918 rc
= migrate_page(mapping
, newpage
, page
, mode
);
919 else if (mapping
->a_ops
->migratepage
)
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
927 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
930 rc
= fallback_migrate_page(mapping
, newpage
,
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
937 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
938 if (!PageMovable(page
)) {
939 rc
= MIGRATEPAGE_SUCCESS
;
940 __ClearPageIsolated(page
);
944 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
946 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
947 !PageIsolated(page
));
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
954 if (rc
== MIGRATEPAGE_SUCCESS
) {
955 if (__PageMovable(page
)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
962 __ClearPageIsolated(page
);
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
970 if (!PageMappingFlags(page
))
971 page
->mapping
= NULL
;
973 if (unlikely(is_zone_device_page(newpage
))) {
974 if (is_device_public_page(newpage
))
975 flush_dcache_page(newpage
);
977 flush_dcache_page(newpage
);
984 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
985 int force
, enum migrate_mode mode
)
988 int page_was_mapped
= 0;
989 struct anon_vma
*anon_vma
= NULL
;
990 bool is_lru
= !__PageMovable(page
);
992 if (!trylock_page(page
)) {
993 if (!force
|| mode
== MIGRATE_ASYNC
)
997 * It's not safe for direct compaction to call lock_page.
998 * For example, during page readahead pages are added locked
999 * to the LRU. Later, when the IO completes the pages are
1000 * marked uptodate and unlocked. However, the queueing
1001 * could be merging multiple pages for one bio (e.g.
1002 * mpage_readpages). If an allocation happens for the
1003 * second or third page, the process can end up locking
1004 * the same page twice and deadlocking. Rather than
1005 * trying to be clever about what pages can be locked,
1006 * avoid the use of lock_page for direct compaction
1009 if (current
->flags
& PF_MEMALLOC
)
1015 if (PageWriteback(page
)) {
1017 * Only in the case of a full synchronous migration is it
1018 * necessary to wait for PageWriteback. In the async case,
1019 * the retry loop is too short and in the sync-light case,
1020 * the overhead of stalling is too much
1024 case MIGRATE_SYNC_NO_COPY
:
1032 wait_on_page_writeback(page
);
1036 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1037 * we cannot notice that anon_vma is freed while we migrates a page.
1038 * This get_anon_vma() delays freeing anon_vma pointer until the end
1039 * of migration. File cache pages are no problem because of page_lock()
1040 * File Caches may use write_page() or lock_page() in migration, then,
1041 * just care Anon page here.
1043 * Only page_get_anon_vma() understands the subtleties of
1044 * getting a hold on an anon_vma from outside one of its mms.
1045 * But if we cannot get anon_vma, then we won't need it anyway,
1046 * because that implies that the anon page is no longer mapped
1047 * (and cannot be remapped so long as we hold the page lock).
1049 if (PageAnon(page
) && !PageKsm(page
))
1050 anon_vma
= page_get_anon_vma(page
);
1053 * Block others from accessing the new page when we get around to
1054 * establishing additional references. We are usually the only one
1055 * holding a reference to newpage at this point. We used to have a BUG
1056 * here if trylock_page(newpage) fails, but would like to allow for
1057 * cases where there might be a race with the previous use of newpage.
1058 * This is much like races on refcount of oldpage: just don't BUG().
1060 if (unlikely(!trylock_page(newpage
)))
1063 if (unlikely(!is_lru
)) {
1064 rc
= move_to_new_page(newpage
, page
, mode
);
1065 goto out_unlock_both
;
1069 * Corner case handling:
1070 * 1. When a new swap-cache page is read into, it is added to the LRU
1071 * and treated as swapcache but it has no rmap yet.
1072 * Calling try_to_unmap() against a page->mapping==NULL page will
1073 * trigger a BUG. So handle it here.
1074 * 2. An orphaned page (see truncate_complete_page) might have
1075 * fs-private metadata. The page can be picked up due to memory
1076 * offlining. Everywhere else except page reclaim, the page is
1077 * invisible to the vm, so the page can not be migrated. So try to
1078 * free the metadata, so the page can be freed.
1080 if (!page
->mapping
) {
1081 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1082 if (page_has_private(page
)) {
1083 try_to_free_buffers(page
);
1084 goto out_unlock_both
;
1086 } else if (page_mapped(page
)) {
1087 /* Establish migration ptes */
1088 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1091 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1092 page_was_mapped
= 1;
1095 if (!page_mapped(page
))
1096 rc
= move_to_new_page(newpage
, page
, mode
);
1098 if (page_was_mapped
)
1099 remove_migration_ptes(page
,
1100 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1103 unlock_page(newpage
);
1105 /* Drop an anon_vma reference if we took one */
1107 put_anon_vma(anon_vma
);
1111 * If migration is successful, decrease refcount of the newpage
1112 * which will not free the page because new page owner increased
1113 * refcounter. As well, if it is LRU page, add the page to LRU
1114 * list in here. Use the old state of the isolated source page to
1115 * determine if we migrated a LRU page. newpage was already unlocked
1116 * and possibly modified by its owner - don't rely on the page
1119 if (rc
== MIGRATEPAGE_SUCCESS
) {
1120 if (unlikely(!is_lru
))
1123 putback_lru_page(newpage
);
1130 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1133 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1134 #define ICE_noinline noinline
1136 #define ICE_noinline
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1143 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1144 free_page_t put_new_page
,
1145 unsigned long private, struct page
*page
,
1146 int force
, enum migrate_mode mode
,
1147 enum migrate_reason reason
)
1149 int rc
= MIGRATEPAGE_SUCCESS
;
1151 struct page
*newpage
;
1153 newpage
= get_new_page(page
, private, &result
);
1157 if (page_count(page
) == 1) {
1158 /* page was freed from under us. So we are done. */
1159 ClearPageActive(page
);
1160 ClearPageUnevictable(page
);
1161 if (unlikely(__PageMovable(page
))) {
1163 if (!PageMovable(page
))
1164 __ClearPageIsolated(page
);
1168 put_new_page(newpage
, private);
1174 if (unlikely(PageTransHuge(page
) && !PageTransHuge(newpage
))) {
1176 rc
= split_huge_page(page
);
1182 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1183 if (rc
== MIGRATEPAGE_SUCCESS
)
1184 set_page_owner_migrate_reason(newpage
, reason
);
1187 if (rc
!= -EAGAIN
) {
1189 * A page that has been migrated has all references
1190 * removed and will be freed. A page that has not been
1191 * migrated will have kepts its references and be
1194 list_del(&page
->lru
);
1197 * Compaction can migrate also non-LRU pages which are
1198 * not accounted to NR_ISOLATED_*. They can be recognized
1201 if (likely(!__PageMovable(page
)))
1202 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1203 page_is_file_cache(page
), -hpage_nr_pages(page
));
1207 * If migration is successful, releases reference grabbed during
1208 * isolation. Otherwise, restore the page to right list unless
1211 if (rc
== MIGRATEPAGE_SUCCESS
) {
1213 if (reason
== MR_MEMORY_FAILURE
) {
1215 * Set PG_HWPoison on just freed page
1216 * intentionally. Although it's rather weird,
1217 * it's how HWPoison flag works at the moment.
1219 if (!test_set_page_hwpoison(page
))
1220 num_poisoned_pages_inc();
1223 if (rc
!= -EAGAIN
) {
1224 if (likely(!__PageMovable(page
))) {
1225 putback_lru_page(page
);
1230 if (PageMovable(page
))
1231 putback_movable_page(page
);
1233 __ClearPageIsolated(page
);
1239 put_new_page(newpage
, private);
1248 *result
= page_to_nid(newpage
);
1254 * Counterpart of unmap_and_move_page() for hugepage migration.
1256 * This function doesn't wait the completion of hugepage I/O
1257 * because there is no race between I/O and migration for hugepage.
1258 * Note that currently hugepage I/O occurs only in direct I/O
1259 * where no lock is held and PG_writeback is irrelevant,
1260 * and writeback status of all subpages are counted in the reference
1261 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1262 * under direct I/O, the reference of the head page is 512 and a bit more.)
1263 * This means that when we try to migrate hugepage whose subpages are
1264 * doing direct I/O, some references remain after try_to_unmap() and
1265 * hugepage migration fails without data corruption.
1267 * There is also no race when direct I/O is issued on the page under migration,
1268 * because then pte is replaced with migration swap entry and direct I/O code
1269 * will wait in the page fault for migration to complete.
1271 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1272 free_page_t put_new_page
, unsigned long private,
1273 struct page
*hpage
, int force
,
1274 enum migrate_mode mode
, int reason
)
1278 int page_was_mapped
= 0;
1279 struct page
*new_hpage
;
1280 struct anon_vma
*anon_vma
= NULL
;
1283 * Movability of hugepages depends on architectures and hugepage size.
1284 * This check is necessary because some callers of hugepage migration
1285 * like soft offline and memory hotremove don't walk through page
1286 * tables or check whether the hugepage is pmd-based or not before
1287 * kicking migration.
1289 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1290 putback_active_hugepage(hpage
);
1294 new_hpage
= get_new_page(hpage
, private, &result
);
1298 if (!trylock_page(hpage
)) {
1303 case MIGRATE_SYNC_NO_COPY
:
1312 * Check for pages which are in the process of being freed. Without
1313 * page_mapping() set, hugetlbfs specific move page routine will not
1314 * be called and we could leak usage counts for subpools.
1316 if (page_private(hpage
) && !page_mapping(hpage
)) {
1321 if (PageAnon(hpage
))
1322 anon_vma
= page_get_anon_vma(hpage
);
1324 if (unlikely(!trylock_page(new_hpage
)))
1327 if (page_mapped(hpage
)) {
1329 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1330 page_was_mapped
= 1;
1333 if (!page_mapped(hpage
))
1334 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1336 if (page_was_mapped
)
1337 remove_migration_ptes(hpage
,
1338 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1340 unlock_page(new_hpage
);
1344 put_anon_vma(anon_vma
);
1346 if (rc
== MIGRATEPAGE_SUCCESS
) {
1347 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1348 put_new_page
= NULL
;
1349 set_page_owner_migrate_reason(new_hpage
, reason
);
1356 putback_active_hugepage(hpage
);
1357 if (reason
== MR_MEMORY_FAILURE
&& !test_set_page_hwpoison(hpage
))
1358 num_poisoned_pages_inc();
1361 * If migration was not successful and there's a freeing callback, use
1362 * it. Otherwise, put_page() will drop the reference grabbed during
1366 put_new_page(new_hpage
, private);
1368 putback_active_hugepage(new_hpage
);
1374 *result
= page_to_nid(new_hpage
);
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
1395 * The caller should call putback_movable_pages() to return pages to the LRU
1396 * or free list only if ret != 0.
1398 * Returns the number of pages that were not migrated, or an error code.
1400 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1401 free_page_t put_new_page
, unsigned long private,
1402 enum migrate_mode mode
, int reason
)
1406 int nr_succeeded
= 0;
1410 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1414 current
->flags
|= PF_SWAPWRITE
;
1416 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1419 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1423 rc
= unmap_and_move_huge_page(get_new_page
,
1424 put_new_page
, private, page
,
1425 pass
> 2, mode
, reason
);
1427 rc
= unmap_and_move(get_new_page
, put_new_page
,
1428 private, page
, pass
> 2, mode
,
1438 case MIGRATEPAGE_SUCCESS
:
1443 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1444 * unlike -EAGAIN case, the failed page is
1445 * removed from migration page list and not
1446 * retried in the next outer loop.
1457 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1459 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1460 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1463 current
->flags
&= ~PF_SWAPWRITE
;
1470 * Move a list of individual pages
1472 struct page_to_node
{
1479 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1482 struct page_to_node
*pm
= (struct page_to_node
*)private;
1484 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1487 if (pm
->node
== MAX_NUMNODES
)
1490 *result
= &pm
->status
;
1493 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1495 else if (thp_migration_supported() && PageTransHuge(p
)) {
1498 thp
= alloc_pages_node(pm
->node
,
1499 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1503 prep_transhuge_page(thp
);
1506 return __alloc_pages_node(pm
->node
,
1507 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1511 * Move a set of pages as indicated in the pm array. The addr
1512 * field must be set to the virtual address of the page to be moved
1513 * and the node number must contain a valid target node.
1514 * The pm array ends with node = MAX_NUMNODES.
1516 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1517 struct page_to_node
*pm
,
1521 struct page_to_node
*pp
;
1522 LIST_HEAD(pagelist
);
1524 down_read(&mm
->mmap_sem
);
1527 * Build a list of pages to migrate
1529 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1530 struct vm_area_struct
*vma
;
1533 unsigned int follflags
;
1536 vma
= find_vma(mm
, pp
->addr
);
1537 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1540 /* FOLL_DUMP to ignore special (like zero) pages */
1541 follflags
= FOLL_GET
| FOLL_DUMP
;
1542 if (!thp_migration_supported())
1543 follflags
|= FOLL_SPLIT
;
1544 page
= follow_page(vma
, pp
->addr
, follflags
);
1546 err
= PTR_ERR(page
);
1554 err
= page_to_nid(page
);
1556 if (err
== pp
->node
)
1558 * Node already in the right place
1563 if (page_mapcount(page
) > 1 &&
1567 if (PageHuge(page
)) {
1568 if (PageHead(page
)) {
1569 isolate_huge_page(page
, &pagelist
);
1576 pp
->page
= compound_head(page
);
1577 head
= compound_head(page
);
1578 err
= isolate_lru_page(head
);
1580 list_add_tail(&head
->lru
, &pagelist
);
1581 mod_node_page_state(page_pgdat(head
),
1582 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1583 hpage_nr_pages(head
));
1587 * Either remove the duplicate refcount from
1588 * isolate_lru_page() or drop the page ref if it was
1597 if (!list_empty(&pagelist
)) {
1598 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1599 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1601 putback_movable_pages(&pagelist
);
1604 up_read(&mm
->mmap_sem
);
1609 * Migrate an array of page address onto an array of nodes and fill
1610 * the corresponding array of status.
1612 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1613 unsigned long nr_pages
,
1614 const void __user
* __user
*pages
,
1615 const int __user
*nodes
,
1616 int __user
*status
, int flags
)
1618 struct page_to_node
*pm
;
1619 unsigned long chunk_nr_pages
;
1620 unsigned long chunk_start
;
1624 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1631 * Store a chunk of page_to_node array in a page,
1632 * but keep the last one as a marker
1634 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1636 for (chunk_start
= 0;
1637 chunk_start
< nr_pages
;
1638 chunk_start
+= chunk_nr_pages
) {
1641 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1642 chunk_nr_pages
= nr_pages
- chunk_start
;
1644 /* fill the chunk pm with addrs and nodes from user-space */
1645 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1646 const void __user
*p
;
1650 if (get_user(p
, pages
+ j
+ chunk_start
))
1652 pm
[j
].addr
= (unsigned long) p
;
1654 if (get_user(node
, nodes
+ j
+ chunk_start
))
1658 if (node
< 0 || node
>= MAX_NUMNODES
)
1661 if (!node_state(node
, N_MEMORY
))
1665 if (!node_isset(node
, task_nodes
))
1671 /* End marker for this chunk */
1672 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1674 /* Migrate this chunk */
1675 err
= do_move_page_to_node_array(mm
, pm
,
1676 flags
& MPOL_MF_MOVE_ALL
);
1680 /* Return status information */
1681 for (j
= 0; j
< chunk_nr_pages
; j
++)
1682 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1690 free_page((unsigned long)pm
);
1696 * Determine the nodes of an array of pages and store it in an array of status.
1698 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1699 const void __user
**pages
, int *status
)
1703 down_read(&mm
->mmap_sem
);
1705 for (i
= 0; i
< nr_pages
; i
++) {
1706 unsigned long addr
= (unsigned long)(*pages
);
1707 struct vm_area_struct
*vma
;
1711 vma
= find_vma(mm
, addr
);
1712 if (!vma
|| addr
< vma
->vm_start
)
1715 /* FOLL_DUMP to ignore special (like zero) pages */
1716 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1718 err
= PTR_ERR(page
);
1722 err
= page
? page_to_nid(page
) : -ENOENT
;
1730 up_read(&mm
->mmap_sem
);
1734 * Determine the nodes of a user array of pages and store it in
1735 * a user array of status.
1737 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1738 const void __user
* __user
*pages
,
1741 #define DO_PAGES_STAT_CHUNK_NR 16
1742 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1743 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1746 unsigned long chunk_nr
;
1748 chunk_nr
= nr_pages
;
1749 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1750 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1752 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1755 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1757 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1762 nr_pages
-= chunk_nr
;
1764 return nr_pages
? -EFAULT
: 0;
1768 * Move a list of pages in the address space of the currently executing
1771 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1772 const void __user
* __user
*, pages
,
1773 const int __user
*, nodes
,
1774 int __user
*, status
, int, flags
)
1776 struct task_struct
*task
;
1777 struct mm_struct
*mm
;
1779 nodemask_t task_nodes
;
1782 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1785 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1788 /* Find the mm_struct */
1790 task
= pid
? find_task_by_vpid(pid
) : current
;
1795 get_task_struct(task
);
1798 * Check if this process has the right to modify the specified
1799 * process. Use the regular "ptrace_may_access()" checks.
1801 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1808 err
= security_task_movememory(task
);
1812 task_nodes
= cpuset_mems_allowed(task
);
1813 mm
= get_task_mm(task
);
1814 put_task_struct(task
);
1820 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1821 nodes
, status
, flags
);
1823 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1829 put_task_struct(task
);
1833 #ifdef CONFIG_NUMA_BALANCING
1835 * Returns true if this is a safe migration target node for misplaced NUMA
1836 * pages. Currently it only checks the watermarks which crude
1838 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1839 unsigned long nr_migrate_pages
)
1843 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1844 struct zone
*zone
= pgdat
->node_zones
+ z
;
1846 if (!populated_zone(zone
))
1849 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1850 if (!zone_watermark_ok(zone
, 0,
1851 high_wmark_pages(zone
) +
1860 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1864 int nid
= (int) data
;
1865 struct page
*newpage
;
1867 newpage
= __alloc_pages_node(nid
,
1868 (GFP_HIGHUSER_MOVABLE
|
1869 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1870 __GFP_NORETRY
| __GFP_NOWARN
) &
1877 * page migration rate limiting control.
1878 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1879 * window of time. Default here says do not migrate more than 1280M per second.
1881 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1882 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1884 /* Returns true if the node is migrate rate-limited after the update */
1885 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1886 unsigned long nr_pages
)
1889 * Rate-limit the amount of data that is being migrated to a node.
1890 * Optimal placement is no good if the memory bus is saturated and
1891 * all the time is being spent migrating!
1893 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1894 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1895 pgdat
->numabalancing_migrate_nr_pages
= 0;
1896 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1897 msecs_to_jiffies(migrate_interval_millisecs
);
1898 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1900 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1901 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1907 * This is an unlocked non-atomic update so errors are possible.
1908 * The consequences are failing to migrate when we potentiall should
1909 * have which is not severe enough to warrant locking. If it is ever
1910 * a problem, it can be converted to a per-cpu counter.
1912 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1916 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1920 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1922 /* Avoid migrating to a node that is nearly full */
1923 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1926 if (isolate_lru_page(page
))
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1936 if (PageTransHuge(page
) && page_count(page
) != 3) {
1937 putback_lru_page(page
);
1941 page_lru
= page_is_file_cache(page
);
1942 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1943 hpage_nr_pages(page
));
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
1954 bool pmd_trans_migrating(pmd_t pmd
)
1956 struct page
*page
= pmd_page(pmd
);
1957 return PageLocked(page
);
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1965 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1968 pg_data_t
*pgdat
= NODE_DATA(node
);
1971 LIST_HEAD(migratepages
);
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
1977 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1978 (vma
->vm_flags
& VM_EXEC
))
1982 * Rate-limit the amount of data that is being migrated to a node.
1983 * Optimal placement is no good if the memory bus is saturated and
1984 * all the time is being spent migrating!
1986 if (numamigrate_update_ratelimit(pgdat
, 1))
1989 isolated
= numamigrate_isolate_page(pgdat
, page
);
1993 list_add(&page
->lru
, &migratepages
);
1994 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1995 NULL
, node
, MIGRATE_ASYNC
,
1998 if (!list_empty(&migratepages
)) {
1999 list_del(&page
->lru
);
2000 dec_node_page_state(page
, NR_ISOLATED_ANON
+
2001 page_is_file_cache(page
));
2002 putback_lru_page(page
);
2006 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
2007 BUG_ON(!list_empty(&migratepages
));
2014 #endif /* CONFIG_NUMA_BALANCING */
2016 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2018 * Migrates a THP to a given target node. page must be locked and is unlocked
2021 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2022 struct vm_area_struct
*vma
,
2023 pmd_t
*pmd
, pmd_t entry
,
2024 unsigned long address
,
2025 struct page
*page
, int node
)
2028 pg_data_t
*pgdat
= NODE_DATA(node
);
2030 struct page
*new_page
= NULL
;
2031 int page_lru
= page_is_file_cache(page
);
2032 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2033 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
2036 * Rate-limit the amount of data that is being migrated to a node.
2037 * Optimal placement is no good if the memory bus is saturated and
2038 * all the time is being spent migrating!
2040 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
2043 new_page
= alloc_pages_node(node
,
2044 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2048 prep_transhuge_page(new_page
);
2050 isolated
= numamigrate_isolate_page(pgdat
, page
);
2056 /* Prepare a page as a migration target */
2057 __SetPageLocked(new_page
);
2058 if (PageSwapBacked(page
))
2059 __SetPageSwapBacked(new_page
);
2061 /* anon mapping, we can simply copy page->mapping to the new page: */
2062 new_page
->mapping
= page
->mapping
;
2063 new_page
->index
= page
->index
;
2064 migrate_page_copy(new_page
, page
);
2065 WARN_ON(PageLRU(new_page
));
2067 /* Recheck the target PMD */
2068 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2069 ptl
= pmd_lock(mm
, pmd
);
2070 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2072 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2074 /* Reverse changes made by migrate_page_copy() */
2075 if (TestClearPageActive(new_page
))
2076 SetPageActive(page
);
2077 if (TestClearPageUnevictable(new_page
))
2078 SetPageUnevictable(page
);
2080 unlock_page(new_page
);
2081 put_page(new_page
); /* Free it */
2083 /* Retake the callers reference and putback on LRU */
2085 putback_lru_page(page
);
2086 mod_node_page_state(page_pgdat(page
),
2087 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2092 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2093 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2096 * Clear the old entry under pagetable lock and establish the new PTE.
2097 * Any parallel GUP will either observe the old page blocking on the
2098 * page lock, block on the page table lock or observe the new page.
2099 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2100 * guarantee the copy is visible before the pagetable update.
2102 flush_cache_range(vma
, mmun_start
, mmun_end
);
2103 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2104 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2105 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2106 update_mmu_cache_pmd(vma
, address
, &entry
);
2108 page_ref_unfreeze(page
, 2);
2109 mlock_migrate_page(new_page
, page
);
2110 page_remove_rmap(page
, true);
2111 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2114 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2116 /* Take an "isolate" reference and put new page on the LRU. */
2118 putback_lru_page(new_page
);
2120 unlock_page(new_page
);
2122 put_page(page
); /* Drop the rmap reference */
2123 put_page(page
); /* Drop the LRU isolation reference */
2125 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2126 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2128 mod_node_page_state(page_pgdat(page
),
2129 NR_ISOLATED_ANON
+ page_lru
,
2134 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2136 ptl
= pmd_lock(mm
, pmd
);
2137 if (pmd_same(*pmd
, entry
)) {
2138 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2139 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2140 update_mmu_cache_pmd(vma
, address
, &entry
);
2149 #endif /* CONFIG_NUMA_BALANCING */
2151 #endif /* CONFIG_NUMA */
2153 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2154 struct migrate_vma
{
2155 struct vm_area_struct
*vma
;
2158 unsigned long cpages
;
2159 unsigned long npages
;
2160 unsigned long start
;
2164 static int migrate_vma_collect_hole(unsigned long start
,
2166 struct mm_walk
*walk
)
2168 struct migrate_vma
*migrate
= walk
->private;
2171 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2172 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2173 migrate
->dst
[migrate
->npages
] = 0;
2181 static int migrate_vma_collect_skip(unsigned long start
,
2183 struct mm_walk
*walk
)
2185 struct migrate_vma
*migrate
= walk
->private;
2188 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2189 migrate
->dst
[migrate
->npages
] = 0;
2190 migrate
->src
[migrate
->npages
++] = 0;
2196 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2197 unsigned long start
,
2199 struct mm_walk
*walk
)
2201 struct migrate_vma
*migrate
= walk
->private;
2202 struct vm_area_struct
*vma
= walk
->vma
;
2203 struct mm_struct
*mm
= vma
->vm_mm
;
2204 unsigned long addr
= start
, unmapped
= 0;
2209 if (pmd_none(*pmdp
))
2210 return migrate_vma_collect_hole(start
, end
, walk
);
2212 if (pmd_trans_huge(*pmdp
)) {
2215 ptl
= pmd_lock(mm
, pmdp
);
2216 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2221 page
= pmd_page(*pmdp
);
2222 if (is_huge_zero_page(page
)) {
2224 split_huge_pmd(vma
, pmdp
, addr
);
2225 if (pmd_trans_unstable(pmdp
))
2226 return migrate_vma_collect_skip(start
, end
,
2233 if (unlikely(!trylock_page(page
)))
2234 return migrate_vma_collect_skip(start
, end
,
2236 ret
= split_huge_page(page
);
2240 return migrate_vma_collect_skip(start
, end
,
2242 if (pmd_none(*pmdp
))
2243 return migrate_vma_collect_hole(start
, end
,
2248 if (unlikely(pmd_bad(*pmdp
)))
2249 return migrate_vma_collect_skip(start
, end
, walk
);
2251 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2252 arch_enter_lazy_mmu_mode();
2254 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2255 unsigned long mpfn
, pfn
;
2263 if (pte_none(pte
)) {
2264 mpfn
= MIGRATE_PFN_MIGRATE
;
2270 if (!pte_present(pte
)) {
2274 * Only care about unaddressable device page special
2275 * page table entry. Other special swap entries are not
2276 * migratable, and we ignore regular swapped page.
2278 entry
= pte_to_swp_entry(pte
);
2279 if (!is_device_private_entry(entry
))
2282 page
= device_private_entry_to_page(entry
);
2283 mpfn
= migrate_pfn(page_to_pfn(page
))|
2284 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2285 if (is_write_device_private_entry(entry
))
2286 mpfn
|= MIGRATE_PFN_WRITE
;
2288 if (is_zero_pfn(pfn
)) {
2289 mpfn
= MIGRATE_PFN_MIGRATE
;
2294 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2295 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2296 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2299 /* FIXME support THP */
2300 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2304 pfn
= page_to_pfn(page
);
2307 * By getting a reference on the page we pin it and that blocks
2308 * any kind of migration. Side effect is that it "freezes" the
2311 * We drop this reference after isolating the page from the lru
2312 * for non device page (device page are not on the lru and thus
2313 * can't be dropped from it).
2319 * Optimize for the common case where page is only mapped once
2320 * in one process. If we can lock the page, then we can safely
2321 * set up a special migration page table entry now.
2323 if (trylock_page(page
)) {
2326 mpfn
|= MIGRATE_PFN_LOCKED
;
2327 ptep_get_and_clear(mm
, addr
, ptep
);
2329 /* Setup special migration page table entry */
2330 entry
= make_migration_entry(page
, pte_write(pte
));
2331 swp_pte
= swp_entry_to_pte(entry
);
2332 if (pte_soft_dirty(pte
))
2333 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2334 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2337 * This is like regular unmap: we remove the rmap and
2338 * drop page refcount. Page won't be freed, as we took
2339 * a reference just above.
2341 page_remove_rmap(page
, false);
2344 if (pte_present(pte
))
2349 migrate
->dst
[migrate
->npages
] = 0;
2350 migrate
->src
[migrate
->npages
++] = mpfn
;
2352 arch_leave_lazy_mmu_mode();
2353 pte_unmap_unlock(ptep
- 1, ptl
);
2355 /* Only flush the TLB if we actually modified any entries */
2357 flush_tlb_range(walk
->vma
, start
, end
);
2363 * migrate_vma_collect() - collect pages over a range of virtual addresses
2364 * @migrate: migrate struct containing all migration information
2366 * This will walk the CPU page table. For each virtual address backed by a
2367 * valid page, it updates the src array and takes a reference on the page, in
2368 * order to pin the page until we lock it and unmap it.
2370 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2372 struct mm_walk mm_walk
;
2374 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2375 mm_walk
.pte_entry
= NULL
;
2376 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2377 mm_walk
.hugetlb_entry
= NULL
;
2378 mm_walk
.test_walk
= NULL
;
2379 mm_walk
.vma
= migrate
->vma
;
2380 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2381 mm_walk
.private = migrate
;
2383 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2386 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2387 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2391 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2395 * migrate_vma_check_page() - check if page is pinned or not
2396 * @page: struct page to check
2398 * Pinned pages cannot be migrated. This is the same test as in
2399 * migrate_page_move_mapping(), except that here we allow migration of a
2402 static bool migrate_vma_check_page(struct page
*page
)
2405 * One extra ref because caller holds an extra reference, either from
2406 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2412 * FIXME support THP (transparent huge page), it is bit more complex to
2413 * check them than regular pages, because they can be mapped with a pmd
2414 * or with a pte (split pte mapping).
2416 if (PageCompound(page
))
2419 /* Page from ZONE_DEVICE have one extra reference */
2420 if (is_zone_device_page(page
)) {
2422 * Private page can never be pin as they have no valid pte and
2423 * GUP will fail for those. Yet if there is a pending migration
2424 * a thread might try to wait on the pte migration entry and
2425 * will bump the page reference count. Sadly there is no way to
2426 * differentiate a regular pin from migration wait. Hence to
2427 * avoid 2 racing thread trying to migrate back to CPU to enter
2428 * infinite loop (one stoping migration because the other is
2429 * waiting on pte migration entry). We always return true here.
2431 * FIXME proper solution is to rework migration_entry_wait() so
2432 * it does not need to take a reference on page.
2434 if (is_device_private_page(page
))
2438 * Only allow device public page to be migrated and account for
2439 * the extra reference count imply by ZONE_DEVICE pages.
2441 if (!is_device_public_page(page
))
2446 /* For file back page */
2447 if (page_mapping(page
))
2448 extra
+= 1 + page_has_private(page
);
2450 if ((page_count(page
) - extra
) > page_mapcount(page
))
2457 * migrate_vma_prepare() - lock pages and isolate them from the lru
2458 * @migrate: migrate struct containing all migration information
2460 * This locks pages that have been collected by migrate_vma_collect(). Once each
2461 * page is locked it is isolated from the lru (for non-device pages). Finally,
2462 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463 * migrated by concurrent kernel threads.
2465 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2467 const unsigned long npages
= migrate
->npages
;
2468 const unsigned long start
= migrate
->start
;
2469 unsigned long addr
, i
, restore
= 0;
2470 bool allow_drain
= true;
2474 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2475 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2481 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2483 * Because we are migrating several pages there can be
2484 * a deadlock between 2 concurrent migration where each
2485 * are waiting on each other page lock.
2487 * Make migrate_vma() a best effort thing and backoff
2488 * for any page we can not lock right away.
2490 if (!trylock_page(page
)) {
2491 migrate
->src
[i
] = 0;
2497 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2500 /* ZONE_DEVICE pages are not on LRU */
2501 if (!is_zone_device_page(page
)) {
2502 if (!PageLRU(page
) && allow_drain
) {
2503 /* Drain CPU's pagevec */
2504 lru_add_drain_all();
2505 allow_drain
= false;
2508 if (isolate_lru_page(page
)) {
2510 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2514 migrate
->src
[i
] = 0;
2522 /* Drop the reference we took in collect */
2526 if (!migrate_vma_check_page(page
)) {
2528 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2532 if (!is_zone_device_page(page
)) {
2534 putback_lru_page(page
);
2537 migrate
->src
[i
] = 0;
2541 if (!is_zone_device_page(page
))
2542 putback_lru_page(page
);
2549 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2550 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2552 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2555 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2557 migrate
->src
[i
] = 0;
2565 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566 * @migrate: migrate struct containing all migration information
2568 * Replace page mapping (CPU page table pte) with a special migration pte entry
2569 * and check again if it has been pinned. Pinned pages are restored because we
2570 * cannot migrate them.
2572 * This is the last step before we call the device driver callback to allocate
2573 * destination memory and copy contents of original page over to new page.
2575 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2577 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2578 const unsigned long npages
= migrate
->npages
;
2579 const unsigned long start
= migrate
->start
;
2580 unsigned long addr
, i
, restore
= 0;
2582 for (i
= 0; i
< npages
; i
++) {
2583 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2585 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2588 if (page_mapped(page
)) {
2589 try_to_unmap(page
, flags
);
2590 if (page_mapped(page
))
2594 if (migrate_vma_check_page(page
))
2598 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2603 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2604 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2606 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2609 remove_migration_ptes(page
, page
, false);
2611 migrate
->src
[i
] = 0;
2615 if (is_zone_device_page(page
))
2618 putback_lru_page(page
);
2622 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2628 struct vm_area_struct
*vma
= migrate
->vma
;
2629 struct mm_struct
*mm
= vma
->vm_mm
;
2630 struct mem_cgroup
*memcg
;
2640 /* Only allow populating anonymous memory */
2641 if (!vma_is_anonymous(vma
))
2644 pgdp
= pgd_offset(mm
, addr
);
2645 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2648 pudp
= pud_alloc(mm
, p4dp
, addr
);
2651 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2655 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2659 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2660 * pte_offset_map() on pmds where a huge pmd might be created
2661 * from a different thread.
2663 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2664 * parallel threads are excluded by other means.
2666 * Here we only have down_read(mmap_sem).
2668 if (pte_alloc(mm
, pmdp
, addr
))
2671 /* See the comment in pte_alloc_one_map() */
2672 if (unlikely(pmd_trans_unstable(pmdp
)))
2675 if (unlikely(anon_vma_prepare(vma
)))
2677 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2681 * The memory barrier inside __SetPageUptodate makes sure that
2682 * preceding stores to the page contents become visible before
2683 * the set_pte_at() write.
2685 __SetPageUptodate(page
);
2687 if (is_zone_device_page(page
)) {
2688 if (is_device_private_page(page
)) {
2689 swp_entry_t swp_entry
;
2691 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2692 entry
= swp_entry_to_pte(swp_entry
);
2693 } else if (is_device_public_page(page
)) {
2694 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2695 if (vma
->vm_flags
& VM_WRITE
)
2696 entry
= pte_mkwrite(pte_mkdirty(entry
));
2697 entry
= pte_mkdevmap(entry
);
2700 entry
= mk_pte(page
, vma
->vm_page_prot
);
2701 if (vma
->vm_flags
& VM_WRITE
)
2702 entry
= pte_mkwrite(pte_mkdirty(entry
));
2705 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2707 if (pte_present(*ptep
)) {
2708 unsigned long pfn
= pte_pfn(*ptep
);
2710 if (!is_zero_pfn(pfn
)) {
2711 pte_unmap_unlock(ptep
, ptl
);
2712 mem_cgroup_cancel_charge(page
, memcg
, false);
2716 } else if (!pte_none(*ptep
)) {
2717 pte_unmap_unlock(ptep
, ptl
);
2718 mem_cgroup_cancel_charge(page
, memcg
, false);
2723 * Check for usefaultfd but do not deliver the fault. Instead,
2726 if (userfaultfd_missing(vma
)) {
2727 pte_unmap_unlock(ptep
, ptl
);
2728 mem_cgroup_cancel_charge(page
, memcg
, false);
2732 inc_mm_counter(mm
, MM_ANONPAGES
);
2733 page_add_new_anon_rmap(page
, vma
, addr
, false);
2734 mem_cgroup_commit_charge(page
, memcg
, false, false);
2735 if (!is_zone_device_page(page
))
2736 lru_cache_add_active_or_unevictable(page
, vma
);
2740 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2741 ptep_clear_flush_notify(vma
, addr
, ptep
);
2742 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2743 update_mmu_cache(vma
, addr
, ptep
);
2745 /* No need to invalidate - it was non-present before */
2746 set_pte_at(mm
, addr
, ptep
, entry
);
2747 update_mmu_cache(vma
, addr
, ptep
);
2750 pte_unmap_unlock(ptep
, ptl
);
2751 *src
= MIGRATE_PFN_MIGRATE
;
2755 *src
&= ~MIGRATE_PFN_MIGRATE
;
2759 * migrate_vma_pages() - migrate meta-data from src page to dst page
2760 * @migrate: migrate struct containing all migration information
2762 * This migrates struct page meta-data from source struct page to destination
2763 * struct page. This effectively finishes the migration from source page to the
2766 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2768 const unsigned long npages
= migrate
->npages
;
2769 const unsigned long start
= migrate
->start
;
2770 struct vm_area_struct
*vma
= migrate
->vma
;
2771 struct mm_struct
*mm
= vma
->vm_mm
;
2772 unsigned long addr
, i
, mmu_start
;
2773 bool notified
= false;
2775 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2776 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2777 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2778 struct address_space
*mapping
;
2782 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2787 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2793 mmu_notifier_invalidate_range_start(mm
,
2797 migrate_vma_insert_page(migrate
, addr
, newpage
,
2803 mapping
= page_mapping(page
);
2805 if (is_zone_device_page(newpage
)) {
2806 if (is_device_private_page(newpage
)) {
2808 * For now only support private anonymous when
2809 * migrating to un-addressable device memory.
2812 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2815 } else if (!is_device_public_page(newpage
)) {
2817 * Other types of ZONE_DEVICE page are not
2820 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2825 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2826 if (r
!= MIGRATEPAGE_SUCCESS
)
2827 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2831 mmu_notifier_invalidate_range_end(mm
, mmu_start
,
2836 * migrate_vma_finalize() - restore CPU page table entry
2837 * @migrate: migrate struct containing all migration information
2839 * This replaces the special migration pte entry with either a mapping to the
2840 * new page if migration was successful for that page, or to the original page
2843 * This also unlocks the pages and puts them back on the lru, or drops the extra
2844 * refcount, for device pages.
2846 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2848 const unsigned long npages
= migrate
->npages
;
2851 for (i
= 0; i
< npages
; i
++) {
2852 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2853 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2857 unlock_page(newpage
);
2863 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2865 unlock_page(newpage
);
2871 remove_migration_ptes(page
, newpage
, false);
2875 if (is_zone_device_page(page
))
2878 putback_lru_page(page
);
2880 if (newpage
!= page
) {
2881 unlock_page(newpage
);
2882 if (is_zone_device_page(newpage
))
2885 putback_lru_page(newpage
);
2891 * migrate_vma() - migrate a range of memory inside vma
2893 * @ops: migration callback for allocating destination memory and copying
2894 * @vma: virtual memory area containing the range to be migrated
2895 * @start: start address of the range to migrate (inclusive)
2896 * @end: end address of the range to migrate (exclusive)
2897 * @src: array of hmm_pfn_t containing source pfns
2898 * @dst: array of hmm_pfn_t containing destination pfns
2899 * @private: pointer passed back to each of the callback
2900 * Returns: 0 on success, error code otherwise
2902 * This function tries to migrate a range of memory virtual address range, using
2903 * callbacks to allocate and copy memory from source to destination. First it
2904 * collects all the pages backing each virtual address in the range, saving this
2905 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908 * in the corresponding src array entry. It then restores any pages that are
2909 * pinned, by remapping and unlocking those pages.
2911 * At this point it calls the alloc_and_copy() callback. For documentation on
2912 * what is expected from that callback, see struct migrate_vma_ops comments in
2913 * include/linux/migrate.h
2915 * After the alloc_and_copy() callback, this function goes over each entry in
2916 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918 * then the function tries to migrate struct page information from the source
2919 * struct page to the destination struct page. If it fails to migrate the struct
2920 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923 * At this point all successfully migrated pages have an entry in the src
2924 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925 * array entry with MIGRATE_PFN_VALID flag set.
2927 * It then calls the finalize_and_map() callback. See comments for "struct
2928 * migrate_vma_ops", in include/linux/migrate.h for details about
2929 * finalize_and_map() behavior.
2931 * After the finalize_and_map() callback, for successfully migrated pages, this
2932 * function updates the CPU page table to point to new pages, otherwise it
2933 * restores the CPU page table to point to the original source pages.
2935 * Function returns 0 after the above steps, even if no pages were migrated
2936 * (The function only returns an error if any of the arguments are invalid.)
2938 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939 * unsigned long entries.
2941 int migrate_vma(const struct migrate_vma_ops
*ops
,
2942 struct vm_area_struct
*vma
,
2943 unsigned long start
,
2949 struct migrate_vma migrate
;
2951 /* Sanity check the arguments */
2954 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
))
2956 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2958 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2960 if (!ops
|| !src
|| !dst
|| start
>= end
)
2963 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2966 migrate
.start
= start
;
2972 /* Collect, and try to unmap source pages */
2973 migrate_vma_collect(&migrate
);
2974 if (!migrate
.cpages
)
2977 /* Lock and isolate page */
2978 migrate_vma_prepare(&migrate
);
2979 if (!migrate
.cpages
)
2983 migrate_vma_unmap(&migrate
);
2984 if (!migrate
.cpages
)
2988 * At this point pages are locked and unmapped, and thus they have
2989 * stable content and can safely be copied to destination memory that
2990 * is allocated by the callback.
2992 * Note that migration can fail in migrate_vma_struct_page() for each
2995 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2997 /* This does the real migration of struct page */
2998 migrate_vma_pages(&migrate
);
3000 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
3002 /* Unlock and remap pages */
3003 migrate_vma_finalize(&migrate
);
3007 EXPORT_SYMBOL(migrate_vma
);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */