1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
41 #include "extent_map.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
56 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
57 struct buffer_head
*bh_result
, int create
)
61 struct ocfs2_dinode
*fe
= NULL
;
62 struct buffer_head
*bh
= NULL
;
63 struct buffer_head
*buffer_cache_bh
= NULL
;
64 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
69 (unsigned long long)iblock
, bh_result
, create
);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
73 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
74 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock
);
79 status
= ocfs2_read_inode_block(inode
, &bh
);
84 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
86 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
87 le32_to_cpu(fe
->i_clusters
))) {
89 mlog(ML_ERROR
, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock
);
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
97 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
99 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
100 if (!buffer_cache_bh
) {
102 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh
)
111 && ocfs2_inode_is_new(inode
)) {
112 kaddr
= kmap_atomic(bh_result
->b_page
);
114 mlog(ML_ERROR
, "couldn't kmap!\n");
117 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
118 buffer_cache_bh
->b_data
,
120 kunmap_atomic(kaddr
);
121 set_buffer_uptodate(bh_result
);
123 brelse(buffer_cache_bh
);
126 map_bh(bh_result
, inode
->i_sb
,
127 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
137 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 unsigned int ext_flags
;
142 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
143 u64 p_blkno
, count
, past_eof
;
144 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
147 (unsigned long long)iblock
, bh_result
, create
);
149 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
150 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
151 inode
, inode
->i_ino
);
153 if (S_ISLNK(inode
->i_mode
)) {
154 /* this always does I/O for some reason. */
155 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
159 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
162 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
164 (unsigned long long)p_blkno
);
168 if (max_blocks
< count
)
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
183 clear_buffer_dirty(bh_result
);
184 clear_buffer_uptodate(bh_result
);
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
190 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
192 bh_result
->b_size
= count
<< inode
->i_blkbits
;
194 if (!ocfs2_sparse_alloc(osb
)) {
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock
,
200 (unsigned long long)p_blkno
,
201 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
202 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
208 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
211 (unsigned long long)past_eof
);
212 if (create
&& (iblock
>= past_eof
))
213 set_buffer_new(bh_result
);
222 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
223 struct buffer_head
*di_bh
)
227 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
229 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
230 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
235 size
= i_size_read(inode
);
237 if (size
> PAGE_SIZE
||
238 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
239 ocfs2_error(inode
->i_sb
,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
242 (unsigned long long)size
);
246 kaddr
= kmap_atomic(page
);
248 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
249 /* Clear the remaining part of the page */
250 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
251 flush_dcache_page(page
);
252 kunmap_atomic(kaddr
);
254 SetPageUptodate(page
);
259 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
262 struct buffer_head
*di_bh
= NULL
;
264 BUG_ON(!PageLocked(page
));
265 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
267 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
273 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
281 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
283 struct inode
*inode
= page
->mapping
->host
;
284 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
285 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
288 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
289 (page
? page
->index
: 0));
291 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
293 if (ret
== AOP_TRUNCATED_PAGE
)
299 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret
= AOP_TRUNCATED_PAGE
;
307 down_read(&oi
->ip_alloc_sem
);
308 up_read(&oi
->ip_alloc_sem
);
309 goto out_inode_unlock
;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start
>= i_size_read(inode
)) {
323 zero_user(page
, 0, PAGE_SIZE
);
324 SetPageUptodate(page
);
329 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
330 ret
= ocfs2_readpage_inline(inode
, page
);
332 ret
= block_read_full_page(page
, ocfs2_get_block
);
336 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
338 ocfs2_inode_unlock(inode
, 0);
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
355 struct list_head
*pages
, unsigned nr_pages
)
358 struct inode
*inode
= mapping
->host
;
359 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
371 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
372 ocfs2_inode_unlock(inode
, 0);
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last
= list_entry(pages
->prev
, struct page
, lru
);
388 start
= (loff_t
)last
->index
<< PAGE_SHIFT
;
389 if (start
>= i_size_read(inode
))
392 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
395 up_read(&oi
->ip_alloc_sem
);
396 ocfs2_inode_unlock(inode
, 0);
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
418 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t
*handle
,
426 struct buffer_head
*head
,
430 int (*fn
)( handle_t
*handle
,
431 struct buffer_head
*bh
))
433 struct buffer_head
*bh
;
434 unsigned block_start
, block_end
;
435 unsigned blocksize
= head
->b_size
;
437 struct buffer_head
*next
;
439 for ( bh
= head
, block_start
= 0;
440 ret
== 0 && (bh
!= head
|| !block_start
);
441 block_start
= block_end
, bh
= next
)
443 next
= bh
->b_this_page
;
444 block_end
= block_start
+ blocksize
;
445 if (block_end
<= from
|| block_start
>= to
) {
446 if (partial
&& !buffer_uptodate(bh
))
450 err
= (*fn
)(handle
, bh
);
457 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
462 struct inode
*inode
= mapping
->host
;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
465 (unsigned long long)block
);
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
473 if (ocfs2_is_refcount_inode(inode
))
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
479 if (!INODE_JOURNAL(inode
)) {
480 err
= ocfs2_inode_lock(inode
, NULL
, 0);
486 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
489 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
490 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
493 if (!INODE_JOURNAL(inode
)) {
494 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
495 ocfs2_inode_unlock(inode
, 0);
499 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block
);
506 status
= err
? 0 : p_blkno
;
511 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
513 if (!page_has_buffers(page
))
515 return try_to_free_buffers(page
);
518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
523 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
525 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
528 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
530 cluster_start
= cpos
% cpp
;
531 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
533 cluster_end
= cluster_start
+ osb
->s_clustersize
;
536 BUG_ON(cluster_start
> PAGE_SIZE
);
537 BUG_ON(cluster_end
> PAGE_SIZE
);
540 *start
= cluster_start
;
546 * 'from' and 'to' are the region in the page to avoid zeroing.
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
551 * from == to == 0 is code for "zero the entire cluster region"
553 static void ocfs2_clear_page_regions(struct page
*page
,
554 struct ocfs2_super
*osb
, u32 cpos
,
555 unsigned from
, unsigned to
)
558 unsigned int cluster_start
, cluster_end
;
560 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
562 kaddr
= kmap_atomic(page
);
565 if (from
> cluster_start
)
566 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
567 if (to
< cluster_end
)
568 memset(kaddr
+ to
, 0, cluster_end
- to
);
570 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
573 kunmap_atomic(kaddr
);
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
583 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
584 unsigned int block_start
)
586 u64 offset
= page_offset(page
) + block_start
;
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
591 if (i_size_read(inode
) > offset
)
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
602 * This will also skip zeroing, which is handled externally.
604 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
605 struct inode
*inode
, unsigned int from
,
606 unsigned int to
, int new)
609 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
610 unsigned int block_end
, block_start
;
611 unsigned int bsize
= i_blocksize(inode
);
613 if (!page_has_buffers(page
))
614 create_empty_buffers(page
, bsize
, 0);
616 head
= page_buffers(page
);
617 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
618 bh
= bh
->b_this_page
, block_start
+= bsize
) {
619 block_end
= block_start
+ bsize
;
621 clear_buffer_new(bh
);
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
627 if (block_start
>= to
|| block_end
<= from
) {
628 if (PageUptodate(page
))
629 set_buffer_uptodate(bh
);
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
640 if (!buffer_mapped(bh
)) {
641 map_bh(bh
, inode
->i_sb
, *p_blkno
);
642 clean_bdev_bh_alias(bh
);
645 if (PageUptodate(page
)) {
646 if (!buffer_uptodate(bh
))
647 set_buffer_uptodate(bh
);
648 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
650 ocfs2_should_read_blk(inode
, page
, block_start
) &&
651 (block_start
< from
|| block_end
> to
)) {
652 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
656 *p_blkno
= *p_blkno
+ 1;
660 * If we issued read requests - let them complete.
662 while(wait_bh
> wait
) {
663 wait_on_buffer(*--wait_bh
);
664 if (!buffer_uptodate(*wait_bh
))
668 if (ret
== 0 || !new)
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
678 block_end
= block_start
+ bsize
;
679 if (block_end
<= from
)
681 if (block_start
>= to
)
684 zero_user(page
, block_start
, bh
->b_size
);
685 set_buffer_uptodate(bh
);
686 mark_buffer_dirty(bh
);
689 block_start
= block_end
;
690 bh
= bh
->b_this_page
;
691 } while (bh
!= head
);
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES 1
699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
704 struct ocfs2_unwritten_extent
{
705 struct list_head ue_node
;
706 struct list_head ue_ip_node
;
712 * Describe the state of a single cluster to be written to.
714 struct ocfs2_write_cluster_desc
{
718 * Give this a unique field because c_phys eventually gets
722 unsigned c_clear_unwritten
;
723 unsigned c_needs_zero
;
726 struct ocfs2_write_ctxt
{
727 /* Logical cluster position / len of write */
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos
;
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type
;
737 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
740 * This is true if page_size > cluster_size.
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
745 unsigned int w_large_pages
;
748 * Pages involved in this write.
750 * w_target_page is the page being written to by the user.
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
759 unsigned int w_num_pages
;
760 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
761 struct page
*w_target_page
;
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
767 unsigned int w_target_locked
:1;
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
773 unsigned int w_target_from
;
774 unsigned int w_target_to
;
777 * We could use journal_current_handle() but this is cleaner,
782 struct buffer_head
*w_di_bh
;
784 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
786 struct list_head w_unwritten_list
;
789 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
793 for(i
= 0; i
< num_pages
; i
++) {
795 unlock_page(pages
[i
]);
796 mark_page_accessed(pages
[i
]);
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
807 * w_target_locked is only set to true in the page_mkwrite() case.
808 * The intent is to allow us to lock the target page from write_begin()
809 * to write_end(). The caller must hold a ref on w_target_page.
811 if (wc
->w_target_locked
) {
812 BUG_ON(!wc
->w_target_page
);
813 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
814 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
815 wc
->w_pages
[i
] = NULL
;
819 mark_page_accessed(wc
->w_target_page
);
820 put_page(wc
->w_target_page
);
822 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
825 static void ocfs2_free_unwritten_list(struct inode
*inode
,
826 struct list_head
*head
)
828 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
829 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
831 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
832 list_del(&ue
->ue_node
);
833 spin_lock(&oi
->ip_lock
);
834 list_del(&ue
->ue_ip_node
);
835 spin_unlock(&oi
->ip_lock
);
840 static void ocfs2_free_write_ctxt(struct inode
*inode
,
841 struct ocfs2_write_ctxt
*wc
)
843 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
844 ocfs2_unlock_pages(wc
);
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
850 struct ocfs2_super
*osb
, loff_t pos
,
851 unsigned len
, ocfs2_write_type_t type
,
852 struct buffer_head
*di_bh
)
855 struct ocfs2_write_ctxt
*wc
;
857 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
861 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
862 wc
->w_first_new_cpos
= UINT_MAX
;
863 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
864 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
869 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
870 wc
->w_large_pages
= 1;
872 wc
->w_large_pages
= 0;
874 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
875 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
883 * If a page has any new buffers, zero them out here, and mark them uptodate
884 * and dirty so they'll be written out (in order to prevent uninitialised
885 * block data from leaking). And clear the new bit.
887 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
889 unsigned int block_start
, block_end
;
890 struct buffer_head
*head
, *bh
;
892 BUG_ON(!PageLocked(page
));
893 if (!page_has_buffers(page
))
896 bh
= head
= page_buffers(page
);
899 block_end
= block_start
+ bh
->b_size
;
901 if (buffer_new(bh
)) {
902 if (block_end
> from
&& block_start
< to
) {
903 if (!PageUptodate(page
)) {
906 start
= max(from
, block_start
);
907 end
= min(to
, block_end
);
909 zero_user_segment(page
, start
, end
);
910 set_buffer_uptodate(bh
);
913 clear_buffer_new(bh
);
914 mark_buffer_dirty(bh
);
918 block_start
= block_end
;
919 bh
= bh
->b_this_page
;
920 } while (bh
!= head
);
924 * Only called when we have a failure during allocating write to write
925 * zero's to the newly allocated region.
927 static void ocfs2_write_failure(struct inode
*inode
,
928 struct ocfs2_write_ctxt
*wc
,
929 loff_t user_pos
, unsigned user_len
)
932 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
933 to
= user_pos
+ user_len
;
934 struct page
*tmppage
;
936 if (wc
->w_target_page
)
937 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
939 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
940 tmppage
= wc
->w_pages
[i
];
942 if (tmppage
&& page_has_buffers(tmppage
)) {
943 if (ocfs2_should_order_data(inode
))
944 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
946 block_commit_write(tmppage
, from
, to
);
951 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
952 struct ocfs2_write_ctxt
*wc
,
953 struct page
*page
, u32 cpos
,
954 loff_t user_pos
, unsigned user_len
,
958 unsigned int map_from
= 0, map_to
= 0;
959 unsigned int cluster_start
, cluster_end
;
960 unsigned int user_data_from
= 0, user_data_to
= 0;
962 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
963 &cluster_start
, &cluster_end
);
965 /* treat the write as new if the a hole/lseek spanned across
968 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
969 (page_offset(page
) <= user_pos
));
971 if (page
== wc
->w_target_page
) {
972 map_from
= user_pos
& (PAGE_SIZE
- 1);
973 map_to
= map_from
+ user_len
;
976 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
977 cluster_start
, cluster_end
,
980 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
981 map_from
, map_to
, new);
987 user_data_from
= map_from
;
988 user_data_to
= map_to
;
990 map_from
= cluster_start
;
991 map_to
= cluster_end
;
995 * If we haven't allocated the new page yet, we
996 * shouldn't be writing it out without copying user
997 * data. This is likely a math error from the caller.
1001 map_from
= cluster_start
;
1002 map_to
= cluster_end
;
1004 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1005 cluster_start
, cluster_end
, new);
1013 * Parts of newly allocated pages need to be zero'd.
1015 * Above, we have also rewritten 'to' and 'from' - as far as
1016 * the rest of the function is concerned, the entire cluster
1017 * range inside of a page needs to be written.
1019 * We can skip this if the page is up to date - it's already
1020 * been zero'd from being read in as a hole.
1022 if (new && !PageUptodate(page
))
1023 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1024 cpos
, user_data_from
, user_data_to
);
1026 flush_dcache_page(page
);
1033 * This function will only grab one clusters worth of pages.
1035 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1036 struct ocfs2_write_ctxt
*wc
,
1037 u32 cpos
, loff_t user_pos
,
1038 unsigned user_len
, int new,
1039 struct page
*mmap_page
)
1042 unsigned long start
, target_index
, end_index
, index
;
1043 struct inode
*inode
= mapping
->host
;
1046 target_index
= user_pos
>> PAGE_SHIFT
;
1049 * Figure out how many pages we'll be manipulating here. For
1050 * non allocating write, we just change the one
1051 * page. Otherwise, we'll need a whole clusters worth. If we're
1052 * writing past i_size, we only need enough pages to cover the
1053 * last page of the write.
1056 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1057 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1059 * We need the index *past* the last page we could possibly
1060 * touch. This is the page past the end of the write or
1061 * i_size, whichever is greater.
1063 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1064 BUG_ON(last_byte
< 1);
1065 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1066 if ((start
+ wc
->w_num_pages
) > end_index
)
1067 wc
->w_num_pages
= end_index
- start
;
1069 wc
->w_num_pages
= 1;
1070 start
= target_index
;
1072 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1074 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1077 if (index
>= target_index
&& index
<= end_index
&&
1078 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1080 * ocfs2_pagemkwrite() is a little different
1081 * and wants us to directly use the page
1084 lock_page(mmap_page
);
1086 /* Exit and let the caller retry */
1087 if (mmap_page
->mapping
!= mapping
) {
1088 WARN_ON(mmap_page
->mapping
);
1089 unlock_page(mmap_page
);
1094 get_page(mmap_page
);
1095 wc
->w_pages
[i
] = mmap_page
;
1096 wc
->w_target_locked
= true;
1097 } else if (index
>= target_index
&& index
<= end_index
&&
1098 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1099 /* Direct write has no mapping page. */
1100 wc
->w_pages
[i
] = NULL
;
1103 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1105 if (!wc
->w_pages
[i
]) {
1111 wait_for_stable_page(wc
->w_pages
[i
]);
1113 if (index
== target_index
)
1114 wc
->w_target_page
= wc
->w_pages
[i
];
1118 wc
->w_target_locked
= false;
1123 * Prepare a single cluster for write one cluster into the file.
1125 static int ocfs2_write_cluster(struct address_space
*mapping
,
1126 u32
*phys
, unsigned int new,
1127 unsigned int clear_unwritten
,
1128 unsigned int should_zero
,
1129 struct ocfs2_alloc_context
*data_ac
,
1130 struct ocfs2_alloc_context
*meta_ac
,
1131 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1132 loff_t user_pos
, unsigned user_len
)
1136 struct inode
*inode
= mapping
->host
;
1137 struct ocfs2_extent_tree et
;
1138 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1144 * This is safe to call with the page locks - it won't take
1145 * any additional semaphores or cluster locks.
1148 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1149 &tmp_pos
, 1, !clear_unwritten
,
1150 wc
->w_di_bh
, wc
->w_handle
,
1151 data_ac
, meta_ac
, NULL
);
1153 * This shouldn't happen because we must have already
1154 * calculated the correct meta data allocation required. The
1155 * internal tree allocation code should know how to increase
1156 * transaction credits itself.
1158 * If need be, we could handle -EAGAIN for a
1159 * RESTART_TRANS here.
1161 mlog_bug_on_msg(ret
== -EAGAIN
,
1162 "Inode %llu: EAGAIN return during allocation.\n",
1163 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1168 } else if (clear_unwritten
) {
1169 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1171 ret
= ocfs2_mark_extent_written(inode
, &et
,
1172 wc
->w_handle
, cpos
, 1, *phys
,
1173 meta_ac
, &wc
->w_dealloc
);
1181 * The only reason this should fail is due to an inability to
1182 * find the extent added.
1184 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1186 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1187 "at logical cluster %u",
1188 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1194 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1196 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1198 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1201 /* This is the direct io target page. */
1202 if (wc
->w_pages
[i
] == NULL
) {
1207 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1208 wc
->w_pages
[i
], cpos
,
1219 * We only have cleanup to do in case of allocating write.
1222 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1229 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1230 struct ocfs2_alloc_context
*data_ac
,
1231 struct ocfs2_alloc_context
*meta_ac
,
1232 struct ocfs2_write_ctxt
*wc
,
1233 loff_t pos
, unsigned len
)
1237 unsigned int local_len
= len
;
1238 struct ocfs2_write_cluster_desc
*desc
;
1239 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1241 for (i
= 0; i
< wc
->w_clen
; i
++) {
1242 desc
= &wc
->w_desc
[i
];
1245 * We have to make sure that the total write passed in
1246 * doesn't extend past a single cluster.
1249 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1250 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1251 local_len
= osb
->s_clustersize
- cluster_off
;
1253 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1255 desc
->c_clear_unwritten
,
1258 wc
, desc
->c_cpos
, pos
, local_len
);
1274 * ocfs2_write_end() wants to know which parts of the target page it
1275 * should complete the write on. It's easiest to compute them ahead of
1276 * time when a more complete view of the write is available.
1278 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1279 struct ocfs2_write_ctxt
*wc
,
1280 loff_t pos
, unsigned len
, int alloc
)
1282 struct ocfs2_write_cluster_desc
*desc
;
1284 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1285 wc
->w_target_to
= wc
->w_target_from
+ len
;
1291 * Allocating write - we may have different boundaries based
1292 * on page size and cluster size.
1294 * NOTE: We can no longer compute one value from the other as
1295 * the actual write length and user provided length may be
1299 if (wc
->w_large_pages
) {
1301 * We only care about the 1st and last cluster within
1302 * our range and whether they should be zero'd or not. Either
1303 * value may be extended out to the start/end of a
1304 * newly allocated cluster.
1306 desc
= &wc
->w_desc
[0];
1307 if (desc
->c_needs_zero
)
1308 ocfs2_figure_cluster_boundaries(osb
,
1313 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1314 if (desc
->c_needs_zero
)
1315 ocfs2_figure_cluster_boundaries(osb
,
1320 wc
->w_target_from
= 0;
1321 wc
->w_target_to
= PAGE_SIZE
;
1326 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1327 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1328 * by the direct io procedure.
1329 * If this is a new extent that allocated by direct io, we should mark it in
1330 * the ip_unwritten_list.
1332 static int ocfs2_unwritten_check(struct inode
*inode
,
1333 struct ocfs2_write_ctxt
*wc
,
1334 struct ocfs2_write_cluster_desc
*desc
)
1336 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1337 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1340 if (!desc
->c_needs_zero
)
1344 spin_lock(&oi
->ip_lock
);
1345 /* Needs not to zero no metter buffer or direct. The one who is zero
1346 * the cluster is doing zero. And he will clear unwritten after all
1347 * cluster io finished. */
1348 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1349 if (desc
->c_cpos
== ue
->ue_cpos
) {
1350 BUG_ON(desc
->c_new
);
1351 desc
->c_needs_zero
= 0;
1352 desc
->c_clear_unwritten
= 0;
1357 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1361 spin_unlock(&oi
->ip_lock
);
1362 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1370 /* This direct write will doing zero. */
1371 new->ue_cpos
= desc
->c_cpos
;
1372 new->ue_phys
= desc
->c_phys
;
1373 desc
->c_clear_unwritten
= 0;
1374 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1375 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1378 spin_unlock(&oi
->ip_lock
);
1386 * Populate each single-cluster write descriptor in the write context
1387 * with information about the i/o to be done.
1389 * Returns the number of clusters that will have to be allocated, as
1390 * well as a worst case estimate of the number of extent records that
1391 * would have to be created during a write to an unwritten region.
1393 static int ocfs2_populate_write_desc(struct inode
*inode
,
1394 struct ocfs2_write_ctxt
*wc
,
1395 unsigned int *clusters_to_alloc
,
1396 unsigned int *extents_to_split
)
1399 struct ocfs2_write_cluster_desc
*desc
;
1400 unsigned int num_clusters
= 0;
1401 unsigned int ext_flags
= 0;
1405 *clusters_to_alloc
= 0;
1406 *extents_to_split
= 0;
1408 for (i
= 0; i
< wc
->w_clen
; i
++) {
1409 desc
= &wc
->w_desc
[i
];
1410 desc
->c_cpos
= wc
->w_cpos
+ i
;
1412 if (num_clusters
== 0) {
1414 * Need to look up the next extent record.
1416 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1417 &num_clusters
, &ext_flags
);
1423 /* We should already CoW the refcountd extent. */
1424 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1427 * Assume worst case - that we're writing in
1428 * the middle of the extent.
1430 * We can assume that the write proceeds from
1431 * left to right, in which case the extent
1432 * insert code is smart enough to coalesce the
1433 * next splits into the previous records created.
1435 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1436 *extents_to_split
= *extents_to_split
+ 2;
1439 * Only increment phys if it doesn't describe
1446 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1447 * file that got extended. w_first_new_cpos tells us
1448 * where the newly allocated clusters are so we can
1451 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1453 desc
->c_needs_zero
= 1;
1456 desc
->c_phys
= phys
;
1459 desc
->c_needs_zero
= 1;
1460 desc
->c_clear_unwritten
= 1;
1461 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1464 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1465 desc
->c_clear_unwritten
= 1;
1466 desc
->c_needs_zero
= 1;
1469 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1483 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1484 struct inode
*inode
,
1485 struct ocfs2_write_ctxt
*wc
)
1488 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1491 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1493 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1494 if (IS_ERR(handle
)) {
1495 ret
= PTR_ERR(handle
);
1500 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1502 ocfs2_commit_trans(osb
, handle
);
1508 * If we don't set w_num_pages then this page won't get unlocked
1509 * and freed on cleanup of the write context.
1511 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1512 wc
->w_num_pages
= 1;
1514 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1515 OCFS2_JOURNAL_ACCESS_WRITE
);
1517 ocfs2_commit_trans(osb
, handle
);
1523 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1524 ocfs2_set_inode_data_inline(inode
, di
);
1526 if (!PageUptodate(page
)) {
1527 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1529 ocfs2_commit_trans(osb
, handle
);
1535 wc
->w_handle
= handle
;
1540 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1542 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1544 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1549 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1550 struct inode
*inode
, loff_t pos
,
1551 unsigned len
, struct page
*mmap_page
,
1552 struct ocfs2_write_ctxt
*wc
)
1554 int ret
, written
= 0;
1555 loff_t end
= pos
+ len
;
1556 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1557 struct ocfs2_dinode
*di
= NULL
;
1559 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1560 len
, (unsigned long long)pos
,
1561 oi
->ip_dyn_features
);
1564 * Handle inodes which already have inline data 1st.
1566 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1567 if (mmap_page
== NULL
&&
1568 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1569 goto do_inline_write
;
1572 * The write won't fit - we have to give this inode an
1573 * inline extent list now.
1575 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1582 * Check whether the inode can accept inline data.
1584 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1588 * Check whether the write can fit.
1590 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1592 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1596 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1603 * This signals to the caller that the data can be written
1608 return written
? written
: ret
;
1612 * This function only does anything for file systems which can't
1613 * handle sparse files.
1615 * What we want to do here is fill in any hole between the current end
1616 * of allocation and the end of our write. That way the rest of the
1617 * write path can treat it as an non-allocating write, which has no
1618 * special case code for sparse/nonsparse files.
1620 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1621 struct buffer_head
*di_bh
,
1622 loff_t pos
, unsigned len
,
1623 struct ocfs2_write_ctxt
*wc
)
1626 loff_t newsize
= pos
+ len
;
1628 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1630 if (newsize
<= i_size_read(inode
))
1633 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1637 /* There is no wc if this is call from direct. */
1639 wc
->w_first_new_cpos
=
1640 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1645 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1650 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1651 if (pos
> i_size_read(inode
))
1652 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1657 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1658 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1659 struct page
**pagep
, void **fsdata
,
1660 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1662 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1663 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1664 struct ocfs2_write_ctxt
*wc
;
1665 struct inode
*inode
= mapping
->host
;
1666 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1667 struct ocfs2_dinode
*di
;
1668 struct ocfs2_alloc_context
*data_ac
= NULL
;
1669 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1671 struct ocfs2_extent_tree et
;
1672 int try_free
= 1, ret1
;
1675 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1681 if (ocfs2_supports_inline_data(osb
)) {
1682 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1694 /* Direct io change i_size late, should not zero tail here. */
1695 if (type
!= OCFS2_WRITE_DIRECT
) {
1696 if (ocfs2_sparse_alloc(osb
))
1697 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1699 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1707 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1711 } else if (ret
== 1) {
1712 clusters_need
= wc
->w_clen
;
1713 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1714 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1721 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1727 clusters_need
+= clusters_to_alloc
;
1729 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1731 trace_ocfs2_write_begin_nolock(
1732 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1733 (long long)i_size_read(inode
),
1734 le32_to_cpu(di
->i_clusters
),
1735 pos
, len
, type
, mmap_page
,
1736 clusters_to_alloc
, extents_to_split
);
1739 * We set w_target_from, w_target_to here so that
1740 * ocfs2_write_end() knows which range in the target page to
1741 * write out. An allocation requires that we write the entire
1744 if (clusters_to_alloc
|| extents_to_split
) {
1746 * XXX: We are stretching the limits of
1747 * ocfs2_lock_allocators(). It greatly over-estimates
1748 * the work to be done.
1750 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1752 ret
= ocfs2_lock_allocators(inode
, &et
,
1753 clusters_to_alloc
, extents_to_split
,
1754 &data_ac
, &meta_ac
);
1761 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1763 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1765 } else if (type
== OCFS2_WRITE_DIRECT
)
1766 /* direct write needs not to start trans if no extents alloc. */
1770 * We have to zero sparse allocated clusters, unwritten extent clusters,
1771 * and non-sparse clusters we just extended. For non-sparse writes,
1772 * we know zeros will only be needed in the first and/or last cluster.
1774 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1775 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1776 cluster_of_pages
= 1;
1778 cluster_of_pages
= 0;
1780 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1782 handle
= ocfs2_start_trans(osb
, credits
);
1783 if (IS_ERR(handle
)) {
1784 ret
= PTR_ERR(handle
);
1789 wc
->w_handle
= handle
;
1791 if (clusters_to_alloc
) {
1792 ret
= dquot_alloc_space_nodirty(inode
,
1793 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1798 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1799 OCFS2_JOURNAL_ACCESS_WRITE
);
1806 * Fill our page array first. That way we've grabbed enough so
1807 * that we can zero and flush if we error after adding the
1810 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1811 cluster_of_pages
, mmap_page
);
1812 if (ret
&& ret
!= -EAGAIN
) {
1818 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1819 * the target page. In this case, we exit with no error and no target
1820 * page. This will trigger the caller, page_mkwrite(), to re-try
1823 if (ret
== -EAGAIN
) {
1824 BUG_ON(wc
->w_target_page
);
1829 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1837 ocfs2_free_alloc_context(data_ac
);
1839 ocfs2_free_alloc_context(meta_ac
);
1843 *pagep
= wc
->w_target_page
;
1847 if (clusters_to_alloc
)
1848 dquot_free_space(inode
,
1849 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1851 ocfs2_commit_trans(osb
, handle
);
1855 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1856 * even in case of error here like ENOSPC and ENOMEM. So, we need
1857 * to unlock the target page manually to prevent deadlocks when
1858 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861 if (wc
->w_target_locked
)
1862 unlock_page(mmap_page
);
1864 ocfs2_free_write_ctxt(inode
, wc
);
1867 ocfs2_free_alloc_context(data_ac
);
1871 ocfs2_free_alloc_context(meta_ac
);
1875 if (ret
== -ENOSPC
&& try_free
) {
1877 * Try to free some truncate log so that we can have enough
1878 * clusters to allocate.
1882 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1893 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1894 loff_t pos
, unsigned len
, unsigned flags
,
1895 struct page
**pagep
, void **fsdata
)
1898 struct buffer_head
*di_bh
= NULL
;
1899 struct inode
*inode
= mapping
->host
;
1901 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1908 * Take alloc sem here to prevent concurrent lookups. That way
1909 * the mapping, zeroing and tree manipulation within
1910 * ocfs2_write() will be safe against ->readpage(). This
1911 * should also serve to lock out allocation from a shared
1914 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1916 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1917 pagep
, fsdata
, di_bh
, NULL
);
1928 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1931 ocfs2_inode_unlock(inode
, 1);
1936 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1937 unsigned len
, unsigned *copied
,
1938 struct ocfs2_dinode
*di
,
1939 struct ocfs2_write_ctxt
*wc
)
1943 if (unlikely(*copied
< len
)) {
1944 if (!PageUptodate(wc
->w_target_page
)) {
1950 kaddr
= kmap_atomic(wc
->w_target_page
);
1951 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1952 kunmap_atomic(kaddr
);
1954 trace_ocfs2_write_end_inline(
1955 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1956 (unsigned long long)pos
, *copied
,
1957 le16_to_cpu(di
->id2
.i_data
.id_count
),
1958 le16_to_cpu(di
->i_dyn_features
));
1961 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1962 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1965 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1966 struct inode
*inode
= mapping
->host
;
1967 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1968 struct ocfs2_write_ctxt
*wc
= fsdata
;
1969 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1970 handle_t
*handle
= wc
->w_handle
;
1971 struct page
*tmppage
;
1973 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1976 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1977 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1985 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1986 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1987 goto out_write_size
;
1990 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1991 if (!PageUptodate(wc
->w_target_page
))
1994 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1997 if (wc
->w_target_page
)
1998 flush_dcache_page(wc
->w_target_page
);
2000 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
2001 tmppage
= wc
->w_pages
[i
];
2003 /* This is the direct io target page. */
2004 if (tmppage
== NULL
)
2007 if (tmppage
== wc
->w_target_page
) {
2008 from
= wc
->w_target_from
;
2009 to
= wc
->w_target_to
;
2011 BUG_ON(from
> PAGE_SIZE
||
2016 * Pages adjacent to the target (if any) imply
2017 * a hole-filling write in which case we want
2018 * to flush their entire range.
2024 if (page_has_buffers(tmppage
)) {
2025 if (handle
&& ocfs2_should_order_data(inode
))
2026 ocfs2_jbd2_file_inode(handle
, inode
);
2027 block_commit_write(tmppage
, from
, to
);
2032 /* Direct io do not update i_size here. */
2033 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2035 if (pos
> i_size_read(inode
)) {
2036 i_size_write(inode
, pos
);
2037 mark_inode_dirty(inode
);
2039 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2040 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2041 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2042 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2043 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2044 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2047 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 * lock, or it will cause a deadlock since journal commit threads holds
2052 * this lock and will ask for the page lock when flushing the data.
2053 * put it here to preserve the unlock order.
2055 ocfs2_unlock_pages(wc
);
2058 ocfs2_commit_trans(osb
, handle
);
2060 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2062 brelse(wc
->w_di_bh
);
2068 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2069 loff_t pos
, unsigned len
, unsigned copied
,
2070 struct page
*page
, void *fsdata
)
2073 struct inode
*inode
= mapping
->host
;
2075 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2077 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2078 ocfs2_inode_unlock(inode
, 1);
2083 struct ocfs2_dio_write_ctxt
{
2084 struct list_head dw_zero_list
;
2085 unsigned dw_zero_count
;
2087 pid_t dw_writer_pid
;
2090 static struct ocfs2_dio_write_ctxt
*
2091 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2093 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2096 return bh
->b_private
;
2098 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2101 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2102 dwc
->dw_zero_count
= 0;
2103 dwc
->dw_orphaned
= 0;
2104 dwc
->dw_writer_pid
= task_pid_nr(current
);
2105 bh
->b_private
= dwc
;
2111 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2112 struct ocfs2_dio_write_ctxt
*dwc
)
2114 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2119 * TODO: Make this into a generic get_blocks function.
2121 * From do_direct_io in direct-io.c:
2122 * "So what we do is to permit the ->get_blocks function to populate
2123 * bh.b_size with the size of IO which is permitted at this offset and
2126 * This function is called directly from get_more_blocks in direct-io.c.
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 * fs_count, map_bh, dio->rw == WRITE);
2131 static int ocfs2_dio_get_block(struct inode
*inode
, sector_t iblock
,
2132 struct buffer_head
*bh_result
, int create
)
2134 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2135 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2136 struct ocfs2_write_ctxt
*wc
;
2137 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2138 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2139 struct buffer_head
*di_bh
= NULL
;
2141 loff_t pos
= iblock
<< inode
->i_sb
->s_blocksize_bits
;
2142 unsigned len
, total_len
= bh_result
->b_size
;
2143 int ret
= 0, first_get_block
= 0;
2145 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2146 len
= min(total_len
, len
);
2148 mlog(0, "get block of %lu at %llu:%u req %u\n",
2149 inode
->i_ino
, pos
, len
, total_len
);
2152 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2153 * we may need to add it to orphan dir. So can not fall to fast path
2154 * while file size will be changed.
2156 if (pos
+ total_len
<= i_size_read(inode
)) {
2157 down_read(&oi
->ip_alloc_sem
);
2158 /* This is the fast path for re-write. */
2159 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
2161 up_read(&oi
->ip_alloc_sem
);
2163 if (buffer_mapped(bh_result
) &&
2164 !buffer_new(bh_result
) &&
2168 /* Clear state set by ocfs2_get_block. */
2169 bh_result
->b_state
= 0;
2172 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2173 if (unlikely(dwc
== NULL
)) {
2179 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2180 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2181 !dwc
->dw_orphaned
) {
2183 * when we are going to alloc extents beyond file size, add the
2184 * inode to orphan dir, so we can recall those spaces when
2185 * system crashed during write.
2187 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2192 dwc
->dw_orphaned
= 1;
2195 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2201 down_write(&oi
->ip_alloc_sem
);
2203 if (first_get_block
) {
2204 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
2205 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2207 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2215 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2216 OCFS2_WRITE_DIRECT
, NULL
,
2217 (void **)&wc
, di_bh
, NULL
);
2223 desc
= &wc
->w_desc
[0];
2225 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2226 BUG_ON(p_blkno
== 0);
2227 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2229 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2230 bh_result
->b_size
= len
;
2231 if (desc
->c_needs_zero
)
2232 set_buffer_new(bh_result
);
2234 /* May sleep in end_io. It should not happen in a irq context. So defer
2235 * it to dio work queue. */
2236 set_buffer_defer_completion(bh_result
);
2238 if (!list_empty(&wc
->w_unwritten_list
)) {
2239 struct ocfs2_unwritten_extent
*ue
= NULL
;
2241 ue
= list_first_entry(&wc
->w_unwritten_list
,
2242 struct ocfs2_unwritten_extent
,
2244 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2245 /* The physical address may be 0, fill it. */
2246 ue
->ue_phys
= desc
->c_phys
;
2248 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2249 dwc
->dw_zero_count
++;
2252 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2256 up_write(&oi
->ip_alloc_sem
);
2257 ocfs2_inode_unlock(inode
, 1);
2265 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2266 struct ocfs2_dio_write_ctxt
*dwc
,
2270 struct ocfs2_cached_dealloc_ctxt dealloc
;
2271 struct ocfs2_extent_tree et
;
2272 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2273 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2274 struct ocfs2_unwritten_extent
*ue
= NULL
;
2275 struct buffer_head
*di_bh
= NULL
;
2276 struct ocfs2_dinode
*di
;
2277 struct ocfs2_alloc_context
*data_ac
= NULL
;
2278 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2279 handle_t
*handle
= NULL
;
2280 loff_t end
= offset
+ bytes
;
2281 int ret
= 0, credits
= 0, locked
= 0;
2283 ocfs2_init_dealloc_ctxt(&dealloc
);
2285 /* We do clear unwritten, delete orphan, change i_size here. If neither
2286 * of these happen, we can skip all this. */
2287 if (list_empty(&dwc
->dw_zero_list
) &&
2288 end
<= i_size_read(inode
) &&
2292 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2293 * are in that context. */
2294 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2299 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2305 down_write(&oi
->ip_alloc_sem
);
2307 /* Delete orphan before acquire i_mutex. */
2308 if (dwc
->dw_orphaned
) {
2309 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2311 end
= end
> i_size_read(inode
) ? end
: 0;
2313 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2319 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2321 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2323 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2324 &data_ac
, &meta_ac
);
2330 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2332 handle
= ocfs2_start_trans(osb
, credits
);
2333 if (IS_ERR(handle
)) {
2334 ret
= PTR_ERR(handle
);
2338 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2339 OCFS2_JOURNAL_ACCESS_WRITE
);
2345 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2346 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2356 if (end
> i_size_read(inode
)) {
2357 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2362 ocfs2_commit_trans(osb
, handle
);
2364 up_write(&oi
->ip_alloc_sem
);
2365 ocfs2_inode_unlock(inode
, 1);
2369 ocfs2_free_alloc_context(data_ac
);
2371 ocfs2_free_alloc_context(meta_ac
);
2372 ocfs2_run_deallocs(osb
, &dealloc
);
2374 inode_unlock(inode
);
2375 ocfs2_dio_free_write_ctx(inode
, dwc
);
2381 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2382 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2383 * to protect io on one node from truncation on another.
2385 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2390 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2394 /* this io's submitter should not have unlocked this before we could */
2395 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2397 if (bytes
> 0 && private)
2398 ret
= ocfs2_dio_end_io_write(inode
, private, offset
, bytes
);
2400 ocfs2_iocb_clear_rw_locked(iocb
);
2402 level
= ocfs2_iocb_rw_locked_level(iocb
);
2403 ocfs2_rw_unlock(inode
, level
);
2407 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2409 struct file
*file
= iocb
->ki_filp
;
2410 struct inode
*inode
= file
->f_mapping
->host
;
2411 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2412 get_block_t
*get_block
;
2415 * Fallback to buffered I/O if we see an inode without
2418 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2421 /* Fallback to buffered I/O if we do not support append dio. */
2422 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2423 !ocfs2_supports_append_dio(osb
))
2426 if (iov_iter_rw(iter
) == READ
)
2427 get_block
= ocfs2_get_block
;
2429 get_block
= ocfs2_dio_get_block
;
2431 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2433 ocfs2_dio_end_io
, NULL
, 0);
2436 const struct address_space_operations ocfs2_aops
= {
2437 .readpage
= ocfs2_readpage
,
2438 .readpages
= ocfs2_readpages
,
2439 .writepage
= ocfs2_writepage
,
2440 .write_begin
= ocfs2_write_begin
,
2441 .write_end
= ocfs2_write_end
,
2443 .direct_IO
= ocfs2_direct_IO
,
2444 .invalidatepage
= block_invalidatepage
,
2445 .releasepage
= ocfs2_releasepage
,
2446 .migratepage
= buffer_migrate_page
,
2447 .is_partially_uptodate
= block_is_partially_uptodate
,
2448 .error_remove_page
= generic_error_remove_page
,