Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / hpet.c
blobb0acb22e5a465096b37f7a67a689852685228087
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/export.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
16 #include <asm/cpufeature.h>
17 #include <asm/irqdomain.h>
18 #include <asm/fixmap.h>
19 #include <asm/hpet.h>
20 #include <asm/time.h>
22 #define HPET_MASK CLOCKSOURCE_MASK(32)
24 /* FSEC = 10^-15
25 NSEC = 10^-9 */
26 #define FSEC_PER_NSEC 1000000L
28 #define HPET_DEV_USED_BIT 2
29 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
30 #define HPET_DEV_VALID 0x8
31 #define HPET_DEV_FSB_CAP 0x1000
32 #define HPET_DEV_PERI_CAP 0x2000
34 #define HPET_MIN_CYCLES 128
35 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
38 * HPET address is set in acpi/boot.c, when an ACPI entry exists
40 unsigned long hpet_address;
41 u8 hpet_blockid; /* OS timer block num */
42 bool hpet_msi_disable;
44 #ifdef CONFIG_PCI_MSI
45 static unsigned int hpet_num_timers;
46 #endif
47 static void __iomem *hpet_virt_address;
49 struct hpet_dev {
50 struct clock_event_device evt;
51 unsigned int num;
52 int cpu;
53 unsigned int irq;
54 unsigned int flags;
55 char name[10];
58 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
60 return container_of(evtdev, struct hpet_dev, evt);
63 inline unsigned int hpet_readl(unsigned int a)
65 return readl(hpet_virt_address + a);
68 static inline void hpet_writel(unsigned int d, unsigned int a)
70 writel(d, hpet_virt_address + a);
73 #ifdef CONFIG_X86_64
74 #include <asm/pgtable.h>
75 #endif
77 static inline void hpet_set_mapping(void)
79 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
82 static inline void hpet_clear_mapping(void)
84 iounmap(hpet_virt_address);
85 hpet_virt_address = NULL;
89 * HPET command line enable / disable
91 bool boot_hpet_disable;
92 bool hpet_force_user;
93 static bool hpet_verbose;
95 static int __init hpet_setup(char *str)
97 while (str) {
98 char *next = strchr(str, ',');
100 if (next)
101 *next++ = 0;
102 if (!strncmp("disable", str, 7))
103 boot_hpet_disable = true;
104 if (!strncmp("force", str, 5))
105 hpet_force_user = true;
106 if (!strncmp("verbose", str, 7))
107 hpet_verbose = true;
108 str = next;
110 return 1;
112 __setup("hpet=", hpet_setup);
114 static int __init disable_hpet(char *str)
116 boot_hpet_disable = true;
117 return 1;
119 __setup("nohpet", disable_hpet);
121 static inline int is_hpet_capable(void)
123 return !boot_hpet_disable && hpet_address;
127 * HPET timer interrupt enable / disable
129 static bool hpet_legacy_int_enabled;
132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
134 int is_hpet_enabled(void)
136 return is_hpet_capable() && hpet_legacy_int_enabled;
138 EXPORT_SYMBOL_GPL(is_hpet_enabled);
140 static void _hpet_print_config(const char *function, int line)
142 u32 i, timers, l, h;
143 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
144 l = hpet_readl(HPET_ID);
145 h = hpet_readl(HPET_PERIOD);
146 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
147 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
148 l = hpet_readl(HPET_CFG);
149 h = hpet_readl(HPET_STATUS);
150 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
151 l = hpet_readl(HPET_COUNTER);
152 h = hpet_readl(HPET_COUNTER+4);
153 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
155 for (i = 0; i < timers; i++) {
156 l = hpet_readl(HPET_Tn_CFG(i));
157 h = hpet_readl(HPET_Tn_CFG(i)+4);
158 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159 i, l, h);
160 l = hpet_readl(HPET_Tn_CMP(i));
161 h = hpet_readl(HPET_Tn_CMP(i)+4);
162 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163 i, l, h);
164 l = hpet_readl(HPET_Tn_ROUTE(i));
165 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
166 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167 i, l, h);
171 #define hpet_print_config() \
172 do { \
173 if (hpet_verbose) \
174 _hpet_print_config(__func__, __LINE__); \
175 } while (0)
178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179 * timer 0 and timer 1 in case of RTC emulation.
181 #ifdef CONFIG_HPET
183 static void hpet_reserve_msi_timers(struct hpet_data *hd);
185 static void hpet_reserve_platform_timers(unsigned int id)
187 struct hpet __iomem *hpet = hpet_virt_address;
188 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
189 unsigned int nrtimers, i;
190 struct hpet_data hd;
192 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
194 memset(&hd, 0, sizeof(hd));
195 hd.hd_phys_address = hpet_address;
196 hd.hd_address = hpet;
197 hd.hd_nirqs = nrtimers;
198 hpet_reserve_timer(&hd, 0);
200 #ifdef CONFIG_HPET_EMULATE_RTC
201 hpet_reserve_timer(&hd, 1);
202 #endif
205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 * is wrong for i8259!) not the output IRQ. Many BIOS writers
207 * don't bother configuring *any* comparator interrupts.
209 hd.hd_irq[0] = HPET_LEGACY_8254;
210 hd.hd_irq[1] = HPET_LEGACY_RTC;
212 for (i = 2; i < nrtimers; timer++, i++) {
213 hd.hd_irq[i] = (readl(&timer->hpet_config) &
214 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
217 hpet_reserve_msi_timers(&hd);
219 hpet_alloc(&hd);
222 #else
223 static void hpet_reserve_platform_timers(unsigned int id) { }
224 #endif
227 * Common hpet info
229 static unsigned long hpet_freq;
231 static struct clock_event_device hpet_clockevent;
233 static void hpet_stop_counter(void)
235 u32 cfg = hpet_readl(HPET_CFG);
236 cfg &= ~HPET_CFG_ENABLE;
237 hpet_writel(cfg, HPET_CFG);
240 static void hpet_reset_counter(void)
242 hpet_writel(0, HPET_COUNTER);
243 hpet_writel(0, HPET_COUNTER + 4);
246 static void hpet_start_counter(void)
248 unsigned int cfg = hpet_readl(HPET_CFG);
249 cfg |= HPET_CFG_ENABLE;
250 hpet_writel(cfg, HPET_CFG);
253 static void hpet_restart_counter(void)
255 hpet_stop_counter();
256 hpet_reset_counter();
257 hpet_start_counter();
260 static void hpet_resume_device(void)
262 force_hpet_resume();
265 static void hpet_resume_counter(struct clocksource *cs)
267 hpet_resume_device();
268 hpet_restart_counter();
271 static void hpet_enable_legacy_int(void)
273 unsigned int cfg = hpet_readl(HPET_CFG);
275 cfg |= HPET_CFG_LEGACY;
276 hpet_writel(cfg, HPET_CFG);
277 hpet_legacy_int_enabled = true;
280 static void hpet_legacy_clockevent_register(void)
282 /* Start HPET legacy interrupts */
283 hpet_enable_legacy_int();
286 * Start hpet with the boot cpu mask and make it
287 * global after the IO_APIC has been initialized.
289 hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
290 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
291 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
292 global_clock_event = &hpet_clockevent;
293 printk(KERN_DEBUG "hpet clockevent registered\n");
296 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
298 unsigned int cfg, cmp, now;
299 uint64_t delta;
301 hpet_stop_counter();
302 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
303 delta >>= evt->shift;
304 now = hpet_readl(HPET_COUNTER);
305 cmp = now + (unsigned int)delta;
306 cfg = hpet_readl(HPET_Tn_CFG(timer));
307 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
308 HPET_TN_32BIT;
309 hpet_writel(cfg, HPET_Tn_CFG(timer));
310 hpet_writel(cmp, HPET_Tn_CMP(timer));
311 udelay(1);
313 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 * bit is automatically cleared after the first write.
316 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 * Publication # 24674)
319 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
320 hpet_start_counter();
321 hpet_print_config();
323 return 0;
326 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
328 unsigned int cfg;
330 cfg = hpet_readl(HPET_Tn_CFG(timer));
331 cfg &= ~HPET_TN_PERIODIC;
332 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
333 hpet_writel(cfg, HPET_Tn_CFG(timer));
335 return 0;
338 static int hpet_shutdown(struct clock_event_device *evt, int timer)
340 unsigned int cfg;
342 cfg = hpet_readl(HPET_Tn_CFG(timer));
343 cfg &= ~HPET_TN_ENABLE;
344 hpet_writel(cfg, HPET_Tn_CFG(timer));
346 return 0;
349 static int hpet_resume(struct clock_event_device *evt)
351 hpet_enable_legacy_int();
352 hpet_print_config();
353 return 0;
356 static int hpet_next_event(unsigned long delta,
357 struct clock_event_device *evt, int timer)
359 u32 cnt;
360 s32 res;
362 cnt = hpet_readl(HPET_COUNTER);
363 cnt += (u32) delta;
364 hpet_writel(cnt, HPET_Tn_CMP(timer));
367 * HPETs are a complete disaster. The compare register is
368 * based on a equal comparison and neither provides a less
369 * than or equal functionality (which would require to take
370 * the wraparound into account) nor a simple count down event
371 * mode. Further the write to the comparator register is
372 * delayed internally up to two HPET clock cycles in certain
373 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
374 * longer delays. We worked around that by reading back the
375 * compare register, but that required another workaround for
376 * ICH9,10 chips where the first readout after write can
377 * return the old stale value. We already had a minimum
378 * programming delta of 5us enforced, but a NMI or SMI hitting
379 * between the counter readout and the comparator write can
380 * move us behind that point easily. Now instead of reading
381 * the compare register back several times, we make the ETIME
382 * decision based on the following: Return ETIME if the
383 * counter value after the write is less than HPET_MIN_CYCLES
384 * away from the event or if the counter is already ahead of
385 * the event. The minimum programming delta for the generic
386 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
388 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
390 return res < HPET_MIN_CYCLES ? -ETIME : 0;
393 static int hpet_legacy_shutdown(struct clock_event_device *evt)
395 return hpet_shutdown(evt, 0);
398 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
400 return hpet_set_oneshot(evt, 0);
403 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
405 return hpet_set_periodic(evt, 0);
408 static int hpet_legacy_resume(struct clock_event_device *evt)
410 return hpet_resume(evt);
413 static int hpet_legacy_next_event(unsigned long delta,
414 struct clock_event_device *evt)
416 return hpet_next_event(delta, evt, 0);
420 * The hpet clock event device
422 static struct clock_event_device hpet_clockevent = {
423 .name = "hpet",
424 .features = CLOCK_EVT_FEAT_PERIODIC |
425 CLOCK_EVT_FEAT_ONESHOT,
426 .set_state_periodic = hpet_legacy_set_periodic,
427 .set_state_oneshot = hpet_legacy_set_oneshot,
428 .set_state_shutdown = hpet_legacy_shutdown,
429 .tick_resume = hpet_legacy_resume,
430 .set_next_event = hpet_legacy_next_event,
431 .irq = 0,
432 .rating = 50,
436 * HPET MSI Support
438 #ifdef CONFIG_PCI_MSI
440 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441 static struct hpet_dev *hpet_devs;
442 static struct irq_domain *hpet_domain;
444 void hpet_msi_unmask(struct irq_data *data)
446 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
447 unsigned int cfg;
449 /* unmask it */
450 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
451 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
452 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
455 void hpet_msi_mask(struct irq_data *data)
457 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
458 unsigned int cfg;
460 /* mask it */
461 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
462 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
463 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
466 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
468 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
469 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
472 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
474 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
475 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
476 msg->address_hi = 0;
479 static int hpet_msi_shutdown(struct clock_event_device *evt)
481 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
483 return hpet_shutdown(evt, hdev->num);
486 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
488 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490 return hpet_set_oneshot(evt, hdev->num);
493 static int hpet_msi_set_periodic(struct clock_event_device *evt)
495 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
497 return hpet_set_periodic(evt, hdev->num);
500 static int hpet_msi_resume(struct clock_event_device *evt)
502 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
503 struct irq_data *data = irq_get_irq_data(hdev->irq);
504 struct msi_msg msg;
506 /* Restore the MSI msg and unmask the interrupt */
507 irq_chip_compose_msi_msg(data, &msg);
508 hpet_msi_write(hdev, &msg);
509 hpet_msi_unmask(data);
510 return 0;
513 static int hpet_msi_next_event(unsigned long delta,
514 struct clock_event_device *evt)
516 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
517 return hpet_next_event(delta, evt, hdev->num);
520 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
522 struct hpet_dev *dev = (struct hpet_dev *)data;
523 struct clock_event_device *hevt = &dev->evt;
525 if (!hevt->event_handler) {
526 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
527 dev->num);
528 return IRQ_HANDLED;
531 hevt->event_handler(hevt);
532 return IRQ_HANDLED;
535 static int hpet_setup_irq(struct hpet_dev *dev)
538 if (request_irq(dev->irq, hpet_interrupt_handler,
539 IRQF_TIMER | IRQF_NOBALANCING,
540 dev->name, dev))
541 return -1;
543 disable_irq(dev->irq);
544 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
545 enable_irq(dev->irq);
547 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
548 dev->name, dev->irq);
550 return 0;
553 /* This should be called in specific @cpu */
554 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
556 struct clock_event_device *evt = &hdev->evt;
558 WARN_ON(cpu != smp_processor_id());
559 if (!(hdev->flags & HPET_DEV_VALID))
560 return;
562 hdev->cpu = cpu;
563 per_cpu(cpu_hpet_dev, cpu) = hdev;
564 evt->name = hdev->name;
565 hpet_setup_irq(hdev);
566 evt->irq = hdev->irq;
568 evt->rating = 110;
569 evt->features = CLOCK_EVT_FEAT_ONESHOT;
570 if (hdev->flags & HPET_DEV_PERI_CAP) {
571 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
572 evt->set_state_periodic = hpet_msi_set_periodic;
575 evt->set_state_shutdown = hpet_msi_shutdown;
576 evt->set_state_oneshot = hpet_msi_set_oneshot;
577 evt->tick_resume = hpet_msi_resume;
578 evt->set_next_event = hpet_msi_next_event;
579 evt->cpumask = cpumask_of(hdev->cpu);
581 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
582 0x7FFFFFFF);
585 #ifdef CONFIG_HPET
586 /* Reserve at least one timer for userspace (/dev/hpet) */
587 #define RESERVE_TIMERS 1
588 #else
589 #define RESERVE_TIMERS 0
590 #endif
592 static void hpet_msi_capability_lookup(unsigned int start_timer)
594 unsigned int id;
595 unsigned int num_timers;
596 unsigned int num_timers_used = 0;
597 int i, irq;
599 if (hpet_msi_disable)
600 return;
602 if (boot_cpu_has(X86_FEATURE_ARAT))
603 return;
604 id = hpet_readl(HPET_ID);
606 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
607 num_timers++; /* Value read out starts from 0 */
608 hpet_print_config();
610 hpet_domain = hpet_create_irq_domain(hpet_blockid);
611 if (!hpet_domain)
612 return;
614 hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL);
615 if (!hpet_devs)
616 return;
618 hpet_num_timers = num_timers;
620 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
621 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
622 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
624 /* Only consider HPET timer with MSI support */
625 if (!(cfg & HPET_TN_FSB_CAP))
626 continue;
628 hdev->flags = 0;
629 if (cfg & HPET_TN_PERIODIC_CAP)
630 hdev->flags |= HPET_DEV_PERI_CAP;
631 sprintf(hdev->name, "hpet%d", i);
632 hdev->num = i;
634 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
635 if (irq <= 0)
636 continue;
638 hdev->irq = irq;
639 hdev->flags |= HPET_DEV_FSB_CAP;
640 hdev->flags |= HPET_DEV_VALID;
641 num_timers_used++;
642 if (num_timers_used == num_possible_cpus())
643 break;
646 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
647 num_timers, num_timers_used);
650 #ifdef CONFIG_HPET
651 static void hpet_reserve_msi_timers(struct hpet_data *hd)
653 int i;
655 if (!hpet_devs)
656 return;
658 for (i = 0; i < hpet_num_timers; i++) {
659 struct hpet_dev *hdev = &hpet_devs[i];
661 if (!(hdev->flags & HPET_DEV_VALID))
662 continue;
664 hd->hd_irq[hdev->num] = hdev->irq;
665 hpet_reserve_timer(hd, hdev->num);
668 #endif
670 static struct hpet_dev *hpet_get_unused_timer(void)
672 int i;
674 if (!hpet_devs)
675 return NULL;
677 for (i = 0; i < hpet_num_timers; i++) {
678 struct hpet_dev *hdev = &hpet_devs[i];
680 if (!(hdev->flags & HPET_DEV_VALID))
681 continue;
682 if (test_and_set_bit(HPET_DEV_USED_BIT,
683 (unsigned long *)&hdev->flags))
684 continue;
685 return hdev;
687 return NULL;
690 struct hpet_work_struct {
691 struct delayed_work work;
692 struct completion complete;
695 static void hpet_work(struct work_struct *w)
697 struct hpet_dev *hdev;
698 int cpu = smp_processor_id();
699 struct hpet_work_struct *hpet_work;
701 hpet_work = container_of(w, struct hpet_work_struct, work.work);
703 hdev = hpet_get_unused_timer();
704 if (hdev)
705 init_one_hpet_msi_clockevent(hdev, cpu);
707 complete(&hpet_work->complete);
710 static int hpet_cpuhp_online(unsigned int cpu)
712 struct hpet_work_struct work;
714 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
715 init_completion(&work.complete);
716 /* FIXME: add schedule_work_on() */
717 schedule_delayed_work_on(cpu, &work.work, 0);
718 wait_for_completion(&work.complete);
719 destroy_delayed_work_on_stack(&work.work);
720 return 0;
723 static int hpet_cpuhp_dead(unsigned int cpu)
725 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
727 if (!hdev)
728 return 0;
729 free_irq(hdev->irq, hdev);
730 hdev->flags &= ~HPET_DEV_USED;
731 per_cpu(cpu_hpet_dev, cpu) = NULL;
732 return 0;
734 #else
736 static void hpet_msi_capability_lookup(unsigned int start_timer)
738 return;
741 #ifdef CONFIG_HPET
742 static void hpet_reserve_msi_timers(struct hpet_data *hd)
744 return;
746 #endif
748 #define hpet_cpuhp_online NULL
749 #define hpet_cpuhp_dead NULL
751 #endif
754 * Clock source related code
756 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
758 * Reading the HPET counter is a very slow operation. If a large number of
759 * CPUs are trying to access the HPET counter simultaneously, it can cause
760 * massive delay and slow down system performance dramatically. This may
761 * happen when HPET is the default clock source instead of TSC. For a
762 * really large system with hundreds of CPUs, the slowdown may be so
763 * severe that it may actually crash the system because of a NMI watchdog
764 * soft lockup, for example.
766 * If multiple CPUs are trying to access the HPET counter at the same time,
767 * we don't actually need to read the counter multiple times. Instead, the
768 * other CPUs can use the counter value read by the first CPU in the group.
770 * This special feature is only enabled on x86-64 systems. It is unlikely
771 * that 32-bit x86 systems will have enough CPUs to require this feature
772 * with its associated locking overhead. And we also need 64-bit atomic
773 * read.
775 * The lock and the hpet value are stored together and can be read in a
776 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
777 * is 32 bits in size.
779 union hpet_lock {
780 struct {
781 arch_spinlock_t lock;
782 u32 value;
784 u64 lockval;
787 static union hpet_lock hpet __cacheline_aligned = {
788 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
791 static u64 read_hpet(struct clocksource *cs)
793 unsigned long flags;
794 union hpet_lock old, new;
796 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
799 * Read HPET directly if in NMI.
801 if (in_nmi())
802 return (u64)hpet_readl(HPET_COUNTER);
805 * Read the current state of the lock and HPET value atomically.
807 old.lockval = READ_ONCE(hpet.lockval);
809 if (arch_spin_is_locked(&old.lock))
810 goto contended;
812 local_irq_save(flags);
813 if (arch_spin_trylock(&hpet.lock)) {
814 new.value = hpet_readl(HPET_COUNTER);
816 * Use WRITE_ONCE() to prevent store tearing.
818 WRITE_ONCE(hpet.value, new.value);
819 arch_spin_unlock(&hpet.lock);
820 local_irq_restore(flags);
821 return (u64)new.value;
823 local_irq_restore(flags);
825 contended:
827 * Contended case
828 * --------------
829 * Wait until the HPET value change or the lock is free to indicate
830 * its value is up-to-date.
832 * It is possible that old.value has already contained the latest
833 * HPET value while the lock holder was in the process of releasing
834 * the lock. Checking for lock state change will enable us to return
835 * the value immediately instead of waiting for the next HPET reader
836 * to come along.
838 do {
839 cpu_relax();
840 new.lockval = READ_ONCE(hpet.lockval);
841 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
843 return (u64)new.value;
845 #else
847 * For UP or 32-bit.
849 static u64 read_hpet(struct clocksource *cs)
851 return (u64)hpet_readl(HPET_COUNTER);
853 #endif
855 static struct clocksource clocksource_hpet = {
856 .name = "hpet",
857 .rating = 250,
858 .read = read_hpet,
859 .mask = HPET_MASK,
860 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
861 .resume = hpet_resume_counter,
864 static int hpet_clocksource_register(void)
866 u64 start, now;
867 u64 t1;
869 /* Start the counter */
870 hpet_restart_counter();
872 /* Verify whether hpet counter works */
873 t1 = hpet_readl(HPET_COUNTER);
874 start = rdtsc();
877 * We don't know the TSC frequency yet, but waiting for
878 * 200000 TSC cycles is safe:
879 * 4 GHz == 50us
880 * 1 GHz == 200us
882 do {
883 rep_nop();
884 now = rdtsc();
885 } while ((now - start) < 200000UL);
887 if (t1 == hpet_readl(HPET_COUNTER)) {
888 printk(KERN_WARNING
889 "HPET counter not counting. HPET disabled\n");
890 return -ENODEV;
893 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
894 return 0;
897 static u32 *hpet_boot_cfg;
900 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
902 int __init hpet_enable(void)
904 u32 hpet_period, cfg, id;
905 u64 freq;
906 unsigned int i, last;
908 if (!is_hpet_capable())
909 return 0;
911 hpet_set_mapping();
914 * Read the period and check for a sane value:
916 hpet_period = hpet_readl(HPET_PERIOD);
919 * AMD SB700 based systems with spread spectrum enabled use a
920 * SMM based HPET emulation to provide proper frequency
921 * setting. The SMM code is initialized with the first HPET
922 * register access and takes some time to complete. During
923 * this time the config register reads 0xffffffff. We check
924 * for max. 1000 loops whether the config register reads a non
925 * 0xffffffff value to make sure that HPET is up and running
926 * before we go further. A counting loop is safe, as the HPET
927 * access takes thousands of CPU cycles. On non SB700 based
928 * machines this check is only done once and has no side
929 * effects.
931 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
932 if (i == 1000) {
933 printk(KERN_WARNING
934 "HPET config register value = 0xFFFFFFFF. "
935 "Disabling HPET\n");
936 goto out_nohpet;
940 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
941 goto out_nohpet;
944 * The period is a femto seconds value. Convert it to a
945 * frequency.
947 freq = FSEC_PER_SEC;
948 do_div(freq, hpet_period);
949 hpet_freq = freq;
952 * Read the HPET ID register to retrieve the IRQ routing
953 * information and the number of channels
955 id = hpet_readl(HPET_ID);
956 hpet_print_config();
958 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
960 #ifdef CONFIG_HPET_EMULATE_RTC
962 * The legacy routing mode needs at least two channels, tick timer
963 * and the rtc emulation channel.
965 if (!last)
966 goto out_nohpet;
967 #endif
969 cfg = hpet_readl(HPET_CFG);
970 hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg),
971 GFP_KERNEL);
972 if (hpet_boot_cfg)
973 *hpet_boot_cfg = cfg;
974 else
975 pr_warn("HPET initial state will not be saved\n");
976 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
977 hpet_writel(cfg, HPET_CFG);
978 if (cfg)
979 pr_warn("Unrecognized bits %#x set in global cfg\n", cfg);
981 for (i = 0; i <= last; ++i) {
982 cfg = hpet_readl(HPET_Tn_CFG(i));
983 if (hpet_boot_cfg)
984 hpet_boot_cfg[i + 1] = cfg;
985 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
986 hpet_writel(cfg, HPET_Tn_CFG(i));
987 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
988 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
989 | HPET_TN_FSB | HPET_TN_FSB_CAP);
990 if (cfg)
991 pr_warn("Unrecognized bits %#x set in cfg#%u\n",
992 cfg, i);
994 hpet_print_config();
996 if (hpet_clocksource_register())
997 goto out_nohpet;
999 if (id & HPET_ID_LEGSUP) {
1000 hpet_legacy_clockevent_register();
1001 return 1;
1003 return 0;
1005 out_nohpet:
1006 hpet_clear_mapping();
1007 hpet_address = 0;
1008 return 0;
1012 * Needs to be late, as the reserve_timer code calls kalloc !
1014 * Not a problem on i386 as hpet_enable is called from late_time_init,
1015 * but on x86_64 it is necessary !
1017 static __init int hpet_late_init(void)
1019 int ret;
1021 if (boot_hpet_disable)
1022 return -ENODEV;
1024 if (!hpet_address) {
1025 if (!force_hpet_address)
1026 return -ENODEV;
1028 hpet_address = force_hpet_address;
1029 hpet_enable();
1032 if (!hpet_virt_address)
1033 return -ENODEV;
1035 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1036 hpet_msi_capability_lookup(2);
1037 else
1038 hpet_msi_capability_lookup(0);
1040 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1041 hpet_print_config();
1043 if (hpet_msi_disable)
1044 return 0;
1046 if (boot_cpu_has(X86_FEATURE_ARAT))
1047 return 0;
1049 /* This notifier should be called after workqueue is ready */
1050 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1051 hpet_cpuhp_online, NULL);
1052 if (ret)
1053 return ret;
1054 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1055 hpet_cpuhp_dead);
1056 if (ret)
1057 goto err_cpuhp;
1058 return 0;
1060 err_cpuhp:
1061 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1062 return ret;
1064 fs_initcall(hpet_late_init);
1066 void hpet_disable(void)
1068 if (is_hpet_capable() && hpet_virt_address) {
1069 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1071 if (hpet_boot_cfg)
1072 cfg = *hpet_boot_cfg;
1073 else if (hpet_legacy_int_enabled) {
1074 cfg &= ~HPET_CFG_LEGACY;
1075 hpet_legacy_int_enabled = false;
1077 cfg &= ~HPET_CFG_ENABLE;
1078 hpet_writel(cfg, HPET_CFG);
1080 if (!hpet_boot_cfg)
1081 return;
1083 id = hpet_readl(HPET_ID);
1084 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1086 for (id = 0; id <= last; ++id)
1087 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1089 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1090 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1094 #ifdef CONFIG_HPET_EMULATE_RTC
1096 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097 * is enabled, we support RTC interrupt functionality in software.
1098 * RTC has 3 kinds of interrupts:
1099 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1100 * is updated
1101 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104 * (1) and (2) above are implemented using polling at a frequency of
1105 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106 * overhead. (DEFAULT_RTC_INT_FREQ)
1107 * For (3), we use interrupts at 64Hz or user specified periodic
1108 * frequency, whichever is higher.
1110 #include <linux/mc146818rtc.h>
1111 #include <linux/rtc.h>
1113 #define DEFAULT_RTC_INT_FREQ 64
1114 #define DEFAULT_RTC_SHIFT 6
1115 #define RTC_NUM_INTS 1
1117 static unsigned long hpet_rtc_flags;
1118 static int hpet_prev_update_sec;
1119 static struct rtc_time hpet_alarm_time;
1120 static unsigned long hpet_pie_count;
1121 static u32 hpet_t1_cmp;
1122 static u32 hpet_default_delta;
1123 static u32 hpet_pie_delta;
1124 static unsigned long hpet_pie_limit;
1126 static rtc_irq_handler irq_handler;
1129 * Check that the hpet counter c1 is ahead of the c2
1131 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1133 return (s32)(c2 - c1) < 0;
1137 * Registers a IRQ handler.
1139 int hpet_register_irq_handler(rtc_irq_handler handler)
1141 if (!is_hpet_enabled())
1142 return -ENODEV;
1143 if (irq_handler)
1144 return -EBUSY;
1146 irq_handler = handler;
1148 return 0;
1150 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1153 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1154 * and does cleanup.
1156 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1158 if (!is_hpet_enabled())
1159 return;
1161 irq_handler = NULL;
1162 hpet_rtc_flags = 0;
1164 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1167 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168 * is not supported by all HPET implementations for timer 1.
1170 * hpet_rtc_timer_init() is called when the rtc is initialized.
1172 int hpet_rtc_timer_init(void)
1174 unsigned int cfg, cnt, delta;
1175 unsigned long flags;
1177 if (!is_hpet_enabled())
1178 return 0;
1180 if (!hpet_default_delta) {
1181 uint64_t clc;
1183 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1184 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1185 hpet_default_delta = clc;
1188 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1189 delta = hpet_default_delta;
1190 else
1191 delta = hpet_pie_delta;
1193 local_irq_save(flags);
1195 cnt = delta + hpet_readl(HPET_COUNTER);
1196 hpet_writel(cnt, HPET_T1_CMP);
1197 hpet_t1_cmp = cnt;
1199 cfg = hpet_readl(HPET_T1_CFG);
1200 cfg &= ~HPET_TN_PERIODIC;
1201 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1202 hpet_writel(cfg, HPET_T1_CFG);
1204 local_irq_restore(flags);
1206 return 1;
1208 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1210 static void hpet_disable_rtc_channel(void)
1212 u32 cfg = hpet_readl(HPET_T1_CFG);
1213 cfg &= ~HPET_TN_ENABLE;
1214 hpet_writel(cfg, HPET_T1_CFG);
1218 * The functions below are called from rtc driver.
1219 * Return 0 if HPET is not being used.
1220 * Otherwise do the necessary changes and return 1.
1222 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1224 if (!is_hpet_enabled())
1225 return 0;
1227 hpet_rtc_flags &= ~bit_mask;
1228 if (unlikely(!hpet_rtc_flags))
1229 hpet_disable_rtc_channel();
1231 return 1;
1233 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1235 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1237 unsigned long oldbits = hpet_rtc_flags;
1239 if (!is_hpet_enabled())
1240 return 0;
1242 hpet_rtc_flags |= bit_mask;
1244 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1245 hpet_prev_update_sec = -1;
1247 if (!oldbits)
1248 hpet_rtc_timer_init();
1250 return 1;
1252 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1254 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1255 unsigned char sec)
1257 if (!is_hpet_enabled())
1258 return 0;
1260 hpet_alarm_time.tm_hour = hrs;
1261 hpet_alarm_time.tm_min = min;
1262 hpet_alarm_time.tm_sec = sec;
1264 return 1;
1266 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1268 int hpet_set_periodic_freq(unsigned long freq)
1270 uint64_t clc;
1272 if (!is_hpet_enabled())
1273 return 0;
1275 if (freq <= DEFAULT_RTC_INT_FREQ)
1276 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1277 else {
1278 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1279 do_div(clc, freq);
1280 clc >>= hpet_clockevent.shift;
1281 hpet_pie_delta = clc;
1282 hpet_pie_limit = 0;
1284 return 1;
1286 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1288 int hpet_rtc_dropped_irq(void)
1290 return is_hpet_enabled();
1292 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1294 static void hpet_rtc_timer_reinit(void)
1296 unsigned int delta;
1297 int lost_ints = -1;
1299 if (unlikely(!hpet_rtc_flags))
1300 hpet_disable_rtc_channel();
1302 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1303 delta = hpet_default_delta;
1304 else
1305 delta = hpet_pie_delta;
1308 * Increment the comparator value until we are ahead of the
1309 * current count.
1311 do {
1312 hpet_t1_cmp += delta;
1313 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1314 lost_ints++;
1315 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1317 if (lost_ints) {
1318 if (hpet_rtc_flags & RTC_PIE)
1319 hpet_pie_count += lost_ints;
1320 if (printk_ratelimit())
1321 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1322 lost_ints);
1326 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1328 struct rtc_time curr_time;
1329 unsigned long rtc_int_flag = 0;
1331 hpet_rtc_timer_reinit();
1332 memset(&curr_time, 0, sizeof(struct rtc_time));
1334 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1335 mc146818_get_time(&curr_time);
1337 if (hpet_rtc_flags & RTC_UIE &&
1338 curr_time.tm_sec != hpet_prev_update_sec) {
1339 if (hpet_prev_update_sec >= 0)
1340 rtc_int_flag = RTC_UF;
1341 hpet_prev_update_sec = curr_time.tm_sec;
1344 if (hpet_rtc_flags & RTC_PIE &&
1345 ++hpet_pie_count >= hpet_pie_limit) {
1346 rtc_int_flag |= RTC_PF;
1347 hpet_pie_count = 0;
1350 if (hpet_rtc_flags & RTC_AIE &&
1351 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1352 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1353 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1354 rtc_int_flag |= RTC_AF;
1356 if (rtc_int_flag) {
1357 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1358 if (irq_handler)
1359 irq_handler(rtc_int_flag, dev_id);
1361 return IRQ_HANDLED;
1363 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1364 #endif