2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
75 DECLARE_BITMAP(system_vectors
, NR_VECTORS
);
77 static inline void cond_local_irq_enable(struct pt_regs
*regs
)
79 if (regs
->flags
& X86_EFLAGS_IF
)
83 static inline void cond_local_irq_disable(struct pt_regs
*regs
)
85 if (regs
->flags
& X86_EFLAGS_IF
)
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
95 void ist_enter(struct pt_regs
*regs
)
97 if (user_mode(regs
)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
115 void ist_exit(struct pt_regs
*regs
)
117 preempt_enable_no_resched();
119 if (!user_mode(regs
))
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs: regs passed to the IST exception handler
127 * IST exception handlers normally cannot schedule. As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
136 void ist_begin_non_atomic(struct pt_regs
*regs
)
138 BUG_ON(!user_mode(regs
));
141 * Sanity check: we need to be on the normal thread stack. This
142 * will catch asm bugs and any attempt to use ist_preempt_enable
145 BUG_ON(!on_thread_stack());
147 preempt_enable_no_resched();
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 * Ends a non-atomic section started with ist_begin_non_atomic().
155 void ist_end_non_atomic(void)
160 int is_valid_bugaddr(unsigned long addr
)
164 if (addr
< TASK_SIZE_MAX
)
167 if (probe_kernel_address((unsigned short *)addr
, ud
))
170 return ud
== INSN_UD0
|| ud
== INSN_UD2
;
173 int fixup_bug(struct pt_regs
*regs
, int trapnr
)
175 if (trapnr
!= X86_TRAP_UD
)
178 switch (report_bug(regs
->ip
, regs
)) {
179 case BUG_TRAP_TYPE_NONE
:
180 case BUG_TRAP_TYPE_BUG
:
183 case BUG_TRAP_TYPE_WARN
:
191 static nokprobe_inline
int
192 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, char *str
,
193 struct pt_regs
*regs
, long error_code
)
195 if (v8086_mode(regs
)) {
197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 * On nmi (interrupt 2), do_trap should not be called.
200 if (trapnr
< X86_TRAP_UD
) {
201 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
208 if (!user_mode(regs
)) {
209 if (fixup_exception(regs
, trapnr
))
212 tsk
->thread
.error_code
= error_code
;
213 tsk
->thread
.trap_nr
= trapnr
;
214 die(str
, regs
, error_code
);
220 static siginfo_t
*fill_trap_info(struct pt_regs
*regs
, int signr
, int trapnr
,
223 unsigned long siaddr
;
228 return SEND_SIG_PRIV
;
232 siaddr
= uprobe_get_trap_addr(regs
);
236 siaddr
= uprobe_get_trap_addr(regs
);
244 info
->si_signo
= signr
;
246 info
->si_code
= sicode
;
247 info
->si_addr
= (void __user
*)siaddr
;
252 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
253 long error_code
, siginfo_t
*info
)
255 struct task_struct
*tsk
= current
;
258 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
261 * We want error_code and trap_nr set for userspace faults and
262 * kernelspace faults which result in die(), but not
263 * kernelspace faults which are fixed up. die() gives the
264 * process no chance to handle the signal and notice the
265 * kernel fault information, so that won't result in polluting
266 * the information about previously queued, but not yet
267 * delivered, faults. See also do_general_protection below.
269 tsk
->thread
.error_code
= error_code
;
270 tsk
->thread
.trap_nr
= trapnr
;
272 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
273 printk_ratelimit()) {
274 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275 tsk
->comm
, tsk
->pid
, str
,
276 regs
->ip
, regs
->sp
, error_code
);
277 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
281 force_sig_info(signr
, info
?: SEND_SIG_PRIV
, tsk
);
283 NOKPROBE_SYMBOL(do_trap
);
285 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
286 unsigned long trapnr
, int signr
)
290 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
293 * WARN*()s end up here; fix them up before we call the
296 if (!user_mode(regs
) && fixup_bug(regs
, trapnr
))
299 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
301 cond_local_irq_enable(regs
);
302 clear_siginfo(&info
);
303 do_trap(trapnr
, signr
, str
, regs
, error_code
,
304 fill_trap_info(regs
, signr
, trapnr
, &info
));
308 #define DO_ERROR(trapnr, signr, str, name) \
309 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
311 do_error_trap(regs, error_code, str, trapnr, signr); \
314 DO_ERROR(X86_TRAP_DE
, SIGFPE
, "divide error", divide_error
)
315 DO_ERROR(X86_TRAP_OF
, SIGSEGV
, "overflow", overflow
)
316 DO_ERROR(X86_TRAP_UD
, SIGILL
, "invalid opcode", invalid_op
)
317 DO_ERROR(X86_TRAP_OLD_MF
, SIGFPE
, "coprocessor segment overrun",coprocessor_segment_overrun
)
318 DO_ERROR(X86_TRAP_TS
, SIGSEGV
, "invalid TSS", invalid_TSS
)
319 DO_ERROR(X86_TRAP_NP
, SIGBUS
, "segment not present", segment_not_present
)
320 DO_ERROR(X86_TRAP_SS
, SIGBUS
, "stack segment", stack_segment
)
321 DO_ERROR(X86_TRAP_AC
, SIGBUS
, "alignment check", alignment_check
)
323 #ifdef CONFIG_VMAP_STACK
324 __visible
void __noreturn
handle_stack_overflow(const char *message
,
325 struct pt_regs
*regs
,
326 unsigned long fault_address
)
328 printk(KERN_EMERG
"BUG: stack guard page was hit at %p (stack is %p..%p)\n",
329 (void *)fault_address
, current
->stack
,
330 (char *)current
->stack
+ THREAD_SIZE
- 1);
331 die(message
, regs
, 0);
333 /* Be absolutely certain we don't return. */
339 /* Runs on IST stack */
340 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
)
342 static const char str
[] = "double fault";
343 struct task_struct
*tsk
= current
;
344 #ifdef CONFIG_VMAP_STACK
348 #ifdef CONFIG_X86_ESPFIX64
349 extern unsigned char native_irq_return_iret
[];
352 * If IRET takes a non-IST fault on the espfix64 stack, then we
353 * end up promoting it to a doublefault. In that case, take
354 * advantage of the fact that we're not using the normal (TSS.sp0)
355 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
356 * and then modify our own IRET frame so that, when we return,
357 * we land directly at the #GP(0) vector with the stack already
358 * set up according to its expectations.
360 * The net result is that our #GP handler will think that we
361 * entered from usermode with the bad user context.
363 * No need for ist_enter here because we don't use RCU.
365 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
366 regs
->cs
== __KERNEL_CS
&&
367 regs
->ip
== (unsigned long)native_irq_return_iret
)
369 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
372 * regs->sp points to the failing IRET frame on the
373 * ESPFIX64 stack. Copy it to the entry stack. This fills
374 * in gpregs->ss through gpregs->ip.
377 memmove(&gpregs
->ip
, (void *)regs
->sp
, 5*8);
378 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
381 * Adjust our frame so that we return straight to the #GP
382 * vector with the expected RSP value. This is safe because
383 * we won't enable interupts or schedule before we invoke
384 * general_protection, so nothing will clobber the stack
385 * frame we just set up.
387 regs
->ip
= (unsigned long)general_protection
;
388 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
395 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
397 tsk
->thread
.error_code
= error_code
;
398 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
400 #ifdef CONFIG_VMAP_STACK
402 * If we overflow the stack into a guard page, the CPU will fail
403 * to deliver #PF and will send #DF instead. Similarly, if we
404 * take any non-IST exception while too close to the bottom of
405 * the stack, the processor will get a page fault while
406 * delivering the exception and will generate a double fault.
408 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
409 * Page-Fault Exception (#PF):
411 * Processors update CR2 whenever a page fault is detected. If a
412 * second page fault occurs while an earlier page fault is being
413 * delivered, the faulting linear address of the second fault will
414 * overwrite the contents of CR2 (replacing the previous
415 * address). These updates to CR2 occur even if the page fault
416 * results in a double fault or occurs during the delivery of a
419 * The logic below has a small possibility of incorrectly diagnosing
420 * some errors as stack overflows. For example, if the IDT or GDT
421 * gets corrupted such that #GP delivery fails due to a bad descriptor
422 * causing #GP and we hit this condition while CR2 coincidentally
423 * points to the stack guard page, we'll think we overflowed the
424 * stack. Given that we're going to panic one way or another
425 * if this happens, this isn't necessarily worth fixing.
427 * If necessary, we could improve the test by only diagnosing
428 * a stack overflow if the saved RSP points within 47 bytes of
429 * the bottom of the stack: if RSP == tsk_stack + 48 and we
430 * take an exception, the stack is already aligned and there
431 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
432 * possible error code, so a stack overflow would *not* double
433 * fault. With any less space left, exception delivery could
434 * fail, and, as a practical matter, we've overflowed the
435 * stack even if the actual trigger for the double fault was
439 if ((unsigned long)task_stack_page(tsk
) - 1 - cr2
< PAGE_SIZE
)
440 handle_stack_overflow("kernel stack overflow (double-fault)", regs
, cr2
);
443 #ifdef CONFIG_DOUBLEFAULT
444 df_debug(regs
, error_code
);
447 * This is always a kernel trap and never fixable (and thus must
451 die(str
, regs
, error_code
);
455 dotraplinkage
void do_bounds(struct pt_regs
*regs
, long error_code
)
457 const struct mpx_bndcsr
*bndcsr
;
460 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
461 if (notify_die(DIE_TRAP
, "bounds", regs
, error_code
,
462 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
464 cond_local_irq_enable(regs
);
466 if (!user_mode(regs
))
467 die("bounds", regs
, error_code
);
469 if (!cpu_feature_enabled(X86_FEATURE_MPX
)) {
470 /* The exception is not from Intel MPX */
475 * We need to look at BNDSTATUS to resolve this exception.
476 * A NULL here might mean that it is in its 'init state',
477 * which is all zeros which indicates MPX was not
478 * responsible for the exception.
480 bndcsr
= get_xsave_field_ptr(XFEATURE_MASK_BNDCSR
);
484 trace_bounds_exception_mpx(bndcsr
);
486 * The error code field of the BNDSTATUS register communicates status
487 * information of a bound range exception #BR or operation involving
490 switch (bndcsr
->bndstatus
& MPX_BNDSTA_ERROR_CODE
) {
491 case 2: /* Bound directory has invalid entry. */
492 if (mpx_handle_bd_fault())
494 break; /* Success, it was handled */
495 case 1: /* Bound violation. */
496 info
= mpx_generate_siginfo(regs
);
499 * We failed to decode the MPX instruction. Act as if
500 * the exception was not caused by MPX.
505 * Success, we decoded the instruction and retrieved
506 * an 'info' containing the address being accessed
507 * which caused the exception. This information
508 * allows and application to possibly handle the
509 * #BR exception itself.
511 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, info
);
514 case 0: /* No exception caused by Intel MPX operations. */
517 die("bounds", regs
, error_code
);
524 * This path out is for all the cases where we could not
525 * handle the exception in some way (like allocating a
526 * table or telling userspace about it. We will also end
527 * up here if the kernel has MPX turned off at compile
530 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, NULL
);
534 do_general_protection(struct pt_regs
*regs
, long error_code
)
536 struct task_struct
*tsk
;
538 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
539 cond_local_irq_enable(regs
);
541 if (static_cpu_has(X86_FEATURE_UMIP
)) {
542 if (user_mode(regs
) && fixup_umip_exception(regs
))
546 if (v8086_mode(regs
)) {
548 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
553 if (!user_mode(regs
)) {
554 if (fixup_exception(regs
, X86_TRAP_GP
))
557 tsk
->thread
.error_code
= error_code
;
558 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
559 if (notify_die(DIE_GPF
, "general protection fault", regs
, error_code
,
560 X86_TRAP_GP
, SIGSEGV
) != NOTIFY_STOP
)
561 die("general protection fault", regs
, error_code
);
565 tsk
->thread
.error_code
= error_code
;
566 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
568 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
569 printk_ratelimit()) {
570 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
571 tsk
->comm
, task_pid_nr(tsk
),
572 regs
->ip
, regs
->sp
, error_code
);
573 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
577 force_sig_info(SIGSEGV
, SEND_SIG_PRIV
, tsk
);
579 NOKPROBE_SYMBOL(do_general_protection
);
581 dotraplinkage
void notrace
do_int3(struct pt_regs
*regs
, long error_code
)
583 #ifdef CONFIG_DYNAMIC_FTRACE
585 * ftrace must be first, everything else may cause a recursive crash.
586 * See note by declaration of modifying_ftrace_code in ftrace.c
588 if (unlikely(atomic_read(&modifying_ftrace_code
)) &&
589 ftrace_int3_handler(regs
))
592 if (poke_int3_handler(regs
))
596 * Use ist_enter despite the fact that we don't use an IST stack.
597 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
598 * mode or even during context tracking state changes.
600 * This means that we can't schedule. That's okay.
603 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
605 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
606 SIGTRAP
) == NOTIFY_STOP
)
608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
610 #ifdef CONFIG_KPROBES
611 if (kprobe_int3_handler(regs
))
615 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
616 SIGTRAP
) == NOTIFY_STOP
)
619 cond_local_irq_enable(regs
);
620 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, error_code
, NULL
);
621 cond_local_irq_disable(regs
);
626 NOKPROBE_SYMBOL(do_int3
);
630 * Help handler running on a per-cpu (IST or entry trampoline) stack
631 * to switch to the normal thread stack if the interrupted code was in
632 * user mode. The actual stack switch is done in entry_64.S
634 asmlinkage __visible notrace
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
636 struct pt_regs
*regs
= (struct pt_regs
*)this_cpu_read(cpu_current_top_of_stack
) - 1;
641 NOKPROBE_SYMBOL(sync_regs
);
643 struct bad_iret_stack
{
644 void *error_entry_ret
;
648 asmlinkage __visible notrace
649 struct bad_iret_stack
*fixup_bad_iret(struct bad_iret_stack
*s
)
652 * This is called from entry_64.S early in handling a fault
653 * caused by a bad iret to user mode. To handle the fault
654 * correctly, we want to move our stack frame to where it would
655 * be had we entered directly on the entry stack (rather than
656 * just below the IRET frame) and we want to pretend that the
657 * exception came from the IRET target.
659 struct bad_iret_stack
*new_stack
=
660 (struct bad_iret_stack
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
662 /* Copy the IRET target to the new stack. */
663 memmove(&new_stack
->regs
.ip
, (void *)s
->regs
.sp
, 5*8);
665 /* Copy the remainder of the stack from the current stack. */
666 memmove(new_stack
, s
, offsetof(struct bad_iret_stack
, regs
.ip
));
668 BUG_ON(!user_mode(&new_stack
->regs
));
671 NOKPROBE_SYMBOL(fixup_bad_iret
);
674 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
677 * We don't try for precision here. If we're anywhere in the region of
678 * code that can be single-stepped in the SYSENTER entry path, then
679 * assume that this is a useless single-step trap due to SYSENTER
680 * being invoked with TF set. (We don't know in advance exactly
681 * which instructions will be hit because BTF could plausibly
685 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
686 (unsigned long)__end_SYSENTER_singlestep_region
-
687 (unsigned long)__begin_SYSENTER_singlestep_region
;
688 #elif defined(CONFIG_IA32_EMULATION)
689 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
690 (unsigned long)__end_entry_SYSENTER_compat
-
691 (unsigned long)entry_SYSENTER_compat
;
698 * Our handling of the processor debug registers is non-trivial.
699 * We do not clear them on entry and exit from the kernel. Therefore
700 * it is possible to get a watchpoint trap here from inside the kernel.
701 * However, the code in ./ptrace.c has ensured that the user can
702 * only set watchpoints on userspace addresses. Therefore the in-kernel
703 * watchpoint trap can only occur in code which is reading/writing
704 * from user space. Such code must not hold kernel locks (since it
705 * can equally take a page fault), therefore it is safe to call
706 * force_sig_info even though that claims and releases locks.
708 * Code in ./signal.c ensures that the debug control register
709 * is restored before we deliver any signal, and therefore that
710 * user code runs with the correct debug control register even though
713 * Being careful here means that we don't have to be as careful in a
714 * lot of more complicated places (task switching can be a bit lazy
715 * about restoring all the debug state, and ptrace doesn't have to
716 * find every occurrence of the TF bit that could be saved away even
719 * May run on IST stack.
721 dotraplinkage
void do_debug(struct pt_regs
*regs
, long error_code
)
723 struct task_struct
*tsk
= current
;
730 get_debugreg(dr6
, 6);
732 * The Intel SDM says:
734 * Certain debug exceptions may clear bits 0-3. The remaining
735 * contents of the DR6 register are never cleared by the
736 * processor. To avoid confusion in identifying debug
737 * exceptions, debug handlers should clear the register before
738 * returning to the interrupted task.
740 * Keep it simple: clear DR6 immediately.
744 /* Filter out all the reserved bits which are preset to 1 */
745 dr6
&= ~DR6_RESERVED
;
748 * The SDM says "The processor clears the BTF flag when it
749 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
750 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
752 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
754 if (unlikely(!user_mode(regs
) && (dr6
& DR_STEP
) &&
755 is_sysenter_singlestep(regs
))) {
760 * else we might have gotten a single-step trap and hit a
761 * watchpoint at the same time, in which case we should fall
762 * through and handle the watchpoint.
767 * If dr6 has no reason to give us about the origin of this trap,
768 * then it's very likely the result of an icebp/int01 trap.
769 * User wants a sigtrap for that.
771 if (!dr6
&& user_mode(regs
))
774 /* Store the virtualized DR6 value */
775 tsk
->thread
.debugreg6
= dr6
;
777 #ifdef CONFIG_KPROBES
778 if (kprobe_debug_handler(regs
))
782 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)&dr6
, error_code
,
783 SIGTRAP
) == NOTIFY_STOP
)
787 * Let others (NMI) know that the debug stack is in use
788 * as we may switch to the interrupt stack.
790 debug_stack_usage_inc();
792 /* It's safe to allow irq's after DR6 has been saved */
793 cond_local_irq_enable(regs
);
795 if (v8086_mode(regs
)) {
796 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, error_code
,
798 cond_local_irq_disable(regs
);
799 debug_stack_usage_dec();
803 if (WARN_ON_ONCE((dr6
& DR_STEP
) && !user_mode(regs
))) {
805 * Historical junk that used to handle SYSENTER single-stepping.
806 * This should be unreachable now. If we survive for a while
807 * without anyone hitting this warning, we'll turn this into
810 tsk
->thread
.debugreg6
&= ~DR_STEP
;
811 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
812 regs
->flags
&= ~X86_EFLAGS_TF
;
814 si_code
= get_si_code(tsk
->thread
.debugreg6
);
815 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
816 send_sigtrap(tsk
, regs
, error_code
, si_code
);
817 cond_local_irq_disable(regs
);
818 debug_stack_usage_dec();
823 NOKPROBE_SYMBOL(do_debug
);
826 * Note that we play around with the 'TS' bit in an attempt to get
827 * the correct behaviour even in the presence of the asynchronous
830 static void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
832 struct task_struct
*task
= current
;
833 struct fpu
*fpu
= &task
->thread
.fpu
;
835 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
838 cond_local_irq_enable(regs
);
840 if (!user_mode(regs
)) {
841 if (fixup_exception(regs
, trapnr
))
844 task
->thread
.error_code
= error_code
;
845 task
->thread
.trap_nr
= trapnr
;
847 if (notify_die(DIE_TRAP
, str
, regs
, error_code
,
848 trapnr
, SIGFPE
) != NOTIFY_STOP
)
849 die(str
, regs
, error_code
);
854 * Save the info for the exception handler and clear the error.
858 task
->thread
.trap_nr
= trapnr
;
859 task
->thread
.error_code
= error_code
;
860 clear_siginfo(&info
);
861 info
.si_signo
= SIGFPE
;
863 info
.si_addr
= (void __user
*)uprobe_get_trap_addr(regs
);
865 info
.si_code
= fpu__exception_code(fpu
, trapnr
);
867 /* Retry when we get spurious exceptions: */
871 force_sig_info(SIGFPE
, &info
, task
);
874 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
876 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
877 math_error(regs
, error_code
, X86_TRAP_MF
);
881 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
883 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
884 math_error(regs
, error_code
, X86_TRAP_XF
);
888 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
890 cond_local_irq_enable(regs
);
894 do_device_not_available(struct pt_regs
*regs
, long error_code
)
898 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
900 #ifdef CONFIG_MATH_EMULATION
901 if (!boot_cpu_has(X86_FEATURE_FPU
) && (read_cr0() & X86_CR0_EM
)) {
902 struct math_emu_info info
= { };
904 cond_local_irq_enable(regs
);
912 /* This should not happen. */
914 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
915 /* Try to fix it up and carry on. */
916 write_cr0(cr0
& ~X86_CR0_TS
);
919 * Something terrible happened, and we're better off trying
920 * to kill the task than getting stuck in a never-ending
921 * loop of #NM faults.
923 die("unexpected #NM exception", regs
, error_code
);
926 NOKPROBE_SYMBOL(do_device_not_available
);
929 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
933 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
936 clear_siginfo(&info
);
937 info
.si_signo
= SIGILL
;
939 info
.si_code
= ILL_BADSTK
;
941 if (notify_die(DIE_TRAP
, "iret exception", regs
, error_code
,
942 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
943 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, error_code
,
949 void __init
trap_init(void)
951 /* Init cpu_entry_area before IST entries are set up */
952 setup_cpu_entry_areas();
957 * Set the IDT descriptor to a fixed read-only location, so that the
958 * "sidt" instruction will not leak the location of the kernel, and
959 * to defend the IDT against arbitrary memory write vulnerabilities.
960 * It will be reloaded in cpu_init() */
961 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR
, __pa_symbol(idt_table
),
963 idt_descr
.address
= CPU_ENTRY_AREA_RO_IDT
;
966 * Should be a barrier for any external CPU state:
970 idt_setup_ist_traps();
972 x86_init
.irqs
.trap_init();
974 idt_setup_debugidt_traps();