2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
36 #include <asm/unaligned.h>
38 struct sh_msiof_chipdata
{
45 struct sh_msiof_spi_priv
{
46 struct spi_master
*master
;
47 void __iomem
*mapbase
;
49 struct platform_device
*pdev
;
50 struct sh_msiof_spi_info
*info
;
51 struct completion done
;
52 unsigned int tx_fifo_size
;
53 unsigned int rx_fifo_size
;
54 unsigned int min_div_pow
;
57 dma_addr_t tx_dma_addr
;
58 dma_addr_t rx_dma_addr
;
59 unsigned short unused_ss
;
60 bool native_cs_inited
;
65 #define MAX_SS 3 /* Maximum number of native chip selects */
67 #define TMDR1 0x00 /* Transmit Mode Register 1 */
68 #define TMDR2 0x04 /* Transmit Mode Register 2 */
69 #define TMDR3 0x08 /* Transmit Mode Register 3 */
70 #define RMDR1 0x10 /* Receive Mode Register 1 */
71 #define RMDR2 0x14 /* Receive Mode Register 2 */
72 #define RMDR3 0x18 /* Receive Mode Register 3 */
73 #define TSCR 0x20 /* Transmit Clock Select Register */
74 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
75 #define CTR 0x28 /* Control Register */
76 #define FCTR 0x30 /* FIFO Control Register */
77 #define STR 0x40 /* Status Register */
78 #define IER 0x44 /* Interrupt Enable Register */
79 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
80 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
81 #define TFDR 0x50 /* Transmit FIFO Data Register */
82 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
83 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
84 #define RFDR 0x60 /* Receive FIFO Data Register */
87 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
88 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
90 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
91 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
92 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
93 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
95 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
96 #define MDR1_FLD_SHIFT 2
97 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
99 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
100 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
103 /* TMDR2 and RMDR2 */
104 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
105 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
109 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
110 #define SCR_BRPS(i) (((i) - 1) << 8)
111 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
112 #define SCR_BRDV_DIV_2 0x0000
113 #define SCR_BRDV_DIV_4 0x0001
114 #define SCR_BRDV_DIV_8 0x0002
115 #define SCR_BRDV_DIV_16 0x0003
116 #define SCR_BRDV_DIV_32 0x0004
117 #define SCR_BRDV_DIV_1 0x0007
120 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
121 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
122 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
123 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
124 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
125 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
126 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
127 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
128 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
129 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
130 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
131 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
132 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
133 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
134 #define CTR_TXE 0x00000200 /* Transmit Enable */
135 #define CTR_RXE 0x00000100 /* Receive Enable */
138 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
139 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
140 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
141 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
142 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
143 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
144 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
145 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
146 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
147 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
148 #define FCTR_TFUA_SHIFT 20
149 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
151 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
152 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
153 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
154 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
155 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
156 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
157 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
158 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
159 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160 #define FCTR_RFUA_SHIFT 4
161 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
164 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
165 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
166 #define STR_TEOF 0x00800000 /* Frame Transmission End */
167 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
168 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
169 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
170 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
171 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
172 #define STR_REOF 0x00000080 /* Frame Reception End */
173 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
174 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
175 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
178 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
180 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
181 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
182 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
183 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
184 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
185 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
186 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
187 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
188 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
189 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
190 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
191 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
194 static u32
sh_msiof_read(struct sh_msiof_spi_priv
*p
, int reg_offs
)
199 return ioread16(p
->mapbase
+ reg_offs
);
201 return ioread32(p
->mapbase
+ reg_offs
);
205 static void sh_msiof_write(struct sh_msiof_spi_priv
*p
, int reg_offs
,
211 iowrite16(value
, p
->mapbase
+ reg_offs
);
214 iowrite32(value
, p
->mapbase
+ reg_offs
);
219 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv
*p
,
222 u32 mask
= clr
| set
;
226 data
= sh_msiof_read(p
, CTR
);
229 sh_msiof_write(p
, CTR
, data
);
231 for (k
= 100; k
> 0; k
--) {
232 if ((sh_msiof_read(p
, CTR
) & mask
) == set
)
238 return k
> 0 ? 0 : -ETIMEDOUT
;
241 static irqreturn_t
sh_msiof_spi_irq(int irq
, void *data
)
243 struct sh_msiof_spi_priv
*p
= data
;
245 /* just disable the interrupt and wake up */
246 sh_msiof_write(p
, IER
, 0);
252 static const u32 sh_msiof_spi_div_array
[] = {
253 SCR_BRDV_DIV_1
, SCR_BRDV_DIV_2
, SCR_BRDV_DIV_4
,
254 SCR_BRDV_DIV_8
, SCR_BRDV_DIV_16
, SCR_BRDV_DIV_32
,
257 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv
*p
,
258 unsigned long parent_rate
, u32 spi_hz
)
262 unsigned int div_pow
= p
->min_div_pow
;
264 if (!spi_hz
|| !parent_rate
) {
265 WARN(1, "Invalid clock rate parameters %lu and %u\n",
266 parent_rate
, spi_hz
);
270 div
= DIV_ROUND_UP(parent_rate
, spi_hz
);
272 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
273 if (!div_pow
&& div
<= 32 && div
> 2)
277 brps
= (div
+ 1) >> div_pow
;
281 for (; brps
> 32; div_pow
++)
282 brps
= (brps
+ 1) >> 1;
284 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
285 dev_err(&p
->pdev
->dev
,
286 "Requested SPI transfer rate %d is too low\n", spi_hz
);
291 scr
= sh_msiof_spi_div_array
[div_pow
] | SCR_BRPS(brps
);
292 sh_msiof_write(p
, TSCR
, scr
);
293 if (!(p
->master
->flags
& SPI_MASTER_MUST_TX
))
294 sh_msiof_write(p
, RSCR
, scr
);
297 static u32
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl
)
300 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
304 * b'011 (SYNCDL only) : 300
308 if (dtdl_or_syncdl
% 100)
309 return dtdl_or_syncdl
/ 100 + 5;
311 return dtdl_or_syncdl
/ 100;
314 static u32
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv
*p
)
321 /* check if DTDL and SYNCDL is allowed value */
322 if (p
->info
->dtdl
> 200 || p
->info
->syncdl
> 300) {
323 dev_warn(&p
->pdev
->dev
, "DTDL or SYNCDL is too large\n");
327 /* check if the sum of DTDL and SYNCDL becomes an integer value */
328 if ((p
->info
->dtdl
+ p
->info
->syncdl
) % 100) {
329 dev_warn(&p
->pdev
->dev
, "the sum of DTDL/SYNCDL is not good\n");
333 val
= sh_msiof_get_delay_bit(p
->info
->dtdl
) << MDR1_DTDL_SHIFT
;
334 val
|= sh_msiof_get_delay_bit(p
->info
->syncdl
) << MDR1_SYNCDL_SHIFT
;
339 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv
*p
, u32 ss
,
341 u32 tx_hi_z
, u32 lsb_first
, u32 cs_high
)
347 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
353 tmp
= MDR1_SYNCMD_SPI
| 1 << MDR1_FLD_SHIFT
| MDR1_XXSTP
;
354 tmp
|= !cs_high
<< MDR1_SYNCAC_SHIFT
;
355 tmp
|= lsb_first
<< MDR1_BITLSB_SHIFT
;
356 tmp
|= sh_msiof_spi_get_dtdl_and_syncdl(p
);
357 if (spi_controller_is_slave(p
->master
)) {
358 sh_msiof_write(p
, TMDR1
, tmp
| TMDR1_PCON
);
360 sh_msiof_write(p
, TMDR1
,
361 tmp
| MDR1_TRMD
| TMDR1_PCON
|
362 (ss
< MAX_SS
? ss
: 0) << TMDR1_SYNCCH_SHIFT
);
364 if (p
->master
->flags
& SPI_MASTER_MUST_TX
) {
365 /* These bits are reserved if RX needs TX */
368 sh_msiof_write(p
, RMDR1
, tmp
);
371 tmp
|= CTR_TSCKIZ_SCK
| cpol
<< CTR_TSCKIZ_POL_SHIFT
;
372 tmp
|= CTR_RSCKIZ_SCK
| cpol
<< CTR_RSCKIZ_POL_SHIFT
;
376 tmp
|= edge
<< CTR_TEDG_SHIFT
;
377 tmp
|= edge
<< CTR_REDG_SHIFT
;
378 tmp
|= tx_hi_z
? CTR_TXDIZ_HIZ
: CTR_TXDIZ_LOW
;
379 sh_msiof_write(p
, CTR
, tmp
);
382 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv
*p
,
383 const void *tx_buf
, void *rx_buf
,
386 u32 dr2
= MDR2_BITLEN1(bits
) | MDR2_WDLEN1(words
);
388 if (tx_buf
|| (p
->master
->flags
& SPI_MASTER_MUST_TX
))
389 sh_msiof_write(p
, TMDR2
, dr2
);
391 sh_msiof_write(p
, TMDR2
, dr2
| MDR2_GRPMASK1
);
394 sh_msiof_write(p
, RMDR2
, dr2
);
397 static void sh_msiof_reset_str(struct sh_msiof_spi_priv
*p
)
399 sh_msiof_write(p
, STR
, sh_msiof_read(p
, STR
));
402 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv
*p
,
403 const void *tx_buf
, int words
, int fs
)
405 const u8
*buf_8
= tx_buf
;
408 for (k
= 0; k
< words
; k
++)
409 sh_msiof_write(p
, TFDR
, buf_8
[k
] << fs
);
412 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv
*p
,
413 const void *tx_buf
, int words
, int fs
)
415 const u16
*buf_16
= tx_buf
;
418 for (k
= 0; k
< words
; k
++)
419 sh_msiof_write(p
, TFDR
, buf_16
[k
] << fs
);
422 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv
*p
,
423 const void *tx_buf
, int words
, int fs
)
425 const u16
*buf_16
= tx_buf
;
428 for (k
= 0; k
< words
; k
++)
429 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_16
[k
]) << fs
);
432 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv
*p
,
433 const void *tx_buf
, int words
, int fs
)
435 const u32
*buf_32
= tx_buf
;
438 for (k
= 0; k
< words
; k
++)
439 sh_msiof_write(p
, TFDR
, buf_32
[k
] << fs
);
442 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv
*p
,
443 const void *tx_buf
, int words
, int fs
)
445 const u32
*buf_32
= tx_buf
;
448 for (k
= 0; k
< words
; k
++)
449 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_32
[k
]) << fs
);
452 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv
*p
,
453 const void *tx_buf
, int words
, int fs
)
455 const u32
*buf_32
= tx_buf
;
458 for (k
= 0; k
< words
; k
++)
459 sh_msiof_write(p
, TFDR
, swab32(buf_32
[k
] << fs
));
462 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv
*p
,
463 const void *tx_buf
, int words
, int fs
)
465 const u32
*buf_32
= tx_buf
;
468 for (k
= 0; k
< words
; k
++)
469 sh_msiof_write(p
, TFDR
, swab32(get_unaligned(&buf_32
[k
]) << fs
));
472 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv
*p
,
473 void *rx_buf
, int words
, int fs
)
478 for (k
= 0; k
< words
; k
++)
479 buf_8
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
482 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv
*p
,
483 void *rx_buf
, int words
, int fs
)
485 u16
*buf_16
= rx_buf
;
488 for (k
= 0; k
< words
; k
++)
489 buf_16
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
492 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv
*p
,
493 void *rx_buf
, int words
, int fs
)
495 u16
*buf_16
= rx_buf
;
498 for (k
= 0; k
< words
; k
++)
499 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_16
[k
]);
502 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv
*p
,
503 void *rx_buf
, int words
, int fs
)
505 u32
*buf_32
= rx_buf
;
508 for (k
= 0; k
< words
; k
++)
509 buf_32
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
512 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv
*p
,
513 void *rx_buf
, int words
, int fs
)
515 u32
*buf_32
= rx_buf
;
518 for (k
= 0; k
< words
; k
++)
519 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_32
[k
]);
522 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv
*p
,
523 void *rx_buf
, int words
, int fs
)
525 u32
*buf_32
= rx_buf
;
528 for (k
= 0; k
< words
; k
++)
529 buf_32
[k
] = swab32(sh_msiof_read(p
, RFDR
) >> fs
);
532 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv
*p
,
533 void *rx_buf
, int words
, int fs
)
535 u32
*buf_32
= rx_buf
;
538 for (k
= 0; k
< words
; k
++)
539 put_unaligned(swab32(sh_msiof_read(p
, RFDR
) >> fs
), &buf_32
[k
]);
542 static int sh_msiof_spi_setup(struct spi_device
*spi
)
544 struct device_node
*np
= spi
->master
->dev
.of_node
;
545 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(spi
->master
);
550 * Use spi->controller_data for CS (same strategy as spi_gpio),
551 * if any. otherwise let HW control CS
553 spi
->cs_gpio
= (uintptr_t)spi
->controller_data
;
556 if (gpio_is_valid(spi
->cs_gpio
)) {
557 gpio_direction_output(spi
->cs_gpio
, !(spi
->mode
& SPI_CS_HIGH
));
561 if (spi_controller_is_slave(p
->master
))
564 if (p
->native_cs_inited
&&
565 (p
->native_cs_high
== !!(spi
->mode
& SPI_CS_HIGH
)))
568 /* Configure native chip select mode/polarity early */
569 clr
= MDR1_SYNCMD_MASK
;
570 set
= MDR1_SYNCMD_SPI
;
571 if (spi
->mode
& SPI_CS_HIGH
)
572 clr
|= BIT(MDR1_SYNCAC_SHIFT
);
574 set
|= BIT(MDR1_SYNCAC_SHIFT
);
575 pm_runtime_get_sync(&p
->pdev
->dev
);
576 tmp
= sh_msiof_read(p
, TMDR1
) & ~clr
;
577 sh_msiof_write(p
, TMDR1
, tmp
| set
| MDR1_TRMD
| TMDR1_PCON
);
578 tmp
= sh_msiof_read(p
, RMDR1
) & ~clr
;
579 sh_msiof_write(p
, RMDR1
, tmp
| set
);
580 pm_runtime_put(&p
->pdev
->dev
);
581 p
->native_cs_high
= spi
->mode
& SPI_CS_HIGH
;
582 p
->native_cs_inited
= true;
586 static int sh_msiof_prepare_message(struct spi_master
*master
,
587 struct spi_message
*msg
)
589 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
590 const struct spi_device
*spi
= msg
->spi
;
593 /* Configure pins before asserting CS */
594 if (gpio_is_valid(spi
->cs_gpio
)) {
596 cs_high
= p
->native_cs_high
;
598 ss
= spi
->chip_select
;
599 cs_high
= !!(spi
->mode
& SPI_CS_HIGH
);
601 sh_msiof_spi_set_pin_regs(p
, ss
, !!(spi
->mode
& SPI_CPOL
),
602 !!(spi
->mode
& SPI_CPHA
),
603 !!(spi
->mode
& SPI_3WIRE
),
604 !!(spi
->mode
& SPI_LSB_FIRST
), cs_high
);
608 static int sh_msiof_spi_start(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
610 bool slave
= spi_controller_is_slave(p
->master
);
613 /* setup clock and rx/tx signals */
615 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TSCKE
);
617 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_RXE
);
619 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TXE
);
621 /* start by setting frame bit */
623 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TFSE
);
628 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
630 bool slave
= spi_controller_is_slave(p
->master
);
633 /* shut down frame, rx/tx and clock signals */
635 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TFSE
, 0);
637 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TXE
, 0);
639 ret
= sh_msiof_modify_ctr_wait(p
, CTR_RXE
, 0);
641 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TSCKE
, 0);
646 static int sh_msiof_slave_abort(struct spi_master
*master
)
648 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
650 p
->slave_aborted
= true;
655 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv
*p
)
657 if (spi_controller_is_slave(p
->master
)) {
658 if (wait_for_completion_interruptible(&p
->done
) ||
660 dev_dbg(&p
->pdev
->dev
, "interrupted\n");
664 if (!wait_for_completion_timeout(&p
->done
, HZ
)) {
665 dev_err(&p
->pdev
->dev
, "timeout\n");
673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv
*p
,
674 void (*tx_fifo
)(struct sh_msiof_spi_priv
*,
675 const void *, int, int),
676 void (*rx_fifo
)(struct sh_msiof_spi_priv
*,
678 const void *tx_buf
, void *rx_buf
,
684 /* limit maximum word transfer to rx/tx fifo size */
686 words
= min_t(int, words
, p
->tx_fifo_size
);
688 words
= min_t(int, words
, p
->rx_fifo_size
);
690 /* the fifo contents need shifting */
691 fifo_shift
= 32 - bits
;
693 /* default FIFO watermarks for PIO */
694 sh_msiof_write(p
, FCTR
, 0);
696 /* setup msiof transfer mode registers */
697 sh_msiof_spi_set_mode_regs(p
, tx_buf
, rx_buf
, bits
, words
);
698 sh_msiof_write(p
, IER
, IER_TEOFE
| IER_REOFE
);
702 tx_fifo(p
, tx_buf
, words
, fifo_shift
);
704 reinit_completion(&p
->done
);
705 p
->slave_aborted
= false;
707 ret
= sh_msiof_spi_start(p
, rx_buf
);
709 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
713 /* wait for tx fifo to be emptied / rx fifo to be filled */
714 ret
= sh_msiof_wait_for_completion(p
);
720 rx_fifo(p
, rx_buf
, words
, fifo_shift
);
722 /* clear status bits */
723 sh_msiof_reset_str(p
);
725 ret
= sh_msiof_spi_stop(p
, rx_buf
);
727 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
734 sh_msiof_reset_str(p
);
735 sh_msiof_spi_stop(p
, rx_buf
);
737 sh_msiof_write(p
, IER
, 0);
741 static void sh_msiof_dma_complete(void *arg
)
743 struct sh_msiof_spi_priv
*p
= arg
;
745 sh_msiof_write(p
, IER
, 0);
749 static int sh_msiof_dma_once(struct sh_msiof_spi_priv
*p
, const void *tx
,
750 void *rx
, unsigned int len
)
753 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
757 /* First prepare and submit the DMA request(s), as this may fail */
759 ier_bits
|= IER_RDREQE
| IER_RDMAE
;
760 desc_rx
= dmaengine_prep_slave_single(p
->master
->dma_rx
,
761 p
->rx_dma_addr
, len
, DMA_DEV_TO_MEM
,
762 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
766 desc_rx
->callback
= sh_msiof_dma_complete
;
767 desc_rx
->callback_param
= p
;
768 cookie
= dmaengine_submit(desc_rx
);
769 if (dma_submit_error(cookie
))
774 ier_bits
|= IER_TDREQE
| IER_TDMAE
;
775 dma_sync_single_for_device(p
->master
->dma_tx
->device
->dev
,
776 p
->tx_dma_addr
, len
, DMA_TO_DEVICE
);
777 desc_tx
= dmaengine_prep_slave_single(p
->master
->dma_tx
,
778 p
->tx_dma_addr
, len
, DMA_MEM_TO_DEV
,
779 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
787 desc_tx
->callback
= NULL
;
789 desc_tx
->callback
= sh_msiof_dma_complete
;
790 desc_tx
->callback_param
= p
;
792 cookie
= dmaengine_submit(desc_tx
);
793 if (dma_submit_error(cookie
)) {
799 /* 1 stage FIFO watermarks for DMA */
800 sh_msiof_write(p
, FCTR
, FCTR_TFWM_1
| FCTR_RFWM_1
);
802 /* setup msiof transfer mode registers (32-bit words) */
803 sh_msiof_spi_set_mode_regs(p
, tx
, rx
, 32, len
/ 4);
805 sh_msiof_write(p
, IER
, ier_bits
);
807 reinit_completion(&p
->done
);
808 p
->slave_aborted
= false;
812 dma_async_issue_pending(p
->master
->dma_rx
);
814 dma_async_issue_pending(p
->master
->dma_tx
);
816 ret
= sh_msiof_spi_start(p
, rx
);
818 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
822 /* wait for tx/rx DMA completion */
823 ret
= sh_msiof_wait_for_completion(p
);
828 reinit_completion(&p
->done
);
829 sh_msiof_write(p
, IER
, IER_TEOFE
);
831 /* wait for tx fifo to be emptied */
832 ret
= sh_msiof_wait_for_completion(p
);
837 /* clear status bits */
838 sh_msiof_reset_str(p
);
840 ret
= sh_msiof_spi_stop(p
, rx
);
842 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
847 dma_sync_single_for_cpu(p
->master
->dma_rx
->device
->dev
,
854 sh_msiof_reset_str(p
);
855 sh_msiof_spi_stop(p
, rx
);
858 dmaengine_terminate_all(p
->master
->dma_tx
);
861 dmaengine_terminate_all(p
->master
->dma_rx
);
862 sh_msiof_write(p
, IER
, 0);
866 static void copy_bswap32(u32
*dst
, const u32
*src
, unsigned int words
)
868 /* src or dst can be unaligned, but not both */
869 if ((unsigned long)src
& 3) {
871 *dst
++ = swab32(get_unaligned(src
));
874 } else if ((unsigned long)dst
& 3) {
876 put_unaligned(swab32(*src
++), dst
);
881 *dst
++ = swab32(*src
++);
885 static void copy_wswap32(u32
*dst
, const u32
*src
, unsigned int words
)
887 /* src or dst can be unaligned, but not both */
888 if ((unsigned long)src
& 3) {
890 *dst
++ = swahw32(get_unaligned(src
));
893 } else if ((unsigned long)dst
& 3) {
895 put_unaligned(swahw32(*src
++), dst
);
900 *dst
++ = swahw32(*src
++);
904 static void copy_plain32(u32
*dst
, const u32
*src
, unsigned int words
)
906 memcpy(dst
, src
, words
* 4);
909 static int sh_msiof_transfer_one(struct spi_master
*master
,
910 struct spi_device
*spi
,
911 struct spi_transfer
*t
)
913 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
914 void (*copy32
)(u32
*, const u32
*, unsigned int);
915 void (*tx_fifo
)(struct sh_msiof_spi_priv
*, const void *, int, int);
916 void (*rx_fifo
)(struct sh_msiof_spi_priv
*, void *, int, int);
917 const void *tx_buf
= t
->tx_buf
;
918 void *rx_buf
= t
->rx_buf
;
919 unsigned int len
= t
->len
;
920 unsigned int bits
= t
->bits_per_word
;
921 unsigned int bytes_per_word
;
927 /* setup clocks (clock already enabled in chipselect()) */
928 if (!spi_controller_is_slave(p
->master
))
929 sh_msiof_spi_set_clk_regs(p
, clk_get_rate(p
->clk
), t
->speed_hz
);
931 while (master
->dma_tx
&& len
> 15) {
933 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
934 * words, with byte resp. word swapping.
939 l
= min(len
, p
->tx_fifo_size
* 4);
941 l
= min(len
, p
->rx_fifo_size
* 4);
946 copy32
= copy_bswap32
;
947 } else if (bits
<= 16) {
950 copy32
= copy_wswap32
;
952 copy32
= copy_plain32
;
956 copy32(p
->tx_dma_page
, tx_buf
, l
/ 4);
958 ret
= sh_msiof_dma_once(p
, tx_buf
, rx_buf
, l
);
959 if (ret
== -EAGAIN
) {
960 dev_warn_once(&p
->pdev
->dev
,
961 "DMA not available, falling back to PIO\n");
968 copy32(rx_buf
, p
->rx_dma_page
, l
/ 4);
979 if (bits
<= 8 && len
> 15 && !(len
& 3)) {
986 /* setup bytes per word and fifo read/write functions */
989 tx_fifo
= sh_msiof_spi_write_fifo_8
;
990 rx_fifo
= sh_msiof_spi_read_fifo_8
;
991 } else if (bits
<= 16) {
993 if ((unsigned long)tx_buf
& 0x01)
994 tx_fifo
= sh_msiof_spi_write_fifo_16u
;
996 tx_fifo
= sh_msiof_spi_write_fifo_16
;
998 if ((unsigned long)rx_buf
& 0x01)
999 rx_fifo
= sh_msiof_spi_read_fifo_16u
;
1001 rx_fifo
= sh_msiof_spi_read_fifo_16
;
1004 if ((unsigned long)tx_buf
& 0x03)
1005 tx_fifo
= sh_msiof_spi_write_fifo_s32u
;
1007 tx_fifo
= sh_msiof_spi_write_fifo_s32
;
1009 if ((unsigned long)rx_buf
& 0x03)
1010 rx_fifo
= sh_msiof_spi_read_fifo_s32u
;
1012 rx_fifo
= sh_msiof_spi_read_fifo_s32
;
1015 if ((unsigned long)tx_buf
& 0x03)
1016 tx_fifo
= sh_msiof_spi_write_fifo_32u
;
1018 tx_fifo
= sh_msiof_spi_write_fifo_32
;
1020 if ((unsigned long)rx_buf
& 0x03)
1021 rx_fifo
= sh_msiof_spi_read_fifo_32u
;
1023 rx_fifo
= sh_msiof_spi_read_fifo_32
;
1026 /* transfer in fifo sized chunks */
1027 words
= len
/ bytes_per_word
;
1030 n
= sh_msiof_spi_txrx_once(p
, tx_fifo
, rx_fifo
, tx_buf
, rx_buf
,
1036 tx_buf
+= n
* bytes_per_word
;
1038 rx_buf
+= n
* bytes_per_word
;
1045 static const struct sh_msiof_chipdata sh_data
= {
1052 static const struct sh_msiof_chipdata rcar_gen2_data
= {
1055 .master_flags
= SPI_MASTER_MUST_TX
,
1059 static const struct sh_msiof_chipdata rcar_gen3_data
= {
1062 .master_flags
= SPI_MASTER_MUST_TX
,
1066 static const struct of_device_id sh_msiof_match
[] = {
1067 { .compatible
= "renesas,sh-mobile-msiof", .data
= &sh_data
},
1068 { .compatible
= "renesas,msiof-r8a7743", .data
= &rcar_gen2_data
},
1069 { .compatible
= "renesas,msiof-r8a7745", .data
= &rcar_gen2_data
},
1070 { .compatible
= "renesas,msiof-r8a7790", .data
= &rcar_gen2_data
},
1071 { .compatible
= "renesas,msiof-r8a7791", .data
= &rcar_gen2_data
},
1072 { .compatible
= "renesas,msiof-r8a7792", .data
= &rcar_gen2_data
},
1073 { .compatible
= "renesas,msiof-r8a7793", .data
= &rcar_gen2_data
},
1074 { .compatible
= "renesas,msiof-r8a7794", .data
= &rcar_gen2_data
},
1075 { .compatible
= "renesas,rcar-gen2-msiof", .data
= &rcar_gen2_data
},
1076 { .compatible
= "renesas,msiof-r8a7796", .data
= &rcar_gen3_data
},
1077 { .compatible
= "renesas,rcar-gen3-msiof", .data
= &rcar_gen3_data
},
1078 { .compatible
= "renesas,sh-msiof", .data
= &sh_data
}, /* Deprecated */
1081 MODULE_DEVICE_TABLE(of
, sh_msiof_match
);
1084 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1086 struct sh_msiof_spi_info
*info
;
1087 struct device_node
*np
= dev
->of_node
;
1090 info
= devm_kzalloc(dev
, sizeof(struct sh_msiof_spi_info
), GFP_KERNEL
);
1094 info
->mode
= of_property_read_bool(np
, "spi-slave") ? MSIOF_SPI_SLAVE
1097 /* Parse the MSIOF properties */
1098 if (info
->mode
== MSIOF_SPI_MASTER
)
1099 of_property_read_u32(np
, "num-cs", &num_cs
);
1100 of_property_read_u32(np
, "renesas,tx-fifo-size",
1101 &info
->tx_fifo_override
);
1102 of_property_read_u32(np
, "renesas,rx-fifo-size",
1103 &info
->rx_fifo_override
);
1104 of_property_read_u32(np
, "renesas,dtdl", &info
->dtdl
);
1105 of_property_read_u32(np
, "renesas,syncdl", &info
->syncdl
);
1107 info
->num_chipselect
= num_cs
;
1112 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1118 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv
*p
)
1120 struct device
*dev
= &p
->pdev
->dev
;
1121 unsigned int used_ss_mask
= 0;
1122 unsigned int cs_gpios
= 0;
1123 unsigned int num_cs
, i
;
1126 ret
= gpiod_count(dev
, "cs");
1130 num_cs
= max_t(unsigned int, ret
, p
->master
->num_chipselect
);
1131 for (i
= 0; i
< num_cs
; i
++) {
1132 struct gpio_desc
*gpiod
;
1134 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1135 if (!IS_ERR(gpiod
)) {
1140 if (PTR_ERR(gpiod
) != -ENOENT
)
1141 return PTR_ERR(gpiod
);
1144 dev_err(dev
, "Invalid native chip select %d\n", i
);
1147 used_ss_mask
|= BIT(i
);
1149 p
->unused_ss
= ffz(used_ss_mask
);
1150 if (cs_gpios
&& p
->unused_ss
>= MAX_SS
) {
1151 dev_err(dev
, "No unused native chip select available\n");
1157 static struct dma_chan
*sh_msiof_request_dma_chan(struct device
*dev
,
1158 enum dma_transfer_direction dir
, unsigned int id
, dma_addr_t port_addr
)
1160 dma_cap_mask_t mask
;
1161 struct dma_chan
*chan
;
1162 struct dma_slave_config cfg
;
1166 dma_cap_set(DMA_SLAVE
, mask
);
1168 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1169 (void *)(unsigned long)id
, dev
,
1170 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1172 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1176 memset(&cfg
, 0, sizeof(cfg
));
1177 cfg
.direction
= dir
;
1178 if (dir
== DMA_MEM_TO_DEV
) {
1179 cfg
.dst_addr
= port_addr
;
1180 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1182 cfg
.src_addr
= port_addr
;
1183 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1186 ret
= dmaengine_slave_config(chan
, &cfg
);
1188 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1189 dma_release_channel(chan
);
1196 static int sh_msiof_request_dma(struct sh_msiof_spi_priv
*p
)
1198 struct platform_device
*pdev
= p
->pdev
;
1199 struct device
*dev
= &pdev
->dev
;
1200 const struct sh_msiof_spi_info
*info
= dev_get_platdata(dev
);
1201 unsigned int dma_tx_id
, dma_rx_id
;
1202 const struct resource
*res
;
1203 struct spi_master
*master
;
1204 struct device
*tx_dev
, *rx_dev
;
1207 /* In the OF case we will get the slave IDs from the DT */
1210 } else if (info
&& info
->dma_tx_id
&& info
->dma_rx_id
) {
1211 dma_tx_id
= info
->dma_tx_id
;
1212 dma_rx_id
= info
->dma_rx_id
;
1214 /* The driver assumes no error */
1218 /* The DMA engine uses the second register set, if present */
1219 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1221 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1224 master
->dma_tx
= sh_msiof_request_dma_chan(dev
, DMA_MEM_TO_DEV
,
1227 if (!master
->dma_tx
)
1230 master
->dma_rx
= sh_msiof_request_dma_chan(dev
, DMA_DEV_TO_MEM
,
1233 if (!master
->dma_rx
)
1236 p
->tx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1237 if (!p
->tx_dma_page
)
1240 p
->rx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1241 if (!p
->rx_dma_page
)
1244 tx_dev
= master
->dma_tx
->device
->dev
;
1245 p
->tx_dma_addr
= dma_map_single(tx_dev
, p
->tx_dma_page
, PAGE_SIZE
,
1247 if (dma_mapping_error(tx_dev
, p
->tx_dma_addr
))
1250 rx_dev
= master
->dma_rx
->device
->dev
;
1251 p
->rx_dma_addr
= dma_map_single(rx_dev
, p
->rx_dma_page
, PAGE_SIZE
,
1253 if (dma_mapping_error(rx_dev
, p
->rx_dma_addr
))
1256 dev_info(dev
, "DMA available");
1260 dma_unmap_single(tx_dev
, p
->tx_dma_addr
, PAGE_SIZE
, DMA_TO_DEVICE
);
1262 free_page((unsigned long)p
->rx_dma_page
);
1264 free_page((unsigned long)p
->tx_dma_page
);
1266 dma_release_channel(master
->dma_rx
);
1268 dma_release_channel(master
->dma_tx
);
1269 master
->dma_tx
= NULL
;
1273 static void sh_msiof_release_dma(struct sh_msiof_spi_priv
*p
)
1275 struct spi_master
*master
= p
->master
;
1277 if (!master
->dma_tx
)
1280 dma_unmap_single(master
->dma_rx
->device
->dev
, p
->rx_dma_addr
,
1281 PAGE_SIZE
, DMA_FROM_DEVICE
);
1282 dma_unmap_single(master
->dma_tx
->device
->dev
, p
->tx_dma_addr
,
1283 PAGE_SIZE
, DMA_TO_DEVICE
);
1284 free_page((unsigned long)p
->rx_dma_page
);
1285 free_page((unsigned long)p
->tx_dma_page
);
1286 dma_release_channel(master
->dma_rx
);
1287 dma_release_channel(master
->dma_tx
);
1290 static int sh_msiof_spi_probe(struct platform_device
*pdev
)
1293 struct spi_master
*master
;
1294 const struct sh_msiof_chipdata
*chipdata
;
1295 struct sh_msiof_spi_info
*info
;
1296 struct sh_msiof_spi_priv
*p
;
1300 chipdata
= of_device_get_match_data(&pdev
->dev
);
1302 info
= sh_msiof_spi_parse_dt(&pdev
->dev
);
1304 chipdata
= (const void *)pdev
->id_entry
->driver_data
;
1305 info
= dev_get_platdata(&pdev
->dev
);
1309 dev_err(&pdev
->dev
, "failed to obtain device info\n");
1313 if (info
->mode
== MSIOF_SPI_SLAVE
)
1314 master
= spi_alloc_slave(&pdev
->dev
,
1315 sizeof(struct sh_msiof_spi_priv
));
1317 master
= spi_alloc_master(&pdev
->dev
,
1318 sizeof(struct sh_msiof_spi_priv
));
1322 p
= spi_master_get_devdata(master
);
1324 platform_set_drvdata(pdev
, p
);
1327 p
->min_div_pow
= chipdata
->min_div_pow
;
1329 init_completion(&p
->done
);
1331 p
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1332 if (IS_ERR(p
->clk
)) {
1333 dev_err(&pdev
->dev
, "cannot get clock\n");
1334 ret
= PTR_ERR(p
->clk
);
1338 i
= platform_get_irq(pdev
, 0);
1340 dev_err(&pdev
->dev
, "cannot get platform IRQ\n");
1345 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1346 p
->mapbase
= devm_ioremap_resource(&pdev
->dev
, r
);
1347 if (IS_ERR(p
->mapbase
)) {
1348 ret
= PTR_ERR(p
->mapbase
);
1352 ret
= devm_request_irq(&pdev
->dev
, i
, sh_msiof_spi_irq
, 0,
1353 dev_name(&pdev
->dev
), p
);
1355 dev_err(&pdev
->dev
, "unable to request irq\n");
1360 pm_runtime_enable(&pdev
->dev
);
1362 /* Platform data may override FIFO sizes */
1363 p
->tx_fifo_size
= chipdata
->tx_fifo_size
;
1364 p
->rx_fifo_size
= chipdata
->rx_fifo_size
;
1365 if (p
->info
->tx_fifo_override
)
1366 p
->tx_fifo_size
= p
->info
->tx_fifo_override
;
1367 if (p
->info
->rx_fifo_override
)
1368 p
->rx_fifo_size
= p
->info
->rx_fifo_override
;
1370 /* Setup GPIO chip selects */
1371 master
->num_chipselect
= p
->info
->num_chipselect
;
1372 ret
= sh_msiof_get_cs_gpios(p
);
1376 /* init master code */
1377 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1378 master
->mode_bits
|= SPI_LSB_FIRST
| SPI_3WIRE
;
1379 master
->flags
= chipdata
->master_flags
;
1380 master
->bus_num
= pdev
->id
;
1381 master
->dev
.of_node
= pdev
->dev
.of_node
;
1382 master
->setup
= sh_msiof_spi_setup
;
1383 master
->prepare_message
= sh_msiof_prepare_message
;
1384 master
->slave_abort
= sh_msiof_slave_abort
;
1385 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 32);
1386 master
->auto_runtime_pm
= true;
1387 master
->transfer_one
= sh_msiof_transfer_one
;
1389 ret
= sh_msiof_request_dma(p
);
1391 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1393 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1395 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1402 sh_msiof_release_dma(p
);
1403 pm_runtime_disable(&pdev
->dev
);
1405 spi_master_put(master
);
1409 static int sh_msiof_spi_remove(struct platform_device
*pdev
)
1411 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1413 sh_msiof_release_dma(p
);
1414 pm_runtime_disable(&pdev
->dev
);
1418 static const struct platform_device_id spi_driver_ids
[] = {
1419 { "spi_sh_msiof", (kernel_ulong_t
)&sh_data
},
1422 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1424 static struct platform_driver sh_msiof_spi_drv
= {
1425 .probe
= sh_msiof_spi_probe
,
1426 .remove
= sh_msiof_spi_remove
,
1427 .id_table
= spi_driver_ids
,
1429 .name
= "spi_sh_msiof",
1430 .of_match_table
= of_match_ptr(sh_msiof_match
),
1433 module_platform_driver(sh_msiof_spi_drv
);
1435 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1436 MODULE_AUTHOR("Magnus Damm");
1437 MODULE_LICENSE("GPL v2");
1438 MODULE_ALIAS("platform:spi_sh_msiof");