2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
45 #define for_each_pipe(card_ctx, pipe) \
46 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
52 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
53 static bool single_port
;
55 module_param_named(index
, hdmi_card_index
, int, 0444);
56 MODULE_PARM_DESC(index
,
57 "Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id
, hdmi_card_id
, charp
, 0444);
60 "ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port
, bool, 0444);
62 MODULE_PARM_DESC(single_port
,
63 "Single-port mode (for compatibility)");
66 * ELD SA bits in the CEA Speaker Allocation data block
68 static const int eld_speaker_allocation_bits
[] = {
76 /* the following are not defined in ELD yet */
81 * This is an ordered list!
83 * The preceding ones have better chances to be selected by
84 * hdmi_channel_allocation().
86 static struct cea_channel_speaker_allocation channel_allocations
[] = {
87 /* channel: 7 6 5 4 3 2 1 0 */
88 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
90 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
92 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
94 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
96 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
98 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
100 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
102 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
104 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
106 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
107 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
108 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
109 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
110 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
111 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
112 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
113 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
114 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
115 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
116 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
117 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
118 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
119 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
120 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
121 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
122 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
123 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
124 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
125 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
126 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
127 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
128 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
131 static const struct channel_map_table map_tables
[] = {
132 { SNDRV_CHMAP_FL
, 0x00, FL
},
133 { SNDRV_CHMAP_FR
, 0x01, FR
},
134 { SNDRV_CHMAP_RL
, 0x04, RL
},
135 { SNDRV_CHMAP_RR
, 0x05, RR
},
136 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
137 { SNDRV_CHMAP_FC
, 0x03, FC
},
138 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
139 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware
= {
145 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
146 SNDRV_PCM_INFO_MMAP
|
147 SNDRV_PCM_INFO_MMAP_VALID
|
148 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
149 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
150 SNDRV_PCM_FMTBIT_S24_LE
|
151 SNDRV_PCM_FMTBIT_S32_LE
),
152 .rates
= SNDRV_PCM_RATE_32000
|
153 SNDRV_PCM_RATE_44100
|
154 SNDRV_PCM_RATE_48000
|
155 SNDRV_PCM_RATE_88200
|
156 SNDRV_PCM_RATE_96000
|
157 SNDRV_PCM_RATE_176400
|
158 SNDRV_PCM_RATE_192000
,
159 .rate_min
= HAD_MIN_RATE
,
160 .rate_max
= HAD_MAX_RATE
,
161 .channels_min
= HAD_MIN_CHANNEL
,
162 .channels_max
= HAD_MAX_CHANNEL
,
163 .buffer_bytes_max
= HAD_MAX_BUFFER
,
164 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
165 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
166 .periods_min
= HAD_MIN_PERIODS
,
167 .periods_max
= HAD_MAX_PERIODS
,
168 .fifo_size
= HAD_FIFO_SIZE
,
171 /* Get the active PCM substream;
172 * Call had_substream_put() for unreferecing.
173 * Don't call this inside had_spinlock, as it takes by itself
175 static struct snd_pcm_substream
*
176 had_substream_get(struct snd_intelhad
*intelhaddata
)
178 struct snd_pcm_substream
*substream
;
181 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
182 substream
= intelhaddata
->stream_info
.substream
;
184 intelhaddata
->stream_info
.substream_refcount
++;
185 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
189 /* Unref the active PCM substream;
190 * Don't call this inside had_spinlock, as it takes by itself
192 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
196 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
197 intelhaddata
->stream_info
.substream_refcount
--;
198 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
201 static u32
had_config_offset(int pipe
)
206 return AUDIO_HDMI_CONFIG_A
;
208 return AUDIO_HDMI_CONFIG_B
;
210 return AUDIO_HDMI_CONFIG_C
;
214 /* Register access functions */
215 static u32
had_read_register_raw(struct snd_intelhad_card
*card_ctx
,
218 return ioread32(card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
221 static void had_write_register_raw(struct snd_intelhad_card
*card_ctx
,
222 int pipe
, u32 reg
, u32 val
)
224 iowrite32(val
, card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
227 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
232 *val
= had_read_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
);
235 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
238 had_write_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
, val
);
242 * enable / disable audio configuration
244 * The normal read/modify should not directly be used on VLV2 for
245 * updating AUD_CONFIG register.
247 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250 * register. This field should be 1xy binary for configuration with 6 or
251 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252 * causes the "channels" field to be updated as 0xy binary resulting in
253 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254 * appropriate value when doing read-modify of AUD_CONFIG register.
256 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
259 /* update the cached value */
260 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
261 had_write_register(intelhaddata
, AUD_CONFIG
,
262 intelhaddata
->aud_config
.regval
);
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad
*ctx
)
272 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
273 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
274 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
275 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
281 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
282 AUD_HDMI_STATUSG_MASK_FUNCRST
);
283 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
287 * initialize audio channel status registers
288 * This function is called in the prepare callback
290 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
291 struct snd_intelhad
*intelhaddata
)
293 union aud_cfg cfg_val
= {.regval
= 0};
294 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
295 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
297 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
298 IEC958_AES0_NONAUDIO
) >> 1;
299 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
300 IEC958_AES3_CON_CLOCK
) >> 4;
301 cfg_val
.regx
.val_bit
= ch_stat0
.regx
.lpcm_id
;
303 switch (substream
->runtime
->rate
) {
304 case AUD_SAMPLE_RATE_32
:
305 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
308 case AUD_SAMPLE_RATE_44_1
:
309 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
311 case AUD_SAMPLE_RATE_48
:
312 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
314 case AUD_SAMPLE_RATE_88_2
:
315 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
317 case AUD_SAMPLE_RATE_96
:
318 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
320 case AUD_SAMPLE_RATE_176_4
:
321 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
323 case AUD_SAMPLE_RATE_192
:
324 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
328 /* control should never come here */
332 had_write_register(intelhaddata
,
333 AUD_CH_STATUS_0
, ch_stat0
.regval
);
335 switch (substream
->runtime
->format
) {
336 case SNDRV_PCM_FORMAT_S16_LE
:
337 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
338 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
340 case SNDRV_PCM_FORMAT_S24_LE
:
341 case SNDRV_PCM_FORMAT_S32_LE
:
342 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
343 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
349 had_write_register(intelhaddata
,
350 AUD_CH_STATUS_1
, ch_stat1
.regval
);
355 * function to initialize audio
356 * registers and buffer confgiuration registers
357 * This function is called in the prepare callback
359 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
360 struct snd_intelhad
*intelhaddata
)
362 union aud_cfg cfg_val
= {.regval
= 0};
363 union aud_buf_config buf_cfg
= {.regval
= 0};
366 had_prog_status_reg(substream
, intelhaddata
);
368 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
369 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
370 buf_cfg
.regx
.aud_delay
= 0;
371 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
373 channels
= substream
->runtime
->channels
;
374 cfg_val
.regx
.num_ch
= channels
- 2;
376 cfg_val
.regx
.layout
= LAYOUT0
;
378 cfg_val
.regx
.layout
= LAYOUT1
;
380 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
381 cfg_val
.regx
.packet_mode
= 1;
383 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
384 cfg_val
.regx
.left_align
= 1;
386 cfg_val
.regx
.val_bit
= 1;
388 /* fix up the DP bits */
389 if (intelhaddata
->dp_output
) {
390 cfg_val
.regx
.dp_modei
= 1;
391 cfg_val
.regx
.set
= 1;
394 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
395 intelhaddata
->aud_config
= cfg_val
;
400 * Compute derived values in channel_allocations[].
402 static void init_channel_allocations(void)
405 struct cea_channel_speaker_allocation
*p
;
407 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
408 p
= channel_allocations
+ i
;
411 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
412 if (p
->speakers
[j
]) {
414 p
->spk_mask
|= p
->speakers
[j
];
420 * The transformation takes two steps:
422 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
423 * spk_mask => (channel_allocations[]) => ai->CA
425 * TODO: it could select the wrong CA from multiple candidates.
427 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
435 * CA defaults to 0 for basic stereo audio
441 * expand ELD's speaker allocation mask
443 * ELD tells the speaker mask in a compact(paired) form,
444 * expand ELD's notions to match the ones used by Audio InfoFrame.
447 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
448 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
449 spk_mask
|= eld_speaker_allocation_bits
[i
];
452 /* search for the first working match in the CA table */
453 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
454 if (channels
== channel_allocations
[i
].channels
&&
455 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
456 channel_allocations
[i
].spk_mask
) {
457 ca
= channel_allocations
[i
].ca_index
;
462 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
467 /* from speaker bit mask to ALSA API channel position */
468 static int spk_to_chmap(int spk
)
470 const struct channel_map_table
*t
= map_tables
;
472 for (; t
->map
; t
++) {
473 if (t
->spk_mask
== spk
)
479 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
483 struct snd_pcm_chmap_elem
*chmap
;
484 u8 eld_high
, eld_high_mask
= 0xF0;
487 kfree(intelhaddata
->chmap
->chmap
);
488 intelhaddata
->chmap
->chmap
= NULL
;
490 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
494 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
495 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
497 /* WA: Fix the max channel supported to 8 */
500 * Sink may support more than 8 channels, if eld_high has more than
501 * one bit set. SOC supports max 8 channels.
502 * Refer eld_speaker_allocation_bits, for sink speaker allocation
505 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
506 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
507 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
508 /* eld_high & (eld_high-1): if more than 1 bit set */
509 /* 0x1F: 7 channels */
510 for (i
= 1; i
< 4; i
++) {
511 high_msb
= eld_high
& (0x80 >> i
);
513 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
520 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
521 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
522 spk_mask
|= eld_speaker_allocation_bits
[i
];
525 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
526 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
527 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
528 chmap
->map
[c
] = spk_to_chmap(
529 channel_allocations
[i
].speakers
[
530 (MAX_SPEAKERS
- 1) - c
]);
532 chmap
->channels
= channel_allocations
[i
].channels
;
533 intelhaddata
->chmap
->chmap
= chmap
;
537 if (i
>= ARRAY_SIZE(channel_allocations
))
542 * ALSA API channel-map control callbacks
544 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
545 struct snd_ctl_elem_info
*uinfo
)
547 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
548 uinfo
->count
= HAD_MAX_CHANNEL
;
549 uinfo
->value
.integer
.min
= 0;
550 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
554 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
555 struct snd_ctl_elem_value
*ucontrol
)
557 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
558 struct snd_intelhad
*intelhaddata
= info
->private_data
;
560 const struct snd_pcm_chmap_elem
*chmap
;
562 memset(ucontrol
->value
.integer
.value
, 0,
563 sizeof(long) * HAD_MAX_CHANNEL
);
564 mutex_lock(&intelhaddata
->mutex
);
565 if (!intelhaddata
->chmap
->chmap
) {
566 mutex_unlock(&intelhaddata
->mutex
);
570 chmap
= intelhaddata
->chmap
->chmap
;
571 for (i
= 0; i
< chmap
->channels
; i
++)
572 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
573 mutex_unlock(&intelhaddata
->mutex
);
578 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
583 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
584 NULL
, 0, (unsigned long)intelhaddata
,
585 &intelhaddata
->chmap
);
589 intelhaddata
->chmap
->private_data
= intelhaddata
;
590 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
591 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
592 intelhaddata
->chmap
->chmap
= NULL
;
597 * Initialize Data Island Packets registers
598 * This function is called in the prepare callback
600 static void had_prog_dip(struct snd_pcm_substream
*substream
,
601 struct snd_intelhad
*intelhaddata
)
604 union aud_ctrl_st ctrl_state
= {.regval
= 0};
605 union aud_info_frame2 frame2
= {.regval
= 0};
606 union aud_info_frame3 frame3
= {.regval
= 0};
612 channels
= substream
->runtime
->channels
;
614 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
616 ca
= had_channel_allocation(intelhaddata
, channels
);
617 if (intelhaddata
->dp_output
) {
618 info_frame
= DP_INFO_FRAME_WORD1
;
619 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
621 info_frame
= HDMI_INFO_FRAME_WORD1
;
622 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
623 frame3
.regx
.chnl_alloc
= ca
;
625 /* Calculte the byte wide checksum for all valid DIP words */
626 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
627 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
628 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
629 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
630 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
631 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
633 frame2
.regx
.chksum
= -(checksum
);
636 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
637 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
638 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
640 /* program remaining DIP words with zero */
641 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
642 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
644 ctrl_state
.regx
.dip_freq
= 1;
645 ctrl_state
.regx
.dip_en_sta
= 1;
646 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
649 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
653 /* Select maud according to DP 1.2 spec */
654 if (link_rate
== DP_2_7_GHZ
) {
655 switch (aud_samp_freq
) {
656 case AUD_SAMPLE_RATE_32
:
657 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
660 case AUD_SAMPLE_RATE_44_1
:
661 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
664 case AUD_SAMPLE_RATE_48
:
665 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
668 case AUD_SAMPLE_RATE_88_2
:
669 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
672 case AUD_SAMPLE_RATE_96
:
673 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
676 case AUD_SAMPLE_RATE_176_4
:
677 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
681 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
688 } else if (link_rate
== DP_1_62_GHZ
) {
689 switch (aud_samp_freq
) {
690 case AUD_SAMPLE_RATE_32
:
691 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
694 case AUD_SAMPLE_RATE_44_1
:
695 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
698 case AUD_SAMPLE_RATE_48
:
699 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
702 case AUD_SAMPLE_RATE_88_2
:
703 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
706 case AUD_SAMPLE_RATE_96
:
707 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
710 case AUD_SAMPLE_RATE_176_4
:
711 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
715 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
729 * Program HDMI audio CTS value
731 * @aud_samp_freq: sampling frequency of audio data
732 * @tmds: sampling frequency of the display data
733 * @link_rate: DP link rate
734 * @n_param: N value, depends on aud_samp_freq
735 * @intelhaddata: substream private data
737 * Program CTS register based on the audio and display sampling frequency
739 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
740 u32 n_param
, struct snd_intelhad
*intelhaddata
)
743 u64 dividend
, divisor
;
745 if (intelhaddata
->dp_output
) {
746 /* Substitute cts_val with Maud according to DP 1.2 spec*/
747 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
749 /* Calculate CTS according to HDMI 1.3a spec*/
750 dividend
= (u64
)tmds
* n_param
*1000;
751 divisor
= 128 * aud_samp_freq
;
752 cts_val
= div64_u64(dividend
, divisor
);
754 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
755 tmds
, n_param
, cts_val
);
756 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
759 static int had_calculate_n_value(u32 aud_samp_freq
)
763 /* Select N according to HDMI 1.3a spec*/
764 switch (aud_samp_freq
) {
765 case AUD_SAMPLE_RATE_32
:
769 case AUD_SAMPLE_RATE_44_1
:
773 case AUD_SAMPLE_RATE_48
:
777 case AUD_SAMPLE_RATE_88_2
:
781 case AUD_SAMPLE_RATE_96
:
785 case AUD_SAMPLE_RATE_176_4
:
801 * Program HDMI audio N value
803 * @aud_samp_freq: sampling frequency of audio data
804 * @n_param: N value, depends on aud_samp_freq
805 * @intelhaddata: substream private data
807 * This function is called in the prepare callback.
808 * It programs based on the audio and display sampling frequency
810 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
811 struct snd_intelhad
*intelhaddata
)
815 if (intelhaddata
->dp_output
) {
817 * According to DP specs, Maud and Naud values hold
818 * a relationship, which is stated as:
819 * Maud/Naud = 512 * fs / f_LS_Clk
820 * where, fs is the sampling frequency of the audio stream
821 * and Naud is 32768 for Async clock.
826 n_val
= had_calculate_n_value(aud_samp_freq
);
831 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
837 * PCM ring buffer handling
839 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
840 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
841 * moves at each period elapsed. The below illustrates how it works:
844 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845 * BD | 0 | 1 | 2 | 3 |
847 * At time=1 (period elapsed)
848 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849 * BD | 1 | 2 | 3 | 0 |
851 * At time=2 (second period elapsed)
852 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853 * BD | 2 | 3 | 0 | 1 |
855 * The bd_head field points to the index of the BD to be read. It's also the
856 * position to be filled at next. The pcm_head and the pcm_filled fields
857 * point to the indices of the current position and of the next position to
858 * be filled, respectively. For PCM buffer there are both _head and _filled
859 * because they may be difference when nperiods > 4. For example, in the
860 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
862 * pcm_head (=1) --v v-- pcm_filled (=5)
863 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
864 * BD | 1 | 2 | 3 | 0 |
865 * bd_head (=1) --^ ^-- next to fill (= bd_head)
867 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
868 * the hardware skips those BDs in the loop.
870 * An exceptional setup is the case with nperiods=1. Since we have to update
871 * BDs after finishing one BD processing, we'd need at least two BDs, where
872 * both BDs point to the same content, the same address, the same size of the
876 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
877 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
879 /* Set up a buffer descriptor at the "filled" position */
880 static void had_prog_bd(struct snd_pcm_substream
*substream
,
881 struct snd_intelhad
*intelhaddata
)
883 int idx
= intelhaddata
->bd_head
;
884 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
885 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
887 addr
|= AUD_BUF_VALID
;
888 if (!substream
->runtime
->no_period_wakeup
)
889 addr
|= AUD_BUF_INTR_EN
;
890 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
891 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
892 intelhaddata
->period_bytes
);
894 /* advance the indices to the next */
895 intelhaddata
->bd_head
++;
896 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
897 intelhaddata
->pcmbuf_filled
++;
898 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
901 /* invalidate a buffer descriptor with the given index */
902 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
905 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
906 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
909 /* Initial programming of ring buffer */
910 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
911 struct snd_intelhad
*intelhaddata
)
913 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
916 num_periods
= runtime
->periods
;
917 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
918 /* set the minimum 2 BDs for num_periods=1 */
919 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
920 intelhaddata
->period_bytes
=
921 frames_to_bytes(runtime
, runtime
->period_size
);
922 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
924 intelhaddata
->bd_head
= 0;
925 intelhaddata
->pcmbuf_head
= 0;
926 intelhaddata
->pcmbuf_filled
= 0;
928 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
929 if (i
< intelhaddata
->num_bds
)
930 had_prog_bd(substream
, intelhaddata
);
931 else /* invalidate the rest */
932 had_invalidate_bd(intelhaddata
, i
);
935 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
938 /* process a bd, advance to the next */
939 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
940 struct snd_intelhad
*intelhaddata
)
942 int num_periods
= substream
->runtime
->periods
;
944 /* reprogram the next buffer */
945 had_prog_bd(substream
, intelhaddata
);
947 /* proceed to next */
948 intelhaddata
->pcmbuf_head
++;
949 intelhaddata
->pcmbuf_head
%= num_periods
;
952 /* process the current BD(s);
953 * returns the current PCM buffer byte position, or -EPIPE for underrun.
955 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
956 struct snd_intelhad
*intelhaddata
)
962 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
964 /* get the remaining bytes on the buffer */
965 had_read_register(intelhaddata
,
966 AUD_BUF_LEN(intelhaddata
->bd_head
),
968 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
969 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
975 if (len
> 0) /* OK, this is the current buffer */
978 /* len=0 => already empty, check the next buffer */
979 if (++processed
>= intelhaddata
->num_bds
) {
980 len
= -EPIPE
; /* all empty? - report underrun */
983 had_advance_ringbuf(substream
, intelhaddata
);
986 len
= intelhaddata
->period_bytes
- len
;
987 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
989 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
993 /* called from irq handler */
994 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
996 struct snd_pcm_substream
*substream
;
998 substream
= had_substream_get(intelhaddata
);
1000 return; /* no stream? - bail out */
1002 if (!intelhaddata
->connected
) {
1003 snd_pcm_stop_xrun(substream
);
1004 goto out
; /* disconnected? - bail out */
1007 /* process or stop the stream */
1008 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
1009 snd_pcm_stop_xrun(substream
);
1011 snd_pcm_period_elapsed(substream
);
1014 had_substream_put(intelhaddata
);
1018 * The interrupt status 'sticky' bits might not be cleared by
1019 * setting '1' to that bit once...
1021 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1026 for (i
= 0; i
< 100; i
++) {
1027 /* clear bit30, 31 AUD_HDMI_STATUS */
1028 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1029 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1033 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1035 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1038 /* Perform some reset procedure but only when need_reset is set;
1039 * this is called from prepare or hw_free callbacks once after trigger STOP
1040 * or underrun has been processed in order to settle down the h/w state.
1042 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1044 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1047 /* Reset buffer pointers */
1048 had_reset_audio(intelhaddata
);
1049 wait_clear_underrun_bit(intelhaddata
);
1050 intelhaddata
->need_reset
= false;
1053 /* called from irq handler */
1054 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1056 struct snd_pcm_substream
*substream
;
1058 /* Report UNDERRUN error to above layers */
1059 substream
= had_substream_get(intelhaddata
);
1061 snd_pcm_stop_xrun(substream
);
1062 had_substream_put(intelhaddata
);
1064 intelhaddata
->need_reset
= true;
1068 * ALSA PCM open callback
1070 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1072 struct snd_intelhad
*intelhaddata
;
1073 struct snd_pcm_runtime
*runtime
;
1076 intelhaddata
= snd_pcm_substream_chip(substream
);
1077 runtime
= substream
->runtime
;
1079 pm_runtime_get_sync(intelhaddata
->dev
);
1081 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1082 runtime
->hw
= had_pcm_hardware
;
1084 retval
= snd_pcm_hw_constraint_integer(runtime
,
1085 SNDRV_PCM_HW_PARAM_PERIODS
);
1089 /* Make sure, that the period size is always aligned
1092 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1093 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1097 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1101 /* expose PCM substream */
1102 spin_lock_irq(&intelhaddata
->had_spinlock
);
1103 intelhaddata
->stream_info
.substream
= substream
;
1104 intelhaddata
->stream_info
.substream_refcount
++;
1105 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1109 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1110 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1115 * ALSA PCM close callback
1117 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1119 struct snd_intelhad
*intelhaddata
;
1121 intelhaddata
= snd_pcm_substream_chip(substream
);
1123 /* unreference and sync with the pending PCM accesses */
1124 spin_lock_irq(&intelhaddata
->had_spinlock
);
1125 intelhaddata
->stream_info
.substream
= NULL
;
1126 intelhaddata
->stream_info
.substream_refcount
--;
1127 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1128 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1130 spin_lock_irq(&intelhaddata
->had_spinlock
);
1132 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1134 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1135 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1140 * ALSA PCM hw_params callback
1142 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1143 struct snd_pcm_hw_params
*hw_params
)
1145 struct snd_intelhad
*intelhaddata
;
1147 int pages
, buf_size
, retval
;
1149 intelhaddata
= snd_pcm_substream_chip(substream
);
1150 buf_size
= params_buffer_bytes(hw_params
);
1151 retval
= snd_pcm_lib_malloc_pages(substream
, buf_size
);
1154 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1155 __func__
, buf_size
);
1156 /* mark the pages as uncached region */
1157 addr
= (unsigned long) substream
->runtime
->dma_area
;
1158 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1159 retval
= set_memory_uc(addr
, pages
);
1161 dev_err(intelhaddata
->dev
, "set_memory_uc failed.Error:%d\n",
1165 memset(substream
->runtime
->dma_area
, 0, buf_size
);
1171 * ALSA PCM hw_free callback
1173 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1175 struct snd_intelhad
*intelhaddata
;
1179 intelhaddata
= snd_pcm_substream_chip(substream
);
1180 had_do_reset(intelhaddata
);
1182 /* mark back the pages as cached/writeback region before the free */
1183 if (substream
->runtime
->dma_area
!= NULL
) {
1184 addr
= (unsigned long) substream
->runtime
->dma_area
;
1185 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) /
1187 set_memory_wb(addr
, pages
);
1188 return snd_pcm_lib_free_pages(substream
);
1194 * ALSA PCM trigger callback
1196 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1199 struct snd_intelhad
*intelhaddata
;
1201 intelhaddata
= snd_pcm_substream_chip(substream
);
1203 spin_lock(&intelhaddata
->had_spinlock
);
1205 case SNDRV_PCM_TRIGGER_START
:
1206 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1207 case SNDRV_PCM_TRIGGER_RESUME
:
1209 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1210 had_enable_audio(intelhaddata
, true);
1213 case SNDRV_PCM_TRIGGER_STOP
:
1214 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1216 had_enable_audio(intelhaddata
, false);
1217 intelhaddata
->need_reset
= true;
1223 spin_unlock(&intelhaddata
->had_spinlock
);
1228 * ALSA PCM prepare callback
1230 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1233 u32 disp_samp_freq
, n_param
;
1235 struct snd_intelhad
*intelhaddata
;
1236 struct snd_pcm_runtime
*runtime
;
1238 intelhaddata
= snd_pcm_substream_chip(substream
);
1239 runtime
= substream
->runtime
;
1241 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1242 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1243 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1244 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1245 (int)snd_pcm_lib_buffer_bytes(substream
));
1246 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1247 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1249 had_do_reset(intelhaddata
);
1251 /* Get N value in KHz */
1252 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1254 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1256 dev_err(intelhaddata
->dev
,
1257 "programming N value failed %#x\n", retval
);
1261 if (intelhaddata
->dp_output
)
1262 link_rate
= intelhaddata
->link_rate
;
1264 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1265 n_param
, intelhaddata
);
1267 had_prog_dip(substream
, intelhaddata
);
1269 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1271 /* Prog buffer address */
1272 had_init_ringbuf(substream
, intelhaddata
);
1275 * Program channel mapping in following order:
1276 * FL, FR, C, LFE, RL, RR
1279 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1286 * ALSA PCM pointer callback
1288 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1290 struct snd_intelhad
*intelhaddata
;
1293 intelhaddata
= snd_pcm_substream_chip(substream
);
1295 if (!intelhaddata
->connected
)
1296 return SNDRV_PCM_POS_XRUN
;
1298 len
= had_process_ringbuf(substream
, intelhaddata
);
1300 return SNDRV_PCM_POS_XRUN
;
1301 len
= bytes_to_frames(substream
->runtime
, len
);
1302 /* wrapping may happen when periods=1 */
1303 len
%= substream
->runtime
->buffer_size
;
1308 * ALSA PCM mmap callback
1310 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1311 struct vm_area_struct
*vma
)
1313 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1314 return remap_pfn_range(vma
, vma
->vm_start
,
1315 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1316 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1322 static const struct snd_pcm_ops had_pcm_ops
= {
1323 .open
= had_pcm_open
,
1324 .close
= had_pcm_close
,
1325 .ioctl
= snd_pcm_lib_ioctl
,
1326 .hw_params
= had_pcm_hw_params
,
1327 .hw_free
= had_pcm_hw_free
,
1328 .prepare
= had_pcm_prepare
,
1329 .trigger
= had_pcm_trigger
,
1330 .pointer
= had_pcm_pointer
,
1331 .mmap
= had_pcm_mmap
,
1334 /* process mode change of the running stream; called in mutex */
1335 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1337 struct snd_pcm_substream
*substream
;
1339 u32 disp_samp_freq
, n_param
;
1342 substream
= had_substream_get(intelhaddata
);
1347 had_enable_audio(intelhaddata
, false);
1349 /* Update CTS value */
1350 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1352 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1354 dev_err(intelhaddata
->dev
,
1355 "programming N value failed %#x\n", retval
);
1359 if (intelhaddata
->dp_output
)
1360 link_rate
= intelhaddata
->link_rate
;
1362 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1363 n_param
, intelhaddata
);
1366 had_enable_audio(intelhaddata
, true);
1369 had_substream_put(intelhaddata
);
1373 /* process hot plug, called from wq with mutex locked */
1374 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1376 struct snd_pcm_substream
*substream
;
1378 spin_lock_irq(&intelhaddata
->had_spinlock
);
1379 if (intelhaddata
->connected
) {
1380 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1381 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1386 had_enable_audio(intelhaddata
, false);
1388 intelhaddata
->connected
= true;
1389 dev_dbg(intelhaddata
->dev
,
1390 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391 __func__
, __LINE__
);
1392 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1394 had_build_channel_allocation_map(intelhaddata
);
1396 /* Report to above ALSA layer */
1397 substream
= had_substream_get(intelhaddata
);
1399 snd_pcm_stop_xrun(substream
);
1400 had_substream_put(intelhaddata
);
1403 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1406 /* process hot unplug, called from wq with mutex locked */
1407 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1409 struct snd_pcm_substream
*substream
;
1411 spin_lock_irq(&intelhaddata
->had_spinlock
);
1412 if (!intelhaddata
->connected
) {
1413 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1414 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1420 had_enable_audio(intelhaddata
, false);
1422 intelhaddata
->connected
= false;
1423 dev_dbg(intelhaddata
->dev
,
1424 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425 __func__
, __LINE__
);
1426 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1428 kfree(intelhaddata
->chmap
->chmap
);
1429 intelhaddata
->chmap
->chmap
= NULL
;
1431 /* Report to above ALSA layer */
1432 substream
= had_substream_get(intelhaddata
);
1434 snd_pcm_stop_xrun(substream
);
1435 had_substream_put(intelhaddata
);
1438 snd_jack_report(intelhaddata
->jack
, 0);
1442 * ALSA iec958 and ELD controls
1445 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1446 struct snd_ctl_elem_info
*uinfo
)
1448 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1453 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1454 struct snd_ctl_elem_value
*ucontrol
)
1456 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1458 mutex_lock(&intelhaddata
->mutex
);
1459 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1460 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1461 ucontrol
->value
.iec958
.status
[2] =
1462 (intelhaddata
->aes_bits
>> 16) & 0xff;
1463 ucontrol
->value
.iec958
.status
[3] =
1464 (intelhaddata
->aes_bits
>> 24) & 0xff;
1465 mutex_unlock(&intelhaddata
->mutex
);
1469 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1470 struct snd_ctl_elem_value
*ucontrol
)
1472 ucontrol
->value
.iec958
.status
[0] = 0xff;
1473 ucontrol
->value
.iec958
.status
[1] = 0xff;
1474 ucontrol
->value
.iec958
.status
[2] = 0xff;
1475 ucontrol
->value
.iec958
.status
[3] = 0xff;
1479 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1480 struct snd_ctl_elem_value
*ucontrol
)
1483 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1486 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1487 (ucontrol
->value
.iec958
.status
[1] << 8) |
1488 (ucontrol
->value
.iec958
.status
[2] << 16) |
1489 (ucontrol
->value
.iec958
.status
[3] << 24);
1490 mutex_lock(&intelhaddata
->mutex
);
1491 if (intelhaddata
->aes_bits
!= val
) {
1492 intelhaddata
->aes_bits
= val
;
1495 mutex_unlock(&intelhaddata
->mutex
);
1499 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1500 struct snd_ctl_elem_info
*uinfo
)
1502 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1503 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1507 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1508 struct snd_ctl_elem_value
*ucontrol
)
1510 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1512 mutex_lock(&intelhaddata
->mutex
);
1513 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1514 HDMI_MAX_ELD_BYTES
);
1515 mutex_unlock(&intelhaddata
->mutex
);
1519 static const struct snd_kcontrol_new had_controls
[] = {
1521 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1522 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1523 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1524 .info
= had_iec958_info
, /* shared */
1525 .get
= had_iec958_mask_get
,
1528 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1529 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1530 .info
= had_iec958_info
,
1531 .get
= had_iec958_get
,
1532 .put
= had_iec958_put
,
1535 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1536 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1537 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1539 .info
= had_ctl_eld_info
,
1540 .get
= had_ctl_eld_get
,
1545 * audio interrupt handler
1547 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1549 struct snd_intelhad_card
*card_ctx
= dev_id
;
1550 u32 audio_stat
[3] = {};
1553 for_each_pipe(card_ctx
, pipe
) {
1554 /* use raw register access to ack IRQs even while disconnected */
1555 audio_stat
[pipe
] = had_read_register_raw(card_ctx
, pipe
,
1557 (HDMI_AUDIO_UNDERRUN
| HDMI_AUDIO_BUFFER_DONE
);
1559 if (audio_stat
[pipe
])
1560 had_write_register_raw(card_ctx
, pipe
,
1561 AUD_HDMI_STATUS
, audio_stat
[pipe
]);
1564 for_each_port(card_ctx
, port
) {
1565 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1566 int pipe
= ctx
->pipe
;
1571 if (audio_stat
[pipe
] & HDMI_AUDIO_BUFFER_DONE
)
1572 had_process_buffer_done(ctx
);
1573 if (audio_stat
[pipe
] & HDMI_AUDIO_UNDERRUN
)
1574 had_process_buffer_underrun(ctx
);
1581 * monitor plug/unplug notification from i915; just kick off the work
1583 static void notify_audio_lpe(struct platform_device
*pdev
, int port
)
1585 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1586 struct snd_intelhad
*ctx
;
1588 ctx
= &card_ctx
->pcm_ctx
[single_port
? 0 : port
];
1592 schedule_work(&ctx
->hdmi_audio_wq
);
1595 /* the work to handle monitor hot plug/unplug */
1596 static void had_audio_wq(struct work_struct
*work
)
1598 struct snd_intelhad
*ctx
=
1599 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1600 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1601 struct intel_hdmi_lpe_audio_port_pdata
*ppdata
= &pdata
->port
[ctx
->port
];
1603 pm_runtime_get_sync(ctx
->dev
);
1604 mutex_lock(&ctx
->mutex
);
1605 if (ppdata
->pipe
< 0) {
1606 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607 __func__
, ctx
->port
);
1609 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1611 ctx
->dp_output
= false;
1612 ctx
->tmds_clock_speed
= 0;
1615 /* Shut down the stream */
1616 had_process_hot_unplug(ctx
);
1620 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621 __func__
, ctx
->port
, ppdata
->ls_clock
);
1623 memcpy(ctx
->eld
, ppdata
->eld
, sizeof(ctx
->eld
));
1625 ctx
->dp_output
= ppdata
->dp_output
;
1626 if (ctx
->dp_output
) {
1627 ctx
->tmds_clock_speed
= 0;
1628 ctx
->link_rate
= ppdata
->ls_clock
;
1630 ctx
->tmds_clock_speed
= ppdata
->ls_clock
;
1635 * Shut down the stream before we change
1636 * the pipe assignment for this pcm device
1638 had_process_hot_plug(ctx
);
1640 ctx
->pipe
= ppdata
->pipe
;
1642 /* Restart the stream if necessary */
1643 had_process_mode_change(ctx
);
1646 mutex_unlock(&ctx
->mutex
);
1647 pm_runtime_mark_last_busy(ctx
->dev
);
1648 pm_runtime_put_autosuspend(ctx
->dev
);
1654 static int had_create_jack(struct snd_intelhad
*ctx
,
1655 struct snd_pcm
*pcm
)
1660 snprintf(hdmi_str
, sizeof(hdmi_str
),
1661 "HDMI/DP,pcm=%d", pcm
->device
);
1663 err
= snd_jack_new(ctx
->card_ctx
->card
, hdmi_str
,
1664 SND_JACK_AVOUT
, &ctx
->jack
,
1668 ctx
->jack
->private_data
= ctx
;
1676 static int hdmi_lpe_audio_runtime_suspend(struct device
*dev
)
1678 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1681 for_each_port(card_ctx
, port
) {
1682 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1683 struct snd_pcm_substream
*substream
;
1685 substream
= had_substream_get(ctx
);
1687 snd_pcm_suspend(substream
);
1688 had_substream_put(ctx
);
1695 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1697 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1700 err
= hdmi_lpe_audio_runtime_suspend(dev
);
1702 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1706 static int hdmi_lpe_audio_runtime_resume(struct device
*dev
)
1708 pm_runtime_mark_last_busy(dev
);
1712 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1714 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1716 hdmi_lpe_audio_runtime_resume(dev
);
1717 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D0
);
1721 /* release resources */
1722 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1724 struct snd_intelhad_card
*card_ctx
= card
->private_data
;
1725 struct intel_hdmi_lpe_audio_pdata
*pdata
= card_ctx
->dev
->platform_data
;
1728 spin_lock_irq(&pdata
->lpe_audio_slock
);
1729 pdata
->notify_audio_lpe
= NULL
;
1730 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1732 for_each_port(card_ctx
, port
) {
1733 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1735 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1738 if (card_ctx
->mmio_start
)
1739 iounmap(card_ctx
->mmio_start
);
1740 if (card_ctx
->irq
>= 0)
1741 free_irq(card_ctx
->irq
, card_ctx
);
1745 * hdmi_lpe_audio_probe - start bridge with i915
1747 * This function is called when the i915 driver creates the
1748 * hdmi-lpe-audio platform device.
1750 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1752 struct snd_card
*card
;
1753 struct snd_intelhad_card
*card_ctx
;
1754 struct snd_intelhad
*ctx
;
1755 struct snd_pcm
*pcm
;
1756 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1758 struct resource
*res_mmio
;
1761 pdata
= pdev
->dev
.platform_data
;
1763 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1768 irq
= platform_get_irq(pdev
, 0);
1770 dev_err(&pdev
->dev
, "Could not get irq resource: %d\n", irq
);
1774 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1776 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1780 /* create a card instance with ALSA framework */
1781 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1782 THIS_MODULE
, sizeof(*card_ctx
), &card
);
1786 card_ctx
= card
->private_data
;
1787 card_ctx
->dev
= &pdev
->dev
;
1788 card_ctx
->card
= card
;
1789 strcpy(card
->driver
, INTEL_HAD
);
1790 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1791 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1795 card
->private_free
= hdmi_lpe_audio_free
;
1797 platform_set_drvdata(pdev
, card_ctx
);
1799 card_ctx
->num_pipes
= pdata
->num_pipes
;
1800 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1802 for_each_port(card_ctx
, port
) {
1803 ctx
= &card_ctx
->pcm_ctx
[port
];
1804 ctx
->card_ctx
= card_ctx
;
1805 ctx
->dev
= card_ctx
->dev
;
1806 ctx
->port
= single_port
? -1 : port
;
1809 spin_lock_init(&ctx
->had_spinlock
);
1810 mutex_init(&ctx
->mutex
);
1811 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1814 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815 __func__
, (unsigned int)res_mmio
->start
,
1816 (unsigned int)res_mmio
->end
);
1818 card_ctx
->mmio_start
= ioremap_nocache(res_mmio
->start
,
1819 (size_t)(resource_size(res_mmio
)));
1820 if (!card_ctx
->mmio_start
) {
1821 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1826 /* setup interrupt handler */
1827 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1828 pdev
->name
, card_ctx
);
1830 dev_err(&pdev
->dev
, "request_irq failed\n");
1834 card_ctx
->irq
= irq
;
1836 /* only 32bit addressable */
1837 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1838 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1840 init_channel_allocations();
1842 card_ctx
->num_pipes
= pdata
->num_pipes
;
1843 card_ctx
->num_ports
= single_port
? 1 : pdata
->num_ports
;
1845 for_each_port(card_ctx
, port
) {
1848 ctx
= &card_ctx
->pcm_ctx
[port
];
1849 ret
= snd_pcm_new(card
, INTEL_HAD
, port
, MAX_PB_STREAMS
,
1850 MAX_CAP_STREAMS
, &pcm
);
1854 /* setup private data which can be retrieved when required */
1855 pcm
->private_data
= ctx
;
1856 pcm
->info_flags
= 0;
1857 strncpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1858 /* setup the ops for playabck */
1859 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1861 /* allocate dma pages;
1862 * try to allocate 600k buffer as default which is large enough
1864 snd_pcm_lib_preallocate_pages_for_all(pcm
,
1865 SNDRV_DMA_TYPE_DEV
, NULL
,
1866 HAD_DEFAULT_BUFFER
, HAD_MAX_BUFFER
);
1868 /* create controls */
1869 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1870 struct snd_kcontrol
*kctl
;
1872 kctl
= snd_ctl_new1(&had_controls
[i
], ctx
);
1878 kctl
->id
.device
= pcm
->device
;
1880 ret
= snd_ctl_add(card
, kctl
);
1885 /* Register channel map controls */
1886 ret
= had_register_chmap_ctls(ctx
, pcm
);
1890 ret
= had_create_jack(ctx
, pcm
);
1895 ret
= snd_card_register(card
);
1899 spin_lock_irq(&pdata
->lpe_audio_slock
);
1900 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1901 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1903 pm_runtime_use_autosuspend(&pdev
->dev
);
1904 pm_runtime_mark_last_busy(&pdev
->dev
);
1905 pm_runtime_set_active(&pdev
->dev
);
1907 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1908 for_each_port(card_ctx
, port
) {
1909 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1911 schedule_work(&ctx
->hdmi_audio_wq
);
1917 snd_card_free(card
);
1922 * hdmi_lpe_audio_remove - stop bridge with i915
1924 * This function is called when the platform device is destroyed.
1926 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1928 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1930 snd_card_free(card_ctx
->card
);
1934 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1935 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1936 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend
,
1937 hdmi_lpe_audio_runtime_resume
, NULL
)
1940 static struct platform_driver hdmi_lpe_audio_driver
= {
1942 .name
= "hdmi-lpe-audio",
1943 .pm
= &hdmi_lpe_audio_pm
,
1945 .probe
= hdmi_lpe_audio_probe
,
1946 .remove
= hdmi_lpe_audio_remove
,
1949 module_platform_driver(hdmi_lpe_audio_driver
);
1950 MODULE_ALIAS("platform:hdmi_lpe_audio");
1952 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");