2 * kexec: kexec_file_load system call
4 * Copyright (C) 2014 Red Hat Inc.
6 * Vivek Goyal <vgoyal@redhat.com>
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/capability.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/elf.h>
26 #include <linux/elfcore.h>
27 #include <linux/kernel.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
32 static int kexec_calculate_store_digests(struct kimage
*image
);
35 * Currently this is the only default function that is exported as some
36 * architectures need it to do additional handlings.
37 * In the future, other default functions may be exported too if required.
39 int kexec_image_probe_default(struct kimage
*image
, void *buf
,
40 unsigned long buf_len
)
42 const struct kexec_file_ops
* const *fops
;
45 for (fops
= &kexec_file_loaders
[0]; *fops
&& (*fops
)->probe
; ++fops
) {
46 ret
= (*fops
)->probe(buf
, buf_len
);
56 /* Architectures can provide this probe function */
57 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
58 unsigned long buf_len
)
60 return kexec_image_probe_default(image
, buf
, buf_len
);
63 static void *kexec_image_load_default(struct kimage
*image
)
65 if (!image
->fops
|| !image
->fops
->load
)
66 return ERR_PTR(-ENOEXEC
);
68 return image
->fops
->load(image
, image
->kernel_buf
,
69 image
->kernel_buf_len
, image
->initrd_buf
,
70 image
->initrd_buf_len
, image
->cmdline_buf
,
71 image
->cmdline_buf_len
);
74 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
76 return kexec_image_load_default(image
);
79 static int kexec_image_post_load_cleanup_default(struct kimage
*image
)
81 if (!image
->fops
|| !image
->fops
->cleanup
)
84 return image
->fops
->cleanup(image
->image_loader_data
);
87 int __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
89 return kexec_image_post_load_cleanup_default(image
);
92 #ifdef CONFIG_KEXEC_VERIFY_SIG
93 static int kexec_image_verify_sig_default(struct kimage
*image
, void *buf
,
94 unsigned long buf_len
)
96 if (!image
->fops
|| !image
->fops
->verify_sig
) {
97 pr_debug("kernel loader does not support signature verification.\n");
101 return image
->fops
->verify_sig(buf
, buf_len
);
104 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
105 unsigned long buf_len
)
107 return kexec_image_verify_sig_default(image
, buf
, buf_len
);
112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
113 * @pi: Purgatory to be relocated.
114 * @section: Section relocations applying to.
115 * @relsec: Section containing RELAs.
116 * @symtab: Corresponding symtab.
118 * Return: 0 on success, negative errno on error.
121 arch_kexec_apply_relocations_add(struct purgatory_info
*pi
, Elf_Shdr
*section
,
122 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
124 pr_err("RELA relocation unsupported.\n");
129 * arch_kexec_apply_relocations - apply relocations of type REL
130 * @pi: Purgatory to be relocated.
131 * @section: Section relocations applying to.
132 * @relsec: Section containing RELs.
133 * @symtab: Corresponding symtab.
135 * Return: 0 on success, negative errno on error.
138 arch_kexec_apply_relocations(struct purgatory_info
*pi
, Elf_Shdr
*section
,
139 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
141 pr_err("REL relocation unsupported.\n");
146 * Free up memory used by kernel, initrd, and command line. This is temporary
147 * memory allocation which is not needed any more after these buffers have
148 * been loaded into separate segments and have been copied elsewhere.
150 void kimage_file_post_load_cleanup(struct kimage
*image
)
152 struct purgatory_info
*pi
= &image
->purgatory_info
;
154 vfree(image
->kernel_buf
);
155 image
->kernel_buf
= NULL
;
157 vfree(image
->initrd_buf
);
158 image
->initrd_buf
= NULL
;
160 kfree(image
->cmdline_buf
);
161 image
->cmdline_buf
= NULL
;
163 vfree(pi
->purgatory_buf
);
164 pi
->purgatory_buf
= NULL
;
169 /* See if architecture has anything to cleanup post load */
170 arch_kimage_file_post_load_cleanup(image
);
173 * Above call should have called into bootloader to free up
174 * any data stored in kimage->image_loader_data. It should
175 * be ok now to free it up.
177 kfree(image
->image_loader_data
);
178 image
->image_loader_data
= NULL
;
182 * In file mode list of segments is prepared by kernel. Copy relevant
183 * data from user space, do error checking, prepare segment list
186 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
187 const char __user
*cmdline_ptr
,
188 unsigned long cmdline_len
, unsigned flags
)
194 ret
= kernel_read_file_from_fd(kernel_fd
, &image
->kernel_buf
,
195 &size
, INT_MAX
, READING_KEXEC_IMAGE
);
198 image
->kernel_buf_len
= size
;
200 /* IMA needs to pass the measurement list to the next kernel. */
201 ima_add_kexec_buffer(image
);
203 /* Call arch image probe handlers */
204 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
205 image
->kernel_buf_len
);
209 #ifdef CONFIG_KEXEC_VERIFY_SIG
210 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
211 image
->kernel_buf_len
);
213 pr_debug("kernel signature verification failed.\n");
216 pr_debug("kernel signature verification successful.\n");
218 /* It is possible that there no initramfs is being loaded */
219 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
220 ret
= kernel_read_file_from_fd(initrd_fd
, &image
->initrd_buf
,
222 READING_KEXEC_INITRAMFS
);
225 image
->initrd_buf_len
= size
;
229 image
->cmdline_buf
= memdup_user(cmdline_ptr
, cmdline_len
);
230 if (IS_ERR(image
->cmdline_buf
)) {
231 ret
= PTR_ERR(image
->cmdline_buf
);
232 image
->cmdline_buf
= NULL
;
236 image
->cmdline_buf_len
= cmdline_len
;
238 /* command line should be a string with last byte null */
239 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
245 /* Call arch image load handlers */
246 ldata
= arch_kexec_kernel_image_load(image
);
249 ret
= PTR_ERR(ldata
);
253 image
->image_loader_data
= ldata
;
255 /* In case of error, free up all allocated memory in this function */
257 kimage_file_post_load_cleanup(image
);
262 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
263 int initrd_fd
, const char __user
*cmdline_ptr
,
264 unsigned long cmdline_len
, unsigned long flags
)
267 struct kimage
*image
;
268 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
270 image
= do_kimage_alloc_init();
274 image
->file_mode
= 1;
276 if (kexec_on_panic
) {
277 /* Enable special crash kernel control page alloc policy. */
278 image
->control_page
= crashk_res
.start
;
279 image
->type
= KEXEC_TYPE_CRASH
;
282 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
283 cmdline_ptr
, cmdline_len
, flags
);
287 ret
= sanity_check_segment_list(image
);
289 goto out_free_post_load_bufs
;
292 image
->control_code_page
= kimage_alloc_control_pages(image
,
293 get_order(KEXEC_CONTROL_PAGE_SIZE
));
294 if (!image
->control_code_page
) {
295 pr_err("Could not allocate control_code_buffer\n");
296 goto out_free_post_load_bufs
;
299 if (!kexec_on_panic
) {
300 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
301 if (!image
->swap_page
) {
302 pr_err("Could not allocate swap buffer\n");
303 goto out_free_control_pages
;
309 out_free_control_pages
:
310 kimage_free_page_list(&image
->control_pages
);
311 out_free_post_load_bufs
:
312 kimage_file_post_load_cleanup(image
);
318 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
319 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
320 unsigned long, flags
)
323 struct kimage
**dest_image
, *image
;
325 /* We only trust the superuser with rebooting the system. */
326 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
329 /* Make sure we have a legal set of flags */
330 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
335 if (!mutex_trylock(&kexec_mutex
))
338 dest_image
= &kexec_image
;
339 if (flags
& KEXEC_FILE_ON_CRASH
) {
340 dest_image
= &kexec_crash_image
;
341 if (kexec_crash_image
)
342 arch_kexec_unprotect_crashkres();
345 if (flags
& KEXEC_FILE_UNLOAD
)
349 * In case of crash, new kernel gets loaded in reserved region. It is
350 * same memory where old crash kernel might be loaded. Free any
351 * current crash dump kernel before we corrupt it.
353 if (flags
& KEXEC_FILE_ON_CRASH
)
354 kimage_free(xchg(&kexec_crash_image
, NULL
));
356 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
361 ret
= machine_kexec_prepare(image
);
366 * Some architecture(like S390) may touch the crash memory before
367 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
369 ret
= kimage_crash_copy_vmcoreinfo(image
);
373 ret
= kexec_calculate_store_digests(image
);
377 for (i
= 0; i
< image
->nr_segments
; i
++) {
378 struct kexec_segment
*ksegment
;
380 ksegment
= &image
->segment
[i
];
381 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
382 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
385 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
390 kimage_terminate(image
);
393 * Free up any temporary buffers allocated which are not needed
394 * after image has been loaded
396 kimage_file_post_load_cleanup(image
);
398 image
= xchg(dest_image
, image
);
400 if ((flags
& KEXEC_FILE_ON_CRASH
) && kexec_crash_image
)
401 arch_kexec_protect_crashkres();
403 mutex_unlock(&kexec_mutex
);
408 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
409 struct kexec_buf
*kbuf
)
411 struct kimage
*image
= kbuf
->image
;
412 unsigned long temp_start
, temp_end
;
414 temp_end
= min(end
, kbuf
->buf_max
);
415 temp_start
= temp_end
- kbuf
->memsz
;
418 /* align down start */
419 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
421 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
424 temp_end
= temp_start
+ kbuf
->memsz
- 1;
427 * Make sure this does not conflict with any of existing
430 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
431 temp_start
= temp_start
- PAGE_SIZE
;
435 /* We found a suitable memory range */
439 /* If we are here, we found a suitable memory range */
440 kbuf
->mem
= temp_start
;
442 /* Success, stop navigating through remaining System RAM ranges */
446 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
447 struct kexec_buf
*kbuf
)
449 struct kimage
*image
= kbuf
->image
;
450 unsigned long temp_start
, temp_end
;
452 temp_start
= max(start
, kbuf
->buf_min
);
455 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
456 temp_end
= temp_start
+ kbuf
->memsz
- 1;
458 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
461 * Make sure this does not conflict with any of existing
464 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
465 temp_start
= temp_start
+ PAGE_SIZE
;
469 /* We found a suitable memory range */
473 /* If we are here, we found a suitable memory range */
474 kbuf
->mem
= temp_start
;
476 /* Success, stop navigating through remaining System RAM ranges */
480 static int locate_mem_hole_callback(struct resource
*res
, void *arg
)
482 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
483 u64 start
= res
->start
, end
= res
->end
;
484 unsigned long sz
= end
- start
+ 1;
486 /* Returning 0 will take to next memory range */
487 if (sz
< kbuf
->memsz
)
490 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
494 * Allocate memory top down with-in ram range. Otherwise bottom up
498 return locate_mem_hole_top_down(start
, end
, kbuf
);
499 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
503 * arch_kexec_walk_mem - call func(data) on free memory regions
504 * @kbuf: Context info for the search. Also passed to @func.
505 * @func: Function to call for each memory region.
507 * Return: The memory walk will stop when func returns a non-zero value
508 * and that value will be returned. If all free regions are visited without
509 * func returning non-zero, then zero will be returned.
511 int __weak
arch_kexec_walk_mem(struct kexec_buf
*kbuf
,
512 int (*func
)(struct resource
*, void *))
514 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
515 return walk_iomem_res_desc(crashk_res
.desc
,
516 IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
,
517 crashk_res
.start
, crashk_res
.end
,
520 return walk_system_ram_res(0, ULONG_MAX
, kbuf
, func
);
524 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
525 * @kbuf: Parameters for the memory search.
527 * On success, kbuf->mem will have the start address of the memory region found.
529 * Return: 0 on success, negative errno on error.
531 int kexec_locate_mem_hole(struct kexec_buf
*kbuf
)
535 ret
= arch_kexec_walk_mem(kbuf
, locate_mem_hole_callback
);
537 return ret
== 1 ? 0 : -EADDRNOTAVAIL
;
541 * kexec_add_buffer - place a buffer in a kexec segment
542 * @kbuf: Buffer contents and memory parameters.
544 * This function assumes that kexec_mutex is held.
545 * On successful return, @kbuf->mem will have the physical address of
546 * the buffer in memory.
548 * Return: 0 on success, negative errno on error.
550 int kexec_add_buffer(struct kexec_buf
*kbuf
)
553 struct kexec_segment
*ksegment
;
556 /* Currently adding segment this way is allowed only in file mode */
557 if (!kbuf
->image
->file_mode
)
560 if (kbuf
->image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
564 * Make sure we are not trying to add buffer after allocating
565 * control pages. All segments need to be placed first before
566 * any control pages are allocated. As control page allocation
567 * logic goes through list of segments to make sure there are
568 * no destination overlaps.
570 if (!list_empty(&kbuf
->image
->control_pages
)) {
575 /* Ensure minimum alignment needed for segments. */
576 kbuf
->memsz
= ALIGN(kbuf
->memsz
, PAGE_SIZE
);
577 kbuf
->buf_align
= max(kbuf
->buf_align
, PAGE_SIZE
);
579 /* Walk the RAM ranges and allocate a suitable range for the buffer */
580 ret
= kexec_locate_mem_hole(kbuf
);
584 /* Found a suitable memory range */
585 ksegment
= &kbuf
->image
->segment
[kbuf
->image
->nr_segments
];
586 ksegment
->kbuf
= kbuf
->buffer
;
587 ksegment
->bufsz
= kbuf
->bufsz
;
588 ksegment
->mem
= kbuf
->mem
;
589 ksegment
->memsz
= kbuf
->memsz
;
590 kbuf
->image
->nr_segments
++;
594 /* Calculate and store the digest of segments */
595 static int kexec_calculate_store_digests(struct kimage
*image
)
597 struct crypto_shash
*tfm
;
598 struct shash_desc
*desc
;
599 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
600 size_t desc_size
, nullsz
;
603 struct kexec_sha_region
*sha_regions
;
604 struct purgatory_info
*pi
= &image
->purgatory_info
;
606 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY
))
609 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
610 zero_buf_sz
= PAGE_SIZE
;
612 tfm
= crypto_alloc_shash("sha256", 0, 0);
618 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
619 desc
= kzalloc(desc_size
, GFP_KERNEL
);
625 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
626 sha_regions
= vzalloc(sha_region_sz
);
633 ret
= crypto_shash_init(desc
);
635 goto out_free_sha_regions
;
637 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
640 goto out_free_sha_regions
;
643 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
644 struct kexec_segment
*ksegment
;
646 ksegment
= &image
->segment
[i
];
648 * Skip purgatory as it will be modified once we put digest
651 if (ksegment
->kbuf
== pi
->purgatory_buf
)
654 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
660 * Assume rest of the buffer is filled with zero and
661 * update digest accordingly.
663 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
665 unsigned long bytes
= nullsz
;
667 if (bytes
> zero_buf_sz
)
669 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
678 sha_regions
[j
].start
= ksegment
->mem
;
679 sha_regions
[j
].len
= ksegment
->memsz
;
684 ret
= crypto_shash_final(desc
, digest
);
686 goto out_free_digest
;
687 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha_regions",
688 sha_regions
, sha_region_sz
, 0);
690 goto out_free_digest
;
692 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha256_digest",
693 digest
, SHA256_DIGEST_SIZE
, 0);
695 goto out_free_digest
;
700 out_free_sha_regions
:
710 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
712 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
713 * @pi: Purgatory to be loaded.
714 * @kbuf: Buffer to setup.
716 * Allocates the memory needed for the buffer. Caller is responsible to free
717 * the memory after use.
719 * Return: 0 on success, negative errno on error.
721 static int kexec_purgatory_setup_kbuf(struct purgatory_info
*pi
,
722 struct kexec_buf
*kbuf
)
724 const Elf_Shdr
*sechdrs
;
725 unsigned long bss_align
;
726 unsigned long bss_sz
;
730 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
731 kbuf
->buf_align
= bss_align
= 1;
732 kbuf
->bufsz
= bss_sz
= 0;
734 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
735 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
738 align
= sechdrs
[i
].sh_addralign
;
739 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
740 if (kbuf
->buf_align
< align
)
741 kbuf
->buf_align
= align
;
742 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, align
);
743 kbuf
->bufsz
+= sechdrs
[i
].sh_size
;
745 if (bss_align
< align
)
747 bss_sz
= ALIGN(bss_sz
, align
);
748 bss_sz
+= sechdrs
[i
].sh_size
;
751 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, bss_align
);
752 kbuf
->memsz
= kbuf
->bufsz
+ bss_sz
;
753 if (kbuf
->buf_align
< bss_align
)
754 kbuf
->buf_align
= bss_align
;
756 kbuf
->buffer
= vzalloc(kbuf
->bufsz
);
759 pi
->purgatory_buf
= kbuf
->buffer
;
761 ret
= kexec_add_buffer(kbuf
);
767 vfree(pi
->purgatory_buf
);
768 pi
->purgatory_buf
= NULL
;
773 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
774 * @pi: Purgatory to be loaded.
775 * @kbuf: Buffer prepared to store purgatory.
777 * Allocates the memory needed for the buffer. Caller is responsible to free
778 * the memory after use.
780 * Return: 0 on success, negative errno on error.
782 static int kexec_purgatory_setup_sechdrs(struct purgatory_info
*pi
,
783 struct kexec_buf
*kbuf
)
785 unsigned long bss_addr
;
786 unsigned long offset
;
791 * The section headers in kexec_purgatory are read-only. In order to
792 * have them modifiable make a temporary copy.
794 sechdrs
= vzalloc(array_size(sizeof(Elf_Shdr
), pi
->ehdr
->e_shnum
));
797 memcpy(sechdrs
, (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
,
798 pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
799 pi
->sechdrs
= sechdrs
;
802 bss_addr
= kbuf
->mem
+ kbuf
->bufsz
;
803 kbuf
->image
->start
= pi
->ehdr
->e_entry
;
805 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
809 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
812 align
= sechdrs
[i
].sh_addralign
;
813 if (sechdrs
[i
].sh_type
== SHT_NOBITS
) {
814 bss_addr
= ALIGN(bss_addr
, align
);
815 sechdrs
[i
].sh_addr
= bss_addr
;
816 bss_addr
+= sechdrs
[i
].sh_size
;
820 offset
= ALIGN(offset
, align
);
821 if (sechdrs
[i
].sh_flags
& SHF_EXECINSTR
&&
822 pi
->ehdr
->e_entry
>= sechdrs
[i
].sh_addr
&&
823 pi
->ehdr
->e_entry
< (sechdrs
[i
].sh_addr
824 + sechdrs
[i
].sh_size
)) {
825 kbuf
->image
->start
-= sechdrs
[i
].sh_addr
;
826 kbuf
->image
->start
+= kbuf
->mem
+ offset
;
829 src
= (void *)pi
->ehdr
+ sechdrs
[i
].sh_offset
;
830 dst
= pi
->purgatory_buf
+ offset
;
831 memcpy(dst
, src
, sechdrs
[i
].sh_size
);
833 sechdrs
[i
].sh_addr
= kbuf
->mem
+ offset
;
834 sechdrs
[i
].sh_offset
= offset
;
835 offset
+= sechdrs
[i
].sh_size
;
841 static int kexec_apply_relocations(struct kimage
*image
)
844 struct purgatory_info
*pi
= &image
->purgatory_info
;
845 const Elf_Shdr
*sechdrs
;
847 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
849 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
850 const Elf_Shdr
*relsec
;
851 const Elf_Shdr
*symtab
;
854 relsec
= sechdrs
+ i
;
856 if (relsec
->sh_type
!= SHT_RELA
&&
857 relsec
->sh_type
!= SHT_REL
)
861 * For section of type SHT_RELA/SHT_REL,
862 * ->sh_link contains section header index of associated
863 * symbol table. And ->sh_info contains section header
864 * index of section to which relocations apply.
866 if (relsec
->sh_info
>= pi
->ehdr
->e_shnum
||
867 relsec
->sh_link
>= pi
->ehdr
->e_shnum
)
870 section
= pi
->sechdrs
+ relsec
->sh_info
;
871 symtab
= sechdrs
+ relsec
->sh_link
;
873 if (!(section
->sh_flags
& SHF_ALLOC
))
877 * symtab->sh_link contain section header index of associated
880 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
881 /* Invalid section number? */
885 * Respective architecture needs to provide support for applying
886 * relocations of type SHT_RELA/SHT_REL.
888 if (relsec
->sh_type
== SHT_RELA
)
889 ret
= arch_kexec_apply_relocations_add(pi
, section
,
891 else if (relsec
->sh_type
== SHT_REL
)
892 ret
= arch_kexec_apply_relocations(pi
, section
,
902 * kexec_load_purgatory - Load and relocate the purgatory object.
903 * @image: Image to add the purgatory to.
904 * @kbuf: Memory parameters to use.
906 * Allocates the memory needed for image->purgatory_info.sechdrs and
907 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
908 * to free the memory after use.
910 * Return: 0 on success, negative errno on error.
912 int kexec_load_purgatory(struct kimage
*image
, struct kexec_buf
*kbuf
)
914 struct purgatory_info
*pi
= &image
->purgatory_info
;
917 if (kexec_purgatory_size
<= 0)
920 pi
->ehdr
= (const Elf_Ehdr
*)kexec_purgatory
;
922 ret
= kexec_purgatory_setup_kbuf(pi
, kbuf
);
926 ret
= kexec_purgatory_setup_sechdrs(pi
, kbuf
);
930 ret
= kexec_apply_relocations(image
);
939 vfree(pi
->purgatory_buf
);
940 pi
->purgatory_buf
= NULL
;
945 * kexec_purgatory_find_symbol - find a symbol in the purgatory
946 * @pi: Purgatory to search in.
947 * @name: Name of the symbol.
949 * Return: pointer to symbol in read-only symtab on success, NULL on error.
951 static const Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
954 const Elf_Shdr
*sechdrs
;
955 const Elf_Ehdr
*ehdr
;
964 sechdrs
= (void *)ehdr
+ ehdr
->e_shoff
;
966 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
967 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
970 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
971 /* Invalid strtab section number */
973 strtab
= (void *)ehdr
+ sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
974 syms
= (void *)ehdr
+ sechdrs
[i
].sh_offset
;
976 /* Go through symbols for a match */
977 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
978 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
981 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
984 if (syms
[k
].st_shndx
== SHN_UNDEF
||
985 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
986 pr_debug("Symbol: %s has bad section index %d.\n",
987 name
, syms
[k
].st_shndx
);
991 /* Found the symbol we are looking for */
999 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
1001 struct purgatory_info
*pi
= &image
->purgatory_info
;
1005 sym
= kexec_purgatory_find_symbol(pi
, name
);
1007 return ERR_PTR(-EINVAL
);
1009 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
1012 * Returns the address where symbol will finally be loaded after
1013 * kexec_load_segment()
1015 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
1019 * Get or set value of a symbol. If "get_value" is true, symbol value is
1020 * returned in buf otherwise symbol value is set based on value in buf.
1022 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
1023 void *buf
, unsigned int size
, bool get_value
)
1025 struct purgatory_info
*pi
= &image
->purgatory_info
;
1030 sym
= kexec_purgatory_find_symbol(pi
, name
);
1034 if (sym
->st_size
!= size
) {
1035 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1036 name
, (unsigned long)sym
->st_size
, size
);
1040 sec
= pi
->sechdrs
+ sym
->st_shndx
;
1042 if (sec
->sh_type
== SHT_NOBITS
) {
1043 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
1044 get_value
? "get" : "set");
1048 sym_buf
= (char *)pi
->purgatory_buf
+ sec
->sh_offset
+ sym
->st_value
;
1051 memcpy((void *)buf
, sym_buf
, size
);
1053 memcpy((void *)sym_buf
, buf
, size
);
1057 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1059 int crash_exclude_mem_range(struct crash_mem
*mem
,
1060 unsigned long long mstart
, unsigned long long mend
)
1063 unsigned long long start
, end
;
1064 struct crash_mem_range temp_range
= {0, 0};
1066 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1067 start
= mem
->ranges
[i
].start
;
1068 end
= mem
->ranges
[i
].end
;
1070 if (mstart
> end
|| mend
< start
)
1073 /* Truncate any area outside of range */
1079 /* Found completely overlapping range */
1080 if (mstart
== start
&& mend
== end
) {
1081 mem
->ranges
[i
].start
= 0;
1082 mem
->ranges
[i
].end
= 0;
1083 if (i
< mem
->nr_ranges
- 1) {
1084 /* Shift rest of the ranges to left */
1085 for (j
= i
; j
< mem
->nr_ranges
- 1; j
++) {
1086 mem
->ranges
[j
].start
=
1087 mem
->ranges
[j
+1].start
;
1088 mem
->ranges
[j
].end
=
1089 mem
->ranges
[j
+1].end
;
1096 if (mstart
> start
&& mend
< end
) {
1097 /* Split original range */
1098 mem
->ranges
[i
].end
= mstart
- 1;
1099 temp_range
.start
= mend
+ 1;
1100 temp_range
.end
= end
;
1101 } else if (mstart
!= start
)
1102 mem
->ranges
[i
].end
= mstart
- 1;
1104 mem
->ranges
[i
].start
= mend
+ 1;
1108 /* If a split happened, add the split to array */
1109 if (!temp_range
.end
)
1112 /* Split happened */
1113 if (i
== mem
->max_nr_ranges
- 1)
1116 /* Location where new range should go */
1118 if (j
< mem
->nr_ranges
) {
1119 /* Move over all ranges one slot towards the end */
1120 for (i
= mem
->nr_ranges
- 1; i
>= j
; i
--)
1121 mem
->ranges
[i
+ 1] = mem
->ranges
[i
];
1124 mem
->ranges
[j
].start
= temp_range
.start
;
1125 mem
->ranges
[j
].end
= temp_range
.end
;
1130 int crash_prepare_elf64_headers(struct crash_mem
*mem
, int kernel_map
,
1131 void **addr
, unsigned long *sz
)
1135 unsigned long nr_cpus
= num_possible_cpus(), nr_phdr
, elf_sz
;
1137 unsigned int cpu
, i
;
1138 unsigned long long notes_addr
;
1139 unsigned long mstart
, mend
;
1141 /* extra phdr for vmcoreinfo elf note */
1142 nr_phdr
= nr_cpus
+ 1;
1143 nr_phdr
+= mem
->nr_ranges
;
1146 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1147 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1148 * I think this is required by tools like gdb. So same physical
1149 * memory will be mapped in two elf headers. One will contain kernel
1150 * text virtual addresses and other will have __va(physical) addresses.
1154 elf_sz
= sizeof(Elf64_Ehdr
) + nr_phdr
* sizeof(Elf64_Phdr
);
1155 elf_sz
= ALIGN(elf_sz
, ELF_CORE_HEADER_ALIGN
);
1157 buf
= vzalloc(elf_sz
);
1161 ehdr
= (Elf64_Ehdr
*)buf
;
1162 phdr
= (Elf64_Phdr
*)(ehdr
+ 1);
1163 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
1164 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS64
;
1165 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
1166 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1167 ehdr
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1168 memset(ehdr
->e_ident
+ EI_PAD
, 0, EI_NIDENT
- EI_PAD
);
1169 ehdr
->e_type
= ET_CORE
;
1170 ehdr
->e_machine
= ELF_ARCH
;
1171 ehdr
->e_version
= EV_CURRENT
;
1172 ehdr
->e_phoff
= sizeof(Elf64_Ehdr
);
1173 ehdr
->e_ehsize
= sizeof(Elf64_Ehdr
);
1174 ehdr
->e_phentsize
= sizeof(Elf64_Phdr
);
1176 /* Prepare one phdr of type PT_NOTE for each present cpu */
1177 for_each_present_cpu(cpu
) {
1178 phdr
->p_type
= PT_NOTE
;
1179 notes_addr
= per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes
, cpu
));
1180 phdr
->p_offset
= phdr
->p_paddr
= notes_addr
;
1181 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(note_buf_t
);
1186 /* Prepare one PT_NOTE header for vmcoreinfo */
1187 phdr
->p_type
= PT_NOTE
;
1188 phdr
->p_offset
= phdr
->p_paddr
= paddr_vmcoreinfo_note();
1189 phdr
->p_filesz
= phdr
->p_memsz
= VMCOREINFO_NOTE_SIZE
;
1193 /* Prepare PT_LOAD type program header for kernel text region */
1195 phdr
->p_type
= PT_LOAD
;
1196 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1197 phdr
->p_vaddr
= (Elf64_Addr
)_text
;
1198 phdr
->p_filesz
= phdr
->p_memsz
= _end
- _text
;
1199 phdr
->p_offset
= phdr
->p_paddr
= __pa_symbol(_text
);
1204 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1205 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1206 mstart
= mem
->ranges
[i
].start
;
1207 mend
= mem
->ranges
[i
].end
;
1209 phdr
->p_type
= PT_LOAD
;
1210 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1211 phdr
->p_offset
= mstart
;
1213 phdr
->p_paddr
= mstart
;
1214 phdr
->p_vaddr
= (unsigned long long) __va(mstart
);
1215 phdr
->p_filesz
= phdr
->p_memsz
= mend
- mstart
+ 1;
1219 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1220 phdr
, phdr
->p_vaddr
, phdr
->p_paddr
, phdr
->p_filesz
,
1221 ehdr
->e_phnum
, phdr
->p_offset
);