1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Based on arch/arm/include/asm/memory.h
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
8 * Note: this file should not be included by non-asm/.h files
10 #ifndef __ASM_MEMORY_H
11 #define __ASM_MEMORY_H
13 #include <linux/compiler.h>
14 #include <linux/const.h>
15 #include <linux/types.h>
17 #include <asm/page-def.h>
18 #include <linux/sizes.h>
21 * Size of the PCI I/O space. This must remain a power of two so that
22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
24 #define PCI_IO_SIZE SZ_16M
27 * VMEMMAP_SIZE - allows the whole linear region to be covered by
30 #define VMEMMAP_SIZE (UL(1) << (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT))
33 * PAGE_OFFSET - the virtual address of the start of the linear map (top
35 * KIMAGE_VADDR - the virtual address of the start of the kernel image
36 * VA_BITS - the maximum number of bits for virtual addresses.
37 * VA_START - the first kernel virtual address.
39 #define VA_BITS (CONFIG_ARM64_VA_BITS)
40 #define VA_START (UL(0xffffffffffffffff) - \
41 (UL(1) << VA_BITS) + 1)
42 #define PAGE_OFFSET (UL(0xffffffffffffffff) - \
43 (UL(1) << (VA_BITS - 1)) + 1)
44 #define KIMAGE_VADDR (MODULES_END)
45 #define BPF_JIT_REGION_START (VA_START + KASAN_SHADOW_SIZE)
46 #define BPF_JIT_REGION_SIZE (SZ_128M)
47 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
48 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
49 #define MODULES_VADDR (BPF_JIT_REGION_END)
50 #define MODULES_VSIZE (SZ_128M)
51 #define VMEMMAP_START (PAGE_OFFSET - VMEMMAP_SIZE)
52 #define PCI_IO_END (VMEMMAP_START - SZ_2M)
53 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
54 #define FIXADDR_TOP (PCI_IO_START - SZ_2M)
56 #define KERNEL_START _text
57 #define KERNEL_END _end
59 #ifdef CONFIG_ARM64_USER_VA_BITS_52
60 #define MAX_USER_VA_BITS 52
62 #define MAX_USER_VA_BITS VA_BITS
66 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
67 * address space for the shadow region respectively. They can bloat the stack
68 * significantly, so double the (minimum) stack size when they are in use.
71 #define KASAN_SHADOW_SIZE (UL(1) << (VA_BITS - KASAN_SHADOW_SCALE_SHIFT))
72 #define KASAN_THREAD_SHIFT 1
74 #define KASAN_SHADOW_SIZE (0)
75 #define KASAN_THREAD_SHIFT 0
78 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
81 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
82 * stacks are a multiple of page size.
84 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
85 #define THREAD_SHIFT PAGE_SHIFT
87 #define THREAD_SHIFT MIN_THREAD_SHIFT
90 #if THREAD_SHIFT >= PAGE_SHIFT
91 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
94 #define THREAD_SIZE (UL(1) << THREAD_SHIFT)
97 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
98 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
101 #ifdef CONFIG_VMAP_STACK
102 #define THREAD_ALIGN (2 * THREAD_SIZE)
104 #define THREAD_ALIGN THREAD_SIZE
107 #define IRQ_STACK_SIZE THREAD_SIZE
109 #define OVERFLOW_STACK_SIZE SZ_4K
112 * Alignment of kernel segments (e.g. .text, .data).
114 #if defined(CONFIG_DEBUG_ALIGN_RODATA)
116 * 4 KB granule: 1 level 2 entry
117 * 16 KB granule: 128 level 3 entries, with contiguous bit
118 * 64 KB granule: 32 level 3 entries, with contiguous bit
120 #define SEGMENT_ALIGN SZ_2M
123 * 4 KB granule: 16 level 3 entries, with contiguous bit
124 * 16 KB granule: 4 level 3 entries, without contiguous bit
125 * 64 KB granule: 1 level 3 entry
127 #define SEGMENT_ALIGN SZ_64K
131 * Memory types available.
133 #define MT_DEVICE_nGnRnE 0
134 #define MT_DEVICE_nGnRE 1
135 #define MT_DEVICE_GRE 2
136 #define MT_NORMAL_NC 3
138 #define MT_NORMAL_WT 5
141 * Memory types for Stage-2 translation
143 #define MT_S2_NORMAL 0xf
144 #define MT_S2_DEVICE_nGnRE 0x1
147 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
148 * Stage-2 enforces Normal-WB and Device-nGnRE
150 #define MT_S2_FWB_NORMAL 6
151 #define MT_S2_FWB_DEVICE_nGnRE 1
153 #ifdef CONFIG_ARM64_4K_PAGES
154 #define IOREMAP_MAX_ORDER (PUD_SHIFT)
156 #define IOREMAP_MAX_ORDER (PMD_SHIFT)
161 #include <linux/bitops.h>
162 #include <linux/mmdebug.h>
164 extern s64 memstart_addr
;
165 /* PHYS_OFFSET - the physical address of the start of memory. */
166 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
168 /* the virtual base of the kernel image (minus TEXT_OFFSET) */
169 extern u64 kimage_vaddr
;
171 /* the offset between the kernel virtual and physical mappings */
172 extern u64 kimage_voffset
;
174 static inline unsigned long kaslr_offset(void)
176 return kimage_vaddr
- KIMAGE_VADDR
;
179 /* the actual size of a user virtual address */
180 extern u64 vabits_user
;
183 * Allow all memory at the discovery stage. We will clip it later.
185 #define MIN_MEMBLOCK_ADDR 0
186 #define MAX_MEMBLOCK_ADDR U64_MAX
189 * PFNs are used to describe any physical page; this means
190 * PFN 0 == physical address 0.
192 * This is the PFN of the first RAM page in the kernel
193 * direct-mapped view. We assume this is the first page
194 * of RAM in the mem_map as well.
196 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
199 * When dealing with data aborts, watchpoints, or instruction traps we may end
200 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
201 * pass on to access_ok(), for instance.
203 #define untagged_addr(addr) \
204 ((__typeof__(addr))sign_extend64((u64)(addr), 55))
206 #ifdef CONFIG_KASAN_SW_TAGS
207 #define __tag_shifted(tag) ((u64)(tag) << 56)
208 #define __tag_set(addr, tag) (__typeof__(addr))( \
209 ((u64)(addr) & ~__tag_shifted(0xff)) | __tag_shifted(tag))
210 #define __tag_reset(addr) untagged_addr(addr)
211 #define __tag_get(addr) (__u8)((u64)(addr) >> 56)
213 static inline const void *__tag_set(const void *addr
, u8 tag
)
218 #define __tag_reset(addr) (addr)
219 #define __tag_get(addr) 0
223 * Physical vs virtual RAM address space conversion. These are
224 * private definitions which should NOT be used outside memory.h
225 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
230 * The linear kernel range starts in the middle of the virtual adddress
231 * space. Testing the top bit for the start of the region is a
234 #define __is_lm_address(addr) (!!((addr) & BIT(VA_BITS - 1)))
236 #define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET)
237 #define __kimg_to_phys(addr) ((addr) - kimage_voffset)
239 #define __virt_to_phys_nodebug(x) ({ \
240 phys_addr_t __x = (phys_addr_t)(x); \
241 __is_lm_address(__x) ? __lm_to_phys(__x) : \
242 __kimg_to_phys(__x); \
245 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
247 #ifdef CONFIG_DEBUG_VIRTUAL
248 extern phys_addr_t
__virt_to_phys(unsigned long x
);
249 extern phys_addr_t
__phys_addr_symbol(unsigned long x
);
251 #define __virt_to_phys(x) __virt_to_phys_nodebug(x)
252 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
255 #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
256 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
259 * Convert a page to/from a physical address
261 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
262 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
265 * Note: Drivers should NOT use these. They are the wrong
266 * translation for translating DMA addresses. Use the driver
267 * DMA support - see dma-mapping.h.
269 #define virt_to_phys virt_to_phys
270 static inline phys_addr_t
virt_to_phys(const volatile void *x
)
272 return __virt_to_phys((unsigned long)(x
));
275 #define phys_to_virt phys_to_virt
276 static inline void *phys_to_virt(phys_addr_t x
)
278 return (void *)(__phys_to_virt(x
));
282 * Drivers should NOT use these either.
284 #define __pa(x) __virt_to_phys((unsigned long)(x))
285 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
286 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
287 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
288 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
289 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
290 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
293 * virt_to_page(k) convert a _valid_ virtual address to struct page *
294 * virt_addr_valid(k) indicates whether a virtual address is valid
296 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
298 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
299 #define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
300 #define _virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT)
302 #define __virt_to_pgoff(kaddr) (((u64)(kaddr) & ~PAGE_OFFSET) / PAGE_SIZE * sizeof(struct page))
303 #define __page_to_voff(kaddr) (((u64)(kaddr) & ~VMEMMAP_START) * PAGE_SIZE / sizeof(struct page))
305 #define page_to_virt(page) ({ \
306 unsigned long __addr = \
307 ((__page_to_voff(page)) | PAGE_OFFSET); \
308 const void *__addr_tag = \
309 __tag_set((void *)__addr, page_kasan_tag(page)); \
310 ((void *)__addr_tag); \
313 #define virt_to_page(vaddr) ((struct page *)((__virt_to_pgoff(vaddr)) | VMEMMAP_START))
315 #define _virt_addr_valid(kaddr) pfn_valid((((u64)(kaddr) & ~PAGE_OFFSET) \
316 + PHYS_OFFSET) >> PAGE_SHIFT)
320 #define _virt_addr_is_linear(kaddr) \
321 (__tag_reset((u64)(kaddr)) >= PAGE_OFFSET)
322 #define virt_addr_valid(kaddr) \
323 (_virt_addr_is_linear(kaddr) && _virt_addr_valid(kaddr))
326 * Given that the GIC architecture permits ITS implementations that can only be
327 * configured with a LPI table address once, GICv3 systems with many CPUs may
328 * end up reserving a lot of different regions after a kexec for their LPI
329 * tables (one per CPU), as we are forced to reuse the same memory after kexec
330 * (and thus reserve it persistently with EFI beforehand)
332 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
333 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
336 #include <asm-generic/memory_model.h>