staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / kernel / module-plts.c
blob044c0ae4d6c85eac6db5000facc151b805e4b05e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
6 #include <linux/elf.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/sort.h>
11 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
12 enum aarch64_insn_register reg)
14 u32 adrp, add;
16 adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
17 add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
18 AARCH64_INSN_VARIANT_64BIT,
19 AARCH64_INSN_ADSB_ADD);
21 return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
24 struct plt_entry get_plt_entry(u64 dst, void *pc)
26 struct plt_entry plt;
27 static u32 br;
29 if (!br)
30 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
31 AARCH64_INSN_BRANCH_NOLINK);
33 plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
34 plt.br = cpu_to_le32(br);
36 return plt;
39 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
41 u64 p, q;
44 * Check whether both entries refer to the same target:
45 * do the cheapest checks first.
46 * If the 'add' or 'br' opcodes are different, then the target
47 * cannot be the same.
49 if (a->add != b->add || a->br != b->br)
50 return false;
52 p = ALIGN_DOWN((u64)a, SZ_4K);
53 q = ALIGN_DOWN((u64)b, SZ_4K);
56 * If the 'adrp' opcodes are the same then we just need to check
57 * that they refer to the same 4k region.
59 if (a->adrp == b->adrp && p == q)
60 return true;
62 return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
63 (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
66 static bool in_init(const struct module *mod, void *loc)
68 return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
71 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
72 void *loc, const Elf64_Rela *rela,
73 Elf64_Sym *sym)
75 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
76 &mod->arch.init;
77 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
78 int i = pltsec->plt_num_entries;
79 int j = i - 1;
80 u64 val = sym->st_value + rela->r_addend;
82 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
83 i++;
85 plt[i] = get_plt_entry(val, &plt[i]);
88 * Check if the entry we just created is a duplicate. Given that the
89 * relocations are sorted, this will be the last entry we allocated.
90 * (if one exists).
92 if (j >= 0 && plt_entries_equal(plt + i, plt + j))
93 return (u64)&plt[j];
95 pltsec->plt_num_entries += i - j;
96 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
97 return 0;
99 return (u64)&plt[i];
102 #ifdef CONFIG_ARM64_ERRATUM_843419
103 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
104 void *loc, u64 val)
106 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
107 &mod->arch.init;
108 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
109 int i = pltsec->plt_num_entries++;
110 u32 br;
111 int rd;
113 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
114 return 0;
116 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
117 i = pltsec->plt_num_entries++;
119 /* get the destination register of the ADRP instruction */
120 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
121 le32_to_cpup((__le32 *)loc));
123 br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
124 AARCH64_INSN_BRANCH_NOLINK);
126 plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
127 plt[i].br = cpu_to_le32(br);
129 return (u64)&plt[i];
131 #endif
133 #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
135 static int cmp_rela(const void *a, const void *b)
137 const Elf64_Rela *x = a, *y = b;
138 int i;
140 /* sort by type, symbol index and addend */
141 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
142 if (i == 0)
143 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
144 if (i == 0)
145 i = cmp_3way(x->r_addend, y->r_addend);
146 return i;
149 static bool duplicate_rel(const Elf64_Rela *rela, int num)
152 * Entries are sorted by type, symbol index and addend. That means
153 * that, if a duplicate entry exists, it must be in the preceding
154 * slot.
156 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
159 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
160 Elf64_Word dstidx, Elf_Shdr *dstsec)
162 unsigned int ret = 0;
163 Elf64_Sym *s;
164 int i;
166 for (i = 0; i < num; i++) {
167 u64 min_align;
169 switch (ELF64_R_TYPE(rela[i].r_info)) {
170 case R_AARCH64_JUMP26:
171 case R_AARCH64_CALL26:
172 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
173 break;
176 * We only have to consider branch targets that resolve
177 * to symbols that are defined in a different section.
178 * This is not simply a heuristic, it is a fundamental
179 * limitation, since there is no guaranteed way to emit
180 * PLT entries sufficiently close to the branch if the
181 * section size exceeds the range of a branch
182 * instruction. So ignore relocations against defined
183 * symbols if they live in the same section as the
184 * relocation target.
186 s = syms + ELF64_R_SYM(rela[i].r_info);
187 if (s->st_shndx == dstidx)
188 break;
191 * Jump relocations with non-zero addends against
192 * undefined symbols are supported by the ELF spec, but
193 * do not occur in practice (e.g., 'jump n bytes past
194 * the entry point of undefined function symbol f').
195 * So we need to support them, but there is no need to
196 * take them into consideration when trying to optimize
197 * this code. So let's only check for duplicates when
198 * the addend is zero: this allows us to record the PLT
199 * entry address in the symbol table itself, rather than
200 * having to search the list for duplicates each time we
201 * emit one.
203 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
204 ret++;
205 break;
206 case R_AARCH64_ADR_PREL_PG_HI21_NC:
207 case R_AARCH64_ADR_PREL_PG_HI21:
208 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
209 !cpus_have_const_cap(ARM64_WORKAROUND_843419))
210 break;
213 * Determine the minimal safe alignment for this ADRP
214 * instruction: the section alignment at which it is
215 * guaranteed not to appear at a vulnerable offset.
217 * This comes down to finding the least significant zero
218 * bit in bits [11:3] of the section offset, and
219 * increasing the section's alignment so that the
220 * resulting address of this instruction is guaranteed
221 * to equal the offset in that particular bit (as well
222 * as all less signficant bits). This ensures that the
223 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
224 * have all ones in bits [11:3])
226 min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
229 * Allocate veneer space for each ADRP that may appear
230 * at a vulnerable offset nonetheless. At relocation
231 * time, some of these will remain unused since some
232 * ADRP instructions can be patched to ADR instructions
233 * instead.
235 if (min_align > SZ_4K)
236 ret++;
237 else
238 dstsec->sh_addralign = max(dstsec->sh_addralign,
239 min_align);
240 break;
244 if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
245 cpus_have_const_cap(ARM64_WORKAROUND_843419))
247 * Add some slack so we can skip PLT slots that may trigger
248 * the erratum due to the placement of the ADRP instruction.
250 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
252 return ret;
255 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
256 char *secstrings, struct module *mod)
258 unsigned long core_plts = 0;
259 unsigned long init_plts = 0;
260 Elf64_Sym *syms = NULL;
261 Elf_Shdr *pltsec, *tramp = NULL;
262 int i;
265 * Find the empty .plt section so we can expand it to store the PLT
266 * entries. Record the symtab address as well.
268 for (i = 0; i < ehdr->e_shnum; i++) {
269 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
270 mod->arch.core.plt_shndx = i;
271 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
272 mod->arch.init.plt_shndx = i;
273 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
274 !strcmp(secstrings + sechdrs[i].sh_name,
275 ".text.ftrace_trampoline"))
276 tramp = sechdrs + i;
277 else if (sechdrs[i].sh_type == SHT_SYMTAB)
278 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
281 if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
282 pr_err("%s: module PLT section(s) missing\n", mod->name);
283 return -ENOEXEC;
285 if (!syms) {
286 pr_err("%s: module symtab section missing\n", mod->name);
287 return -ENOEXEC;
290 for (i = 0; i < ehdr->e_shnum; i++) {
291 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
292 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
293 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
295 if (sechdrs[i].sh_type != SHT_RELA)
296 continue;
298 /* ignore relocations that operate on non-exec sections */
299 if (!(dstsec->sh_flags & SHF_EXECINSTR))
300 continue;
302 /* sort by type, symbol index and addend */
303 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
305 if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
306 core_plts += count_plts(syms, rels, numrels,
307 sechdrs[i].sh_info, dstsec);
308 else
309 init_plts += count_plts(syms, rels, numrels,
310 sechdrs[i].sh_info, dstsec);
313 pltsec = sechdrs + mod->arch.core.plt_shndx;
314 pltsec->sh_type = SHT_NOBITS;
315 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
316 pltsec->sh_addralign = L1_CACHE_BYTES;
317 pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
318 mod->arch.core.plt_num_entries = 0;
319 mod->arch.core.plt_max_entries = core_plts;
321 pltsec = sechdrs + mod->arch.init.plt_shndx;
322 pltsec->sh_type = SHT_NOBITS;
323 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
324 pltsec->sh_addralign = L1_CACHE_BYTES;
325 pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
326 mod->arch.init.plt_num_entries = 0;
327 mod->arch.init.plt_max_entries = init_plts;
329 if (tramp) {
330 tramp->sh_type = SHT_NOBITS;
331 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
332 tramp->sh_addralign = __alignof__(struct plt_entry);
333 tramp->sh_size = sizeof(struct plt_entry);
336 return 0;