Merge tag 'stm-fixes-for-greg-20170315' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / mm / migrate.c
blob9a0897a14d37be3d7759d577f98060fa75c7be0f
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
45 #include <asm/tlbflush.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
50 #include "internal.h"
53 * migrate_prep() needs to be called before we start compiling a list of pages
54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55 * undesirable, use migrate_prep_local()
57 int migrate_prep(void)
60 * Clear the LRU lists so pages can be isolated.
61 * Note that pages may be moved off the LRU after we have
62 * drained them. Those pages will fail to migrate like other
63 * pages that may be busy.
65 lru_add_drain_all();
67 return 0;
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
73 lru_add_drain();
75 return 0;
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 struct address_space *mapping;
83 * Avoid burning cycles with pages that are yet under __free_pages(),
84 * or just got freed under us.
86 * In case we 'win' a race for a movable page being freed under us and
87 * raise its refcount preventing __free_pages() from doing its job
88 * the put_page() at the end of this block will take care of
89 * release this page, thus avoiding a nasty leakage.
91 if (unlikely(!get_page_unless_zero(page)))
92 goto out;
95 * Check PageMovable before holding a PG_lock because page's owner
96 * assumes anybody doesn't touch PG_lock of newly allocated page
97 * so unconditionally grapping the lock ruins page's owner side.
99 if (unlikely(!__PageMovable(page)))
100 goto out_putpage;
102 * As movable pages are not isolated from LRU lists, concurrent
103 * compaction threads can race against page migration functions
104 * as well as race against the releasing a page.
106 * In order to avoid having an already isolated movable page
107 * being (wrongly) re-isolated while it is under migration,
108 * or to avoid attempting to isolate pages being released,
109 * lets be sure we have the page lock
110 * before proceeding with the movable page isolation steps.
112 if (unlikely(!trylock_page(page)))
113 goto out_putpage;
115 if (!PageMovable(page) || PageIsolated(page))
116 goto out_no_isolated;
118 mapping = page_mapping(page);
119 VM_BUG_ON_PAGE(!mapping, page);
121 if (!mapping->a_ops->isolate_page(page, mode))
122 goto out_no_isolated;
124 /* Driver shouldn't use PG_isolated bit of page->flags */
125 WARN_ON_ONCE(PageIsolated(page));
126 __SetPageIsolated(page);
127 unlock_page(page);
129 return 0;
131 out_no_isolated:
132 unlock_page(page);
133 out_putpage:
134 put_page(page);
135 out:
136 return -EBUSY;
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
142 struct address_space *mapping;
144 VM_BUG_ON_PAGE(!PageLocked(page), page);
145 VM_BUG_ON_PAGE(!PageMovable(page), page);
146 VM_BUG_ON_PAGE(!PageIsolated(page), page);
148 mapping = page_mapping(page);
149 mapping->a_ops->putback_page(page);
150 __ClearPageIsolated(page);
154 * Put previously isolated pages back onto the appropriate lists
155 * from where they were once taken off for compaction/migration.
157 * This function shall be used whenever the isolated pageset has been
158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159 * and isolate_huge_page().
161 void putback_movable_pages(struct list_head *l)
163 struct page *page;
164 struct page *page2;
166 list_for_each_entry_safe(page, page2, l, lru) {
167 if (unlikely(PageHuge(page))) {
168 putback_active_hugepage(page);
169 continue;
171 list_del(&page->lru);
173 * We isolated non-lru movable page so here we can use
174 * __PageMovable because LRU page's mapping cannot have
175 * PAGE_MAPPING_MOVABLE.
177 if (unlikely(__PageMovable(page))) {
178 VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 lock_page(page);
180 if (PageMovable(page))
181 putback_movable_page(page);
182 else
183 __ClearPageIsolated(page);
184 unlock_page(page);
185 put_page(page);
186 } else {
187 putback_lru_page(page);
188 dec_node_page_state(page, NR_ISOLATED_ANON +
189 page_is_file_cache(page));
195 * Restore a potential migration pte to a working pte entry
197 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 unsigned long addr, void *old)
200 struct page_vma_mapped_walk pvmw = {
201 .page = old,
202 .vma = vma,
203 .address = addr,
204 .flags = PVMW_SYNC | PVMW_MIGRATION,
206 struct page *new;
207 pte_t pte;
208 swp_entry_t entry;
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 while (page_vma_mapped_walk(&pvmw)) {
212 new = page - pvmw.page->index +
213 linear_page_index(vma, pvmw.address);
215 get_page(new);
216 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
217 if (pte_swp_soft_dirty(*pvmw.pte))
218 pte = pte_mksoft_dirty(pte);
221 * Recheck VMA as permissions can change since migration started
223 entry = pte_to_swp_entry(*pvmw.pte);
224 if (is_write_migration_entry(entry))
225 pte = maybe_mkwrite(pte, vma);
227 #ifdef CONFIG_HUGETLB_PAGE
228 if (PageHuge(new)) {
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
232 #endif
233 flush_dcache_page(new);
234 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
236 if (PageHuge(new)) {
237 if (PageAnon(new))
238 hugepage_add_anon_rmap(new, vma, pvmw.address);
239 else
240 page_dup_rmap(new, true);
241 } else if (PageAnon(new))
242 page_add_anon_rmap(new, vma, pvmw.address, false);
243 else
244 page_add_file_rmap(new, false);
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 mlock_vma_page(new);
249 /* No need to invalidate - it was non-present before */
250 update_mmu_cache(vma, pvmw.address, pvmw.pte);
253 return SWAP_AGAIN;
257 * Get rid of all migration entries and replace them by
258 * references to the indicated page.
260 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
262 struct rmap_walk_control rwc = {
263 .rmap_one = remove_migration_pte,
264 .arg = old,
267 if (locked)
268 rmap_walk_locked(new, &rwc);
269 else
270 rmap_walk(new, &rwc);
274 * Something used the pte of a page under migration. We need to
275 * get to the page and wait until migration is finished.
276 * When we return from this function the fault will be retried.
278 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
279 spinlock_t *ptl)
281 pte_t pte;
282 swp_entry_t entry;
283 struct page *page;
285 spin_lock(ptl);
286 pte = *ptep;
287 if (!is_swap_pte(pte))
288 goto out;
290 entry = pte_to_swp_entry(pte);
291 if (!is_migration_entry(entry))
292 goto out;
294 page = migration_entry_to_page(entry);
297 * Once radix-tree replacement of page migration started, page_count
298 * *must* be zero. And, we don't want to call wait_on_page_locked()
299 * against a page without get_page().
300 * So, we use get_page_unless_zero(), here. Even failed, page fault
301 * will occur again.
303 if (!get_page_unless_zero(page))
304 goto out;
305 pte_unmap_unlock(ptep, ptl);
306 wait_on_page_locked(page);
307 put_page(page);
308 return;
309 out:
310 pte_unmap_unlock(ptep, ptl);
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 unsigned long address)
316 spinlock_t *ptl = pte_lockptr(mm, pmd);
317 pte_t *ptep = pte_offset_map(pmd, address);
318 __migration_entry_wait(mm, ptep, ptl);
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322 struct mm_struct *mm, pte_t *pte)
324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325 __migration_entry_wait(mm, pte, ptl);
328 #ifdef CONFIG_BLOCK
329 /* Returns true if all buffers are successfully locked */
330 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
331 enum migrate_mode mode)
333 struct buffer_head *bh = head;
335 /* Simple case, sync compaction */
336 if (mode != MIGRATE_ASYNC) {
337 do {
338 get_bh(bh);
339 lock_buffer(bh);
340 bh = bh->b_this_page;
342 } while (bh != head);
344 return true;
347 /* async case, we cannot block on lock_buffer so use trylock_buffer */
348 do {
349 get_bh(bh);
350 if (!trylock_buffer(bh)) {
352 * We failed to lock the buffer and cannot stall in
353 * async migration. Release the taken locks
355 struct buffer_head *failed_bh = bh;
356 put_bh(failed_bh);
357 bh = head;
358 while (bh != failed_bh) {
359 unlock_buffer(bh);
360 put_bh(bh);
361 bh = bh->b_this_page;
363 return false;
366 bh = bh->b_this_page;
367 } while (bh != head);
368 return true;
370 #else
371 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
372 enum migrate_mode mode)
374 return true;
376 #endif /* CONFIG_BLOCK */
379 * Replace the page in the mapping.
381 * The number of remaining references must be:
382 * 1 for anonymous pages without a mapping
383 * 2 for pages with a mapping
384 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
386 int migrate_page_move_mapping(struct address_space *mapping,
387 struct page *newpage, struct page *page,
388 struct buffer_head *head, enum migrate_mode mode,
389 int extra_count)
391 struct zone *oldzone, *newzone;
392 int dirty;
393 int expected_count = 1 + extra_count;
394 void **pslot;
396 if (!mapping) {
397 /* Anonymous page without mapping */
398 if (page_count(page) != expected_count)
399 return -EAGAIN;
401 /* No turning back from here */
402 newpage->index = page->index;
403 newpage->mapping = page->mapping;
404 if (PageSwapBacked(page))
405 __SetPageSwapBacked(newpage);
407 return MIGRATEPAGE_SUCCESS;
410 oldzone = page_zone(page);
411 newzone = page_zone(newpage);
413 spin_lock_irq(&mapping->tree_lock);
415 pslot = radix_tree_lookup_slot(&mapping->page_tree,
416 page_index(page));
418 expected_count += 1 + page_has_private(page);
419 if (page_count(page) != expected_count ||
420 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
421 spin_unlock_irq(&mapping->tree_lock);
422 return -EAGAIN;
425 if (!page_ref_freeze(page, expected_count)) {
426 spin_unlock_irq(&mapping->tree_lock);
427 return -EAGAIN;
431 * In the async migration case of moving a page with buffers, lock the
432 * buffers using trylock before the mapping is moved. If the mapping
433 * was moved, we later failed to lock the buffers and could not move
434 * the mapping back due to an elevated page count, we would have to
435 * block waiting on other references to be dropped.
437 if (mode == MIGRATE_ASYNC && head &&
438 !buffer_migrate_lock_buffers(head, mode)) {
439 page_ref_unfreeze(page, expected_count);
440 spin_unlock_irq(&mapping->tree_lock);
441 return -EAGAIN;
445 * Now we know that no one else is looking at the page:
446 * no turning back from here.
448 newpage->index = page->index;
449 newpage->mapping = page->mapping;
450 get_page(newpage); /* add cache reference */
451 if (PageSwapBacked(page)) {
452 __SetPageSwapBacked(newpage);
453 if (PageSwapCache(page)) {
454 SetPageSwapCache(newpage);
455 set_page_private(newpage, page_private(page));
457 } else {
458 VM_BUG_ON_PAGE(PageSwapCache(page), page);
461 /* Move dirty while page refs frozen and newpage not yet exposed */
462 dirty = PageDirty(page);
463 if (dirty) {
464 ClearPageDirty(page);
465 SetPageDirty(newpage);
468 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
471 * Drop cache reference from old page by unfreezing
472 * to one less reference.
473 * We know this isn't the last reference.
475 page_ref_unfreeze(page, expected_count - 1);
477 spin_unlock(&mapping->tree_lock);
478 /* Leave irq disabled to prevent preemption while updating stats */
481 * If moved to a different zone then also account
482 * the page for that zone. Other VM counters will be
483 * taken care of when we establish references to the
484 * new page and drop references to the old page.
486 * Note that anonymous pages are accounted for
487 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 * are mapped to swap space.
490 if (newzone != oldzone) {
491 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
492 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
493 if (PageSwapBacked(page) && !PageSwapCache(page)) {
494 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
495 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
497 if (dirty && mapping_cap_account_dirty(mapping)) {
498 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
499 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
500 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
501 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 local_irq_enable();
506 return MIGRATEPAGE_SUCCESS;
508 EXPORT_SYMBOL(migrate_page_move_mapping);
511 * The expected number of remaining references is the same as that
512 * of migrate_page_move_mapping().
514 int migrate_huge_page_move_mapping(struct address_space *mapping,
515 struct page *newpage, struct page *page)
517 int expected_count;
518 void **pslot;
520 spin_lock_irq(&mapping->tree_lock);
522 pslot = radix_tree_lookup_slot(&mapping->page_tree,
523 page_index(page));
525 expected_count = 2 + page_has_private(page);
526 if (page_count(page) != expected_count ||
527 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
528 spin_unlock_irq(&mapping->tree_lock);
529 return -EAGAIN;
532 if (!page_ref_freeze(page, expected_count)) {
533 spin_unlock_irq(&mapping->tree_lock);
534 return -EAGAIN;
537 newpage->index = page->index;
538 newpage->mapping = page->mapping;
540 get_page(newpage);
542 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
544 page_ref_unfreeze(page, expected_count - 1);
546 spin_unlock_irq(&mapping->tree_lock);
548 return MIGRATEPAGE_SUCCESS;
552 * Gigantic pages are so large that we do not guarantee that page++ pointer
553 * arithmetic will work across the entire page. We need something more
554 * specialized.
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 int nr_pages)
559 int i;
560 struct page *dst_base = dst;
561 struct page *src_base = src;
563 for (i = 0; i < nr_pages; ) {
564 cond_resched();
565 copy_highpage(dst, src);
567 i++;
568 dst = mem_map_next(dst, dst_base, i);
569 src = mem_map_next(src, src_base, i);
573 static void copy_huge_page(struct page *dst, struct page *src)
575 int i;
576 int nr_pages;
578 if (PageHuge(src)) {
579 /* hugetlbfs page */
580 struct hstate *h = page_hstate(src);
581 nr_pages = pages_per_huge_page(h);
583 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584 __copy_gigantic_page(dst, src, nr_pages);
585 return;
587 } else {
588 /* thp page */
589 BUG_ON(!PageTransHuge(src));
590 nr_pages = hpage_nr_pages(src);
593 for (i = 0; i < nr_pages; i++) {
594 cond_resched();
595 copy_highpage(dst + i, src + i);
600 * Copy the page to its new location
602 void migrate_page_copy(struct page *newpage, struct page *page)
604 int cpupid;
606 if (PageHuge(page) || PageTransHuge(page))
607 copy_huge_page(newpage, page);
608 else
609 copy_highpage(newpage, page);
611 if (PageError(page))
612 SetPageError(newpage);
613 if (PageReferenced(page))
614 SetPageReferenced(newpage);
615 if (PageUptodate(page))
616 SetPageUptodate(newpage);
617 if (TestClearPageActive(page)) {
618 VM_BUG_ON_PAGE(PageUnevictable(page), page);
619 SetPageActive(newpage);
620 } else if (TestClearPageUnevictable(page))
621 SetPageUnevictable(newpage);
622 if (PageChecked(page))
623 SetPageChecked(newpage);
624 if (PageMappedToDisk(page))
625 SetPageMappedToDisk(newpage);
627 /* Move dirty on pages not done by migrate_page_move_mapping() */
628 if (PageDirty(page))
629 SetPageDirty(newpage);
631 if (page_is_young(page))
632 set_page_young(newpage);
633 if (page_is_idle(page))
634 set_page_idle(newpage);
637 * Copy NUMA information to the new page, to prevent over-eager
638 * future migrations of this same page.
640 cpupid = page_cpupid_xchg_last(page, -1);
641 page_cpupid_xchg_last(newpage, cpupid);
643 ksm_migrate_page(newpage, page);
645 * Please do not reorder this without considering how mm/ksm.c's
646 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 if (PageSwapCache(page))
649 ClearPageSwapCache(page);
650 ClearPagePrivate(page);
651 set_page_private(page, 0);
654 * If any waiters have accumulated on the new page then
655 * wake them up.
657 if (PageWriteback(newpage))
658 end_page_writeback(newpage);
660 copy_page_owner(page, newpage);
662 mem_cgroup_migrate(page, newpage);
664 EXPORT_SYMBOL(migrate_page_copy);
666 /************************************************************
667 * Migration functions
668 ***********************************************************/
671 * Common logic to directly migrate a single LRU page suitable for
672 * pages that do not use PagePrivate/PagePrivate2.
674 * Pages are locked upon entry and exit.
676 int migrate_page(struct address_space *mapping,
677 struct page *newpage, struct page *page,
678 enum migrate_mode mode)
680 int rc;
682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
684 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
686 if (rc != MIGRATEPAGE_SUCCESS)
687 return rc;
689 migrate_page_copy(newpage, page);
690 return MIGRATEPAGE_SUCCESS;
692 EXPORT_SYMBOL(migrate_page);
694 #ifdef CONFIG_BLOCK
696 * Migration function for pages with buffers. This function can only be used
697 * if the underlying filesystem guarantees that no other references to "page"
698 * exist.
700 int buffer_migrate_page(struct address_space *mapping,
701 struct page *newpage, struct page *page, enum migrate_mode mode)
703 struct buffer_head *bh, *head;
704 int rc;
706 if (!page_has_buffers(page))
707 return migrate_page(mapping, newpage, page, mode);
709 head = page_buffers(page);
711 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
713 if (rc != MIGRATEPAGE_SUCCESS)
714 return rc;
717 * In the async case, migrate_page_move_mapping locked the buffers
718 * with an IRQ-safe spinlock held. In the sync case, the buffers
719 * need to be locked now
721 if (mode != MIGRATE_ASYNC)
722 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
724 ClearPagePrivate(page);
725 set_page_private(newpage, page_private(page));
726 set_page_private(page, 0);
727 put_page(page);
728 get_page(newpage);
730 bh = head;
731 do {
732 set_bh_page(bh, newpage, bh_offset(bh));
733 bh = bh->b_this_page;
735 } while (bh != head);
737 SetPagePrivate(newpage);
739 migrate_page_copy(newpage, page);
741 bh = head;
742 do {
743 unlock_buffer(bh);
744 put_bh(bh);
745 bh = bh->b_this_page;
747 } while (bh != head);
749 return MIGRATEPAGE_SUCCESS;
751 EXPORT_SYMBOL(buffer_migrate_page);
752 #endif
755 * Writeback a page to clean the dirty state
757 static int writeout(struct address_space *mapping, struct page *page)
759 struct writeback_control wbc = {
760 .sync_mode = WB_SYNC_NONE,
761 .nr_to_write = 1,
762 .range_start = 0,
763 .range_end = LLONG_MAX,
764 .for_reclaim = 1
766 int rc;
768 if (!mapping->a_ops->writepage)
769 /* No write method for the address space */
770 return -EINVAL;
772 if (!clear_page_dirty_for_io(page))
773 /* Someone else already triggered a write */
774 return -EAGAIN;
777 * A dirty page may imply that the underlying filesystem has
778 * the page on some queue. So the page must be clean for
779 * migration. Writeout may mean we loose the lock and the
780 * page state is no longer what we checked for earlier.
781 * At this point we know that the migration attempt cannot
782 * be successful.
784 remove_migration_ptes(page, page, false);
786 rc = mapping->a_ops->writepage(page, &wbc);
788 if (rc != AOP_WRITEPAGE_ACTIVATE)
789 /* unlocked. Relock */
790 lock_page(page);
792 return (rc < 0) ? -EIO : -EAGAIN;
796 * Default handling if a filesystem does not provide a migration function.
798 static int fallback_migrate_page(struct address_space *mapping,
799 struct page *newpage, struct page *page, enum migrate_mode mode)
801 if (PageDirty(page)) {
802 /* Only writeback pages in full synchronous migration */
803 if (mode != MIGRATE_SYNC)
804 return -EBUSY;
805 return writeout(mapping, page);
809 * Buffers may be managed in a filesystem specific way.
810 * We must have no buffers or drop them.
812 if (page_has_private(page) &&
813 !try_to_release_page(page, GFP_KERNEL))
814 return -EAGAIN;
816 return migrate_page(mapping, newpage, page, mode);
820 * Move a page to a newly allocated page
821 * The page is locked and all ptes have been successfully removed.
823 * The new page will have replaced the old page if this function
824 * is successful.
826 * Return value:
827 * < 0 - error code
828 * MIGRATEPAGE_SUCCESS - success
830 static int move_to_new_page(struct page *newpage, struct page *page,
831 enum migrate_mode mode)
833 struct address_space *mapping;
834 int rc = -EAGAIN;
835 bool is_lru = !__PageMovable(page);
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
840 mapping = page_mapping(page);
842 if (likely(is_lru)) {
843 if (!mapping)
844 rc = migrate_page(mapping, newpage, page, mode);
845 else if (mapping->a_ops->migratepage)
847 * Most pages have a mapping and most filesystems
848 * provide a migratepage callback. Anonymous pages
849 * are part of swap space which also has its own
850 * migratepage callback. This is the most common path
851 * for page migration.
853 rc = mapping->a_ops->migratepage(mapping, newpage,
854 page, mode);
855 else
856 rc = fallback_migrate_page(mapping, newpage,
857 page, mode);
858 } else {
860 * In case of non-lru page, it could be released after
861 * isolation step. In that case, we shouldn't try migration.
863 VM_BUG_ON_PAGE(!PageIsolated(page), page);
864 if (!PageMovable(page)) {
865 rc = MIGRATEPAGE_SUCCESS;
866 __ClearPageIsolated(page);
867 goto out;
870 rc = mapping->a_ops->migratepage(mapping, newpage,
871 page, mode);
872 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
873 !PageIsolated(page));
877 * When successful, old pagecache page->mapping must be cleared before
878 * page is freed; but stats require that PageAnon be left as PageAnon.
880 if (rc == MIGRATEPAGE_SUCCESS) {
881 if (__PageMovable(page)) {
882 VM_BUG_ON_PAGE(!PageIsolated(page), page);
885 * We clear PG_movable under page_lock so any compactor
886 * cannot try to migrate this page.
888 __ClearPageIsolated(page);
892 * Anonymous and movable page->mapping will be cleard by
893 * free_pages_prepare so don't reset it here for keeping
894 * the type to work PageAnon, for example.
896 if (!PageMappingFlags(page))
897 page->mapping = NULL;
899 out:
900 return rc;
903 static int __unmap_and_move(struct page *page, struct page *newpage,
904 int force, enum migrate_mode mode)
906 int rc = -EAGAIN;
907 int page_was_mapped = 0;
908 struct anon_vma *anon_vma = NULL;
909 bool is_lru = !__PageMovable(page);
911 if (!trylock_page(page)) {
912 if (!force || mode == MIGRATE_ASYNC)
913 goto out;
916 * It's not safe for direct compaction to call lock_page.
917 * For example, during page readahead pages are added locked
918 * to the LRU. Later, when the IO completes the pages are
919 * marked uptodate and unlocked. However, the queueing
920 * could be merging multiple pages for one bio (e.g.
921 * mpage_readpages). If an allocation happens for the
922 * second or third page, the process can end up locking
923 * the same page twice and deadlocking. Rather than
924 * trying to be clever about what pages can be locked,
925 * avoid the use of lock_page for direct compaction
926 * altogether.
928 if (current->flags & PF_MEMALLOC)
929 goto out;
931 lock_page(page);
934 if (PageWriteback(page)) {
936 * Only in the case of a full synchronous migration is it
937 * necessary to wait for PageWriteback. In the async case,
938 * the retry loop is too short and in the sync-light case,
939 * the overhead of stalling is too much
941 if (mode != MIGRATE_SYNC) {
942 rc = -EBUSY;
943 goto out_unlock;
945 if (!force)
946 goto out_unlock;
947 wait_on_page_writeback(page);
951 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
952 * we cannot notice that anon_vma is freed while we migrates a page.
953 * This get_anon_vma() delays freeing anon_vma pointer until the end
954 * of migration. File cache pages are no problem because of page_lock()
955 * File Caches may use write_page() or lock_page() in migration, then,
956 * just care Anon page here.
958 * Only page_get_anon_vma() understands the subtleties of
959 * getting a hold on an anon_vma from outside one of its mms.
960 * But if we cannot get anon_vma, then we won't need it anyway,
961 * because that implies that the anon page is no longer mapped
962 * (and cannot be remapped so long as we hold the page lock).
964 if (PageAnon(page) && !PageKsm(page))
965 anon_vma = page_get_anon_vma(page);
968 * Block others from accessing the new page when we get around to
969 * establishing additional references. We are usually the only one
970 * holding a reference to newpage at this point. We used to have a BUG
971 * here if trylock_page(newpage) fails, but would like to allow for
972 * cases where there might be a race with the previous use of newpage.
973 * This is much like races on refcount of oldpage: just don't BUG().
975 if (unlikely(!trylock_page(newpage)))
976 goto out_unlock;
978 if (unlikely(!is_lru)) {
979 rc = move_to_new_page(newpage, page, mode);
980 goto out_unlock_both;
984 * Corner case handling:
985 * 1. When a new swap-cache page is read into, it is added to the LRU
986 * and treated as swapcache but it has no rmap yet.
987 * Calling try_to_unmap() against a page->mapping==NULL page will
988 * trigger a BUG. So handle it here.
989 * 2. An orphaned page (see truncate_complete_page) might have
990 * fs-private metadata. The page can be picked up due to memory
991 * offlining. Everywhere else except page reclaim, the page is
992 * invisible to the vm, so the page can not be migrated. So try to
993 * free the metadata, so the page can be freed.
995 if (!page->mapping) {
996 VM_BUG_ON_PAGE(PageAnon(page), page);
997 if (page_has_private(page)) {
998 try_to_free_buffers(page);
999 goto out_unlock_both;
1001 } else if (page_mapped(page)) {
1002 /* Establish migration ptes */
1003 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1004 page);
1005 try_to_unmap(page,
1006 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1007 page_was_mapped = 1;
1010 if (!page_mapped(page))
1011 rc = move_to_new_page(newpage, page, mode);
1013 if (page_was_mapped)
1014 remove_migration_ptes(page,
1015 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1017 out_unlock_both:
1018 unlock_page(newpage);
1019 out_unlock:
1020 /* Drop an anon_vma reference if we took one */
1021 if (anon_vma)
1022 put_anon_vma(anon_vma);
1023 unlock_page(page);
1024 out:
1026 * If migration is successful, decrease refcount of the newpage
1027 * which will not free the page because new page owner increased
1028 * refcounter. As well, if it is LRU page, add the page to LRU
1029 * list in here.
1031 if (rc == MIGRATEPAGE_SUCCESS) {
1032 if (unlikely(__PageMovable(newpage)))
1033 put_page(newpage);
1034 else
1035 putback_lru_page(newpage);
1038 return rc;
1042 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1043 * around it.
1045 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1046 #define ICE_noinline noinline
1047 #else
1048 #define ICE_noinline
1049 #endif
1052 * Obtain the lock on page, remove all ptes and migrate the page
1053 * to the newly allocated page in newpage.
1055 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1056 free_page_t put_new_page,
1057 unsigned long private, struct page *page,
1058 int force, enum migrate_mode mode,
1059 enum migrate_reason reason)
1061 int rc = MIGRATEPAGE_SUCCESS;
1062 int *result = NULL;
1063 struct page *newpage;
1065 newpage = get_new_page(page, private, &result);
1066 if (!newpage)
1067 return -ENOMEM;
1069 if (page_count(page) == 1) {
1070 /* page was freed from under us. So we are done. */
1071 ClearPageActive(page);
1072 ClearPageUnevictable(page);
1073 if (unlikely(__PageMovable(page))) {
1074 lock_page(page);
1075 if (!PageMovable(page))
1076 __ClearPageIsolated(page);
1077 unlock_page(page);
1079 if (put_new_page)
1080 put_new_page(newpage, private);
1081 else
1082 put_page(newpage);
1083 goto out;
1086 if (unlikely(PageTransHuge(page))) {
1087 lock_page(page);
1088 rc = split_huge_page(page);
1089 unlock_page(page);
1090 if (rc)
1091 goto out;
1094 rc = __unmap_and_move(page, newpage, force, mode);
1095 if (rc == MIGRATEPAGE_SUCCESS)
1096 set_page_owner_migrate_reason(newpage, reason);
1098 out:
1099 if (rc != -EAGAIN) {
1101 * A page that has been migrated has all references
1102 * removed and will be freed. A page that has not been
1103 * migrated will have kepts its references and be
1104 * restored.
1106 list_del(&page->lru);
1109 * Compaction can migrate also non-LRU pages which are
1110 * not accounted to NR_ISOLATED_*. They can be recognized
1111 * as __PageMovable
1113 if (likely(!__PageMovable(page)))
1114 dec_node_page_state(page, NR_ISOLATED_ANON +
1115 page_is_file_cache(page));
1119 * If migration is successful, releases reference grabbed during
1120 * isolation. Otherwise, restore the page to right list unless
1121 * we want to retry.
1123 if (rc == MIGRATEPAGE_SUCCESS) {
1124 put_page(page);
1125 if (reason == MR_MEMORY_FAILURE) {
1127 * Set PG_HWPoison on just freed page
1128 * intentionally. Although it's rather weird,
1129 * it's how HWPoison flag works at the moment.
1131 if (!test_set_page_hwpoison(page))
1132 num_poisoned_pages_inc();
1134 } else {
1135 if (rc != -EAGAIN) {
1136 if (likely(!__PageMovable(page))) {
1137 putback_lru_page(page);
1138 goto put_new;
1141 lock_page(page);
1142 if (PageMovable(page))
1143 putback_movable_page(page);
1144 else
1145 __ClearPageIsolated(page);
1146 unlock_page(page);
1147 put_page(page);
1149 put_new:
1150 if (put_new_page)
1151 put_new_page(newpage, private);
1152 else
1153 put_page(newpage);
1156 if (result) {
1157 if (rc)
1158 *result = rc;
1159 else
1160 *result = page_to_nid(newpage);
1162 return rc;
1166 * Counterpart of unmap_and_move_page() for hugepage migration.
1168 * This function doesn't wait the completion of hugepage I/O
1169 * because there is no race between I/O and migration for hugepage.
1170 * Note that currently hugepage I/O occurs only in direct I/O
1171 * where no lock is held and PG_writeback is irrelevant,
1172 * and writeback status of all subpages are counted in the reference
1173 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1174 * under direct I/O, the reference of the head page is 512 and a bit more.)
1175 * This means that when we try to migrate hugepage whose subpages are
1176 * doing direct I/O, some references remain after try_to_unmap() and
1177 * hugepage migration fails without data corruption.
1179 * There is also no race when direct I/O is issued on the page under migration,
1180 * because then pte is replaced with migration swap entry and direct I/O code
1181 * will wait in the page fault for migration to complete.
1183 static int unmap_and_move_huge_page(new_page_t get_new_page,
1184 free_page_t put_new_page, unsigned long private,
1185 struct page *hpage, int force,
1186 enum migrate_mode mode, int reason)
1188 int rc = -EAGAIN;
1189 int *result = NULL;
1190 int page_was_mapped = 0;
1191 struct page *new_hpage;
1192 struct anon_vma *anon_vma = NULL;
1195 * Movability of hugepages depends on architectures and hugepage size.
1196 * This check is necessary because some callers of hugepage migration
1197 * like soft offline and memory hotremove don't walk through page
1198 * tables or check whether the hugepage is pmd-based or not before
1199 * kicking migration.
1201 if (!hugepage_migration_supported(page_hstate(hpage))) {
1202 putback_active_hugepage(hpage);
1203 return -ENOSYS;
1206 new_hpage = get_new_page(hpage, private, &result);
1207 if (!new_hpage)
1208 return -ENOMEM;
1210 if (!trylock_page(hpage)) {
1211 if (!force || mode != MIGRATE_SYNC)
1212 goto out;
1213 lock_page(hpage);
1216 if (PageAnon(hpage))
1217 anon_vma = page_get_anon_vma(hpage);
1219 if (unlikely(!trylock_page(new_hpage)))
1220 goto put_anon;
1222 if (page_mapped(hpage)) {
1223 try_to_unmap(hpage,
1224 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1225 page_was_mapped = 1;
1228 if (!page_mapped(hpage))
1229 rc = move_to_new_page(new_hpage, hpage, mode);
1231 if (page_was_mapped)
1232 remove_migration_ptes(hpage,
1233 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1235 unlock_page(new_hpage);
1237 put_anon:
1238 if (anon_vma)
1239 put_anon_vma(anon_vma);
1241 if (rc == MIGRATEPAGE_SUCCESS) {
1242 hugetlb_cgroup_migrate(hpage, new_hpage);
1243 put_new_page = NULL;
1244 set_page_owner_migrate_reason(new_hpage, reason);
1247 unlock_page(hpage);
1248 out:
1249 if (rc != -EAGAIN)
1250 putback_active_hugepage(hpage);
1253 * If migration was not successful and there's a freeing callback, use
1254 * it. Otherwise, put_page() will drop the reference grabbed during
1255 * isolation.
1257 if (put_new_page)
1258 put_new_page(new_hpage, private);
1259 else
1260 putback_active_hugepage(new_hpage);
1262 if (result) {
1263 if (rc)
1264 *result = rc;
1265 else
1266 *result = page_to_nid(new_hpage);
1268 return rc;
1272 * migrate_pages - migrate the pages specified in a list, to the free pages
1273 * supplied as the target for the page migration
1275 * @from: The list of pages to be migrated.
1276 * @get_new_page: The function used to allocate free pages to be used
1277 * as the target of the page migration.
1278 * @put_new_page: The function used to free target pages if migration
1279 * fails, or NULL if no special handling is necessary.
1280 * @private: Private data to be passed on to get_new_page()
1281 * @mode: The migration mode that specifies the constraints for
1282 * page migration, if any.
1283 * @reason: The reason for page migration.
1285 * The function returns after 10 attempts or if no pages are movable any more
1286 * because the list has become empty or no retryable pages exist any more.
1287 * The caller should call putback_movable_pages() to return pages to the LRU
1288 * or free list only if ret != 0.
1290 * Returns the number of pages that were not migrated, or an error code.
1292 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1293 free_page_t put_new_page, unsigned long private,
1294 enum migrate_mode mode, int reason)
1296 int retry = 1;
1297 int nr_failed = 0;
1298 int nr_succeeded = 0;
1299 int pass = 0;
1300 struct page *page;
1301 struct page *page2;
1302 int swapwrite = current->flags & PF_SWAPWRITE;
1303 int rc;
1305 if (!swapwrite)
1306 current->flags |= PF_SWAPWRITE;
1308 for(pass = 0; pass < 10 && retry; pass++) {
1309 retry = 0;
1311 list_for_each_entry_safe(page, page2, from, lru) {
1312 cond_resched();
1314 if (PageHuge(page))
1315 rc = unmap_and_move_huge_page(get_new_page,
1316 put_new_page, private, page,
1317 pass > 2, mode, reason);
1318 else
1319 rc = unmap_and_move(get_new_page, put_new_page,
1320 private, page, pass > 2, mode,
1321 reason);
1323 switch(rc) {
1324 case -ENOMEM:
1325 nr_failed++;
1326 goto out;
1327 case -EAGAIN:
1328 retry++;
1329 break;
1330 case MIGRATEPAGE_SUCCESS:
1331 nr_succeeded++;
1332 break;
1333 default:
1335 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1336 * unlike -EAGAIN case, the failed page is
1337 * removed from migration page list and not
1338 * retried in the next outer loop.
1340 nr_failed++;
1341 break;
1345 nr_failed += retry;
1346 rc = nr_failed;
1347 out:
1348 if (nr_succeeded)
1349 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1350 if (nr_failed)
1351 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1352 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1354 if (!swapwrite)
1355 current->flags &= ~PF_SWAPWRITE;
1357 return rc;
1360 #ifdef CONFIG_NUMA
1362 * Move a list of individual pages
1364 struct page_to_node {
1365 unsigned long addr;
1366 struct page *page;
1367 int node;
1368 int status;
1371 static struct page *new_page_node(struct page *p, unsigned long private,
1372 int **result)
1374 struct page_to_node *pm = (struct page_to_node *)private;
1376 while (pm->node != MAX_NUMNODES && pm->page != p)
1377 pm++;
1379 if (pm->node == MAX_NUMNODES)
1380 return NULL;
1382 *result = &pm->status;
1384 if (PageHuge(p))
1385 return alloc_huge_page_node(page_hstate(compound_head(p)),
1386 pm->node);
1387 else
1388 return __alloc_pages_node(pm->node,
1389 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1393 * Move a set of pages as indicated in the pm array. The addr
1394 * field must be set to the virtual address of the page to be moved
1395 * and the node number must contain a valid target node.
1396 * The pm array ends with node = MAX_NUMNODES.
1398 static int do_move_page_to_node_array(struct mm_struct *mm,
1399 struct page_to_node *pm,
1400 int migrate_all)
1402 int err;
1403 struct page_to_node *pp;
1404 LIST_HEAD(pagelist);
1406 down_read(&mm->mmap_sem);
1409 * Build a list of pages to migrate
1411 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1412 struct vm_area_struct *vma;
1413 struct page *page;
1415 err = -EFAULT;
1416 vma = find_vma(mm, pp->addr);
1417 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1418 goto set_status;
1420 /* FOLL_DUMP to ignore special (like zero) pages */
1421 page = follow_page(vma, pp->addr,
1422 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1424 err = PTR_ERR(page);
1425 if (IS_ERR(page))
1426 goto set_status;
1428 err = -ENOENT;
1429 if (!page)
1430 goto set_status;
1432 pp->page = page;
1433 err = page_to_nid(page);
1435 if (err == pp->node)
1437 * Node already in the right place
1439 goto put_and_set;
1441 err = -EACCES;
1442 if (page_mapcount(page) > 1 &&
1443 !migrate_all)
1444 goto put_and_set;
1446 if (PageHuge(page)) {
1447 if (PageHead(page))
1448 isolate_huge_page(page, &pagelist);
1449 goto put_and_set;
1452 err = isolate_lru_page(page);
1453 if (!err) {
1454 list_add_tail(&page->lru, &pagelist);
1455 inc_node_page_state(page, NR_ISOLATED_ANON +
1456 page_is_file_cache(page));
1458 put_and_set:
1460 * Either remove the duplicate refcount from
1461 * isolate_lru_page() or drop the page ref if it was
1462 * not isolated.
1464 put_page(page);
1465 set_status:
1466 pp->status = err;
1469 err = 0;
1470 if (!list_empty(&pagelist)) {
1471 err = migrate_pages(&pagelist, new_page_node, NULL,
1472 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1473 if (err)
1474 putback_movable_pages(&pagelist);
1477 up_read(&mm->mmap_sem);
1478 return err;
1482 * Migrate an array of page address onto an array of nodes and fill
1483 * the corresponding array of status.
1485 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1486 unsigned long nr_pages,
1487 const void __user * __user *pages,
1488 const int __user *nodes,
1489 int __user *status, int flags)
1491 struct page_to_node *pm;
1492 unsigned long chunk_nr_pages;
1493 unsigned long chunk_start;
1494 int err;
1496 err = -ENOMEM;
1497 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1498 if (!pm)
1499 goto out;
1501 migrate_prep();
1504 * Store a chunk of page_to_node array in a page,
1505 * but keep the last one as a marker
1507 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1509 for (chunk_start = 0;
1510 chunk_start < nr_pages;
1511 chunk_start += chunk_nr_pages) {
1512 int j;
1514 if (chunk_start + chunk_nr_pages > nr_pages)
1515 chunk_nr_pages = nr_pages - chunk_start;
1517 /* fill the chunk pm with addrs and nodes from user-space */
1518 for (j = 0; j < chunk_nr_pages; j++) {
1519 const void __user *p;
1520 int node;
1522 err = -EFAULT;
1523 if (get_user(p, pages + j + chunk_start))
1524 goto out_pm;
1525 pm[j].addr = (unsigned long) p;
1527 if (get_user(node, nodes + j + chunk_start))
1528 goto out_pm;
1530 err = -ENODEV;
1531 if (node < 0 || node >= MAX_NUMNODES)
1532 goto out_pm;
1534 if (!node_state(node, N_MEMORY))
1535 goto out_pm;
1537 err = -EACCES;
1538 if (!node_isset(node, task_nodes))
1539 goto out_pm;
1541 pm[j].node = node;
1544 /* End marker for this chunk */
1545 pm[chunk_nr_pages].node = MAX_NUMNODES;
1547 /* Migrate this chunk */
1548 err = do_move_page_to_node_array(mm, pm,
1549 flags & MPOL_MF_MOVE_ALL);
1550 if (err < 0)
1551 goto out_pm;
1553 /* Return status information */
1554 for (j = 0; j < chunk_nr_pages; j++)
1555 if (put_user(pm[j].status, status + j + chunk_start)) {
1556 err = -EFAULT;
1557 goto out_pm;
1560 err = 0;
1562 out_pm:
1563 free_page((unsigned long)pm);
1564 out:
1565 return err;
1569 * Determine the nodes of an array of pages and store it in an array of status.
1571 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1572 const void __user **pages, int *status)
1574 unsigned long i;
1576 down_read(&mm->mmap_sem);
1578 for (i = 0; i < nr_pages; i++) {
1579 unsigned long addr = (unsigned long)(*pages);
1580 struct vm_area_struct *vma;
1581 struct page *page;
1582 int err = -EFAULT;
1584 vma = find_vma(mm, addr);
1585 if (!vma || addr < vma->vm_start)
1586 goto set_status;
1588 /* FOLL_DUMP to ignore special (like zero) pages */
1589 page = follow_page(vma, addr, FOLL_DUMP);
1591 err = PTR_ERR(page);
1592 if (IS_ERR(page))
1593 goto set_status;
1595 err = page ? page_to_nid(page) : -ENOENT;
1596 set_status:
1597 *status = err;
1599 pages++;
1600 status++;
1603 up_read(&mm->mmap_sem);
1607 * Determine the nodes of a user array of pages and store it in
1608 * a user array of status.
1610 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1611 const void __user * __user *pages,
1612 int __user *status)
1614 #define DO_PAGES_STAT_CHUNK_NR 16
1615 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1616 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1618 while (nr_pages) {
1619 unsigned long chunk_nr;
1621 chunk_nr = nr_pages;
1622 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1623 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1625 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1626 break;
1628 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1630 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1631 break;
1633 pages += chunk_nr;
1634 status += chunk_nr;
1635 nr_pages -= chunk_nr;
1637 return nr_pages ? -EFAULT : 0;
1641 * Move a list of pages in the address space of the currently executing
1642 * process.
1644 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1645 const void __user * __user *, pages,
1646 const int __user *, nodes,
1647 int __user *, status, int, flags)
1649 const struct cred *cred = current_cred(), *tcred;
1650 struct task_struct *task;
1651 struct mm_struct *mm;
1652 int err;
1653 nodemask_t task_nodes;
1655 /* Check flags */
1656 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1657 return -EINVAL;
1659 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1660 return -EPERM;
1662 /* Find the mm_struct */
1663 rcu_read_lock();
1664 task = pid ? find_task_by_vpid(pid) : current;
1665 if (!task) {
1666 rcu_read_unlock();
1667 return -ESRCH;
1669 get_task_struct(task);
1672 * Check if this process has the right to modify the specified
1673 * process. The right exists if the process has administrative
1674 * capabilities, superuser privileges or the same
1675 * userid as the target process.
1677 tcred = __task_cred(task);
1678 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1679 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1680 !capable(CAP_SYS_NICE)) {
1681 rcu_read_unlock();
1682 err = -EPERM;
1683 goto out;
1685 rcu_read_unlock();
1687 err = security_task_movememory(task);
1688 if (err)
1689 goto out;
1691 task_nodes = cpuset_mems_allowed(task);
1692 mm = get_task_mm(task);
1693 put_task_struct(task);
1695 if (!mm)
1696 return -EINVAL;
1698 if (nodes)
1699 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1700 nodes, status, flags);
1701 else
1702 err = do_pages_stat(mm, nr_pages, pages, status);
1704 mmput(mm);
1705 return err;
1707 out:
1708 put_task_struct(task);
1709 return err;
1712 #ifdef CONFIG_NUMA_BALANCING
1714 * Returns true if this is a safe migration target node for misplaced NUMA
1715 * pages. Currently it only checks the watermarks which crude
1717 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1718 unsigned long nr_migrate_pages)
1720 int z;
1722 if (!pgdat_reclaimable(pgdat))
1723 return false;
1725 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1726 struct zone *zone = pgdat->node_zones + z;
1728 if (!populated_zone(zone))
1729 continue;
1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732 if (!zone_watermark_ok(zone, 0,
1733 high_wmark_pages(zone) +
1734 nr_migrate_pages,
1735 0, 0))
1736 continue;
1737 return true;
1739 return false;
1742 static struct page *alloc_misplaced_dst_page(struct page *page,
1743 unsigned long data,
1744 int **result)
1746 int nid = (int) data;
1747 struct page *newpage;
1749 newpage = __alloc_pages_node(nid,
1750 (GFP_HIGHUSER_MOVABLE |
1751 __GFP_THISNODE | __GFP_NOMEMALLOC |
1752 __GFP_NORETRY | __GFP_NOWARN) &
1753 ~__GFP_RECLAIM, 0);
1755 return newpage;
1759 * page migration rate limiting control.
1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761 * window of time. Default here says do not migrate more than 1280M per second.
1763 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1768 unsigned long nr_pages)
1771 * Rate-limit the amount of data that is being migrated to a node.
1772 * Optimal placement is no good if the memory bus is saturated and
1773 * all the time is being spent migrating!
1775 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776 spin_lock(&pgdat->numabalancing_migrate_lock);
1777 pgdat->numabalancing_migrate_nr_pages = 0;
1778 pgdat->numabalancing_migrate_next_window = jiffies +
1779 msecs_to_jiffies(migrate_interval_millisecs);
1780 spin_unlock(&pgdat->numabalancing_migrate_lock);
1782 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1783 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1784 nr_pages);
1785 return true;
1789 * This is an unlocked non-atomic update so errors are possible.
1790 * The consequences are failing to migrate when we potentiall should
1791 * have which is not severe enough to warrant locking. If it is ever
1792 * a problem, it can be converted to a per-cpu counter.
1794 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1795 return false;
1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1800 int page_lru;
1802 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1804 /* Avoid migrating to a node that is nearly full */
1805 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1806 return 0;
1808 if (isolate_lru_page(page))
1809 return 0;
1812 * migrate_misplaced_transhuge_page() skips page migration's usual
1813 * check on page_count(), so we must do it here, now that the page
1814 * has been isolated: a GUP pin, or any other pin, prevents migration.
1815 * The expected page count is 3: 1 for page's mapcount and 1 for the
1816 * caller's pin and 1 for the reference taken by isolate_lru_page().
1818 if (PageTransHuge(page) && page_count(page) != 3) {
1819 putback_lru_page(page);
1820 return 0;
1823 page_lru = page_is_file_cache(page);
1824 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1825 hpage_nr_pages(page));
1828 * Isolating the page has taken another reference, so the
1829 * caller's reference can be safely dropped without the page
1830 * disappearing underneath us during migration.
1832 put_page(page);
1833 return 1;
1836 bool pmd_trans_migrating(pmd_t pmd)
1838 struct page *page = pmd_page(pmd);
1839 return PageLocked(page);
1843 * Attempt to migrate a misplaced page to the specified destination
1844 * node. Caller is expected to have an elevated reference count on
1845 * the page that will be dropped by this function before returning.
1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1848 int node)
1850 pg_data_t *pgdat = NODE_DATA(node);
1851 int isolated;
1852 int nr_remaining;
1853 LIST_HEAD(migratepages);
1856 * Don't migrate file pages that are mapped in multiple processes
1857 * with execute permissions as they are probably shared libraries.
1859 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1860 (vma->vm_flags & VM_EXEC))
1861 goto out;
1864 * Rate-limit the amount of data that is being migrated to a node.
1865 * Optimal placement is no good if the memory bus is saturated and
1866 * all the time is being spent migrating!
1868 if (numamigrate_update_ratelimit(pgdat, 1))
1869 goto out;
1871 isolated = numamigrate_isolate_page(pgdat, page);
1872 if (!isolated)
1873 goto out;
1875 list_add(&page->lru, &migratepages);
1876 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877 NULL, node, MIGRATE_ASYNC,
1878 MR_NUMA_MISPLACED);
1879 if (nr_remaining) {
1880 if (!list_empty(&migratepages)) {
1881 list_del(&page->lru);
1882 dec_node_page_state(page, NR_ISOLATED_ANON +
1883 page_is_file_cache(page));
1884 putback_lru_page(page);
1886 isolated = 0;
1887 } else
1888 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889 BUG_ON(!list_empty(&migratepages));
1890 return isolated;
1892 out:
1893 put_page(page);
1894 return 0;
1896 #endif /* CONFIG_NUMA_BALANCING */
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1900 * Migrates a THP to a given target node. page must be locked and is unlocked
1901 * before returning.
1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1904 struct vm_area_struct *vma,
1905 pmd_t *pmd, pmd_t entry,
1906 unsigned long address,
1907 struct page *page, int node)
1909 spinlock_t *ptl;
1910 pg_data_t *pgdat = NODE_DATA(node);
1911 int isolated = 0;
1912 struct page *new_page = NULL;
1913 int page_lru = page_is_file_cache(page);
1914 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1915 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916 pmd_t orig_entry;
1919 * Rate-limit the amount of data that is being migrated to a node.
1920 * Optimal placement is no good if the memory bus is saturated and
1921 * all the time is being spent migrating!
1923 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924 goto out_dropref;
1926 new_page = alloc_pages_node(node,
1927 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1928 HPAGE_PMD_ORDER);
1929 if (!new_page)
1930 goto out_fail;
1931 prep_transhuge_page(new_page);
1933 isolated = numamigrate_isolate_page(pgdat, page);
1934 if (!isolated) {
1935 put_page(new_page);
1936 goto out_fail;
1939 * We are not sure a pending tlb flush here is for a huge page
1940 * mapping or not. Hence use the tlb range variant
1942 if (mm_tlb_flush_pending(mm))
1943 flush_tlb_range(vma, mmun_start, mmun_end);
1945 /* Prepare a page as a migration target */
1946 __SetPageLocked(new_page);
1947 __SetPageSwapBacked(new_page);
1949 /* anon mapping, we can simply copy page->mapping to the new page: */
1950 new_page->mapping = page->mapping;
1951 new_page->index = page->index;
1952 migrate_page_copy(new_page, page);
1953 WARN_ON(PageLRU(new_page));
1955 /* Recheck the target PMD */
1956 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1957 ptl = pmd_lock(mm, pmd);
1958 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1959 fail_putback:
1960 spin_unlock(ptl);
1961 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1963 /* Reverse changes made by migrate_page_copy() */
1964 if (TestClearPageActive(new_page))
1965 SetPageActive(page);
1966 if (TestClearPageUnevictable(new_page))
1967 SetPageUnevictable(page);
1969 unlock_page(new_page);
1970 put_page(new_page); /* Free it */
1972 /* Retake the callers reference and putback on LRU */
1973 get_page(page);
1974 putback_lru_page(page);
1975 mod_node_page_state(page_pgdat(page),
1976 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1978 goto out_unlock;
1981 orig_entry = *pmd;
1982 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1983 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1986 * Clear the old entry under pagetable lock and establish the new PTE.
1987 * Any parallel GUP will either observe the old page blocking on the
1988 * page lock, block on the page table lock or observe the new page.
1989 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1990 * guarantee the copy is visible before the pagetable update.
1992 flush_cache_range(vma, mmun_start, mmun_end);
1993 page_add_anon_rmap(new_page, vma, mmun_start, true);
1994 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1995 set_pmd_at(mm, mmun_start, pmd, entry);
1996 update_mmu_cache_pmd(vma, address, &entry);
1998 if (page_count(page) != 2) {
1999 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2000 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2001 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2002 update_mmu_cache_pmd(vma, address, &entry);
2003 page_remove_rmap(new_page, true);
2004 goto fail_putback;
2007 mlock_migrate_page(new_page, page);
2008 page_remove_rmap(page, true);
2009 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2011 spin_unlock(ptl);
2012 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2014 /* Take an "isolate" reference and put new page on the LRU. */
2015 get_page(new_page);
2016 putback_lru_page(new_page);
2018 unlock_page(new_page);
2019 unlock_page(page);
2020 put_page(page); /* Drop the rmap reference */
2021 put_page(page); /* Drop the LRU isolation reference */
2023 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2024 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2026 mod_node_page_state(page_pgdat(page),
2027 NR_ISOLATED_ANON + page_lru,
2028 -HPAGE_PMD_NR);
2029 return isolated;
2031 out_fail:
2032 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2033 out_dropref:
2034 ptl = pmd_lock(mm, pmd);
2035 if (pmd_same(*pmd, entry)) {
2036 entry = pmd_modify(entry, vma->vm_page_prot);
2037 set_pmd_at(mm, mmun_start, pmd, entry);
2038 update_mmu_cache_pmd(vma, address, &entry);
2040 spin_unlock(ptl);
2042 out_unlock:
2043 unlock_page(page);
2044 put_page(page);
2045 return 0;
2047 #endif /* CONFIG_NUMA_BALANCING */
2049 #endif /* CONFIG_NUMA */