1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright © 2005-2009 Samsung Electronics
4 * Copyright © 2007 Nokia Corporation
6 * Kyungmin Park <kyungmin.park@samsung.com>
9 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 * auto-placement support, read-while load support, various fixes
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Amul Kumar Saha <amul.saha at samsung.com>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
42 module_param_array(flex_bdry
, int, NULL
, 0400);
43 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
44 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 "DIE_BDRY: SLC boundary of the die"
46 "LOCK: Locking information for SLC boundary"
47 " : 0->Set boundary in unlocked status"
48 " : 1->Set boundary in locked status");
50 /* Default OneNAND/Flex-OneNAND OTP options*/
53 module_param(otp
, int, 0400);
54 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
55 "Syntax : otp=LOCK_TYPE"
56 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 " : 0 -> Default (No Blocks Locked)"
58 " : 1 -> OTP Block lock"
59 " : 2 -> 1st Block lock"
60 " : 3 -> BOTH OTP Block and 1st Block lock");
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
66 static int flexonenand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
67 struct mtd_oob_region
*oobregion
)
72 oobregion
->offset
= (section
* 16) + 6;
73 oobregion
->length
= 10;
78 static int flexonenand_ooblayout_free(struct mtd_info
*mtd
, int section
,
79 struct mtd_oob_region
*oobregion
)
84 oobregion
->offset
= (section
* 16) + 2;
85 oobregion
->length
= 4;
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops
= {
91 .ecc
= flexonenand_ooblayout_ecc
,
92 .free
= flexonenand_ooblayout_free
,
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
102 static int onenand_ooblayout_128_ecc(struct mtd_info
*mtd
, int section
,
103 struct mtd_oob_region
*oobregion
)
108 oobregion
->offset
= (section
* 16) + 7;
109 oobregion
->length
= 9;
114 static int onenand_ooblayout_128_free(struct mtd_info
*mtd
, int section
,
115 struct mtd_oob_region
*oobregion
)
121 * free bytes are using the spare area fields marked as
122 * "Managed by internal ECC logic for Logical Sector Number area"
124 oobregion
->offset
= (section
* 16) + 2;
125 oobregion
->length
= 3;
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops
= {
131 .ecc
= onenand_ooblayout_128_ecc
,
132 .free
= onenand_ooblayout_128_free
,
136 * onenand_oob_32_64 - oob info for large (2KB) page
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info
*mtd
, int section
,
139 struct mtd_oob_region
*oobregion
)
144 oobregion
->offset
= (section
* 16) + 8;
145 oobregion
->length
= 5;
150 static int onenand_ooblayout_32_64_free(struct mtd_info
*mtd
, int section
,
151 struct mtd_oob_region
*oobregion
)
153 int sections
= (mtd
->oobsize
/ 32) * 2;
155 if (section
>= sections
)
159 oobregion
->offset
= ((section
- 1) * 16) + 14;
160 oobregion
->length
= 2;
162 oobregion
->offset
= (section
* 16) + 2;
163 oobregion
->length
= 3;
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops
= {
170 .ecc
= onenand_ooblayout_32_64_ecc
,
171 .free
= onenand_ooblayout_32_64_free
,
174 static const unsigned char ffchars
[] = {
175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @param addr address to read
197 * Read OneNAND register
199 static unsigned short onenand_readw(void __iomem
*addr
)
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @param value value to write
207 * @param addr address to write
209 * Write OneNAND register with value
211 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
217 * onenand_block_address - [DEFAULT] Get block address
218 * @param this onenand chip data structure
219 * @param block the block
220 * @return translated block address if DDP, otherwise same
222 * Setup Start Address 1 Register (F100h)
224 static int onenand_block_address(struct onenand_chip
*this, int block
)
226 /* Device Flash Core select, NAND Flash Block Address */
227 if (block
& this->density_mask
)
228 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @param this onenand chip data structure
236 * @param block the block
237 * @return set DBS value if DDP, otherwise 0
239 * Setup Start Address 2 Register (F101h) for DDP
241 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
243 /* Device BufferRAM Select */
244 if (block
& this->density_mask
)
245 return ONENAND_DDP_CHIP1
;
247 return ONENAND_DDP_CHIP0
;
251 * onenand_page_address - [DEFAULT] Get page address
252 * @param page the page address
253 * @param sector the sector address
254 * @return combined page and sector address
256 * Setup Start Address 8 Register (F107h)
258 static int onenand_page_address(int page
, int sector
)
260 /* Flash Page Address, Flash Sector Address */
263 fpa
= page
& ONENAND_FPA_MASK
;
264 fsa
= sector
& ONENAND_FSA_MASK
;
266 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @param dataram1 DataRAM index
272 * @param sectors the sector address
273 * @param count the number of sectors
274 * @return the start buffer value
276 * Setup Start Buffer Register (F200h)
278 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
282 /* BufferRAM Sector Address */
283 bsa
= sectors
& ONENAND_BSA_MASK
;
286 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
288 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
290 /* BufferRAM Sector Count */
291 bsc
= count
& ONENAND_BSC_MASK
;
293 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
297 * flexonenand_block- For given address return block number
298 * @param this - OneNAND device structure
299 * @param addr - Address for which block number is needed
301 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
303 unsigned boundary
, blk
, die
= 0;
305 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
307 addr
-= this->diesize
[0];
310 boundary
= this->boundary
[die
];
312 blk
= addr
>> (this->erase_shift
- 1);
314 blk
= (blk
+ boundary
+ 1) >> 1;
316 blk
+= die
? this->density_mask
: 0;
320 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
322 if (!FLEXONENAND(this))
323 return addr
>> this->erase_shift
;
324 return flexonenand_block(this, addr
);
328 * flexonenand_addr - Return address of the block
329 * @this: OneNAND device structure
330 * @block: Block number on Flex-OneNAND
332 * Return address of the block
334 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
337 int die
= 0, boundary
;
339 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
340 block
-= this->density_mask
;
342 ofs
= this->diesize
[0];
345 boundary
= this->boundary
[die
];
346 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
347 if (block
> (boundary
+ 1))
348 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
352 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
354 if (!FLEXONENAND(this))
355 return (loff_t
)block
<< this->erase_shift
;
356 return flexonenand_addr(this, block
);
358 EXPORT_SYMBOL(onenand_addr
);
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @param dev_id OneNAND device ID
364 * Get OneNAND density from device ID
366 static inline int onenand_get_density(int dev_id
)
368 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
369 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @param mtd MTD device structure
375 * @param addr address whose erase region needs to be identified
377 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
381 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
382 if (addr
< mtd
->eraseregions
[i
].offset
)
386 EXPORT_SYMBOL(flexonenand_region
);
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @param mtd MTD device structure
391 * @param cmd the command to be sent
392 * @param addr offset to read from or write to
393 * @param len number of bytes to read or write
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
398 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
400 struct onenand_chip
*this = mtd
->priv
;
401 int value
, block
, page
;
403 /* Address translation */
405 case ONENAND_CMD_UNLOCK
:
406 case ONENAND_CMD_LOCK
:
407 case ONENAND_CMD_LOCK_TIGHT
:
408 case ONENAND_CMD_UNLOCK_ALL
:
413 case FLEXONENAND_CMD_PI_ACCESS
:
414 /* addr contains die index */
415 block
= addr
* this->density_mask
;
419 case ONENAND_CMD_ERASE
:
420 case ONENAND_CMD_MULTIBLOCK_ERASE
:
421 case ONENAND_CMD_ERASE_VERIFY
:
422 case ONENAND_CMD_BUFFERRAM
:
423 case ONENAND_CMD_OTP_ACCESS
:
424 block
= onenand_block(this, addr
);
428 case FLEXONENAND_CMD_READ_PI
:
429 cmd
= ONENAND_CMD_READ
;
430 block
= addr
* this->density_mask
;
435 block
= onenand_block(this, addr
);
436 if (FLEXONENAND(this))
437 page
= (int) (addr
- onenand_addr(this, block
))>>\
440 page
= (int) (addr
>> this->page_shift
);
441 if (ONENAND_IS_2PLANE(this)) {
442 /* Make the even block number */
444 /* Is it the odd plane? */
445 if (addr
& this->writesize
)
449 page
&= this->page_mask
;
453 /* NOTE: The setting order of the registers is very important! */
454 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
455 /* Select DataRAM for DDP */
456 value
= onenand_bufferram_address(this, block
);
457 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
459 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 /* It is always BufferRAM0 */
461 ONENAND_SET_BUFFERRAM0(this);
463 /* Switch to the next data buffer */
464 ONENAND_SET_NEXT_BUFFERRAM(this);
470 /* Write 'DFS, FBA' of Flash */
471 value
= onenand_block_address(this, block
);
472 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
474 /* Select DataRAM for DDP */
475 value
= onenand_bufferram_address(this, block
);
476 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
480 /* Now we use page size operation */
481 int sectors
= 0, count
= 0;
485 case FLEXONENAND_CMD_RECOVER_LSB
:
486 case ONENAND_CMD_READ
:
487 case ONENAND_CMD_READOOB
:
488 if (ONENAND_IS_4KB_PAGE(this))
489 /* It is always BufferRAM0 */
490 dataram
= ONENAND_SET_BUFFERRAM0(this);
492 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
496 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
497 cmd
= ONENAND_CMD_2X_PROG
;
498 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
502 /* Write 'FPA, FSA' of Flash */
503 value
= onenand_page_address(page
, sectors
);
504 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
506 /* Write 'BSA, BSC' of DataRAM */
507 value
= onenand_buffer_address(dataram
, sectors
, count
);
508 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
511 /* Interrupt clear */
512 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
515 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
521 * onenand_read_ecc - return ecc status
522 * @param this onenand chip structure
524 static inline int onenand_read_ecc(struct onenand_chip
*this)
526 int ecc
, i
, result
= 0;
528 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
531 for (i
= 0; i
< 4; i
++) {
532 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
535 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
536 return ONENAND_ECC_2BIT_ALL
;
538 result
= ONENAND_ECC_1BIT_ALL
;
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @param mtd MTD device structure
547 * @param state state to select the max. timeout value
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
553 static int onenand_wait(struct mtd_info
*mtd
, int state
)
555 struct onenand_chip
* this = mtd
->priv
;
556 unsigned long timeout
;
557 unsigned int flags
= ONENAND_INT_MASTER
;
558 unsigned int interrupt
= 0;
561 /* The 20 msec is enough */
562 timeout
= jiffies
+ msecs_to_jiffies(20);
563 while (time_before(jiffies
, timeout
)) {
564 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
566 if (interrupt
& flags
)
569 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
572 /* To get correct interrupt status in timeout case */
573 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
575 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
578 * In the Spec. it checks the controller status first
579 * However if you get the correct information in case of
580 * power off recovery (POR) test, it should read ECC status first
582 if (interrupt
& ONENAND_INT_READ
) {
583 int ecc
= onenand_read_ecc(this);
585 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
586 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
588 mtd
->ecc_stats
.failed
++;
590 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
591 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
593 mtd
->ecc_stats
.corrected
++;
596 } else if (state
== FL_READING
) {
597 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 __func__
, ctrl
, interrupt
);
602 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
603 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 __func__
, ctrl
, interrupt
);
608 if (!(interrupt
& ONENAND_INT_MASTER
)) {
609 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 __func__
, ctrl
, interrupt
);
614 /* If there's controller error, it's a real error */
615 if (ctrl
& ONENAND_CTRL_ERROR
) {
616 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
618 if (ctrl
& ONENAND_CTRL_LOCK
)
619 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @param irq onenand interrupt number
629 * @param dev_id interrupt data
633 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
635 struct onenand_chip
*this = data
;
637 /* To handle shared interrupt */
638 if (!this->complete
.done
)
639 complete(&this->complete
);
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @param mtd MTD device structure
647 * @param state state to select the max. timeout value
649 * Wait for command done.
651 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
653 struct onenand_chip
*this = mtd
->priv
;
655 wait_for_completion(&this->complete
);
657 return onenand_wait(mtd
, state
);
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @param mtd MTD device structure
663 * @param state state to select the max. timeout value
665 * Try interrupt based wait (It is used one-time)
667 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
669 struct onenand_chip
*this = mtd
->priv
;
670 unsigned long remain
, timeout
;
672 /* We use interrupt wait first */
673 this->wait
= onenand_interrupt_wait
;
675 timeout
= msecs_to_jiffies(100);
676 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
678 printk(KERN_INFO
"OneNAND: There's no interrupt. "
679 "We use the normal wait\n");
681 /* Release the irq */
682 free_irq(this->irq
, this);
684 this->wait
= onenand_wait
;
687 return onenand_wait(mtd
, state
);
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @param mtd MTD device structure
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
698 static void onenand_setup_wait(struct mtd_info
*mtd
)
700 struct onenand_chip
*this = mtd
->priv
;
703 init_completion(&this->complete
);
705 if (this->irq
<= 0) {
706 this->wait
= onenand_wait
;
710 if (request_irq(this->irq
, &onenand_interrupt
,
711 IRQF_SHARED
, "onenand", this)) {
712 /* If we can't get irq, use the normal wait */
713 this->wait
= onenand_wait
;
717 /* Enable interrupt */
718 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
719 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
720 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
722 this->wait
= onenand_try_interrupt_wait
;
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @param mtd MTD data structure
728 * @param area BufferRAM area
729 * @return offset given area
731 * Return BufferRAM offset given area
733 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
735 struct onenand_chip
*this = mtd
->priv
;
737 if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 /* Note: the 'this->writesize' is a real page size */
739 if (area
== ONENAND_DATARAM
)
740 return this->writesize
;
741 if (area
== ONENAND_SPARERAM
)
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @param mtd MTD data structure
751 * @param area BufferRAM area
752 * @param buffer the databuffer to put/get data
753 * @param offset offset to read from or write to
754 * @param count number of bytes to read/write
756 * Read the BufferRAM area
758 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
759 unsigned char *buffer
, int offset
, size_t count
)
761 struct onenand_chip
*this = mtd
->priv
;
762 void __iomem
*bufferram
;
764 bufferram
= this->base
+ area
;
766 bufferram
+= onenand_bufferram_offset(mtd
, area
);
768 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
771 /* Align with word(16-bit) size */
774 /* Read word and save byte */
775 word
= this->read_word(bufferram
+ offset
+ count
);
776 buffer
[count
] = (word
& 0xff);
779 memcpy(buffer
, bufferram
+ offset
, count
);
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @param mtd MTD data structure
787 * @param area BufferRAM area
788 * @param buffer the databuffer to put/get data
789 * @param offset offset to read from or write to
790 * @param count number of bytes to read/write
792 * Read the BufferRAM area with Sync. Burst Mode
794 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
795 unsigned char *buffer
, int offset
, size_t count
)
797 struct onenand_chip
*this = mtd
->priv
;
798 void __iomem
*bufferram
;
800 bufferram
= this->base
+ area
;
802 bufferram
+= onenand_bufferram_offset(mtd
, area
);
804 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
806 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
809 /* Align with word(16-bit) size */
812 /* Read word and save byte */
813 word
= this->read_word(bufferram
+ offset
+ count
);
814 buffer
[count
] = (word
& 0xff);
817 memcpy(buffer
, bufferram
+ offset
, count
);
819 this->mmcontrol(mtd
, 0);
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @param mtd MTD data structure
827 * @param area BufferRAM area
828 * @param buffer the databuffer to put/get data
829 * @param offset offset to read from or write to
830 * @param count number of bytes to read/write
832 * Write the BufferRAM area
834 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
835 const unsigned char *buffer
, int offset
, size_t count
)
837 struct onenand_chip
*this = mtd
->priv
;
838 void __iomem
*bufferram
;
840 bufferram
= this->base
+ area
;
842 bufferram
+= onenand_bufferram_offset(mtd
, area
);
844 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
848 /* Align with word(16-bit) size */
851 /* Calculate byte access offset */
852 byte_offset
= offset
+ count
;
854 /* Read word and save byte */
855 word
= this->read_word(bufferram
+ byte_offset
);
856 word
= (word
& ~0xff) | buffer
[count
];
857 this->write_word(word
, bufferram
+ byte_offset
);
860 memcpy(bufferram
+ offset
, buffer
, count
);
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @param mtd MTD data structure
868 * @param addr address to check
869 * @return blockpage address
871 * Get blockpage address at 2x program mode
873 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
875 struct onenand_chip
*this = mtd
->priv
;
876 int blockpage
, block
, page
;
878 /* Calculate the even block number */
879 block
= (int) (addr
>> this->erase_shift
) & ~1;
880 /* Is it the odd plane? */
881 if (addr
& this->writesize
)
883 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
884 blockpage
= (block
<< 7) | page
;
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @param mtd MTD data structure
892 * @param addr address to check
893 * @return 1 if there are valid data, otherwise 0
895 * Check bufferram if there is data we required
897 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
899 struct onenand_chip
*this = mtd
->priv
;
900 int blockpage
, found
= 0;
903 if (ONENAND_IS_2PLANE(this))
904 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
906 blockpage
= (int) (addr
>> this->page_shift
);
908 /* Is there valid data? */
909 i
= ONENAND_CURRENT_BUFFERRAM(this);
910 if (this->bufferram
[i
].blockpage
== blockpage
)
913 /* Check another BufferRAM */
914 i
= ONENAND_NEXT_BUFFERRAM(this);
915 if (this->bufferram
[i
].blockpage
== blockpage
) {
916 ONENAND_SET_NEXT_BUFFERRAM(this);
921 if (found
&& ONENAND_IS_DDP(this)) {
922 /* Select DataRAM for DDP */
923 int block
= onenand_block(this, addr
);
924 int value
= onenand_bufferram_address(this, block
);
925 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @param mtd MTD data structure
934 * @param addr address to update
935 * @param valid valid flag
937 * Update BufferRAM information
939 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
942 struct onenand_chip
*this = mtd
->priv
;
946 if (ONENAND_IS_2PLANE(this))
947 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
949 blockpage
= (int) (addr
>> this->page_shift
);
951 /* Invalidate another BufferRAM */
952 i
= ONENAND_NEXT_BUFFERRAM(this);
953 if (this->bufferram
[i
].blockpage
== blockpage
)
954 this->bufferram
[i
].blockpage
= -1;
956 /* Update BufferRAM */
957 i
= ONENAND_CURRENT_BUFFERRAM(this);
959 this->bufferram
[i
].blockpage
= blockpage
;
961 this->bufferram
[i
].blockpage
= -1;
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @param mtd MTD data structure
967 * @param addr start address to invalidate
968 * @param len length to invalidate
970 * Invalidate BufferRAM information
972 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
975 struct onenand_chip
*this = mtd
->priv
;
977 loff_t end_addr
= addr
+ len
;
979 /* Invalidate BufferRAM */
980 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
981 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
982 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
983 this->bufferram
[i
].blockpage
= -1;
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @param mtd MTD device structure
990 * @param new_state the state which is requested
992 * Get the device and lock it for exclusive access
994 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
996 struct onenand_chip
*this = mtd
->priv
;
997 DECLARE_WAITQUEUE(wait
, current
);
1000 * Grab the lock and see if the device is available
1003 spin_lock(&this->chip_lock
);
1004 if (this->state
== FL_READY
) {
1005 this->state
= new_state
;
1006 spin_unlock(&this->chip_lock
);
1007 if (new_state
!= FL_PM_SUSPENDED
&& this->enable
)
1011 if (new_state
== FL_PM_SUSPENDED
) {
1012 spin_unlock(&this->chip_lock
);
1013 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
1015 set_current_state(TASK_UNINTERRUPTIBLE
);
1016 add_wait_queue(&this->wq
, &wait
);
1017 spin_unlock(&this->chip_lock
);
1019 remove_wait_queue(&this->wq
, &wait
);
1026 * onenand_release_device - [GENERIC] release chip
1027 * @param mtd MTD device structure
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1031 static void onenand_release_device(struct mtd_info
*mtd
)
1033 struct onenand_chip
*this = mtd
->priv
;
1035 if (this->state
!= FL_PM_SUSPENDED
&& this->disable
)
1037 /* Release the chip */
1038 spin_lock(&this->chip_lock
);
1039 this->state
= FL_READY
;
1041 spin_unlock(&this->chip_lock
);
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @param mtd MTD device structure
1047 * @param buf destination address
1048 * @param column oob offset to read from
1049 * @param thislen oob length to read
1051 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
1054 struct onenand_chip
*this = mtd
->priv
;
1057 this->read_bufferram(mtd
, ONENAND_SPARERAM
, this->oob_buf
, 0,
1059 ret
= mtd_ooblayout_get_databytes(mtd
, buf
, this->oob_buf
,
1068 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1069 * @param mtd MTD device structure
1070 * @param addr address to recover
1071 * @param status return value from onenand_wait / onenand_bbt_wait
1073 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1074 * lower page address and MSB page has higher page address in paired pages.
1075 * If power off occurs during MSB page program, the paired LSB page data can
1076 * become corrupt. LSB page recovery read is a way to read LSB page though page
1077 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1078 * read after power up, issue LSB page recovery read.
1080 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1082 struct onenand_chip
*this = mtd
->priv
;
1085 /* Recovery is only for Flex-OneNAND */
1086 if (!FLEXONENAND(this))
1089 /* check if we failed due to uncorrectable error */
1090 if (!mtd_is_eccerr(status
) && status
!= ONENAND_BBT_READ_ECC_ERROR
)
1093 /* check if address lies in MLC region */
1094 i
= flexonenand_region(mtd
, addr
);
1095 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1098 /* We are attempting to reread, so decrement stats.failed
1099 * which was incremented by onenand_wait due to read failure
1101 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1103 mtd
->ecc_stats
.failed
--;
1105 /* Issue the LSB page recovery command */
1106 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1107 return this->wait(mtd
, FL_READING
);
1111 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1112 * @param mtd MTD device structure
1113 * @param from offset to read from
1114 * @param ops: oob operation description structure
1116 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1117 * So, read-while-load is not present.
1119 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1120 struct mtd_oob_ops
*ops
)
1122 struct onenand_chip
*this = mtd
->priv
;
1123 struct mtd_ecc_stats stats
;
1124 size_t len
= ops
->len
;
1125 size_t ooblen
= ops
->ooblen
;
1126 u_char
*buf
= ops
->datbuf
;
1127 u_char
*oobbuf
= ops
->oobbuf
;
1128 int read
= 0, column
, thislen
;
1129 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1131 int writesize
= this->writesize
;
1133 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1136 oobsize
= mtd_oobavail(mtd
, ops
);
1137 oobcolumn
= from
& (mtd
->oobsize
- 1);
1139 /* Do not allow reads past end of device */
1140 if (from
+ len
> mtd
->size
) {
1141 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1148 stats
= mtd
->ecc_stats
;
1150 while (read
< len
) {
1153 thislen
= min_t(int, writesize
, len
- read
);
1155 column
= from
& (writesize
- 1);
1156 if (column
+ thislen
> writesize
)
1157 thislen
= writesize
- column
;
1159 if (!onenand_check_bufferram(mtd
, from
)) {
1160 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1162 ret
= this->wait(mtd
, FL_READING
);
1164 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1165 onenand_update_bufferram(mtd
, from
, !ret
);
1166 if (mtd_is_eccerr(ret
))
1172 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1174 thisooblen
= oobsize
- oobcolumn
;
1175 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1177 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1178 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1180 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1181 oobread
+= thisooblen
;
1182 oobbuf
+= thisooblen
;
1195 * Return success, if no ECC failures, else -EBADMSG
1196 * fs driver will take care of that, because
1197 * retlen == desired len and result == -EBADMSG
1200 ops
->oobretlen
= oobread
;
1205 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1208 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1209 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1213 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1214 * @param mtd MTD device structure
1215 * @param from offset to read from
1216 * @param ops: oob operation description structure
1218 * OneNAND read main and/or out-of-band data
1220 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1221 struct mtd_oob_ops
*ops
)
1223 struct onenand_chip
*this = mtd
->priv
;
1224 struct mtd_ecc_stats stats
;
1225 size_t len
= ops
->len
;
1226 size_t ooblen
= ops
->ooblen
;
1227 u_char
*buf
= ops
->datbuf
;
1228 u_char
*oobbuf
= ops
->oobbuf
;
1229 int read
= 0, column
, thislen
;
1230 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1231 int ret
= 0, boundary
= 0;
1232 int writesize
= this->writesize
;
1234 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1237 oobsize
= mtd_oobavail(mtd
, ops
);
1238 oobcolumn
= from
& (mtd
->oobsize
- 1);
1240 /* Do not allow reads past end of device */
1241 if ((from
+ len
) > mtd
->size
) {
1242 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1249 stats
= mtd
->ecc_stats
;
1251 /* Read-while-load method */
1253 /* Do first load to bufferRAM */
1255 if (!onenand_check_bufferram(mtd
, from
)) {
1256 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1257 ret
= this->wait(mtd
, FL_READING
);
1258 onenand_update_bufferram(mtd
, from
, !ret
);
1259 if (mtd_is_eccerr(ret
))
1264 thislen
= min_t(int, writesize
, len
- read
);
1265 column
= from
& (writesize
- 1);
1266 if (column
+ thislen
> writesize
)
1267 thislen
= writesize
- column
;
1270 /* If there is more to load then start next load */
1272 if (read
+ thislen
< len
) {
1273 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1275 * Chip boundary handling in DDP
1276 * Now we issued chip 1 read and pointed chip 1
1277 * bufferram so we have to point chip 0 bufferram.
1279 if (ONENAND_IS_DDP(this) &&
1280 unlikely(from
== (this->chipsize
>> 1))) {
1281 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1285 ONENAND_SET_PREV_BUFFERRAM(this);
1287 /* While load is going, read from last bufferRAM */
1288 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1290 /* Read oob area if needed */
1292 thisooblen
= oobsize
- oobcolumn
;
1293 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1295 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1296 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1298 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1299 oobread
+= thisooblen
;
1300 oobbuf
+= thisooblen
;
1304 /* See if we are done */
1308 /* Set up for next read from bufferRAM */
1309 if (unlikely(boundary
))
1310 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1311 ONENAND_SET_NEXT_BUFFERRAM(this);
1313 thislen
= min_t(int, writesize
, len
- read
);
1316 /* Now wait for load */
1317 ret
= this->wait(mtd
, FL_READING
);
1318 onenand_update_bufferram(mtd
, from
, !ret
);
1319 if (mtd_is_eccerr(ret
))
1324 * Return success, if no ECC failures, else -EBADMSG
1325 * fs driver will take care of that, because
1326 * retlen == desired len and result == -EBADMSG
1329 ops
->oobretlen
= oobread
;
1334 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1337 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1338 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1342 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1343 * @param mtd MTD device structure
1344 * @param from offset to read from
1345 * @param ops: oob operation description structure
1347 * OneNAND read out-of-band data from the spare area
1349 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1350 struct mtd_oob_ops
*ops
)
1352 struct onenand_chip
*this = mtd
->priv
;
1353 struct mtd_ecc_stats stats
;
1354 int read
= 0, thislen
, column
, oobsize
;
1355 size_t len
= ops
->ooblen
;
1356 unsigned int mode
= ops
->mode
;
1357 u_char
*buf
= ops
->oobbuf
;
1358 int ret
= 0, readcmd
;
1360 from
+= ops
->ooboffs
;
1362 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1365 /* Initialize return length value */
1368 if (mode
== MTD_OPS_AUTO_OOB
)
1369 oobsize
= mtd
->oobavail
;
1371 oobsize
= mtd
->oobsize
;
1373 column
= from
& (mtd
->oobsize
- 1);
1375 if (unlikely(column
>= oobsize
)) {
1376 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1381 stats
= mtd
->ecc_stats
;
1383 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1385 while (read
< len
) {
1388 thislen
= oobsize
- column
;
1389 thislen
= min_t(int, thislen
, len
);
1391 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1393 onenand_update_bufferram(mtd
, from
, 0);
1395 ret
= this->wait(mtd
, FL_READING
);
1397 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1399 if (ret
&& !mtd_is_eccerr(ret
)) {
1400 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1405 if (mode
== MTD_OPS_AUTO_OOB
)
1406 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1408 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1420 from
+= mtd
->writesize
;
1425 ops
->oobretlen
= read
;
1430 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1437 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438 * @param mtd: MTD device structure
1439 * @param from: offset to read from
1440 * @param ops: oob operation description structure
1442 * Read main and/or out-of-band
1444 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1445 struct mtd_oob_ops
*ops
)
1447 struct onenand_chip
*this = mtd
->priv
;
1450 switch (ops
->mode
) {
1451 case MTD_OPS_PLACE_OOB
:
1452 case MTD_OPS_AUTO_OOB
:
1455 /* Not implemented yet */
1460 onenand_get_device(mtd
, FL_READING
);
1462 ret
= ONENAND_IS_4KB_PAGE(this) ?
1463 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1464 onenand_read_ops_nolock(mtd
, from
, ops
);
1466 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1467 onenand_release_device(mtd
);
1473 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474 * @param mtd MTD device structure
1475 * @param state state to select the max. timeout value
1477 * Wait for command done.
1479 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1481 struct onenand_chip
*this = mtd
->priv
;
1482 unsigned long timeout
;
1483 unsigned int interrupt
, ctrl
, ecc
, addr1
, addr8
;
1485 /* The 20 msec is enough */
1486 timeout
= jiffies
+ msecs_to_jiffies(20);
1487 while (time_before(jiffies
, timeout
)) {
1488 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1489 if (interrupt
& ONENAND_INT_MASTER
)
1492 /* To get correct interrupt status in timeout case */
1493 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1494 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1495 addr1
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS1
);
1496 addr8
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS8
);
1498 if (interrupt
& ONENAND_INT_READ
) {
1499 ecc
= onenand_read_ecc(this);
1500 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1501 printk(KERN_DEBUG
"%s: ecc 0x%04x ctrl 0x%04x "
1502 "intr 0x%04x addr1 %#x addr8 %#x\n",
1503 __func__
, ecc
, ctrl
, interrupt
, addr1
, addr8
);
1504 return ONENAND_BBT_READ_ECC_ERROR
;
1507 printk(KERN_ERR
"%s: read timeout! ctrl 0x%04x "
1508 "intr 0x%04x addr1 %#x addr8 %#x\n",
1509 __func__
, ctrl
, interrupt
, addr1
, addr8
);
1510 return ONENAND_BBT_READ_FATAL_ERROR
;
1513 /* Initial bad block case: 0x2400 or 0x0400 */
1514 if (ctrl
& ONENAND_CTRL_ERROR
) {
1515 printk(KERN_DEBUG
"%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1516 "addr8 %#x\n", __func__
, ctrl
, interrupt
, addr1
, addr8
);
1517 return ONENAND_BBT_READ_ERROR
;
1524 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1525 * @param mtd MTD device structure
1526 * @param from offset to read from
1527 * @param ops oob operation description structure
1529 * OneNAND read out-of-band data from the spare area for bbt scan
1531 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1532 struct mtd_oob_ops
*ops
)
1534 struct onenand_chip
*this = mtd
->priv
;
1535 int read
= 0, thislen
, column
;
1536 int ret
= 0, readcmd
;
1537 size_t len
= ops
->ooblen
;
1538 u_char
*buf
= ops
->oobbuf
;
1540 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__
, (unsigned int)from
,
1543 /* Initialize return value */
1546 /* Do not allow reads past end of device */
1547 if (unlikely((from
+ len
) > mtd
->size
)) {
1548 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1550 return ONENAND_BBT_READ_FATAL_ERROR
;
1553 /* Grab the lock and see if the device is available */
1554 onenand_get_device(mtd
, FL_READING
);
1556 column
= from
& (mtd
->oobsize
- 1);
1558 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1560 while (read
< len
) {
1563 thislen
= mtd
->oobsize
- column
;
1564 thislen
= min_t(int, thislen
, len
);
1566 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1568 onenand_update_bufferram(mtd
, from
, 0);
1570 ret
= this->bbt_wait(mtd
, FL_READING
);
1572 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1577 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1586 /* Update Page size */
1587 from
+= this->writesize
;
1592 /* Deselect and wake up anyone waiting on the device */
1593 onenand_release_device(mtd
);
1595 ops
->oobretlen
= read
;
1599 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1601 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1602 * @param mtd MTD device structure
1603 * @param buf the databuffer to verify
1604 * @param to offset to read from
1606 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1608 struct onenand_chip
*this = mtd
->priv
;
1609 u_char
*oob_buf
= this->oob_buf
;
1610 int status
, i
, readcmd
;
1612 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1614 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1615 onenand_update_bufferram(mtd
, to
, 0);
1616 status
= this->wait(mtd
, FL_READING
);
1620 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1621 for (i
= 0; i
< mtd
->oobsize
; i
++)
1622 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1629 * onenand_verify - [GENERIC] verify the chip contents after a write
1630 * @param mtd MTD device structure
1631 * @param buf the databuffer to verify
1632 * @param addr offset to read from
1633 * @param len number of bytes to read and compare
1635 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1637 struct onenand_chip
*this = mtd
->priv
;
1639 int thislen
, column
;
1641 column
= addr
& (this->writesize
- 1);
1644 thislen
= min_t(int, this->writesize
- column
, len
);
1646 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1648 onenand_update_bufferram(mtd
, addr
, 0);
1650 ret
= this->wait(mtd
, FL_READING
);
1654 onenand_update_bufferram(mtd
, addr
, 1);
1656 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1658 if (memcmp(buf
, this->verify_buf
+ column
, thislen
))
1670 #define onenand_verify(...) (0)
1671 #define onenand_verify_oob(...) (0)
1674 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1676 static void onenand_panic_wait(struct mtd_info
*mtd
)
1678 struct onenand_chip
*this = mtd
->priv
;
1679 unsigned int interrupt
;
1682 for (i
= 0; i
< 2000; i
++) {
1683 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1684 if (interrupt
& ONENAND_INT_MASTER
)
1691 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692 * @param mtd MTD device structure
1693 * @param to offset to write to
1694 * @param len number of bytes to write
1695 * @param retlen pointer to variable to store the number of written bytes
1696 * @param buf the data to write
1700 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1701 size_t *retlen
, const u_char
*buf
)
1703 struct onenand_chip
*this = mtd
->priv
;
1704 int column
, subpage
;
1707 if (this->state
== FL_PM_SUSPENDED
)
1710 /* Wait for any existing operation to clear */
1711 onenand_panic_wait(mtd
);
1713 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1716 /* Reject writes, which are not page aligned */
1717 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1718 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1723 column
= to
& (mtd
->writesize
- 1);
1725 /* Loop until all data write */
1726 while (written
< len
) {
1727 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1728 u_char
*wbuf
= (u_char
*) buf
;
1730 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1732 /* Partial page write */
1733 subpage
= thislen
< mtd
->writesize
;
1735 memset(this->page_buf
, 0xff, mtd
->writesize
);
1736 memcpy(this->page_buf
+ column
, buf
, thislen
);
1737 wbuf
= this->page_buf
;
1740 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1741 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1743 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1745 onenand_panic_wait(mtd
);
1747 /* In partial page write we don't update bufferram */
1748 onenand_update_bufferram(mtd
, to
, !subpage
);
1749 if (ONENAND_IS_2PLANE(this)) {
1750 ONENAND_SET_BUFFERRAM1(this);
1751 onenand_update_bufferram(mtd
, to
+ this->writesize
, !subpage
);
1769 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1770 * @param mtd MTD device structure
1771 * @param oob_buf oob buffer
1772 * @param buf source address
1773 * @param column oob offset to write to
1774 * @param thislen oob length to write
1776 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1777 const u_char
*buf
, int column
, int thislen
)
1779 return mtd_ooblayout_set_databytes(mtd
, buf
, oob_buf
, column
, thislen
);
1783 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1784 * @param mtd MTD device structure
1785 * @param to offset to write to
1786 * @param ops oob operation description structure
1788 * Write main and/or oob with ECC
1790 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1791 struct mtd_oob_ops
*ops
)
1793 struct onenand_chip
*this = mtd
->priv
;
1794 int written
= 0, column
, thislen
= 0, subpage
= 0;
1795 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1796 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1797 size_t len
= ops
->len
;
1798 size_t ooblen
= ops
->ooblen
;
1799 const u_char
*buf
= ops
->datbuf
;
1800 const u_char
*oob
= ops
->oobbuf
;
1804 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1807 /* Initialize retlen, in case of early exit */
1811 /* Reject writes, which are not page aligned */
1812 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1813 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1818 /* Check zero length */
1821 oobsize
= mtd_oobavail(mtd
, ops
);
1822 oobcolumn
= to
& (mtd
->oobsize
- 1);
1824 column
= to
& (mtd
->writesize
- 1);
1826 /* Loop until all data write */
1828 if (written
< len
) {
1829 u_char
*wbuf
= (u_char
*) buf
;
1831 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1832 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1836 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1838 /* Partial page write */
1839 subpage
= thislen
< mtd
->writesize
;
1841 memset(this->page_buf
, 0xff, mtd
->writesize
);
1842 memcpy(this->page_buf
+ column
, buf
, thislen
);
1843 wbuf
= this->page_buf
;
1846 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1849 oobbuf
= this->oob_buf
;
1851 /* We send data to spare ram with oobsize
1852 * to prevent byte access */
1853 memset(oobbuf
, 0xff, mtd
->oobsize
);
1854 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1855 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1857 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1859 oobwritten
+= thisooblen
;
1863 oobbuf
= (u_char
*) ffchars
;
1865 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1867 ONENAND_SET_NEXT_BUFFERRAM(this);
1870 * 2 PLANE, MLC, and Flex-OneNAND do not support
1871 * write-while-program feature.
1873 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1874 ONENAND_SET_PREV_BUFFERRAM(this);
1876 ret
= this->wait(mtd
, FL_WRITING
);
1878 /* In partial page write we don't update bufferram */
1879 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1882 printk(KERN_ERR
"%s: write failed %d\n",
1887 if (written
== len
) {
1888 /* Only check verify write turn on */
1889 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1891 printk(KERN_ERR
"%s: verify failed %d\n",
1896 ONENAND_SET_NEXT_BUFFERRAM(this);
1900 cmd
= ONENAND_CMD_PROG
;
1902 /* Exclude 1st OTP and OTP blocks for cache program feature */
1903 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1904 likely(onenand_block(this, to
) != 0) &&
1905 ONENAND_IS_4KB_PAGE(this) &&
1906 ((written
+ thislen
) < len
)) {
1907 cmd
= ONENAND_CMD_2X_CACHE_PROG
;
1911 this->command(mtd
, cmd
, to
, mtd
->writesize
);
1914 * 2 PLANE, MLC, and Flex-OneNAND wait here
1916 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1917 ret
= this->wait(mtd
, FL_WRITING
);
1919 /* In partial page write we don't update bufferram */
1920 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1922 printk(KERN_ERR
"%s: write failed %d\n",
1927 /* Only check verify write turn on */
1928 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1930 printk(KERN_ERR
"%s: verify failed %d\n",
1944 prev_subpage
= subpage
;
1952 /* In error case, clear all bufferrams */
1954 onenand_invalidate_bufferram(mtd
, 0, -1);
1956 ops
->retlen
= written
;
1957 ops
->oobretlen
= oobwritten
;
1964 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1965 * @param mtd MTD device structure
1966 * @param to offset to write to
1967 * @param len number of bytes to write
1968 * @param retlen pointer to variable to store the number of written bytes
1969 * @param buf the data to write
1970 * @param mode operation mode
1972 * OneNAND write out-of-band
1974 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
1975 struct mtd_oob_ops
*ops
)
1977 struct onenand_chip
*this = mtd
->priv
;
1978 int column
, ret
= 0, oobsize
;
1979 int written
= 0, oobcmd
;
1981 size_t len
= ops
->ooblen
;
1982 const u_char
*buf
= ops
->oobbuf
;
1983 unsigned int mode
= ops
->mode
;
1987 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1990 /* Initialize retlen, in case of early exit */
1993 if (mode
== MTD_OPS_AUTO_OOB
)
1994 oobsize
= mtd
->oobavail
;
1996 oobsize
= mtd
->oobsize
;
1998 column
= to
& (mtd
->oobsize
- 1);
2000 if (unlikely(column
>= oobsize
)) {
2001 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2006 /* For compatibility with NAND: Do not allow write past end of page */
2007 if (unlikely(column
+ len
> oobsize
)) {
2008 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2013 oobbuf
= this->oob_buf
;
2015 oobcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2017 /* Loop until all data write */
2018 while (written
< len
) {
2019 int thislen
= min_t(int, oobsize
, len
- written
);
2023 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2025 /* We send data to spare ram with oobsize
2026 * to prevent byte access */
2027 memset(oobbuf
, 0xff, mtd
->oobsize
);
2028 if (mode
== MTD_OPS_AUTO_OOB
)
2029 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2031 memcpy(oobbuf
+ column
, buf
, thislen
);
2032 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2034 if (ONENAND_IS_4KB_PAGE(this)) {
2035 /* Set main area of DataRAM to 0xff*/
2036 memset(this->page_buf
, 0xff, mtd
->writesize
);
2037 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2038 this->page_buf
, 0, mtd
->writesize
);
2041 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2043 onenand_update_bufferram(mtd
, to
, 0);
2044 if (ONENAND_IS_2PLANE(this)) {
2045 ONENAND_SET_BUFFERRAM1(this);
2046 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2049 ret
= this->wait(mtd
, FL_WRITING
);
2051 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2055 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2057 printk(KERN_ERR
"%s: verify failed %d\n",
2066 to
+= mtd
->writesize
;
2071 ops
->oobretlen
= written
;
2077 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2078 * @param mtd: MTD device structure
2079 * @param to: offset to write
2080 * @param ops: oob operation description structure
2082 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2083 struct mtd_oob_ops
*ops
)
2087 switch (ops
->mode
) {
2088 case MTD_OPS_PLACE_OOB
:
2089 case MTD_OPS_AUTO_OOB
:
2092 /* Not implemented yet */
2097 onenand_get_device(mtd
, FL_WRITING
);
2099 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2101 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2102 onenand_release_device(mtd
);
2108 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2109 * @param mtd MTD device structure
2110 * @param ofs offset from device start
2111 * @param allowbbt 1, if its allowed to access the bbt area
2113 * Check, if the block is bad. Either by reading the bad block table or
2114 * calling of the scan function.
2116 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2118 struct onenand_chip
*this = mtd
->priv
;
2119 struct bbm_info
*bbm
= this->bbm
;
2121 /* Return info from the table */
2122 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2126 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2127 struct erase_info
*instr
)
2129 struct onenand_chip
*this = mtd
->priv
;
2130 loff_t addr
= instr
->addr
;
2131 int len
= instr
->len
;
2132 unsigned int block_size
= (1 << this->erase_shift
);
2136 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2137 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2139 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2140 __func__
, onenand_block(this, addr
));
2141 instr
->fail_addr
= addr
;
2151 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2152 * @param mtd MTD device structure
2153 * @param instr erase instruction
2154 * @param region erase region
2156 * Erase one or more blocks up to 64 block at a time
2158 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2159 struct erase_info
*instr
,
2160 unsigned int block_size
)
2162 struct onenand_chip
*this = mtd
->priv
;
2163 loff_t addr
= instr
->addr
;
2164 int len
= instr
->len
;
2169 if (ONENAND_IS_DDP(this)) {
2170 loff_t bdry_addr
= this->chipsize
>> 1;
2171 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2172 bdry_block
= bdry_addr
>> this->erase_shift
;
2177 /* Check if we have a bad block, we do not erase bad blocks */
2178 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2179 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2180 "at addr 0x%012llx\n",
2181 __func__
, (unsigned long long) addr
);
2191 /* loop over 64 eb batches */
2193 struct erase_info verify_instr
= *instr
;
2194 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2196 verify_instr
.addr
= addr
;
2197 verify_instr
.len
= 0;
2199 /* do not cross chip boundary */
2201 int this_block
= (addr
>> this->erase_shift
);
2203 if (this_block
< bdry_block
) {
2204 max_eb_count
= min(max_eb_count
,
2205 (bdry_block
- this_block
));
2211 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2212 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2214 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2216 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2218 printk(KERN_ERR
"%s: Failed multiblock erase, "
2219 "block %d\n", __func__
,
2220 onenand_block(this, addr
));
2221 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2230 /* last block of 64-eb series */
2232 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2233 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2235 ret
= this->wait(mtd
, FL_ERASING
);
2236 /* Check if it is write protected */
2238 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2239 __func__
, onenand_block(this, addr
));
2240 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2249 verify_instr
.len
= eb_count
* block_size
;
2250 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2251 instr
->fail_addr
= verify_instr
.fail_addr
;
2261 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2262 * @param mtd MTD device structure
2263 * @param instr erase instruction
2264 * @param region erase region
2265 * @param block_size erase block size
2267 * Erase one or more blocks one block at a time
2269 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2270 struct erase_info
*instr
,
2271 struct mtd_erase_region_info
*region
,
2272 unsigned int block_size
)
2274 struct onenand_chip
*this = mtd
->priv
;
2275 loff_t addr
= instr
->addr
;
2276 int len
= instr
->len
;
2277 loff_t region_end
= 0;
2281 /* region is set for Flex-OneNAND */
2282 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2285 /* Loop through the blocks */
2289 /* Check if we have a bad block, we do not erase bad blocks */
2290 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2291 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2292 "at addr 0x%012llx\n",
2293 __func__
, (unsigned long long) addr
);
2297 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2299 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2301 ret
= this->wait(mtd
, FL_ERASING
);
2302 /* Check, if it is write protected */
2304 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2305 __func__
, onenand_block(this, addr
));
2306 instr
->fail_addr
= addr
;
2313 if (region
&& addr
== region_end
) {
2318 block_size
= region
->erasesize
;
2319 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2321 if (len
& (block_size
- 1)) {
2322 /* FIXME: This should be handled at MTD partitioning level. */
2323 printk(KERN_ERR
"%s: Unaligned address\n",
2333 * onenand_erase - [MTD Interface] erase block(s)
2334 * @param mtd MTD device structure
2335 * @param instr erase instruction
2337 * Erase one or more blocks
2339 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2341 struct onenand_chip
*this = mtd
->priv
;
2342 unsigned int block_size
;
2343 loff_t addr
= instr
->addr
;
2344 loff_t len
= instr
->len
;
2346 struct mtd_erase_region_info
*region
= NULL
;
2347 loff_t region_offset
= 0;
2349 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__
,
2350 (unsigned long long)instr
->addr
,
2351 (unsigned long long)instr
->len
);
2353 if (FLEXONENAND(this)) {
2354 /* Find the eraseregion of this address */
2355 int i
= flexonenand_region(mtd
, addr
);
2357 region
= &mtd
->eraseregions
[i
];
2358 block_size
= region
->erasesize
;
2360 /* Start address within region must align on block boundary.
2361 * Erase region's start offset is always block start address.
2363 region_offset
= region
->offset
;
2365 block_size
= 1 << this->erase_shift
;
2367 /* Start address must align on block boundary */
2368 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2369 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2373 /* Length must align on block boundary */
2374 if (unlikely(len
& (block_size
- 1))) {
2375 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2379 /* Grab the lock and see if the device is available */
2380 onenand_get_device(mtd
, FL_ERASING
);
2382 if (ONENAND_IS_4KB_PAGE(this) || region
||
2383 instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2384 /* region is set for Flex-OneNAND (no mb erase) */
2385 ret
= onenand_block_by_block_erase(mtd
, instr
,
2386 region
, block_size
);
2388 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2391 /* Deselect and wake up anyone waiting on the device */
2392 onenand_release_device(mtd
);
2398 * onenand_sync - [MTD Interface] sync
2399 * @param mtd MTD device structure
2401 * Sync is actually a wait for chip ready function
2403 static void onenand_sync(struct mtd_info
*mtd
)
2405 pr_debug("%s: called\n", __func__
);
2407 /* Grab the lock and see if the device is available */
2408 onenand_get_device(mtd
, FL_SYNCING
);
2410 /* Release it and go back */
2411 onenand_release_device(mtd
);
2415 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2416 * @param mtd MTD device structure
2417 * @param ofs offset relative to mtd start
2419 * Check whether the block is bad
2421 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2425 onenand_get_device(mtd
, FL_READING
);
2426 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2427 onenand_release_device(mtd
);
2432 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2433 * @param mtd MTD device structure
2434 * @param ofs offset from device start
2436 * This is the default implementation, which can be overridden by
2437 * a hardware specific driver.
2439 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2441 struct onenand_chip
*this = mtd
->priv
;
2442 struct bbm_info
*bbm
= this->bbm
;
2443 u_char buf
[2] = {0, 0};
2444 struct mtd_oob_ops ops
= {
2445 .mode
= MTD_OPS_PLACE_OOB
,
2452 /* Get block number */
2453 block
= onenand_block(this, ofs
);
2455 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2457 /* We write two bytes, so we don't have to mess with 16-bit access */
2458 ofs
+= mtd
->oobsize
+ (this->badblockpos
& ~0x01);
2459 /* FIXME : What to do when marking SLC block in partition
2460 * with MLC erasesize? For now, it is not advisable to
2461 * create partitions containing both SLC and MLC regions.
2463 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2467 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2468 * @param mtd MTD device structure
2469 * @param ofs offset relative to mtd start
2471 * Mark the block as bad
2473 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2475 struct onenand_chip
*this = mtd
->priv
;
2478 ret
= onenand_block_isbad(mtd
, ofs
);
2480 /* If it was bad already, return success and do nothing */
2486 onenand_get_device(mtd
, FL_WRITING
);
2487 ret
= this->block_markbad(mtd
, ofs
);
2488 onenand_release_device(mtd
);
2493 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2494 * @param mtd MTD device structure
2495 * @param ofs offset relative to mtd start
2496 * @param len number of bytes to lock or unlock
2497 * @param cmd lock or unlock command
2499 * Lock or unlock one or more blocks
2501 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2503 struct onenand_chip
*this = mtd
->priv
;
2504 int start
, end
, block
, value
, status
;
2507 start
= onenand_block(this, ofs
);
2508 end
= onenand_block(this, ofs
+ len
) - 1;
2510 if (cmd
== ONENAND_CMD_LOCK
)
2511 wp_status_mask
= ONENAND_WP_LS
;
2513 wp_status_mask
= ONENAND_WP_US
;
2515 /* Continuous lock scheme */
2516 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2517 /* Set start block address */
2518 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2519 /* Set end block address */
2520 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2521 /* Write lock command */
2522 this->command(mtd
, cmd
, 0, 0);
2524 /* There's no return value */
2525 this->wait(mtd
, FL_LOCKING
);
2528 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2529 & ONENAND_CTRL_ONGO
)
2532 /* Check lock status */
2533 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2534 if (!(status
& wp_status_mask
))
2535 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2541 /* Block lock scheme */
2542 for (block
= start
; block
< end
+ 1; block
++) {
2543 /* Set block address */
2544 value
= onenand_block_address(this, block
);
2545 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2546 /* Select DataRAM for DDP */
2547 value
= onenand_bufferram_address(this, block
);
2548 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2549 /* Set start block address */
2550 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2551 /* Write lock command */
2552 this->command(mtd
, cmd
, 0, 0);
2554 /* There's no return value */
2555 this->wait(mtd
, FL_LOCKING
);
2558 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2559 & ONENAND_CTRL_ONGO
)
2562 /* Check lock status */
2563 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2564 if (!(status
& wp_status_mask
))
2565 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2566 __func__
, block
, status
);
2573 * onenand_lock - [MTD Interface] Lock block(s)
2574 * @param mtd MTD device structure
2575 * @param ofs offset relative to mtd start
2576 * @param len number of bytes to unlock
2578 * Lock one or more blocks
2580 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2584 onenand_get_device(mtd
, FL_LOCKING
);
2585 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2586 onenand_release_device(mtd
);
2591 * onenand_unlock - [MTD Interface] Unlock block(s)
2592 * @param mtd MTD device structure
2593 * @param ofs offset relative to mtd start
2594 * @param len number of bytes to unlock
2596 * Unlock one or more blocks
2598 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2602 onenand_get_device(mtd
, FL_LOCKING
);
2603 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2604 onenand_release_device(mtd
);
2609 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2610 * @param this onenand chip data structure
2614 static int onenand_check_lock_status(struct onenand_chip
*this)
2616 unsigned int value
, block
, status
;
2619 end
= this->chipsize
>> this->erase_shift
;
2620 for (block
= 0; block
< end
; block
++) {
2621 /* Set block address */
2622 value
= onenand_block_address(this, block
);
2623 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2624 /* Select DataRAM for DDP */
2625 value
= onenand_bufferram_address(this, block
);
2626 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2627 /* Set start block address */
2628 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2630 /* Check lock status */
2631 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2632 if (!(status
& ONENAND_WP_US
)) {
2633 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2634 __func__
, block
, status
);
2643 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2644 * @param mtd MTD device structure
2648 static void onenand_unlock_all(struct mtd_info
*mtd
)
2650 struct onenand_chip
*this = mtd
->priv
;
2652 loff_t len
= mtd
->size
;
2654 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2655 /* Set start block address */
2656 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2657 /* Write unlock command */
2658 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2660 /* There's no return value */
2661 this->wait(mtd
, FL_LOCKING
);
2664 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2665 & ONENAND_CTRL_ONGO
)
2668 /* Don't check lock status */
2669 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2672 /* Check lock status */
2673 if (onenand_check_lock_status(this))
2676 /* Workaround for all block unlock in DDP */
2677 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2678 /* All blocks on another chip */
2679 ofs
= this->chipsize
>> 1;
2680 len
= this->chipsize
>> 1;
2684 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2687 #ifdef CONFIG_MTD_ONENAND_OTP
2690 * onenand_otp_command - Send OTP specific command to OneNAND device
2691 * @param mtd MTD device structure
2692 * @param cmd the command to be sent
2693 * @param addr offset to read from or write to
2694 * @param len number of bytes to read or write
2696 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2699 struct onenand_chip
*this = mtd
->priv
;
2700 int value
, block
, page
;
2702 /* Address translation */
2704 case ONENAND_CMD_OTP_ACCESS
:
2705 block
= (int) (addr
>> this->erase_shift
);
2710 block
= (int) (addr
>> this->erase_shift
);
2711 page
= (int) (addr
>> this->page_shift
);
2713 if (ONENAND_IS_2PLANE(this)) {
2714 /* Make the even block number */
2716 /* Is it the odd plane? */
2717 if (addr
& this->writesize
)
2721 page
&= this->page_mask
;
2726 /* Write 'DFS, FBA' of Flash */
2727 value
= onenand_block_address(this, block
);
2728 this->write_word(value
, this->base
+
2729 ONENAND_REG_START_ADDRESS1
);
2733 /* Now we use page size operation */
2734 int sectors
= 4, count
= 4;
2739 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2740 cmd
= ONENAND_CMD_2X_PROG
;
2741 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2745 /* Write 'FPA, FSA' of Flash */
2746 value
= onenand_page_address(page
, sectors
);
2747 this->write_word(value
, this->base
+
2748 ONENAND_REG_START_ADDRESS8
);
2750 /* Write 'BSA, BSC' of DataRAM */
2751 value
= onenand_buffer_address(dataram
, sectors
, count
);
2752 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2755 /* Interrupt clear */
2756 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2759 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2765 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2766 * @param mtd MTD device structure
2767 * @param to offset to write to
2768 * @param len number of bytes to write
2769 * @param retlen pointer to variable to store the number of written bytes
2770 * @param buf the data to write
2772 * OneNAND write out-of-band only for OTP
2774 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2775 struct mtd_oob_ops
*ops
)
2777 struct onenand_chip
*this = mtd
->priv
;
2778 int column
, ret
= 0, oobsize
;
2781 size_t len
= ops
->ooblen
;
2782 const u_char
*buf
= ops
->oobbuf
;
2783 int block
, value
, status
;
2787 /* Initialize retlen, in case of early exit */
2790 oobsize
= mtd
->oobsize
;
2792 column
= to
& (mtd
->oobsize
- 1);
2794 oobbuf
= this->oob_buf
;
2796 /* Loop until all data write */
2797 while (written
< len
) {
2798 int thislen
= min_t(int, oobsize
, len
- written
);
2802 block
= (int) (to
>> this->erase_shift
);
2804 * Write 'DFS, FBA' of Flash
2805 * Add: F100h DQ=DFS, FBA
2808 value
= onenand_block_address(this, block
);
2809 this->write_word(value
, this->base
+
2810 ONENAND_REG_START_ADDRESS1
);
2813 * Select DataRAM for DDP
2817 value
= onenand_bufferram_address(this, block
);
2818 this->write_word(value
, this->base
+
2819 ONENAND_REG_START_ADDRESS2
);
2820 ONENAND_SET_NEXT_BUFFERRAM(this);
2823 * Enter OTP access mode
2825 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2826 this->wait(mtd
, FL_OTPING
);
2828 /* We send data to spare ram with oobsize
2829 * to prevent byte access */
2830 memcpy(oobbuf
+ column
, buf
, thislen
);
2833 * Write Data into DataRAM
2835 * in sector0/spare/page0
2838 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2839 oobbuf
, 0, mtd
->oobsize
);
2841 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2842 onenand_update_bufferram(mtd
, to
, 0);
2843 if (ONENAND_IS_2PLANE(this)) {
2844 ONENAND_SET_BUFFERRAM1(this);
2845 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2848 ret
= this->wait(mtd
, FL_WRITING
);
2850 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2854 /* Exit OTP access mode */
2855 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2856 this->wait(mtd
, FL_RESETING
);
2858 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2861 if (status
== 0x60) {
2862 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2863 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2864 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2865 } else if (status
== 0x20) {
2866 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2867 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2868 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2869 } else if (status
== 0x40) {
2870 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2871 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2872 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2874 printk(KERN_DEBUG
"Reboot to check\n");
2881 to
+= mtd
->writesize
;
2886 ops
->oobretlen
= written
;
2891 /* Internal OTP operation */
2892 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
2893 size_t *retlen
, u_char
*buf
);
2896 * do_otp_read - [DEFAULT] Read OTP block area
2897 * @param mtd MTD device structure
2898 * @param from The offset to read
2899 * @param len number of bytes to read
2900 * @param retlen pointer to variable to store the number of readbytes
2901 * @param buf the databuffer to put/get data
2903 * Read OTP block area.
2905 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2906 size_t *retlen
, u_char
*buf
)
2908 struct onenand_chip
*this = mtd
->priv
;
2909 struct mtd_oob_ops ops
= {
2917 /* Enter OTP access mode */
2918 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2919 this->wait(mtd
, FL_OTPING
);
2921 ret
= ONENAND_IS_4KB_PAGE(this) ?
2922 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
2923 onenand_read_ops_nolock(mtd
, from
, &ops
);
2925 /* Exit OTP access mode */
2926 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2927 this->wait(mtd
, FL_RESETING
);
2933 * do_otp_write - [DEFAULT] Write OTP block area
2934 * @param mtd MTD device structure
2935 * @param to The offset to write
2936 * @param len number of bytes to write
2937 * @param retlen pointer to variable to store the number of write bytes
2938 * @param buf the databuffer to put/get data
2940 * Write OTP block area.
2942 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2943 size_t *retlen
, u_char
*buf
)
2945 struct onenand_chip
*this = mtd
->priv
;
2946 unsigned char *pbuf
= buf
;
2948 struct mtd_oob_ops ops
;
2950 /* Force buffer page aligned */
2951 if (len
< mtd
->writesize
) {
2952 memcpy(this->page_buf
, buf
, len
);
2953 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
2954 pbuf
= this->page_buf
;
2955 len
= mtd
->writesize
;
2958 /* Enter OTP access mode */
2959 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2960 this->wait(mtd
, FL_OTPING
);
2966 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2967 *retlen
= ops
.retlen
;
2969 /* Exit OTP access mode */
2970 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2971 this->wait(mtd
, FL_RESETING
);
2977 * do_otp_lock - [DEFAULT] Lock OTP block area
2978 * @param mtd MTD device structure
2979 * @param from The offset to lock
2980 * @param len number of bytes to lock
2981 * @param retlen pointer to variable to store the number of lock bytes
2982 * @param buf the databuffer to put/get data
2984 * Lock OTP block area.
2986 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2987 size_t *retlen
, u_char
*buf
)
2989 struct onenand_chip
*this = mtd
->priv
;
2990 struct mtd_oob_ops ops
;
2993 if (FLEXONENAND(this)) {
2995 /* Enter OTP access mode */
2996 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2997 this->wait(mtd
, FL_OTPING
);
2999 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3000 * main area of page 49.
3002 ops
.len
= mtd
->writesize
;
3006 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3007 *retlen
= ops
.retlen
;
3009 /* Exit OTP access mode */
3010 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3011 this->wait(mtd
, FL_RESETING
);
3013 ops
.mode
= MTD_OPS_PLACE_OOB
;
3017 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3018 *retlen
= ops
.oobretlen
;
3025 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3026 * @param mtd MTD device structure
3027 * @param from The offset to read/write
3028 * @param len number of bytes to read/write
3029 * @param retlen pointer to variable to store the number of read bytes
3030 * @param buf the databuffer to put/get data
3031 * @param action do given action
3032 * @param mode specify user and factory
3034 * Handle OTP operation.
3036 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3037 size_t *retlen
, u_char
*buf
,
3038 otp_op_t action
, int mode
)
3040 struct onenand_chip
*this = mtd
->priv
;
3047 density
= onenand_get_density(this->device_id
);
3048 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3053 if (mode
== MTD_OTP_FACTORY
) {
3054 from
+= mtd
->writesize
* otp_pages
;
3055 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3058 /* Check User/Factory boundary */
3059 if (mode
== MTD_OTP_USER
) {
3060 if (mtd
->writesize
* otp_pages
< from
+ len
)
3063 if (mtd
->writesize
* otp_pages
< len
)
3067 onenand_get_device(mtd
, FL_OTPING
);
3068 while (len
> 0 && otp_pages
> 0) {
3069 if (!action
) { /* OTP Info functions */
3070 struct otp_info
*otpinfo
;
3072 len
-= sizeof(struct otp_info
);
3078 otpinfo
= (struct otp_info
*) buf
;
3079 otpinfo
->start
= from
;
3080 otpinfo
->length
= mtd
->writesize
;
3081 otpinfo
->locked
= 0;
3083 from
+= mtd
->writesize
;
3084 buf
+= sizeof(struct otp_info
);
3085 *retlen
+= sizeof(struct otp_info
);
3089 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3095 *retlen
+= tmp_retlen
;
3100 onenand_release_device(mtd
);
3106 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3107 * @param mtd MTD device structure
3108 * @param len number of bytes to read
3109 * @param retlen pointer to variable to store the number of read bytes
3110 * @param buf the databuffer to put/get data
3112 * Read factory OTP info.
3114 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
3115 size_t *retlen
, struct otp_info
*buf
)
3117 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3122 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3123 * @param mtd MTD device structure
3124 * @param from The offset to read
3125 * @param len number of bytes to read
3126 * @param retlen pointer to variable to store the number of read bytes
3127 * @param buf the databuffer to put/get data
3129 * Read factory OTP area.
3131 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3132 size_t len
, size_t *retlen
, u_char
*buf
)
3134 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3138 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3139 * @param mtd MTD device structure
3140 * @param retlen pointer to variable to store the number of read bytes
3141 * @param len number of bytes to read
3142 * @param buf the databuffer to put/get data
3144 * Read user OTP info.
3146 static int onenand_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
3147 size_t *retlen
, struct otp_info
*buf
)
3149 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3154 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3155 * @param mtd MTD device structure
3156 * @param from The offset to read
3157 * @param len number of bytes to read
3158 * @param retlen pointer to variable to store the number of read bytes
3159 * @param buf the databuffer to put/get data
3161 * Read user OTP area.
3163 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3164 size_t len
, size_t *retlen
, u_char
*buf
)
3166 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3170 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3171 * @param mtd MTD device structure
3172 * @param from The offset to write
3173 * @param len number of bytes to write
3174 * @param retlen pointer to variable to store the number of write bytes
3175 * @param buf the databuffer to put/get data
3177 * Write user OTP area.
3179 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3180 size_t len
, size_t *retlen
, u_char
*buf
)
3182 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3186 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3187 * @param mtd MTD device structure
3188 * @param from The offset to lock
3189 * @param len number of bytes to unlock
3191 * Write lock mark on spare area in page 0 in OTP block
3193 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3196 struct onenand_chip
*this = mtd
->priv
;
3197 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3200 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3202 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3205 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3206 * We write 16 bytes spare area instead of 2 bytes.
3207 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3208 * main area of page 49.
3212 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3215 * Note: OTP lock operation
3216 * OTP block : 0xXXFC XX 1111 1100
3217 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3218 * Both : 0xXXF0 (If chip support) XX 1111 0000
3220 if (FLEXONENAND(this))
3221 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3223 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3225 buf
[otp_lock_offset
] = 0xFC;
3227 buf
[otp_lock_offset
] = 0xF3;
3229 buf
[otp_lock_offset
] = 0xF0;
3231 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3233 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3235 return ret
? : retlen
;
3238 #endif /* CONFIG_MTD_ONENAND_OTP */
3241 * onenand_check_features - Check and set OneNAND features
3242 * @param mtd MTD data structure
3244 * Check and set OneNAND features
3248 static void onenand_check_features(struct mtd_info
*mtd
)
3250 struct onenand_chip
*this = mtd
->priv
;
3251 unsigned int density
, process
, numbufs
;
3253 /* Lock scheme depends on density and process */
3254 density
= onenand_get_density(this->device_id
);
3255 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3256 numbufs
= this->read_word(this->base
+ ONENAND_REG_NUM_BUFFERS
) >> 8;
3260 case ONENAND_DEVICE_DENSITY_8Gb
:
3261 this->options
|= ONENAND_HAS_NOP_1
;
3263 case ONENAND_DEVICE_DENSITY_4Gb
:
3264 if (ONENAND_IS_DDP(this))
3265 this->options
|= ONENAND_HAS_2PLANE
;
3266 else if (numbufs
== 1) {
3267 this->options
|= ONENAND_HAS_4KB_PAGE
;
3268 this->options
|= ONENAND_HAS_CACHE_PROGRAM
;
3270 * There are two different 4KiB pagesize chips
3271 * and no way to detect it by H/W config values.
3273 * To detect the correct NOP for each chips,
3274 * It should check the version ID as workaround.
3276 * Now it has as following
3277 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3278 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3280 if ((this->version_id
& 0xf) == 0xe)
3281 this->options
|= ONENAND_HAS_NOP_1
;
3283 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3286 case ONENAND_DEVICE_DENSITY_2Gb
:
3287 /* 2Gb DDP does not have 2 plane */
3288 if (!ONENAND_IS_DDP(this))
3289 this->options
|= ONENAND_HAS_2PLANE
;
3290 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3293 case ONENAND_DEVICE_DENSITY_1Gb
:
3294 /* A-Die has all block unlock */
3296 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3300 /* Some OneNAND has continuous lock scheme */
3302 this->options
|= ONENAND_HAS_CONT_LOCK
;
3306 /* The MLC has 4KiB pagesize. */
3307 if (ONENAND_IS_MLC(this))
3308 this->options
|= ONENAND_HAS_4KB_PAGE
;
3310 if (ONENAND_IS_4KB_PAGE(this))
3311 this->options
&= ~ONENAND_HAS_2PLANE
;
3313 if (FLEXONENAND(this)) {
3314 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3315 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3318 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3319 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3320 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3321 printk(KERN_DEBUG
"Chip support all block unlock\n");
3322 if (this->options
& ONENAND_HAS_2PLANE
)
3323 printk(KERN_DEBUG
"Chip has 2 plane\n");
3324 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3325 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3326 if (this->options
& ONENAND_HAS_CACHE_PROGRAM
)
3327 printk(KERN_DEBUG
"Chip has cache program feature\n");
3331 * onenand_print_device_info - Print device & version ID
3332 * @param device device ID
3333 * @param version version ID
3335 * Print device & version ID
3337 static void onenand_print_device_info(int device
, int version
)
3339 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3341 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3342 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3343 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3344 density
= onenand_get_density(device
);
3345 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3346 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3347 demuxed
? "" : "Muxed ",
3348 flexonenand
? "Flex-" : "",
3351 vcc
? "2.65/3.3" : "1.8",
3353 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3356 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3357 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3358 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3362 * onenand_check_maf - Check manufacturer ID
3363 * @param manuf manufacturer ID
3365 * Check manufacturer ID
3367 static int onenand_check_maf(int manuf
)
3369 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3373 for (i
= 0; i
< size
; i
++)
3374 if (manuf
== onenand_manuf_ids
[i
].id
)
3378 name
= onenand_manuf_ids
[i
].name
;
3382 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3388 * flexonenand_get_boundary - Reads the SLC boundary
3389 * @param onenand_info - onenand info structure
3391 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3393 struct onenand_chip
*this = mtd
->priv
;
3398 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3399 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3401 for (die
= 0; die
< this->dies
; die
++) {
3402 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3403 this->wait(mtd
, FL_SYNCING
);
3405 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3406 this->wait(mtd
, FL_READING
);
3408 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3409 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3413 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3415 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3416 this->wait(mtd
, FL_RESETING
);
3418 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3419 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3423 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3428 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3429 * boundary[], diesize[], mtd->size, mtd->erasesize
3430 * @param mtd - MTD device structure
3432 static void flexonenand_get_size(struct mtd_info
*mtd
)
3434 struct onenand_chip
*this = mtd
->priv
;
3435 int die
, i
, eraseshift
, density
;
3436 int blksperdie
, maxbdry
;
3439 density
= onenand_get_density(this->device_id
);
3440 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3441 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3442 maxbdry
= blksperdie
- 1;
3443 eraseshift
= this->erase_shift
- 1;
3445 mtd
->numeraseregions
= this->dies
<< 1;
3447 /* This fills up the device boundary */
3448 flexonenand_get_boundary(mtd
);
3451 for (; die
< this->dies
; die
++) {
3452 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3454 mtd
->eraseregions
[i
].offset
= ofs
;
3455 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3456 mtd
->eraseregions
[i
].numblocks
=
3457 this->boundary
[die
] + 1;
3458 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3461 mtd
->numeraseregions
-= 1;
3462 mtd
->eraseregions
[i
].numblocks
+=
3463 this->boundary
[die
] + 1;
3464 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3466 if (this->boundary
[die
] != maxbdry
) {
3468 mtd
->eraseregions
[i
].offset
= ofs
;
3469 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3470 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3471 this->boundary
[die
];
3472 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3475 mtd
->numeraseregions
-= 1;
3478 /* Expose MLC erase size except when all blocks are SLC */
3479 mtd
->erasesize
= 1 << this->erase_shift
;
3480 if (mtd
->numeraseregions
== 1)
3481 mtd
->erasesize
>>= 1;
3483 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3484 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3485 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3486 " numblocks: %04u]\n",
3487 (unsigned int) mtd
->eraseregions
[i
].offset
,
3488 mtd
->eraseregions
[i
].erasesize
,
3489 mtd
->eraseregions
[i
].numblocks
);
3491 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3492 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3493 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3494 << (this->erase_shift
- 1);
3495 mtd
->size
+= this->diesize
[die
];
3500 * flexonenand_check_blocks_erased - Check if blocks are erased
3501 * @param mtd_info - mtd info structure
3502 * @param start - first erase block to check
3503 * @param end - last erase block to check
3505 * Converting an unerased block from MLC to SLC
3506 * causes byte values to change. Since both data and its ECC
3507 * have changed, reads on the block give uncorrectable error.
3508 * This might lead to the block being detected as bad.
3510 * Avoid this by ensuring that the block to be converted is
3513 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3515 struct onenand_chip
*this = mtd
->priv
;
3518 struct mtd_oob_ops ops
= {
3519 .mode
= MTD_OPS_PLACE_OOB
,
3521 .ooblen
= mtd
->oobsize
,
3523 .oobbuf
= this->oob_buf
,
3527 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3529 for (block
= start
; block
<= end
; block
++) {
3530 addr
= flexonenand_addr(this, block
);
3531 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3535 * Since main area write results in ECC write to spare,
3536 * it is sufficient to check only ECC bytes for change.
3538 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3542 for (i
= 0; i
< mtd
->oobsize
; i
++)
3543 if (this->oob_buf
[i
] != 0xff)
3546 if (i
!= mtd
->oobsize
) {
3547 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3557 * flexonenand_set_boundary - Writes the SLC boundary
3558 * @param mtd - mtd info structure
3560 static int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3561 int boundary
, int lock
)
3563 struct onenand_chip
*this = mtd
->priv
;
3564 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3567 /* Change only once for SDP Flex-OneNAND */
3568 if (die
&& (!ONENAND_IS_DDP(this)))
3571 /* boundary value of -1 indicates no required change */
3572 if (boundary
< 0 || boundary
== this->boundary
[die
])
3575 density
= onenand_get_density(this->device_id
);
3576 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3577 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3579 if (boundary
>= blksperdie
) {
3580 printk(KERN_ERR
"%s: Invalid boundary value. "
3581 "Boundary not changed.\n", __func__
);
3585 /* Check if converting blocks are erased */
3586 old
= this->boundary
[die
] + (die
* this->density_mask
);
3587 new = boundary
+ (die
* this->density_mask
);
3588 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3590 printk(KERN_ERR
"%s: Please erase blocks "
3591 "before boundary change\n", __func__
);
3595 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3596 this->wait(mtd
, FL_SYNCING
);
3598 /* Check is boundary is locked */
3599 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3600 this->wait(mtd
, FL_READING
);
3602 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3603 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3604 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3609 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3610 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3612 addr
= die
? this->diesize
[0] : 0;
3614 boundary
&= FLEXONENAND_PI_MASK
;
3615 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3617 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3618 ret
= this->wait(mtd
, FL_ERASING
);
3620 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3625 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3626 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3627 ret
= this->wait(mtd
, FL_WRITING
);
3629 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3634 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3635 ret
= this->wait(mtd
, FL_WRITING
);
3637 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3638 this->wait(mtd
, FL_RESETING
);
3640 /* Recalculate device size on boundary change*/
3641 flexonenand_get_size(mtd
);
3647 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3648 * @param mtd MTD device structure
3650 * OneNAND detection method:
3651 * Compare the values from command with ones from register
3653 static int onenand_chip_probe(struct mtd_info
*mtd
)
3655 struct onenand_chip
*this = mtd
->priv
;
3656 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
;
3659 /* Save system configuration 1 */
3660 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3661 /* Clear Sync. Burst Read mode to read BootRAM */
3662 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3664 /* Send the command for reading device ID from BootRAM */
3665 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3667 /* Read manufacturer and device IDs from BootRAM */
3668 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3669 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3671 /* Reset OneNAND to read default register values */
3672 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3674 this->wait(mtd
, FL_RESETING
);
3676 /* Restore system configuration 1 */
3677 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3679 /* Check manufacturer ID */
3680 if (onenand_check_maf(bram_maf_id
))
3683 /* Read manufacturer and device IDs from Register */
3684 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3685 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3687 /* Check OneNAND device */
3688 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3695 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3696 * @param mtd MTD device structure
3698 static int onenand_probe(struct mtd_info
*mtd
)
3700 struct onenand_chip
*this = mtd
->priv
;
3705 ret
= this->chip_probe(mtd
);
3709 /* Device and version IDs from Register */
3710 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3711 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3712 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3714 /* Flash device information */
3715 onenand_print_device_info(dev_id
, ver_id
);
3716 this->device_id
= dev_id
;
3717 this->version_id
= ver_id
;
3719 /* Check OneNAND features */
3720 onenand_check_features(mtd
);
3722 density
= onenand_get_density(dev_id
);
3723 if (FLEXONENAND(this)) {
3724 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3725 /* Maximum possible erase regions */
3726 mtd
->numeraseregions
= this->dies
<< 1;
3728 kcalloc(this->dies
<< 1,
3729 sizeof(struct mtd_erase_region_info
),
3731 if (!mtd
->eraseregions
)
3736 * For Flex-OneNAND, chipsize represents maximum possible device size.
3737 * mtd->size represents the actual device size.
3739 this->chipsize
= (16 << density
) << 20;
3741 /* OneNAND page size & block size */
3742 /* The data buffer size is equal to page size */
3743 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3744 /* We use the full BufferRAM */
3745 if (ONENAND_IS_4KB_PAGE(this))
3746 mtd
->writesize
<<= 1;
3748 mtd
->oobsize
= mtd
->writesize
>> 5;
3749 /* Pages per a block are always 64 in OneNAND */
3750 mtd
->erasesize
= mtd
->writesize
<< 6;
3752 * Flex-OneNAND SLC area has 64 pages per block.
3753 * Flex-OneNAND MLC area has 128 pages per block.
3754 * Expose MLC erase size to find erase_shift and page_mask.
3756 if (FLEXONENAND(this))
3757 mtd
->erasesize
<<= 1;
3759 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3760 this->page_shift
= ffs(mtd
->writesize
) - 1;
3761 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3762 /* Set density mask. it is used for DDP */
3763 if (ONENAND_IS_DDP(this))
3764 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3765 /* It's real page size */
3766 this->writesize
= mtd
->writesize
;
3768 /* REVISIT: Multichip handling */
3770 if (FLEXONENAND(this))
3771 flexonenand_get_size(mtd
);
3773 mtd
->size
= this->chipsize
;
3776 * We emulate the 4KiB page and 256KiB erase block size
3777 * But oobsize is still 64 bytes.
3778 * It is only valid if you turn on 2X program support,
3779 * Otherwise it will be ignored by compiler.
3781 if (ONENAND_IS_2PLANE(this)) {
3782 mtd
->writesize
<<= 1;
3783 mtd
->erasesize
<<= 1;
3790 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3791 * @param mtd MTD device structure
3793 static int onenand_suspend(struct mtd_info
*mtd
)
3795 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3799 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3800 * @param mtd MTD device structure
3802 static void onenand_resume(struct mtd_info
*mtd
)
3804 struct onenand_chip
*this = mtd
->priv
;
3806 if (this->state
== FL_PM_SUSPENDED
)
3807 onenand_release_device(mtd
);
3809 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3810 "in suspended state\n", __func__
);
3814 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3815 * @param mtd MTD device structure
3816 * @param maxchips Number of chips to scan for
3818 * This fills out all the not initialized function pointers
3819 * with the defaults.
3820 * The flash ID is read and the mtd/chip structures are
3821 * filled with the appropriate values.
3823 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3826 struct onenand_chip
*this = mtd
->priv
;
3828 if (!this->read_word
)
3829 this->read_word
= onenand_readw
;
3830 if (!this->write_word
)
3831 this->write_word
= onenand_writew
;
3834 this->command
= onenand_command
;
3836 onenand_setup_wait(mtd
);
3837 if (!this->bbt_wait
)
3838 this->bbt_wait
= onenand_bbt_wait
;
3839 if (!this->unlock_all
)
3840 this->unlock_all
= onenand_unlock_all
;
3842 if (!this->chip_probe
)
3843 this->chip_probe
= onenand_chip_probe
;
3845 if (!this->read_bufferram
)
3846 this->read_bufferram
= onenand_read_bufferram
;
3847 if (!this->write_bufferram
)
3848 this->write_bufferram
= onenand_write_bufferram
;
3850 if (!this->block_markbad
)
3851 this->block_markbad
= onenand_default_block_markbad
;
3852 if (!this->scan_bbt
)
3853 this->scan_bbt
= onenand_default_bbt
;
3855 if (onenand_probe(mtd
))
3858 /* Set Sync. Burst Read after probing */
3859 if (this->mmcontrol
) {
3860 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3861 this->read_bufferram
= onenand_sync_read_bufferram
;
3864 /* Allocate buffers, if necessary */
3865 if (!this->page_buf
) {
3866 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3867 if (!this->page_buf
)
3869 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3870 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3871 if (!this->verify_buf
) {
3872 kfree(this->page_buf
);
3876 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3878 if (!this->oob_buf
) {
3879 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3880 if (!this->oob_buf
) {
3881 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3882 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3883 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3884 kfree(this->verify_buf
);
3886 kfree(this->page_buf
);
3890 this->options
|= ONENAND_OOBBUF_ALLOC
;
3893 this->state
= FL_READY
;
3894 init_waitqueue_head(&this->wq
);
3895 spin_lock_init(&this->chip_lock
);
3898 * Allow subpage writes up to oobsize.
3900 switch (mtd
->oobsize
) {
3902 if (FLEXONENAND(this)) {
3903 mtd_set_ooblayout(mtd
, &flexonenand_ooblayout_ops
);
3904 mtd
->subpage_sft
= 0;
3906 mtd_set_ooblayout(mtd
, &onenand_oob_128_ooblayout_ops
);
3907 mtd
->subpage_sft
= 2;
3909 if (ONENAND_IS_NOP_1(this))
3910 mtd
->subpage_sft
= 0;
3913 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3914 mtd
->subpage_sft
= 2;
3918 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3919 mtd
->subpage_sft
= 1;
3923 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3924 __func__
, mtd
->oobsize
);
3925 mtd
->subpage_sft
= 0;
3926 /* To prevent kernel oops */
3927 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3931 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3934 * The number of bytes available for a client to place data into
3935 * the out of band area
3937 ret
= mtd_ooblayout_count_freebytes(mtd
);
3941 mtd
->oobavail
= ret
;
3943 mtd
->ecc_strength
= 1;
3945 /* Fill in remaining MTD driver data */
3946 mtd
->type
= ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH
: MTD_NANDFLASH
;
3947 mtd
->flags
= MTD_CAP_NANDFLASH
;
3948 mtd
->_erase
= onenand_erase
;
3950 mtd
->_unpoint
= NULL
;
3951 mtd
->_read_oob
= onenand_read_oob
;
3952 mtd
->_write_oob
= onenand_write_oob
;
3953 mtd
->_panic_write
= onenand_panic_write
;
3954 #ifdef CONFIG_MTD_ONENAND_OTP
3955 mtd
->_get_fact_prot_info
= onenand_get_fact_prot_info
;
3956 mtd
->_read_fact_prot_reg
= onenand_read_fact_prot_reg
;
3957 mtd
->_get_user_prot_info
= onenand_get_user_prot_info
;
3958 mtd
->_read_user_prot_reg
= onenand_read_user_prot_reg
;
3959 mtd
->_write_user_prot_reg
= onenand_write_user_prot_reg
;
3960 mtd
->_lock_user_prot_reg
= onenand_lock_user_prot_reg
;
3962 mtd
->_sync
= onenand_sync
;
3963 mtd
->_lock
= onenand_lock
;
3964 mtd
->_unlock
= onenand_unlock
;
3965 mtd
->_suspend
= onenand_suspend
;
3966 mtd
->_resume
= onenand_resume
;
3967 mtd
->_block_isbad
= onenand_block_isbad
;
3968 mtd
->_block_markbad
= onenand_block_markbad
;
3969 mtd
->owner
= THIS_MODULE
;
3970 mtd
->writebufsize
= mtd
->writesize
;
3972 /* Unlock whole block */
3973 if (!(this->options
& ONENAND_SKIP_INITIAL_UNLOCKING
))
3974 this->unlock_all(mtd
);
3976 /* Set the bad block marker position */
3977 this->badblockpos
= ONENAND_BADBLOCK_POS
;
3979 ret
= this->scan_bbt(mtd
);
3980 if ((!FLEXONENAND(this)) || ret
)
3983 /* Change Flex-OneNAND boundaries if required */
3984 for (i
= 0; i
< MAX_DIES
; i
++)
3985 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
3986 flex_bdry
[(2 * i
) + 1]);
3992 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3993 * @param mtd MTD device structure
3995 void onenand_release(struct mtd_info
*mtd
)
3997 struct onenand_chip
*this = mtd
->priv
;
3999 /* Deregister partitions */
4000 mtd_device_unregister(mtd
);
4002 /* Free bad block table memory, if allocated */
4004 struct bbm_info
*bbm
= this->bbm
;
4008 /* Buffers allocated by onenand_scan */
4009 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
4010 kfree(this->page_buf
);
4011 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4012 kfree(this->verify_buf
);
4015 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4016 kfree(this->oob_buf
);
4017 kfree(mtd
->eraseregions
);
4020 EXPORT_SYMBOL_GPL(onenand_scan
);
4021 EXPORT_SYMBOL_GPL(onenand_release
);
4023 MODULE_LICENSE("GPL");
4024 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4025 MODULE_DESCRIPTION("Generic OneNAND flash driver code");