1 // SPDX-License-Identifier: GPL-2.0-only
3 * kexec: kexec_file_load system call
5 * Copyright (C) 2014 Red Hat Inc.
7 * Vivek Goyal <vgoyal@redhat.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/capability.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
31 static int kexec_calculate_store_digests(struct kimage
*image
);
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
38 int kexec_image_probe_default(struct kimage
*image
, void *buf
,
39 unsigned long buf_len
)
41 const struct kexec_file_ops
* const *fops
;
44 for (fops
= &kexec_file_loaders
[0]; *fops
&& (*fops
)->probe
; ++fops
) {
45 ret
= (*fops
)->probe(buf
, buf_len
);
55 /* Architectures can provide this probe function */
56 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
57 unsigned long buf_len
)
59 return kexec_image_probe_default(image
, buf
, buf_len
);
62 static void *kexec_image_load_default(struct kimage
*image
)
64 if (!image
->fops
|| !image
->fops
->load
)
65 return ERR_PTR(-ENOEXEC
);
67 return image
->fops
->load(image
, image
->kernel_buf
,
68 image
->kernel_buf_len
, image
->initrd_buf
,
69 image
->initrd_buf_len
, image
->cmdline_buf
,
70 image
->cmdline_buf_len
);
73 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
75 return kexec_image_load_default(image
);
78 int kexec_image_post_load_cleanup_default(struct kimage
*image
)
80 if (!image
->fops
|| !image
->fops
->cleanup
)
83 return image
->fops
->cleanup(image
->image_loader_data
);
86 int __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
88 return kexec_image_post_load_cleanup_default(image
);
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage
*image
, void *buf
,
93 unsigned long buf_len
)
95 if (!image
->fops
|| !image
->fops
->verify_sig
) {
96 pr_debug("kernel loader does not support signature verification.\n");
100 return image
->fops
->verify_sig(buf
, buf_len
);
103 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
104 unsigned long buf_len
)
106 return kexec_image_verify_sig_default(image
, buf
, buf_len
);
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
117 * Return: 0 on success, negative errno on error.
120 arch_kexec_apply_relocations_add(struct purgatory_info
*pi
, Elf_Shdr
*section
,
121 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
123 pr_err("RELA relocation unsupported.\n");
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
134 * Return: 0 on success, negative errno on error.
137 arch_kexec_apply_relocations(struct purgatory_info
*pi
, Elf_Shdr
*section
,
138 const Elf_Shdr
*relsec
, const Elf_Shdr
*symtab
)
140 pr_err("REL relocation unsupported.\n");
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
149 void kimage_file_post_load_cleanup(struct kimage
*image
)
151 struct purgatory_info
*pi
= &image
->purgatory_info
;
153 vfree(image
->kernel_buf
);
154 image
->kernel_buf
= NULL
;
156 vfree(image
->initrd_buf
);
157 image
->initrd_buf
= NULL
;
159 kfree(image
->cmdline_buf
);
160 image
->cmdline_buf
= NULL
;
162 vfree(pi
->purgatory_buf
);
163 pi
->purgatory_buf
= NULL
;
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image
);
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
176 kfree(image
->image_loader_data
);
177 image
->image_loader_data
= NULL
;
180 #ifdef CONFIG_KEXEC_SIG
182 kimage_validate_signature(struct kimage
*image
)
187 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
188 image
->kernel_buf_len
);
193 /* Certain verification errors are non-fatal if we're not
194 * checking errors, provided we aren't mandating that there
195 * must be a valid signature.
198 reason
= "kexec of unsigned image";
201 reason
= "kexec of image with unsupported crypto";
204 reason
= "kexec of image with unavailable key";
206 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE
)) {
207 pr_notice("%s rejected\n", reason
);
211 /* If IMA is guaranteed to appraise a signature on the kexec
212 * image, permit it even if the kernel is otherwise locked
215 if (!ima_appraise_signature(READING_KEXEC_IMAGE
) &&
216 security_locked_down(LOCKDOWN_KEXEC
))
221 /* All other errors are fatal, including nomem, unparseable
222 * signatures and signature check failures - even if signatures
226 pr_notice("kernel signature verification failed (%d).\n", ret
);
234 * In file mode list of segments is prepared by kernel. Copy relevant
235 * data from user space, do error checking, prepare segment list
238 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
239 const char __user
*cmdline_ptr
,
240 unsigned long cmdline_len
, unsigned flags
)
246 ret
= kernel_read_file_from_fd(kernel_fd
, &image
->kernel_buf
,
247 &size
, INT_MAX
, READING_KEXEC_IMAGE
);
250 image
->kernel_buf_len
= size
;
252 /* Call arch image probe handlers */
253 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
254 image
->kernel_buf_len
);
258 #ifdef CONFIG_KEXEC_SIG
259 ret
= kimage_validate_signature(image
);
264 /* It is possible that there no initramfs is being loaded */
265 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
266 ret
= kernel_read_file_from_fd(initrd_fd
, &image
->initrd_buf
,
268 READING_KEXEC_INITRAMFS
);
271 image
->initrd_buf_len
= size
;
275 image
->cmdline_buf
= memdup_user(cmdline_ptr
, cmdline_len
);
276 if (IS_ERR(image
->cmdline_buf
)) {
277 ret
= PTR_ERR(image
->cmdline_buf
);
278 image
->cmdline_buf
= NULL
;
282 image
->cmdline_buf_len
= cmdline_len
;
284 /* command line should be a string with last byte null */
285 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
290 ima_kexec_cmdline(image
->cmdline_buf
,
291 image
->cmdline_buf_len
- 1);
294 /* IMA needs to pass the measurement list to the next kernel. */
295 ima_add_kexec_buffer(image
);
297 /* Call arch image load handlers */
298 ldata
= arch_kexec_kernel_image_load(image
);
301 ret
= PTR_ERR(ldata
);
305 image
->image_loader_data
= ldata
;
307 /* In case of error, free up all allocated memory in this function */
309 kimage_file_post_load_cleanup(image
);
314 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
315 int initrd_fd
, const char __user
*cmdline_ptr
,
316 unsigned long cmdline_len
, unsigned long flags
)
319 struct kimage
*image
;
320 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
322 image
= do_kimage_alloc_init();
326 image
->file_mode
= 1;
328 if (kexec_on_panic
) {
329 /* Enable special crash kernel control page alloc policy. */
330 image
->control_page
= crashk_res
.start
;
331 image
->type
= KEXEC_TYPE_CRASH
;
334 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
335 cmdline_ptr
, cmdline_len
, flags
);
339 ret
= sanity_check_segment_list(image
);
341 goto out_free_post_load_bufs
;
344 image
->control_code_page
= kimage_alloc_control_pages(image
,
345 get_order(KEXEC_CONTROL_PAGE_SIZE
));
346 if (!image
->control_code_page
) {
347 pr_err("Could not allocate control_code_buffer\n");
348 goto out_free_post_load_bufs
;
351 if (!kexec_on_panic
) {
352 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
353 if (!image
->swap_page
) {
354 pr_err("Could not allocate swap buffer\n");
355 goto out_free_control_pages
;
361 out_free_control_pages
:
362 kimage_free_page_list(&image
->control_pages
);
363 out_free_post_load_bufs
:
364 kimage_file_post_load_cleanup(image
);
370 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
371 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
372 unsigned long, flags
)
375 struct kimage
**dest_image
, *image
;
377 /* We only trust the superuser with rebooting the system. */
378 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
381 /* Make sure we have a legal set of flags */
382 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
387 if (!mutex_trylock(&kexec_mutex
))
390 dest_image
= &kexec_image
;
391 if (flags
& KEXEC_FILE_ON_CRASH
) {
392 dest_image
= &kexec_crash_image
;
393 if (kexec_crash_image
)
394 arch_kexec_unprotect_crashkres();
397 if (flags
& KEXEC_FILE_UNLOAD
)
401 * In case of crash, new kernel gets loaded in reserved region. It is
402 * same memory where old crash kernel might be loaded. Free any
403 * current crash dump kernel before we corrupt it.
405 if (flags
& KEXEC_FILE_ON_CRASH
)
406 kimage_free(xchg(&kexec_crash_image
, NULL
));
408 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
413 ret
= machine_kexec_prepare(image
);
418 * Some architecture(like S390) may touch the crash memory before
419 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
421 ret
= kimage_crash_copy_vmcoreinfo(image
);
425 ret
= kexec_calculate_store_digests(image
);
429 for (i
= 0; i
< image
->nr_segments
; i
++) {
430 struct kexec_segment
*ksegment
;
432 ksegment
= &image
->segment
[i
];
433 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
437 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
442 kimage_terminate(image
);
444 ret
= machine_kexec_post_load(image
);
449 * Free up any temporary buffers allocated which are not needed
450 * after image has been loaded
452 kimage_file_post_load_cleanup(image
);
454 image
= xchg(dest_image
, image
);
456 if ((flags
& KEXEC_FILE_ON_CRASH
) && kexec_crash_image
)
457 arch_kexec_protect_crashkres();
459 mutex_unlock(&kexec_mutex
);
464 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
465 struct kexec_buf
*kbuf
)
467 struct kimage
*image
= kbuf
->image
;
468 unsigned long temp_start
, temp_end
;
470 temp_end
= min(end
, kbuf
->buf_max
);
471 temp_start
= temp_end
- kbuf
->memsz
;
474 /* align down start */
475 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
477 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
480 temp_end
= temp_start
+ kbuf
->memsz
- 1;
483 * Make sure this does not conflict with any of existing
486 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
487 temp_start
= temp_start
- PAGE_SIZE
;
491 /* We found a suitable memory range */
495 /* If we are here, we found a suitable memory range */
496 kbuf
->mem
= temp_start
;
498 /* Success, stop navigating through remaining System RAM ranges */
502 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
503 struct kexec_buf
*kbuf
)
505 struct kimage
*image
= kbuf
->image
;
506 unsigned long temp_start
, temp_end
;
508 temp_start
= max(start
, kbuf
->buf_min
);
511 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
512 temp_end
= temp_start
+ kbuf
->memsz
- 1;
514 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
517 * Make sure this does not conflict with any of existing
520 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
521 temp_start
= temp_start
+ PAGE_SIZE
;
525 /* We found a suitable memory range */
529 /* If we are here, we found a suitable memory range */
530 kbuf
->mem
= temp_start
;
532 /* Success, stop navigating through remaining System RAM ranges */
536 static int locate_mem_hole_callback(struct resource
*res
, void *arg
)
538 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
539 u64 start
= res
->start
, end
= res
->end
;
540 unsigned long sz
= end
- start
+ 1;
542 /* Returning 0 will take to next memory range */
543 if (sz
< kbuf
->memsz
)
546 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
550 * Allocate memory top down with-in ram range. Otherwise bottom up
554 return locate_mem_hole_top_down(start
, end
, kbuf
);
555 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
558 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
559 static int kexec_walk_memblock(struct kexec_buf
*kbuf
,
560 int (*func
)(struct resource
*, void *))
564 phys_addr_t mstart
, mend
;
565 struct resource res
= { };
567 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
568 return func(&crashk_res
, kbuf
);
570 if (kbuf
->top_down
) {
571 for_each_free_mem_range_reverse(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
,
572 &mstart
, &mend
, NULL
) {
574 * In memblock, end points to the first byte after the
575 * range while in kexec, end points to the last byte
580 ret
= func(&res
, kbuf
);
585 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
,
586 &mstart
, &mend
, NULL
) {
588 * In memblock, end points to the first byte after the
589 * range while in kexec, end points to the last byte
594 ret
= func(&res
, kbuf
);
603 static int kexec_walk_memblock(struct kexec_buf
*kbuf
,
604 int (*func
)(struct resource
*, void *))
611 * kexec_walk_resources - call func(data) on free memory regions
612 * @kbuf: Context info for the search. Also passed to @func.
613 * @func: Function to call for each memory region.
615 * Return: The memory walk will stop when func returns a non-zero value
616 * and that value will be returned. If all free regions are visited without
617 * func returning non-zero, then zero will be returned.
619 static int kexec_walk_resources(struct kexec_buf
*kbuf
,
620 int (*func
)(struct resource
*, void *))
622 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
623 return walk_iomem_res_desc(crashk_res
.desc
,
624 IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
,
625 crashk_res
.start
, crashk_res
.end
,
628 return walk_system_ram_res(0, ULONG_MAX
, kbuf
, func
);
632 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
633 * @kbuf: Parameters for the memory search.
635 * On success, kbuf->mem will have the start address of the memory region found.
637 * Return: 0 on success, negative errno on error.
639 int kexec_locate_mem_hole(struct kexec_buf
*kbuf
)
643 /* Arch knows where to place */
644 if (kbuf
->mem
!= KEXEC_BUF_MEM_UNKNOWN
)
647 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK
))
648 ret
= kexec_walk_resources(kbuf
, locate_mem_hole_callback
);
650 ret
= kexec_walk_memblock(kbuf
, locate_mem_hole_callback
);
652 return ret
== 1 ? 0 : -EADDRNOTAVAIL
;
656 * kexec_add_buffer - place a buffer in a kexec segment
657 * @kbuf: Buffer contents and memory parameters.
659 * This function assumes that kexec_mutex is held.
660 * On successful return, @kbuf->mem will have the physical address of
661 * the buffer in memory.
663 * Return: 0 on success, negative errno on error.
665 int kexec_add_buffer(struct kexec_buf
*kbuf
)
668 struct kexec_segment
*ksegment
;
671 /* Currently adding segment this way is allowed only in file mode */
672 if (!kbuf
->image
->file_mode
)
675 if (kbuf
->image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
679 * Make sure we are not trying to add buffer after allocating
680 * control pages. All segments need to be placed first before
681 * any control pages are allocated. As control page allocation
682 * logic goes through list of segments to make sure there are
683 * no destination overlaps.
685 if (!list_empty(&kbuf
->image
->control_pages
)) {
690 /* Ensure minimum alignment needed for segments. */
691 kbuf
->memsz
= ALIGN(kbuf
->memsz
, PAGE_SIZE
);
692 kbuf
->buf_align
= max(kbuf
->buf_align
, PAGE_SIZE
);
694 /* Walk the RAM ranges and allocate a suitable range for the buffer */
695 ret
= kexec_locate_mem_hole(kbuf
);
699 /* Found a suitable memory range */
700 ksegment
= &kbuf
->image
->segment
[kbuf
->image
->nr_segments
];
701 ksegment
->kbuf
= kbuf
->buffer
;
702 ksegment
->bufsz
= kbuf
->bufsz
;
703 ksegment
->mem
= kbuf
->mem
;
704 ksegment
->memsz
= kbuf
->memsz
;
705 kbuf
->image
->nr_segments
++;
709 /* Calculate and store the digest of segments */
710 static int kexec_calculate_store_digests(struct kimage
*image
)
712 struct crypto_shash
*tfm
;
713 struct shash_desc
*desc
;
714 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
715 size_t desc_size
, nullsz
;
718 struct kexec_sha_region
*sha_regions
;
719 struct purgatory_info
*pi
= &image
->purgatory_info
;
721 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY
))
724 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
725 zero_buf_sz
= PAGE_SIZE
;
727 tfm
= crypto_alloc_shash("sha256", 0, 0);
733 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
734 desc
= kzalloc(desc_size
, GFP_KERNEL
);
740 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
741 sha_regions
= vzalloc(sha_region_sz
);
747 ret
= crypto_shash_init(desc
);
749 goto out_free_sha_regions
;
751 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
754 goto out_free_sha_regions
;
757 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
758 struct kexec_segment
*ksegment
;
760 ksegment
= &image
->segment
[i
];
762 * Skip purgatory as it will be modified once we put digest
765 if (ksegment
->kbuf
== pi
->purgatory_buf
)
768 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
774 * Assume rest of the buffer is filled with zero and
775 * update digest accordingly.
777 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
779 unsigned long bytes
= nullsz
;
781 if (bytes
> zero_buf_sz
)
783 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
792 sha_regions
[j
].start
= ksegment
->mem
;
793 sha_regions
[j
].len
= ksegment
->memsz
;
798 ret
= crypto_shash_final(desc
, digest
);
800 goto out_free_digest
;
801 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha_regions",
802 sha_regions
, sha_region_sz
, 0);
804 goto out_free_digest
;
806 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha256_digest",
807 digest
, SHA256_DIGEST_SIZE
, 0);
809 goto out_free_digest
;
814 out_free_sha_regions
:
824 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
826 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
827 * @pi: Purgatory to be loaded.
828 * @kbuf: Buffer to setup.
830 * Allocates the memory needed for the buffer. Caller is responsible to free
831 * the memory after use.
833 * Return: 0 on success, negative errno on error.
835 static int kexec_purgatory_setup_kbuf(struct purgatory_info
*pi
,
836 struct kexec_buf
*kbuf
)
838 const Elf_Shdr
*sechdrs
;
839 unsigned long bss_align
;
840 unsigned long bss_sz
;
844 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
845 kbuf
->buf_align
= bss_align
= 1;
846 kbuf
->bufsz
= bss_sz
= 0;
848 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
849 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
852 align
= sechdrs
[i
].sh_addralign
;
853 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
854 if (kbuf
->buf_align
< align
)
855 kbuf
->buf_align
= align
;
856 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, align
);
857 kbuf
->bufsz
+= sechdrs
[i
].sh_size
;
859 if (bss_align
< align
)
861 bss_sz
= ALIGN(bss_sz
, align
);
862 bss_sz
+= sechdrs
[i
].sh_size
;
865 kbuf
->bufsz
= ALIGN(kbuf
->bufsz
, bss_align
);
866 kbuf
->memsz
= kbuf
->bufsz
+ bss_sz
;
867 if (kbuf
->buf_align
< bss_align
)
868 kbuf
->buf_align
= bss_align
;
870 kbuf
->buffer
= vzalloc(kbuf
->bufsz
);
873 pi
->purgatory_buf
= kbuf
->buffer
;
875 ret
= kexec_add_buffer(kbuf
);
881 vfree(pi
->purgatory_buf
);
882 pi
->purgatory_buf
= NULL
;
887 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
888 * @pi: Purgatory to be loaded.
889 * @kbuf: Buffer prepared to store purgatory.
891 * Allocates the memory needed for the buffer. Caller is responsible to free
892 * the memory after use.
894 * Return: 0 on success, negative errno on error.
896 static int kexec_purgatory_setup_sechdrs(struct purgatory_info
*pi
,
897 struct kexec_buf
*kbuf
)
899 unsigned long bss_addr
;
900 unsigned long offset
;
905 * The section headers in kexec_purgatory are read-only. In order to
906 * have them modifiable make a temporary copy.
908 sechdrs
= vzalloc(array_size(sizeof(Elf_Shdr
), pi
->ehdr
->e_shnum
));
911 memcpy(sechdrs
, (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
,
912 pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
913 pi
->sechdrs
= sechdrs
;
916 bss_addr
= kbuf
->mem
+ kbuf
->bufsz
;
917 kbuf
->image
->start
= pi
->ehdr
->e_entry
;
919 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
923 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
926 align
= sechdrs
[i
].sh_addralign
;
927 if (sechdrs
[i
].sh_type
== SHT_NOBITS
) {
928 bss_addr
= ALIGN(bss_addr
, align
);
929 sechdrs
[i
].sh_addr
= bss_addr
;
930 bss_addr
+= sechdrs
[i
].sh_size
;
934 offset
= ALIGN(offset
, align
);
935 if (sechdrs
[i
].sh_flags
& SHF_EXECINSTR
&&
936 pi
->ehdr
->e_entry
>= sechdrs
[i
].sh_addr
&&
937 pi
->ehdr
->e_entry
< (sechdrs
[i
].sh_addr
938 + sechdrs
[i
].sh_size
)) {
939 kbuf
->image
->start
-= sechdrs
[i
].sh_addr
;
940 kbuf
->image
->start
+= kbuf
->mem
+ offset
;
943 src
= (void *)pi
->ehdr
+ sechdrs
[i
].sh_offset
;
944 dst
= pi
->purgatory_buf
+ offset
;
945 memcpy(dst
, src
, sechdrs
[i
].sh_size
);
947 sechdrs
[i
].sh_addr
= kbuf
->mem
+ offset
;
948 sechdrs
[i
].sh_offset
= offset
;
949 offset
+= sechdrs
[i
].sh_size
;
955 static int kexec_apply_relocations(struct kimage
*image
)
958 struct purgatory_info
*pi
= &image
->purgatory_info
;
959 const Elf_Shdr
*sechdrs
;
961 sechdrs
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
963 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
964 const Elf_Shdr
*relsec
;
965 const Elf_Shdr
*symtab
;
968 relsec
= sechdrs
+ i
;
970 if (relsec
->sh_type
!= SHT_RELA
&&
971 relsec
->sh_type
!= SHT_REL
)
975 * For section of type SHT_RELA/SHT_REL,
976 * ->sh_link contains section header index of associated
977 * symbol table. And ->sh_info contains section header
978 * index of section to which relocations apply.
980 if (relsec
->sh_info
>= pi
->ehdr
->e_shnum
||
981 relsec
->sh_link
>= pi
->ehdr
->e_shnum
)
984 section
= pi
->sechdrs
+ relsec
->sh_info
;
985 symtab
= sechdrs
+ relsec
->sh_link
;
987 if (!(section
->sh_flags
& SHF_ALLOC
))
991 * symtab->sh_link contain section header index of associated
994 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
995 /* Invalid section number? */
999 * Respective architecture needs to provide support for applying
1000 * relocations of type SHT_RELA/SHT_REL.
1002 if (relsec
->sh_type
== SHT_RELA
)
1003 ret
= arch_kexec_apply_relocations_add(pi
, section
,
1005 else if (relsec
->sh_type
== SHT_REL
)
1006 ret
= arch_kexec_apply_relocations(pi
, section
,
1016 * kexec_load_purgatory - Load and relocate the purgatory object.
1017 * @image: Image to add the purgatory to.
1018 * @kbuf: Memory parameters to use.
1020 * Allocates the memory needed for image->purgatory_info.sechdrs and
1021 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1022 * to free the memory after use.
1024 * Return: 0 on success, negative errno on error.
1026 int kexec_load_purgatory(struct kimage
*image
, struct kexec_buf
*kbuf
)
1028 struct purgatory_info
*pi
= &image
->purgatory_info
;
1031 if (kexec_purgatory_size
<= 0)
1034 pi
->ehdr
= (const Elf_Ehdr
*)kexec_purgatory
;
1036 ret
= kexec_purgatory_setup_kbuf(pi
, kbuf
);
1040 ret
= kexec_purgatory_setup_sechdrs(pi
, kbuf
);
1044 ret
= kexec_apply_relocations(image
);
1053 vfree(pi
->purgatory_buf
);
1054 pi
->purgatory_buf
= NULL
;
1059 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1060 * @pi: Purgatory to search in.
1061 * @name: Name of the symbol.
1063 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1065 static const Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
1068 const Elf_Shdr
*sechdrs
;
1069 const Elf_Ehdr
*ehdr
;
1070 const Elf_Sym
*syms
;
1078 sechdrs
= (void *)ehdr
+ ehdr
->e_shoff
;
1080 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
1081 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
1084 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
1085 /* Invalid strtab section number */
1087 strtab
= (void *)ehdr
+ sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
1088 syms
= (void *)ehdr
+ sechdrs
[i
].sh_offset
;
1090 /* Go through symbols for a match */
1091 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
1092 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
1095 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
1098 if (syms
[k
].st_shndx
== SHN_UNDEF
||
1099 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
1100 pr_debug("Symbol: %s has bad section index %d.\n",
1101 name
, syms
[k
].st_shndx
);
1105 /* Found the symbol we are looking for */
1113 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
1115 struct purgatory_info
*pi
= &image
->purgatory_info
;
1119 sym
= kexec_purgatory_find_symbol(pi
, name
);
1121 return ERR_PTR(-EINVAL
);
1123 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
1126 * Returns the address where symbol will finally be loaded after
1127 * kexec_load_segment()
1129 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
1133 * Get or set value of a symbol. If "get_value" is true, symbol value is
1134 * returned in buf otherwise symbol value is set based on value in buf.
1136 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
1137 void *buf
, unsigned int size
, bool get_value
)
1139 struct purgatory_info
*pi
= &image
->purgatory_info
;
1144 sym
= kexec_purgatory_find_symbol(pi
, name
);
1148 if (sym
->st_size
!= size
) {
1149 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1150 name
, (unsigned long)sym
->st_size
, size
);
1154 sec
= pi
->sechdrs
+ sym
->st_shndx
;
1156 if (sec
->sh_type
== SHT_NOBITS
) {
1157 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
1158 get_value
? "get" : "set");
1162 sym_buf
= (char *)pi
->purgatory_buf
+ sec
->sh_offset
+ sym
->st_value
;
1165 memcpy((void *)buf
, sym_buf
, size
);
1167 memcpy((void *)sym_buf
, buf
, size
);
1171 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1173 int crash_exclude_mem_range(struct crash_mem
*mem
,
1174 unsigned long long mstart
, unsigned long long mend
)
1177 unsigned long long start
, end
;
1178 struct crash_mem_range temp_range
= {0, 0};
1180 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1181 start
= mem
->ranges
[i
].start
;
1182 end
= mem
->ranges
[i
].end
;
1184 if (mstart
> end
|| mend
< start
)
1187 /* Truncate any area outside of range */
1193 /* Found completely overlapping range */
1194 if (mstart
== start
&& mend
== end
) {
1195 mem
->ranges
[i
].start
= 0;
1196 mem
->ranges
[i
].end
= 0;
1197 if (i
< mem
->nr_ranges
- 1) {
1198 /* Shift rest of the ranges to left */
1199 for (j
= i
; j
< mem
->nr_ranges
- 1; j
++) {
1200 mem
->ranges
[j
].start
=
1201 mem
->ranges
[j
+1].start
;
1202 mem
->ranges
[j
].end
=
1203 mem
->ranges
[j
+1].end
;
1210 if (mstart
> start
&& mend
< end
) {
1211 /* Split original range */
1212 mem
->ranges
[i
].end
= mstart
- 1;
1213 temp_range
.start
= mend
+ 1;
1214 temp_range
.end
= end
;
1215 } else if (mstart
!= start
)
1216 mem
->ranges
[i
].end
= mstart
- 1;
1218 mem
->ranges
[i
].start
= mend
+ 1;
1222 /* If a split happened, add the split to array */
1223 if (!temp_range
.end
)
1226 /* Split happened */
1227 if (i
== mem
->max_nr_ranges
- 1)
1230 /* Location where new range should go */
1232 if (j
< mem
->nr_ranges
) {
1233 /* Move over all ranges one slot towards the end */
1234 for (i
= mem
->nr_ranges
- 1; i
>= j
; i
--)
1235 mem
->ranges
[i
+ 1] = mem
->ranges
[i
];
1238 mem
->ranges
[j
].start
= temp_range
.start
;
1239 mem
->ranges
[j
].end
= temp_range
.end
;
1244 int crash_prepare_elf64_headers(struct crash_mem
*mem
, int kernel_map
,
1245 void **addr
, unsigned long *sz
)
1249 unsigned long nr_cpus
= num_possible_cpus(), nr_phdr
, elf_sz
;
1251 unsigned int cpu
, i
;
1252 unsigned long long notes_addr
;
1253 unsigned long mstart
, mend
;
1255 /* extra phdr for vmcoreinfo elf note */
1256 nr_phdr
= nr_cpus
+ 1;
1257 nr_phdr
+= mem
->nr_ranges
;
1260 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1261 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1262 * I think this is required by tools like gdb. So same physical
1263 * memory will be mapped in two elf headers. One will contain kernel
1264 * text virtual addresses and other will have __va(physical) addresses.
1268 elf_sz
= sizeof(Elf64_Ehdr
) + nr_phdr
* sizeof(Elf64_Phdr
);
1269 elf_sz
= ALIGN(elf_sz
, ELF_CORE_HEADER_ALIGN
);
1271 buf
= vzalloc(elf_sz
);
1275 ehdr
= (Elf64_Ehdr
*)buf
;
1276 phdr
= (Elf64_Phdr
*)(ehdr
+ 1);
1277 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
1278 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS64
;
1279 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
1280 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1281 ehdr
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1282 memset(ehdr
->e_ident
+ EI_PAD
, 0, EI_NIDENT
- EI_PAD
);
1283 ehdr
->e_type
= ET_CORE
;
1284 ehdr
->e_machine
= ELF_ARCH
;
1285 ehdr
->e_version
= EV_CURRENT
;
1286 ehdr
->e_phoff
= sizeof(Elf64_Ehdr
);
1287 ehdr
->e_ehsize
= sizeof(Elf64_Ehdr
);
1288 ehdr
->e_phentsize
= sizeof(Elf64_Phdr
);
1290 /* Prepare one phdr of type PT_NOTE for each present cpu */
1291 for_each_present_cpu(cpu
) {
1292 phdr
->p_type
= PT_NOTE
;
1293 notes_addr
= per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes
, cpu
));
1294 phdr
->p_offset
= phdr
->p_paddr
= notes_addr
;
1295 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(note_buf_t
);
1300 /* Prepare one PT_NOTE header for vmcoreinfo */
1301 phdr
->p_type
= PT_NOTE
;
1302 phdr
->p_offset
= phdr
->p_paddr
= paddr_vmcoreinfo_note();
1303 phdr
->p_filesz
= phdr
->p_memsz
= VMCOREINFO_NOTE_SIZE
;
1307 /* Prepare PT_LOAD type program header for kernel text region */
1309 phdr
->p_type
= PT_LOAD
;
1310 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1311 phdr
->p_vaddr
= (unsigned long) _text
;
1312 phdr
->p_filesz
= phdr
->p_memsz
= _end
- _text
;
1313 phdr
->p_offset
= phdr
->p_paddr
= __pa_symbol(_text
);
1318 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1319 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
1320 mstart
= mem
->ranges
[i
].start
;
1321 mend
= mem
->ranges
[i
].end
;
1323 phdr
->p_type
= PT_LOAD
;
1324 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1325 phdr
->p_offset
= mstart
;
1327 phdr
->p_paddr
= mstart
;
1328 phdr
->p_vaddr
= (unsigned long) __va(mstart
);
1329 phdr
->p_filesz
= phdr
->p_memsz
= mend
- mstart
+ 1;
1333 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1334 phdr
, phdr
->p_vaddr
, phdr
->p_paddr
, phdr
->p_filesz
,
1335 ehdr
->e_phnum
, phdr
->p_offset
);