1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH MSIOF SPI Master Interface
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/gpio.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/sh_dma.h>
29 #include <linux/spi/sh_msiof.h>
30 #include <linux/spi/spi.h>
32 #include <asm/unaligned.h>
34 struct sh_msiof_chipdata
{
41 struct sh_msiof_spi_priv
{
42 struct spi_master
*master
;
43 void __iomem
*mapbase
;
45 struct platform_device
*pdev
;
46 struct sh_msiof_spi_info
*info
;
47 struct completion done
;
48 struct completion done_txdma
;
49 unsigned int tx_fifo_size
;
50 unsigned int rx_fifo_size
;
51 unsigned int min_div_pow
;
54 dma_addr_t tx_dma_addr
;
55 dma_addr_t rx_dma_addr
;
56 unsigned short unused_ss
;
57 bool native_cs_inited
;
62 #define MAX_SS 3 /* Maximum number of native chip selects */
64 #define TMDR1 0x00 /* Transmit Mode Register 1 */
65 #define TMDR2 0x04 /* Transmit Mode Register 2 */
66 #define TMDR3 0x08 /* Transmit Mode Register 3 */
67 #define RMDR1 0x10 /* Receive Mode Register 1 */
68 #define RMDR2 0x14 /* Receive Mode Register 2 */
69 #define RMDR3 0x18 /* Receive Mode Register 3 */
70 #define TSCR 0x20 /* Transmit Clock Select Register */
71 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
72 #define CTR 0x28 /* Control Register */
73 #define FCTR 0x30 /* FIFO Control Register */
74 #define STR 0x40 /* Status Register */
75 #define IER 0x44 /* Interrupt Enable Register */
76 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
77 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
78 #define TFDR 0x50 /* Transmit FIFO Data Register */
79 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
80 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
81 #define RFDR 0x60 /* Receive FIFO Data Register */
84 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
85 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
86 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
87 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
88 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
89 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
90 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
91 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
92 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
93 #define MDR1_FLD_SHIFT 2
94 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
96 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
97 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
98 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
100 /* TMDR2 and RMDR2 */
101 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
102 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
103 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
106 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
107 #define SCR_BRPS(i) (((i) - 1) << 8)
108 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
109 #define SCR_BRDV_DIV_2 0x0000
110 #define SCR_BRDV_DIV_4 0x0001
111 #define SCR_BRDV_DIV_8 0x0002
112 #define SCR_BRDV_DIV_16 0x0003
113 #define SCR_BRDV_DIV_32 0x0004
114 #define SCR_BRDV_DIV_1 0x0007
117 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
118 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
119 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
120 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
121 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
122 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
123 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
124 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
125 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
126 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
127 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
128 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
129 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
130 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
131 #define CTR_TXE 0x00000200 /* Transmit Enable */
132 #define CTR_RXE 0x00000100 /* Receive Enable */
135 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
136 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
137 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
138 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
139 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
140 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
141 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
142 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
143 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
144 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
145 #define FCTR_TFUA_SHIFT 20
146 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
147 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
148 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
149 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
150 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
151 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
152 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
153 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
154 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
155 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
156 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
157 #define FCTR_RFUA_SHIFT 4
158 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
161 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
162 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
163 #define STR_TEOF 0x00800000 /* Frame Transmission End */
164 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
165 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
166 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
167 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
168 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
169 #define STR_REOF 0x00000080 /* Frame Reception End */
170 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
171 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
172 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
175 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
176 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
177 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
178 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
179 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
180 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
181 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
182 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
183 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
184 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
185 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
186 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
187 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
188 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
191 static u32
sh_msiof_read(struct sh_msiof_spi_priv
*p
, int reg_offs
)
196 return ioread16(p
->mapbase
+ reg_offs
);
198 return ioread32(p
->mapbase
+ reg_offs
);
202 static void sh_msiof_write(struct sh_msiof_spi_priv
*p
, int reg_offs
,
208 iowrite16(value
, p
->mapbase
+ reg_offs
);
211 iowrite32(value
, p
->mapbase
+ reg_offs
);
216 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv
*p
,
219 u32 mask
= clr
| set
;
223 data
= sh_msiof_read(p
, CTR
);
226 sh_msiof_write(p
, CTR
, data
);
228 for (k
= 100; k
> 0; k
--) {
229 if ((sh_msiof_read(p
, CTR
) & mask
) == set
)
235 return k
> 0 ? 0 : -ETIMEDOUT
;
238 static irqreturn_t
sh_msiof_spi_irq(int irq
, void *data
)
240 struct sh_msiof_spi_priv
*p
= data
;
242 /* just disable the interrupt and wake up */
243 sh_msiof_write(p
, IER
, 0);
249 static const u32 sh_msiof_spi_div_array
[] = {
250 SCR_BRDV_DIV_1
, SCR_BRDV_DIV_2
, SCR_BRDV_DIV_4
,
251 SCR_BRDV_DIV_8
, SCR_BRDV_DIV_16
, SCR_BRDV_DIV_32
,
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv
*p
,
255 unsigned long parent_rate
, u32 spi_hz
)
259 unsigned int div_pow
= p
->min_div_pow
;
261 if (!spi_hz
|| !parent_rate
) {
262 WARN(1, "Invalid clock rate parameters %lu and %u\n",
263 parent_rate
, spi_hz
);
267 div
= DIV_ROUND_UP(parent_rate
, spi_hz
);
269 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
270 if (!div_pow
&& div
<= 32 && div
> 2)
274 brps
= (div
+ 1) >> div_pow
;
278 for (; brps
> 32; div_pow
++)
279 brps
= (brps
+ 1) >> 1;
281 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
282 dev_err(&p
->pdev
->dev
,
283 "Requested SPI transfer rate %d is too low\n", spi_hz
);
288 scr
= sh_msiof_spi_div_array
[div_pow
] | SCR_BRPS(brps
);
289 sh_msiof_write(p
, TSCR
, scr
);
290 if (!(p
->master
->flags
& SPI_MASTER_MUST_TX
))
291 sh_msiof_write(p
, RSCR
, scr
);
294 static u32
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl
)
297 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
301 * b'011 (SYNCDL only) : 300
305 if (dtdl_or_syncdl
% 100)
306 return dtdl_or_syncdl
/ 100 + 5;
308 return dtdl_or_syncdl
/ 100;
311 static u32
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv
*p
)
318 /* check if DTDL and SYNCDL is allowed value */
319 if (p
->info
->dtdl
> 200 || p
->info
->syncdl
> 300) {
320 dev_warn(&p
->pdev
->dev
, "DTDL or SYNCDL is too large\n");
324 /* check if the sum of DTDL and SYNCDL becomes an integer value */
325 if ((p
->info
->dtdl
+ p
->info
->syncdl
) % 100) {
326 dev_warn(&p
->pdev
->dev
, "the sum of DTDL/SYNCDL is not good\n");
330 val
= sh_msiof_get_delay_bit(p
->info
->dtdl
) << MDR1_DTDL_SHIFT
;
331 val
|= sh_msiof_get_delay_bit(p
->info
->syncdl
) << MDR1_SYNCDL_SHIFT
;
336 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv
*p
, u32 ss
,
338 u32 tx_hi_z
, u32 lsb_first
, u32 cs_high
)
344 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
350 tmp
= MDR1_SYNCMD_SPI
| 1 << MDR1_FLD_SHIFT
| MDR1_XXSTP
;
351 tmp
|= !cs_high
<< MDR1_SYNCAC_SHIFT
;
352 tmp
|= lsb_first
<< MDR1_BITLSB_SHIFT
;
353 tmp
|= sh_msiof_spi_get_dtdl_and_syncdl(p
);
354 if (spi_controller_is_slave(p
->master
)) {
355 sh_msiof_write(p
, TMDR1
, tmp
| TMDR1_PCON
);
357 sh_msiof_write(p
, TMDR1
,
358 tmp
| MDR1_TRMD
| TMDR1_PCON
|
359 (ss
< MAX_SS
? ss
: 0) << TMDR1_SYNCCH_SHIFT
);
361 if (p
->master
->flags
& SPI_MASTER_MUST_TX
) {
362 /* These bits are reserved if RX needs TX */
365 sh_msiof_write(p
, RMDR1
, tmp
);
368 tmp
|= CTR_TSCKIZ_SCK
| cpol
<< CTR_TSCKIZ_POL_SHIFT
;
369 tmp
|= CTR_RSCKIZ_SCK
| cpol
<< CTR_RSCKIZ_POL_SHIFT
;
373 tmp
|= edge
<< CTR_TEDG_SHIFT
;
374 tmp
|= edge
<< CTR_REDG_SHIFT
;
375 tmp
|= tx_hi_z
? CTR_TXDIZ_HIZ
: CTR_TXDIZ_LOW
;
376 sh_msiof_write(p
, CTR
, tmp
);
379 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv
*p
,
380 const void *tx_buf
, void *rx_buf
,
383 u32 dr2
= MDR2_BITLEN1(bits
) | MDR2_WDLEN1(words
);
385 if (tx_buf
|| (p
->master
->flags
& SPI_MASTER_MUST_TX
))
386 sh_msiof_write(p
, TMDR2
, dr2
);
388 sh_msiof_write(p
, TMDR2
, dr2
| MDR2_GRPMASK1
);
391 sh_msiof_write(p
, RMDR2
, dr2
);
394 static void sh_msiof_reset_str(struct sh_msiof_spi_priv
*p
)
396 sh_msiof_write(p
, STR
,
397 sh_msiof_read(p
, STR
) & ~(STR_TDREQ
| STR_RDREQ
));
400 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv
*p
,
401 const void *tx_buf
, int words
, int fs
)
403 const u8
*buf_8
= tx_buf
;
406 for (k
= 0; k
< words
; k
++)
407 sh_msiof_write(p
, TFDR
, buf_8
[k
] << fs
);
410 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv
*p
,
411 const void *tx_buf
, int words
, int fs
)
413 const u16
*buf_16
= tx_buf
;
416 for (k
= 0; k
< words
; k
++)
417 sh_msiof_write(p
, TFDR
, buf_16
[k
] << fs
);
420 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv
*p
,
421 const void *tx_buf
, int words
, int fs
)
423 const u16
*buf_16
= tx_buf
;
426 for (k
= 0; k
< words
; k
++)
427 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_16
[k
]) << fs
);
430 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv
*p
,
431 const void *tx_buf
, int words
, int fs
)
433 const u32
*buf_32
= tx_buf
;
436 for (k
= 0; k
< words
; k
++)
437 sh_msiof_write(p
, TFDR
, buf_32
[k
] << fs
);
440 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv
*p
,
441 const void *tx_buf
, int words
, int fs
)
443 const u32
*buf_32
= tx_buf
;
446 for (k
= 0; k
< words
; k
++)
447 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_32
[k
]) << fs
);
450 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv
*p
,
451 const void *tx_buf
, int words
, int fs
)
453 const u32
*buf_32
= tx_buf
;
456 for (k
= 0; k
< words
; k
++)
457 sh_msiof_write(p
, TFDR
, swab32(buf_32
[k
] << fs
));
460 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv
*p
,
461 const void *tx_buf
, int words
, int fs
)
463 const u32
*buf_32
= tx_buf
;
466 for (k
= 0; k
< words
; k
++)
467 sh_msiof_write(p
, TFDR
, swab32(get_unaligned(&buf_32
[k
]) << fs
));
470 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv
*p
,
471 void *rx_buf
, int words
, int fs
)
476 for (k
= 0; k
< words
; k
++)
477 buf_8
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
480 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv
*p
,
481 void *rx_buf
, int words
, int fs
)
483 u16
*buf_16
= rx_buf
;
486 for (k
= 0; k
< words
; k
++)
487 buf_16
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
490 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv
*p
,
491 void *rx_buf
, int words
, int fs
)
493 u16
*buf_16
= rx_buf
;
496 for (k
= 0; k
< words
; k
++)
497 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_16
[k
]);
500 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv
*p
,
501 void *rx_buf
, int words
, int fs
)
503 u32
*buf_32
= rx_buf
;
506 for (k
= 0; k
< words
; k
++)
507 buf_32
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
510 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv
*p
,
511 void *rx_buf
, int words
, int fs
)
513 u32
*buf_32
= rx_buf
;
516 for (k
= 0; k
< words
; k
++)
517 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_32
[k
]);
520 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv
*p
,
521 void *rx_buf
, int words
, int fs
)
523 u32
*buf_32
= rx_buf
;
526 for (k
= 0; k
< words
; k
++)
527 buf_32
[k
] = swab32(sh_msiof_read(p
, RFDR
) >> fs
);
530 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv
*p
,
531 void *rx_buf
, int words
, int fs
)
533 u32
*buf_32
= rx_buf
;
536 for (k
= 0; k
< words
; k
++)
537 put_unaligned(swab32(sh_msiof_read(p
, RFDR
) >> fs
), &buf_32
[k
]);
540 static int sh_msiof_spi_setup(struct spi_device
*spi
)
542 struct device_node
*np
= spi
->master
->dev
.of_node
;
543 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(spi
->master
);
548 * Use spi->controller_data for CS (same strategy as spi_gpio),
549 * if any. otherwise let HW control CS
551 spi
->cs_gpio
= (uintptr_t)spi
->controller_data
;
554 if (gpio_is_valid(spi
->cs_gpio
)) {
555 gpio_direction_output(spi
->cs_gpio
, !(spi
->mode
& SPI_CS_HIGH
));
559 if (spi_controller_is_slave(p
->master
))
562 if (p
->native_cs_inited
&&
563 (p
->native_cs_high
== !!(spi
->mode
& SPI_CS_HIGH
)))
566 /* Configure native chip select mode/polarity early */
567 clr
= MDR1_SYNCMD_MASK
;
568 set
= MDR1_SYNCMD_SPI
;
569 if (spi
->mode
& SPI_CS_HIGH
)
570 clr
|= BIT(MDR1_SYNCAC_SHIFT
);
572 set
|= BIT(MDR1_SYNCAC_SHIFT
);
573 pm_runtime_get_sync(&p
->pdev
->dev
);
574 tmp
= sh_msiof_read(p
, TMDR1
) & ~clr
;
575 sh_msiof_write(p
, TMDR1
, tmp
| set
| MDR1_TRMD
| TMDR1_PCON
);
576 tmp
= sh_msiof_read(p
, RMDR1
) & ~clr
;
577 sh_msiof_write(p
, RMDR1
, tmp
| set
);
578 pm_runtime_put(&p
->pdev
->dev
);
579 p
->native_cs_high
= spi
->mode
& SPI_CS_HIGH
;
580 p
->native_cs_inited
= true;
584 static int sh_msiof_prepare_message(struct spi_master
*master
,
585 struct spi_message
*msg
)
587 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
588 const struct spi_device
*spi
= msg
->spi
;
591 /* Configure pins before asserting CS */
592 if (gpio_is_valid(spi
->cs_gpio
)) {
594 cs_high
= p
->native_cs_high
;
596 ss
= spi
->chip_select
;
597 cs_high
= !!(spi
->mode
& SPI_CS_HIGH
);
599 sh_msiof_spi_set_pin_regs(p
, ss
, !!(spi
->mode
& SPI_CPOL
),
600 !!(spi
->mode
& SPI_CPHA
),
601 !!(spi
->mode
& SPI_3WIRE
),
602 !!(spi
->mode
& SPI_LSB_FIRST
), cs_high
);
606 static int sh_msiof_spi_start(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
608 bool slave
= spi_controller_is_slave(p
->master
);
611 /* setup clock and rx/tx signals */
613 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TSCKE
);
615 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_RXE
);
617 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TXE
);
619 /* start by setting frame bit */
621 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TFSE
);
626 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
628 bool slave
= spi_controller_is_slave(p
->master
);
631 /* shut down frame, rx/tx and clock signals */
633 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TFSE
, 0);
635 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TXE
, 0);
637 ret
= sh_msiof_modify_ctr_wait(p
, CTR_RXE
, 0);
639 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TSCKE
, 0);
644 static int sh_msiof_slave_abort(struct spi_master
*master
)
646 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
648 p
->slave_aborted
= true;
650 complete(&p
->done_txdma
);
654 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv
*p
,
655 struct completion
*x
)
657 if (spi_controller_is_slave(p
->master
)) {
658 if (wait_for_completion_interruptible(x
) ||
660 dev_dbg(&p
->pdev
->dev
, "interrupted\n");
664 if (!wait_for_completion_timeout(x
, HZ
)) {
665 dev_err(&p
->pdev
->dev
, "timeout\n");
673 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv
*p
,
674 void (*tx_fifo
)(struct sh_msiof_spi_priv
*,
675 const void *, int, int),
676 void (*rx_fifo
)(struct sh_msiof_spi_priv
*,
678 const void *tx_buf
, void *rx_buf
,
684 /* limit maximum word transfer to rx/tx fifo size */
686 words
= min_t(int, words
, p
->tx_fifo_size
);
688 words
= min_t(int, words
, p
->rx_fifo_size
);
690 /* the fifo contents need shifting */
691 fifo_shift
= 32 - bits
;
693 /* default FIFO watermarks for PIO */
694 sh_msiof_write(p
, FCTR
, 0);
696 /* setup msiof transfer mode registers */
697 sh_msiof_spi_set_mode_regs(p
, tx_buf
, rx_buf
, bits
, words
);
698 sh_msiof_write(p
, IER
, IER_TEOFE
| IER_REOFE
);
702 tx_fifo(p
, tx_buf
, words
, fifo_shift
);
704 reinit_completion(&p
->done
);
705 p
->slave_aborted
= false;
707 ret
= sh_msiof_spi_start(p
, rx_buf
);
709 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
713 /* wait for tx fifo to be emptied / rx fifo to be filled */
714 ret
= sh_msiof_wait_for_completion(p
, &p
->done
);
720 rx_fifo(p
, rx_buf
, words
, fifo_shift
);
722 /* clear status bits */
723 sh_msiof_reset_str(p
);
725 ret
= sh_msiof_spi_stop(p
, rx_buf
);
727 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
734 sh_msiof_reset_str(p
);
735 sh_msiof_spi_stop(p
, rx_buf
);
737 sh_msiof_write(p
, IER
, 0);
741 static void sh_msiof_dma_complete(void *arg
)
746 static int sh_msiof_dma_once(struct sh_msiof_spi_priv
*p
, const void *tx
,
747 void *rx
, unsigned int len
)
750 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
754 /* First prepare and submit the DMA request(s), as this may fail */
756 ier_bits
|= IER_RDREQE
| IER_RDMAE
;
757 desc_rx
= dmaengine_prep_slave_single(p
->master
->dma_rx
,
758 p
->rx_dma_addr
, len
, DMA_DEV_TO_MEM
,
759 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
763 desc_rx
->callback
= sh_msiof_dma_complete
;
764 desc_rx
->callback_param
= &p
->done
;
765 cookie
= dmaengine_submit(desc_rx
);
766 if (dma_submit_error(cookie
))
771 ier_bits
|= IER_TDREQE
| IER_TDMAE
;
772 dma_sync_single_for_device(p
->master
->dma_tx
->device
->dev
,
773 p
->tx_dma_addr
, len
, DMA_TO_DEVICE
);
774 desc_tx
= dmaengine_prep_slave_single(p
->master
->dma_tx
,
775 p
->tx_dma_addr
, len
, DMA_MEM_TO_DEV
,
776 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
782 desc_tx
->callback
= sh_msiof_dma_complete
;
783 desc_tx
->callback_param
= &p
->done_txdma
;
784 cookie
= dmaengine_submit(desc_tx
);
785 if (dma_submit_error(cookie
)) {
791 /* 1 stage FIFO watermarks for DMA */
792 sh_msiof_write(p
, FCTR
, FCTR_TFWM_1
| FCTR_RFWM_1
);
794 /* setup msiof transfer mode registers (32-bit words) */
795 sh_msiof_spi_set_mode_regs(p
, tx
, rx
, 32, len
/ 4);
797 sh_msiof_write(p
, IER
, ier_bits
);
799 reinit_completion(&p
->done
);
801 reinit_completion(&p
->done_txdma
);
802 p
->slave_aborted
= false;
806 dma_async_issue_pending(p
->master
->dma_rx
);
808 dma_async_issue_pending(p
->master
->dma_tx
);
810 ret
= sh_msiof_spi_start(p
, rx
);
812 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
817 /* wait for tx DMA completion */
818 ret
= sh_msiof_wait_for_completion(p
, &p
->done_txdma
);
824 /* wait for rx DMA completion */
825 ret
= sh_msiof_wait_for_completion(p
, &p
->done
);
829 sh_msiof_write(p
, IER
, 0);
831 /* wait for tx fifo to be emptied */
832 sh_msiof_write(p
, IER
, IER_TEOFE
);
833 ret
= sh_msiof_wait_for_completion(p
, &p
->done
);
838 /* clear status bits */
839 sh_msiof_reset_str(p
);
841 ret
= sh_msiof_spi_stop(p
, rx
);
843 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
848 dma_sync_single_for_cpu(p
->master
->dma_rx
->device
->dev
,
855 sh_msiof_reset_str(p
);
856 sh_msiof_spi_stop(p
, rx
);
859 dmaengine_terminate_all(p
->master
->dma_tx
);
862 dmaengine_terminate_all(p
->master
->dma_rx
);
863 sh_msiof_write(p
, IER
, 0);
867 static void copy_bswap32(u32
*dst
, const u32
*src
, unsigned int words
)
869 /* src or dst can be unaligned, but not both */
870 if ((unsigned long)src
& 3) {
872 *dst
++ = swab32(get_unaligned(src
));
875 } else if ((unsigned long)dst
& 3) {
877 put_unaligned(swab32(*src
++), dst
);
882 *dst
++ = swab32(*src
++);
886 static void copy_wswap32(u32
*dst
, const u32
*src
, unsigned int words
)
888 /* src or dst can be unaligned, but not both */
889 if ((unsigned long)src
& 3) {
891 *dst
++ = swahw32(get_unaligned(src
));
894 } else if ((unsigned long)dst
& 3) {
896 put_unaligned(swahw32(*src
++), dst
);
901 *dst
++ = swahw32(*src
++);
905 static void copy_plain32(u32
*dst
, const u32
*src
, unsigned int words
)
907 memcpy(dst
, src
, words
* 4);
910 static int sh_msiof_transfer_one(struct spi_master
*master
,
911 struct spi_device
*spi
,
912 struct spi_transfer
*t
)
914 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
915 void (*copy32
)(u32
*, const u32
*, unsigned int);
916 void (*tx_fifo
)(struct sh_msiof_spi_priv
*, const void *, int, int);
917 void (*rx_fifo
)(struct sh_msiof_spi_priv
*, void *, int, int);
918 const void *tx_buf
= t
->tx_buf
;
919 void *rx_buf
= t
->rx_buf
;
920 unsigned int len
= t
->len
;
921 unsigned int bits
= t
->bits_per_word
;
922 unsigned int bytes_per_word
;
928 /* setup clocks (clock already enabled in chipselect()) */
929 if (!spi_controller_is_slave(p
->master
))
930 sh_msiof_spi_set_clk_regs(p
, clk_get_rate(p
->clk
), t
->speed_hz
);
932 while (master
->dma_tx
&& len
> 15) {
934 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
935 * words, with byte resp. word swapping.
940 l
= min(len
, p
->tx_fifo_size
* 4);
942 l
= min(len
, p
->rx_fifo_size
* 4);
947 copy32
= copy_bswap32
;
948 } else if (bits
<= 16) {
951 copy32
= copy_wswap32
;
953 copy32
= copy_plain32
;
957 copy32(p
->tx_dma_page
, tx_buf
, l
/ 4);
959 ret
= sh_msiof_dma_once(p
, tx_buf
, rx_buf
, l
);
960 if (ret
== -EAGAIN
) {
961 dev_warn_once(&p
->pdev
->dev
,
962 "DMA not available, falling back to PIO\n");
969 copy32(rx_buf
, p
->rx_dma_page
, l
/ 4);
980 if (bits
<= 8 && len
> 15 && !(len
& 3)) {
987 /* setup bytes per word and fifo read/write functions */
990 tx_fifo
= sh_msiof_spi_write_fifo_8
;
991 rx_fifo
= sh_msiof_spi_read_fifo_8
;
992 } else if (bits
<= 16) {
994 if ((unsigned long)tx_buf
& 0x01)
995 tx_fifo
= sh_msiof_spi_write_fifo_16u
;
997 tx_fifo
= sh_msiof_spi_write_fifo_16
;
999 if ((unsigned long)rx_buf
& 0x01)
1000 rx_fifo
= sh_msiof_spi_read_fifo_16u
;
1002 rx_fifo
= sh_msiof_spi_read_fifo_16
;
1005 if ((unsigned long)tx_buf
& 0x03)
1006 tx_fifo
= sh_msiof_spi_write_fifo_s32u
;
1008 tx_fifo
= sh_msiof_spi_write_fifo_s32
;
1010 if ((unsigned long)rx_buf
& 0x03)
1011 rx_fifo
= sh_msiof_spi_read_fifo_s32u
;
1013 rx_fifo
= sh_msiof_spi_read_fifo_s32
;
1016 if ((unsigned long)tx_buf
& 0x03)
1017 tx_fifo
= sh_msiof_spi_write_fifo_32u
;
1019 tx_fifo
= sh_msiof_spi_write_fifo_32
;
1021 if ((unsigned long)rx_buf
& 0x03)
1022 rx_fifo
= sh_msiof_spi_read_fifo_32u
;
1024 rx_fifo
= sh_msiof_spi_read_fifo_32
;
1027 /* transfer in fifo sized chunks */
1028 words
= len
/ bytes_per_word
;
1031 n
= sh_msiof_spi_txrx_once(p
, tx_fifo
, rx_fifo
, tx_buf
, rx_buf
,
1037 tx_buf
+= n
* bytes_per_word
;
1039 rx_buf
+= n
* bytes_per_word
;
1046 static const struct sh_msiof_chipdata sh_data
= {
1053 static const struct sh_msiof_chipdata rcar_gen2_data
= {
1056 .master_flags
= SPI_MASTER_MUST_TX
,
1060 static const struct sh_msiof_chipdata rcar_gen3_data
= {
1063 .master_flags
= SPI_MASTER_MUST_TX
,
1067 static const struct of_device_id sh_msiof_match
[] = {
1068 { .compatible
= "renesas,sh-mobile-msiof", .data
= &sh_data
},
1069 { .compatible
= "renesas,msiof-r8a7743", .data
= &rcar_gen2_data
},
1070 { .compatible
= "renesas,msiof-r8a7745", .data
= &rcar_gen2_data
},
1071 { .compatible
= "renesas,msiof-r8a7790", .data
= &rcar_gen2_data
},
1072 { .compatible
= "renesas,msiof-r8a7791", .data
= &rcar_gen2_data
},
1073 { .compatible
= "renesas,msiof-r8a7792", .data
= &rcar_gen2_data
},
1074 { .compatible
= "renesas,msiof-r8a7793", .data
= &rcar_gen2_data
},
1075 { .compatible
= "renesas,msiof-r8a7794", .data
= &rcar_gen2_data
},
1076 { .compatible
= "renesas,rcar-gen2-msiof", .data
= &rcar_gen2_data
},
1077 { .compatible
= "renesas,msiof-r8a7796", .data
= &rcar_gen3_data
},
1078 { .compatible
= "renesas,rcar-gen3-msiof", .data
= &rcar_gen3_data
},
1079 { .compatible
= "renesas,sh-msiof", .data
= &sh_data
}, /* Deprecated */
1082 MODULE_DEVICE_TABLE(of
, sh_msiof_match
);
1085 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1087 struct sh_msiof_spi_info
*info
;
1088 struct device_node
*np
= dev
->of_node
;
1091 info
= devm_kzalloc(dev
, sizeof(struct sh_msiof_spi_info
), GFP_KERNEL
);
1095 info
->mode
= of_property_read_bool(np
, "spi-slave") ? MSIOF_SPI_SLAVE
1098 /* Parse the MSIOF properties */
1099 if (info
->mode
== MSIOF_SPI_MASTER
)
1100 of_property_read_u32(np
, "num-cs", &num_cs
);
1101 of_property_read_u32(np
, "renesas,tx-fifo-size",
1102 &info
->tx_fifo_override
);
1103 of_property_read_u32(np
, "renesas,rx-fifo-size",
1104 &info
->rx_fifo_override
);
1105 of_property_read_u32(np
, "renesas,dtdl", &info
->dtdl
);
1106 of_property_read_u32(np
, "renesas,syncdl", &info
->syncdl
);
1108 info
->num_chipselect
= num_cs
;
1113 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1119 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv
*p
)
1121 struct device
*dev
= &p
->pdev
->dev
;
1122 unsigned int used_ss_mask
= 0;
1123 unsigned int cs_gpios
= 0;
1124 unsigned int num_cs
, i
;
1127 ret
= gpiod_count(dev
, "cs");
1131 num_cs
= max_t(unsigned int, ret
, p
->master
->num_chipselect
);
1132 for (i
= 0; i
< num_cs
; i
++) {
1133 struct gpio_desc
*gpiod
;
1135 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1136 if (!IS_ERR(gpiod
)) {
1141 if (PTR_ERR(gpiod
) != -ENOENT
)
1142 return PTR_ERR(gpiod
);
1145 dev_err(dev
, "Invalid native chip select %d\n", i
);
1148 used_ss_mask
|= BIT(i
);
1150 p
->unused_ss
= ffz(used_ss_mask
);
1151 if (cs_gpios
&& p
->unused_ss
>= MAX_SS
) {
1152 dev_err(dev
, "No unused native chip select available\n");
1158 static struct dma_chan
*sh_msiof_request_dma_chan(struct device
*dev
,
1159 enum dma_transfer_direction dir
, unsigned int id
, dma_addr_t port_addr
)
1161 dma_cap_mask_t mask
;
1162 struct dma_chan
*chan
;
1163 struct dma_slave_config cfg
;
1167 dma_cap_set(DMA_SLAVE
, mask
);
1169 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1170 (void *)(unsigned long)id
, dev
,
1171 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1173 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1177 memset(&cfg
, 0, sizeof(cfg
));
1178 cfg
.direction
= dir
;
1179 if (dir
== DMA_MEM_TO_DEV
) {
1180 cfg
.dst_addr
= port_addr
;
1181 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1183 cfg
.src_addr
= port_addr
;
1184 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1187 ret
= dmaengine_slave_config(chan
, &cfg
);
1189 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1190 dma_release_channel(chan
);
1197 static int sh_msiof_request_dma(struct sh_msiof_spi_priv
*p
)
1199 struct platform_device
*pdev
= p
->pdev
;
1200 struct device
*dev
= &pdev
->dev
;
1201 const struct sh_msiof_spi_info
*info
= dev_get_platdata(dev
);
1202 unsigned int dma_tx_id
, dma_rx_id
;
1203 const struct resource
*res
;
1204 struct spi_master
*master
;
1205 struct device
*tx_dev
, *rx_dev
;
1208 /* In the OF case we will get the slave IDs from the DT */
1211 } else if (info
&& info
->dma_tx_id
&& info
->dma_rx_id
) {
1212 dma_tx_id
= info
->dma_tx_id
;
1213 dma_rx_id
= info
->dma_rx_id
;
1215 /* The driver assumes no error */
1219 /* The DMA engine uses the second register set, if present */
1220 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1222 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1225 master
->dma_tx
= sh_msiof_request_dma_chan(dev
, DMA_MEM_TO_DEV
,
1228 if (!master
->dma_tx
)
1231 master
->dma_rx
= sh_msiof_request_dma_chan(dev
, DMA_DEV_TO_MEM
,
1234 if (!master
->dma_rx
)
1237 p
->tx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1238 if (!p
->tx_dma_page
)
1241 p
->rx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1242 if (!p
->rx_dma_page
)
1245 tx_dev
= master
->dma_tx
->device
->dev
;
1246 p
->tx_dma_addr
= dma_map_single(tx_dev
, p
->tx_dma_page
, PAGE_SIZE
,
1248 if (dma_mapping_error(tx_dev
, p
->tx_dma_addr
))
1251 rx_dev
= master
->dma_rx
->device
->dev
;
1252 p
->rx_dma_addr
= dma_map_single(rx_dev
, p
->rx_dma_page
, PAGE_SIZE
,
1254 if (dma_mapping_error(rx_dev
, p
->rx_dma_addr
))
1257 dev_info(dev
, "DMA available");
1261 dma_unmap_single(tx_dev
, p
->tx_dma_addr
, PAGE_SIZE
, DMA_TO_DEVICE
);
1263 free_page((unsigned long)p
->rx_dma_page
);
1265 free_page((unsigned long)p
->tx_dma_page
);
1267 dma_release_channel(master
->dma_rx
);
1269 dma_release_channel(master
->dma_tx
);
1270 master
->dma_tx
= NULL
;
1274 static void sh_msiof_release_dma(struct sh_msiof_spi_priv
*p
)
1276 struct spi_master
*master
= p
->master
;
1278 if (!master
->dma_tx
)
1281 dma_unmap_single(master
->dma_rx
->device
->dev
, p
->rx_dma_addr
,
1282 PAGE_SIZE
, DMA_FROM_DEVICE
);
1283 dma_unmap_single(master
->dma_tx
->device
->dev
, p
->tx_dma_addr
,
1284 PAGE_SIZE
, DMA_TO_DEVICE
);
1285 free_page((unsigned long)p
->rx_dma_page
);
1286 free_page((unsigned long)p
->tx_dma_page
);
1287 dma_release_channel(master
->dma_rx
);
1288 dma_release_channel(master
->dma_tx
);
1291 static int sh_msiof_spi_probe(struct platform_device
*pdev
)
1294 struct spi_master
*master
;
1295 const struct sh_msiof_chipdata
*chipdata
;
1296 struct sh_msiof_spi_info
*info
;
1297 struct sh_msiof_spi_priv
*p
;
1301 chipdata
= of_device_get_match_data(&pdev
->dev
);
1303 info
= sh_msiof_spi_parse_dt(&pdev
->dev
);
1305 chipdata
= (const void *)pdev
->id_entry
->driver_data
;
1306 info
= dev_get_platdata(&pdev
->dev
);
1310 dev_err(&pdev
->dev
, "failed to obtain device info\n");
1314 if (info
->mode
== MSIOF_SPI_SLAVE
)
1315 master
= spi_alloc_slave(&pdev
->dev
,
1316 sizeof(struct sh_msiof_spi_priv
));
1318 master
= spi_alloc_master(&pdev
->dev
,
1319 sizeof(struct sh_msiof_spi_priv
));
1323 p
= spi_master_get_devdata(master
);
1325 platform_set_drvdata(pdev
, p
);
1328 p
->min_div_pow
= chipdata
->min_div_pow
;
1330 init_completion(&p
->done
);
1331 init_completion(&p
->done_txdma
);
1333 p
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1334 if (IS_ERR(p
->clk
)) {
1335 dev_err(&pdev
->dev
, "cannot get clock\n");
1336 ret
= PTR_ERR(p
->clk
);
1340 i
= platform_get_irq(pdev
, 0);
1342 dev_err(&pdev
->dev
, "cannot get IRQ\n");
1347 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1348 p
->mapbase
= devm_ioremap_resource(&pdev
->dev
, r
);
1349 if (IS_ERR(p
->mapbase
)) {
1350 ret
= PTR_ERR(p
->mapbase
);
1354 ret
= devm_request_irq(&pdev
->dev
, i
, sh_msiof_spi_irq
, 0,
1355 dev_name(&pdev
->dev
), p
);
1357 dev_err(&pdev
->dev
, "unable to request irq\n");
1362 pm_runtime_enable(&pdev
->dev
);
1364 /* Platform data may override FIFO sizes */
1365 p
->tx_fifo_size
= chipdata
->tx_fifo_size
;
1366 p
->rx_fifo_size
= chipdata
->rx_fifo_size
;
1367 if (p
->info
->tx_fifo_override
)
1368 p
->tx_fifo_size
= p
->info
->tx_fifo_override
;
1369 if (p
->info
->rx_fifo_override
)
1370 p
->rx_fifo_size
= p
->info
->rx_fifo_override
;
1372 /* Setup GPIO chip selects */
1373 master
->num_chipselect
= p
->info
->num_chipselect
;
1374 ret
= sh_msiof_get_cs_gpios(p
);
1378 /* init master code */
1379 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1380 master
->mode_bits
|= SPI_LSB_FIRST
| SPI_3WIRE
;
1381 master
->flags
= chipdata
->master_flags
;
1382 master
->bus_num
= pdev
->id
;
1383 master
->dev
.of_node
= pdev
->dev
.of_node
;
1384 master
->setup
= sh_msiof_spi_setup
;
1385 master
->prepare_message
= sh_msiof_prepare_message
;
1386 master
->slave_abort
= sh_msiof_slave_abort
;
1387 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 32);
1388 master
->auto_runtime_pm
= true;
1389 master
->transfer_one
= sh_msiof_transfer_one
;
1391 ret
= sh_msiof_request_dma(p
);
1393 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1395 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1397 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1404 sh_msiof_release_dma(p
);
1405 pm_runtime_disable(&pdev
->dev
);
1407 spi_master_put(master
);
1411 static int sh_msiof_spi_remove(struct platform_device
*pdev
)
1413 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1415 sh_msiof_release_dma(p
);
1416 pm_runtime_disable(&pdev
->dev
);
1420 static const struct platform_device_id spi_driver_ids
[] = {
1421 { "spi_sh_msiof", (kernel_ulong_t
)&sh_data
},
1424 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1426 #ifdef CONFIG_PM_SLEEP
1427 static int sh_msiof_spi_suspend(struct device
*dev
)
1429 struct platform_device
*pdev
= to_platform_device(dev
);
1430 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1432 return spi_master_suspend(p
->master
);
1435 static int sh_msiof_spi_resume(struct device
*dev
)
1437 struct platform_device
*pdev
= to_platform_device(dev
);
1438 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1440 return spi_master_resume(p
->master
);
1443 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops
, sh_msiof_spi_suspend
,
1444 sh_msiof_spi_resume
);
1445 #define DEV_PM_OPS &sh_msiof_spi_pm_ops
1447 #define DEV_PM_OPS NULL
1448 #endif /* CONFIG_PM_SLEEP */
1450 static struct platform_driver sh_msiof_spi_drv
= {
1451 .probe
= sh_msiof_spi_probe
,
1452 .remove
= sh_msiof_spi_remove
,
1453 .id_table
= spi_driver_ids
,
1455 .name
= "spi_sh_msiof",
1457 .of_match_table
= of_match_ptr(sh_msiof_match
),
1460 module_platform_driver(sh_msiof_spi_drv
);
1462 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1463 MODULE_AUTHOR("Magnus Damm");
1464 MODULE_LICENSE("GPL v2");
1465 MODULE_ALIAS("platform:spi_sh_msiof");