powerpc/kprobes: Remove kretprobe_trampoline_holder.
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blobc034edf3ef38ed8b14b1054cf6e8753a0c77d063
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
84 fe = (struct ocfs2_dinode *) bh->b_data;
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
123 brelse(buffer_cache_bh);
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
129 err = 0;
131 bail:
132 brelse(bh);
134 return err;
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
168 if (max_blocks < count)
169 count = max_blocks;
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
192 bh_result->b_size = count << inode->i_blkbits;
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
215 bail:
216 if (err < 0)
217 err = -EIO;
219 return err;
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
235 size = i_size_read(inode);
237 if (size > PAGE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
254 SetPageUptodate(page);
256 return 0;
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 int ret;
262 struct buffer_head *di_bh = NULL;
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
277 brelse(di_bh);
278 return ret;
281 static int ocfs2_readpage(struct file *file, struct page *page)
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 int ret, unlock = 1;
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
398 return err;
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
418 return block_write_full_page(page, ocfs2_get_block, wbc);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
454 return ret;
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
496 bail:
497 status = err ? 0 : p_blkno;
499 return status;
502 static int ocfs2_releasepage(struct page *page, gfp_t wait)
504 if (!page_has_buffers(page))
505 return 0;
506 return try_to_free_buffers(page);
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510 u32 cpos,
511 unsigned int *start,
512 unsigned int *end)
514 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
516 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
517 unsigned int cpp;
519 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
521 cluster_start = cpos % cpp;
522 cluster_start = cluster_start << osb->s_clustersize_bits;
524 cluster_end = cluster_start + osb->s_clustersize;
527 BUG_ON(cluster_start > PAGE_SIZE);
528 BUG_ON(cluster_end > PAGE_SIZE);
530 if (start)
531 *start = cluster_start;
532 if (end)
533 *end = cluster_end;
537 * 'from' and 'to' are the region in the page to avoid zeroing.
539 * If pagesize > clustersize, this function will avoid zeroing outside
540 * of the cluster boundary.
542 * from == to == 0 is code for "zero the entire cluster region"
544 static void ocfs2_clear_page_regions(struct page *page,
545 struct ocfs2_super *osb, u32 cpos,
546 unsigned from, unsigned to)
548 void *kaddr;
549 unsigned int cluster_start, cluster_end;
551 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
553 kaddr = kmap_atomic(page);
555 if (from || to) {
556 if (from > cluster_start)
557 memset(kaddr + cluster_start, 0, from - cluster_start);
558 if (to < cluster_end)
559 memset(kaddr + to, 0, cluster_end - to);
560 } else {
561 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
564 kunmap_atomic(kaddr);
568 * Nonsparse file systems fully allocate before we get to the write
569 * code. This prevents ocfs2_write() from tagging the write as an
570 * allocating one, which means ocfs2_map_page_blocks() might try to
571 * read-in the blocks at the tail of our file. Avoid reading them by
572 * testing i_size against each block offset.
574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575 unsigned int block_start)
577 u64 offset = page_offset(page) + block_start;
579 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 return 1;
582 if (i_size_read(inode) > offset)
583 return 1;
585 return 0;
589 * Some of this taken from __block_write_begin(). We already have our
590 * mapping by now though, and the entire write will be allocating or
591 * it won't, so not much need to use BH_New.
593 * This will also skip zeroing, which is handled externally.
595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596 struct inode *inode, unsigned int from,
597 unsigned int to, int new)
599 int ret = 0;
600 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601 unsigned int block_end, block_start;
602 unsigned int bsize = 1 << inode->i_blkbits;
604 if (!page_has_buffers(page))
605 create_empty_buffers(page, bsize, 0);
607 head = page_buffers(page);
608 for (bh = head, block_start = 0; bh != head || !block_start;
609 bh = bh->b_this_page, block_start += bsize) {
610 block_end = block_start + bsize;
612 clear_buffer_new(bh);
615 * Ignore blocks outside of our i/o range -
616 * they may belong to unallocated clusters.
618 if (block_start >= to || block_end <= from) {
619 if (PageUptodate(page))
620 set_buffer_uptodate(bh);
621 continue;
625 * For an allocating write with cluster size >= page
626 * size, we always write the entire page.
628 if (new)
629 set_buffer_new(bh);
631 if (!buffer_mapped(bh)) {
632 map_bh(bh, inode->i_sb, *p_blkno);
633 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
636 if (PageUptodate(page)) {
637 if (!buffer_uptodate(bh))
638 set_buffer_uptodate(bh);
639 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
640 !buffer_new(bh) &&
641 ocfs2_should_read_blk(inode, page, block_start) &&
642 (block_start < from || block_end > to)) {
643 ll_rw_block(READ, 1, &bh);
644 *wait_bh++=bh;
647 *p_blkno = *p_blkno + 1;
651 * If we issued read requests - let them complete.
653 while(wait_bh > wait) {
654 wait_on_buffer(*--wait_bh);
655 if (!buffer_uptodate(*wait_bh))
656 ret = -EIO;
659 if (ret == 0 || !new)
660 return ret;
663 * If we get -EIO above, zero out any newly allocated blocks
664 * to avoid exposing stale data.
666 bh = head;
667 block_start = 0;
668 do {
669 block_end = block_start + bsize;
670 if (block_end <= from)
671 goto next_bh;
672 if (block_start >= to)
673 break;
675 zero_user(page, block_start, bh->b_size);
676 set_buffer_uptodate(bh);
677 mark_buffer_dirty(bh);
679 next_bh:
680 block_start = block_end;
681 bh = bh->b_this_page;
682 } while (bh != head);
684 return ret;
687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES 1
689 #else
690 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
691 #endif
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
695 struct ocfs2_unwritten_extent {
696 struct list_head ue_node;
697 struct list_head ue_ip_node;
698 u32 ue_cpos;
699 u32 ue_phys;
703 * Describe the state of a single cluster to be written to.
705 struct ocfs2_write_cluster_desc {
706 u32 c_cpos;
707 u32 c_phys;
709 * Give this a unique field because c_phys eventually gets
710 * filled.
712 unsigned c_new;
713 unsigned c_clear_unwritten;
714 unsigned c_needs_zero;
717 struct ocfs2_write_ctxt {
718 /* Logical cluster position / len of write */
719 u32 w_cpos;
720 u32 w_clen;
722 /* First cluster allocated in a nonsparse extend */
723 u32 w_first_new_cpos;
725 /* Type of caller. Must be one of buffer, mmap, direct. */
726 ocfs2_write_type_t w_type;
728 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
731 * This is true if page_size > cluster_size.
733 * It triggers a set of special cases during write which might
734 * have to deal with allocating writes to partial pages.
736 unsigned int w_large_pages;
739 * Pages involved in this write.
741 * w_target_page is the page being written to by the user.
743 * w_pages is an array of pages which always contains
744 * w_target_page, and in the case of an allocating write with
745 * page_size < cluster size, it will contain zero'd and mapped
746 * pages adjacent to w_target_page which need to be written
747 * out in so that future reads from that region will get
748 * zero's.
750 unsigned int w_num_pages;
751 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
752 struct page *w_target_page;
755 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 * against w_target_page in ocfs2_write_end_nolock.
758 unsigned int w_target_locked:1;
761 * ocfs2_write_end() uses this to know what the real range to
762 * write in the target should be.
764 unsigned int w_target_from;
765 unsigned int w_target_to;
768 * We could use journal_current_handle() but this is cleaner,
769 * IMHO -Mark
771 handle_t *w_handle;
773 struct buffer_head *w_di_bh;
775 struct ocfs2_cached_dealloc_ctxt w_dealloc;
777 struct list_head w_unwritten_list;
780 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
782 int i;
784 for(i = 0; i < num_pages; i++) {
785 if (pages[i]) {
786 unlock_page(pages[i]);
787 mark_page_accessed(pages[i]);
788 put_page(pages[i]);
793 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
795 int i;
798 * w_target_locked is only set to true in the page_mkwrite() case.
799 * The intent is to allow us to lock the target page from write_begin()
800 * to write_end(). The caller must hold a ref on w_target_page.
802 if (wc->w_target_locked) {
803 BUG_ON(!wc->w_target_page);
804 for (i = 0; i < wc->w_num_pages; i++) {
805 if (wc->w_target_page == wc->w_pages[i]) {
806 wc->w_pages[i] = NULL;
807 break;
810 mark_page_accessed(wc->w_target_page);
811 put_page(wc->w_target_page);
813 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
816 static void ocfs2_free_unwritten_list(struct inode *inode,
817 struct list_head *head)
819 struct ocfs2_inode_info *oi = OCFS2_I(inode);
820 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
822 list_for_each_entry_safe(ue, tmp, head, ue_node) {
823 list_del(&ue->ue_node);
824 spin_lock(&oi->ip_lock);
825 list_del(&ue->ue_ip_node);
826 spin_unlock(&oi->ip_lock);
827 kfree(ue);
831 static void ocfs2_free_write_ctxt(struct inode *inode,
832 struct ocfs2_write_ctxt *wc)
834 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
835 ocfs2_unlock_pages(wc);
836 brelse(wc->w_di_bh);
837 kfree(wc);
840 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
841 struct ocfs2_super *osb, loff_t pos,
842 unsigned len, ocfs2_write_type_t type,
843 struct buffer_head *di_bh)
845 u32 cend;
846 struct ocfs2_write_ctxt *wc;
848 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
849 if (!wc)
850 return -ENOMEM;
852 wc->w_cpos = pos >> osb->s_clustersize_bits;
853 wc->w_first_new_cpos = UINT_MAX;
854 cend = (pos + len - 1) >> osb->s_clustersize_bits;
855 wc->w_clen = cend - wc->w_cpos + 1;
856 get_bh(di_bh);
857 wc->w_di_bh = di_bh;
858 wc->w_type = type;
860 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
861 wc->w_large_pages = 1;
862 else
863 wc->w_large_pages = 0;
865 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
866 INIT_LIST_HEAD(&wc->w_unwritten_list);
868 *wcp = wc;
870 return 0;
874 * If a page has any new buffers, zero them out here, and mark them uptodate
875 * and dirty so they'll be written out (in order to prevent uninitialised
876 * block data from leaking). And clear the new bit.
878 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
880 unsigned int block_start, block_end;
881 struct buffer_head *head, *bh;
883 BUG_ON(!PageLocked(page));
884 if (!page_has_buffers(page))
885 return;
887 bh = head = page_buffers(page);
888 block_start = 0;
889 do {
890 block_end = block_start + bh->b_size;
892 if (buffer_new(bh)) {
893 if (block_end > from && block_start < to) {
894 if (!PageUptodate(page)) {
895 unsigned start, end;
897 start = max(from, block_start);
898 end = min(to, block_end);
900 zero_user_segment(page, start, end);
901 set_buffer_uptodate(bh);
904 clear_buffer_new(bh);
905 mark_buffer_dirty(bh);
909 block_start = block_end;
910 bh = bh->b_this_page;
911 } while (bh != head);
915 * Only called when we have a failure during allocating write to write
916 * zero's to the newly allocated region.
918 static void ocfs2_write_failure(struct inode *inode,
919 struct ocfs2_write_ctxt *wc,
920 loff_t user_pos, unsigned user_len)
922 int i;
923 unsigned from = user_pos & (PAGE_SIZE - 1),
924 to = user_pos + user_len;
925 struct page *tmppage;
927 if (wc->w_target_page)
928 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
930 for(i = 0; i < wc->w_num_pages; i++) {
931 tmppage = wc->w_pages[i];
933 if (tmppage && page_has_buffers(tmppage)) {
934 if (ocfs2_should_order_data(inode))
935 ocfs2_jbd2_file_inode(wc->w_handle, inode);
937 block_commit_write(tmppage, from, to);
942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943 struct ocfs2_write_ctxt *wc,
944 struct page *page, u32 cpos,
945 loff_t user_pos, unsigned user_len,
946 int new)
948 int ret;
949 unsigned int map_from = 0, map_to = 0;
950 unsigned int cluster_start, cluster_end;
951 unsigned int user_data_from = 0, user_data_to = 0;
953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
954 &cluster_start, &cluster_end);
956 /* treat the write as new if the a hole/lseek spanned across
957 * the page boundary.
959 new = new | ((i_size_read(inode) <= page_offset(page)) &&
960 (page_offset(page) <= user_pos));
962 if (page == wc->w_target_page) {
963 map_from = user_pos & (PAGE_SIZE - 1);
964 map_to = map_from + user_len;
966 if (new)
967 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 cluster_start, cluster_end,
969 new);
970 else
971 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 map_from, map_to, new);
973 if (ret) {
974 mlog_errno(ret);
975 goto out;
978 user_data_from = map_from;
979 user_data_to = map_to;
980 if (new) {
981 map_from = cluster_start;
982 map_to = cluster_end;
984 } else {
986 * If we haven't allocated the new page yet, we
987 * shouldn't be writing it out without copying user
988 * data. This is likely a math error from the caller.
990 BUG_ON(!new);
992 map_from = cluster_start;
993 map_to = cluster_end;
995 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996 cluster_start, cluster_end, new);
997 if (ret) {
998 mlog_errno(ret);
999 goto out;
1004 * Parts of newly allocated pages need to be zero'd.
1006 * Above, we have also rewritten 'to' and 'from' - as far as
1007 * the rest of the function is concerned, the entire cluster
1008 * range inside of a page needs to be written.
1010 * We can skip this if the page is up to date - it's already
1011 * been zero'd from being read in as a hole.
1013 if (new && !PageUptodate(page))
1014 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015 cpos, user_data_from, user_data_to);
1017 flush_dcache_page(page);
1019 out:
1020 return ret;
1024 * This function will only grab one clusters worth of pages.
1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027 struct ocfs2_write_ctxt *wc,
1028 u32 cpos, loff_t user_pos,
1029 unsigned user_len, int new,
1030 struct page *mmap_page)
1032 int ret = 0, i;
1033 unsigned long start, target_index, end_index, index;
1034 struct inode *inode = mapping->host;
1035 loff_t last_byte;
1037 target_index = user_pos >> PAGE_SHIFT;
1040 * Figure out how many pages we'll be manipulating here. For
1041 * non allocating write, we just change the one
1042 * page. Otherwise, we'll need a whole clusters worth. If we're
1043 * writing past i_size, we only need enough pages to cover the
1044 * last page of the write.
1046 if (new) {
1047 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1050 * We need the index *past* the last page we could possibly
1051 * touch. This is the page past the end of the write or
1052 * i_size, whichever is greater.
1054 last_byte = max(user_pos + user_len, i_size_read(inode));
1055 BUG_ON(last_byte < 1);
1056 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057 if ((start + wc->w_num_pages) > end_index)
1058 wc->w_num_pages = end_index - start;
1059 } else {
1060 wc->w_num_pages = 1;
1061 start = target_index;
1063 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1065 for(i = 0; i < wc->w_num_pages; i++) {
1066 index = start + i;
1068 if (index >= target_index && index <= end_index &&
1069 wc->w_type == OCFS2_WRITE_MMAP) {
1071 * ocfs2_pagemkwrite() is a little different
1072 * and wants us to directly use the page
1073 * passed in.
1075 lock_page(mmap_page);
1077 /* Exit and let the caller retry */
1078 if (mmap_page->mapping != mapping) {
1079 WARN_ON(mmap_page->mapping);
1080 unlock_page(mmap_page);
1081 ret = -EAGAIN;
1082 goto out;
1085 get_page(mmap_page);
1086 wc->w_pages[i] = mmap_page;
1087 wc->w_target_locked = true;
1088 } else if (index >= target_index && index <= end_index &&
1089 wc->w_type == OCFS2_WRITE_DIRECT) {
1090 /* Direct write has no mapping page. */
1091 wc->w_pages[i] = NULL;
1092 continue;
1093 } else {
1094 wc->w_pages[i] = find_or_create_page(mapping, index,
1095 GFP_NOFS);
1096 if (!wc->w_pages[i]) {
1097 ret = -ENOMEM;
1098 mlog_errno(ret);
1099 goto out;
1102 wait_for_stable_page(wc->w_pages[i]);
1104 if (index == target_index)
1105 wc->w_target_page = wc->w_pages[i];
1107 out:
1108 if (ret)
1109 wc->w_target_locked = false;
1110 return ret;
1114 * Prepare a single cluster for write one cluster into the file.
1116 static int ocfs2_write_cluster(struct address_space *mapping,
1117 u32 *phys, unsigned int new,
1118 unsigned int clear_unwritten,
1119 unsigned int should_zero,
1120 struct ocfs2_alloc_context *data_ac,
1121 struct ocfs2_alloc_context *meta_ac,
1122 struct ocfs2_write_ctxt *wc, u32 cpos,
1123 loff_t user_pos, unsigned user_len)
1125 int ret, i;
1126 u64 p_blkno;
1127 struct inode *inode = mapping->host;
1128 struct ocfs2_extent_tree et;
1129 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1131 if (new) {
1132 u32 tmp_pos;
1135 * This is safe to call with the page locks - it won't take
1136 * any additional semaphores or cluster locks.
1138 tmp_pos = cpos;
1139 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140 &tmp_pos, 1, !clear_unwritten,
1141 wc->w_di_bh, wc->w_handle,
1142 data_ac, meta_ac, NULL);
1144 * This shouldn't happen because we must have already
1145 * calculated the correct meta data allocation required. The
1146 * internal tree allocation code should know how to increase
1147 * transaction credits itself.
1149 * If need be, we could handle -EAGAIN for a
1150 * RESTART_TRANS here.
1152 mlog_bug_on_msg(ret == -EAGAIN,
1153 "Inode %llu: EAGAIN return during allocation.\n",
1154 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1159 } else if (clear_unwritten) {
1160 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 wc->w_di_bh);
1162 ret = ocfs2_mark_extent_written(inode, &et,
1163 wc->w_handle, cpos, 1, *phys,
1164 meta_ac, &wc->w_dealloc);
1165 if (ret < 0) {
1166 mlog_errno(ret);
1167 goto out;
1172 * The only reason this should fail is due to an inability to
1173 * find the extent added.
1175 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176 if (ret < 0) {
1177 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178 "at logical cluster %u",
1179 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180 goto out;
1183 BUG_ON(*phys == 0);
1185 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 if (!should_zero)
1187 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1189 for(i = 0; i < wc->w_num_pages; i++) {
1190 int tmpret;
1192 /* This is the direct io target page. */
1193 if (wc->w_pages[i] == NULL) {
1194 p_blkno++;
1195 continue;
1198 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199 wc->w_pages[i], cpos,
1200 user_pos, user_len,
1201 should_zero);
1202 if (tmpret) {
1203 mlog_errno(tmpret);
1204 if (ret == 0)
1205 ret = tmpret;
1210 * We only have cleanup to do in case of allocating write.
1212 if (ret && new)
1213 ocfs2_write_failure(inode, wc, user_pos, user_len);
1215 out:
1217 return ret;
1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221 struct ocfs2_alloc_context *data_ac,
1222 struct ocfs2_alloc_context *meta_ac,
1223 struct ocfs2_write_ctxt *wc,
1224 loff_t pos, unsigned len)
1226 int ret, i;
1227 loff_t cluster_off;
1228 unsigned int local_len = len;
1229 struct ocfs2_write_cluster_desc *desc;
1230 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1232 for (i = 0; i < wc->w_clen; i++) {
1233 desc = &wc->w_desc[i];
1236 * We have to make sure that the total write passed in
1237 * doesn't extend past a single cluster.
1239 local_len = len;
1240 cluster_off = pos & (osb->s_clustersize - 1);
1241 if ((cluster_off + local_len) > osb->s_clustersize)
1242 local_len = osb->s_clustersize - cluster_off;
1244 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245 desc->c_new,
1246 desc->c_clear_unwritten,
1247 desc->c_needs_zero,
1248 data_ac, meta_ac,
1249 wc, desc->c_cpos, pos, local_len);
1250 if (ret) {
1251 mlog_errno(ret);
1252 goto out;
1255 len -= local_len;
1256 pos += local_len;
1259 ret = 0;
1260 out:
1261 return ret;
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270 struct ocfs2_write_ctxt *wc,
1271 loff_t pos, unsigned len, int alloc)
1273 struct ocfs2_write_cluster_desc *desc;
1275 wc->w_target_from = pos & (PAGE_SIZE - 1);
1276 wc->w_target_to = wc->w_target_from + len;
1278 if (alloc == 0)
1279 return;
1282 * Allocating write - we may have different boundaries based
1283 * on page size and cluster size.
1285 * NOTE: We can no longer compute one value from the other as
1286 * the actual write length and user provided length may be
1287 * different.
1290 if (wc->w_large_pages) {
1292 * We only care about the 1st and last cluster within
1293 * our range and whether they should be zero'd or not. Either
1294 * value may be extended out to the start/end of a
1295 * newly allocated cluster.
1297 desc = &wc->w_desc[0];
1298 if (desc->c_needs_zero)
1299 ocfs2_figure_cluster_boundaries(osb,
1300 desc->c_cpos,
1301 &wc->w_target_from,
1302 NULL);
1304 desc = &wc->w_desc[wc->w_clen - 1];
1305 if (desc->c_needs_zero)
1306 ocfs2_figure_cluster_boundaries(osb,
1307 desc->c_cpos,
1308 NULL,
1309 &wc->w_target_to);
1310 } else {
1311 wc->w_target_from = 0;
1312 wc->w_target_to = PAGE_SIZE;
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1323 static int ocfs2_unwritten_check(struct inode *inode,
1324 struct ocfs2_write_ctxt *wc,
1325 struct ocfs2_write_cluster_desc *desc)
1327 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329 int ret = 0;
1331 if (!desc->c_needs_zero)
1332 return 0;
1334 retry:
1335 spin_lock(&oi->ip_lock);
1336 /* Needs not to zero no metter buffer or direct. The one who is zero
1337 * the cluster is doing zero. And he will clear unwritten after all
1338 * cluster io finished. */
1339 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340 if (desc->c_cpos == ue->ue_cpos) {
1341 BUG_ON(desc->c_new);
1342 desc->c_needs_zero = 0;
1343 desc->c_clear_unwritten = 0;
1344 goto unlock;
1348 if (wc->w_type != OCFS2_WRITE_DIRECT)
1349 goto unlock;
1351 if (new == NULL) {
1352 spin_unlock(&oi->ip_lock);
1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354 GFP_NOFS);
1355 if (new == NULL) {
1356 ret = -ENOMEM;
1357 goto out;
1359 goto retry;
1361 /* This direct write will doing zero. */
1362 new->ue_cpos = desc->c_cpos;
1363 new->ue_phys = desc->c_phys;
1364 desc->c_clear_unwritten = 0;
1365 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367 new = NULL;
1368 unlock:
1369 spin_unlock(&oi->ip_lock);
1370 out:
1371 if (new)
1372 kfree(new);
1373 return ret;
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
1384 static int ocfs2_populate_write_desc(struct inode *inode,
1385 struct ocfs2_write_ctxt *wc,
1386 unsigned int *clusters_to_alloc,
1387 unsigned int *extents_to_split)
1389 int ret;
1390 struct ocfs2_write_cluster_desc *desc;
1391 unsigned int num_clusters = 0;
1392 unsigned int ext_flags = 0;
1393 u32 phys = 0;
1394 int i;
1396 *clusters_to_alloc = 0;
1397 *extents_to_split = 0;
1399 for (i = 0; i < wc->w_clen; i++) {
1400 desc = &wc->w_desc[i];
1401 desc->c_cpos = wc->w_cpos + i;
1403 if (num_clusters == 0) {
1405 * Need to look up the next extent record.
1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408 &num_clusters, &ext_flags);
1409 if (ret) {
1410 mlog_errno(ret);
1411 goto out;
1414 /* We should already CoW the refcountd extent. */
1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1418 * Assume worst case - that we're writing in
1419 * the middle of the extent.
1421 * We can assume that the write proceeds from
1422 * left to right, in which case the extent
1423 * insert code is smart enough to coalesce the
1424 * next splits into the previous records created.
1426 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 *extents_to_split = *extents_to_split + 2;
1428 } else if (phys) {
1430 * Only increment phys if it doesn't describe
1431 * a hole.
1433 phys++;
1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 * file that got extended. w_first_new_cpos tells us
1439 * where the newly allocated clusters are so we can
1440 * zero them.
1442 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 BUG_ON(phys == 0);
1444 desc->c_needs_zero = 1;
1447 desc->c_phys = phys;
1448 if (phys == 0) {
1449 desc->c_new = 1;
1450 desc->c_needs_zero = 1;
1451 desc->c_clear_unwritten = 1;
1452 *clusters_to_alloc = *clusters_to_alloc + 1;
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456 desc->c_clear_unwritten = 1;
1457 desc->c_needs_zero = 1;
1460 ret = ocfs2_unwritten_check(inode, wc, desc);
1461 if (ret) {
1462 mlog_errno(ret);
1463 goto out;
1466 num_clusters--;
1469 ret = 0;
1470 out:
1471 return ret;
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485 if (IS_ERR(handle)) {
1486 ret = PTR_ERR(handle);
1487 mlog_errno(ret);
1488 goto out;
1491 page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 if (!page) {
1493 ocfs2_commit_trans(osb, handle);
1494 ret = -ENOMEM;
1495 mlog_errno(ret);
1496 goto out;
1499 * If we don't set w_num_pages then this page won't get unlocked
1500 * and freed on cleanup of the write context.
1502 wc->w_pages[0] = wc->w_target_page = page;
1503 wc->w_num_pages = 1;
1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 OCFS2_JOURNAL_ACCESS_WRITE);
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1510 mlog_errno(ret);
1511 goto out;
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1522 goto out;
1526 wc->w_handle = handle;
1527 out:
1528 return ret;
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 return 1;
1537 return 0;
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 struct ocfs2_dinode *di = NULL;
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1555 * Handle inodes which already have inline data 1st.
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1573 * Check whether the inode can accept inline data.
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1579 * Check whether the write can fit.
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 return 0;
1586 do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1594 * This signals to the caller that the data can be written
1595 * inline.
1597 written = 1;
1598 out:
1599 return written ? written : ret;
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
1614 struct ocfs2_write_ctxt *wc)
1616 int ret;
1617 loff_t newsize = pos + len;
1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 if (ret)
1626 mlog_errno(ret);
1628 /* There is no wc if this is call from direct. */
1629 if (wc)
1630 wc->w_first_new_cpos =
1631 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1633 return ret;
1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637 loff_t pos)
1639 int ret = 0;
1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 if (pos > i_size_read(inode))
1643 ret = ocfs2_zero_extend(inode, di_bh, pos);
1645 return ret;
1649 * Try to flush truncate logs if we can free enough clusters from it.
1650 * As for return value, "< 0" means error, "0" no space and "1" means
1651 * we have freed enough spaces and let the caller try to allocate again.
1653 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1654 unsigned int needed)
1656 tid_t target;
1657 int ret = 0;
1658 unsigned int truncated_clusters;
1660 inode_lock(osb->osb_tl_inode);
1661 truncated_clusters = osb->truncated_clusters;
1662 inode_unlock(osb->osb_tl_inode);
1665 * Check whether we can succeed in allocating if we free
1666 * the truncate log.
1668 if (truncated_clusters < needed)
1669 goto out;
1671 ret = ocfs2_flush_truncate_log(osb);
1672 if (ret) {
1673 mlog_errno(ret);
1674 goto out;
1677 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1678 jbd2_log_wait_commit(osb->journal->j_journal, target);
1679 ret = 1;
1681 out:
1682 return ret;
1685 int ocfs2_write_begin_nolock(struct address_space *mapping,
1686 loff_t pos, unsigned len, ocfs2_write_type_t type,
1687 struct page **pagep, void **fsdata,
1688 struct buffer_head *di_bh, struct page *mmap_page)
1690 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1691 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1692 struct ocfs2_write_ctxt *wc;
1693 struct inode *inode = mapping->host;
1694 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695 struct ocfs2_dinode *di;
1696 struct ocfs2_alloc_context *data_ac = NULL;
1697 struct ocfs2_alloc_context *meta_ac = NULL;
1698 handle_t *handle;
1699 struct ocfs2_extent_tree et;
1700 int try_free = 1, ret1;
1702 try_again:
1703 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1704 if (ret) {
1705 mlog_errno(ret);
1706 return ret;
1709 if (ocfs2_supports_inline_data(osb)) {
1710 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1711 mmap_page, wc);
1712 if (ret == 1) {
1713 ret = 0;
1714 goto success;
1716 if (ret < 0) {
1717 mlog_errno(ret);
1718 goto out;
1722 /* Direct io change i_size late, should not zero tail here. */
1723 if (type != OCFS2_WRITE_DIRECT) {
1724 if (ocfs2_sparse_alloc(osb))
1725 ret = ocfs2_zero_tail(inode, di_bh, pos);
1726 else
1727 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1728 len, wc);
1729 if (ret) {
1730 mlog_errno(ret);
1731 goto out;
1735 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1739 } else if (ret == 1) {
1740 clusters_need = wc->w_clen;
1741 ret = ocfs2_refcount_cow(inode, di_bh,
1742 wc->w_cpos, wc->w_clen, UINT_MAX);
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1749 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750 &extents_to_split);
1751 if (ret) {
1752 mlog_errno(ret);
1753 goto out;
1755 clusters_need += clusters_to_alloc;
1757 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1759 trace_ocfs2_write_begin_nolock(
1760 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761 (long long)i_size_read(inode),
1762 le32_to_cpu(di->i_clusters),
1763 pos, len, type, mmap_page,
1764 clusters_to_alloc, extents_to_split);
1767 * We set w_target_from, w_target_to here so that
1768 * ocfs2_write_end() knows which range in the target page to
1769 * write out. An allocation requires that we write the entire
1770 * cluster range.
1772 if (clusters_to_alloc || extents_to_split) {
1774 * XXX: We are stretching the limits of
1775 * ocfs2_lock_allocators(). It greatly over-estimates
1776 * the work to be done.
1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779 wc->w_di_bh);
1780 ret = ocfs2_lock_allocators(inode, &et,
1781 clusters_to_alloc, extents_to_split,
1782 &data_ac, &meta_ac);
1783 if (ret) {
1784 mlog_errno(ret);
1785 goto out;
1788 if (data_ac)
1789 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1791 credits = ocfs2_calc_extend_credits(inode->i_sb,
1792 &di->id2.i_list);
1793 } else if (type == OCFS2_WRITE_DIRECT)
1794 /* direct write needs not to start trans if no extents alloc. */
1795 goto success;
1798 * We have to zero sparse allocated clusters, unwritten extent clusters,
1799 * and non-sparse clusters we just extended. For non-sparse writes,
1800 * we know zeros will only be needed in the first and/or last cluster.
1802 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1804 cluster_of_pages = 1;
1805 else
1806 cluster_of_pages = 0;
1808 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1810 handle = ocfs2_start_trans(osb, credits);
1811 if (IS_ERR(handle)) {
1812 ret = PTR_ERR(handle);
1813 mlog_errno(ret);
1814 goto out;
1817 wc->w_handle = handle;
1819 if (clusters_to_alloc) {
1820 ret = dquot_alloc_space_nodirty(inode,
1821 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 if (ret)
1823 goto out_commit;
1826 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1827 OCFS2_JOURNAL_ACCESS_WRITE);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out_quota;
1834 * Fill our page array first. That way we've grabbed enough so
1835 * that we can zero and flush if we error after adding the
1836 * extent.
1838 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1839 cluster_of_pages, mmap_page);
1840 if (ret && ret != -EAGAIN) {
1841 mlog_errno(ret);
1842 goto out_quota;
1846 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1847 * the target page. In this case, we exit with no error and no target
1848 * page. This will trigger the caller, page_mkwrite(), to re-try
1849 * the operation.
1851 if (ret == -EAGAIN) {
1852 BUG_ON(wc->w_target_page);
1853 ret = 0;
1854 goto out_quota;
1857 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1858 len);
1859 if (ret) {
1860 mlog_errno(ret);
1861 goto out_quota;
1864 if (data_ac)
1865 ocfs2_free_alloc_context(data_ac);
1866 if (meta_ac)
1867 ocfs2_free_alloc_context(meta_ac);
1869 success:
1870 if (pagep)
1871 *pagep = wc->w_target_page;
1872 *fsdata = wc;
1873 return 0;
1874 out_quota:
1875 if (clusters_to_alloc)
1876 dquot_free_space(inode,
1877 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1878 out_commit:
1879 ocfs2_commit_trans(osb, handle);
1881 out:
1882 ocfs2_free_write_ctxt(inode, wc);
1884 if (data_ac) {
1885 ocfs2_free_alloc_context(data_ac);
1886 data_ac = NULL;
1888 if (meta_ac) {
1889 ocfs2_free_alloc_context(meta_ac);
1890 meta_ac = NULL;
1893 if (ret == -ENOSPC && try_free) {
1895 * Try to free some truncate log so that we can have enough
1896 * clusters to allocate.
1898 try_free = 0;
1900 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1901 if (ret1 == 1)
1902 goto try_again;
1904 if (ret1 < 0)
1905 mlog_errno(ret1);
1908 return ret;
1911 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1912 loff_t pos, unsigned len, unsigned flags,
1913 struct page **pagep, void **fsdata)
1915 int ret;
1916 struct buffer_head *di_bh = NULL;
1917 struct inode *inode = mapping->host;
1919 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1920 if (ret) {
1921 mlog_errno(ret);
1922 return ret;
1926 * Take alloc sem here to prevent concurrent lookups. That way
1927 * the mapping, zeroing and tree manipulation within
1928 * ocfs2_write() will be safe against ->readpage(). This
1929 * should also serve to lock out allocation from a shared
1930 * writeable region.
1932 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1934 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1935 pagep, fsdata, di_bh, NULL);
1936 if (ret) {
1937 mlog_errno(ret);
1938 goto out_fail;
1941 brelse(di_bh);
1943 return 0;
1945 out_fail:
1946 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1948 brelse(di_bh);
1949 ocfs2_inode_unlock(inode, 1);
1951 return ret;
1954 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1955 unsigned len, unsigned *copied,
1956 struct ocfs2_dinode *di,
1957 struct ocfs2_write_ctxt *wc)
1959 void *kaddr;
1961 if (unlikely(*copied < len)) {
1962 if (!PageUptodate(wc->w_target_page)) {
1963 *copied = 0;
1964 return;
1968 kaddr = kmap_atomic(wc->w_target_page);
1969 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1970 kunmap_atomic(kaddr);
1972 trace_ocfs2_write_end_inline(
1973 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1974 (unsigned long long)pos, *copied,
1975 le16_to_cpu(di->id2.i_data.id_count),
1976 le16_to_cpu(di->i_dyn_features));
1979 int ocfs2_write_end_nolock(struct address_space *mapping,
1980 loff_t pos, unsigned len, unsigned copied,
1981 struct page *page, void *fsdata)
1983 int i, ret;
1984 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1985 struct inode *inode = mapping->host;
1986 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1987 struct ocfs2_write_ctxt *wc = fsdata;
1988 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989 handle_t *handle = wc->w_handle;
1990 struct page *tmppage;
1992 BUG_ON(!list_empty(&wc->w_unwritten_list));
1994 if (handle) {
1995 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1996 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1997 if (ret) {
1998 copied = ret;
1999 mlog_errno(ret);
2000 goto out;
2004 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 goto out_write_size;
2009 if (unlikely(copied < len) && wc->w_target_page) {
2010 if (!PageUptodate(wc->w_target_page))
2011 copied = 0;
2013 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 start+len);
2016 if (wc->w_target_page)
2017 flush_dcache_page(wc->w_target_page);
2019 for(i = 0; i < wc->w_num_pages; i++) {
2020 tmppage = wc->w_pages[i];
2022 /* This is the direct io target page. */
2023 if (tmppage == NULL)
2024 continue;
2026 if (tmppage == wc->w_target_page) {
2027 from = wc->w_target_from;
2028 to = wc->w_target_to;
2030 BUG_ON(from > PAGE_SIZE ||
2031 to > PAGE_SIZE ||
2032 to < from);
2033 } else {
2035 * Pages adjacent to the target (if any) imply
2036 * a hole-filling write in which case we want
2037 * to flush their entire range.
2039 from = 0;
2040 to = PAGE_SIZE;
2043 if (page_has_buffers(tmppage)) {
2044 if (handle && ocfs2_should_order_data(inode))
2045 ocfs2_jbd2_file_inode(handle, inode);
2046 block_commit_write(tmppage, from, to);
2050 out_write_size:
2051 /* Direct io do not update i_size here. */
2052 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2053 pos += copied;
2054 if (pos > i_size_read(inode)) {
2055 i_size_write(inode, pos);
2056 mark_inode_dirty(inode);
2058 inode->i_blocks = ocfs2_inode_sector_count(inode);
2059 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2063 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2065 if (handle)
2066 ocfs2_journal_dirty(handle, wc->w_di_bh);
2068 out:
2069 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2070 * lock, or it will cause a deadlock since journal commit threads holds
2071 * this lock and will ask for the page lock when flushing the data.
2072 * put it here to preserve the unlock order.
2074 ocfs2_unlock_pages(wc);
2076 if (handle)
2077 ocfs2_commit_trans(osb, handle);
2079 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2081 brelse(wc->w_di_bh);
2082 kfree(wc);
2084 return copied;
2087 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2088 loff_t pos, unsigned len, unsigned copied,
2089 struct page *page, void *fsdata)
2091 int ret;
2092 struct inode *inode = mapping->host;
2094 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2096 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2097 ocfs2_inode_unlock(inode, 1);
2099 return ret;
2102 struct ocfs2_dio_write_ctxt {
2103 struct list_head dw_zero_list;
2104 unsigned dw_zero_count;
2105 int dw_orphaned;
2106 pid_t dw_writer_pid;
2109 static struct ocfs2_dio_write_ctxt *
2110 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2112 struct ocfs2_dio_write_ctxt *dwc = NULL;
2114 if (bh->b_private)
2115 return bh->b_private;
2117 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2118 if (dwc == NULL)
2119 return NULL;
2120 INIT_LIST_HEAD(&dwc->dw_zero_list);
2121 dwc->dw_zero_count = 0;
2122 dwc->dw_orphaned = 0;
2123 dwc->dw_writer_pid = task_pid_nr(current);
2124 bh->b_private = dwc;
2125 *alloc = 1;
2127 return dwc;
2130 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2131 struct ocfs2_dio_write_ctxt *dwc)
2133 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2134 kfree(dwc);
2138 * TODO: Make this into a generic get_blocks function.
2140 * From do_direct_io in direct-io.c:
2141 * "So what we do is to permit the ->get_blocks function to populate
2142 * bh.b_size with the size of IO which is permitted at this offset and
2143 * this i_blkbits."
2145 * This function is called directly from get_more_blocks in direct-io.c.
2147 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2148 * fs_count, map_bh, dio->rw == WRITE);
2150 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2151 struct buffer_head *bh_result, int create)
2153 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2154 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2155 struct ocfs2_write_ctxt *wc;
2156 struct ocfs2_write_cluster_desc *desc = NULL;
2157 struct ocfs2_dio_write_ctxt *dwc = NULL;
2158 struct buffer_head *di_bh = NULL;
2159 u64 p_blkno;
2160 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2161 unsigned len, total_len = bh_result->b_size;
2162 int ret = 0, first_get_block = 0;
2164 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2165 len = min(total_len, len);
2167 mlog(0, "get block of %lu at %llu:%u req %u\n",
2168 inode->i_ino, pos, len, total_len);
2171 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2172 * we may need to add it to orphan dir. So can not fall to fast path
2173 * while file size will be changed.
2175 if (pos + total_len <= i_size_read(inode)) {
2176 down_read(&oi->ip_alloc_sem);
2177 /* This is the fast path for re-write. */
2178 ret = ocfs2_get_block(inode, iblock, bh_result, create);
2180 up_read(&oi->ip_alloc_sem);
2182 if (buffer_mapped(bh_result) &&
2183 !buffer_new(bh_result) &&
2184 ret == 0)
2185 goto out;
2187 /* Clear state set by ocfs2_get_block. */
2188 bh_result->b_state = 0;
2191 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2192 if (unlikely(dwc == NULL)) {
2193 ret = -ENOMEM;
2194 mlog_errno(ret);
2195 goto out;
2198 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2199 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2200 !dwc->dw_orphaned) {
2202 * when we are going to alloc extents beyond file size, add the
2203 * inode to orphan dir, so we can recall those spaces when
2204 * system crashed during write.
2206 ret = ocfs2_add_inode_to_orphan(osb, inode);
2207 if (ret < 0) {
2208 mlog_errno(ret);
2209 goto out;
2211 dwc->dw_orphaned = 1;
2214 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2215 if (ret) {
2216 mlog_errno(ret);
2217 goto out;
2220 down_write(&oi->ip_alloc_sem);
2222 if (first_get_block) {
2223 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2224 ret = ocfs2_zero_tail(inode, di_bh, pos);
2225 else
2226 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2227 total_len, NULL);
2228 if (ret < 0) {
2229 mlog_errno(ret);
2230 goto unlock;
2234 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2235 OCFS2_WRITE_DIRECT, NULL,
2236 (void **)&wc, di_bh, NULL);
2237 if (ret) {
2238 mlog_errno(ret);
2239 goto unlock;
2242 desc = &wc->w_desc[0];
2244 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2245 BUG_ON(p_blkno == 0);
2246 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2248 map_bh(bh_result, inode->i_sb, p_blkno);
2249 bh_result->b_size = len;
2250 if (desc->c_needs_zero)
2251 set_buffer_new(bh_result);
2253 /* May sleep in end_io. It should not happen in a irq context. So defer
2254 * it to dio work queue. */
2255 set_buffer_defer_completion(bh_result);
2257 if (!list_empty(&wc->w_unwritten_list)) {
2258 struct ocfs2_unwritten_extent *ue = NULL;
2260 ue = list_first_entry(&wc->w_unwritten_list,
2261 struct ocfs2_unwritten_extent,
2262 ue_node);
2263 BUG_ON(ue->ue_cpos != desc->c_cpos);
2264 /* The physical address may be 0, fill it. */
2265 ue->ue_phys = desc->c_phys;
2267 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2268 dwc->dw_zero_count++;
2271 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
2272 BUG_ON(ret != len);
2273 ret = 0;
2274 unlock:
2275 up_write(&oi->ip_alloc_sem);
2276 ocfs2_inode_unlock(inode, 1);
2277 brelse(di_bh);
2278 out:
2279 if (ret < 0)
2280 ret = -EIO;
2281 return ret;
2284 static void ocfs2_dio_end_io_write(struct inode *inode,
2285 struct ocfs2_dio_write_ctxt *dwc,
2286 loff_t offset,
2287 ssize_t bytes)
2289 struct ocfs2_cached_dealloc_ctxt dealloc;
2290 struct ocfs2_extent_tree et;
2291 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2292 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2293 struct ocfs2_unwritten_extent *ue = NULL;
2294 struct buffer_head *di_bh = NULL;
2295 struct ocfs2_dinode *di;
2296 struct ocfs2_alloc_context *data_ac = NULL;
2297 struct ocfs2_alloc_context *meta_ac = NULL;
2298 handle_t *handle = NULL;
2299 loff_t end = offset + bytes;
2300 int ret = 0, credits = 0, locked = 0;
2302 ocfs2_init_dealloc_ctxt(&dealloc);
2304 /* We do clear unwritten, delete orphan, change i_size here. If neither
2305 * of these happen, we can skip all this. */
2306 if (list_empty(&dwc->dw_zero_list) &&
2307 end <= i_size_read(inode) &&
2308 !dwc->dw_orphaned)
2309 goto out;
2311 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2312 * are in that context. */
2313 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2314 inode_lock(inode);
2315 locked = 1;
2318 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319 if (ret < 0) {
2320 mlog_errno(ret);
2321 goto out;
2324 down_write(&oi->ip_alloc_sem);
2326 /* Delete orphan before acquire i_mutex. */
2327 if (dwc->dw_orphaned) {
2328 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2330 end = end > i_size_read(inode) ? end : 0;
2332 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333 !!end, end);
2334 if (ret < 0)
2335 mlog_errno(ret);
2338 di = (struct ocfs2_dinode *)di_bh;
2340 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2342 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2343 &data_ac, &meta_ac);
2344 if (ret) {
2345 mlog_errno(ret);
2346 goto unlock;
2349 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2351 handle = ocfs2_start_trans(osb, credits);
2352 if (IS_ERR(handle)) {
2353 ret = PTR_ERR(handle);
2354 mlog_errno(ret);
2355 goto unlock;
2357 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2358 OCFS2_JOURNAL_ACCESS_WRITE);
2359 if (ret) {
2360 mlog_errno(ret);
2361 goto commit;
2364 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2365 ret = ocfs2_mark_extent_written(inode, &et, handle,
2366 ue->ue_cpos, 1,
2367 ue->ue_phys,
2368 meta_ac, &dealloc);
2369 if (ret < 0) {
2370 mlog_errno(ret);
2371 break;
2375 if (end > i_size_read(inode)) {
2376 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2377 if (ret < 0)
2378 mlog_errno(ret);
2380 commit:
2381 ocfs2_commit_trans(osb, handle);
2382 unlock:
2383 up_write(&oi->ip_alloc_sem);
2384 ocfs2_inode_unlock(inode, 1);
2385 brelse(di_bh);
2386 out:
2387 if (data_ac)
2388 ocfs2_free_alloc_context(data_ac);
2389 if (meta_ac)
2390 ocfs2_free_alloc_context(meta_ac);
2391 ocfs2_run_deallocs(osb, &dealloc);
2392 if (locked)
2393 inode_unlock(inode);
2394 ocfs2_dio_free_write_ctx(inode, dwc);
2398 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2399 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2400 * to protect io on one node from truncation on another.
2402 static int ocfs2_dio_end_io(struct kiocb *iocb,
2403 loff_t offset,
2404 ssize_t bytes,
2405 void *private)
2407 struct inode *inode = file_inode(iocb->ki_filp);
2408 int level;
2410 if (bytes <= 0)
2411 return 0;
2413 /* this io's submitter should not have unlocked this before we could */
2414 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2416 if (private)
2417 ocfs2_dio_end_io_write(inode, private, offset, bytes);
2419 ocfs2_iocb_clear_rw_locked(iocb);
2421 level = ocfs2_iocb_rw_locked_level(iocb);
2422 ocfs2_rw_unlock(inode, level);
2423 return 0;
2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2428 struct file *file = iocb->ki_filp;
2429 struct inode *inode = file_inode(file)->i_mapping->host;
2430 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2431 get_block_t *get_block;
2434 * Fallback to buffered I/O if we see an inode without
2435 * extents.
2437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2438 return 0;
2440 /* Fallback to buffered I/O if we do not support append dio. */
2441 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442 !ocfs2_supports_append_dio(osb))
2443 return 0;
2445 if (iov_iter_rw(iter) == READ)
2446 get_block = ocfs2_get_block;
2447 else
2448 get_block = ocfs2_dio_get_block;
2450 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2451 iter, get_block,
2452 ocfs2_dio_end_io, NULL, 0);
2455 const struct address_space_operations ocfs2_aops = {
2456 .readpage = ocfs2_readpage,
2457 .readpages = ocfs2_readpages,
2458 .writepage = ocfs2_writepage,
2459 .write_begin = ocfs2_write_begin,
2460 .write_end = ocfs2_write_end,
2461 .bmap = ocfs2_bmap,
2462 .direct_IO = ocfs2_direct_IO,
2463 .invalidatepage = block_invalidatepage,
2464 .releasepage = ocfs2_releasepage,
2465 .migratepage = buffer_migrate_page,
2466 .is_partially_uptodate = block_is_partially_uptodate,
2467 .error_remove_page = generic_error_remove_page,