HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blobfcce3ae119fa40c9b179dbb9f8acc841fc715516
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {0,}
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 /* board_id = Subsystem Device ID & Vendor ID
154 * product = Marketing Name for the board
155 * access = Address of the struct of function pointers
157 static struct board_type products[] = {
158 {0x3241103C, "Smart Array P212", &SA5_access},
159 {0x3243103C, "Smart Array P410", &SA5_access},
160 {0x3245103C, "Smart Array P410i", &SA5_access},
161 {0x3247103C, "Smart Array P411", &SA5_access},
162 {0x3249103C, "Smart Array P812", &SA5_access},
163 {0x324A103C, "Smart Array P712m", &SA5_access},
164 {0x324B103C, "Smart Array P711m", &SA5_access},
165 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166 {0x3350103C, "Smart Array P222", &SA5_access},
167 {0x3351103C, "Smart Array P420", &SA5_access},
168 {0x3352103C, "Smart Array P421", &SA5_access},
169 {0x3353103C, "Smart Array P822", &SA5_access},
170 {0x3354103C, "Smart Array P420i", &SA5_access},
171 {0x3355103C, "Smart Array P220i", &SA5_access},
172 {0x3356103C, "Smart Array P721m", &SA5_access},
173 {0x1921103C, "Smart Array P830i", &SA5_access},
174 {0x1922103C, "Smart Array P430", &SA5_access},
175 {0x1923103C, "Smart Array P431", &SA5_access},
176 {0x1924103C, "Smart Array P830", &SA5_access},
177 {0x1926103C, "Smart Array P731m", &SA5_access},
178 {0x1928103C, "Smart Array P230i", &SA5_access},
179 {0x1929103C, "Smart Array P530", &SA5_access},
180 {0x21BD103C, "Smart Array P244br", &SA5_access},
181 {0x21BE103C, "Smart Array P741m", &SA5_access},
182 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183 {0x21C0103C, "Smart Array P440ar", &SA5_access},
184 {0x21C1103C, "Smart Array P840ar", &SA5_access},
185 {0x21C2103C, "Smart Array P440", &SA5_access},
186 {0x21C3103C, "Smart Array P441", &SA5_access},
187 {0x21C4103C, "Smart Array", &SA5_access},
188 {0x21C5103C, "Smart Array P841", &SA5_access},
189 {0x21C6103C, "Smart HBA H244br", &SA5_access},
190 {0x21C7103C, "Smart HBA H240", &SA5_access},
191 {0x21C8103C, "Smart HBA H241", &SA5_access},
192 {0x21C9103C, "Smart Array", &SA5_access},
193 {0x21CA103C, "Smart Array P246br", &SA5_access},
194 {0x21CB103C, "Smart Array P840", &SA5_access},
195 {0x21CC103C, "Smart Array", &SA5_access},
196 {0x21CD103C, "Smart Array", &SA5_access},
197 {0x21CE103C, "Smart HBA", &SA5_access},
198 {0x05809005, "SmartHBA-SA", &SA5_access},
199 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216 struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220 struct sas_rphy *rphy);
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234 void __user *arg);
235 #endif
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241 struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244 int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252 unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263 struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265 struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268 int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274 u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276 unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279 int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294 struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
299 unsigned long *priv = shost_priv(sdev->host);
300 return (struct ctlr_info *) *priv;
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
305 unsigned long *priv = shost_priv(sh);
306 return (struct ctlr_info *) *priv;
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
311 return c->scsi_cmd == SCSI_CMD_IDLE;
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
316 return c->abort_pending || c->reset_pending;
319 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321 u8 *sense_key, u8 *asc, u8 *ascq)
323 struct scsi_sense_hdr sshdr;
324 bool rc;
326 *sense_key = -1;
327 *asc = -1;
328 *ascq = -1;
330 if (sense_data_len < 1)
331 return;
333 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334 if (rc) {
335 *sense_key = sshdr.sense_key;
336 *asc = sshdr.asc;
337 *ascq = sshdr.ascq;
341 static int check_for_unit_attention(struct ctlr_info *h,
342 struct CommandList *c)
344 u8 sense_key, asc, ascq;
345 int sense_len;
347 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348 sense_len = sizeof(c->err_info->SenseInfo);
349 else
350 sense_len = c->err_info->SenseLen;
352 decode_sense_data(c->err_info->SenseInfo, sense_len,
353 &sense_key, &asc, &ascq);
354 if (sense_key != UNIT_ATTENTION || asc == 0xff)
355 return 0;
357 switch (asc) {
358 case STATE_CHANGED:
359 dev_warn(&h->pdev->dev,
360 "%s: a state change detected, command retried\n",
361 h->devname);
362 break;
363 case LUN_FAILED:
364 dev_warn(&h->pdev->dev,
365 "%s: LUN failure detected\n", h->devname);
366 break;
367 case REPORT_LUNS_CHANGED:
368 dev_warn(&h->pdev->dev,
369 "%s: report LUN data changed\n", h->devname);
371 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 * target (array) devices.
374 break;
375 case POWER_OR_RESET:
376 dev_warn(&h->pdev->dev,
377 "%s: a power on or device reset detected\n",
378 h->devname);
379 break;
380 case UNIT_ATTENTION_CLEARED:
381 dev_warn(&h->pdev->dev,
382 "%s: unit attention cleared by another initiator\n",
383 h->devname);
384 break;
385 default:
386 dev_warn(&h->pdev->dev,
387 "%s: unknown unit attention detected\n",
388 h->devname);
389 break;
391 return 1;
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
396 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399 return 0;
400 dev_warn(&h->pdev->dev, HPSA "device busy");
401 return 1;
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406 struct device_attribute *attr, char *buf)
408 int ld;
409 struct ctlr_info *h;
410 struct Scsi_Host *shost = class_to_shost(dev);
412 h = shost_to_hba(shost);
413 ld = lockup_detected(h);
415 return sprintf(buf, "ld=%d\n", ld);
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419 struct device_attribute *attr,
420 const char *buf, size_t count)
422 int status, len;
423 struct ctlr_info *h;
424 struct Scsi_Host *shost = class_to_shost(dev);
425 char tmpbuf[10];
427 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428 return -EACCES;
429 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430 strncpy(tmpbuf, buf, len);
431 tmpbuf[len] = '\0';
432 if (sscanf(tmpbuf, "%d", &status) != 1)
433 return -EINVAL;
434 h = shost_to_hba(shost);
435 h->acciopath_status = !!status;
436 dev_warn(&h->pdev->dev,
437 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 h->acciopath_status ? "enabled" : "disabled");
439 return count;
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443 struct device_attribute *attr,
444 const char *buf, size_t count)
446 int debug_level, len;
447 struct ctlr_info *h;
448 struct Scsi_Host *shost = class_to_shost(dev);
449 char tmpbuf[10];
451 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452 return -EACCES;
453 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454 strncpy(tmpbuf, buf, len);
455 tmpbuf[len] = '\0';
456 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457 return -EINVAL;
458 if (debug_level < 0)
459 debug_level = 0;
460 h = shost_to_hba(shost);
461 h->raid_offload_debug = debug_level;
462 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463 h->raid_offload_debug);
464 return count;
467 static ssize_t host_store_rescan(struct device *dev,
468 struct device_attribute *attr,
469 const char *buf, size_t count)
471 struct ctlr_info *h;
472 struct Scsi_Host *shost = class_to_shost(dev);
473 h = shost_to_hba(shost);
474 hpsa_scan_start(h->scsi_host);
475 return count;
478 static ssize_t host_show_firmware_revision(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct ctlr_info *h;
482 struct Scsi_Host *shost = class_to_shost(dev);
483 unsigned char *fwrev;
485 h = shost_to_hba(shost);
486 if (!h->hba_inquiry_data)
487 return 0;
488 fwrev = &h->hba_inquiry_data[32];
489 return snprintf(buf, 20, "%c%c%c%c\n",
490 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494 struct device_attribute *attr, char *buf)
496 struct Scsi_Host *shost = class_to_shost(dev);
497 struct ctlr_info *h = shost_to_hba(shost);
499 return snprintf(buf, 20, "%d\n",
500 atomic_read(&h->commands_outstanding));
503 static ssize_t host_show_transport_mode(struct device *dev,
504 struct device_attribute *attr, char *buf)
506 struct ctlr_info *h;
507 struct Scsi_Host *shost = class_to_shost(dev);
509 h = shost_to_hba(shost);
510 return snprintf(buf, 20, "%s\n",
511 h->transMethod & CFGTBL_Trans_Performant ?
512 "performant" : "simple");
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516 struct device_attribute *attr, char *buf)
518 struct ctlr_info *h;
519 struct Scsi_Host *shost = class_to_shost(dev);
521 h = shost_to_hba(shost);
522 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523 (h->acciopath_status == 1) ? "enabled" : "disabled");
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528 0x324a103C, /* Smart Array P712m */
529 0x324b103C, /* Smart Array P711m */
530 0x3223103C, /* Smart Array P800 */
531 0x3234103C, /* Smart Array P400 */
532 0x3235103C, /* Smart Array P400i */
533 0x3211103C, /* Smart Array E200i */
534 0x3212103C, /* Smart Array E200 */
535 0x3213103C, /* Smart Array E200i */
536 0x3214103C, /* Smart Array E200i */
537 0x3215103C, /* Smart Array E200i */
538 0x3237103C, /* Smart Array E500 */
539 0x323D103C, /* Smart Array P700m */
540 0x40800E11, /* Smart Array 5i */
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
543 0x40700E11, /* Smart Array 5300 */
544 0x40820E11, /* Smart Array 532 */
545 0x40830E11, /* Smart Array 5312 */
546 0x409A0E11, /* Smart Array 641 */
547 0x409B0E11, /* Smart Array 642 */
548 0x40910E11, /* Smart Array 6i */
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553 0x40800E11, /* Smart Array 5i */
554 0x40700E11, /* Smart Array 5300 */
555 0x40820E11, /* Smart Array 532 */
556 0x40830E11, /* Smart Array 5312 */
557 0x409A0E11, /* Smart Array 641 */
558 0x409B0E11, /* Smart Array 642 */
559 0x40910E11, /* Smart Array 6i */
560 /* Exclude 640x boards. These are two pci devices in one slot
561 * which share a battery backed cache module. One controls the
562 * cache, the other accesses the cache through the one that controls
563 * it. If we reset the one controlling the cache, the other will
564 * likely not be happy. Just forbid resetting this conjoined mess.
565 * The 640x isn't really supported by hpsa anyway.
567 0x409C0E11, /* Smart Array 6400 */
568 0x409D0E11, /* Smart Array 6400 EM */
571 static u32 needs_abort_tags_swizzled[] = {
572 0x323D103C, /* Smart Array P700m */
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
579 int i;
581 for (i = 0; i < nelems; i++)
582 if (a[i] == board_id)
583 return 1;
584 return 0;
587 static int ctlr_is_hard_resettable(u32 board_id)
589 return !board_id_in_array(unresettable_controller,
590 ARRAY_SIZE(unresettable_controller), board_id);
593 static int ctlr_is_soft_resettable(u32 board_id)
595 return !board_id_in_array(soft_unresettable_controller,
596 ARRAY_SIZE(soft_unresettable_controller), board_id);
599 static int ctlr_is_resettable(u32 board_id)
601 return ctlr_is_hard_resettable(board_id) ||
602 ctlr_is_soft_resettable(board_id);
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
607 return board_id_in_array(needs_abort_tags_swizzled,
608 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
611 static ssize_t host_show_resettable(struct device *dev,
612 struct device_attribute *attr, char *buf)
614 struct ctlr_info *h;
615 struct Scsi_Host *shost = class_to_shost(dev);
617 h = shost_to_hba(shost);
618 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
623 return (scsi3addr[3] & 0xC0) == 0x40;
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
641 return !device->physical_device;
644 static ssize_t raid_level_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
647 ssize_t l = 0;
648 unsigned char rlevel;
649 struct ctlr_info *h;
650 struct scsi_device *sdev;
651 struct hpsa_scsi_dev_t *hdev;
652 unsigned long flags;
654 sdev = to_scsi_device(dev);
655 h = sdev_to_hba(sdev);
656 spin_lock_irqsave(&h->lock, flags);
657 hdev = sdev->hostdata;
658 if (!hdev) {
659 spin_unlock_irqrestore(&h->lock, flags);
660 return -ENODEV;
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev)) {
665 spin_unlock_irqrestore(&h->lock, flags);
666 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 return l;
670 rlevel = hdev->raid_level;
671 spin_unlock_irqrestore(&h->lock, flags);
672 if (rlevel > RAID_UNKNOWN)
673 rlevel = RAID_UNKNOWN;
674 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 return l;
678 static ssize_t lunid_show(struct device *dev,
679 struct device_attribute *attr, char *buf)
681 struct ctlr_info *h;
682 struct scsi_device *sdev;
683 struct hpsa_scsi_dev_t *hdev;
684 unsigned long flags;
685 unsigned char lunid[8];
687 sdev = to_scsi_device(dev);
688 h = sdev_to_hba(sdev);
689 spin_lock_irqsave(&h->lock, flags);
690 hdev = sdev->hostdata;
691 if (!hdev) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 return -ENODEV;
695 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 spin_unlock_irqrestore(&h->lock, flags);
697 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 lunid[0], lunid[1], lunid[2], lunid[3],
699 lunid[4], lunid[5], lunid[6], lunid[7]);
702 static ssize_t unique_id_show(struct device *dev,
703 struct device_attribute *attr, char *buf)
705 struct ctlr_info *h;
706 struct scsi_device *sdev;
707 struct hpsa_scsi_dev_t *hdev;
708 unsigned long flags;
709 unsigned char sn[16];
711 sdev = to_scsi_device(dev);
712 h = sdev_to_hba(sdev);
713 spin_lock_irqsave(&h->lock, flags);
714 hdev = sdev->hostdata;
715 if (!hdev) {
716 spin_unlock_irqrestore(&h->lock, flags);
717 return -ENODEV;
719 memcpy(sn, hdev->device_id, sizeof(sn));
720 spin_unlock_irqrestore(&h->lock, flags);
721 return snprintf(buf, 16 * 2 + 2,
722 "%02X%02X%02X%02X%02X%02X%02X%02X"
723 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 sn[0], sn[1], sn[2], sn[3],
725 sn[4], sn[5], sn[6], sn[7],
726 sn[8], sn[9], sn[10], sn[11],
727 sn[12], sn[13], sn[14], sn[15]);
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731 struct device_attribute *attr, char *buf)
733 struct ctlr_info *h;
734 struct scsi_device *sdev;
735 struct hpsa_scsi_dev_t *hdev;
736 unsigned long flags;
737 int offload_enabled;
739 sdev = to_scsi_device(dev);
740 h = sdev_to_hba(sdev);
741 spin_lock_irqsave(&h->lock, flags);
742 hdev = sdev->hostdata;
743 if (!hdev) {
744 spin_unlock_irqrestore(&h->lock, flags);
745 return -ENODEV;
747 offload_enabled = hdev->offload_enabled;
748 spin_unlock_irqrestore(&h->lock, flags);
749 return snprintf(buf, 20, "%d\n", offload_enabled);
752 #define MAX_PATHS 8
754 static ssize_t path_info_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
757 struct ctlr_info *h;
758 struct scsi_device *sdev;
759 struct hpsa_scsi_dev_t *hdev;
760 unsigned long flags;
761 int i;
762 int output_len = 0;
763 u8 box;
764 u8 bay;
765 u8 path_map_index = 0;
766 char *active;
767 unsigned char phys_connector[2];
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->devlock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->devlock, flags);
775 return -ENODEV;
778 bay = hdev->bay;
779 for (i = 0; i < MAX_PATHS; i++) {
780 path_map_index = 1<<i;
781 if (i == hdev->active_path_index)
782 active = "Active";
783 else if (hdev->path_map & path_map_index)
784 active = "Inactive";
785 else
786 continue;
788 output_len += scnprintf(buf + output_len,
789 PAGE_SIZE - output_len,
790 "[%d:%d:%d:%d] %20.20s ",
791 h->scsi_host->host_no,
792 hdev->bus, hdev->target, hdev->lun,
793 scsi_device_type(hdev->devtype));
795 if (hdev->external ||
796 hdev->devtype == TYPE_RAID ||
797 is_logical_device(hdev)) {
798 output_len += snprintf(buf + output_len,
799 PAGE_SIZE - output_len,
800 "%s\n", active);
801 continue;
804 box = hdev->box[i];
805 memcpy(&phys_connector, &hdev->phys_connector[i],
806 sizeof(phys_connector));
807 if (phys_connector[0] < '0')
808 phys_connector[0] = '0';
809 if (phys_connector[1] < '0')
810 phys_connector[1] = '0';
811 if (hdev->phys_connector[i] > 0)
812 output_len += snprintf(buf + output_len,
813 PAGE_SIZE - output_len,
814 "PORT: %.2s ",
815 phys_connector);
816 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817 if (box == 0 || box == 0xFF) {
818 output_len += snprintf(buf + output_len,
819 PAGE_SIZE - output_len,
820 "BAY: %hhu %s\n",
821 bay, active);
822 } else {
823 output_len += snprintf(buf + output_len,
824 PAGE_SIZE - output_len,
825 "BOX: %hhu BAY: %hhu %s\n",
826 box, bay, active);
828 } else if (box != 0 && box != 0xFF) {
829 output_len += snprintf(buf + output_len,
830 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831 box, active);
832 } else
833 output_len += snprintf(buf + output_len,
834 PAGE_SIZE - output_len, "%s\n", active);
837 spin_unlock_irqrestore(&h->devlock, flags);
838 return output_len;
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846 host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849 host_show_hp_ssd_smart_path_status,
850 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852 host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854 host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856 host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858 host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860 host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862 host_show_lockup_detected, NULL);
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865 &dev_attr_raid_level,
866 &dev_attr_lunid,
867 &dev_attr_unique_id,
868 &dev_attr_hp_ssd_smart_path_enabled,
869 &dev_attr_path_info,
870 NULL,
873 static struct device_attribute *hpsa_shost_attrs[] = {
874 &dev_attr_rescan,
875 &dev_attr_firmware_revision,
876 &dev_attr_commands_outstanding,
877 &dev_attr_transport_mode,
878 &dev_attr_resettable,
879 &dev_attr_hp_ssd_smart_path_status,
880 &dev_attr_raid_offload_debug,
881 &dev_attr_lockup_detected,
882 NULL,
885 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
888 static struct scsi_host_template hpsa_driver_template = {
889 .module = THIS_MODULE,
890 .name = HPSA,
891 .proc_name = HPSA,
892 .queuecommand = hpsa_scsi_queue_command,
893 .scan_start = hpsa_scan_start,
894 .scan_finished = hpsa_scan_finished,
895 .change_queue_depth = hpsa_change_queue_depth,
896 .this_id = -1,
897 .use_clustering = ENABLE_CLUSTERING,
898 .eh_abort_handler = hpsa_eh_abort_handler,
899 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900 .ioctl = hpsa_ioctl,
901 .slave_alloc = hpsa_slave_alloc,
902 .slave_configure = hpsa_slave_configure,
903 .slave_destroy = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905 .compat_ioctl = hpsa_compat_ioctl,
906 #endif
907 .sdev_attrs = hpsa_sdev_attrs,
908 .shost_attrs = hpsa_shost_attrs,
909 .max_sectors = 8192,
910 .no_write_same = 1,
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
915 u32 a;
916 struct reply_queue_buffer *rq = &h->reply_queue[q];
918 if (h->transMethod & CFGTBL_Trans_io_accel1)
919 return h->access.command_completed(h, q);
921 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922 return h->access.command_completed(h, q);
924 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925 a = rq->head[rq->current_entry];
926 rq->current_entry++;
927 atomic_dec(&h->commands_outstanding);
928 } else {
929 a = FIFO_EMPTY;
931 /* Check for wraparound */
932 if (rq->current_entry == h->max_commands) {
933 rq->current_entry = 0;
934 rq->wraparound ^= 1;
936 return a;
940 * There are some special bits in the bus address of the
941 * command that we have to set for the controller to know
942 * how to process the command:
944 * Normal performant mode:
945 * bit 0: 1 means performant mode, 0 means simple mode.
946 * bits 1-3 = block fetch table entry
947 * bits 4-6 = command type (== 0)
949 * ioaccel1 mode:
950 * bit 0 = "performant mode" bit.
951 * bits 1-3 = block fetch table entry
952 * bits 4-6 = command type (== 110)
953 * (command type is needed because ioaccel1 mode
954 * commands are submitted through the same register as normal
955 * mode commands, so this is how the controller knows whether
956 * the command is normal mode or ioaccel1 mode.)
958 * ioaccel2 mode:
959 * bit 0 = "performant mode" bit.
960 * bits 1-4 = block fetch table entry (note extra bit)
961 * bits 4-6 = not needed, because ioaccel2 mode has
962 * a separate special register for submitting commands.
966 * set_performant_mode: Modify the tag for cciss performant
967 * set bit 0 for pull model, bits 3-1 for block fetch
968 * register number
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972 int reply_queue)
974 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976 if (unlikely(!h->msix_vector))
977 return;
978 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979 c->Header.ReplyQueue =
980 raw_smp_processor_id() % h->nreply_queues;
981 else
982 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987 struct CommandList *c,
988 int reply_queue)
990 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
993 * Tell the controller to post the reply to the queue for this
994 * processor. This seems to give the best I/O throughput.
996 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998 else
999 cp->ReplyQueue = reply_queue % h->nreply_queues;
1001 * Set the bits in the address sent down to include:
1002 * - performant mode bit (bit 0)
1003 * - pull count (bits 1-3)
1004 * - command type (bits 4-6)
1006 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007 IOACCEL1_BUSADDR_CMDTYPE;
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011 struct CommandList *c,
1012 int reply_queue)
1014 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015 &h->ioaccel2_cmd_pool[c->cmdindex];
1017 /* Tell the controller to post the reply to the queue for this
1018 * processor. This seems to give the best I/O throughput.
1020 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022 else
1023 cp->reply_queue = reply_queue % h->nreply_queues;
1024 /* Set the bits in the address sent down to include:
1025 * - performant mode bit not used in ioaccel mode 2
1026 * - pull count (bits 0-3)
1027 * - command type isn't needed for ioaccel2
1029 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033 struct CommandList *c,
1034 int reply_queue)
1036 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1039 * Tell the controller to post the reply to the queue for this
1040 * processor. This seems to give the best I/O throughput.
1042 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044 else
1045 cp->reply_queue = reply_queue % h->nreply_queues;
1047 * Set the bits in the address sent down to include:
1048 * - performant mode bit not used in ioaccel mode 2
1049 * - pull count (bits 0-3)
1050 * - command type isn't needed for ioaccel2
1052 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1055 static int is_firmware_flash_cmd(u8 *cdb)
1057 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1061 * During firmware flash, the heartbeat register may not update as frequently
1062 * as it should. So we dial down lockup detection during firmware flash. and
1063 * dial it back up when firmware flash completes.
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068 struct CommandList *c)
1070 if (!is_firmware_flash_cmd(c->Request.CDB))
1071 return;
1072 atomic_inc(&h->firmware_flash_in_progress);
1073 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077 struct CommandList *c)
1079 if (is_firmware_flash_cmd(c->Request.CDB) &&
1080 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085 struct CommandList *c, int reply_queue)
1087 dial_down_lockup_detection_during_fw_flash(h, c);
1088 atomic_inc(&h->commands_outstanding);
1089 switch (c->cmd_type) {
1090 case CMD_IOACCEL1:
1091 set_ioaccel1_performant_mode(h, c, reply_queue);
1092 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093 break;
1094 case CMD_IOACCEL2:
1095 set_ioaccel2_performant_mode(h, c, reply_queue);
1096 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097 break;
1098 case IOACCEL2_TMF:
1099 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101 break;
1102 default:
1103 set_performant_mode(h, c, reply_queue);
1104 h->access.submit_command(h, c);
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1110 if (unlikely(hpsa_is_pending_event(c)))
1111 return finish_cmd(c);
1113 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1118 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1123 if (!h->hba_inquiry_data)
1124 return 0;
1125 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126 return 1;
1127 return 0;
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131 unsigned char scsi3addr[], int bus, int *target, int *lun)
1133 /* finds an unused bus, target, lun for a new physical device
1134 * assumes h->devlock is held
1136 int i, found = 0;
1137 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1139 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1141 for (i = 0; i < h->ndevices; i++) {
1142 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143 __set_bit(h->dev[i]->target, lun_taken);
1146 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147 if (i < HPSA_MAX_DEVICES) {
1148 /* *bus = 1; */
1149 *target = i;
1150 *lun = 0;
1151 found = 1;
1153 return !found;
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157 struct hpsa_scsi_dev_t *dev, char *description)
1159 #define LABEL_SIZE 25
1160 char label[LABEL_SIZE];
1162 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163 return;
1165 switch (dev->devtype) {
1166 case TYPE_RAID:
1167 snprintf(label, LABEL_SIZE, "controller");
1168 break;
1169 case TYPE_ENCLOSURE:
1170 snprintf(label, LABEL_SIZE, "enclosure");
1171 break;
1172 case TYPE_DISK:
1173 if (dev->external)
1174 snprintf(label, LABEL_SIZE, "external");
1175 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176 snprintf(label, LABEL_SIZE, "%s",
1177 raid_label[PHYSICAL_DRIVE]);
1178 else
1179 snprintf(label, LABEL_SIZE, "RAID-%s",
1180 dev->raid_level > RAID_UNKNOWN ? "?" :
1181 raid_label[dev->raid_level]);
1182 break;
1183 case TYPE_ROM:
1184 snprintf(label, LABEL_SIZE, "rom");
1185 break;
1186 case TYPE_TAPE:
1187 snprintf(label, LABEL_SIZE, "tape");
1188 break;
1189 case TYPE_MEDIUM_CHANGER:
1190 snprintf(label, LABEL_SIZE, "changer");
1191 break;
1192 default:
1193 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194 break;
1197 dev_printk(level, &h->pdev->dev,
1198 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200 description,
1201 scsi_device_type(dev->devtype),
1202 dev->vendor,
1203 dev->model,
1204 label,
1205 dev->offload_config ? '+' : '-',
1206 dev->offload_enabled ? '+' : '-',
1207 dev->expose_device);
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212 struct hpsa_scsi_dev_t *device,
1213 struct hpsa_scsi_dev_t *added[], int *nadded)
1215 /* assumes h->devlock is held */
1216 int n = h->ndevices;
1217 int i;
1218 unsigned char addr1[8], addr2[8];
1219 struct hpsa_scsi_dev_t *sd;
1221 if (n >= HPSA_MAX_DEVICES) {
1222 dev_err(&h->pdev->dev, "too many devices, some will be "
1223 "inaccessible.\n");
1224 return -1;
1227 /* physical devices do not have lun or target assigned until now. */
1228 if (device->lun != -1)
1229 /* Logical device, lun is already assigned. */
1230 goto lun_assigned;
1232 /* If this device a non-zero lun of a multi-lun device
1233 * byte 4 of the 8-byte LUN addr will contain the logical
1234 * unit no, zero otherwise.
1236 if (device->scsi3addr[4] == 0) {
1237 /* This is not a non-zero lun of a multi-lun device */
1238 if (hpsa_find_target_lun(h, device->scsi3addr,
1239 device->bus, &device->target, &device->lun) != 0)
1240 return -1;
1241 goto lun_assigned;
1244 /* This is a non-zero lun of a multi-lun device.
1245 * Search through our list and find the device which
1246 * has the same 8 byte LUN address, excepting byte 4 and 5.
1247 * Assign the same bus and target for this new LUN.
1248 * Use the logical unit number from the firmware.
1250 memcpy(addr1, device->scsi3addr, 8);
1251 addr1[4] = 0;
1252 addr1[5] = 0;
1253 for (i = 0; i < n; i++) {
1254 sd = h->dev[i];
1255 memcpy(addr2, sd->scsi3addr, 8);
1256 addr2[4] = 0;
1257 addr2[5] = 0;
1258 /* differ only in byte 4 and 5? */
1259 if (memcmp(addr1, addr2, 8) == 0) {
1260 device->bus = sd->bus;
1261 device->target = sd->target;
1262 device->lun = device->scsi3addr[4];
1263 break;
1266 if (device->lun == -1) {
1267 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268 " suspect firmware bug or unsupported hardware "
1269 "configuration.\n");
1270 return -1;
1273 lun_assigned:
1275 h->dev[n] = device;
1276 h->ndevices++;
1277 added[*nadded] = device;
1278 (*nadded)++;
1279 hpsa_show_dev_msg(KERN_INFO, h, device,
1280 device->expose_device ? "added" : "masked");
1281 device->offload_to_be_enabled = device->offload_enabled;
1282 device->offload_enabled = 0;
1283 return 0;
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288 int entry, struct hpsa_scsi_dev_t *new_entry)
1290 int offload_enabled;
1291 /* assumes h->devlock is held */
1292 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1294 /* Raid level changed. */
1295 h->dev[entry]->raid_level = new_entry->raid_level;
1297 /* Raid offload parameters changed. Careful about the ordering. */
1298 if (new_entry->offload_config && new_entry->offload_enabled) {
1300 * if drive is newly offload_enabled, we want to copy the
1301 * raid map data first. If previously offload_enabled and
1302 * offload_config were set, raid map data had better be
1303 * the same as it was before. if raid map data is changed
1304 * then it had better be the case that
1305 * h->dev[entry]->offload_enabled is currently 0.
1307 h->dev[entry]->raid_map = new_entry->raid_map;
1308 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1310 if (new_entry->hba_ioaccel_enabled) {
1311 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1314 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315 h->dev[entry]->offload_config = new_entry->offload_config;
1316 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317 h->dev[entry]->queue_depth = new_entry->queue_depth;
1320 * We can turn off ioaccel offload now, but need to delay turning
1321 * it on until we can update h->dev[entry]->phys_disk[], but we
1322 * can't do that until all the devices are updated.
1324 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325 if (!new_entry->offload_enabled)
1326 h->dev[entry]->offload_enabled = 0;
1328 offload_enabled = h->dev[entry]->offload_enabled;
1329 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331 h->dev[entry]->offload_enabled = offload_enabled;
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336 int entry, struct hpsa_scsi_dev_t *new_entry,
1337 struct hpsa_scsi_dev_t *added[], int *nadded,
1338 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1340 /* assumes h->devlock is held */
1341 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342 removed[*nremoved] = h->dev[entry];
1343 (*nremoved)++;
1346 * New physical devices won't have target/lun assigned yet
1347 * so we need to preserve the values in the slot we are replacing.
1349 if (new_entry->target == -1) {
1350 new_entry->target = h->dev[entry]->target;
1351 new_entry->lun = h->dev[entry]->lun;
1354 h->dev[entry] = new_entry;
1355 added[*nadded] = new_entry;
1356 (*nadded)++;
1357 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359 new_entry->offload_enabled = 0;
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 /* assumes h->devlock is held */
1367 int i;
1368 struct hpsa_scsi_dev_t *sd;
1370 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1372 sd = h->dev[entry];
1373 removed[*nremoved] = h->dev[entry];
1374 (*nremoved)++;
1376 for (i = entry; i < h->ndevices-1; i++)
1377 h->dev[i] = h->dev[i+1];
1378 h->ndevices--;
1379 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383 (a)[7] == (b)[7] && \
1384 (a)[6] == (b)[6] && \
1385 (a)[5] == (b)[5] && \
1386 (a)[4] == (b)[4] && \
1387 (a)[3] == (b)[3] && \
1388 (a)[2] == (b)[2] && \
1389 (a)[1] == (b)[1] && \
1390 (a)[0] == (b)[0])
1392 static void fixup_botched_add(struct ctlr_info *h,
1393 struct hpsa_scsi_dev_t *added)
1395 /* called when scsi_add_device fails in order to re-adjust
1396 * h->dev[] to match the mid layer's view.
1398 unsigned long flags;
1399 int i, j;
1401 spin_lock_irqsave(&h->lock, flags);
1402 for (i = 0; i < h->ndevices; i++) {
1403 if (h->dev[i] == added) {
1404 for (j = i; j < h->ndevices-1; j++)
1405 h->dev[j] = h->dev[j+1];
1406 h->ndevices--;
1407 break;
1410 spin_unlock_irqrestore(&h->lock, flags);
1411 kfree(added);
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415 struct hpsa_scsi_dev_t *dev2)
1417 /* we compare everything except lun and target as these
1418 * are not yet assigned. Compare parts likely
1419 * to differ first
1421 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422 sizeof(dev1->scsi3addr)) != 0)
1423 return 0;
1424 if (memcmp(dev1->device_id, dev2->device_id,
1425 sizeof(dev1->device_id)) != 0)
1426 return 0;
1427 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428 return 0;
1429 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430 return 0;
1431 if (dev1->devtype != dev2->devtype)
1432 return 0;
1433 if (dev1->bus != dev2->bus)
1434 return 0;
1435 return 1;
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439 struct hpsa_scsi_dev_t *dev2)
1441 /* Device attributes that can change, but don't mean
1442 * that the device is a different device, nor that the OS
1443 * needs to be told anything about the change.
1445 if (dev1->raid_level != dev2->raid_level)
1446 return 1;
1447 if (dev1->offload_config != dev2->offload_config)
1448 return 1;
1449 if (dev1->offload_enabled != dev2->offload_enabled)
1450 return 1;
1451 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452 if (dev1->queue_depth != dev2->queue_depth)
1453 return 1;
1454 return 0;
1457 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1458 * and return needle location in *index. If scsi3addr matches, but not
1459 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460 * location in *index.
1461 * In the case of a minor device attribute change, such as RAID level, just
1462 * return DEVICE_UPDATED, along with the updated device's location in index.
1463 * If needle not found, return DEVICE_NOT_FOUND.
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467 int *index)
1469 int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474 if (needle == NULL)
1475 return DEVICE_NOT_FOUND;
1477 for (i = 0; i < haystack_size; i++) {
1478 if (haystack[i] == NULL) /* previously removed. */
1479 continue;
1480 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481 *index = i;
1482 if (device_is_the_same(needle, haystack[i])) {
1483 if (device_updated(needle, haystack[i]))
1484 return DEVICE_UPDATED;
1485 return DEVICE_SAME;
1486 } else {
1487 /* Keep offline devices offline */
1488 if (needle->volume_offline)
1489 return DEVICE_NOT_FOUND;
1490 return DEVICE_CHANGED;
1494 *index = -1;
1495 return DEVICE_NOT_FOUND;
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499 unsigned char scsi3addr[])
1501 struct offline_device_entry *device;
1502 unsigned long flags;
1504 /* Check to see if device is already on the list */
1505 spin_lock_irqsave(&h->offline_device_lock, flags);
1506 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507 if (memcmp(device->scsi3addr, scsi3addr,
1508 sizeof(device->scsi3addr)) == 0) {
1509 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510 return;
1513 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1515 /* Device is not on the list, add it. */
1516 device = kmalloc(sizeof(*device), GFP_KERNEL);
1517 if (!device) {
1518 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519 return;
1521 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522 spin_lock_irqsave(&h->offline_device_lock, flags);
1523 list_add_tail(&device->offline_list, &h->offline_device_list);
1524 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529 struct hpsa_scsi_dev_t *sd)
1531 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532 dev_info(&h->pdev->dev,
1533 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534 h->scsi_host->host_no,
1535 sd->bus, sd->target, sd->lun);
1536 switch (sd->volume_offline) {
1537 case HPSA_LV_OK:
1538 break;
1539 case HPSA_LV_UNDERGOING_ERASE:
1540 dev_info(&h->pdev->dev,
1541 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542 h->scsi_host->host_no,
1543 sd->bus, sd->target, sd->lun);
1544 break;
1545 case HPSA_LV_NOT_AVAILABLE:
1546 dev_info(&h->pdev->dev,
1547 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548 h->scsi_host->host_no,
1549 sd->bus, sd->target, sd->lun);
1550 break;
1551 case HPSA_LV_UNDERGOING_RPI:
1552 dev_info(&h->pdev->dev,
1553 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554 h->scsi_host->host_no,
1555 sd->bus, sd->target, sd->lun);
1556 break;
1557 case HPSA_LV_PENDING_RPI:
1558 dev_info(&h->pdev->dev,
1559 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560 h->scsi_host->host_no,
1561 sd->bus, sd->target, sd->lun);
1562 break;
1563 case HPSA_LV_ENCRYPTED_NO_KEY:
1564 dev_info(&h->pdev->dev,
1565 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566 h->scsi_host->host_no,
1567 sd->bus, sd->target, sd->lun);
1568 break;
1569 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570 dev_info(&h->pdev->dev,
1571 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572 h->scsi_host->host_no,
1573 sd->bus, sd->target, sd->lun);
1574 break;
1575 case HPSA_LV_UNDERGOING_ENCRYPTION:
1576 dev_info(&h->pdev->dev,
1577 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578 h->scsi_host->host_no,
1579 sd->bus, sd->target, sd->lun);
1580 break;
1581 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582 dev_info(&h->pdev->dev,
1583 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584 h->scsi_host->host_no,
1585 sd->bus, sd->target, sd->lun);
1586 break;
1587 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588 dev_info(&h->pdev->dev,
1589 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590 h->scsi_host->host_no,
1591 sd->bus, sd->target, sd->lun);
1592 break;
1593 case HPSA_LV_PENDING_ENCRYPTION:
1594 dev_info(&h->pdev->dev,
1595 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596 h->scsi_host->host_no,
1597 sd->bus, sd->target, sd->lun);
1598 break;
1599 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600 dev_info(&h->pdev->dev,
1601 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602 h->scsi_host->host_no,
1603 sd->bus, sd->target, sd->lun);
1604 break;
1609 * Figure the list of physical drive pointers for a logical drive with
1610 * raid offload configured.
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614 struct hpsa_scsi_dev_t *logical_drive)
1616 struct raid_map_data *map = &logical_drive->raid_map;
1617 struct raid_map_disk_data *dd = &map->data[0];
1618 int i, j;
1619 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620 le16_to_cpu(map->metadata_disks_per_row);
1621 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622 le16_to_cpu(map->layout_map_count) *
1623 total_disks_per_row;
1624 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625 total_disks_per_row;
1626 int qdepth;
1628 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1631 logical_drive->nphysical_disks = nraid_map_entries;
1633 qdepth = 0;
1634 for (i = 0; i < nraid_map_entries; i++) {
1635 logical_drive->phys_disk[i] = NULL;
1636 if (!logical_drive->offload_config)
1637 continue;
1638 for (j = 0; j < ndevices; j++) {
1639 if (dev[j] == NULL)
1640 continue;
1641 if (dev[j]->devtype != TYPE_DISK)
1642 continue;
1643 if (is_logical_device(dev[j]))
1644 continue;
1645 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646 continue;
1648 logical_drive->phys_disk[i] = dev[j];
1649 if (i < nphys_disk)
1650 qdepth = min(h->nr_cmds, qdepth +
1651 logical_drive->phys_disk[i]->queue_depth);
1652 break;
1656 * This can happen if a physical drive is removed and
1657 * the logical drive is degraded. In that case, the RAID
1658 * map data will refer to a physical disk which isn't actually
1659 * present. And in that case offload_enabled should already
1660 * be 0, but we'll turn it off here just in case
1662 if (!logical_drive->phys_disk[i]) {
1663 logical_drive->offload_enabled = 0;
1664 logical_drive->offload_to_be_enabled = 0;
1665 logical_drive->queue_depth = 8;
1668 if (nraid_map_entries)
1670 * This is correct for reads, too high for full stripe writes,
1671 * way too high for partial stripe writes
1673 logical_drive->queue_depth = qdepth;
1674 else
1675 logical_drive->queue_depth = h->nr_cmds;
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679 struct hpsa_scsi_dev_t *dev[], int ndevices)
1681 int i;
1683 for (i = 0; i < ndevices; i++) {
1684 if (dev[i] == NULL)
1685 continue;
1686 if (dev[i]->devtype != TYPE_DISK)
1687 continue;
1688 if (!is_logical_device(dev[i]))
1689 continue;
1692 * If offload is currently enabled, the RAID map and
1693 * phys_disk[] assignment *better* not be changing
1694 * and since it isn't changing, we do not need to
1695 * update it.
1697 if (dev[i]->offload_enabled)
1698 continue;
1700 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1706 int rc = 0;
1708 if (!h->scsi_host)
1709 return 1;
1711 if (is_logical_device(device)) /* RAID */
1712 rc = scsi_add_device(h->scsi_host, device->bus,
1713 device->target, device->lun);
1714 else /* HBA */
1715 rc = hpsa_add_sas_device(h->sas_host, device);
1717 return rc;
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721 struct hpsa_scsi_dev_t *device)
1723 struct scsi_device *sdev = NULL;
1725 if (!h->scsi_host)
1726 return;
1728 if (is_logical_device(device)) { /* RAID */
1729 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730 device->target, device->lun);
1731 if (sdev) {
1732 scsi_remove_device(sdev);
1733 scsi_device_put(sdev);
1734 } else {
1736 * We don't expect to get here. Future commands
1737 * to this device will get a selection timeout as
1738 * if the device were gone.
1740 hpsa_show_dev_msg(KERN_WARNING, h, device,
1741 "didn't find device for removal.");
1743 } else /* HBA */
1744 hpsa_remove_sas_device(device);
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748 struct hpsa_scsi_dev_t *sd[], int nsds)
1750 /* sd contains scsi3 addresses and devtypes, and inquiry
1751 * data. This function takes what's in sd to be the current
1752 * reality and updates h->dev[] to reflect that reality.
1754 int i, entry, device_change, changes = 0;
1755 struct hpsa_scsi_dev_t *csd;
1756 unsigned long flags;
1757 struct hpsa_scsi_dev_t **added, **removed;
1758 int nadded, nremoved;
1761 * A reset can cause a device status to change
1762 * re-schedule the scan to see what happened.
1764 if (h->reset_in_progress) {
1765 h->drv_req_rescan = 1;
1766 return;
1769 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1772 if (!added || !removed) {
1773 dev_warn(&h->pdev->dev, "out of memory in "
1774 "adjust_hpsa_scsi_table\n");
1775 goto free_and_out;
1778 spin_lock_irqsave(&h->devlock, flags);
1780 /* find any devices in h->dev[] that are not in
1781 * sd[] and remove them from h->dev[], and for any
1782 * devices which have changed, remove the old device
1783 * info and add the new device info.
1784 * If minor device attributes change, just update
1785 * the existing device structure.
1787 i = 0;
1788 nremoved = 0;
1789 nadded = 0;
1790 while (i < h->ndevices) {
1791 csd = h->dev[i];
1792 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793 if (device_change == DEVICE_NOT_FOUND) {
1794 changes++;
1795 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796 continue; /* remove ^^^, hence i not incremented */
1797 } else if (device_change == DEVICE_CHANGED) {
1798 changes++;
1799 hpsa_scsi_replace_entry(h, i, sd[entry],
1800 added, &nadded, removed, &nremoved);
1801 /* Set it to NULL to prevent it from being freed
1802 * at the bottom of hpsa_update_scsi_devices()
1804 sd[entry] = NULL;
1805 } else if (device_change == DEVICE_UPDATED) {
1806 hpsa_scsi_update_entry(h, i, sd[entry]);
1808 i++;
1811 /* Now, make sure every device listed in sd[] is also
1812 * listed in h->dev[], adding them if they aren't found
1815 for (i = 0; i < nsds; i++) {
1816 if (!sd[i]) /* if already added above. */
1817 continue;
1819 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820 * as the SCSI mid-layer does not handle such devices well.
1821 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822 * at 160Hz, and prevents the system from coming up.
1824 if (sd[i]->volume_offline) {
1825 hpsa_show_volume_status(h, sd[i]);
1826 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827 continue;
1830 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831 h->ndevices, &entry);
1832 if (device_change == DEVICE_NOT_FOUND) {
1833 changes++;
1834 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835 break;
1836 sd[i] = NULL; /* prevent from being freed later. */
1837 } else if (device_change == DEVICE_CHANGED) {
1838 /* should never happen... */
1839 changes++;
1840 dev_warn(&h->pdev->dev,
1841 "device unexpectedly changed.\n");
1842 /* but if it does happen, we just ignore that device */
1845 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1847 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848 * any logical drives that need it enabled.
1850 for (i = 0; i < h->ndevices; i++) {
1851 if (h->dev[i] == NULL)
1852 continue;
1853 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1856 spin_unlock_irqrestore(&h->devlock, flags);
1858 /* Monitor devices which are in one of several NOT READY states to be
1859 * brought online later. This must be done without holding h->devlock,
1860 * so don't touch h->dev[]
1862 for (i = 0; i < nsds; i++) {
1863 if (!sd[i]) /* if already added above. */
1864 continue;
1865 if (sd[i]->volume_offline)
1866 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1869 /* Don't notify scsi mid layer of any changes the first time through
1870 * (or if there are no changes) scsi_scan_host will do it later the
1871 * first time through.
1873 if (!changes)
1874 goto free_and_out;
1876 /* Notify scsi mid layer of any removed devices */
1877 for (i = 0; i < nremoved; i++) {
1878 if (removed[i] == NULL)
1879 continue;
1880 if (removed[i]->expose_device)
1881 hpsa_remove_device(h, removed[i]);
1882 kfree(removed[i]);
1883 removed[i] = NULL;
1886 /* Notify scsi mid layer of any added devices */
1887 for (i = 0; i < nadded; i++) {
1888 int rc = 0;
1890 if (added[i] == NULL)
1891 continue;
1892 if (!(added[i]->expose_device))
1893 continue;
1894 rc = hpsa_add_device(h, added[i]);
1895 if (!rc)
1896 continue;
1897 dev_warn(&h->pdev->dev,
1898 "addition failed %d, device not added.", rc);
1899 /* now we have to remove it from h->dev,
1900 * since it didn't get added to scsi mid layer
1902 fixup_botched_add(h, added[i]);
1903 h->drv_req_rescan = 1;
1906 free_and_out:
1907 kfree(added);
1908 kfree(removed);
1912 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913 * Assume's h->devlock is held.
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916 int bus, int target, int lun)
1918 int i;
1919 struct hpsa_scsi_dev_t *sd;
1921 for (i = 0; i < h->ndevices; i++) {
1922 sd = h->dev[i];
1923 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924 return sd;
1926 return NULL;
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1931 struct hpsa_scsi_dev_t *sd;
1932 unsigned long flags;
1933 struct ctlr_info *h;
1935 h = sdev_to_hba(sdev);
1936 spin_lock_irqsave(&h->devlock, flags);
1937 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938 struct scsi_target *starget;
1939 struct sas_rphy *rphy;
1941 starget = scsi_target(sdev);
1942 rphy = target_to_rphy(starget);
1943 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944 if (sd) {
1945 sd->target = sdev_id(sdev);
1946 sd->lun = sdev->lun;
1948 } else
1949 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950 sdev_id(sdev), sdev->lun);
1952 if (sd && sd->expose_device) {
1953 atomic_set(&sd->ioaccel_cmds_out, 0);
1954 sdev->hostdata = sd;
1955 } else
1956 sdev->hostdata = NULL;
1957 spin_unlock_irqrestore(&h->devlock, flags);
1958 return 0;
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1964 struct hpsa_scsi_dev_t *sd;
1965 int queue_depth;
1967 sd = sdev->hostdata;
1968 sdev->no_uld_attach = !sd || !sd->expose_device;
1970 if (sd)
1971 queue_depth = sd->queue_depth != 0 ?
1972 sd->queue_depth : sdev->host->can_queue;
1973 else
1974 queue_depth = sdev->host->can_queue;
1976 scsi_change_queue_depth(sdev, queue_depth);
1978 return 0;
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1983 /* nothing to do. */
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1988 int i;
1990 if (!h->ioaccel2_cmd_sg_list)
1991 return;
1992 for (i = 0; i < h->nr_cmds; i++) {
1993 kfree(h->ioaccel2_cmd_sg_list[i]);
1994 h->ioaccel2_cmd_sg_list[i] = NULL;
1996 kfree(h->ioaccel2_cmd_sg_list);
1997 h->ioaccel2_cmd_sg_list = NULL;
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2002 int i;
2004 if (h->chainsize <= 0)
2005 return 0;
2007 h->ioaccel2_cmd_sg_list =
2008 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009 GFP_KERNEL);
2010 if (!h->ioaccel2_cmd_sg_list)
2011 return -ENOMEM;
2012 for (i = 0; i < h->nr_cmds; i++) {
2013 h->ioaccel2_cmd_sg_list[i] =
2014 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015 h->maxsgentries, GFP_KERNEL);
2016 if (!h->ioaccel2_cmd_sg_list[i])
2017 goto clean;
2019 return 0;
2021 clean:
2022 hpsa_free_ioaccel2_sg_chain_blocks(h);
2023 return -ENOMEM;
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2028 int i;
2030 if (!h->cmd_sg_list)
2031 return;
2032 for (i = 0; i < h->nr_cmds; i++) {
2033 kfree(h->cmd_sg_list[i]);
2034 h->cmd_sg_list[i] = NULL;
2036 kfree(h->cmd_sg_list);
2037 h->cmd_sg_list = NULL;
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2042 int i;
2044 if (h->chainsize <= 0)
2045 return 0;
2047 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048 GFP_KERNEL);
2049 if (!h->cmd_sg_list) {
2050 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051 return -ENOMEM;
2053 for (i = 0; i < h->nr_cmds; i++) {
2054 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055 h->chainsize, GFP_KERNEL);
2056 if (!h->cmd_sg_list[i]) {
2057 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058 goto clean;
2061 return 0;
2063 clean:
2064 hpsa_free_sg_chain_blocks(h);
2065 return -ENOMEM;
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069 struct io_accel2_cmd *cp, struct CommandList *c)
2071 struct ioaccel2_sg_element *chain_block;
2072 u64 temp64;
2073 u32 chain_size;
2075 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076 chain_size = le32_to_cpu(cp->sg[0].length);
2077 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078 PCI_DMA_TODEVICE);
2079 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080 /* prevent subsequent unmapping */
2081 cp->sg->address = 0;
2082 return -1;
2084 cp->sg->address = cpu_to_le64(temp64);
2085 return 0;
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089 struct io_accel2_cmd *cp)
2091 struct ioaccel2_sg_element *chain_sg;
2092 u64 temp64;
2093 u32 chain_size;
2095 chain_sg = cp->sg;
2096 temp64 = le64_to_cpu(chain_sg->address);
2097 chain_size = le32_to_cpu(cp->sg[0].length);
2098 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102 struct CommandList *c)
2104 struct SGDescriptor *chain_sg, *chain_block;
2105 u64 temp64;
2106 u32 chain_len;
2108 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109 chain_block = h->cmd_sg_list[c->cmdindex];
2110 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111 chain_len = sizeof(*chain_sg) *
2112 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113 chain_sg->Len = cpu_to_le32(chain_len);
2114 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115 PCI_DMA_TODEVICE);
2116 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117 /* prevent subsequent unmapping */
2118 chain_sg->Addr = cpu_to_le64(0);
2119 return -1;
2121 chain_sg->Addr = cpu_to_le64(temp64);
2122 return 0;
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126 struct CommandList *c)
2128 struct SGDescriptor *chain_sg;
2130 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131 return;
2133 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2139 /* Decode the various types of errors on ioaccel2 path.
2140 * Return 1 for any error that should generate a RAID path retry.
2141 * Return 0 for errors that don't require a RAID path retry.
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144 struct CommandList *c,
2145 struct scsi_cmnd *cmd,
2146 struct io_accel2_cmd *c2)
2148 int data_len;
2149 int retry = 0;
2150 u32 ioaccel2_resid = 0;
2152 switch (c2->error_data.serv_response) {
2153 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154 switch (c2->error_data.status) {
2155 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156 if (cmd)
2157 cmd->result = 0;
2158 break;
2159 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2160 cmd->result |= SAM_STAT_CHECK_CONDITION;
2161 if (c2->error_data.data_present !=
2162 IOACCEL2_SENSE_DATA_PRESENT) {
2163 memset(cmd->sense_buffer, 0,
2164 SCSI_SENSE_BUFFERSIZE);
2165 break;
2167 /* copy the sense data */
2168 data_len = c2->error_data.sense_data_len;
2169 if (data_len > SCSI_SENSE_BUFFERSIZE)
2170 data_len = SCSI_SENSE_BUFFERSIZE;
2171 if (data_len > sizeof(c2->error_data.sense_data_buff))
2172 data_len =
2173 sizeof(c2->error_data.sense_data_buff);
2174 memcpy(cmd->sense_buffer,
2175 c2->error_data.sense_data_buff, data_len);
2176 retry = 1;
2177 break;
2178 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2179 retry = 1;
2180 break;
2181 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2182 retry = 1;
2183 break;
2184 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2185 retry = 1;
2186 break;
2187 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2188 retry = 1;
2189 break;
2190 default:
2191 retry = 1;
2192 break;
2194 break;
2195 case IOACCEL2_SERV_RESPONSE_FAILURE:
2196 switch (c2->error_data.status) {
2197 case IOACCEL2_STATUS_SR_IO_ERROR:
2198 case IOACCEL2_STATUS_SR_IO_ABORTED:
2199 case IOACCEL2_STATUS_SR_OVERRUN:
2200 retry = 1;
2201 break;
2202 case IOACCEL2_STATUS_SR_UNDERRUN:
2203 cmd->result = (DID_OK << 16); /* host byte */
2204 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2205 ioaccel2_resid = get_unaligned_le32(
2206 &c2->error_data.resid_cnt[0]);
2207 scsi_set_resid(cmd, ioaccel2_resid);
2208 break;
2209 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2210 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2211 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2212 /* We will get an event from ctlr to trigger rescan */
2213 retry = 1;
2214 break;
2215 default:
2216 retry = 1;
2218 break;
2219 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2220 break;
2221 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2222 break;
2223 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2224 retry = 1;
2225 break;
2226 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2227 break;
2228 default:
2229 retry = 1;
2230 break;
2233 return retry; /* retry on raid path? */
2236 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2237 struct CommandList *c)
2239 bool do_wake = false;
2242 * Prevent the following race in the abort handler:
2244 * 1. LLD is requested to abort a SCSI command
2245 * 2. The SCSI command completes
2246 * 3. The struct CommandList associated with step 2 is made available
2247 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2248 * 5. Abort handler follows scsi_cmnd->host_scribble and
2249 * finds struct CommandList and tries to aborts it
2250 * Now we have aborted the wrong command.
2252 * Reset c->scsi_cmd here so that the abort or reset handler will know
2253 * this command has completed. Then, check to see if the handler is
2254 * waiting for this command, and, if so, wake it.
2256 c->scsi_cmd = SCSI_CMD_IDLE;
2257 mb(); /* Declare command idle before checking for pending events. */
2258 if (c->abort_pending) {
2259 do_wake = true;
2260 c->abort_pending = false;
2262 if (c->reset_pending) {
2263 unsigned long flags;
2264 struct hpsa_scsi_dev_t *dev;
2267 * There appears to be a reset pending; lock the lock and
2268 * reconfirm. If so, then decrement the count of outstanding
2269 * commands and wake the reset command if this is the last one.
2271 spin_lock_irqsave(&h->lock, flags);
2272 dev = c->reset_pending; /* Re-fetch under the lock. */
2273 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2274 do_wake = true;
2275 c->reset_pending = NULL;
2276 spin_unlock_irqrestore(&h->lock, flags);
2279 if (do_wake)
2280 wake_up_all(&h->event_sync_wait_queue);
2283 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2284 struct CommandList *c)
2286 hpsa_cmd_resolve_events(h, c);
2287 cmd_tagged_free(h, c);
2290 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2291 struct CommandList *c, struct scsi_cmnd *cmd)
2293 hpsa_cmd_resolve_and_free(h, c);
2294 cmd->scsi_done(cmd);
2297 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2299 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2300 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2303 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2305 cmd->result = DID_ABORT << 16;
2308 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2309 struct scsi_cmnd *cmd)
2311 hpsa_set_scsi_cmd_aborted(cmd);
2312 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2313 c->Request.CDB, c->err_info->ScsiStatus);
2314 hpsa_cmd_resolve_and_free(h, c);
2317 static void process_ioaccel2_completion(struct ctlr_info *h,
2318 struct CommandList *c, struct scsi_cmnd *cmd,
2319 struct hpsa_scsi_dev_t *dev)
2321 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2323 /* check for good status */
2324 if (likely(c2->error_data.serv_response == 0 &&
2325 c2->error_data.status == 0)) {
2326 cmd->result = 0;
2327 return hpsa_cmd_free_and_done(h, c, cmd);
2331 * Any RAID offload error results in retry which will use
2332 * the normal I/O path so the controller can handle whatever's
2333 * wrong.
2335 if (is_logical_device(dev) &&
2336 c2->error_data.serv_response ==
2337 IOACCEL2_SERV_RESPONSE_FAILURE) {
2338 if (c2->error_data.status ==
2339 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2340 dev->offload_enabled = 0;
2342 return hpsa_retry_cmd(h, c);
2345 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2346 return hpsa_retry_cmd(h, c);
2348 return hpsa_cmd_free_and_done(h, c, cmd);
2351 /* Returns 0 on success, < 0 otherwise. */
2352 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2353 struct CommandList *cp)
2355 u8 tmf_status = cp->err_info->ScsiStatus;
2357 switch (tmf_status) {
2358 case CISS_TMF_COMPLETE:
2360 * CISS_TMF_COMPLETE never happens, instead,
2361 * ei->CommandStatus == 0 for this case.
2363 case CISS_TMF_SUCCESS:
2364 return 0;
2365 case CISS_TMF_INVALID_FRAME:
2366 case CISS_TMF_NOT_SUPPORTED:
2367 case CISS_TMF_FAILED:
2368 case CISS_TMF_WRONG_LUN:
2369 case CISS_TMF_OVERLAPPED_TAG:
2370 break;
2371 default:
2372 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2373 tmf_status);
2374 break;
2376 return -tmf_status;
2379 static void complete_scsi_command(struct CommandList *cp)
2381 struct scsi_cmnd *cmd;
2382 struct ctlr_info *h;
2383 struct ErrorInfo *ei;
2384 struct hpsa_scsi_dev_t *dev;
2385 struct io_accel2_cmd *c2;
2387 u8 sense_key;
2388 u8 asc; /* additional sense code */
2389 u8 ascq; /* additional sense code qualifier */
2390 unsigned long sense_data_size;
2392 ei = cp->err_info;
2393 cmd = cp->scsi_cmd;
2394 h = cp->h;
2395 dev = cmd->device->hostdata;
2396 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2398 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2399 if ((cp->cmd_type == CMD_SCSI) &&
2400 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2401 hpsa_unmap_sg_chain_block(h, cp);
2403 if ((cp->cmd_type == CMD_IOACCEL2) &&
2404 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2405 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2407 cmd->result = (DID_OK << 16); /* host byte */
2408 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2410 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2411 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2414 * We check for lockup status here as it may be set for
2415 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2416 * fail_all_oustanding_cmds()
2418 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2419 /* DID_NO_CONNECT will prevent a retry */
2420 cmd->result = DID_NO_CONNECT << 16;
2421 return hpsa_cmd_free_and_done(h, cp, cmd);
2424 if ((unlikely(hpsa_is_pending_event(cp)))) {
2425 if (cp->reset_pending)
2426 return hpsa_cmd_resolve_and_free(h, cp);
2427 if (cp->abort_pending)
2428 return hpsa_cmd_abort_and_free(h, cp, cmd);
2431 if (cp->cmd_type == CMD_IOACCEL2)
2432 return process_ioaccel2_completion(h, cp, cmd, dev);
2434 scsi_set_resid(cmd, ei->ResidualCnt);
2435 if (ei->CommandStatus == 0)
2436 return hpsa_cmd_free_and_done(h, cp, cmd);
2438 /* For I/O accelerator commands, copy over some fields to the normal
2439 * CISS header used below for error handling.
2441 if (cp->cmd_type == CMD_IOACCEL1) {
2442 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2443 cp->Header.SGList = scsi_sg_count(cmd);
2444 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2445 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2446 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2447 cp->Header.tag = c->tag;
2448 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2449 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2451 /* Any RAID offload error results in retry which will use
2452 * the normal I/O path so the controller can handle whatever's
2453 * wrong.
2455 if (is_logical_device(dev)) {
2456 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2457 dev->offload_enabled = 0;
2458 return hpsa_retry_cmd(h, cp);
2462 /* an error has occurred */
2463 switch (ei->CommandStatus) {
2465 case CMD_TARGET_STATUS:
2466 cmd->result |= ei->ScsiStatus;
2467 /* copy the sense data */
2468 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2469 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2470 else
2471 sense_data_size = sizeof(ei->SenseInfo);
2472 if (ei->SenseLen < sense_data_size)
2473 sense_data_size = ei->SenseLen;
2474 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2475 if (ei->ScsiStatus)
2476 decode_sense_data(ei->SenseInfo, sense_data_size,
2477 &sense_key, &asc, &ascq);
2478 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2479 if (sense_key == ABORTED_COMMAND) {
2480 cmd->result |= DID_SOFT_ERROR << 16;
2481 break;
2483 break;
2485 /* Problem was not a check condition
2486 * Pass it up to the upper layers...
2488 if (ei->ScsiStatus) {
2489 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2490 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2491 "Returning result: 0x%x\n",
2492 cp, ei->ScsiStatus,
2493 sense_key, asc, ascq,
2494 cmd->result);
2495 } else { /* scsi status is zero??? How??? */
2496 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2497 "Returning no connection.\n", cp),
2499 /* Ordinarily, this case should never happen,
2500 * but there is a bug in some released firmware
2501 * revisions that allows it to happen if, for
2502 * example, a 4100 backplane loses power and
2503 * the tape drive is in it. We assume that
2504 * it's a fatal error of some kind because we
2505 * can't show that it wasn't. We will make it
2506 * look like selection timeout since that is
2507 * the most common reason for this to occur,
2508 * and it's severe enough.
2511 cmd->result = DID_NO_CONNECT << 16;
2513 break;
2515 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2516 break;
2517 case CMD_DATA_OVERRUN:
2518 dev_warn(&h->pdev->dev,
2519 "CDB %16phN data overrun\n", cp->Request.CDB);
2520 break;
2521 case CMD_INVALID: {
2522 /* print_bytes(cp, sizeof(*cp), 1, 0);
2523 print_cmd(cp); */
2524 /* We get CMD_INVALID if you address a non-existent device
2525 * instead of a selection timeout (no response). You will
2526 * see this if you yank out a drive, then try to access it.
2527 * This is kind of a shame because it means that any other
2528 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2529 * missing target. */
2530 cmd->result = DID_NO_CONNECT << 16;
2532 break;
2533 case CMD_PROTOCOL_ERR:
2534 cmd->result = DID_ERROR << 16;
2535 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2536 cp->Request.CDB);
2537 break;
2538 case CMD_HARDWARE_ERR:
2539 cmd->result = DID_ERROR << 16;
2540 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2541 cp->Request.CDB);
2542 break;
2543 case CMD_CONNECTION_LOST:
2544 cmd->result = DID_ERROR << 16;
2545 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2546 cp->Request.CDB);
2547 break;
2548 case CMD_ABORTED:
2549 /* Return now to avoid calling scsi_done(). */
2550 return hpsa_cmd_abort_and_free(h, cp, cmd);
2551 case CMD_ABORT_FAILED:
2552 cmd->result = DID_ERROR << 16;
2553 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2554 cp->Request.CDB);
2555 break;
2556 case CMD_UNSOLICITED_ABORT:
2557 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2558 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2559 cp->Request.CDB);
2560 break;
2561 case CMD_TIMEOUT:
2562 cmd->result = DID_TIME_OUT << 16;
2563 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2564 cp->Request.CDB);
2565 break;
2566 case CMD_UNABORTABLE:
2567 cmd->result = DID_ERROR << 16;
2568 dev_warn(&h->pdev->dev, "Command unabortable\n");
2569 break;
2570 case CMD_TMF_STATUS:
2571 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2572 cmd->result = DID_ERROR << 16;
2573 break;
2574 case CMD_IOACCEL_DISABLED:
2575 /* This only handles the direct pass-through case since RAID
2576 * offload is handled above. Just attempt a retry.
2578 cmd->result = DID_SOFT_ERROR << 16;
2579 dev_warn(&h->pdev->dev,
2580 "cp %p had HP SSD Smart Path error\n", cp);
2581 break;
2582 default:
2583 cmd->result = DID_ERROR << 16;
2584 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2585 cp, ei->CommandStatus);
2588 return hpsa_cmd_free_and_done(h, cp, cmd);
2591 static void hpsa_pci_unmap(struct pci_dev *pdev,
2592 struct CommandList *c, int sg_used, int data_direction)
2594 int i;
2596 for (i = 0; i < sg_used; i++)
2597 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2598 le32_to_cpu(c->SG[i].Len),
2599 data_direction);
2602 static int hpsa_map_one(struct pci_dev *pdev,
2603 struct CommandList *cp,
2604 unsigned char *buf,
2605 size_t buflen,
2606 int data_direction)
2608 u64 addr64;
2610 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2611 cp->Header.SGList = 0;
2612 cp->Header.SGTotal = cpu_to_le16(0);
2613 return 0;
2616 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2617 if (dma_mapping_error(&pdev->dev, addr64)) {
2618 /* Prevent subsequent unmap of something never mapped */
2619 cp->Header.SGList = 0;
2620 cp->Header.SGTotal = cpu_to_le16(0);
2621 return -1;
2623 cp->SG[0].Addr = cpu_to_le64(addr64);
2624 cp->SG[0].Len = cpu_to_le32(buflen);
2625 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2626 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2627 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2628 return 0;
2631 #define NO_TIMEOUT ((unsigned long) -1)
2632 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2633 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2634 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2636 DECLARE_COMPLETION_ONSTACK(wait);
2638 c->waiting = &wait;
2639 __enqueue_cmd_and_start_io(h, c, reply_queue);
2640 if (timeout_msecs == NO_TIMEOUT) {
2641 /* TODO: get rid of this no-timeout thing */
2642 wait_for_completion_io(&wait);
2643 return IO_OK;
2645 if (!wait_for_completion_io_timeout(&wait,
2646 msecs_to_jiffies(timeout_msecs))) {
2647 dev_warn(&h->pdev->dev, "Command timed out.\n");
2648 return -ETIMEDOUT;
2650 return IO_OK;
2653 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2654 int reply_queue, unsigned long timeout_msecs)
2656 if (unlikely(lockup_detected(h))) {
2657 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2658 return IO_OK;
2660 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2663 static u32 lockup_detected(struct ctlr_info *h)
2665 int cpu;
2666 u32 rc, *lockup_detected;
2668 cpu = get_cpu();
2669 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2670 rc = *lockup_detected;
2671 put_cpu();
2672 return rc;
2675 #define MAX_DRIVER_CMD_RETRIES 25
2676 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2677 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2679 int backoff_time = 10, retry_count = 0;
2680 int rc;
2682 do {
2683 memset(c->err_info, 0, sizeof(*c->err_info));
2684 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2685 timeout_msecs);
2686 if (rc)
2687 break;
2688 retry_count++;
2689 if (retry_count > 3) {
2690 msleep(backoff_time);
2691 if (backoff_time < 1000)
2692 backoff_time *= 2;
2694 } while ((check_for_unit_attention(h, c) ||
2695 check_for_busy(h, c)) &&
2696 retry_count <= MAX_DRIVER_CMD_RETRIES);
2697 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2698 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2699 rc = -EIO;
2700 return rc;
2703 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2704 struct CommandList *c)
2706 const u8 *cdb = c->Request.CDB;
2707 const u8 *lun = c->Header.LUN.LunAddrBytes;
2709 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2710 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2711 txt, lun[0], lun[1], lun[2], lun[3],
2712 lun[4], lun[5], lun[6], lun[7],
2713 cdb[0], cdb[1], cdb[2], cdb[3],
2714 cdb[4], cdb[5], cdb[6], cdb[7],
2715 cdb[8], cdb[9], cdb[10], cdb[11],
2716 cdb[12], cdb[13], cdb[14], cdb[15]);
2719 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2720 struct CommandList *cp)
2722 const struct ErrorInfo *ei = cp->err_info;
2723 struct device *d = &cp->h->pdev->dev;
2724 u8 sense_key, asc, ascq;
2725 int sense_len;
2727 switch (ei->CommandStatus) {
2728 case CMD_TARGET_STATUS:
2729 if (ei->SenseLen > sizeof(ei->SenseInfo))
2730 sense_len = sizeof(ei->SenseInfo);
2731 else
2732 sense_len = ei->SenseLen;
2733 decode_sense_data(ei->SenseInfo, sense_len,
2734 &sense_key, &asc, &ascq);
2735 hpsa_print_cmd(h, "SCSI status", cp);
2736 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2737 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2738 sense_key, asc, ascq);
2739 else
2740 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2741 if (ei->ScsiStatus == 0)
2742 dev_warn(d, "SCSI status is abnormally zero. "
2743 "(probably indicates selection timeout "
2744 "reported incorrectly due to a known "
2745 "firmware bug, circa July, 2001.)\n");
2746 break;
2747 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2748 break;
2749 case CMD_DATA_OVERRUN:
2750 hpsa_print_cmd(h, "overrun condition", cp);
2751 break;
2752 case CMD_INVALID: {
2753 /* controller unfortunately reports SCSI passthru's
2754 * to non-existent targets as invalid commands.
2756 hpsa_print_cmd(h, "invalid command", cp);
2757 dev_warn(d, "probably means device no longer present\n");
2759 break;
2760 case CMD_PROTOCOL_ERR:
2761 hpsa_print_cmd(h, "protocol error", cp);
2762 break;
2763 case CMD_HARDWARE_ERR:
2764 hpsa_print_cmd(h, "hardware error", cp);
2765 break;
2766 case CMD_CONNECTION_LOST:
2767 hpsa_print_cmd(h, "connection lost", cp);
2768 break;
2769 case CMD_ABORTED:
2770 hpsa_print_cmd(h, "aborted", cp);
2771 break;
2772 case CMD_ABORT_FAILED:
2773 hpsa_print_cmd(h, "abort failed", cp);
2774 break;
2775 case CMD_UNSOLICITED_ABORT:
2776 hpsa_print_cmd(h, "unsolicited abort", cp);
2777 break;
2778 case CMD_TIMEOUT:
2779 hpsa_print_cmd(h, "timed out", cp);
2780 break;
2781 case CMD_UNABORTABLE:
2782 hpsa_print_cmd(h, "unabortable", cp);
2783 break;
2784 case CMD_CTLR_LOCKUP:
2785 hpsa_print_cmd(h, "controller lockup detected", cp);
2786 break;
2787 default:
2788 hpsa_print_cmd(h, "unknown status", cp);
2789 dev_warn(d, "Unknown command status %x\n",
2790 ei->CommandStatus);
2794 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2795 u16 page, unsigned char *buf,
2796 unsigned char bufsize)
2798 int rc = IO_OK;
2799 struct CommandList *c;
2800 struct ErrorInfo *ei;
2802 c = cmd_alloc(h);
2804 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2805 page, scsi3addr, TYPE_CMD)) {
2806 rc = -1;
2807 goto out;
2809 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2810 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2811 if (rc)
2812 goto out;
2813 ei = c->err_info;
2814 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2815 hpsa_scsi_interpret_error(h, c);
2816 rc = -1;
2818 out:
2819 cmd_free(h, c);
2820 return rc;
2823 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2824 u8 reset_type, int reply_queue)
2826 int rc = IO_OK;
2827 struct CommandList *c;
2828 struct ErrorInfo *ei;
2830 c = cmd_alloc(h);
2833 /* fill_cmd can't fail here, no data buffer to map. */
2834 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2835 scsi3addr, TYPE_MSG);
2836 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2837 if (rc) {
2838 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2839 goto out;
2841 /* no unmap needed here because no data xfer. */
2843 ei = c->err_info;
2844 if (ei->CommandStatus != 0) {
2845 hpsa_scsi_interpret_error(h, c);
2846 rc = -1;
2848 out:
2849 cmd_free(h, c);
2850 return rc;
2853 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2854 struct hpsa_scsi_dev_t *dev,
2855 unsigned char *scsi3addr)
2857 int i;
2858 bool match = false;
2859 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2860 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2862 if (hpsa_is_cmd_idle(c))
2863 return false;
2865 switch (c->cmd_type) {
2866 case CMD_SCSI:
2867 case CMD_IOCTL_PEND:
2868 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2869 sizeof(c->Header.LUN.LunAddrBytes));
2870 break;
2872 case CMD_IOACCEL1:
2873 case CMD_IOACCEL2:
2874 if (c->phys_disk == dev) {
2875 /* HBA mode match */
2876 match = true;
2877 } else {
2878 /* Possible RAID mode -- check each phys dev. */
2879 /* FIXME: Do we need to take out a lock here? If
2880 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2881 * instead. */
2882 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2883 /* FIXME: an alternate test might be
2885 * match = dev->phys_disk[i]->ioaccel_handle
2886 * == c2->scsi_nexus; */
2887 match = dev->phys_disk[i] == c->phys_disk;
2890 break;
2892 case IOACCEL2_TMF:
2893 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2894 match = dev->phys_disk[i]->ioaccel_handle ==
2895 le32_to_cpu(ac->it_nexus);
2897 break;
2899 case 0: /* The command is in the middle of being initialized. */
2900 match = false;
2901 break;
2903 default:
2904 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2905 c->cmd_type);
2906 BUG();
2909 return match;
2912 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2913 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2915 int i;
2916 int rc = 0;
2918 /* We can really only handle one reset at a time */
2919 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2920 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2921 return -EINTR;
2924 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2926 for (i = 0; i < h->nr_cmds; i++) {
2927 struct CommandList *c = h->cmd_pool + i;
2928 int refcount = atomic_inc_return(&c->refcount);
2930 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2931 unsigned long flags;
2934 * Mark the target command as having a reset pending,
2935 * then lock a lock so that the command cannot complete
2936 * while we're considering it. If the command is not
2937 * idle then count it; otherwise revoke the event.
2939 c->reset_pending = dev;
2940 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2941 if (!hpsa_is_cmd_idle(c))
2942 atomic_inc(&dev->reset_cmds_out);
2943 else
2944 c->reset_pending = NULL;
2945 spin_unlock_irqrestore(&h->lock, flags);
2948 cmd_free(h, c);
2951 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2952 if (!rc)
2953 wait_event(h->event_sync_wait_queue,
2954 atomic_read(&dev->reset_cmds_out) == 0 ||
2955 lockup_detected(h));
2957 if (unlikely(lockup_detected(h))) {
2958 dev_warn(&h->pdev->dev,
2959 "Controller lockup detected during reset wait\n");
2960 rc = -ENODEV;
2963 if (unlikely(rc))
2964 atomic_set(&dev->reset_cmds_out, 0);
2966 mutex_unlock(&h->reset_mutex);
2967 return rc;
2970 static void hpsa_get_raid_level(struct ctlr_info *h,
2971 unsigned char *scsi3addr, unsigned char *raid_level)
2973 int rc;
2974 unsigned char *buf;
2976 *raid_level = RAID_UNKNOWN;
2977 buf = kzalloc(64, GFP_KERNEL);
2978 if (!buf)
2979 return;
2980 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2981 if (rc == 0)
2982 *raid_level = buf[8];
2983 if (*raid_level > RAID_UNKNOWN)
2984 *raid_level = RAID_UNKNOWN;
2985 kfree(buf);
2986 return;
2989 #define HPSA_MAP_DEBUG
2990 #ifdef HPSA_MAP_DEBUG
2991 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2992 struct raid_map_data *map_buff)
2994 struct raid_map_disk_data *dd = &map_buff->data[0];
2995 int map, row, col;
2996 u16 map_cnt, row_cnt, disks_per_row;
2998 if (rc != 0)
2999 return;
3001 /* Show details only if debugging has been activated. */
3002 if (h->raid_offload_debug < 2)
3003 return;
3005 dev_info(&h->pdev->dev, "structure_size = %u\n",
3006 le32_to_cpu(map_buff->structure_size));
3007 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3008 le32_to_cpu(map_buff->volume_blk_size));
3009 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3010 le64_to_cpu(map_buff->volume_blk_cnt));
3011 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3012 map_buff->phys_blk_shift);
3013 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3014 map_buff->parity_rotation_shift);
3015 dev_info(&h->pdev->dev, "strip_size = %u\n",
3016 le16_to_cpu(map_buff->strip_size));
3017 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3018 le64_to_cpu(map_buff->disk_starting_blk));
3019 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3020 le64_to_cpu(map_buff->disk_blk_cnt));
3021 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3022 le16_to_cpu(map_buff->data_disks_per_row));
3023 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3024 le16_to_cpu(map_buff->metadata_disks_per_row));
3025 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3026 le16_to_cpu(map_buff->row_cnt));
3027 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3028 le16_to_cpu(map_buff->layout_map_count));
3029 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3030 le16_to_cpu(map_buff->flags));
3031 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3032 le16_to_cpu(map_buff->flags) &
3033 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3034 dev_info(&h->pdev->dev, "dekindex = %u\n",
3035 le16_to_cpu(map_buff->dekindex));
3036 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3037 for (map = 0; map < map_cnt; map++) {
3038 dev_info(&h->pdev->dev, "Map%u:\n", map);
3039 row_cnt = le16_to_cpu(map_buff->row_cnt);
3040 for (row = 0; row < row_cnt; row++) {
3041 dev_info(&h->pdev->dev, " Row%u:\n", row);
3042 disks_per_row =
3043 le16_to_cpu(map_buff->data_disks_per_row);
3044 for (col = 0; col < disks_per_row; col++, dd++)
3045 dev_info(&h->pdev->dev,
3046 " D%02u: h=0x%04x xor=%u,%u\n",
3047 col, dd->ioaccel_handle,
3048 dd->xor_mult[0], dd->xor_mult[1]);
3049 disks_per_row =
3050 le16_to_cpu(map_buff->metadata_disks_per_row);
3051 for (col = 0; col < disks_per_row; col++, dd++)
3052 dev_info(&h->pdev->dev,
3053 " M%02u: h=0x%04x xor=%u,%u\n",
3054 col, dd->ioaccel_handle,
3055 dd->xor_mult[0], dd->xor_mult[1]);
3059 #else
3060 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3061 __attribute__((unused)) int rc,
3062 __attribute__((unused)) struct raid_map_data *map_buff)
3065 #endif
3067 static int hpsa_get_raid_map(struct ctlr_info *h,
3068 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3070 int rc = 0;
3071 struct CommandList *c;
3072 struct ErrorInfo *ei;
3074 c = cmd_alloc(h);
3076 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3077 sizeof(this_device->raid_map), 0,
3078 scsi3addr, TYPE_CMD)) {
3079 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3080 cmd_free(h, c);
3081 return -1;
3083 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3084 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3085 if (rc)
3086 goto out;
3087 ei = c->err_info;
3088 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3089 hpsa_scsi_interpret_error(h, c);
3090 rc = -1;
3091 goto out;
3093 cmd_free(h, c);
3095 /* @todo in the future, dynamically allocate RAID map memory */
3096 if (le32_to_cpu(this_device->raid_map.structure_size) >
3097 sizeof(this_device->raid_map)) {
3098 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3099 rc = -1;
3101 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3102 return rc;
3103 out:
3104 cmd_free(h, c);
3105 return rc;
3108 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3109 unsigned char scsi3addr[], u16 bmic_device_index,
3110 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3112 int rc = IO_OK;
3113 struct CommandList *c;
3114 struct ErrorInfo *ei;
3116 c = cmd_alloc(h);
3118 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3119 0, RAID_CTLR_LUNID, TYPE_CMD);
3120 if (rc)
3121 goto out;
3123 c->Request.CDB[2] = bmic_device_index & 0xff;
3124 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3126 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3127 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3128 if (rc)
3129 goto out;
3130 ei = c->err_info;
3131 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3132 hpsa_scsi_interpret_error(h, c);
3133 rc = -1;
3135 out:
3136 cmd_free(h, c);
3137 return rc;
3140 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3141 struct bmic_identify_controller *buf, size_t bufsize)
3143 int rc = IO_OK;
3144 struct CommandList *c;
3145 struct ErrorInfo *ei;
3147 c = cmd_alloc(h);
3149 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3150 0, RAID_CTLR_LUNID, TYPE_CMD);
3151 if (rc)
3152 goto out;
3154 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3155 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3156 if (rc)
3157 goto out;
3158 ei = c->err_info;
3159 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3160 hpsa_scsi_interpret_error(h, c);
3161 rc = -1;
3163 out:
3164 cmd_free(h, c);
3165 return rc;
3168 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3169 unsigned char scsi3addr[], u16 bmic_device_index,
3170 struct bmic_identify_physical_device *buf, size_t bufsize)
3172 int rc = IO_OK;
3173 struct CommandList *c;
3174 struct ErrorInfo *ei;
3176 c = cmd_alloc(h);
3177 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3178 0, RAID_CTLR_LUNID, TYPE_CMD);
3179 if (rc)
3180 goto out;
3182 c->Request.CDB[2] = bmic_device_index & 0xff;
3183 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3185 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3186 NO_TIMEOUT);
3187 ei = c->err_info;
3188 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3189 hpsa_scsi_interpret_error(h, c);
3190 rc = -1;
3192 out:
3193 cmd_free(h, c);
3195 return rc;
3198 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3199 unsigned char *scsi3addr)
3201 struct ReportExtendedLUNdata *physdev;
3202 u32 nphysicals;
3203 u64 sa = 0;
3204 int i;
3206 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3207 if (!physdev)
3208 return 0;
3210 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3211 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3212 kfree(physdev);
3213 return 0;
3215 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3217 for (i = 0; i < nphysicals; i++)
3218 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3219 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3220 break;
3223 kfree(physdev);
3225 return sa;
3228 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3229 struct hpsa_scsi_dev_t *dev)
3231 int rc;
3232 u64 sa = 0;
3234 if (is_hba_lunid(scsi3addr)) {
3235 struct bmic_sense_subsystem_info *ssi;
3237 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3238 if (ssi == NULL) {
3239 dev_warn(&h->pdev->dev,
3240 "%s: out of memory\n", __func__);
3241 return;
3244 rc = hpsa_bmic_sense_subsystem_information(h,
3245 scsi3addr, 0, ssi, sizeof(*ssi));
3246 if (rc == 0) {
3247 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3248 h->sas_address = sa;
3251 kfree(ssi);
3252 } else
3253 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3255 dev->sas_address = sa;
3258 /* Get a device id from inquiry page 0x83 */
3259 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3260 unsigned char scsi3addr[], u8 page)
3262 int rc;
3263 int i;
3264 int pages;
3265 unsigned char *buf, bufsize;
3267 buf = kzalloc(256, GFP_KERNEL);
3268 if (!buf)
3269 return 0;
3271 /* Get the size of the page list first */
3272 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3273 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3274 buf, HPSA_VPD_HEADER_SZ);
3275 if (rc != 0)
3276 goto exit_unsupported;
3277 pages = buf[3];
3278 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3279 bufsize = pages + HPSA_VPD_HEADER_SZ;
3280 else
3281 bufsize = 255;
3283 /* Get the whole VPD page list */
3284 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3285 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3286 buf, bufsize);
3287 if (rc != 0)
3288 goto exit_unsupported;
3290 pages = buf[3];
3291 for (i = 1; i <= pages; i++)
3292 if (buf[3 + i] == page)
3293 goto exit_supported;
3294 exit_unsupported:
3295 kfree(buf);
3296 return 0;
3297 exit_supported:
3298 kfree(buf);
3299 return 1;
3302 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3303 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3305 int rc;
3306 unsigned char *buf;
3307 u8 ioaccel_status;
3309 this_device->offload_config = 0;
3310 this_device->offload_enabled = 0;
3311 this_device->offload_to_be_enabled = 0;
3313 buf = kzalloc(64, GFP_KERNEL);
3314 if (!buf)
3315 return;
3316 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3317 goto out;
3318 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3319 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3320 if (rc != 0)
3321 goto out;
3323 #define IOACCEL_STATUS_BYTE 4
3324 #define OFFLOAD_CONFIGURED_BIT 0x01
3325 #define OFFLOAD_ENABLED_BIT 0x02
3326 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3327 this_device->offload_config =
3328 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3329 if (this_device->offload_config) {
3330 this_device->offload_enabled =
3331 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3332 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3333 this_device->offload_enabled = 0;
3335 this_device->offload_to_be_enabled = this_device->offload_enabled;
3336 out:
3337 kfree(buf);
3338 return;
3341 /* Get the device id from inquiry page 0x83 */
3342 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3343 unsigned char *device_id, int index, int buflen)
3345 int rc;
3346 unsigned char *buf;
3348 if (buflen > 16)
3349 buflen = 16;
3350 buf = kzalloc(64, GFP_KERNEL);
3351 if (!buf)
3352 return -ENOMEM;
3353 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3354 if (rc == 0)
3355 memcpy(device_id, &buf[index], buflen);
3357 kfree(buf);
3359 return rc != 0;
3362 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3363 void *buf, int bufsize,
3364 int extended_response)
3366 int rc = IO_OK;
3367 struct CommandList *c;
3368 unsigned char scsi3addr[8];
3369 struct ErrorInfo *ei;
3371 c = cmd_alloc(h);
3373 /* address the controller */
3374 memset(scsi3addr, 0, sizeof(scsi3addr));
3375 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3376 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3377 rc = -1;
3378 goto out;
3380 if (extended_response)
3381 c->Request.CDB[1] = extended_response;
3382 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3383 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3384 if (rc)
3385 goto out;
3386 ei = c->err_info;
3387 if (ei->CommandStatus != 0 &&
3388 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3389 hpsa_scsi_interpret_error(h, c);
3390 rc = -1;
3391 } else {
3392 struct ReportLUNdata *rld = buf;
3394 if (rld->extended_response_flag != extended_response) {
3395 dev_err(&h->pdev->dev,
3396 "report luns requested format %u, got %u\n",
3397 extended_response,
3398 rld->extended_response_flag);
3399 rc = -1;
3402 out:
3403 cmd_free(h, c);
3404 return rc;
3407 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3408 struct ReportExtendedLUNdata *buf, int bufsize)
3410 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3411 HPSA_REPORT_PHYS_EXTENDED);
3414 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3415 struct ReportLUNdata *buf, int bufsize)
3417 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3420 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3421 int bus, int target, int lun)
3423 device->bus = bus;
3424 device->target = target;
3425 device->lun = lun;
3428 /* Use VPD inquiry to get details of volume status */
3429 static int hpsa_get_volume_status(struct ctlr_info *h,
3430 unsigned char scsi3addr[])
3432 int rc;
3433 int status;
3434 int size;
3435 unsigned char *buf;
3437 buf = kzalloc(64, GFP_KERNEL);
3438 if (!buf)
3439 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3441 /* Does controller have VPD for logical volume status? */
3442 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3443 goto exit_failed;
3445 /* Get the size of the VPD return buffer */
3446 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3447 buf, HPSA_VPD_HEADER_SZ);
3448 if (rc != 0)
3449 goto exit_failed;
3450 size = buf[3];
3452 /* Now get the whole VPD buffer */
3453 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3454 buf, size + HPSA_VPD_HEADER_SZ);
3455 if (rc != 0)
3456 goto exit_failed;
3457 status = buf[4]; /* status byte */
3459 kfree(buf);
3460 return status;
3461 exit_failed:
3462 kfree(buf);
3463 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3466 /* Determine offline status of a volume.
3467 * Return either:
3468 * 0 (not offline)
3469 * 0xff (offline for unknown reasons)
3470 * # (integer code indicating one of several NOT READY states
3471 * describing why a volume is to be kept offline)
3473 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3474 unsigned char scsi3addr[])
3476 struct CommandList *c;
3477 unsigned char *sense;
3478 u8 sense_key, asc, ascq;
3479 int sense_len;
3480 int rc, ldstat = 0;
3481 u16 cmd_status;
3482 u8 scsi_status;
3483 #define ASC_LUN_NOT_READY 0x04
3484 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3485 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3487 c = cmd_alloc(h);
3489 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3490 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3491 if (rc) {
3492 cmd_free(h, c);
3493 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3495 sense = c->err_info->SenseInfo;
3496 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3497 sense_len = sizeof(c->err_info->SenseInfo);
3498 else
3499 sense_len = c->err_info->SenseLen;
3500 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3501 cmd_status = c->err_info->CommandStatus;
3502 scsi_status = c->err_info->ScsiStatus;
3503 cmd_free(h, c);
3505 /* Determine the reason for not ready state */
3506 ldstat = hpsa_get_volume_status(h, scsi3addr);
3508 /* Keep volume offline in certain cases: */
3509 switch (ldstat) {
3510 case HPSA_LV_FAILED:
3511 case HPSA_LV_UNDERGOING_ERASE:
3512 case HPSA_LV_NOT_AVAILABLE:
3513 case HPSA_LV_UNDERGOING_RPI:
3514 case HPSA_LV_PENDING_RPI:
3515 case HPSA_LV_ENCRYPTED_NO_KEY:
3516 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3517 case HPSA_LV_UNDERGOING_ENCRYPTION:
3518 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3519 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3520 return ldstat;
3521 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3522 /* If VPD status page isn't available,
3523 * use ASC/ASCQ to determine state
3525 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3526 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3527 return ldstat;
3528 break;
3529 default:
3530 break;
3532 return HPSA_LV_OK;
3536 * Find out if a logical device supports aborts by simply trying one.
3537 * Smart Array may claim not to support aborts on logical drives, but
3538 * if a MSA2000 * is connected, the drives on that will be presented
3539 * by the Smart Array as logical drives, and aborts may be sent to
3540 * those devices successfully. So the simplest way to find out is
3541 * to simply try an abort and see how the device responds.
3543 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3544 unsigned char *scsi3addr)
3546 struct CommandList *c;
3547 struct ErrorInfo *ei;
3548 int rc = 0;
3550 u64 tag = (u64) -1; /* bogus tag */
3552 /* Assume that physical devices support aborts */
3553 if (!is_logical_dev_addr_mode(scsi3addr))
3554 return 1;
3556 c = cmd_alloc(h);
3558 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3559 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3560 /* no unmap needed here because no data xfer. */
3561 ei = c->err_info;
3562 switch (ei->CommandStatus) {
3563 case CMD_INVALID:
3564 rc = 0;
3565 break;
3566 case CMD_UNABORTABLE:
3567 case CMD_ABORT_FAILED:
3568 rc = 1;
3569 break;
3570 case CMD_TMF_STATUS:
3571 rc = hpsa_evaluate_tmf_status(h, c);
3572 break;
3573 default:
3574 rc = 0;
3575 break;
3577 cmd_free(h, c);
3578 return rc;
3581 static void sanitize_inquiry_string(unsigned char *s, int len)
3583 bool terminated = false;
3585 for (; len > 0; (--len, ++s)) {
3586 if (*s == 0)
3587 terminated = true;
3588 if (terminated || *s < 0x20 || *s > 0x7e)
3589 *s = ' ';
3593 static int hpsa_update_device_info(struct ctlr_info *h,
3594 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3595 unsigned char *is_OBDR_device)
3598 #define OBDR_SIG_OFFSET 43
3599 #define OBDR_TAPE_SIG "$DR-10"
3600 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3601 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3603 unsigned char *inq_buff;
3604 unsigned char *obdr_sig;
3605 int rc = 0;
3607 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3608 if (!inq_buff) {
3609 rc = -ENOMEM;
3610 goto bail_out;
3613 /* Do an inquiry to the device to see what it is. */
3614 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3615 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3616 dev_err(&h->pdev->dev,
3617 "%s: inquiry failed, device will be skipped.\n",
3618 __func__);
3619 rc = HPSA_INQUIRY_FAILED;
3620 goto bail_out;
3623 sanitize_inquiry_string(&inq_buff[8], 8);
3624 sanitize_inquiry_string(&inq_buff[16], 16);
3626 this_device->devtype = (inq_buff[0] & 0x1f);
3627 memcpy(this_device->scsi3addr, scsi3addr, 8);
3628 memcpy(this_device->vendor, &inq_buff[8],
3629 sizeof(this_device->vendor));
3630 memcpy(this_device->model, &inq_buff[16],
3631 sizeof(this_device->model));
3632 memset(this_device->device_id, 0,
3633 sizeof(this_device->device_id));
3634 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3635 sizeof(this_device->device_id));
3637 if (this_device->devtype == TYPE_DISK &&
3638 is_logical_dev_addr_mode(scsi3addr)) {
3639 unsigned char volume_offline;
3641 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3642 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3643 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3644 volume_offline = hpsa_volume_offline(h, scsi3addr);
3645 this_device->volume_offline = volume_offline;
3646 if (volume_offline == HPSA_LV_FAILED) {
3647 rc = HPSA_LV_FAILED;
3648 dev_err(&h->pdev->dev,
3649 "%s: LV failed, device will be skipped.\n",
3650 __func__);
3651 goto bail_out;
3653 } else {
3654 this_device->raid_level = RAID_UNKNOWN;
3655 this_device->offload_config = 0;
3656 this_device->offload_enabled = 0;
3657 this_device->offload_to_be_enabled = 0;
3658 this_device->hba_ioaccel_enabled = 0;
3659 this_device->volume_offline = 0;
3660 this_device->queue_depth = h->nr_cmds;
3663 if (is_OBDR_device) {
3664 /* See if this is a One-Button-Disaster-Recovery device
3665 * by looking for "$DR-10" at offset 43 in inquiry data.
3667 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3668 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3669 strncmp(obdr_sig, OBDR_TAPE_SIG,
3670 OBDR_SIG_LEN) == 0);
3672 kfree(inq_buff);
3673 return 0;
3675 bail_out:
3676 kfree(inq_buff);
3677 return rc;
3680 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3681 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3683 unsigned long flags;
3684 int rc, entry;
3686 * See if this device supports aborts. If we already know
3687 * the device, we already know if it supports aborts, otherwise
3688 * we have to find out if it supports aborts by trying one.
3690 spin_lock_irqsave(&h->devlock, flags);
3691 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3692 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3693 entry >= 0 && entry < h->ndevices) {
3694 dev->supports_aborts = h->dev[entry]->supports_aborts;
3695 spin_unlock_irqrestore(&h->devlock, flags);
3696 } else {
3697 spin_unlock_irqrestore(&h->devlock, flags);
3698 dev->supports_aborts =
3699 hpsa_device_supports_aborts(h, scsi3addr);
3700 if (dev->supports_aborts < 0)
3701 dev->supports_aborts = 0;
3706 * Helper function to assign bus, target, lun mapping of devices.
3707 * Logical drive target and lun are assigned at this time, but
3708 * physical device lun and target assignment are deferred (assigned
3709 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3711 static void figure_bus_target_lun(struct ctlr_info *h,
3712 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3714 u32 lunid = get_unaligned_le32(lunaddrbytes);
3716 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3717 /* physical device, target and lun filled in later */
3718 if (is_hba_lunid(lunaddrbytes))
3719 hpsa_set_bus_target_lun(device,
3720 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3721 else
3722 /* defer target, lun assignment for physical devices */
3723 hpsa_set_bus_target_lun(device,
3724 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3725 return;
3727 /* It's a logical device */
3728 if (device->external) {
3729 hpsa_set_bus_target_lun(device,
3730 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3731 lunid & 0x00ff);
3732 return;
3734 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3735 0, lunid & 0x3fff);
3740 * Get address of physical disk used for an ioaccel2 mode command:
3741 * 1. Extract ioaccel2 handle from the command.
3742 * 2. Find a matching ioaccel2 handle from list of physical disks.
3743 * 3. Return:
3744 * 1 and set scsi3addr to address of matching physical
3745 * 0 if no matching physical disk was found.
3747 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3748 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3750 struct io_accel2_cmd *c2 =
3751 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3752 unsigned long flags;
3753 int i;
3755 spin_lock_irqsave(&h->devlock, flags);
3756 for (i = 0; i < h->ndevices; i++)
3757 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3758 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3759 sizeof(h->dev[i]->scsi3addr));
3760 spin_unlock_irqrestore(&h->devlock, flags);
3761 return 1;
3763 spin_unlock_irqrestore(&h->devlock, flags);
3764 return 0;
3767 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3768 int i, int nphysicals, int nlocal_logicals)
3770 /* In report logicals, local logicals are listed first,
3771 * then any externals.
3773 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3775 if (i == raid_ctlr_position)
3776 return 0;
3778 if (i < logicals_start)
3779 return 0;
3781 /* i is in logicals range, but still within local logicals */
3782 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3783 return 0;
3785 return 1; /* it's an external lun */
3789 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3790 * logdev. The number of luns in physdev and logdev are returned in
3791 * *nphysicals and *nlogicals, respectively.
3792 * Returns 0 on success, -1 otherwise.
3794 static int hpsa_gather_lun_info(struct ctlr_info *h,
3795 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3796 struct ReportLUNdata *logdev, u32 *nlogicals)
3798 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3799 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3800 return -1;
3802 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3803 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3804 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3805 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3806 *nphysicals = HPSA_MAX_PHYS_LUN;
3808 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3809 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3810 return -1;
3812 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3813 /* Reject Logicals in excess of our max capability. */
3814 if (*nlogicals > HPSA_MAX_LUN) {
3815 dev_warn(&h->pdev->dev,
3816 "maximum logical LUNs (%d) exceeded. "
3817 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3818 *nlogicals - HPSA_MAX_LUN);
3819 *nlogicals = HPSA_MAX_LUN;
3821 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3822 dev_warn(&h->pdev->dev,
3823 "maximum logical + physical LUNs (%d) exceeded. "
3824 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3825 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3826 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3828 return 0;
3831 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3832 int i, int nphysicals, int nlogicals,
3833 struct ReportExtendedLUNdata *physdev_list,
3834 struct ReportLUNdata *logdev_list)
3836 /* Helper function, figure out where the LUN ID info is coming from
3837 * given index i, lists of physical and logical devices, where in
3838 * the list the raid controller is supposed to appear (first or last)
3841 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3842 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3844 if (i == raid_ctlr_position)
3845 return RAID_CTLR_LUNID;
3847 if (i < logicals_start)
3848 return &physdev_list->LUN[i -
3849 (raid_ctlr_position == 0)].lunid[0];
3851 if (i < last_device)
3852 return &logdev_list->LUN[i - nphysicals -
3853 (raid_ctlr_position == 0)][0];
3854 BUG();
3855 return NULL;
3858 /* get physical drive ioaccel handle and queue depth */
3859 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3860 struct hpsa_scsi_dev_t *dev,
3861 struct ReportExtendedLUNdata *rlep, int rle_index,
3862 struct bmic_identify_physical_device *id_phys)
3864 int rc;
3865 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3867 dev->ioaccel_handle = rle->ioaccel_handle;
3868 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3869 dev->hba_ioaccel_enabled = 1;
3870 memset(id_phys, 0, sizeof(*id_phys));
3871 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3872 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3873 sizeof(*id_phys));
3874 if (!rc)
3875 /* Reserve space for FW operations */
3876 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3877 #define DRIVE_QUEUE_DEPTH 7
3878 dev->queue_depth =
3879 le16_to_cpu(id_phys->current_queue_depth_limit) -
3880 DRIVE_CMDS_RESERVED_FOR_FW;
3881 else
3882 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3885 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3886 struct ReportExtendedLUNdata *rlep, int rle_index,
3887 struct bmic_identify_physical_device *id_phys)
3889 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3891 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3892 this_device->hba_ioaccel_enabled = 1;
3894 memcpy(&this_device->active_path_index,
3895 &id_phys->active_path_number,
3896 sizeof(this_device->active_path_index));
3897 memcpy(&this_device->path_map,
3898 &id_phys->redundant_path_present_map,
3899 sizeof(this_device->path_map));
3900 memcpy(&this_device->box,
3901 &id_phys->alternate_paths_phys_box_on_port,
3902 sizeof(this_device->box));
3903 memcpy(&this_device->phys_connector,
3904 &id_phys->alternate_paths_phys_connector,
3905 sizeof(this_device->phys_connector));
3906 memcpy(&this_device->bay,
3907 &id_phys->phys_bay_in_box,
3908 sizeof(this_device->bay));
3911 /* get number of local logical disks. */
3912 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3913 struct bmic_identify_controller *id_ctlr,
3914 u32 *nlocals)
3916 int rc;
3918 if (!id_ctlr) {
3919 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3920 __func__);
3921 return -ENOMEM;
3923 memset(id_ctlr, 0, sizeof(*id_ctlr));
3924 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3925 if (!rc)
3926 if (id_ctlr->configured_logical_drive_count < 256)
3927 *nlocals = id_ctlr->configured_logical_drive_count;
3928 else
3929 *nlocals = le16_to_cpu(
3930 id_ctlr->extended_logical_unit_count);
3931 else
3932 *nlocals = -1;
3933 return rc;
3936 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
3938 struct bmic_identify_physical_device *id_phys;
3939 bool is_spare = false;
3940 int rc;
3942 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3943 if (!id_phys)
3944 return false;
3946 rc = hpsa_bmic_id_physical_device(h,
3947 lunaddrbytes,
3948 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
3949 id_phys, sizeof(*id_phys));
3950 if (rc == 0)
3951 is_spare = (id_phys->more_flags >> 6) & 0x01;
3953 kfree(id_phys);
3954 return is_spare;
3957 #define RPL_DEV_FLAG_NON_DISK 0x1
3958 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
3959 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
3961 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
3963 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
3964 struct ext_report_lun_entry *rle)
3966 u8 device_flags;
3967 u8 device_type;
3969 if (!MASKED_DEVICE(lunaddrbytes))
3970 return false;
3972 device_flags = rle->device_flags;
3973 device_type = rle->device_type;
3975 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
3976 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
3977 return false;
3978 return true;
3981 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
3982 return false;
3984 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
3985 return false;
3988 * Spares may be spun down, we do not want to
3989 * do an Inquiry to a RAID set spare drive as
3990 * that would have them spun up, that is a
3991 * performance hit because I/O to the RAID device
3992 * stops while the spin up occurs which can take
3993 * over 50 seconds.
3995 if (hpsa_is_disk_spare(h, lunaddrbytes))
3996 return true;
3998 return false;
4001 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4003 /* the idea here is we could get notified
4004 * that some devices have changed, so we do a report
4005 * physical luns and report logical luns cmd, and adjust
4006 * our list of devices accordingly.
4008 * The scsi3addr's of devices won't change so long as the
4009 * adapter is not reset. That means we can rescan and
4010 * tell which devices we already know about, vs. new
4011 * devices, vs. disappearing devices.
4013 struct ReportExtendedLUNdata *physdev_list = NULL;
4014 struct ReportLUNdata *logdev_list = NULL;
4015 struct bmic_identify_physical_device *id_phys = NULL;
4016 struct bmic_identify_controller *id_ctlr = NULL;
4017 u32 nphysicals = 0;
4018 u32 nlogicals = 0;
4019 u32 nlocal_logicals = 0;
4020 u32 ndev_allocated = 0;
4021 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4022 int ncurrent = 0;
4023 int i, n_ext_target_devs, ndevs_to_allocate;
4024 int raid_ctlr_position;
4025 bool physical_device;
4026 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4028 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4029 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4030 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4031 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4032 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4033 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4035 if (!currentsd || !physdev_list || !logdev_list ||
4036 !tmpdevice || !id_phys || !id_ctlr) {
4037 dev_err(&h->pdev->dev, "out of memory\n");
4038 goto out;
4040 memset(lunzerobits, 0, sizeof(lunzerobits));
4042 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4044 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4045 logdev_list, &nlogicals)) {
4046 h->drv_req_rescan = 1;
4047 goto out;
4050 /* Set number of local logicals (non PTRAID) */
4051 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4052 dev_warn(&h->pdev->dev,
4053 "%s: Can't determine number of local logical devices.\n",
4054 __func__);
4057 /* We might see up to the maximum number of logical and physical disks
4058 * plus external target devices, and a device for the local RAID
4059 * controller.
4061 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4063 /* Allocate the per device structures */
4064 for (i = 0; i < ndevs_to_allocate; i++) {
4065 if (i >= HPSA_MAX_DEVICES) {
4066 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4067 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4068 ndevs_to_allocate - HPSA_MAX_DEVICES);
4069 break;
4072 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4073 if (!currentsd[i]) {
4074 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4075 __FILE__, __LINE__);
4076 h->drv_req_rescan = 1;
4077 goto out;
4079 ndev_allocated++;
4082 if (is_scsi_rev_5(h))
4083 raid_ctlr_position = 0;
4084 else
4085 raid_ctlr_position = nphysicals + nlogicals;
4087 /* adjust our table of devices */
4088 n_ext_target_devs = 0;
4089 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4090 u8 *lunaddrbytes, is_OBDR = 0;
4091 int rc = 0;
4092 int phys_dev_index = i - (raid_ctlr_position == 0);
4093 bool skip_device = false;
4095 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4097 /* Figure out where the LUN ID info is coming from */
4098 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4099 i, nphysicals, nlogicals, physdev_list, logdev_list);
4102 * Skip over some devices such as a spare.
4104 if (!tmpdevice->external && physical_device) {
4105 skip_device = hpsa_skip_device(h, lunaddrbytes,
4106 &physdev_list->LUN[phys_dev_index]);
4107 if (skip_device)
4108 continue;
4111 /* Get device type, vendor, model, device id */
4112 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4113 &is_OBDR);
4114 if (rc == -ENOMEM) {
4115 dev_warn(&h->pdev->dev,
4116 "Out of memory, rescan deferred.\n");
4117 h->drv_req_rescan = 1;
4118 goto out;
4120 if (rc) {
4121 h->drv_req_rescan = 1;
4122 continue;
4125 /* Determine if this is a lun from an external target array */
4126 tmpdevice->external =
4127 figure_external_status(h, raid_ctlr_position, i,
4128 nphysicals, nlocal_logicals);
4130 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4131 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4132 this_device = currentsd[ncurrent];
4134 /* Turn on discovery_polling if there are ext target devices.
4135 * Event-based change notification is unreliable for those.
4137 if (!h->discovery_polling) {
4138 if (tmpdevice->external) {
4139 h->discovery_polling = 1;
4140 dev_info(&h->pdev->dev,
4141 "External target, activate discovery polling.\n");
4146 *this_device = *tmpdevice;
4147 this_device->physical_device = physical_device;
4150 * Expose all devices except for physical devices that
4151 * are masked.
4153 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4154 this_device->expose_device = 0;
4155 else
4156 this_device->expose_device = 1;
4160 * Get the SAS address for physical devices that are exposed.
4162 if (this_device->physical_device && this_device->expose_device)
4163 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4165 switch (this_device->devtype) {
4166 case TYPE_ROM:
4167 /* We don't *really* support actual CD-ROM devices,
4168 * just "One Button Disaster Recovery" tape drive
4169 * which temporarily pretends to be a CD-ROM drive.
4170 * So we check that the device is really an OBDR tape
4171 * device by checking for "$DR-10" in bytes 43-48 of
4172 * the inquiry data.
4174 if (is_OBDR)
4175 ncurrent++;
4176 break;
4177 case TYPE_DISK:
4178 if (this_device->physical_device) {
4179 /* The disk is in HBA mode. */
4180 /* Never use RAID mapper in HBA mode. */
4181 this_device->offload_enabled = 0;
4182 hpsa_get_ioaccel_drive_info(h, this_device,
4183 physdev_list, phys_dev_index, id_phys);
4184 hpsa_get_path_info(this_device,
4185 physdev_list, phys_dev_index, id_phys);
4187 ncurrent++;
4188 break;
4189 case TYPE_TAPE:
4190 case TYPE_MEDIUM_CHANGER:
4191 case TYPE_ENCLOSURE:
4192 ncurrent++;
4193 break;
4194 case TYPE_RAID:
4195 /* Only present the Smartarray HBA as a RAID controller.
4196 * If it's a RAID controller other than the HBA itself
4197 * (an external RAID controller, MSA500 or similar)
4198 * don't present it.
4200 if (!is_hba_lunid(lunaddrbytes))
4201 break;
4202 ncurrent++;
4203 break;
4204 default:
4205 break;
4207 if (ncurrent >= HPSA_MAX_DEVICES)
4208 break;
4211 if (h->sas_host == NULL) {
4212 int rc = 0;
4214 rc = hpsa_add_sas_host(h);
4215 if (rc) {
4216 dev_warn(&h->pdev->dev,
4217 "Could not add sas host %d\n", rc);
4218 goto out;
4222 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4223 out:
4224 kfree(tmpdevice);
4225 for (i = 0; i < ndev_allocated; i++)
4226 kfree(currentsd[i]);
4227 kfree(currentsd);
4228 kfree(physdev_list);
4229 kfree(logdev_list);
4230 kfree(id_ctlr);
4231 kfree(id_phys);
4234 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4235 struct scatterlist *sg)
4237 u64 addr64 = (u64) sg_dma_address(sg);
4238 unsigned int len = sg_dma_len(sg);
4240 desc->Addr = cpu_to_le64(addr64);
4241 desc->Len = cpu_to_le32(len);
4242 desc->Ext = 0;
4246 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4247 * dma mapping and fills in the scatter gather entries of the
4248 * hpsa command, cp.
4250 static int hpsa_scatter_gather(struct ctlr_info *h,
4251 struct CommandList *cp,
4252 struct scsi_cmnd *cmd)
4254 struct scatterlist *sg;
4255 int use_sg, i, sg_limit, chained, last_sg;
4256 struct SGDescriptor *curr_sg;
4258 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4260 use_sg = scsi_dma_map(cmd);
4261 if (use_sg < 0)
4262 return use_sg;
4264 if (!use_sg)
4265 goto sglist_finished;
4268 * If the number of entries is greater than the max for a single list,
4269 * then we have a chained list; we will set up all but one entry in the
4270 * first list (the last entry is saved for link information);
4271 * otherwise, we don't have a chained list and we'll set up at each of
4272 * the entries in the one list.
4274 curr_sg = cp->SG;
4275 chained = use_sg > h->max_cmd_sg_entries;
4276 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4277 last_sg = scsi_sg_count(cmd) - 1;
4278 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4279 hpsa_set_sg_descriptor(curr_sg, sg);
4280 curr_sg++;
4283 if (chained) {
4285 * Continue with the chained list. Set curr_sg to the chained
4286 * list. Modify the limit to the total count less the entries
4287 * we've already set up. Resume the scan at the list entry
4288 * where the previous loop left off.
4290 curr_sg = h->cmd_sg_list[cp->cmdindex];
4291 sg_limit = use_sg - sg_limit;
4292 for_each_sg(sg, sg, sg_limit, i) {
4293 hpsa_set_sg_descriptor(curr_sg, sg);
4294 curr_sg++;
4298 /* Back the pointer up to the last entry and mark it as "last". */
4299 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4301 if (use_sg + chained > h->maxSG)
4302 h->maxSG = use_sg + chained;
4304 if (chained) {
4305 cp->Header.SGList = h->max_cmd_sg_entries;
4306 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4307 if (hpsa_map_sg_chain_block(h, cp)) {
4308 scsi_dma_unmap(cmd);
4309 return -1;
4311 return 0;
4314 sglist_finished:
4316 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4317 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4318 return 0;
4321 #define IO_ACCEL_INELIGIBLE (1)
4322 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4324 int is_write = 0;
4325 u32 block;
4326 u32 block_cnt;
4328 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4329 switch (cdb[0]) {
4330 case WRITE_6:
4331 case WRITE_12:
4332 is_write = 1;
4333 case READ_6:
4334 case READ_12:
4335 if (*cdb_len == 6) {
4336 block = get_unaligned_be16(&cdb[2]);
4337 block_cnt = cdb[4];
4338 if (block_cnt == 0)
4339 block_cnt = 256;
4340 } else {
4341 BUG_ON(*cdb_len != 12);
4342 block = get_unaligned_be32(&cdb[2]);
4343 block_cnt = get_unaligned_be32(&cdb[6]);
4345 if (block_cnt > 0xffff)
4346 return IO_ACCEL_INELIGIBLE;
4348 cdb[0] = is_write ? WRITE_10 : READ_10;
4349 cdb[1] = 0;
4350 cdb[2] = (u8) (block >> 24);
4351 cdb[3] = (u8) (block >> 16);
4352 cdb[4] = (u8) (block >> 8);
4353 cdb[5] = (u8) (block);
4354 cdb[6] = 0;
4355 cdb[7] = (u8) (block_cnt >> 8);
4356 cdb[8] = (u8) (block_cnt);
4357 cdb[9] = 0;
4358 *cdb_len = 10;
4359 break;
4361 return 0;
4364 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4365 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4366 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4368 struct scsi_cmnd *cmd = c->scsi_cmd;
4369 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4370 unsigned int len;
4371 unsigned int total_len = 0;
4372 struct scatterlist *sg;
4373 u64 addr64;
4374 int use_sg, i;
4375 struct SGDescriptor *curr_sg;
4376 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4378 /* TODO: implement chaining support */
4379 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4380 atomic_dec(&phys_disk->ioaccel_cmds_out);
4381 return IO_ACCEL_INELIGIBLE;
4384 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4386 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4387 atomic_dec(&phys_disk->ioaccel_cmds_out);
4388 return IO_ACCEL_INELIGIBLE;
4391 c->cmd_type = CMD_IOACCEL1;
4393 /* Adjust the DMA address to point to the accelerated command buffer */
4394 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4395 (c->cmdindex * sizeof(*cp));
4396 BUG_ON(c->busaddr & 0x0000007F);
4398 use_sg = scsi_dma_map(cmd);
4399 if (use_sg < 0) {
4400 atomic_dec(&phys_disk->ioaccel_cmds_out);
4401 return use_sg;
4404 if (use_sg) {
4405 curr_sg = cp->SG;
4406 scsi_for_each_sg(cmd, sg, use_sg, i) {
4407 addr64 = (u64) sg_dma_address(sg);
4408 len = sg_dma_len(sg);
4409 total_len += len;
4410 curr_sg->Addr = cpu_to_le64(addr64);
4411 curr_sg->Len = cpu_to_le32(len);
4412 curr_sg->Ext = cpu_to_le32(0);
4413 curr_sg++;
4415 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4417 switch (cmd->sc_data_direction) {
4418 case DMA_TO_DEVICE:
4419 control |= IOACCEL1_CONTROL_DATA_OUT;
4420 break;
4421 case DMA_FROM_DEVICE:
4422 control |= IOACCEL1_CONTROL_DATA_IN;
4423 break;
4424 case DMA_NONE:
4425 control |= IOACCEL1_CONTROL_NODATAXFER;
4426 break;
4427 default:
4428 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4429 cmd->sc_data_direction);
4430 BUG();
4431 break;
4433 } else {
4434 control |= IOACCEL1_CONTROL_NODATAXFER;
4437 c->Header.SGList = use_sg;
4438 /* Fill out the command structure to submit */
4439 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4440 cp->transfer_len = cpu_to_le32(total_len);
4441 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4442 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4443 cp->control = cpu_to_le32(control);
4444 memcpy(cp->CDB, cdb, cdb_len);
4445 memcpy(cp->CISS_LUN, scsi3addr, 8);
4446 /* Tag was already set at init time. */
4447 enqueue_cmd_and_start_io(h, c);
4448 return 0;
4452 * Queue a command directly to a device behind the controller using the
4453 * I/O accelerator path.
4455 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4456 struct CommandList *c)
4458 struct scsi_cmnd *cmd = c->scsi_cmd;
4459 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4461 c->phys_disk = dev;
4463 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4464 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4468 * Set encryption parameters for the ioaccel2 request
4470 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4471 struct CommandList *c, struct io_accel2_cmd *cp)
4473 struct scsi_cmnd *cmd = c->scsi_cmd;
4474 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4475 struct raid_map_data *map = &dev->raid_map;
4476 u64 first_block;
4478 /* Are we doing encryption on this device */
4479 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4480 return;
4481 /* Set the data encryption key index. */
4482 cp->dekindex = map->dekindex;
4484 /* Set the encryption enable flag, encoded into direction field. */
4485 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4487 /* Set encryption tweak values based on logical block address
4488 * If block size is 512, tweak value is LBA.
4489 * For other block sizes, tweak is (LBA * block size)/ 512)
4491 switch (cmd->cmnd[0]) {
4492 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4493 case WRITE_6:
4494 case READ_6:
4495 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4496 break;
4497 case WRITE_10:
4498 case READ_10:
4499 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4500 case WRITE_12:
4501 case READ_12:
4502 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4503 break;
4504 case WRITE_16:
4505 case READ_16:
4506 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4507 break;
4508 default:
4509 dev_err(&h->pdev->dev,
4510 "ERROR: %s: size (0x%x) not supported for encryption\n",
4511 __func__, cmd->cmnd[0]);
4512 BUG();
4513 break;
4516 if (le32_to_cpu(map->volume_blk_size) != 512)
4517 first_block = first_block *
4518 le32_to_cpu(map->volume_blk_size)/512;
4520 cp->tweak_lower = cpu_to_le32(first_block);
4521 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4524 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4525 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4526 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4528 struct scsi_cmnd *cmd = c->scsi_cmd;
4529 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4530 struct ioaccel2_sg_element *curr_sg;
4531 int use_sg, i;
4532 struct scatterlist *sg;
4533 u64 addr64;
4534 u32 len;
4535 u32 total_len = 0;
4537 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4539 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4540 atomic_dec(&phys_disk->ioaccel_cmds_out);
4541 return IO_ACCEL_INELIGIBLE;
4544 c->cmd_type = CMD_IOACCEL2;
4545 /* Adjust the DMA address to point to the accelerated command buffer */
4546 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4547 (c->cmdindex * sizeof(*cp));
4548 BUG_ON(c->busaddr & 0x0000007F);
4550 memset(cp, 0, sizeof(*cp));
4551 cp->IU_type = IOACCEL2_IU_TYPE;
4553 use_sg = scsi_dma_map(cmd);
4554 if (use_sg < 0) {
4555 atomic_dec(&phys_disk->ioaccel_cmds_out);
4556 return use_sg;
4559 if (use_sg) {
4560 curr_sg = cp->sg;
4561 if (use_sg > h->ioaccel_maxsg) {
4562 addr64 = le64_to_cpu(
4563 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4564 curr_sg->address = cpu_to_le64(addr64);
4565 curr_sg->length = 0;
4566 curr_sg->reserved[0] = 0;
4567 curr_sg->reserved[1] = 0;
4568 curr_sg->reserved[2] = 0;
4569 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4571 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4573 scsi_for_each_sg(cmd, sg, use_sg, i) {
4574 addr64 = (u64) sg_dma_address(sg);
4575 len = sg_dma_len(sg);
4576 total_len += len;
4577 curr_sg->address = cpu_to_le64(addr64);
4578 curr_sg->length = cpu_to_le32(len);
4579 curr_sg->reserved[0] = 0;
4580 curr_sg->reserved[1] = 0;
4581 curr_sg->reserved[2] = 0;
4582 curr_sg->chain_indicator = 0;
4583 curr_sg++;
4587 * Set the last s/g element bit
4589 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4591 switch (cmd->sc_data_direction) {
4592 case DMA_TO_DEVICE:
4593 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4594 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4595 break;
4596 case DMA_FROM_DEVICE:
4597 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4598 cp->direction |= IOACCEL2_DIR_DATA_IN;
4599 break;
4600 case DMA_NONE:
4601 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4602 cp->direction |= IOACCEL2_DIR_NO_DATA;
4603 break;
4604 default:
4605 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4606 cmd->sc_data_direction);
4607 BUG();
4608 break;
4610 } else {
4611 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4612 cp->direction |= IOACCEL2_DIR_NO_DATA;
4615 /* Set encryption parameters, if necessary */
4616 set_encrypt_ioaccel2(h, c, cp);
4618 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4619 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4620 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4622 cp->data_len = cpu_to_le32(total_len);
4623 cp->err_ptr = cpu_to_le64(c->busaddr +
4624 offsetof(struct io_accel2_cmd, error_data));
4625 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4627 /* fill in sg elements */
4628 if (use_sg > h->ioaccel_maxsg) {
4629 cp->sg_count = 1;
4630 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4631 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4632 atomic_dec(&phys_disk->ioaccel_cmds_out);
4633 scsi_dma_unmap(cmd);
4634 return -1;
4636 } else
4637 cp->sg_count = (u8) use_sg;
4639 enqueue_cmd_and_start_io(h, c);
4640 return 0;
4644 * Queue a command to the correct I/O accelerator path.
4646 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4647 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4648 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4650 /* Try to honor the device's queue depth */
4651 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4652 phys_disk->queue_depth) {
4653 atomic_dec(&phys_disk->ioaccel_cmds_out);
4654 return IO_ACCEL_INELIGIBLE;
4656 if (h->transMethod & CFGTBL_Trans_io_accel1)
4657 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4658 cdb, cdb_len, scsi3addr,
4659 phys_disk);
4660 else
4661 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4662 cdb, cdb_len, scsi3addr,
4663 phys_disk);
4666 static void raid_map_helper(struct raid_map_data *map,
4667 int offload_to_mirror, u32 *map_index, u32 *current_group)
4669 if (offload_to_mirror == 0) {
4670 /* use physical disk in the first mirrored group. */
4671 *map_index %= le16_to_cpu(map->data_disks_per_row);
4672 return;
4674 do {
4675 /* determine mirror group that *map_index indicates */
4676 *current_group = *map_index /
4677 le16_to_cpu(map->data_disks_per_row);
4678 if (offload_to_mirror == *current_group)
4679 continue;
4680 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4681 /* select map index from next group */
4682 *map_index += le16_to_cpu(map->data_disks_per_row);
4683 (*current_group)++;
4684 } else {
4685 /* select map index from first group */
4686 *map_index %= le16_to_cpu(map->data_disks_per_row);
4687 *current_group = 0;
4689 } while (offload_to_mirror != *current_group);
4693 * Attempt to perform offload RAID mapping for a logical volume I/O.
4695 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4696 struct CommandList *c)
4698 struct scsi_cmnd *cmd = c->scsi_cmd;
4699 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4700 struct raid_map_data *map = &dev->raid_map;
4701 struct raid_map_disk_data *dd = &map->data[0];
4702 int is_write = 0;
4703 u32 map_index;
4704 u64 first_block, last_block;
4705 u32 block_cnt;
4706 u32 blocks_per_row;
4707 u64 first_row, last_row;
4708 u32 first_row_offset, last_row_offset;
4709 u32 first_column, last_column;
4710 u64 r0_first_row, r0_last_row;
4711 u32 r5or6_blocks_per_row;
4712 u64 r5or6_first_row, r5or6_last_row;
4713 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4714 u32 r5or6_first_column, r5or6_last_column;
4715 u32 total_disks_per_row;
4716 u32 stripesize;
4717 u32 first_group, last_group, current_group;
4718 u32 map_row;
4719 u32 disk_handle;
4720 u64 disk_block;
4721 u32 disk_block_cnt;
4722 u8 cdb[16];
4723 u8 cdb_len;
4724 u16 strip_size;
4725 #if BITS_PER_LONG == 32
4726 u64 tmpdiv;
4727 #endif
4728 int offload_to_mirror;
4730 /* check for valid opcode, get LBA and block count */
4731 switch (cmd->cmnd[0]) {
4732 case WRITE_6:
4733 is_write = 1;
4734 case READ_6:
4735 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4736 block_cnt = cmd->cmnd[4];
4737 if (block_cnt == 0)
4738 block_cnt = 256;
4739 break;
4740 case WRITE_10:
4741 is_write = 1;
4742 case READ_10:
4743 first_block =
4744 (((u64) cmd->cmnd[2]) << 24) |
4745 (((u64) cmd->cmnd[3]) << 16) |
4746 (((u64) cmd->cmnd[4]) << 8) |
4747 cmd->cmnd[5];
4748 block_cnt =
4749 (((u32) cmd->cmnd[7]) << 8) |
4750 cmd->cmnd[8];
4751 break;
4752 case WRITE_12:
4753 is_write = 1;
4754 case READ_12:
4755 first_block =
4756 (((u64) cmd->cmnd[2]) << 24) |
4757 (((u64) cmd->cmnd[3]) << 16) |
4758 (((u64) cmd->cmnd[4]) << 8) |
4759 cmd->cmnd[5];
4760 block_cnt =
4761 (((u32) cmd->cmnd[6]) << 24) |
4762 (((u32) cmd->cmnd[7]) << 16) |
4763 (((u32) cmd->cmnd[8]) << 8) |
4764 cmd->cmnd[9];
4765 break;
4766 case WRITE_16:
4767 is_write = 1;
4768 case READ_16:
4769 first_block =
4770 (((u64) cmd->cmnd[2]) << 56) |
4771 (((u64) cmd->cmnd[3]) << 48) |
4772 (((u64) cmd->cmnd[4]) << 40) |
4773 (((u64) cmd->cmnd[5]) << 32) |
4774 (((u64) cmd->cmnd[6]) << 24) |
4775 (((u64) cmd->cmnd[7]) << 16) |
4776 (((u64) cmd->cmnd[8]) << 8) |
4777 cmd->cmnd[9];
4778 block_cnt =
4779 (((u32) cmd->cmnd[10]) << 24) |
4780 (((u32) cmd->cmnd[11]) << 16) |
4781 (((u32) cmd->cmnd[12]) << 8) |
4782 cmd->cmnd[13];
4783 break;
4784 default:
4785 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4787 last_block = first_block + block_cnt - 1;
4789 /* check for write to non-RAID-0 */
4790 if (is_write && dev->raid_level != 0)
4791 return IO_ACCEL_INELIGIBLE;
4793 /* check for invalid block or wraparound */
4794 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4795 last_block < first_block)
4796 return IO_ACCEL_INELIGIBLE;
4798 /* calculate stripe information for the request */
4799 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4800 le16_to_cpu(map->strip_size);
4801 strip_size = le16_to_cpu(map->strip_size);
4802 #if BITS_PER_LONG == 32
4803 tmpdiv = first_block;
4804 (void) do_div(tmpdiv, blocks_per_row);
4805 first_row = tmpdiv;
4806 tmpdiv = last_block;
4807 (void) do_div(tmpdiv, blocks_per_row);
4808 last_row = tmpdiv;
4809 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4810 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4811 tmpdiv = first_row_offset;
4812 (void) do_div(tmpdiv, strip_size);
4813 first_column = tmpdiv;
4814 tmpdiv = last_row_offset;
4815 (void) do_div(tmpdiv, strip_size);
4816 last_column = tmpdiv;
4817 #else
4818 first_row = first_block / blocks_per_row;
4819 last_row = last_block / blocks_per_row;
4820 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4821 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4822 first_column = first_row_offset / strip_size;
4823 last_column = last_row_offset / strip_size;
4824 #endif
4826 /* if this isn't a single row/column then give to the controller */
4827 if ((first_row != last_row) || (first_column != last_column))
4828 return IO_ACCEL_INELIGIBLE;
4830 /* proceeding with driver mapping */
4831 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4832 le16_to_cpu(map->metadata_disks_per_row);
4833 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4834 le16_to_cpu(map->row_cnt);
4835 map_index = (map_row * total_disks_per_row) + first_column;
4837 switch (dev->raid_level) {
4838 case HPSA_RAID_0:
4839 break; /* nothing special to do */
4840 case HPSA_RAID_1:
4841 /* Handles load balance across RAID 1 members.
4842 * (2-drive R1 and R10 with even # of drives.)
4843 * Appropriate for SSDs, not optimal for HDDs
4845 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4846 if (dev->offload_to_mirror)
4847 map_index += le16_to_cpu(map->data_disks_per_row);
4848 dev->offload_to_mirror = !dev->offload_to_mirror;
4849 break;
4850 case HPSA_RAID_ADM:
4851 /* Handles N-way mirrors (R1-ADM)
4852 * and R10 with # of drives divisible by 3.)
4854 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4856 offload_to_mirror = dev->offload_to_mirror;
4857 raid_map_helper(map, offload_to_mirror,
4858 &map_index, &current_group);
4859 /* set mirror group to use next time */
4860 offload_to_mirror =
4861 (offload_to_mirror >=
4862 le16_to_cpu(map->layout_map_count) - 1)
4863 ? 0 : offload_to_mirror + 1;
4864 dev->offload_to_mirror = offload_to_mirror;
4865 /* Avoid direct use of dev->offload_to_mirror within this
4866 * function since multiple threads might simultaneously
4867 * increment it beyond the range of dev->layout_map_count -1.
4869 break;
4870 case HPSA_RAID_5:
4871 case HPSA_RAID_6:
4872 if (le16_to_cpu(map->layout_map_count) <= 1)
4873 break;
4875 /* Verify first and last block are in same RAID group */
4876 r5or6_blocks_per_row =
4877 le16_to_cpu(map->strip_size) *
4878 le16_to_cpu(map->data_disks_per_row);
4879 BUG_ON(r5or6_blocks_per_row == 0);
4880 stripesize = r5or6_blocks_per_row *
4881 le16_to_cpu(map->layout_map_count);
4882 #if BITS_PER_LONG == 32
4883 tmpdiv = first_block;
4884 first_group = do_div(tmpdiv, stripesize);
4885 tmpdiv = first_group;
4886 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4887 first_group = tmpdiv;
4888 tmpdiv = last_block;
4889 last_group = do_div(tmpdiv, stripesize);
4890 tmpdiv = last_group;
4891 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4892 last_group = tmpdiv;
4893 #else
4894 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4895 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4896 #endif
4897 if (first_group != last_group)
4898 return IO_ACCEL_INELIGIBLE;
4900 /* Verify request is in a single row of RAID 5/6 */
4901 #if BITS_PER_LONG == 32
4902 tmpdiv = first_block;
4903 (void) do_div(tmpdiv, stripesize);
4904 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4905 tmpdiv = last_block;
4906 (void) do_div(tmpdiv, stripesize);
4907 r5or6_last_row = r0_last_row = tmpdiv;
4908 #else
4909 first_row = r5or6_first_row = r0_first_row =
4910 first_block / stripesize;
4911 r5or6_last_row = r0_last_row = last_block / stripesize;
4912 #endif
4913 if (r5or6_first_row != r5or6_last_row)
4914 return IO_ACCEL_INELIGIBLE;
4917 /* Verify request is in a single column */
4918 #if BITS_PER_LONG == 32
4919 tmpdiv = first_block;
4920 first_row_offset = do_div(tmpdiv, stripesize);
4921 tmpdiv = first_row_offset;
4922 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4923 r5or6_first_row_offset = first_row_offset;
4924 tmpdiv = last_block;
4925 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4926 tmpdiv = r5or6_last_row_offset;
4927 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4928 tmpdiv = r5or6_first_row_offset;
4929 (void) do_div(tmpdiv, map->strip_size);
4930 first_column = r5or6_first_column = tmpdiv;
4931 tmpdiv = r5or6_last_row_offset;
4932 (void) do_div(tmpdiv, map->strip_size);
4933 r5or6_last_column = tmpdiv;
4934 #else
4935 first_row_offset = r5or6_first_row_offset =
4936 (u32)((first_block % stripesize) %
4937 r5or6_blocks_per_row);
4939 r5or6_last_row_offset =
4940 (u32)((last_block % stripesize) %
4941 r5or6_blocks_per_row);
4943 first_column = r5or6_first_column =
4944 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4945 r5or6_last_column =
4946 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4947 #endif
4948 if (r5or6_first_column != r5or6_last_column)
4949 return IO_ACCEL_INELIGIBLE;
4951 /* Request is eligible */
4952 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4953 le16_to_cpu(map->row_cnt);
4955 map_index = (first_group *
4956 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4957 (map_row * total_disks_per_row) + first_column;
4958 break;
4959 default:
4960 return IO_ACCEL_INELIGIBLE;
4963 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4964 return IO_ACCEL_INELIGIBLE;
4966 c->phys_disk = dev->phys_disk[map_index];
4968 disk_handle = dd[map_index].ioaccel_handle;
4969 disk_block = le64_to_cpu(map->disk_starting_blk) +
4970 first_row * le16_to_cpu(map->strip_size) +
4971 (first_row_offset - first_column *
4972 le16_to_cpu(map->strip_size));
4973 disk_block_cnt = block_cnt;
4975 /* handle differing logical/physical block sizes */
4976 if (map->phys_blk_shift) {
4977 disk_block <<= map->phys_blk_shift;
4978 disk_block_cnt <<= map->phys_blk_shift;
4980 BUG_ON(disk_block_cnt > 0xffff);
4982 /* build the new CDB for the physical disk I/O */
4983 if (disk_block > 0xffffffff) {
4984 cdb[0] = is_write ? WRITE_16 : READ_16;
4985 cdb[1] = 0;
4986 cdb[2] = (u8) (disk_block >> 56);
4987 cdb[3] = (u8) (disk_block >> 48);
4988 cdb[4] = (u8) (disk_block >> 40);
4989 cdb[5] = (u8) (disk_block >> 32);
4990 cdb[6] = (u8) (disk_block >> 24);
4991 cdb[7] = (u8) (disk_block >> 16);
4992 cdb[8] = (u8) (disk_block >> 8);
4993 cdb[9] = (u8) (disk_block);
4994 cdb[10] = (u8) (disk_block_cnt >> 24);
4995 cdb[11] = (u8) (disk_block_cnt >> 16);
4996 cdb[12] = (u8) (disk_block_cnt >> 8);
4997 cdb[13] = (u8) (disk_block_cnt);
4998 cdb[14] = 0;
4999 cdb[15] = 0;
5000 cdb_len = 16;
5001 } else {
5002 cdb[0] = is_write ? WRITE_10 : READ_10;
5003 cdb[1] = 0;
5004 cdb[2] = (u8) (disk_block >> 24);
5005 cdb[3] = (u8) (disk_block >> 16);
5006 cdb[4] = (u8) (disk_block >> 8);
5007 cdb[5] = (u8) (disk_block);
5008 cdb[6] = 0;
5009 cdb[7] = (u8) (disk_block_cnt >> 8);
5010 cdb[8] = (u8) (disk_block_cnt);
5011 cdb[9] = 0;
5012 cdb_len = 10;
5014 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5015 dev->scsi3addr,
5016 dev->phys_disk[map_index]);
5020 * Submit commands down the "normal" RAID stack path
5021 * All callers to hpsa_ciss_submit must check lockup_detected
5022 * beforehand, before (opt.) and after calling cmd_alloc
5024 static int hpsa_ciss_submit(struct ctlr_info *h,
5025 struct CommandList *c, struct scsi_cmnd *cmd,
5026 unsigned char scsi3addr[])
5028 cmd->host_scribble = (unsigned char *) c;
5029 c->cmd_type = CMD_SCSI;
5030 c->scsi_cmd = cmd;
5031 c->Header.ReplyQueue = 0; /* unused in simple mode */
5032 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5033 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5035 /* Fill in the request block... */
5037 c->Request.Timeout = 0;
5038 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5039 c->Request.CDBLen = cmd->cmd_len;
5040 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5041 switch (cmd->sc_data_direction) {
5042 case DMA_TO_DEVICE:
5043 c->Request.type_attr_dir =
5044 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5045 break;
5046 case DMA_FROM_DEVICE:
5047 c->Request.type_attr_dir =
5048 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5049 break;
5050 case DMA_NONE:
5051 c->Request.type_attr_dir =
5052 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5053 break;
5054 case DMA_BIDIRECTIONAL:
5055 /* This can happen if a buggy application does a scsi passthru
5056 * and sets both inlen and outlen to non-zero. ( see
5057 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5060 c->Request.type_attr_dir =
5061 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5062 /* This is technically wrong, and hpsa controllers should
5063 * reject it with CMD_INVALID, which is the most correct
5064 * response, but non-fibre backends appear to let it
5065 * slide by, and give the same results as if this field
5066 * were set correctly. Either way is acceptable for
5067 * our purposes here.
5070 break;
5072 default:
5073 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5074 cmd->sc_data_direction);
5075 BUG();
5076 break;
5079 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5080 hpsa_cmd_resolve_and_free(h, c);
5081 return SCSI_MLQUEUE_HOST_BUSY;
5083 enqueue_cmd_and_start_io(h, c);
5084 /* the cmd'll come back via intr handler in complete_scsi_command() */
5085 return 0;
5088 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5089 struct CommandList *c)
5091 dma_addr_t cmd_dma_handle, err_dma_handle;
5093 /* Zero out all of commandlist except the last field, refcount */
5094 memset(c, 0, offsetof(struct CommandList, refcount));
5095 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5096 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5097 c->err_info = h->errinfo_pool + index;
5098 memset(c->err_info, 0, sizeof(*c->err_info));
5099 err_dma_handle = h->errinfo_pool_dhandle
5100 + index * sizeof(*c->err_info);
5101 c->cmdindex = index;
5102 c->busaddr = (u32) cmd_dma_handle;
5103 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5104 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5105 c->h = h;
5106 c->scsi_cmd = SCSI_CMD_IDLE;
5109 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5111 int i;
5113 for (i = 0; i < h->nr_cmds; i++) {
5114 struct CommandList *c = h->cmd_pool + i;
5116 hpsa_cmd_init(h, i, c);
5117 atomic_set(&c->refcount, 0);
5121 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5122 struct CommandList *c)
5124 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5126 BUG_ON(c->cmdindex != index);
5128 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5129 memset(c->err_info, 0, sizeof(*c->err_info));
5130 c->busaddr = (u32) cmd_dma_handle;
5133 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5134 struct CommandList *c, struct scsi_cmnd *cmd,
5135 unsigned char *scsi3addr)
5137 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5138 int rc = IO_ACCEL_INELIGIBLE;
5140 cmd->host_scribble = (unsigned char *) c;
5142 if (dev->offload_enabled) {
5143 hpsa_cmd_init(h, c->cmdindex, c);
5144 c->cmd_type = CMD_SCSI;
5145 c->scsi_cmd = cmd;
5146 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5147 if (rc < 0) /* scsi_dma_map failed. */
5148 rc = SCSI_MLQUEUE_HOST_BUSY;
5149 } else if (dev->hba_ioaccel_enabled) {
5150 hpsa_cmd_init(h, c->cmdindex, c);
5151 c->cmd_type = CMD_SCSI;
5152 c->scsi_cmd = cmd;
5153 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5154 if (rc < 0) /* scsi_dma_map failed. */
5155 rc = SCSI_MLQUEUE_HOST_BUSY;
5157 return rc;
5160 static void hpsa_command_resubmit_worker(struct work_struct *work)
5162 struct scsi_cmnd *cmd;
5163 struct hpsa_scsi_dev_t *dev;
5164 struct CommandList *c = container_of(work, struct CommandList, work);
5166 cmd = c->scsi_cmd;
5167 dev = cmd->device->hostdata;
5168 if (!dev) {
5169 cmd->result = DID_NO_CONNECT << 16;
5170 return hpsa_cmd_free_and_done(c->h, c, cmd);
5172 if (c->reset_pending)
5173 return hpsa_cmd_resolve_and_free(c->h, c);
5174 if (c->abort_pending)
5175 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5176 if (c->cmd_type == CMD_IOACCEL2) {
5177 struct ctlr_info *h = c->h;
5178 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5179 int rc;
5181 if (c2->error_data.serv_response ==
5182 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5183 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5184 if (rc == 0)
5185 return;
5186 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5188 * If we get here, it means dma mapping failed.
5189 * Try again via scsi mid layer, which will
5190 * then get SCSI_MLQUEUE_HOST_BUSY.
5192 cmd->result = DID_IMM_RETRY << 16;
5193 return hpsa_cmd_free_and_done(h, c, cmd);
5195 /* else, fall thru and resubmit down CISS path */
5198 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5199 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5201 * If we get here, it means dma mapping failed. Try
5202 * again via scsi mid layer, which will then get
5203 * SCSI_MLQUEUE_HOST_BUSY.
5205 * hpsa_ciss_submit will have already freed c
5206 * if it encountered a dma mapping failure.
5208 cmd->result = DID_IMM_RETRY << 16;
5209 cmd->scsi_done(cmd);
5213 /* Running in struct Scsi_Host->host_lock less mode */
5214 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5216 struct ctlr_info *h;
5217 struct hpsa_scsi_dev_t *dev;
5218 unsigned char scsi3addr[8];
5219 struct CommandList *c;
5220 int rc = 0;
5222 /* Get the ptr to our adapter structure out of cmd->host. */
5223 h = sdev_to_hba(cmd->device);
5225 BUG_ON(cmd->request->tag < 0);
5227 dev = cmd->device->hostdata;
5228 if (!dev) {
5229 cmd->result = DID_NO_CONNECT << 16;
5230 cmd->scsi_done(cmd);
5231 return 0;
5234 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5236 if (unlikely(lockup_detected(h))) {
5237 cmd->result = DID_NO_CONNECT << 16;
5238 cmd->scsi_done(cmd);
5239 return 0;
5241 c = cmd_tagged_alloc(h, cmd);
5244 * This is necessary because the SML doesn't zero out this field during
5245 * error recovery.
5247 cmd->result = 0;
5250 * Call alternate submit routine for I/O accelerated commands.
5251 * Retries always go down the normal I/O path.
5253 if (likely(cmd->retries == 0 &&
5254 cmd->request->cmd_type == REQ_TYPE_FS &&
5255 h->acciopath_status)) {
5256 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5257 if (rc == 0)
5258 return 0;
5259 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5260 hpsa_cmd_resolve_and_free(h, c);
5261 return SCSI_MLQUEUE_HOST_BUSY;
5264 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5267 static void hpsa_scan_complete(struct ctlr_info *h)
5269 unsigned long flags;
5271 spin_lock_irqsave(&h->scan_lock, flags);
5272 h->scan_finished = 1;
5273 wake_up(&h->scan_wait_queue);
5274 spin_unlock_irqrestore(&h->scan_lock, flags);
5277 static void hpsa_scan_start(struct Scsi_Host *sh)
5279 struct ctlr_info *h = shost_to_hba(sh);
5280 unsigned long flags;
5283 * Don't let rescans be initiated on a controller known to be locked
5284 * up. If the controller locks up *during* a rescan, that thread is
5285 * probably hosed, but at least we can prevent new rescan threads from
5286 * piling up on a locked up controller.
5288 if (unlikely(lockup_detected(h)))
5289 return hpsa_scan_complete(h);
5292 * If a scan is already waiting to run, no need to add another
5294 spin_lock_irqsave(&h->scan_lock, flags);
5295 if (h->scan_waiting) {
5296 spin_unlock_irqrestore(&h->scan_lock, flags);
5297 return;
5300 spin_unlock_irqrestore(&h->scan_lock, flags);
5302 /* wait until any scan already in progress is finished. */
5303 while (1) {
5304 spin_lock_irqsave(&h->scan_lock, flags);
5305 if (h->scan_finished)
5306 break;
5307 h->scan_waiting = 1;
5308 spin_unlock_irqrestore(&h->scan_lock, flags);
5309 wait_event(h->scan_wait_queue, h->scan_finished);
5310 /* Note: We don't need to worry about a race between this
5311 * thread and driver unload because the midlayer will
5312 * have incremented the reference count, so unload won't
5313 * happen if we're in here.
5316 h->scan_finished = 0; /* mark scan as in progress */
5317 h->scan_waiting = 0;
5318 spin_unlock_irqrestore(&h->scan_lock, flags);
5320 if (unlikely(lockup_detected(h)))
5321 return hpsa_scan_complete(h);
5323 hpsa_update_scsi_devices(h);
5325 hpsa_scan_complete(h);
5328 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5330 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5332 if (!logical_drive)
5333 return -ENODEV;
5335 if (qdepth < 1)
5336 qdepth = 1;
5337 else if (qdepth > logical_drive->queue_depth)
5338 qdepth = logical_drive->queue_depth;
5340 return scsi_change_queue_depth(sdev, qdepth);
5343 static int hpsa_scan_finished(struct Scsi_Host *sh,
5344 unsigned long elapsed_time)
5346 struct ctlr_info *h = shost_to_hba(sh);
5347 unsigned long flags;
5348 int finished;
5350 spin_lock_irqsave(&h->scan_lock, flags);
5351 finished = h->scan_finished;
5352 spin_unlock_irqrestore(&h->scan_lock, flags);
5353 return finished;
5356 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5358 struct Scsi_Host *sh;
5360 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5361 if (sh == NULL) {
5362 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5363 return -ENOMEM;
5366 sh->io_port = 0;
5367 sh->n_io_port = 0;
5368 sh->this_id = -1;
5369 sh->max_channel = 3;
5370 sh->max_cmd_len = MAX_COMMAND_SIZE;
5371 sh->max_lun = HPSA_MAX_LUN;
5372 sh->max_id = HPSA_MAX_LUN;
5373 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5374 sh->cmd_per_lun = sh->can_queue;
5375 sh->sg_tablesize = h->maxsgentries;
5376 sh->transportt = hpsa_sas_transport_template;
5377 sh->hostdata[0] = (unsigned long) h;
5378 sh->irq = h->intr[h->intr_mode];
5379 sh->unique_id = sh->irq;
5381 h->scsi_host = sh;
5382 return 0;
5385 static int hpsa_scsi_add_host(struct ctlr_info *h)
5387 int rv;
5389 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5390 if (rv) {
5391 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5392 return rv;
5394 scsi_scan_host(h->scsi_host);
5395 return 0;
5399 * The block layer has already gone to the trouble of picking out a unique,
5400 * small-integer tag for this request. We use an offset from that value as
5401 * an index to select our command block. (The offset allows us to reserve the
5402 * low-numbered entries for our own uses.)
5404 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5406 int idx = scmd->request->tag;
5408 if (idx < 0)
5409 return idx;
5411 /* Offset to leave space for internal cmds. */
5412 return idx += HPSA_NRESERVED_CMDS;
5416 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5417 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5419 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5420 struct CommandList *c, unsigned char lunaddr[],
5421 int reply_queue)
5423 int rc;
5425 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5426 (void) fill_cmd(c, TEST_UNIT_READY, h,
5427 NULL, 0, 0, lunaddr, TYPE_CMD);
5428 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5429 if (rc)
5430 return rc;
5431 /* no unmap needed here because no data xfer. */
5433 /* Check if the unit is already ready. */
5434 if (c->err_info->CommandStatus == CMD_SUCCESS)
5435 return 0;
5438 * The first command sent after reset will receive "unit attention" to
5439 * indicate that the LUN has been reset...this is actually what we're
5440 * looking for (but, success is good too).
5442 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5443 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5444 (c->err_info->SenseInfo[2] == NO_SENSE ||
5445 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5446 return 0;
5448 return 1;
5452 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5453 * returns zero when the unit is ready, and non-zero when giving up.
5455 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5456 struct CommandList *c,
5457 unsigned char lunaddr[], int reply_queue)
5459 int rc;
5460 int count = 0;
5461 int waittime = 1; /* seconds */
5463 /* Send test unit ready until device ready, or give up. */
5464 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5467 * Wait for a bit. do this first, because if we send
5468 * the TUR right away, the reset will just abort it.
5470 msleep(1000 * waittime);
5472 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5473 if (!rc)
5474 break;
5476 /* Increase wait time with each try, up to a point. */
5477 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5478 waittime *= 2;
5480 dev_warn(&h->pdev->dev,
5481 "waiting %d secs for device to become ready.\n",
5482 waittime);
5485 return rc;
5488 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5489 unsigned char lunaddr[],
5490 int reply_queue)
5492 int first_queue;
5493 int last_queue;
5494 int rq;
5495 int rc = 0;
5496 struct CommandList *c;
5498 c = cmd_alloc(h);
5501 * If no specific reply queue was requested, then send the TUR
5502 * repeatedly, requesting a reply on each reply queue; otherwise execute
5503 * the loop exactly once using only the specified queue.
5505 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5506 first_queue = 0;
5507 last_queue = h->nreply_queues - 1;
5508 } else {
5509 first_queue = reply_queue;
5510 last_queue = reply_queue;
5513 for (rq = first_queue; rq <= last_queue; rq++) {
5514 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5515 if (rc)
5516 break;
5519 if (rc)
5520 dev_warn(&h->pdev->dev, "giving up on device.\n");
5521 else
5522 dev_warn(&h->pdev->dev, "device is ready.\n");
5524 cmd_free(h, c);
5525 return rc;
5528 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5529 * complaining. Doing a host- or bus-reset can't do anything good here.
5531 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5533 int rc;
5534 struct ctlr_info *h;
5535 struct hpsa_scsi_dev_t *dev;
5536 u8 reset_type;
5537 char msg[48];
5539 /* find the controller to which the command to be aborted was sent */
5540 h = sdev_to_hba(scsicmd->device);
5541 if (h == NULL) /* paranoia */
5542 return FAILED;
5544 if (lockup_detected(h))
5545 return FAILED;
5547 dev = scsicmd->device->hostdata;
5548 if (!dev) {
5549 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5550 return FAILED;
5553 /* if controller locked up, we can guarantee command won't complete */
5554 if (lockup_detected(h)) {
5555 snprintf(msg, sizeof(msg),
5556 "cmd %d RESET FAILED, lockup detected",
5557 hpsa_get_cmd_index(scsicmd));
5558 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5559 return FAILED;
5562 /* this reset request might be the result of a lockup; check */
5563 if (detect_controller_lockup(h)) {
5564 snprintf(msg, sizeof(msg),
5565 "cmd %d RESET FAILED, new lockup detected",
5566 hpsa_get_cmd_index(scsicmd));
5567 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5568 return FAILED;
5571 /* Do not attempt on controller */
5572 if (is_hba_lunid(dev->scsi3addr))
5573 return SUCCESS;
5575 if (is_logical_dev_addr_mode(dev->scsi3addr))
5576 reset_type = HPSA_DEVICE_RESET_MSG;
5577 else
5578 reset_type = HPSA_PHYS_TARGET_RESET;
5580 sprintf(msg, "resetting %s",
5581 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5582 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5584 h->reset_in_progress = 1;
5586 /* send a reset to the SCSI LUN which the command was sent to */
5587 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5588 DEFAULT_REPLY_QUEUE);
5589 sprintf(msg, "reset %s %s",
5590 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5591 rc == 0 ? "completed successfully" : "failed");
5592 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5593 h->reset_in_progress = 0;
5594 return rc == 0 ? SUCCESS : FAILED;
5597 static void swizzle_abort_tag(u8 *tag)
5599 u8 original_tag[8];
5601 memcpy(original_tag, tag, 8);
5602 tag[0] = original_tag[3];
5603 tag[1] = original_tag[2];
5604 tag[2] = original_tag[1];
5605 tag[3] = original_tag[0];
5606 tag[4] = original_tag[7];
5607 tag[5] = original_tag[6];
5608 tag[6] = original_tag[5];
5609 tag[7] = original_tag[4];
5612 static void hpsa_get_tag(struct ctlr_info *h,
5613 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5615 u64 tag;
5616 if (c->cmd_type == CMD_IOACCEL1) {
5617 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5618 &h->ioaccel_cmd_pool[c->cmdindex];
5619 tag = le64_to_cpu(cm1->tag);
5620 *tagupper = cpu_to_le32(tag >> 32);
5621 *taglower = cpu_to_le32(tag);
5622 return;
5624 if (c->cmd_type == CMD_IOACCEL2) {
5625 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5626 &h->ioaccel2_cmd_pool[c->cmdindex];
5627 /* upper tag not used in ioaccel2 mode */
5628 memset(tagupper, 0, sizeof(*tagupper));
5629 *taglower = cm2->Tag;
5630 return;
5632 tag = le64_to_cpu(c->Header.tag);
5633 *tagupper = cpu_to_le32(tag >> 32);
5634 *taglower = cpu_to_le32(tag);
5637 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5638 struct CommandList *abort, int reply_queue)
5640 int rc = IO_OK;
5641 struct CommandList *c;
5642 struct ErrorInfo *ei;
5643 __le32 tagupper, taglower;
5645 c = cmd_alloc(h);
5647 /* fill_cmd can't fail here, no buffer to map */
5648 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5649 0, 0, scsi3addr, TYPE_MSG);
5650 if (h->needs_abort_tags_swizzled)
5651 swizzle_abort_tag(&c->Request.CDB[4]);
5652 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5653 hpsa_get_tag(h, abort, &taglower, &tagupper);
5654 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5655 __func__, tagupper, taglower);
5656 /* no unmap needed here because no data xfer. */
5658 ei = c->err_info;
5659 switch (ei->CommandStatus) {
5660 case CMD_SUCCESS:
5661 break;
5662 case CMD_TMF_STATUS:
5663 rc = hpsa_evaluate_tmf_status(h, c);
5664 break;
5665 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5666 rc = -1;
5667 break;
5668 default:
5669 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5670 __func__, tagupper, taglower);
5671 hpsa_scsi_interpret_error(h, c);
5672 rc = -1;
5673 break;
5675 cmd_free(h, c);
5676 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5677 __func__, tagupper, taglower);
5678 return rc;
5681 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5682 struct CommandList *command_to_abort, int reply_queue)
5684 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5685 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5686 struct io_accel2_cmd *c2a =
5687 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5688 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5689 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5692 * We're overlaying struct hpsa_tmf_struct on top of something which
5693 * was allocated as a struct io_accel2_cmd, so we better be sure it
5694 * actually fits, and doesn't overrun the error info space.
5696 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5697 sizeof(struct io_accel2_cmd));
5698 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5699 offsetof(struct hpsa_tmf_struct, error_len) +
5700 sizeof(ac->error_len));
5702 c->cmd_type = IOACCEL2_TMF;
5703 c->scsi_cmd = SCSI_CMD_BUSY;
5705 /* Adjust the DMA address to point to the accelerated command buffer */
5706 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5707 (c->cmdindex * sizeof(struct io_accel2_cmd));
5708 BUG_ON(c->busaddr & 0x0000007F);
5710 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5711 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5712 ac->reply_queue = reply_queue;
5713 ac->tmf = IOACCEL2_TMF_ABORT;
5714 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5715 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5716 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5717 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5718 ac->error_ptr = cpu_to_le64(c->busaddr +
5719 offsetof(struct io_accel2_cmd, error_data));
5720 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5723 /* ioaccel2 path firmware cannot handle abort task requests.
5724 * Change abort requests to physical target reset, and send to the
5725 * address of the physical disk used for the ioaccel 2 command.
5726 * Return 0 on success (IO_OK)
5727 * -1 on failure
5730 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5731 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5733 int rc = IO_OK;
5734 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5735 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5736 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5737 unsigned char *psa = &phys_scsi3addr[0];
5739 /* Get a pointer to the hpsa logical device. */
5740 scmd = abort->scsi_cmd;
5741 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5742 if (dev == NULL) {
5743 dev_warn(&h->pdev->dev,
5744 "Cannot abort: no device pointer for command.\n");
5745 return -1; /* not abortable */
5748 if (h->raid_offload_debug > 0)
5749 dev_info(&h->pdev->dev,
5750 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5751 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5752 "Reset as abort",
5753 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5754 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5756 if (!dev->offload_enabled) {
5757 dev_warn(&h->pdev->dev,
5758 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5759 return -1; /* not abortable */
5762 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5763 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5764 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5765 return -1; /* not abortable */
5768 /* send the reset */
5769 if (h->raid_offload_debug > 0)
5770 dev_info(&h->pdev->dev,
5771 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5772 psa[0], psa[1], psa[2], psa[3],
5773 psa[4], psa[5], psa[6], psa[7]);
5774 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5775 if (rc != 0) {
5776 dev_warn(&h->pdev->dev,
5777 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5778 psa[0], psa[1], psa[2], psa[3],
5779 psa[4], psa[5], psa[6], psa[7]);
5780 return rc; /* failed to reset */
5783 /* wait for device to recover */
5784 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5785 dev_warn(&h->pdev->dev,
5786 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5787 psa[0], psa[1], psa[2], psa[3],
5788 psa[4], psa[5], psa[6], psa[7]);
5789 return -1; /* failed to recover */
5792 /* device recovered */
5793 dev_info(&h->pdev->dev,
5794 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5795 psa[0], psa[1], psa[2], psa[3],
5796 psa[4], psa[5], psa[6], psa[7]);
5798 return rc; /* success */
5801 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5802 struct CommandList *abort, int reply_queue)
5804 int rc = IO_OK;
5805 struct CommandList *c;
5806 __le32 taglower, tagupper;
5807 struct hpsa_scsi_dev_t *dev;
5808 struct io_accel2_cmd *c2;
5810 dev = abort->scsi_cmd->device->hostdata;
5811 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5812 return -1;
5814 c = cmd_alloc(h);
5815 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5816 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5817 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5818 hpsa_get_tag(h, abort, &taglower, &tagupper);
5819 dev_dbg(&h->pdev->dev,
5820 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5821 __func__, tagupper, taglower);
5822 /* no unmap needed here because no data xfer. */
5824 dev_dbg(&h->pdev->dev,
5825 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5826 __func__, tagupper, taglower, c2->error_data.serv_response);
5827 switch (c2->error_data.serv_response) {
5828 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5829 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5830 rc = 0;
5831 break;
5832 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5833 case IOACCEL2_SERV_RESPONSE_FAILURE:
5834 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5835 rc = -1;
5836 break;
5837 default:
5838 dev_warn(&h->pdev->dev,
5839 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5840 __func__, tagupper, taglower,
5841 c2->error_data.serv_response);
5842 rc = -1;
5844 cmd_free(h, c);
5845 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5846 tagupper, taglower);
5847 return rc;
5850 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5851 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5854 * ioccelerator mode 2 commands should be aborted via the
5855 * accelerated path, since RAID path is unaware of these commands,
5856 * but not all underlying firmware can handle abort TMF.
5857 * Change abort to physical device reset when abort TMF is unsupported.
5859 if (abort->cmd_type == CMD_IOACCEL2) {
5860 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5861 return hpsa_send_abort_ioaccel2(h, abort,
5862 reply_queue);
5863 else
5864 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5865 abort, reply_queue);
5867 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5870 /* Find out which reply queue a command was meant to return on */
5871 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5872 struct CommandList *c)
5874 if (c->cmd_type == CMD_IOACCEL2)
5875 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5876 return c->Header.ReplyQueue;
5880 * Limit concurrency of abort commands to prevent
5881 * over-subscription of commands
5883 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5885 #define ABORT_CMD_WAIT_MSECS 5000
5886 return !wait_event_timeout(h->abort_cmd_wait_queue,
5887 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5888 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5891 /* Send an abort for the specified command.
5892 * If the device and controller support it,
5893 * send a task abort request.
5895 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5898 int rc;
5899 struct ctlr_info *h;
5900 struct hpsa_scsi_dev_t *dev;
5901 struct CommandList *abort; /* pointer to command to be aborted */
5902 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5903 char msg[256]; /* For debug messaging. */
5904 int ml = 0;
5905 __le32 tagupper, taglower;
5906 int refcount, reply_queue;
5908 if (sc == NULL)
5909 return FAILED;
5911 if (sc->device == NULL)
5912 return FAILED;
5914 /* Find the controller of the command to be aborted */
5915 h = sdev_to_hba(sc->device);
5916 if (h == NULL)
5917 return FAILED;
5919 /* Find the device of the command to be aborted */
5920 dev = sc->device->hostdata;
5921 if (!dev) {
5922 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5923 msg);
5924 return FAILED;
5927 /* If controller locked up, we can guarantee command won't complete */
5928 if (lockup_detected(h)) {
5929 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5930 "ABORT FAILED, lockup detected");
5931 return FAILED;
5934 /* This is a good time to check if controller lockup has occurred */
5935 if (detect_controller_lockup(h)) {
5936 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5937 "ABORT FAILED, new lockup detected");
5938 return FAILED;
5941 /* Check that controller supports some kind of task abort */
5942 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5943 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5944 return FAILED;
5946 memset(msg, 0, sizeof(msg));
5947 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5948 h->scsi_host->host_no, sc->device->channel,
5949 sc->device->id, sc->device->lun,
5950 "Aborting command", sc);
5952 /* Get SCSI command to be aborted */
5953 abort = (struct CommandList *) sc->host_scribble;
5954 if (abort == NULL) {
5955 /* This can happen if the command already completed. */
5956 return SUCCESS;
5958 refcount = atomic_inc_return(&abort->refcount);
5959 if (refcount == 1) { /* Command is done already. */
5960 cmd_free(h, abort);
5961 return SUCCESS;
5964 /* Don't bother trying the abort if we know it won't work. */
5965 if (abort->cmd_type != CMD_IOACCEL2 &&
5966 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5967 cmd_free(h, abort);
5968 return FAILED;
5972 * Check that we're aborting the right command.
5973 * It's possible the CommandList already completed and got re-used.
5975 if (abort->scsi_cmd != sc) {
5976 cmd_free(h, abort);
5977 return SUCCESS;
5980 abort->abort_pending = true;
5981 hpsa_get_tag(h, abort, &taglower, &tagupper);
5982 reply_queue = hpsa_extract_reply_queue(h, abort);
5983 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5984 as = abort->scsi_cmd;
5985 if (as != NULL)
5986 ml += sprintf(msg+ml,
5987 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5988 as->cmd_len, as->cmnd[0], as->cmnd[1],
5989 as->serial_number);
5990 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5991 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5994 * Command is in flight, or possibly already completed
5995 * by the firmware (but not to the scsi mid layer) but we can't
5996 * distinguish which. Send the abort down.
5998 if (wait_for_available_abort_cmd(h)) {
5999 dev_warn(&h->pdev->dev,
6000 "%s FAILED, timeout waiting for an abort command to become available.\n",
6001 msg);
6002 cmd_free(h, abort);
6003 return FAILED;
6005 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
6006 atomic_inc(&h->abort_cmds_available);
6007 wake_up_all(&h->abort_cmd_wait_queue);
6008 if (rc != 0) {
6009 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6010 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6011 "FAILED to abort command");
6012 cmd_free(h, abort);
6013 return FAILED;
6015 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6016 wait_event(h->event_sync_wait_queue,
6017 abort->scsi_cmd != sc || lockup_detected(h));
6018 cmd_free(h, abort);
6019 return !lockup_detected(h) ? SUCCESS : FAILED;
6023 * For operations with an associated SCSI command, a command block is allocated
6024 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6025 * block request tag as an index into a table of entries. cmd_tagged_free() is
6026 * the complement, although cmd_free() may be called instead.
6028 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6029 struct scsi_cmnd *scmd)
6031 int idx = hpsa_get_cmd_index(scmd);
6032 struct CommandList *c = h->cmd_pool + idx;
6034 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6035 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6036 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6037 /* The index value comes from the block layer, so if it's out of
6038 * bounds, it's probably not our bug.
6040 BUG();
6043 atomic_inc(&c->refcount);
6044 if (unlikely(!hpsa_is_cmd_idle(c))) {
6046 * We expect that the SCSI layer will hand us a unique tag
6047 * value. Thus, there should never be a collision here between
6048 * two requests...because if the selected command isn't idle
6049 * then someone is going to be very disappointed.
6051 dev_err(&h->pdev->dev,
6052 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6053 idx);
6054 if (c->scsi_cmd != NULL)
6055 scsi_print_command(c->scsi_cmd);
6056 scsi_print_command(scmd);
6059 hpsa_cmd_partial_init(h, idx, c);
6060 return c;
6063 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6066 * Release our reference to the block. We don't need to do anything
6067 * else to free it, because it is accessed by index. (There's no point
6068 * in checking the result of the decrement, since we cannot guarantee
6069 * that there isn't a concurrent abort which is also accessing it.)
6071 (void)atomic_dec(&c->refcount);
6075 * For operations that cannot sleep, a command block is allocated at init,
6076 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6077 * which ones are free or in use. Lock must be held when calling this.
6078 * cmd_free() is the complement.
6079 * This function never gives up and returns NULL. If it hangs,
6080 * another thread must call cmd_free() to free some tags.
6083 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6085 struct CommandList *c;
6086 int refcount, i;
6087 int offset = 0;
6090 * There is some *extremely* small but non-zero chance that that
6091 * multiple threads could get in here, and one thread could
6092 * be scanning through the list of bits looking for a free
6093 * one, but the free ones are always behind him, and other
6094 * threads sneak in behind him and eat them before he can
6095 * get to them, so that while there is always a free one, a
6096 * very unlucky thread might be starved anyway, never able to
6097 * beat the other threads. In reality, this happens so
6098 * infrequently as to be indistinguishable from never.
6100 * Note that we start allocating commands before the SCSI host structure
6101 * is initialized. Since the search starts at bit zero, this
6102 * all works, since we have at least one command structure available;
6103 * however, it means that the structures with the low indexes have to be
6104 * reserved for driver-initiated requests, while requests from the block
6105 * layer will use the higher indexes.
6108 for (;;) {
6109 i = find_next_zero_bit(h->cmd_pool_bits,
6110 HPSA_NRESERVED_CMDS,
6111 offset);
6112 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6113 offset = 0;
6114 continue;
6116 c = h->cmd_pool + i;
6117 refcount = atomic_inc_return(&c->refcount);
6118 if (unlikely(refcount > 1)) {
6119 cmd_free(h, c); /* already in use */
6120 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6121 continue;
6123 set_bit(i & (BITS_PER_LONG - 1),
6124 h->cmd_pool_bits + (i / BITS_PER_LONG));
6125 break; /* it's ours now. */
6127 hpsa_cmd_partial_init(h, i, c);
6128 return c;
6132 * This is the complementary operation to cmd_alloc(). Note, however, in some
6133 * corner cases it may also be used to free blocks allocated by
6134 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6135 * the clear-bit is harmless.
6137 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6139 if (atomic_dec_and_test(&c->refcount)) {
6140 int i;
6142 i = c - h->cmd_pool;
6143 clear_bit(i & (BITS_PER_LONG - 1),
6144 h->cmd_pool_bits + (i / BITS_PER_LONG));
6148 #ifdef CONFIG_COMPAT
6150 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6151 void __user *arg)
6153 IOCTL32_Command_struct __user *arg32 =
6154 (IOCTL32_Command_struct __user *) arg;
6155 IOCTL_Command_struct arg64;
6156 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6157 int err;
6158 u32 cp;
6160 memset(&arg64, 0, sizeof(arg64));
6161 err = 0;
6162 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6163 sizeof(arg64.LUN_info));
6164 err |= copy_from_user(&arg64.Request, &arg32->Request,
6165 sizeof(arg64.Request));
6166 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6167 sizeof(arg64.error_info));
6168 err |= get_user(arg64.buf_size, &arg32->buf_size);
6169 err |= get_user(cp, &arg32->buf);
6170 arg64.buf = compat_ptr(cp);
6171 err |= copy_to_user(p, &arg64, sizeof(arg64));
6173 if (err)
6174 return -EFAULT;
6176 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6177 if (err)
6178 return err;
6179 err |= copy_in_user(&arg32->error_info, &p->error_info,
6180 sizeof(arg32->error_info));
6181 if (err)
6182 return -EFAULT;
6183 return err;
6186 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6187 int cmd, void __user *arg)
6189 BIG_IOCTL32_Command_struct __user *arg32 =
6190 (BIG_IOCTL32_Command_struct __user *) arg;
6191 BIG_IOCTL_Command_struct arg64;
6192 BIG_IOCTL_Command_struct __user *p =
6193 compat_alloc_user_space(sizeof(arg64));
6194 int err;
6195 u32 cp;
6197 memset(&arg64, 0, sizeof(arg64));
6198 err = 0;
6199 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6200 sizeof(arg64.LUN_info));
6201 err |= copy_from_user(&arg64.Request, &arg32->Request,
6202 sizeof(arg64.Request));
6203 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6204 sizeof(arg64.error_info));
6205 err |= get_user(arg64.buf_size, &arg32->buf_size);
6206 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6207 err |= get_user(cp, &arg32->buf);
6208 arg64.buf = compat_ptr(cp);
6209 err |= copy_to_user(p, &arg64, sizeof(arg64));
6211 if (err)
6212 return -EFAULT;
6214 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6215 if (err)
6216 return err;
6217 err |= copy_in_user(&arg32->error_info, &p->error_info,
6218 sizeof(arg32->error_info));
6219 if (err)
6220 return -EFAULT;
6221 return err;
6224 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6226 switch (cmd) {
6227 case CCISS_GETPCIINFO:
6228 case CCISS_GETINTINFO:
6229 case CCISS_SETINTINFO:
6230 case CCISS_GETNODENAME:
6231 case CCISS_SETNODENAME:
6232 case CCISS_GETHEARTBEAT:
6233 case CCISS_GETBUSTYPES:
6234 case CCISS_GETFIRMVER:
6235 case CCISS_GETDRIVVER:
6236 case CCISS_REVALIDVOLS:
6237 case CCISS_DEREGDISK:
6238 case CCISS_REGNEWDISK:
6239 case CCISS_REGNEWD:
6240 case CCISS_RESCANDISK:
6241 case CCISS_GETLUNINFO:
6242 return hpsa_ioctl(dev, cmd, arg);
6244 case CCISS_PASSTHRU32:
6245 return hpsa_ioctl32_passthru(dev, cmd, arg);
6246 case CCISS_BIG_PASSTHRU32:
6247 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6249 default:
6250 return -ENOIOCTLCMD;
6253 #endif
6255 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6257 struct hpsa_pci_info pciinfo;
6259 if (!argp)
6260 return -EINVAL;
6261 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6262 pciinfo.bus = h->pdev->bus->number;
6263 pciinfo.dev_fn = h->pdev->devfn;
6264 pciinfo.board_id = h->board_id;
6265 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6266 return -EFAULT;
6267 return 0;
6270 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6272 DriverVer_type DriverVer;
6273 unsigned char vmaj, vmin, vsubmin;
6274 int rc;
6276 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6277 &vmaj, &vmin, &vsubmin);
6278 if (rc != 3) {
6279 dev_info(&h->pdev->dev, "driver version string '%s' "
6280 "unrecognized.", HPSA_DRIVER_VERSION);
6281 vmaj = 0;
6282 vmin = 0;
6283 vsubmin = 0;
6285 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6286 if (!argp)
6287 return -EINVAL;
6288 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6289 return -EFAULT;
6290 return 0;
6293 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6295 IOCTL_Command_struct iocommand;
6296 struct CommandList *c;
6297 char *buff = NULL;
6298 u64 temp64;
6299 int rc = 0;
6301 if (!argp)
6302 return -EINVAL;
6303 if (!capable(CAP_SYS_RAWIO))
6304 return -EPERM;
6305 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6306 return -EFAULT;
6307 if ((iocommand.buf_size < 1) &&
6308 (iocommand.Request.Type.Direction != XFER_NONE)) {
6309 return -EINVAL;
6311 if (iocommand.buf_size > 0) {
6312 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6313 if (buff == NULL)
6314 return -ENOMEM;
6315 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6316 /* Copy the data into the buffer we created */
6317 if (copy_from_user(buff, iocommand.buf,
6318 iocommand.buf_size)) {
6319 rc = -EFAULT;
6320 goto out_kfree;
6322 } else {
6323 memset(buff, 0, iocommand.buf_size);
6326 c = cmd_alloc(h);
6328 /* Fill in the command type */
6329 c->cmd_type = CMD_IOCTL_PEND;
6330 c->scsi_cmd = SCSI_CMD_BUSY;
6331 /* Fill in Command Header */
6332 c->Header.ReplyQueue = 0; /* unused in simple mode */
6333 if (iocommand.buf_size > 0) { /* buffer to fill */
6334 c->Header.SGList = 1;
6335 c->Header.SGTotal = cpu_to_le16(1);
6336 } else { /* no buffers to fill */
6337 c->Header.SGList = 0;
6338 c->Header.SGTotal = cpu_to_le16(0);
6340 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6342 /* Fill in Request block */
6343 memcpy(&c->Request, &iocommand.Request,
6344 sizeof(c->Request));
6346 /* Fill in the scatter gather information */
6347 if (iocommand.buf_size > 0) {
6348 temp64 = pci_map_single(h->pdev, buff,
6349 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6350 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6351 c->SG[0].Addr = cpu_to_le64(0);
6352 c->SG[0].Len = cpu_to_le32(0);
6353 rc = -ENOMEM;
6354 goto out;
6356 c->SG[0].Addr = cpu_to_le64(temp64);
6357 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6358 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6360 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6361 if (iocommand.buf_size > 0)
6362 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6363 check_ioctl_unit_attention(h, c);
6364 if (rc) {
6365 rc = -EIO;
6366 goto out;
6369 /* Copy the error information out */
6370 memcpy(&iocommand.error_info, c->err_info,
6371 sizeof(iocommand.error_info));
6372 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6373 rc = -EFAULT;
6374 goto out;
6376 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6377 iocommand.buf_size > 0) {
6378 /* Copy the data out of the buffer we created */
6379 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6380 rc = -EFAULT;
6381 goto out;
6384 out:
6385 cmd_free(h, c);
6386 out_kfree:
6387 kfree(buff);
6388 return rc;
6391 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6393 BIG_IOCTL_Command_struct *ioc;
6394 struct CommandList *c;
6395 unsigned char **buff = NULL;
6396 int *buff_size = NULL;
6397 u64 temp64;
6398 BYTE sg_used = 0;
6399 int status = 0;
6400 u32 left;
6401 u32 sz;
6402 BYTE __user *data_ptr;
6404 if (!argp)
6405 return -EINVAL;
6406 if (!capable(CAP_SYS_RAWIO))
6407 return -EPERM;
6408 ioc = (BIG_IOCTL_Command_struct *)
6409 kmalloc(sizeof(*ioc), GFP_KERNEL);
6410 if (!ioc) {
6411 status = -ENOMEM;
6412 goto cleanup1;
6414 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6415 status = -EFAULT;
6416 goto cleanup1;
6418 if ((ioc->buf_size < 1) &&
6419 (ioc->Request.Type.Direction != XFER_NONE)) {
6420 status = -EINVAL;
6421 goto cleanup1;
6423 /* Check kmalloc limits using all SGs */
6424 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6425 status = -EINVAL;
6426 goto cleanup1;
6428 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6429 status = -EINVAL;
6430 goto cleanup1;
6432 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6433 if (!buff) {
6434 status = -ENOMEM;
6435 goto cleanup1;
6437 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6438 if (!buff_size) {
6439 status = -ENOMEM;
6440 goto cleanup1;
6442 left = ioc->buf_size;
6443 data_ptr = ioc->buf;
6444 while (left) {
6445 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6446 buff_size[sg_used] = sz;
6447 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6448 if (buff[sg_used] == NULL) {
6449 status = -ENOMEM;
6450 goto cleanup1;
6452 if (ioc->Request.Type.Direction & XFER_WRITE) {
6453 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6454 status = -EFAULT;
6455 goto cleanup1;
6457 } else
6458 memset(buff[sg_used], 0, sz);
6459 left -= sz;
6460 data_ptr += sz;
6461 sg_used++;
6463 c = cmd_alloc(h);
6465 c->cmd_type = CMD_IOCTL_PEND;
6466 c->scsi_cmd = SCSI_CMD_BUSY;
6467 c->Header.ReplyQueue = 0;
6468 c->Header.SGList = (u8) sg_used;
6469 c->Header.SGTotal = cpu_to_le16(sg_used);
6470 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6471 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6472 if (ioc->buf_size > 0) {
6473 int i;
6474 for (i = 0; i < sg_used; i++) {
6475 temp64 = pci_map_single(h->pdev, buff[i],
6476 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6477 if (dma_mapping_error(&h->pdev->dev,
6478 (dma_addr_t) temp64)) {
6479 c->SG[i].Addr = cpu_to_le64(0);
6480 c->SG[i].Len = cpu_to_le32(0);
6481 hpsa_pci_unmap(h->pdev, c, i,
6482 PCI_DMA_BIDIRECTIONAL);
6483 status = -ENOMEM;
6484 goto cleanup0;
6486 c->SG[i].Addr = cpu_to_le64(temp64);
6487 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6488 c->SG[i].Ext = cpu_to_le32(0);
6490 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6492 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6493 if (sg_used)
6494 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6495 check_ioctl_unit_attention(h, c);
6496 if (status) {
6497 status = -EIO;
6498 goto cleanup0;
6501 /* Copy the error information out */
6502 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6503 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6504 status = -EFAULT;
6505 goto cleanup0;
6507 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6508 int i;
6510 /* Copy the data out of the buffer we created */
6511 BYTE __user *ptr = ioc->buf;
6512 for (i = 0; i < sg_used; i++) {
6513 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6514 status = -EFAULT;
6515 goto cleanup0;
6517 ptr += buff_size[i];
6520 status = 0;
6521 cleanup0:
6522 cmd_free(h, c);
6523 cleanup1:
6524 if (buff) {
6525 int i;
6527 for (i = 0; i < sg_used; i++)
6528 kfree(buff[i]);
6529 kfree(buff);
6531 kfree(buff_size);
6532 kfree(ioc);
6533 return status;
6536 static void check_ioctl_unit_attention(struct ctlr_info *h,
6537 struct CommandList *c)
6539 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6540 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6541 (void) check_for_unit_attention(h, c);
6545 * ioctl
6547 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6549 struct ctlr_info *h;
6550 void __user *argp = (void __user *)arg;
6551 int rc;
6553 h = sdev_to_hba(dev);
6555 switch (cmd) {
6556 case CCISS_DEREGDISK:
6557 case CCISS_REGNEWDISK:
6558 case CCISS_REGNEWD:
6559 hpsa_scan_start(h->scsi_host);
6560 return 0;
6561 case CCISS_GETPCIINFO:
6562 return hpsa_getpciinfo_ioctl(h, argp);
6563 case CCISS_GETDRIVVER:
6564 return hpsa_getdrivver_ioctl(h, argp);
6565 case CCISS_PASSTHRU:
6566 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567 return -EAGAIN;
6568 rc = hpsa_passthru_ioctl(h, argp);
6569 atomic_inc(&h->passthru_cmds_avail);
6570 return rc;
6571 case CCISS_BIG_PASSTHRU:
6572 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573 return -EAGAIN;
6574 rc = hpsa_big_passthru_ioctl(h, argp);
6575 atomic_inc(&h->passthru_cmds_avail);
6576 return rc;
6577 default:
6578 return -ENOTTY;
6582 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583 u8 reset_type)
6585 struct CommandList *c;
6587 c = cmd_alloc(h);
6589 /* fill_cmd can't fail here, no data buffer to map */
6590 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591 RAID_CTLR_LUNID, TYPE_MSG);
6592 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593 c->waiting = NULL;
6594 enqueue_cmd_and_start_io(h, c);
6595 /* Don't wait for completion, the reset won't complete. Don't free
6596 * the command either. This is the last command we will send before
6597 * re-initializing everything, so it doesn't matter and won't leak.
6599 return;
6602 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604 int cmd_type)
6606 int pci_dir = XFER_NONE;
6607 u64 tag; /* for commands to be aborted */
6609 c->cmd_type = CMD_IOCTL_PEND;
6610 c->scsi_cmd = SCSI_CMD_BUSY;
6611 c->Header.ReplyQueue = 0;
6612 if (buff != NULL && size > 0) {
6613 c->Header.SGList = 1;
6614 c->Header.SGTotal = cpu_to_le16(1);
6615 } else {
6616 c->Header.SGList = 0;
6617 c->Header.SGTotal = cpu_to_le16(0);
6619 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6621 if (cmd_type == TYPE_CMD) {
6622 switch (cmd) {
6623 case HPSA_INQUIRY:
6624 /* are we trying to read a vital product page */
6625 if (page_code & VPD_PAGE) {
6626 c->Request.CDB[1] = 0x01;
6627 c->Request.CDB[2] = (page_code & 0xff);
6629 c->Request.CDBLen = 6;
6630 c->Request.type_attr_dir =
6631 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6632 c->Request.Timeout = 0;
6633 c->Request.CDB[0] = HPSA_INQUIRY;
6634 c->Request.CDB[4] = size & 0xFF;
6635 break;
6636 case HPSA_REPORT_LOG:
6637 case HPSA_REPORT_PHYS:
6638 /* Talking to controller so It's a physical command
6639 mode = 00 target = 0. Nothing to write.
6641 c->Request.CDBLen = 12;
6642 c->Request.type_attr_dir =
6643 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6644 c->Request.Timeout = 0;
6645 c->Request.CDB[0] = cmd;
6646 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6647 c->Request.CDB[7] = (size >> 16) & 0xFF;
6648 c->Request.CDB[8] = (size >> 8) & 0xFF;
6649 c->Request.CDB[9] = size & 0xFF;
6650 break;
6651 case BMIC_SENSE_DIAG_OPTIONS:
6652 c->Request.CDBLen = 16;
6653 c->Request.type_attr_dir =
6654 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6655 c->Request.Timeout = 0;
6656 /* Spec says this should be BMIC_WRITE */
6657 c->Request.CDB[0] = BMIC_READ;
6658 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6659 break;
6660 case BMIC_SET_DIAG_OPTIONS:
6661 c->Request.CDBLen = 16;
6662 c->Request.type_attr_dir =
6663 TYPE_ATTR_DIR(cmd_type,
6664 ATTR_SIMPLE, XFER_WRITE);
6665 c->Request.Timeout = 0;
6666 c->Request.CDB[0] = BMIC_WRITE;
6667 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6668 break;
6669 case HPSA_CACHE_FLUSH:
6670 c->Request.CDBLen = 12;
6671 c->Request.type_attr_dir =
6672 TYPE_ATTR_DIR(cmd_type,
6673 ATTR_SIMPLE, XFER_WRITE);
6674 c->Request.Timeout = 0;
6675 c->Request.CDB[0] = BMIC_WRITE;
6676 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6677 c->Request.CDB[7] = (size >> 8) & 0xFF;
6678 c->Request.CDB[8] = size & 0xFF;
6679 break;
6680 case TEST_UNIT_READY:
6681 c->Request.CDBLen = 6;
6682 c->Request.type_attr_dir =
6683 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6684 c->Request.Timeout = 0;
6685 break;
6686 case HPSA_GET_RAID_MAP:
6687 c->Request.CDBLen = 12;
6688 c->Request.type_attr_dir =
6689 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6690 c->Request.Timeout = 0;
6691 c->Request.CDB[0] = HPSA_CISS_READ;
6692 c->Request.CDB[1] = cmd;
6693 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6694 c->Request.CDB[7] = (size >> 16) & 0xFF;
6695 c->Request.CDB[8] = (size >> 8) & 0xFF;
6696 c->Request.CDB[9] = size & 0xFF;
6697 break;
6698 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6699 c->Request.CDBLen = 10;
6700 c->Request.type_attr_dir =
6701 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6702 c->Request.Timeout = 0;
6703 c->Request.CDB[0] = BMIC_READ;
6704 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6705 c->Request.CDB[7] = (size >> 16) & 0xFF;
6706 c->Request.CDB[8] = (size >> 8) & 0xFF;
6707 break;
6708 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6709 c->Request.CDBLen = 10;
6710 c->Request.type_attr_dir =
6711 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 c->Request.Timeout = 0;
6713 c->Request.CDB[0] = BMIC_READ;
6714 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6715 c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 c->Request.CDB[8] = (size >> 8) & 0XFF;
6717 break;
6718 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6719 c->Request.CDBLen = 10;
6720 c->Request.type_attr_dir =
6721 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722 c->Request.Timeout = 0;
6723 c->Request.CDB[0] = BMIC_READ;
6724 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6725 c->Request.CDB[7] = (size >> 16) & 0xFF;
6726 c->Request.CDB[8] = (size >> 8) & 0XFF;
6727 break;
6728 case BMIC_IDENTIFY_CONTROLLER:
6729 c->Request.CDBLen = 10;
6730 c->Request.type_attr_dir =
6731 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732 c->Request.Timeout = 0;
6733 c->Request.CDB[0] = BMIC_READ;
6734 c->Request.CDB[1] = 0;
6735 c->Request.CDB[2] = 0;
6736 c->Request.CDB[3] = 0;
6737 c->Request.CDB[4] = 0;
6738 c->Request.CDB[5] = 0;
6739 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6740 c->Request.CDB[7] = (size >> 16) & 0xFF;
6741 c->Request.CDB[8] = (size >> 8) & 0XFF;
6742 c->Request.CDB[9] = 0;
6743 break;
6744 default:
6745 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6746 BUG();
6747 return -1;
6749 } else if (cmd_type == TYPE_MSG) {
6750 switch (cmd) {
6752 case HPSA_PHYS_TARGET_RESET:
6753 c->Request.CDBLen = 16;
6754 c->Request.type_attr_dir =
6755 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6756 c->Request.Timeout = 0; /* Don't time out */
6757 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6758 c->Request.CDB[0] = HPSA_RESET;
6759 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6760 /* Physical target reset needs no control bytes 4-7*/
6761 c->Request.CDB[4] = 0x00;
6762 c->Request.CDB[5] = 0x00;
6763 c->Request.CDB[6] = 0x00;
6764 c->Request.CDB[7] = 0x00;
6765 break;
6766 case HPSA_DEVICE_RESET_MSG:
6767 c->Request.CDBLen = 16;
6768 c->Request.type_attr_dir =
6769 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6770 c->Request.Timeout = 0; /* Don't time out */
6771 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6772 c->Request.CDB[0] = cmd;
6773 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6774 /* If bytes 4-7 are zero, it means reset the */
6775 /* LunID device */
6776 c->Request.CDB[4] = 0x00;
6777 c->Request.CDB[5] = 0x00;
6778 c->Request.CDB[6] = 0x00;
6779 c->Request.CDB[7] = 0x00;
6780 break;
6781 case HPSA_ABORT_MSG:
6782 memcpy(&tag, buff, sizeof(tag));
6783 dev_dbg(&h->pdev->dev,
6784 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6785 tag, c->Header.tag);
6786 c->Request.CDBLen = 16;
6787 c->Request.type_attr_dir =
6788 TYPE_ATTR_DIR(cmd_type,
6789 ATTR_SIMPLE, XFER_WRITE);
6790 c->Request.Timeout = 0; /* Don't time out */
6791 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6792 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6793 c->Request.CDB[2] = 0x00; /* reserved */
6794 c->Request.CDB[3] = 0x00; /* reserved */
6795 /* Tag to abort goes in CDB[4]-CDB[11] */
6796 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6797 c->Request.CDB[12] = 0x00; /* reserved */
6798 c->Request.CDB[13] = 0x00; /* reserved */
6799 c->Request.CDB[14] = 0x00; /* reserved */
6800 c->Request.CDB[15] = 0x00; /* reserved */
6801 break;
6802 default:
6803 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6804 cmd);
6805 BUG();
6807 } else {
6808 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6809 BUG();
6812 switch (GET_DIR(c->Request.type_attr_dir)) {
6813 case XFER_READ:
6814 pci_dir = PCI_DMA_FROMDEVICE;
6815 break;
6816 case XFER_WRITE:
6817 pci_dir = PCI_DMA_TODEVICE;
6818 break;
6819 case XFER_NONE:
6820 pci_dir = PCI_DMA_NONE;
6821 break;
6822 default:
6823 pci_dir = PCI_DMA_BIDIRECTIONAL;
6825 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6826 return -1;
6827 return 0;
6831 * Map (physical) PCI mem into (virtual) kernel space
6833 static void __iomem *remap_pci_mem(ulong base, ulong size)
6835 ulong page_base = ((ulong) base) & PAGE_MASK;
6836 ulong page_offs = ((ulong) base) - page_base;
6837 void __iomem *page_remapped = ioremap_nocache(page_base,
6838 page_offs + size);
6840 return page_remapped ? (page_remapped + page_offs) : NULL;
6843 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6845 return h->access.command_completed(h, q);
6848 static inline bool interrupt_pending(struct ctlr_info *h)
6850 return h->access.intr_pending(h);
6853 static inline long interrupt_not_for_us(struct ctlr_info *h)
6855 return (h->access.intr_pending(h) == 0) ||
6856 (h->interrupts_enabled == 0);
6859 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6860 u32 raw_tag)
6862 if (unlikely(tag_index >= h->nr_cmds)) {
6863 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6864 return 1;
6866 return 0;
6869 static inline void finish_cmd(struct CommandList *c)
6871 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6872 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6873 || c->cmd_type == CMD_IOACCEL2))
6874 complete_scsi_command(c);
6875 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6876 complete(c->waiting);
6879 /* process completion of an indexed ("direct lookup") command */
6880 static inline void process_indexed_cmd(struct ctlr_info *h,
6881 u32 raw_tag)
6883 u32 tag_index;
6884 struct CommandList *c;
6886 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6887 if (!bad_tag(h, tag_index, raw_tag)) {
6888 c = h->cmd_pool + tag_index;
6889 finish_cmd(c);
6893 /* Some controllers, like p400, will give us one interrupt
6894 * after a soft reset, even if we turned interrupts off.
6895 * Only need to check for this in the hpsa_xxx_discard_completions
6896 * functions.
6898 static int ignore_bogus_interrupt(struct ctlr_info *h)
6900 if (likely(!reset_devices))
6901 return 0;
6903 if (likely(h->interrupts_enabled))
6904 return 0;
6906 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6907 "(known firmware bug.) Ignoring.\n");
6909 return 1;
6913 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6914 * Relies on (h-q[x] == x) being true for x such that
6915 * 0 <= x < MAX_REPLY_QUEUES.
6917 static struct ctlr_info *queue_to_hba(u8 *queue)
6919 return container_of((queue - *queue), struct ctlr_info, q[0]);
6922 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6924 struct ctlr_info *h = queue_to_hba(queue);
6925 u8 q = *(u8 *) queue;
6926 u32 raw_tag;
6928 if (ignore_bogus_interrupt(h))
6929 return IRQ_NONE;
6931 if (interrupt_not_for_us(h))
6932 return IRQ_NONE;
6933 h->last_intr_timestamp = get_jiffies_64();
6934 while (interrupt_pending(h)) {
6935 raw_tag = get_next_completion(h, q);
6936 while (raw_tag != FIFO_EMPTY)
6937 raw_tag = next_command(h, q);
6939 return IRQ_HANDLED;
6942 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6944 struct ctlr_info *h = queue_to_hba(queue);
6945 u32 raw_tag;
6946 u8 q = *(u8 *) queue;
6948 if (ignore_bogus_interrupt(h))
6949 return IRQ_NONE;
6951 h->last_intr_timestamp = get_jiffies_64();
6952 raw_tag = get_next_completion(h, q);
6953 while (raw_tag != FIFO_EMPTY)
6954 raw_tag = next_command(h, q);
6955 return IRQ_HANDLED;
6958 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6960 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6961 u32 raw_tag;
6962 u8 q = *(u8 *) queue;
6964 if (interrupt_not_for_us(h))
6965 return IRQ_NONE;
6966 h->last_intr_timestamp = get_jiffies_64();
6967 while (interrupt_pending(h)) {
6968 raw_tag = get_next_completion(h, q);
6969 while (raw_tag != FIFO_EMPTY) {
6970 process_indexed_cmd(h, raw_tag);
6971 raw_tag = next_command(h, q);
6974 return IRQ_HANDLED;
6977 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6979 struct ctlr_info *h = queue_to_hba(queue);
6980 u32 raw_tag;
6981 u8 q = *(u8 *) queue;
6983 h->last_intr_timestamp = get_jiffies_64();
6984 raw_tag = get_next_completion(h, q);
6985 while (raw_tag != FIFO_EMPTY) {
6986 process_indexed_cmd(h, raw_tag);
6987 raw_tag = next_command(h, q);
6989 return IRQ_HANDLED;
6992 /* Send a message CDB to the firmware. Careful, this only works
6993 * in simple mode, not performant mode due to the tag lookup.
6994 * We only ever use this immediately after a controller reset.
6996 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6997 unsigned char type)
6999 struct Command {
7000 struct CommandListHeader CommandHeader;
7001 struct RequestBlock Request;
7002 struct ErrDescriptor ErrorDescriptor;
7004 struct Command *cmd;
7005 static const size_t cmd_sz = sizeof(*cmd) +
7006 sizeof(cmd->ErrorDescriptor);
7007 dma_addr_t paddr64;
7008 __le32 paddr32;
7009 u32 tag;
7010 void __iomem *vaddr;
7011 int i, err;
7013 vaddr = pci_ioremap_bar(pdev, 0);
7014 if (vaddr == NULL)
7015 return -ENOMEM;
7017 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7018 * CCISS commands, so they must be allocated from the lower 4GiB of
7019 * memory.
7021 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7022 if (err) {
7023 iounmap(vaddr);
7024 return err;
7027 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7028 if (cmd == NULL) {
7029 iounmap(vaddr);
7030 return -ENOMEM;
7033 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7034 * although there's no guarantee, we assume that the address is at
7035 * least 4-byte aligned (most likely, it's page-aligned).
7037 paddr32 = cpu_to_le32(paddr64);
7039 cmd->CommandHeader.ReplyQueue = 0;
7040 cmd->CommandHeader.SGList = 0;
7041 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7042 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7043 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7045 cmd->Request.CDBLen = 16;
7046 cmd->Request.type_attr_dir =
7047 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7048 cmd->Request.Timeout = 0; /* Don't time out */
7049 cmd->Request.CDB[0] = opcode;
7050 cmd->Request.CDB[1] = type;
7051 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7052 cmd->ErrorDescriptor.Addr =
7053 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7054 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7056 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7058 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7059 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7060 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7061 break;
7062 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7065 iounmap(vaddr);
7067 /* we leak the DMA buffer here ... no choice since the controller could
7068 * still complete the command.
7070 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7071 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7072 opcode, type);
7073 return -ETIMEDOUT;
7076 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7078 if (tag & HPSA_ERROR_BIT) {
7079 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7080 opcode, type);
7081 return -EIO;
7084 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7085 opcode, type);
7086 return 0;
7089 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7091 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7092 void __iomem *vaddr, u32 use_doorbell)
7095 if (use_doorbell) {
7096 /* For everything after the P600, the PCI power state method
7097 * of resetting the controller doesn't work, so we have this
7098 * other way using the doorbell register.
7100 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7101 writel(use_doorbell, vaddr + SA5_DOORBELL);
7103 /* PMC hardware guys tell us we need a 10 second delay after
7104 * doorbell reset and before any attempt to talk to the board
7105 * at all to ensure that this actually works and doesn't fall
7106 * over in some weird corner cases.
7108 msleep(10000);
7109 } else { /* Try to do it the PCI power state way */
7111 /* Quoting from the Open CISS Specification: "The Power
7112 * Management Control/Status Register (CSR) controls the power
7113 * state of the device. The normal operating state is D0,
7114 * CSR=00h. The software off state is D3, CSR=03h. To reset
7115 * the controller, place the interface device in D3 then to D0,
7116 * this causes a secondary PCI reset which will reset the
7117 * controller." */
7119 int rc = 0;
7121 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7123 /* enter the D3hot power management state */
7124 rc = pci_set_power_state(pdev, PCI_D3hot);
7125 if (rc)
7126 return rc;
7128 msleep(500);
7130 /* enter the D0 power management state */
7131 rc = pci_set_power_state(pdev, PCI_D0);
7132 if (rc)
7133 return rc;
7136 * The P600 requires a small delay when changing states.
7137 * Otherwise we may think the board did not reset and we bail.
7138 * This for kdump only and is particular to the P600.
7140 msleep(500);
7142 return 0;
7145 static void init_driver_version(char *driver_version, int len)
7147 memset(driver_version, 0, len);
7148 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7151 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7153 char *driver_version;
7154 int i, size = sizeof(cfgtable->driver_version);
7156 driver_version = kmalloc(size, GFP_KERNEL);
7157 if (!driver_version)
7158 return -ENOMEM;
7160 init_driver_version(driver_version, size);
7161 for (i = 0; i < size; i++)
7162 writeb(driver_version[i], &cfgtable->driver_version[i]);
7163 kfree(driver_version);
7164 return 0;
7167 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7168 unsigned char *driver_ver)
7170 int i;
7172 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7173 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7176 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7179 char *driver_ver, *old_driver_ver;
7180 int rc, size = sizeof(cfgtable->driver_version);
7182 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7183 if (!old_driver_ver)
7184 return -ENOMEM;
7185 driver_ver = old_driver_ver + size;
7187 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7188 * should have been changed, otherwise we know the reset failed.
7190 init_driver_version(old_driver_ver, size);
7191 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7192 rc = !memcmp(driver_ver, old_driver_ver, size);
7193 kfree(old_driver_ver);
7194 return rc;
7196 /* This does a hard reset of the controller using PCI power management
7197 * states or the using the doorbell register.
7199 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7201 u64 cfg_offset;
7202 u32 cfg_base_addr;
7203 u64 cfg_base_addr_index;
7204 void __iomem *vaddr;
7205 unsigned long paddr;
7206 u32 misc_fw_support;
7207 int rc;
7208 struct CfgTable __iomem *cfgtable;
7209 u32 use_doorbell;
7210 u16 command_register;
7212 /* For controllers as old as the P600, this is very nearly
7213 * the same thing as
7215 * pci_save_state(pci_dev);
7216 * pci_set_power_state(pci_dev, PCI_D3hot);
7217 * pci_set_power_state(pci_dev, PCI_D0);
7218 * pci_restore_state(pci_dev);
7220 * For controllers newer than the P600, the pci power state
7221 * method of resetting doesn't work so we have another way
7222 * using the doorbell register.
7225 if (!ctlr_is_resettable(board_id)) {
7226 dev_warn(&pdev->dev, "Controller not resettable\n");
7227 return -ENODEV;
7230 /* if controller is soft- but not hard resettable... */
7231 if (!ctlr_is_hard_resettable(board_id))
7232 return -ENOTSUPP; /* try soft reset later. */
7234 /* Save the PCI command register */
7235 pci_read_config_word(pdev, 4, &command_register);
7236 pci_save_state(pdev);
7238 /* find the first memory BAR, so we can find the cfg table */
7239 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7240 if (rc)
7241 return rc;
7242 vaddr = remap_pci_mem(paddr, 0x250);
7243 if (!vaddr)
7244 return -ENOMEM;
7246 /* find cfgtable in order to check if reset via doorbell is supported */
7247 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7248 &cfg_base_addr_index, &cfg_offset);
7249 if (rc)
7250 goto unmap_vaddr;
7251 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7252 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7253 if (!cfgtable) {
7254 rc = -ENOMEM;
7255 goto unmap_vaddr;
7257 rc = write_driver_ver_to_cfgtable(cfgtable);
7258 if (rc)
7259 goto unmap_cfgtable;
7261 /* If reset via doorbell register is supported, use that.
7262 * There are two such methods. Favor the newest method.
7264 misc_fw_support = readl(&cfgtable->misc_fw_support);
7265 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7266 if (use_doorbell) {
7267 use_doorbell = DOORBELL_CTLR_RESET2;
7268 } else {
7269 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7270 if (use_doorbell) {
7271 dev_warn(&pdev->dev,
7272 "Soft reset not supported. Firmware update is required.\n");
7273 rc = -ENOTSUPP; /* try soft reset */
7274 goto unmap_cfgtable;
7278 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7279 if (rc)
7280 goto unmap_cfgtable;
7282 pci_restore_state(pdev);
7283 pci_write_config_word(pdev, 4, command_register);
7285 /* Some devices (notably the HP Smart Array 5i Controller)
7286 need a little pause here */
7287 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7289 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7290 if (rc) {
7291 dev_warn(&pdev->dev,
7292 "Failed waiting for board to become ready after hard reset\n");
7293 goto unmap_cfgtable;
7296 rc = controller_reset_failed(vaddr);
7297 if (rc < 0)
7298 goto unmap_cfgtable;
7299 if (rc) {
7300 dev_warn(&pdev->dev, "Unable to successfully reset "
7301 "controller. Will try soft reset.\n");
7302 rc = -ENOTSUPP;
7303 } else {
7304 dev_info(&pdev->dev, "board ready after hard reset.\n");
7307 unmap_cfgtable:
7308 iounmap(cfgtable);
7310 unmap_vaddr:
7311 iounmap(vaddr);
7312 return rc;
7316 * We cannot read the structure directly, for portability we must use
7317 * the io functions.
7318 * This is for debug only.
7320 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7322 #ifdef HPSA_DEBUG
7323 int i;
7324 char temp_name[17];
7326 dev_info(dev, "Controller Configuration information\n");
7327 dev_info(dev, "------------------------------------\n");
7328 for (i = 0; i < 4; i++)
7329 temp_name[i] = readb(&(tb->Signature[i]));
7330 temp_name[4] = '\0';
7331 dev_info(dev, " Signature = %s\n", temp_name);
7332 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7333 dev_info(dev, " Transport methods supported = 0x%x\n",
7334 readl(&(tb->TransportSupport)));
7335 dev_info(dev, " Transport methods active = 0x%x\n",
7336 readl(&(tb->TransportActive)));
7337 dev_info(dev, " Requested transport Method = 0x%x\n",
7338 readl(&(tb->HostWrite.TransportRequest)));
7339 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7340 readl(&(tb->HostWrite.CoalIntDelay)));
7341 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7342 readl(&(tb->HostWrite.CoalIntCount)));
7343 dev_info(dev, " Max outstanding commands = %d\n",
7344 readl(&(tb->CmdsOutMax)));
7345 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7346 for (i = 0; i < 16; i++)
7347 temp_name[i] = readb(&(tb->ServerName[i]));
7348 temp_name[16] = '\0';
7349 dev_info(dev, " Server Name = %s\n", temp_name);
7350 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7351 readl(&(tb->HeartBeat)));
7352 #endif /* HPSA_DEBUG */
7355 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7357 int i, offset, mem_type, bar_type;
7359 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7360 return 0;
7361 offset = 0;
7362 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7363 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7364 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7365 offset += 4;
7366 else {
7367 mem_type = pci_resource_flags(pdev, i) &
7368 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7369 switch (mem_type) {
7370 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7371 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7372 offset += 4; /* 32 bit */
7373 break;
7374 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7375 offset += 8;
7376 break;
7377 default: /* reserved in PCI 2.2 */
7378 dev_warn(&pdev->dev,
7379 "base address is invalid\n");
7380 return -1;
7381 break;
7384 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7385 return i + 1;
7387 return -1;
7390 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7392 if (h->msix_vector) {
7393 if (h->pdev->msix_enabled)
7394 pci_disable_msix(h->pdev);
7395 h->msix_vector = 0;
7396 } else if (h->msi_vector) {
7397 if (h->pdev->msi_enabled)
7398 pci_disable_msi(h->pdev);
7399 h->msi_vector = 0;
7403 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7404 * controllers that are capable. If not, we use legacy INTx mode.
7406 static void hpsa_interrupt_mode(struct ctlr_info *h)
7408 #ifdef CONFIG_PCI_MSI
7409 int err, i;
7410 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7412 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7413 hpsa_msix_entries[i].vector = 0;
7414 hpsa_msix_entries[i].entry = i;
7417 /* Some boards advertise MSI but don't really support it */
7418 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7419 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7420 goto default_int_mode;
7421 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7422 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7423 h->msix_vector = MAX_REPLY_QUEUES;
7424 if (h->msix_vector > num_online_cpus())
7425 h->msix_vector = num_online_cpus();
7426 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7427 1, h->msix_vector);
7428 if (err < 0) {
7429 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7430 h->msix_vector = 0;
7431 goto single_msi_mode;
7432 } else if (err < h->msix_vector) {
7433 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7434 "available\n", err);
7436 h->msix_vector = err;
7437 for (i = 0; i < h->msix_vector; i++)
7438 h->intr[i] = hpsa_msix_entries[i].vector;
7439 return;
7441 single_msi_mode:
7442 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7443 dev_info(&h->pdev->dev, "MSI capable controller\n");
7444 if (!pci_enable_msi(h->pdev))
7445 h->msi_vector = 1;
7446 else
7447 dev_warn(&h->pdev->dev, "MSI init failed\n");
7449 default_int_mode:
7450 #endif /* CONFIG_PCI_MSI */
7451 /* if we get here we're going to use the default interrupt mode */
7452 h->intr[h->intr_mode] = h->pdev->irq;
7455 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7457 int i;
7458 u32 subsystem_vendor_id, subsystem_device_id;
7460 subsystem_vendor_id = pdev->subsystem_vendor;
7461 subsystem_device_id = pdev->subsystem_device;
7462 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7463 subsystem_vendor_id;
7465 for (i = 0; i < ARRAY_SIZE(products); i++)
7466 if (*board_id == products[i].board_id)
7467 return i;
7469 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7470 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7471 !hpsa_allow_any) {
7472 dev_warn(&pdev->dev, "unrecognized board ID: "
7473 "0x%08x, ignoring.\n", *board_id);
7474 return -ENODEV;
7476 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480 unsigned long *memory_bar)
7482 int i;
7484 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486 /* addressing mode bits already removed */
7487 *memory_bar = pci_resource_start(pdev, i);
7488 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489 *memory_bar);
7490 return 0;
7492 dev_warn(&pdev->dev, "no memory BAR found\n");
7493 return -ENODEV;
7496 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497 int wait_for_ready)
7499 int i, iterations;
7500 u32 scratchpad;
7501 if (wait_for_ready)
7502 iterations = HPSA_BOARD_READY_ITERATIONS;
7503 else
7504 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7506 for (i = 0; i < iterations; i++) {
7507 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508 if (wait_for_ready) {
7509 if (scratchpad == HPSA_FIRMWARE_READY)
7510 return 0;
7511 } else {
7512 if (scratchpad != HPSA_FIRMWARE_READY)
7513 return 0;
7515 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7517 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518 return -ENODEV;
7521 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523 u64 *cfg_offset)
7525 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527 *cfg_base_addr &= (u32) 0x0000ffff;
7528 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529 if (*cfg_base_addr_index == -1) {
7530 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531 return -ENODEV;
7533 return 0;
7536 static void hpsa_free_cfgtables(struct ctlr_info *h)
7538 if (h->transtable) {
7539 iounmap(h->transtable);
7540 h->transtable = NULL;
7542 if (h->cfgtable) {
7543 iounmap(h->cfgtable);
7544 h->cfgtable = NULL;
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7550 + * */
7551 static int hpsa_find_cfgtables(struct ctlr_info *h)
7553 u64 cfg_offset;
7554 u32 cfg_base_addr;
7555 u64 cfg_base_addr_index;
7556 u32 trans_offset;
7557 int rc;
7559 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560 &cfg_base_addr_index, &cfg_offset);
7561 if (rc)
7562 return rc;
7563 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565 if (!h->cfgtable) {
7566 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567 return -ENOMEM;
7569 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570 if (rc)
7571 return rc;
7572 /* Find performant mode table. */
7573 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575 cfg_base_addr_index)+cfg_offset+trans_offset,
7576 sizeof(*h->transtable));
7577 if (!h->transtable) {
7578 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579 hpsa_free_cfgtables(h);
7580 return -ENOMEM;
7582 return 0;
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7587 #define MIN_MAX_COMMANDS 16
7588 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7590 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7592 /* Limit commands in memory limited kdump scenario. */
7593 if (reset_devices && h->max_commands > 32)
7594 h->max_commands = 32;
7596 if (h->max_commands < MIN_MAX_COMMANDS) {
7597 dev_warn(&h->pdev->dev,
7598 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599 h->max_commands,
7600 MIN_MAX_COMMANDS);
7601 h->max_commands = MIN_MAX_COMMANDS;
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606 * then we know that chained SG blocks work. (Original smart arrays did not
7607 * support chained SG blocks and would return zero for max sg entries.)
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7611 return h->maxsgentries > 512;
7614 /* Interrogate the hardware for some limits:
7615 * max commands, max SG elements without chaining, and with chaining,
7616 * SG chain block size, etc.
7618 static void hpsa_find_board_params(struct ctlr_info *h)
7620 hpsa_get_max_perf_mode_cmds(h);
7621 h->nr_cmds = h->max_commands;
7622 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624 if (hpsa_supports_chained_sg_blocks(h)) {
7625 /* Limit in-command s/g elements to 32 save dma'able memory. */
7626 h->max_cmd_sg_entries = 32;
7627 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628 h->maxsgentries--; /* save one for chain pointer */
7629 } else {
7631 * Original smart arrays supported at most 31 s/g entries
7632 * embedded inline in the command (trying to use more
7633 * would lock up the controller)
7635 h->max_cmd_sg_entries = 31;
7636 h->maxsgentries = 31; /* default to traditional values */
7637 h->chainsize = 0;
7640 /* Find out what task management functions are supported and cache */
7641 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7652 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654 return false;
7656 return true;
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7661 u32 driver_support;
7663 driver_support = readl(&(h->cfgtable->driver_support));
7664 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665 #ifdef CONFIG_X86
7666 driver_support |= ENABLE_SCSI_PREFETCH;
7667 #endif
7668 driver_support |= ENABLE_UNIT_ATTN;
7669 writel(driver_support, &(h->cfgtable->driver_support));
7672 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7673 * in a prefetch beyond physical memory.
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7677 u32 dma_prefetch;
7679 if (h->board_id != 0x3225103C)
7680 return;
7681 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682 dma_prefetch |= 0x8000;
7683 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7688 int i;
7689 u32 doorbell_value;
7690 unsigned long flags;
7691 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693 spin_lock_irqsave(&h->lock, flags);
7694 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695 spin_unlock_irqrestore(&h->lock, flags);
7696 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697 goto done;
7698 /* delay and try again */
7699 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7701 return -ENODEV;
7702 done:
7703 return 0;
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7708 int i;
7709 u32 doorbell_value;
7710 unsigned long flags;
7712 /* under certain very rare conditions, this can take awhile.
7713 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714 * as we enter this code.)
7716 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717 if (h->remove_in_progress)
7718 goto done;
7719 spin_lock_irqsave(&h->lock, flags);
7720 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721 spin_unlock_irqrestore(&h->lock, flags);
7722 if (!(doorbell_value & CFGTBL_ChangeReq))
7723 goto done;
7724 /* delay and try again */
7725 msleep(MODE_CHANGE_WAIT_INTERVAL);
7727 return -ENODEV;
7728 done:
7729 return 0;
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7735 u32 trans_support;
7737 trans_support = readl(&(h->cfgtable->TransportSupport));
7738 if (!(trans_support & SIMPLE_MODE))
7739 return -ENOTSUPP;
7741 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7743 /* Update the field, and then ring the doorbell */
7744 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747 if (hpsa_wait_for_mode_change_ack(h))
7748 goto error;
7749 print_cfg_table(&h->pdev->dev, h->cfgtable);
7750 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751 goto error;
7752 h->transMethod = CFGTBL_Trans_Simple;
7753 return 0;
7754 error:
7755 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756 return -ENODEV;
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info *h)
7762 hpsa_free_cfgtables(h); /* pci_init 4 */
7763 iounmap(h->vaddr); /* pci_init 3 */
7764 h->vaddr = NULL;
7765 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7767 * call pci_disable_device before pci_release_regions per
7768 * Documentation/PCI/pci.txt
7770 pci_disable_device(h->pdev); /* pci_init 1 */
7771 pci_release_regions(h->pdev); /* pci_init 2 */
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info *h)
7777 int prod_index, err;
7779 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7780 if (prod_index < 0)
7781 return prod_index;
7782 h->product_name = products[prod_index].product_name;
7783 h->access = *(products[prod_index].access);
7785 h->needs_abort_tags_swizzled =
7786 ctlr_needs_abort_tags_swizzled(h->board_id);
7788 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7789 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7791 err = pci_enable_device(h->pdev);
7792 if (err) {
7793 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7794 pci_disable_device(h->pdev);
7795 return err;
7798 err = pci_request_regions(h->pdev, HPSA);
7799 if (err) {
7800 dev_err(&h->pdev->dev,
7801 "failed to obtain PCI resources\n");
7802 pci_disable_device(h->pdev);
7803 return err;
7806 pci_set_master(h->pdev);
7808 hpsa_interrupt_mode(h);
7809 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7810 if (err)
7811 goto clean2; /* intmode+region, pci */
7812 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7813 if (!h->vaddr) {
7814 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7815 err = -ENOMEM;
7816 goto clean2; /* intmode+region, pci */
7818 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7819 if (err)
7820 goto clean3; /* vaddr, intmode+region, pci */
7821 err = hpsa_find_cfgtables(h);
7822 if (err)
7823 goto clean3; /* vaddr, intmode+region, pci */
7824 hpsa_find_board_params(h);
7826 if (!hpsa_CISS_signature_present(h)) {
7827 err = -ENODEV;
7828 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7830 hpsa_set_driver_support_bits(h);
7831 hpsa_p600_dma_prefetch_quirk(h);
7832 err = hpsa_enter_simple_mode(h);
7833 if (err)
7834 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7835 return 0;
7837 clean4: /* cfgtables, vaddr, intmode+region, pci */
7838 hpsa_free_cfgtables(h);
7839 clean3: /* vaddr, intmode+region, pci */
7840 iounmap(h->vaddr);
7841 h->vaddr = NULL;
7842 clean2: /* intmode+region, pci */
7843 hpsa_disable_interrupt_mode(h);
7845 * call pci_disable_device before pci_release_regions per
7846 * Documentation/PCI/pci.txt
7848 pci_disable_device(h->pdev);
7849 pci_release_regions(h->pdev);
7850 return err;
7853 static void hpsa_hba_inquiry(struct ctlr_info *h)
7855 int rc;
7857 #define HBA_INQUIRY_BYTE_COUNT 64
7858 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7859 if (!h->hba_inquiry_data)
7860 return;
7861 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7862 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7863 if (rc != 0) {
7864 kfree(h->hba_inquiry_data);
7865 h->hba_inquiry_data = NULL;
7869 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7871 int rc, i;
7872 void __iomem *vaddr;
7874 if (!reset_devices)
7875 return 0;
7877 /* kdump kernel is loading, we don't know in which state is
7878 * the pci interface. The dev->enable_cnt is equal zero
7879 * so we call enable+disable, wait a while and switch it on.
7881 rc = pci_enable_device(pdev);
7882 if (rc) {
7883 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7884 return -ENODEV;
7886 pci_disable_device(pdev);
7887 msleep(260); /* a randomly chosen number */
7888 rc = pci_enable_device(pdev);
7889 if (rc) {
7890 dev_warn(&pdev->dev, "failed to enable device.\n");
7891 return -ENODEV;
7894 pci_set_master(pdev);
7896 vaddr = pci_ioremap_bar(pdev, 0);
7897 if (vaddr == NULL) {
7898 rc = -ENOMEM;
7899 goto out_disable;
7901 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7902 iounmap(vaddr);
7904 /* Reset the controller with a PCI power-cycle or via doorbell */
7905 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7907 /* -ENOTSUPP here means we cannot reset the controller
7908 * but it's already (and still) up and running in
7909 * "performant mode". Or, it might be 640x, which can't reset
7910 * due to concerns about shared bbwc between 6402/6404 pair.
7912 if (rc)
7913 goto out_disable;
7915 /* Now try to get the controller to respond to a no-op */
7916 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7917 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7918 if (hpsa_noop(pdev) == 0)
7919 break;
7920 else
7921 dev_warn(&pdev->dev, "no-op failed%s\n",
7922 (i < 11 ? "; re-trying" : ""));
7925 out_disable:
7927 pci_disable_device(pdev);
7928 return rc;
7931 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7933 kfree(h->cmd_pool_bits);
7934 h->cmd_pool_bits = NULL;
7935 if (h->cmd_pool) {
7936 pci_free_consistent(h->pdev,
7937 h->nr_cmds * sizeof(struct CommandList),
7938 h->cmd_pool,
7939 h->cmd_pool_dhandle);
7940 h->cmd_pool = NULL;
7941 h->cmd_pool_dhandle = 0;
7943 if (h->errinfo_pool) {
7944 pci_free_consistent(h->pdev,
7945 h->nr_cmds * sizeof(struct ErrorInfo),
7946 h->errinfo_pool,
7947 h->errinfo_pool_dhandle);
7948 h->errinfo_pool = NULL;
7949 h->errinfo_pool_dhandle = 0;
7953 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7955 h->cmd_pool_bits = kzalloc(
7956 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7957 sizeof(unsigned long), GFP_KERNEL);
7958 h->cmd_pool = pci_alloc_consistent(h->pdev,
7959 h->nr_cmds * sizeof(*h->cmd_pool),
7960 &(h->cmd_pool_dhandle));
7961 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7962 h->nr_cmds * sizeof(*h->errinfo_pool),
7963 &(h->errinfo_pool_dhandle));
7964 if ((h->cmd_pool_bits == NULL)
7965 || (h->cmd_pool == NULL)
7966 || (h->errinfo_pool == NULL)) {
7967 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7968 goto clean_up;
7970 hpsa_preinitialize_commands(h);
7971 return 0;
7972 clean_up:
7973 hpsa_free_cmd_pool(h);
7974 return -ENOMEM;
7977 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7979 int i, cpu;
7981 cpu = cpumask_first(cpu_online_mask);
7982 for (i = 0; i < h->msix_vector; i++) {
7983 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7984 cpu = cpumask_next(cpu, cpu_online_mask);
7988 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7989 static void hpsa_free_irqs(struct ctlr_info *h)
7991 int i;
7993 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7994 /* Single reply queue, only one irq to free */
7995 i = h->intr_mode;
7996 irq_set_affinity_hint(h->intr[i], NULL);
7997 free_irq(h->intr[i], &h->q[i]);
7998 h->q[i] = 0;
7999 return;
8002 for (i = 0; i < h->msix_vector; i++) {
8003 irq_set_affinity_hint(h->intr[i], NULL);
8004 free_irq(h->intr[i], &h->q[i]);
8005 h->q[i] = 0;
8007 for (; i < MAX_REPLY_QUEUES; i++)
8008 h->q[i] = 0;
8011 /* returns 0 on success; cleans up and returns -Enn on error */
8012 static int hpsa_request_irqs(struct ctlr_info *h,
8013 irqreturn_t (*msixhandler)(int, void *),
8014 irqreturn_t (*intxhandler)(int, void *))
8016 int rc, i;
8019 * initialize h->q[x] = x so that interrupt handlers know which
8020 * queue to process.
8022 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8023 h->q[i] = (u8) i;
8025 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8026 /* If performant mode and MSI-X, use multiple reply queues */
8027 for (i = 0; i < h->msix_vector; i++) {
8028 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8029 rc = request_irq(h->intr[i], msixhandler,
8030 0, h->intrname[i],
8031 &h->q[i]);
8032 if (rc) {
8033 int j;
8035 dev_err(&h->pdev->dev,
8036 "failed to get irq %d for %s\n",
8037 h->intr[i], h->devname);
8038 for (j = 0; j < i; j++) {
8039 free_irq(h->intr[j], &h->q[j]);
8040 h->q[j] = 0;
8042 for (; j < MAX_REPLY_QUEUES; j++)
8043 h->q[j] = 0;
8044 return rc;
8047 hpsa_irq_affinity_hints(h);
8048 } else {
8049 /* Use single reply pool */
8050 if (h->msix_vector > 0 || h->msi_vector) {
8051 if (h->msix_vector)
8052 sprintf(h->intrname[h->intr_mode],
8053 "%s-msix", h->devname);
8054 else
8055 sprintf(h->intrname[h->intr_mode],
8056 "%s-msi", h->devname);
8057 rc = request_irq(h->intr[h->intr_mode],
8058 msixhandler, 0,
8059 h->intrname[h->intr_mode],
8060 &h->q[h->intr_mode]);
8061 } else {
8062 sprintf(h->intrname[h->intr_mode],
8063 "%s-intx", h->devname);
8064 rc = request_irq(h->intr[h->intr_mode],
8065 intxhandler, IRQF_SHARED,
8066 h->intrname[h->intr_mode],
8067 &h->q[h->intr_mode]);
8069 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8071 if (rc) {
8072 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8073 h->intr[h->intr_mode], h->devname);
8074 hpsa_free_irqs(h);
8075 return -ENODEV;
8077 return 0;
8080 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8082 int rc;
8083 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8085 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8086 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8087 if (rc) {
8088 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8089 return rc;
8092 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8093 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8094 if (rc) {
8095 dev_warn(&h->pdev->dev, "Board failed to become ready "
8096 "after soft reset.\n");
8097 return rc;
8100 return 0;
8103 static void hpsa_free_reply_queues(struct ctlr_info *h)
8105 int i;
8107 for (i = 0; i < h->nreply_queues; i++) {
8108 if (!h->reply_queue[i].head)
8109 continue;
8110 pci_free_consistent(h->pdev,
8111 h->reply_queue_size,
8112 h->reply_queue[i].head,
8113 h->reply_queue[i].busaddr);
8114 h->reply_queue[i].head = NULL;
8115 h->reply_queue[i].busaddr = 0;
8117 h->reply_queue_size = 0;
8120 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8122 hpsa_free_performant_mode(h); /* init_one 7 */
8123 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8124 hpsa_free_cmd_pool(h); /* init_one 5 */
8125 hpsa_free_irqs(h); /* init_one 4 */
8126 scsi_host_put(h->scsi_host); /* init_one 3 */
8127 h->scsi_host = NULL; /* init_one 3 */
8128 hpsa_free_pci_init(h); /* init_one 2_5 */
8129 free_percpu(h->lockup_detected); /* init_one 2 */
8130 h->lockup_detected = NULL; /* init_one 2 */
8131 if (h->resubmit_wq) {
8132 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8133 h->resubmit_wq = NULL;
8135 if (h->rescan_ctlr_wq) {
8136 destroy_workqueue(h->rescan_ctlr_wq);
8137 h->rescan_ctlr_wq = NULL;
8139 kfree(h); /* init_one 1 */
8142 /* Called when controller lockup detected. */
8143 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8145 int i, refcount;
8146 struct CommandList *c;
8147 int failcount = 0;
8149 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8150 for (i = 0; i < h->nr_cmds; i++) {
8151 c = h->cmd_pool + i;
8152 refcount = atomic_inc_return(&c->refcount);
8153 if (refcount > 1) {
8154 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8155 finish_cmd(c);
8156 atomic_dec(&h->commands_outstanding);
8157 failcount++;
8159 cmd_free(h, c);
8161 dev_warn(&h->pdev->dev,
8162 "failed %d commands in fail_all\n", failcount);
8165 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8167 int cpu;
8169 for_each_online_cpu(cpu) {
8170 u32 *lockup_detected;
8171 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8172 *lockup_detected = value;
8174 wmb(); /* be sure the per-cpu variables are out to memory */
8177 static void controller_lockup_detected(struct ctlr_info *h)
8179 unsigned long flags;
8180 u32 lockup_detected;
8182 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8183 spin_lock_irqsave(&h->lock, flags);
8184 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8185 if (!lockup_detected) {
8186 /* no heartbeat, but controller gave us a zero. */
8187 dev_warn(&h->pdev->dev,
8188 "lockup detected after %d but scratchpad register is zero\n",
8189 h->heartbeat_sample_interval / HZ);
8190 lockup_detected = 0xffffffff;
8192 set_lockup_detected_for_all_cpus(h, lockup_detected);
8193 spin_unlock_irqrestore(&h->lock, flags);
8194 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8195 lockup_detected, h->heartbeat_sample_interval / HZ);
8196 pci_disable_device(h->pdev);
8197 fail_all_outstanding_cmds(h);
8200 static int detect_controller_lockup(struct ctlr_info *h)
8202 u64 now;
8203 u32 heartbeat;
8204 unsigned long flags;
8206 now = get_jiffies_64();
8207 /* If we've received an interrupt recently, we're ok. */
8208 if (time_after64(h->last_intr_timestamp +
8209 (h->heartbeat_sample_interval), now))
8210 return false;
8213 * If we've already checked the heartbeat recently, we're ok.
8214 * This could happen if someone sends us a signal. We
8215 * otherwise don't care about signals in this thread.
8217 if (time_after64(h->last_heartbeat_timestamp +
8218 (h->heartbeat_sample_interval), now))
8219 return false;
8221 /* If heartbeat has not changed since we last looked, we're not ok. */
8222 spin_lock_irqsave(&h->lock, flags);
8223 heartbeat = readl(&h->cfgtable->HeartBeat);
8224 spin_unlock_irqrestore(&h->lock, flags);
8225 if (h->last_heartbeat == heartbeat) {
8226 controller_lockup_detected(h);
8227 return true;
8230 /* We're ok. */
8231 h->last_heartbeat = heartbeat;
8232 h->last_heartbeat_timestamp = now;
8233 return false;
8236 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8238 int i;
8239 char *event_type;
8241 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8242 return;
8244 /* Ask the controller to clear the events we're handling. */
8245 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8246 | CFGTBL_Trans_io_accel2)) &&
8247 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8248 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8250 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8251 event_type = "state change";
8252 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8253 event_type = "configuration change";
8254 /* Stop sending new RAID offload reqs via the IO accelerator */
8255 scsi_block_requests(h->scsi_host);
8256 for (i = 0; i < h->ndevices; i++)
8257 h->dev[i]->offload_enabled = 0;
8258 hpsa_drain_accel_commands(h);
8259 /* Set 'accelerator path config change' bit */
8260 dev_warn(&h->pdev->dev,
8261 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8262 h->events, event_type);
8263 writel(h->events, &(h->cfgtable->clear_event_notify));
8264 /* Set the "clear event notify field update" bit 6 */
8265 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8266 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8267 hpsa_wait_for_clear_event_notify_ack(h);
8268 scsi_unblock_requests(h->scsi_host);
8269 } else {
8270 /* Acknowledge controller notification events. */
8271 writel(h->events, &(h->cfgtable->clear_event_notify));
8272 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8273 hpsa_wait_for_clear_event_notify_ack(h);
8274 #if 0
8275 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8276 hpsa_wait_for_mode_change_ack(h);
8277 #endif
8279 return;
8282 /* Check a register on the controller to see if there are configuration
8283 * changes (added/changed/removed logical drives, etc.) which mean that
8284 * we should rescan the controller for devices.
8285 * Also check flag for driver-initiated rescan.
8287 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8289 if (h->drv_req_rescan) {
8290 h->drv_req_rescan = 0;
8291 return 1;
8294 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8295 return 0;
8297 h->events = readl(&(h->cfgtable->event_notify));
8298 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8302 * Check if any of the offline devices have become ready
8304 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8306 unsigned long flags;
8307 struct offline_device_entry *d;
8308 struct list_head *this, *tmp;
8310 spin_lock_irqsave(&h->offline_device_lock, flags);
8311 list_for_each_safe(this, tmp, &h->offline_device_list) {
8312 d = list_entry(this, struct offline_device_entry,
8313 offline_list);
8314 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8315 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8316 spin_lock_irqsave(&h->offline_device_lock, flags);
8317 list_del(&d->offline_list);
8318 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8319 return 1;
8321 spin_lock_irqsave(&h->offline_device_lock, flags);
8323 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8324 return 0;
8327 static int hpsa_luns_changed(struct ctlr_info *h)
8329 int rc = 1; /* assume there are changes */
8330 struct ReportLUNdata *logdev = NULL;
8332 /* if we can't find out if lun data has changed,
8333 * assume that it has.
8336 if (!h->lastlogicals)
8337 goto out;
8339 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8340 if (!logdev) {
8341 dev_warn(&h->pdev->dev,
8342 "Out of memory, can't track lun changes.\n");
8343 goto out;
8345 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8346 dev_warn(&h->pdev->dev,
8347 "report luns failed, can't track lun changes.\n");
8348 goto out;
8350 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8351 dev_info(&h->pdev->dev,
8352 "Lun changes detected.\n");
8353 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8354 goto out;
8355 } else
8356 rc = 0; /* no changes detected. */
8357 out:
8358 kfree(logdev);
8359 return rc;
8362 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8364 unsigned long flags;
8365 struct ctlr_info *h = container_of(to_delayed_work(work),
8366 struct ctlr_info, rescan_ctlr_work);
8369 if (h->remove_in_progress)
8370 return;
8372 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8373 scsi_host_get(h->scsi_host);
8374 hpsa_ack_ctlr_events(h);
8375 hpsa_scan_start(h->scsi_host);
8376 scsi_host_put(h->scsi_host);
8377 } else if (h->discovery_polling) {
8378 hpsa_disable_rld_caching(h);
8379 if (hpsa_luns_changed(h)) {
8380 struct Scsi_Host *sh = NULL;
8382 dev_info(&h->pdev->dev,
8383 "driver discovery polling rescan.\n");
8384 sh = scsi_host_get(h->scsi_host);
8385 if (sh != NULL) {
8386 hpsa_scan_start(sh);
8387 scsi_host_put(sh);
8391 spin_lock_irqsave(&h->lock, flags);
8392 if (!h->remove_in_progress)
8393 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8394 h->heartbeat_sample_interval);
8395 spin_unlock_irqrestore(&h->lock, flags);
8398 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8400 unsigned long flags;
8401 struct ctlr_info *h = container_of(to_delayed_work(work),
8402 struct ctlr_info, monitor_ctlr_work);
8404 detect_controller_lockup(h);
8405 if (lockup_detected(h))
8406 return;
8408 spin_lock_irqsave(&h->lock, flags);
8409 if (!h->remove_in_progress)
8410 schedule_delayed_work(&h->monitor_ctlr_work,
8411 h->heartbeat_sample_interval);
8412 spin_unlock_irqrestore(&h->lock, flags);
8415 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8416 char *name)
8418 struct workqueue_struct *wq = NULL;
8420 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8421 if (!wq)
8422 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8424 return wq;
8427 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8429 int dac, rc;
8430 struct ctlr_info *h;
8431 int try_soft_reset = 0;
8432 unsigned long flags;
8433 u32 board_id;
8435 if (number_of_controllers == 0)
8436 printk(KERN_INFO DRIVER_NAME "\n");
8438 rc = hpsa_lookup_board_id(pdev, &board_id);
8439 if (rc < 0) {
8440 dev_warn(&pdev->dev, "Board ID not found\n");
8441 return rc;
8444 rc = hpsa_init_reset_devices(pdev, board_id);
8445 if (rc) {
8446 if (rc != -ENOTSUPP)
8447 return rc;
8448 /* If the reset fails in a particular way (it has no way to do
8449 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8450 * a soft reset once we get the controller configured up to the
8451 * point that it can accept a command.
8453 try_soft_reset = 1;
8454 rc = 0;
8457 reinit_after_soft_reset:
8459 /* Command structures must be aligned on a 32-byte boundary because
8460 * the 5 lower bits of the address are used by the hardware. and by
8461 * the driver. See comments in hpsa.h for more info.
8463 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8464 h = kzalloc(sizeof(*h), GFP_KERNEL);
8465 if (!h) {
8466 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8467 return -ENOMEM;
8470 h->pdev = pdev;
8472 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8473 INIT_LIST_HEAD(&h->offline_device_list);
8474 spin_lock_init(&h->lock);
8475 spin_lock_init(&h->offline_device_lock);
8476 spin_lock_init(&h->scan_lock);
8477 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8478 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8480 /* Allocate and clear per-cpu variable lockup_detected */
8481 h->lockup_detected = alloc_percpu(u32);
8482 if (!h->lockup_detected) {
8483 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8484 rc = -ENOMEM;
8485 goto clean1; /* aer/h */
8487 set_lockup_detected_for_all_cpus(h, 0);
8489 rc = hpsa_pci_init(h);
8490 if (rc)
8491 goto clean2; /* lu, aer/h */
8493 /* relies on h-> settings made by hpsa_pci_init, including
8494 * interrupt_mode h->intr */
8495 rc = hpsa_scsi_host_alloc(h);
8496 if (rc)
8497 goto clean2_5; /* pci, lu, aer/h */
8499 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8500 h->ctlr = number_of_controllers;
8501 number_of_controllers++;
8503 /* configure PCI DMA stuff */
8504 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8505 if (rc == 0) {
8506 dac = 1;
8507 } else {
8508 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8509 if (rc == 0) {
8510 dac = 0;
8511 } else {
8512 dev_err(&pdev->dev, "no suitable DMA available\n");
8513 goto clean3; /* shost, pci, lu, aer/h */
8517 /* make sure the board interrupts are off */
8518 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8521 if (rc)
8522 goto clean3; /* shost, pci, lu, aer/h */
8523 rc = hpsa_alloc_cmd_pool(h);
8524 if (rc)
8525 goto clean4; /* irq, shost, pci, lu, aer/h */
8526 rc = hpsa_alloc_sg_chain_blocks(h);
8527 if (rc)
8528 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8529 init_waitqueue_head(&h->scan_wait_queue);
8530 init_waitqueue_head(&h->abort_cmd_wait_queue);
8531 init_waitqueue_head(&h->event_sync_wait_queue);
8532 mutex_init(&h->reset_mutex);
8533 h->scan_finished = 1; /* no scan currently in progress */
8534 h->scan_waiting = 0;
8536 pci_set_drvdata(pdev, h);
8537 h->ndevices = 0;
8539 spin_lock_init(&h->devlock);
8540 rc = hpsa_put_ctlr_into_performant_mode(h);
8541 if (rc)
8542 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8544 /* hook into SCSI subsystem */
8545 rc = hpsa_scsi_add_host(h);
8546 if (rc)
8547 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8549 /* create the resubmit workqueue */
8550 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551 if (!h->rescan_ctlr_wq) {
8552 rc = -ENOMEM;
8553 goto clean7;
8556 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557 if (!h->resubmit_wq) {
8558 rc = -ENOMEM;
8559 goto clean7; /* aer/h */
8563 * At this point, the controller is ready to take commands.
8564 * Now, if reset_devices and the hard reset didn't work, try
8565 * the soft reset and see if that works.
8567 if (try_soft_reset) {
8569 /* This is kind of gross. We may or may not get a completion
8570 * from the soft reset command, and if we do, then the value
8571 * from the fifo may or may not be valid. So, we wait 10 secs
8572 * after the reset throwing away any completions we get during
8573 * that time. Unregister the interrupt handler and register
8574 * fake ones to scoop up any residual completions.
8576 spin_lock_irqsave(&h->lock, flags);
8577 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578 spin_unlock_irqrestore(&h->lock, flags);
8579 hpsa_free_irqs(h);
8580 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8581 hpsa_intx_discard_completions);
8582 if (rc) {
8583 dev_warn(&h->pdev->dev,
8584 "Failed to request_irq after soft reset.\n");
8586 * cannot goto clean7 or free_irqs will be called
8587 * again. Instead, do its work
8589 hpsa_free_performant_mode(h); /* clean7 */
8590 hpsa_free_sg_chain_blocks(h); /* clean6 */
8591 hpsa_free_cmd_pool(h); /* clean5 */
8593 * skip hpsa_free_irqs(h) clean4 since that
8594 * was just called before request_irqs failed
8596 goto clean3;
8599 rc = hpsa_kdump_soft_reset(h);
8600 if (rc)
8601 /* Neither hard nor soft reset worked, we're hosed. */
8602 goto clean7;
8604 dev_info(&h->pdev->dev, "Board READY.\n");
8605 dev_info(&h->pdev->dev,
8606 "Waiting for stale completions to drain.\n");
8607 h->access.set_intr_mask(h, HPSA_INTR_ON);
8608 msleep(10000);
8609 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8611 rc = controller_reset_failed(h->cfgtable);
8612 if (rc)
8613 dev_info(&h->pdev->dev,
8614 "Soft reset appears to have failed.\n");
8616 /* since the controller's reset, we have to go back and re-init
8617 * everything. Easiest to just forget what we've done and do it
8618 * all over again.
8620 hpsa_undo_allocations_after_kdump_soft_reset(h);
8621 try_soft_reset = 0;
8622 if (rc)
8623 /* don't goto clean, we already unallocated */
8624 return -ENODEV;
8626 goto reinit_after_soft_reset;
8629 /* Enable Accelerated IO path at driver layer */
8630 h->acciopath_status = 1;
8631 /* Disable discovery polling.*/
8632 h->discovery_polling = 0;
8635 /* Turn the interrupts on so we can service requests */
8636 h->access.set_intr_mask(h, HPSA_INTR_ON);
8638 hpsa_hba_inquiry(h);
8640 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641 if (!h->lastlogicals)
8642 dev_info(&h->pdev->dev,
8643 "Can't track change to report lun data\n");
8645 /* Monitor the controller for firmware lockups */
8646 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648 schedule_delayed_work(&h->monitor_ctlr_work,
8649 h->heartbeat_sample_interval);
8650 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652 h->heartbeat_sample_interval);
8653 return 0;
8655 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656 hpsa_free_performant_mode(h);
8657 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659 hpsa_free_sg_chain_blocks(h);
8660 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8661 hpsa_free_cmd_pool(h);
8662 clean4: /* irq, shost, pci, lu, aer/h */
8663 hpsa_free_irqs(h);
8664 clean3: /* shost, pci, lu, aer/h */
8665 scsi_host_put(h->scsi_host);
8666 h->scsi_host = NULL;
8667 clean2_5: /* pci, lu, aer/h */
8668 hpsa_free_pci_init(h);
8669 clean2: /* lu, aer/h */
8670 if (h->lockup_detected) {
8671 free_percpu(h->lockup_detected);
8672 h->lockup_detected = NULL;
8674 clean1: /* wq/aer/h */
8675 if (h->resubmit_wq) {
8676 destroy_workqueue(h->resubmit_wq);
8677 h->resubmit_wq = NULL;
8679 if (h->rescan_ctlr_wq) {
8680 destroy_workqueue(h->rescan_ctlr_wq);
8681 h->rescan_ctlr_wq = NULL;
8683 kfree(h);
8684 return rc;
8687 static void hpsa_flush_cache(struct ctlr_info *h)
8689 char *flush_buf;
8690 struct CommandList *c;
8691 int rc;
8693 if (unlikely(lockup_detected(h)))
8694 return;
8695 flush_buf = kzalloc(4, GFP_KERNEL);
8696 if (!flush_buf)
8697 return;
8699 c = cmd_alloc(h);
8701 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702 RAID_CTLR_LUNID, TYPE_CMD)) {
8703 goto out;
8705 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706 PCI_DMA_TODEVICE, NO_TIMEOUT);
8707 if (rc)
8708 goto out;
8709 if (c->err_info->CommandStatus != 0)
8710 out:
8711 dev_warn(&h->pdev->dev,
8712 "error flushing cache on controller\n");
8713 cmd_free(h, c);
8714 kfree(flush_buf);
8717 /* Make controller gather fresh report lun data each time we
8718 * send down a report luns request
8720 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8722 u32 *options;
8723 struct CommandList *c;
8724 int rc;
8726 /* Don't bother trying to set diag options if locked up */
8727 if (unlikely(h->lockup_detected))
8728 return;
8730 options = kzalloc(sizeof(*options), GFP_KERNEL);
8731 if (!options) {
8732 dev_err(&h->pdev->dev,
8733 "Error: failed to disable rld caching, during alloc.\n");
8734 return;
8737 c = cmd_alloc(h);
8739 /* first, get the current diag options settings */
8740 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741 RAID_CTLR_LUNID, TYPE_CMD))
8742 goto errout;
8744 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747 goto errout;
8749 /* Now, set the bit for disabling the RLD caching */
8750 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8752 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753 RAID_CTLR_LUNID, TYPE_CMD))
8754 goto errout;
8756 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757 PCI_DMA_TODEVICE, NO_TIMEOUT);
8758 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8759 goto errout;
8761 /* Now verify that it got set: */
8762 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763 RAID_CTLR_LUNID, TYPE_CMD))
8764 goto errout;
8766 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8769 goto errout;
8771 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8772 goto out;
8774 errout:
8775 dev_err(&h->pdev->dev,
8776 "Error: failed to disable report lun data caching.\n");
8777 out:
8778 cmd_free(h, c);
8779 kfree(options);
8782 static void hpsa_shutdown(struct pci_dev *pdev)
8784 struct ctlr_info *h;
8786 h = pci_get_drvdata(pdev);
8787 /* Turn board interrupts off and send the flush cache command
8788 * sendcmd will turn off interrupt, and send the flush...
8789 * To write all data in the battery backed cache to disks
8791 hpsa_flush_cache(h);
8792 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8793 hpsa_free_irqs(h); /* init_one 4 */
8794 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8797 static void hpsa_free_device_info(struct ctlr_info *h)
8799 int i;
8801 for (i = 0; i < h->ndevices; i++) {
8802 kfree(h->dev[i]);
8803 h->dev[i] = NULL;
8807 static void hpsa_remove_one(struct pci_dev *pdev)
8809 struct ctlr_info *h;
8810 unsigned long flags;
8812 if (pci_get_drvdata(pdev) == NULL) {
8813 dev_err(&pdev->dev, "unable to remove device\n");
8814 return;
8816 h = pci_get_drvdata(pdev);
8818 /* Get rid of any controller monitoring work items */
8819 spin_lock_irqsave(&h->lock, flags);
8820 h->remove_in_progress = 1;
8821 spin_unlock_irqrestore(&h->lock, flags);
8822 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824 destroy_workqueue(h->rescan_ctlr_wq);
8825 destroy_workqueue(h->resubmit_wq);
8827 hpsa_delete_sas_host(h);
8830 * Call before disabling interrupts.
8831 * scsi_remove_host can trigger I/O operations especially
8832 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8833 * operations which cannot complete and will hang the system.
8835 if (h->scsi_host)
8836 scsi_remove_host(h->scsi_host); /* init_one 8 */
8837 /* includes hpsa_free_irqs - init_one 4 */
8838 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8839 hpsa_shutdown(pdev);
8841 hpsa_free_device_info(h); /* scan */
8843 kfree(h->hba_inquiry_data); /* init_one 10 */
8844 h->hba_inquiry_data = NULL; /* init_one 10 */
8845 hpsa_free_ioaccel2_sg_chain_blocks(h);
8846 hpsa_free_performant_mode(h); /* init_one 7 */
8847 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8848 hpsa_free_cmd_pool(h); /* init_one 5 */
8849 kfree(h->lastlogicals);
8851 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8853 scsi_host_put(h->scsi_host); /* init_one 3 */
8854 h->scsi_host = NULL; /* init_one 3 */
8856 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8857 hpsa_free_pci_init(h); /* init_one 2.5 */
8859 free_percpu(h->lockup_detected); /* init_one 2 */
8860 h->lockup_detected = NULL; /* init_one 2 */
8861 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8863 kfree(h); /* init_one 1 */
8866 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867 __attribute__((unused)) pm_message_t state)
8869 return -ENOSYS;
8872 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8874 return -ENOSYS;
8877 static struct pci_driver hpsa_pci_driver = {
8878 .name = HPSA,
8879 .probe = hpsa_init_one,
8880 .remove = hpsa_remove_one,
8881 .id_table = hpsa_pci_device_id, /* id_table */
8882 .shutdown = hpsa_shutdown,
8883 .suspend = hpsa_suspend,
8884 .resume = hpsa_resume,
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888 * scatter gather elements supported) and bucket[],
8889 * which is an array of 8 integers. The bucket[] array
8890 * contains 8 different DMA transfer sizes (in 16
8891 * byte increments) which the controller uses to fetch
8892 * commands. This function fills in bucket_map[], which
8893 * maps a given number of scatter gather elements to one of
8894 * the 8 DMA transfer sizes. The point of it is to allow the
8895 * controller to only do as much DMA as needed to fetch the
8896 * command, with the DMA transfer size encoded in the lower
8897 * bits of the command address.
8899 static void calc_bucket_map(int bucket[], int num_buckets,
8900 int nsgs, int min_blocks, u32 *bucket_map)
8902 int i, j, b, size;
8904 /* Note, bucket_map must have nsgs+1 entries. */
8905 for (i = 0; i <= nsgs; i++) {
8906 /* Compute size of a command with i SG entries */
8907 size = i + min_blocks;
8908 b = num_buckets; /* Assume the biggest bucket */
8909 /* Find the bucket that is just big enough */
8910 for (j = 0; j < num_buckets; j++) {
8911 if (bucket[j] >= size) {
8912 b = j;
8913 break;
8916 /* for a command with i SG entries, use bucket b. */
8917 bucket_map[i] = b;
8922 * return -ENODEV on err, 0 on success (or no action)
8923 * allocates numerous items that must be freed later
8925 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8927 int i;
8928 unsigned long register_value;
8929 unsigned long transMethod = CFGTBL_Trans_Performant |
8930 (trans_support & CFGTBL_Trans_use_short_tags) |
8931 CFGTBL_Trans_enable_directed_msix |
8932 (trans_support & (CFGTBL_Trans_io_accel1 |
8933 CFGTBL_Trans_io_accel2));
8934 struct access_method access = SA5_performant_access;
8936 /* This is a bit complicated. There are 8 registers on
8937 * the controller which we write to to tell it 8 different
8938 * sizes of commands which there may be. It's a way of
8939 * reducing the DMA done to fetch each command. Encoded into
8940 * each command's tag are 3 bits which communicate to the controller
8941 * which of the eight sizes that command fits within. The size of
8942 * each command depends on how many scatter gather entries there are.
8943 * Each SG entry requires 16 bytes. The eight registers are programmed
8944 * with the number of 16-byte blocks a command of that size requires.
8945 * The smallest command possible requires 5 such 16 byte blocks.
8946 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947 * blocks. Note, this only extends to the SG entries contained
8948 * within the command block, and does not extend to chained blocks
8949 * of SG elements. bft[] contains the eight values we write to
8950 * the registers. They are not evenly distributed, but have more
8951 * sizes for small commands, and fewer sizes for larger commands.
8953 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957 13, 14, 15, 16, 17, 18, 19,
8958 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962 16 * MIN_IOACCEL2_BFT_ENTRY);
8963 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8964 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8965 /* 5 = 1 s/g entry or 4k
8966 * 6 = 2 s/g entry or 8k
8967 * 8 = 4 s/g entry or 16k
8968 * 10 = 6 s/g entry or 24k
8971 /* If the controller supports either ioaccel method then
8972 * we can also use the RAID stack submit path that does not
8973 * perform the superfluous readl() after each command submission.
8975 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976 access = SA5_performant_access_no_read;
8978 /* Controller spec: zero out this buffer. */
8979 for (i = 0; i < h->nreply_queues; i++)
8980 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8982 bft[7] = SG_ENTRIES_IN_CMD + 4;
8983 calc_bucket_map(bft, ARRAY_SIZE(bft),
8984 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8985 for (i = 0; i < 8; i++)
8986 writel(bft[i], &h->transtable->BlockFetch[i]);
8988 /* size of controller ring buffer */
8989 writel(h->max_commands, &h->transtable->RepQSize);
8990 writel(h->nreply_queues, &h->transtable->RepQCount);
8991 writel(0, &h->transtable->RepQCtrAddrLow32);
8992 writel(0, &h->transtable->RepQCtrAddrHigh32);
8994 for (i = 0; i < h->nreply_queues; i++) {
8995 writel(0, &h->transtable->RepQAddr[i].upper);
8996 writel(h->reply_queue[i].busaddr,
8997 &h->transtable->RepQAddr[i].lower);
9000 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9001 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9003 * enable outbound interrupt coalescing in accelerator mode;
9005 if (trans_support & CFGTBL_Trans_io_accel1) {
9006 access = SA5_ioaccel_mode1_access;
9007 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9009 } else {
9010 if (trans_support & CFGTBL_Trans_io_accel2) {
9011 access = SA5_ioaccel_mode2_access;
9012 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9016 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9017 if (hpsa_wait_for_mode_change_ack(h)) {
9018 dev_err(&h->pdev->dev,
9019 "performant mode problem - doorbell timeout\n");
9020 return -ENODEV;
9022 register_value = readl(&(h->cfgtable->TransportActive));
9023 if (!(register_value & CFGTBL_Trans_Performant)) {
9024 dev_err(&h->pdev->dev,
9025 "performant mode problem - transport not active\n");
9026 return -ENODEV;
9028 /* Change the access methods to the performant access methods */
9029 h->access = access;
9030 h->transMethod = transMethod;
9032 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033 (trans_support & CFGTBL_Trans_io_accel2)))
9034 return 0;
9036 if (trans_support & CFGTBL_Trans_io_accel1) {
9037 /* Set up I/O accelerator mode */
9038 for (i = 0; i < h->nreply_queues; i++) {
9039 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040 h->reply_queue[i].current_entry =
9041 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9043 bft[7] = h->ioaccel_maxsg + 8;
9044 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045 h->ioaccel1_blockFetchTable);
9047 /* initialize all reply queue entries to unused */
9048 for (i = 0; i < h->nreply_queues; i++)
9049 memset(h->reply_queue[i].head,
9050 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9051 h->reply_queue_size);
9053 /* set all the constant fields in the accelerator command
9054 * frames once at init time to save CPU cycles later.
9056 for (i = 0; i < h->nr_cmds; i++) {
9057 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9059 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061 (i * sizeof(struct ErrorInfo)));
9062 cp->err_info_len = sizeof(struct ErrorInfo);
9063 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9064 cp->host_context_flags =
9065 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9066 cp->timeout_sec = 0;
9067 cp->ReplyQueue = 0;
9068 cp->tag =
9069 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9070 cp->host_addr =
9071 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9072 (i * sizeof(struct io_accel1_cmd)));
9074 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9075 u64 cfg_offset, cfg_base_addr_index;
9076 u32 bft2_offset, cfg_base_addr;
9077 int rc;
9079 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080 &cfg_base_addr_index, &cfg_offset);
9081 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084 4, h->ioaccel2_blockFetchTable);
9085 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086 BUILD_BUG_ON(offsetof(struct CfgTable,
9087 io_accel_request_size_offset) != 0xb8);
9088 h->ioaccel2_bft2_regs =
9089 remap_pci_mem(pci_resource_start(h->pdev,
9090 cfg_base_addr_index) +
9091 cfg_offset + bft2_offset,
9092 ARRAY_SIZE(bft2) *
9093 sizeof(*h->ioaccel2_bft2_regs));
9094 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9097 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9098 if (hpsa_wait_for_mode_change_ack(h)) {
9099 dev_err(&h->pdev->dev,
9100 "performant mode problem - enabling ioaccel mode\n");
9101 return -ENODEV;
9103 return 0;
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9109 if (h->ioaccel_cmd_pool) {
9110 pci_free_consistent(h->pdev,
9111 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112 h->ioaccel_cmd_pool,
9113 h->ioaccel_cmd_pool_dhandle);
9114 h->ioaccel_cmd_pool = NULL;
9115 h->ioaccel_cmd_pool_dhandle = 0;
9117 kfree(h->ioaccel1_blockFetchTable);
9118 h->ioaccel1_blockFetchTable = NULL;
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9124 h->ioaccel_maxsg =
9125 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9129 /* Command structures must be aligned on a 128-byte boundary
9130 * because the 7 lower bits of the address are used by the
9131 * hardware.
9133 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134 IOACCEL1_COMMANDLIST_ALIGNMENT);
9135 h->ioaccel_cmd_pool =
9136 pci_alloc_consistent(h->pdev,
9137 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138 &(h->ioaccel_cmd_pool_dhandle));
9140 h->ioaccel1_blockFetchTable =
9141 kmalloc(((h->ioaccel_maxsg + 1) *
9142 sizeof(u32)), GFP_KERNEL);
9144 if ((h->ioaccel_cmd_pool == NULL) ||
9145 (h->ioaccel1_blockFetchTable == NULL))
9146 goto clean_up;
9148 memset(h->ioaccel_cmd_pool, 0,
9149 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150 return 0;
9152 clean_up:
9153 hpsa_free_ioaccel1_cmd_and_bft(h);
9154 return -ENOMEM;
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9160 hpsa_free_ioaccel2_sg_chain_blocks(h);
9162 if (h->ioaccel2_cmd_pool) {
9163 pci_free_consistent(h->pdev,
9164 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165 h->ioaccel2_cmd_pool,
9166 h->ioaccel2_cmd_pool_dhandle);
9167 h->ioaccel2_cmd_pool = NULL;
9168 h->ioaccel2_cmd_pool_dhandle = 0;
9170 kfree(h->ioaccel2_blockFetchTable);
9171 h->ioaccel2_blockFetchTable = NULL;
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9177 int rc;
9179 /* Allocate ioaccel2 mode command blocks and block fetch table */
9181 h->ioaccel_maxsg =
9182 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9186 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187 IOACCEL2_COMMANDLIST_ALIGNMENT);
9188 h->ioaccel2_cmd_pool =
9189 pci_alloc_consistent(h->pdev,
9190 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191 &(h->ioaccel2_cmd_pool_dhandle));
9193 h->ioaccel2_blockFetchTable =
9194 kmalloc(((h->ioaccel_maxsg + 1) *
9195 sizeof(u32)), GFP_KERNEL);
9197 if ((h->ioaccel2_cmd_pool == NULL) ||
9198 (h->ioaccel2_blockFetchTable == NULL)) {
9199 rc = -ENOMEM;
9200 goto clean_up;
9203 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204 if (rc)
9205 goto clean_up;
9207 memset(h->ioaccel2_cmd_pool, 0,
9208 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209 return 0;
9211 clean_up:
9212 hpsa_free_ioaccel2_cmd_and_bft(h);
9213 return rc;
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info *h)
9219 kfree(h->blockFetchTable);
9220 h->blockFetchTable = NULL;
9221 hpsa_free_reply_queues(h);
9222 hpsa_free_ioaccel1_cmd_and_bft(h);
9223 hpsa_free_ioaccel2_cmd_and_bft(h);
9226 /* return -ENODEV on error, 0 on success (or no action)
9227 * allocates numerous items that must be freed later
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9231 u32 trans_support;
9232 unsigned long transMethod = CFGTBL_Trans_Performant |
9233 CFGTBL_Trans_use_short_tags;
9234 int i, rc;
9236 if (hpsa_simple_mode)
9237 return 0;
9239 trans_support = readl(&(h->cfgtable->TransportSupport));
9240 if (!(trans_support & PERFORMANT_MODE))
9241 return 0;
9243 /* Check for I/O accelerator mode support */
9244 if (trans_support & CFGTBL_Trans_io_accel1) {
9245 transMethod |= CFGTBL_Trans_io_accel1 |
9246 CFGTBL_Trans_enable_directed_msix;
9247 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248 if (rc)
9249 return rc;
9250 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251 transMethod |= CFGTBL_Trans_io_accel2 |
9252 CFGTBL_Trans_enable_directed_msix;
9253 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254 if (rc)
9255 return rc;
9258 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9259 hpsa_get_max_perf_mode_cmds(h);
9260 /* Performant mode ring buffer and supporting data structures */
9261 h->reply_queue_size = h->max_commands * sizeof(u64);
9263 for (i = 0; i < h->nreply_queues; i++) {
9264 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265 h->reply_queue_size,
9266 &(h->reply_queue[i].busaddr));
9267 if (!h->reply_queue[i].head) {
9268 rc = -ENOMEM;
9269 goto clean1; /* rq, ioaccel */
9271 h->reply_queue[i].size = h->max_commands;
9272 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9273 h->reply_queue[i].current_entry = 0;
9276 /* Need a block fetch table for performant mode */
9277 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9278 sizeof(u32)), GFP_KERNEL);
9279 if (!h->blockFetchTable) {
9280 rc = -ENOMEM;
9281 goto clean1; /* rq, ioaccel */
9284 rc = hpsa_enter_performant_mode(h, trans_support);
9285 if (rc)
9286 goto clean2; /* bft, rq, ioaccel */
9287 return 0;
9289 clean2: /* bft, rq, ioaccel */
9290 kfree(h->blockFetchTable);
9291 h->blockFetchTable = NULL;
9292 clean1: /* rq, ioaccel */
9293 hpsa_free_reply_queues(h);
9294 hpsa_free_ioaccel1_cmd_and_bft(h);
9295 hpsa_free_ioaccel2_cmd_and_bft(h);
9296 return rc;
9299 static int is_accelerated_cmd(struct CommandList *c)
9301 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9304 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9306 struct CommandList *c = NULL;
9307 int i, accel_cmds_out;
9308 int refcount;
9310 do { /* wait for all outstanding ioaccel commands to drain out */
9311 accel_cmds_out = 0;
9312 for (i = 0; i < h->nr_cmds; i++) {
9313 c = h->cmd_pool + i;
9314 refcount = atomic_inc_return(&c->refcount);
9315 if (refcount > 1) /* Command is allocated */
9316 accel_cmds_out += is_accelerated_cmd(c);
9317 cmd_free(h, c);
9319 if (accel_cmds_out <= 0)
9320 break;
9321 msleep(100);
9322 } while (1);
9325 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326 struct hpsa_sas_port *hpsa_sas_port)
9328 struct hpsa_sas_phy *hpsa_sas_phy;
9329 struct sas_phy *phy;
9331 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332 if (!hpsa_sas_phy)
9333 return NULL;
9335 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336 hpsa_sas_port->next_phy_index);
9337 if (!phy) {
9338 kfree(hpsa_sas_phy);
9339 return NULL;
9342 hpsa_sas_port->next_phy_index++;
9343 hpsa_sas_phy->phy = phy;
9344 hpsa_sas_phy->parent_port = hpsa_sas_port;
9346 return hpsa_sas_phy;
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9351 struct sas_phy *phy = hpsa_sas_phy->phy;
9353 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354 if (hpsa_sas_phy->added_to_port)
9355 list_del(&hpsa_sas_phy->phy_list_entry);
9356 sas_phy_delete(phy);
9357 kfree(hpsa_sas_phy);
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9362 int rc;
9363 struct hpsa_sas_port *hpsa_sas_port;
9364 struct sas_phy *phy;
9365 struct sas_identify *identify;
9367 hpsa_sas_port = hpsa_sas_phy->parent_port;
9368 phy = hpsa_sas_phy->phy;
9370 identify = &phy->identify;
9371 memset(identify, 0, sizeof(*identify));
9372 identify->sas_address = hpsa_sas_port->sas_address;
9373 identify->device_type = SAS_END_DEVICE;
9374 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375 identify->target_port_protocols = SAS_PROTOCOL_STP;
9376 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9382 rc = sas_phy_add(hpsa_sas_phy->phy);
9383 if (rc)
9384 return rc;
9386 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388 &hpsa_sas_port->phy_list_head);
9389 hpsa_sas_phy->added_to_port = true;
9391 return 0;
9394 static int
9395 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396 struct sas_rphy *rphy)
9398 struct sas_identify *identify;
9400 identify = &rphy->identify;
9401 identify->sas_address = hpsa_sas_port->sas_address;
9402 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403 identify->target_port_protocols = SAS_PROTOCOL_STP;
9405 return sas_rphy_add(rphy);
9408 static struct hpsa_sas_port
9409 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410 u64 sas_address)
9412 int rc;
9413 struct hpsa_sas_port *hpsa_sas_port;
9414 struct sas_port *port;
9416 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417 if (!hpsa_sas_port)
9418 return NULL;
9420 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421 hpsa_sas_port->parent_node = hpsa_sas_node;
9423 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424 if (!port)
9425 goto free_hpsa_port;
9427 rc = sas_port_add(port);
9428 if (rc)
9429 goto free_sas_port;
9431 hpsa_sas_port->port = port;
9432 hpsa_sas_port->sas_address = sas_address;
9433 list_add_tail(&hpsa_sas_port->port_list_entry,
9434 &hpsa_sas_node->port_list_head);
9436 return hpsa_sas_port;
9438 free_sas_port:
9439 sas_port_free(port);
9440 free_hpsa_port:
9441 kfree(hpsa_sas_port);
9443 return NULL;
9446 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9448 struct hpsa_sas_phy *hpsa_sas_phy;
9449 struct hpsa_sas_phy *next;
9451 list_for_each_entry_safe(hpsa_sas_phy, next,
9452 &hpsa_sas_port->phy_list_head, phy_list_entry)
9453 hpsa_free_sas_phy(hpsa_sas_phy);
9455 sas_port_delete(hpsa_sas_port->port);
9456 list_del(&hpsa_sas_port->port_list_entry);
9457 kfree(hpsa_sas_port);
9460 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9462 struct hpsa_sas_node *hpsa_sas_node;
9464 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465 if (hpsa_sas_node) {
9466 hpsa_sas_node->parent_dev = parent_dev;
9467 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9470 return hpsa_sas_node;
9473 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9475 struct hpsa_sas_port *hpsa_sas_port;
9476 struct hpsa_sas_port *next;
9478 if (!hpsa_sas_node)
9479 return;
9481 list_for_each_entry_safe(hpsa_sas_port, next,
9482 &hpsa_sas_node->port_list_head, port_list_entry)
9483 hpsa_free_sas_port(hpsa_sas_port);
9485 kfree(hpsa_sas_node);
9488 static struct hpsa_scsi_dev_t
9489 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490 struct sas_rphy *rphy)
9492 int i;
9493 struct hpsa_scsi_dev_t *device;
9495 for (i = 0; i < h->ndevices; i++) {
9496 device = h->dev[i];
9497 if (!device->sas_port)
9498 continue;
9499 if (device->sas_port->rphy == rphy)
9500 return device;
9503 return NULL;
9506 static int hpsa_add_sas_host(struct ctlr_info *h)
9508 int rc;
9509 struct device *parent_dev;
9510 struct hpsa_sas_node *hpsa_sas_node;
9511 struct hpsa_sas_port *hpsa_sas_port;
9512 struct hpsa_sas_phy *hpsa_sas_phy;
9514 parent_dev = &h->scsi_host->shost_gendev;
9516 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517 if (!hpsa_sas_node)
9518 return -ENOMEM;
9520 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521 if (!hpsa_sas_port) {
9522 rc = -ENODEV;
9523 goto free_sas_node;
9526 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527 if (!hpsa_sas_phy) {
9528 rc = -ENODEV;
9529 goto free_sas_port;
9532 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533 if (rc)
9534 goto free_sas_phy;
9536 h->sas_host = hpsa_sas_node;
9538 return 0;
9540 free_sas_phy:
9541 hpsa_free_sas_phy(hpsa_sas_phy);
9542 free_sas_port:
9543 hpsa_free_sas_port(hpsa_sas_port);
9544 free_sas_node:
9545 hpsa_free_sas_node(hpsa_sas_node);
9547 return rc;
9550 static void hpsa_delete_sas_host(struct ctlr_info *h)
9552 hpsa_free_sas_node(h->sas_host);
9555 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556 struct hpsa_scsi_dev_t *device)
9558 int rc;
9559 struct hpsa_sas_port *hpsa_sas_port;
9560 struct sas_rphy *rphy;
9562 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563 if (!hpsa_sas_port)
9564 return -ENOMEM;
9566 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567 if (!rphy) {
9568 rc = -ENODEV;
9569 goto free_sas_port;
9572 hpsa_sas_port->rphy = rphy;
9573 device->sas_port = hpsa_sas_port;
9575 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576 if (rc)
9577 goto free_sas_port;
9579 return 0;
9581 free_sas_port:
9582 hpsa_free_sas_port(hpsa_sas_port);
9583 device->sas_port = NULL;
9585 return rc;
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9590 if (device->sas_port) {
9591 hpsa_free_sas_port(device->sas_port);
9592 device->sas_port = NULL;
9596 static int
9597 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9599 return 0;
9602 static int
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9605 return 0;
9608 static int
9609 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9611 return -ENXIO;
9614 static int
9615 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9617 return 0;
9620 static int
9621 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9623 return 0;
9626 static int
9627 hpsa_sas_phy_setup(struct sas_phy *phy)
9629 return 0;
9632 static void
9633 hpsa_sas_phy_release(struct sas_phy *phy)
9637 static int
9638 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9640 return -EINVAL;
9643 /* SMP = Serial Management Protocol */
9644 static int
9645 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646 struct request *req)
9648 return -EINVAL;
9651 static struct sas_function_template hpsa_sas_transport_functions = {
9652 .get_linkerrors = hpsa_sas_get_linkerrors,
9653 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9655 .phy_reset = hpsa_sas_phy_reset,
9656 .phy_enable = hpsa_sas_phy_enable,
9657 .phy_setup = hpsa_sas_phy_setup,
9658 .phy_release = hpsa_sas_phy_release,
9659 .set_phy_speed = hpsa_sas_phy_speed,
9660 .smp_handler = hpsa_sas_smp_handler,
9664 * This is it. Register the PCI driver information for the cards we control
9665 * the OS will call our registered routines when it finds one of our cards.
9667 static int __init hpsa_init(void)
9669 int rc;
9671 hpsa_sas_transport_template =
9672 sas_attach_transport(&hpsa_sas_transport_functions);
9673 if (!hpsa_sas_transport_template)
9674 return -ENODEV;
9676 rc = pci_register_driver(&hpsa_pci_driver);
9678 if (rc)
9679 sas_release_transport(hpsa_sas_transport_template);
9681 return rc;
9684 static void __exit hpsa_cleanup(void)
9686 pci_unregister_driver(&hpsa_pci_driver);
9687 sas_release_transport(hpsa_sas_transport_template);
9690 static void __attribute__((unused)) verify_offsets(void)
9692 #define VERIFY_OFFSET(member, offset) \
9693 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9695 VERIFY_OFFSET(structure_size, 0);
9696 VERIFY_OFFSET(volume_blk_size, 4);
9697 VERIFY_OFFSET(volume_blk_cnt, 8);
9698 VERIFY_OFFSET(phys_blk_shift, 16);
9699 VERIFY_OFFSET(parity_rotation_shift, 17);
9700 VERIFY_OFFSET(strip_size, 18);
9701 VERIFY_OFFSET(disk_starting_blk, 20);
9702 VERIFY_OFFSET(disk_blk_cnt, 28);
9703 VERIFY_OFFSET(data_disks_per_row, 36);
9704 VERIFY_OFFSET(metadata_disks_per_row, 38);
9705 VERIFY_OFFSET(row_cnt, 40);
9706 VERIFY_OFFSET(layout_map_count, 42);
9707 VERIFY_OFFSET(flags, 44);
9708 VERIFY_OFFSET(dekindex, 46);
9709 /* VERIFY_OFFSET(reserved, 48 */
9710 VERIFY_OFFSET(data, 64);
9712 #undef VERIFY_OFFSET
9714 #define VERIFY_OFFSET(member, offset) \
9715 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9717 VERIFY_OFFSET(IU_type, 0);
9718 VERIFY_OFFSET(direction, 1);
9719 VERIFY_OFFSET(reply_queue, 2);
9720 /* VERIFY_OFFSET(reserved1, 3); */
9721 VERIFY_OFFSET(scsi_nexus, 4);
9722 VERIFY_OFFSET(Tag, 8);
9723 VERIFY_OFFSET(cdb, 16);
9724 VERIFY_OFFSET(cciss_lun, 32);
9725 VERIFY_OFFSET(data_len, 40);
9726 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727 VERIFY_OFFSET(sg_count, 45);
9728 /* VERIFY_OFFSET(reserved3 */
9729 VERIFY_OFFSET(err_ptr, 48);
9730 VERIFY_OFFSET(err_len, 56);
9731 /* VERIFY_OFFSET(reserved4 */
9732 VERIFY_OFFSET(sg, 64);
9734 #undef VERIFY_OFFSET
9736 #define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9739 VERIFY_OFFSET(dev_handle, 0x00);
9740 VERIFY_OFFSET(reserved1, 0x02);
9741 VERIFY_OFFSET(function, 0x03);
9742 VERIFY_OFFSET(reserved2, 0x04);
9743 VERIFY_OFFSET(err_info, 0x0C);
9744 VERIFY_OFFSET(reserved3, 0x10);
9745 VERIFY_OFFSET(err_info_len, 0x12);
9746 VERIFY_OFFSET(reserved4, 0x13);
9747 VERIFY_OFFSET(sgl_offset, 0x14);
9748 VERIFY_OFFSET(reserved5, 0x15);
9749 VERIFY_OFFSET(transfer_len, 0x1C);
9750 VERIFY_OFFSET(reserved6, 0x20);
9751 VERIFY_OFFSET(io_flags, 0x24);
9752 VERIFY_OFFSET(reserved7, 0x26);
9753 VERIFY_OFFSET(LUN, 0x34);
9754 VERIFY_OFFSET(control, 0x3C);
9755 VERIFY_OFFSET(CDB, 0x40);
9756 VERIFY_OFFSET(reserved8, 0x50);
9757 VERIFY_OFFSET(host_context_flags, 0x60);
9758 VERIFY_OFFSET(timeout_sec, 0x62);
9759 VERIFY_OFFSET(ReplyQueue, 0x64);
9760 VERIFY_OFFSET(reserved9, 0x65);
9761 VERIFY_OFFSET(tag, 0x68);
9762 VERIFY_OFFSET(host_addr, 0x70);
9763 VERIFY_OFFSET(CISS_LUN, 0x78);
9764 VERIFY_OFFSET(SG, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9768 module_init(hpsa_init);
9769 module_exit(hpsa_cleanup);