2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION
);
82 MODULE_LICENSE("GPL");
84 static int hpsa_allow_any
;
85 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
86 MODULE_PARM_DESC(hpsa_allow_any
,
87 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode
;
89 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
90 MODULE_PARM_DESC(hpsa_simple_mode
,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id
[] = {
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
151 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
153 /* board_id = Subsystem Device ID & Vendor ID
154 * product = Marketing Name for the board
155 * access = Address of the struct of function pointers
157 static struct board_type products
[] = {
158 {0x3241103C, "Smart Array P212", &SA5_access
},
159 {0x3243103C, "Smart Array P410", &SA5_access
},
160 {0x3245103C, "Smart Array P410i", &SA5_access
},
161 {0x3247103C, "Smart Array P411", &SA5_access
},
162 {0x3249103C, "Smart Array P812", &SA5_access
},
163 {0x324A103C, "Smart Array P712m", &SA5_access
},
164 {0x324B103C, "Smart Array P711m", &SA5_access
},
165 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
166 {0x3350103C, "Smart Array P222", &SA5_access
},
167 {0x3351103C, "Smart Array P420", &SA5_access
},
168 {0x3352103C, "Smart Array P421", &SA5_access
},
169 {0x3353103C, "Smart Array P822", &SA5_access
},
170 {0x3354103C, "Smart Array P420i", &SA5_access
},
171 {0x3355103C, "Smart Array P220i", &SA5_access
},
172 {0x3356103C, "Smart Array P721m", &SA5_access
},
173 {0x1921103C, "Smart Array P830i", &SA5_access
},
174 {0x1922103C, "Smart Array P430", &SA5_access
},
175 {0x1923103C, "Smart Array P431", &SA5_access
},
176 {0x1924103C, "Smart Array P830", &SA5_access
},
177 {0x1926103C, "Smart Array P731m", &SA5_access
},
178 {0x1928103C, "Smart Array P230i", &SA5_access
},
179 {0x1929103C, "Smart Array P530", &SA5_access
},
180 {0x21BD103C, "Smart Array P244br", &SA5_access
},
181 {0x21BE103C, "Smart Array P741m", &SA5_access
},
182 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
183 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
184 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
185 {0x21C2103C, "Smart Array P440", &SA5_access
},
186 {0x21C3103C, "Smart Array P441", &SA5_access
},
187 {0x21C4103C, "Smart Array", &SA5_access
},
188 {0x21C5103C, "Smart Array P841", &SA5_access
},
189 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
190 {0x21C7103C, "Smart HBA H240", &SA5_access
},
191 {0x21C8103C, "Smart HBA H241", &SA5_access
},
192 {0x21C9103C, "Smart Array", &SA5_access
},
193 {0x21CA103C, "Smart Array P246br", &SA5_access
},
194 {0x21CB103C, "Smart Array P840", &SA5_access
},
195 {0x21CC103C, "Smart Array", &SA5_access
},
196 {0x21CD103C, "Smart Array", &SA5_access
},
197 {0x21CE103C, "Smart HBA", &SA5_access
},
198 {0x05809005, "SmartHBA-SA", &SA5_access
},
199 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
200 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
201 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
202 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
203 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
204 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
205 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
206 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
207 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
208 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
209 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
212 static struct scsi_transport_template
*hpsa_sas_transport_template
;
213 static int hpsa_add_sas_host(struct ctlr_info
*h
);
214 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
215 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
216 struct hpsa_scsi_dev_t
*device
);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
218 static struct hpsa_scsi_dev_t
219 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
220 struct sas_rphy
*rphy
);
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy
;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle
;
226 static int number_of_controllers
;
228 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
229 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
230 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
233 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
237 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
238 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
239 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
240 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
241 struct scsi_cmnd
*scmd
);
242 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
243 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
245 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
250 static void hpsa_scan_start(struct Scsi_Host
*);
251 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
252 unsigned long elapsed_time
);
253 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
258 static int hpsa_slave_configure(struct scsi_device
*sdev
);
259 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
261 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
262 static int check_for_unit_attention(struct ctlr_info
*h
,
263 struct CommandList
*c
);
264 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
265 struct CommandList
*c
);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket
, int num_buckets
,
268 int nsgs
, int min_blocks
, u32
*bucket_map
);
269 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
271 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
272 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
273 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
275 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
276 unsigned long *memory_bar
);
277 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
278 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
280 static inline void finish_cmd(struct CommandList
*c
);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
285 static void hpsa_flush_cache(struct ctlr_info
*h
);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
287 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
288 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
289 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
290 static u32
lockup_detected(struct ctlr_info
*h
);
291 static int detect_controller_lockup(struct ctlr_info
*h
);
292 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
294 struct ReportExtendedLUNdata
*buf
, int bufsize
);
295 static int hpsa_luns_changed(struct ctlr_info
*h
);
297 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
299 unsigned long *priv
= shost_priv(sdev
->host
);
300 return (struct ctlr_info
*) *priv
;
303 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
305 unsigned long *priv
= shost_priv(sh
);
306 return (struct ctlr_info
*) *priv
;
309 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
311 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
314 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
316 return c
->abort_pending
|| c
->reset_pending
;
319 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
320 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
321 u8
*sense_key
, u8
*asc
, u8
*ascq
)
323 struct scsi_sense_hdr sshdr
;
330 if (sense_data_len
< 1)
333 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
335 *sense_key
= sshdr
.sense_key
;
341 static int check_for_unit_attention(struct ctlr_info
*h
,
342 struct CommandList
*c
)
344 u8 sense_key
, asc
, ascq
;
347 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
348 sense_len
= sizeof(c
->err_info
->SenseInfo
);
350 sense_len
= c
->err_info
->SenseLen
;
352 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
353 &sense_key
, &asc
, &ascq
);
354 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
359 dev_warn(&h
->pdev
->dev
,
360 "%s: a state change detected, command retried\n",
364 dev_warn(&h
->pdev
->dev
,
365 "%s: LUN failure detected\n", h
->devname
);
367 case REPORT_LUNS_CHANGED
:
368 dev_warn(&h
->pdev
->dev
,
369 "%s: report LUN data changed\n", h
->devname
);
371 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 * target (array) devices.
376 dev_warn(&h
->pdev
->dev
,
377 "%s: a power on or device reset detected\n",
380 case UNIT_ATTENTION_CLEARED
:
381 dev_warn(&h
->pdev
->dev
,
382 "%s: unit attention cleared by another initiator\n",
386 dev_warn(&h
->pdev
->dev
,
387 "%s: unknown unit attention detected\n",
394 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
396 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
397 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
398 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
400 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
404 static u32
lockup_detected(struct ctlr_info
*h
);
405 static ssize_t
host_show_lockup_detected(struct device
*dev
,
406 struct device_attribute
*attr
, char *buf
)
410 struct Scsi_Host
*shost
= class_to_shost(dev
);
412 h
= shost_to_hba(shost
);
413 ld
= lockup_detected(h
);
415 return sprintf(buf
, "ld=%d\n", ld
);
418 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
419 struct device_attribute
*attr
,
420 const char *buf
, size_t count
)
424 struct Scsi_Host
*shost
= class_to_shost(dev
);
427 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
429 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
430 strncpy(tmpbuf
, buf
, len
);
432 if (sscanf(tmpbuf
, "%d", &status
) != 1)
434 h
= shost_to_hba(shost
);
435 h
->acciopath_status
= !!status
;
436 dev_warn(&h
->pdev
->dev
,
437 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 h
->acciopath_status
? "enabled" : "disabled");
442 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
443 struct device_attribute
*attr
,
444 const char *buf
, size_t count
)
446 int debug_level
, len
;
448 struct Scsi_Host
*shost
= class_to_shost(dev
);
451 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
453 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
454 strncpy(tmpbuf
, buf
, len
);
456 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
460 h
= shost_to_hba(shost
);
461 h
->raid_offload_debug
= debug_level
;
462 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
463 h
->raid_offload_debug
);
467 static ssize_t
host_store_rescan(struct device
*dev
,
468 struct device_attribute
*attr
,
469 const char *buf
, size_t count
)
472 struct Scsi_Host
*shost
= class_to_shost(dev
);
473 h
= shost_to_hba(shost
);
474 hpsa_scan_start(h
->scsi_host
);
478 static ssize_t
host_show_firmware_revision(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
482 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 unsigned char *fwrev
;
485 h
= shost_to_hba(shost
);
486 if (!h
->hba_inquiry_data
)
488 fwrev
= &h
->hba_inquiry_data
[32];
489 return snprintf(buf
, 20, "%c%c%c%c\n",
490 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
493 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
494 struct device_attribute
*attr
, char *buf
)
496 struct Scsi_Host
*shost
= class_to_shost(dev
);
497 struct ctlr_info
*h
= shost_to_hba(shost
);
499 return snprintf(buf
, 20, "%d\n",
500 atomic_read(&h
->commands_outstanding
));
503 static ssize_t
host_show_transport_mode(struct device
*dev
,
504 struct device_attribute
*attr
, char *buf
)
507 struct Scsi_Host
*shost
= class_to_shost(dev
);
509 h
= shost_to_hba(shost
);
510 return snprintf(buf
, 20, "%s\n",
511 h
->transMethod
& CFGTBL_Trans_Performant
?
512 "performant" : "simple");
515 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
516 struct device_attribute
*attr
, char *buf
)
519 struct Scsi_Host
*shost
= class_to_shost(dev
);
521 h
= shost_to_hba(shost
);
522 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
523 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller
[] = {
528 0x324a103C, /* Smart Array P712m */
529 0x324b103C, /* Smart Array P711m */
530 0x3223103C, /* Smart Array P800 */
531 0x3234103C, /* Smart Array P400 */
532 0x3235103C, /* Smart Array P400i */
533 0x3211103C, /* Smart Array E200i */
534 0x3212103C, /* Smart Array E200 */
535 0x3213103C, /* Smart Array E200i */
536 0x3214103C, /* Smart Array E200i */
537 0x3215103C, /* Smart Array E200i */
538 0x3237103C, /* Smart Array E500 */
539 0x323D103C, /* Smart Array P700m */
540 0x40800E11, /* Smart Array 5i */
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
543 0x40700E11, /* Smart Array 5300 */
544 0x40820E11, /* Smart Array 532 */
545 0x40830E11, /* Smart Array 5312 */
546 0x409A0E11, /* Smart Array 641 */
547 0x409B0E11, /* Smart Array 642 */
548 0x40910E11, /* Smart Array 6i */
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller
[] = {
553 0x40800E11, /* Smart Array 5i */
554 0x40700E11, /* Smart Array 5300 */
555 0x40820E11, /* Smart Array 532 */
556 0x40830E11, /* Smart Array 5312 */
557 0x409A0E11, /* Smart Array 641 */
558 0x409B0E11, /* Smart Array 642 */
559 0x40910E11, /* Smart Array 6i */
560 /* Exclude 640x boards. These are two pci devices in one slot
561 * which share a battery backed cache module. One controls the
562 * cache, the other accesses the cache through the one that controls
563 * it. If we reset the one controlling the cache, the other will
564 * likely not be happy. Just forbid resetting this conjoined mess.
565 * The 640x isn't really supported by hpsa anyway.
567 0x409C0E11, /* Smart Array 6400 */
568 0x409D0E11, /* Smart Array 6400 EM */
571 static u32 needs_abort_tags_swizzled
[] = {
572 0x323D103C, /* Smart Array P700m */
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
577 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
581 for (i
= 0; i
< nelems
; i
++)
582 if (a
[i
] == board_id
)
587 static int ctlr_is_hard_resettable(u32 board_id
)
589 return !board_id_in_array(unresettable_controller
,
590 ARRAY_SIZE(unresettable_controller
), board_id
);
593 static int ctlr_is_soft_resettable(u32 board_id
)
595 return !board_id_in_array(soft_unresettable_controller
,
596 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
599 static int ctlr_is_resettable(u32 board_id
)
601 return ctlr_is_hard_resettable(board_id
) ||
602 ctlr_is_soft_resettable(board_id
);
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
607 return board_id_in_array(needs_abort_tags_swizzled
,
608 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
611 static ssize_t
host_show_resettable(struct device
*dev
,
612 struct device_attribute
*attr
, char *buf
)
615 struct Scsi_Host
*shost
= class_to_shost(dev
);
617 h
= shost_to_hba(shost
);
618 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
623 return (scsi3addr
[3] & 0xC0) == 0x40;
626 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
641 return !device
->physical_device
;
644 static ssize_t
raid_level_show(struct device
*dev
,
645 struct device_attribute
*attr
, char *buf
)
648 unsigned char rlevel
;
650 struct scsi_device
*sdev
;
651 struct hpsa_scsi_dev_t
*hdev
;
654 sdev
= to_scsi_device(dev
);
655 h
= sdev_to_hba(sdev
);
656 spin_lock_irqsave(&h
->lock
, flags
);
657 hdev
= sdev
->hostdata
;
659 spin_unlock_irqrestore(&h
->lock
, flags
);
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev
)) {
665 spin_unlock_irqrestore(&h
->lock
, flags
);
666 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
670 rlevel
= hdev
->raid_level
;
671 spin_unlock_irqrestore(&h
->lock
, flags
);
672 if (rlevel
> RAID_UNKNOWN
)
673 rlevel
= RAID_UNKNOWN
;
674 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
678 static ssize_t
lunid_show(struct device
*dev
,
679 struct device_attribute
*attr
, char *buf
)
682 struct scsi_device
*sdev
;
683 struct hpsa_scsi_dev_t
*hdev
;
685 unsigned char lunid
[8];
687 sdev
= to_scsi_device(dev
);
688 h
= sdev_to_hba(sdev
);
689 spin_lock_irqsave(&h
->lock
, flags
);
690 hdev
= sdev
->hostdata
;
692 spin_unlock_irqrestore(&h
->lock
, flags
);
695 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
696 spin_unlock_irqrestore(&h
->lock
, flags
);
697 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
699 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
702 static ssize_t
unique_id_show(struct device
*dev
,
703 struct device_attribute
*attr
, char *buf
)
706 struct scsi_device
*sdev
;
707 struct hpsa_scsi_dev_t
*hdev
;
709 unsigned char sn
[16];
711 sdev
= to_scsi_device(dev
);
712 h
= sdev_to_hba(sdev
);
713 spin_lock_irqsave(&h
->lock
, flags
);
714 hdev
= sdev
->hostdata
;
716 spin_unlock_irqrestore(&h
->lock
, flags
);
719 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
720 spin_unlock_irqrestore(&h
->lock
, flags
);
721 return snprintf(buf
, 16 * 2 + 2,
722 "%02X%02X%02X%02X%02X%02X%02X%02X"
723 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 sn
[0], sn
[1], sn
[2], sn
[3],
725 sn
[4], sn
[5], sn
[6], sn
[7],
726 sn
[8], sn
[9], sn
[10], sn
[11],
727 sn
[12], sn
[13], sn
[14], sn
[15]);
730 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
731 struct device_attribute
*attr
, char *buf
)
734 struct scsi_device
*sdev
;
735 struct hpsa_scsi_dev_t
*hdev
;
739 sdev
= to_scsi_device(dev
);
740 h
= sdev_to_hba(sdev
);
741 spin_lock_irqsave(&h
->lock
, flags
);
742 hdev
= sdev
->hostdata
;
744 spin_unlock_irqrestore(&h
->lock
, flags
);
747 offload_enabled
= hdev
->offload_enabled
;
748 spin_unlock_irqrestore(&h
->lock
, flags
);
749 return snprintf(buf
, 20, "%d\n", offload_enabled
);
754 static ssize_t
path_info_show(struct device
*dev
,
755 struct device_attribute
*attr
, char *buf
)
758 struct scsi_device
*sdev
;
759 struct hpsa_scsi_dev_t
*hdev
;
765 u8 path_map_index
= 0;
767 unsigned char phys_connector
[2];
769 sdev
= to_scsi_device(dev
);
770 h
= sdev_to_hba(sdev
);
771 spin_lock_irqsave(&h
->devlock
, flags
);
772 hdev
= sdev
->hostdata
;
774 spin_unlock_irqrestore(&h
->devlock
, flags
);
779 for (i
= 0; i
< MAX_PATHS
; i
++) {
780 path_map_index
= 1<<i
;
781 if (i
== hdev
->active_path_index
)
783 else if (hdev
->path_map
& path_map_index
)
788 output_len
+= scnprintf(buf
+ output_len
,
789 PAGE_SIZE
- output_len
,
790 "[%d:%d:%d:%d] %20.20s ",
791 h
->scsi_host
->host_no
,
792 hdev
->bus
, hdev
->target
, hdev
->lun
,
793 scsi_device_type(hdev
->devtype
));
795 if (hdev
->external
||
796 hdev
->devtype
== TYPE_RAID
||
797 is_logical_device(hdev
)) {
798 output_len
+= snprintf(buf
+ output_len
,
799 PAGE_SIZE
- output_len
,
805 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
806 sizeof(phys_connector
));
807 if (phys_connector
[0] < '0')
808 phys_connector
[0] = '0';
809 if (phys_connector
[1] < '0')
810 phys_connector
[1] = '0';
811 if (hdev
->phys_connector
[i
] > 0)
812 output_len
+= snprintf(buf
+ output_len
,
813 PAGE_SIZE
- output_len
,
816 if (hdev
->devtype
== TYPE_DISK
&& hdev
->expose_device
) {
817 if (box
== 0 || box
== 0xFF) {
818 output_len
+= snprintf(buf
+ output_len
,
819 PAGE_SIZE
- output_len
,
823 output_len
+= snprintf(buf
+ output_len
,
824 PAGE_SIZE
- output_len
,
825 "BOX: %hhu BAY: %hhu %s\n",
828 } else if (box
!= 0 && box
!= 0xFF) {
829 output_len
+= snprintf(buf
+ output_len
,
830 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
833 output_len
+= snprintf(buf
+ output_len
,
834 PAGE_SIZE
- output_len
, "%s\n", active
);
837 spin_unlock_irqrestore(&h
->devlock
, flags
);
841 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
842 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
843 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
844 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
846 host_show_hp_ssd_smart_path_enabled
, NULL
);
847 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
848 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
849 host_show_hp_ssd_smart_path_status
,
850 host_store_hp_ssd_smart_path_status
);
851 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
852 host_store_raid_offload_debug
);
853 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
854 host_show_firmware_revision
, NULL
);
855 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
856 host_show_commands_outstanding
, NULL
);
857 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
858 host_show_transport_mode
, NULL
);
859 static DEVICE_ATTR(resettable
, S_IRUGO
,
860 host_show_resettable
, NULL
);
861 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
862 host_show_lockup_detected
, NULL
);
864 static struct device_attribute
*hpsa_sdev_attrs
[] = {
865 &dev_attr_raid_level
,
868 &dev_attr_hp_ssd_smart_path_enabled
,
873 static struct device_attribute
*hpsa_shost_attrs
[] = {
875 &dev_attr_firmware_revision
,
876 &dev_attr_commands_outstanding
,
877 &dev_attr_transport_mode
,
878 &dev_attr_resettable
,
879 &dev_attr_hp_ssd_smart_path_status
,
880 &dev_attr_raid_offload_debug
,
881 &dev_attr_lockup_detected
,
885 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
888 static struct scsi_host_template hpsa_driver_template
= {
889 .module
= THIS_MODULE
,
892 .queuecommand
= hpsa_scsi_queue_command
,
893 .scan_start
= hpsa_scan_start
,
894 .scan_finished
= hpsa_scan_finished
,
895 .change_queue_depth
= hpsa_change_queue_depth
,
897 .use_clustering
= ENABLE_CLUSTERING
,
898 .eh_abort_handler
= hpsa_eh_abort_handler
,
899 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
901 .slave_alloc
= hpsa_slave_alloc
,
902 .slave_configure
= hpsa_slave_configure
,
903 .slave_destroy
= hpsa_slave_destroy
,
905 .compat_ioctl
= hpsa_compat_ioctl
,
907 .sdev_attrs
= hpsa_sdev_attrs
,
908 .shost_attrs
= hpsa_shost_attrs
,
913 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
916 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
918 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
919 return h
->access
.command_completed(h
, q
);
921 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
922 return h
->access
.command_completed(h
, q
);
924 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
925 a
= rq
->head
[rq
->current_entry
];
927 atomic_dec(&h
->commands_outstanding
);
931 /* Check for wraparound */
932 if (rq
->current_entry
== h
->max_commands
) {
933 rq
->current_entry
= 0;
940 * There are some special bits in the bus address of the
941 * command that we have to set for the controller to know
942 * how to process the command:
944 * Normal performant mode:
945 * bit 0: 1 means performant mode, 0 means simple mode.
946 * bits 1-3 = block fetch table entry
947 * bits 4-6 = command type (== 0)
950 * bit 0 = "performant mode" bit.
951 * bits 1-3 = block fetch table entry
952 * bits 4-6 = command type (== 110)
953 * (command type is needed because ioaccel1 mode
954 * commands are submitted through the same register as normal
955 * mode commands, so this is how the controller knows whether
956 * the command is normal mode or ioaccel1 mode.)
959 * bit 0 = "performant mode" bit.
960 * bits 1-4 = block fetch table entry (note extra bit)
961 * bits 4-6 = not needed, because ioaccel2 mode has
962 * a separate special register for submitting commands.
966 * set_performant_mode: Modify the tag for cciss performant
967 * set bit 0 for pull model, bits 3-1 for block fetch
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
974 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
975 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
976 if (unlikely(!h
->msix_vector
))
978 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
979 c
->Header
.ReplyQueue
=
980 raw_smp_processor_id() % h
->nreply_queues
;
982 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
986 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
987 struct CommandList
*c
,
990 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
993 * Tell the controller to post the reply to the queue for this
994 * processor. This seems to give the best I/O throughput.
996 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
997 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
999 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1001 * Set the bits in the address sent down to include:
1002 * - performant mode bit (bit 0)
1003 * - pull count (bits 1-3)
1004 * - command type (bits 4-6)
1006 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1007 IOACCEL1_BUSADDR_CMDTYPE
;
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1011 struct CommandList
*c
,
1014 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1015 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1017 /* Tell the controller to post the reply to the queue for this
1018 * processor. This seems to give the best I/O throughput.
1020 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1021 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1023 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1024 /* Set the bits in the address sent down to include:
1025 * - performant mode bit not used in ioaccel mode 2
1026 * - pull count (bits 0-3)
1027 * - command type isn't needed for ioaccel2
1029 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1032 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1033 struct CommandList
*c
,
1036 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1039 * Tell the controller to post the reply to the queue for this
1040 * processor. This seems to give the best I/O throughput.
1042 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1043 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1045 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1047 * Set the bits in the address sent down to include:
1048 * - performant mode bit not used in ioaccel mode 2
1049 * - pull count (bits 0-3)
1050 * - command type isn't needed for ioaccel2
1052 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1055 static int is_firmware_flash_cmd(u8
*cdb
)
1057 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1061 * During firmware flash, the heartbeat register may not update as frequently
1062 * as it should. So we dial down lockup detection during firmware flash. and
1063 * dial it back up when firmware flash completes.
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1068 struct CommandList
*c
)
1070 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1072 atomic_inc(&h
->firmware_flash_in_progress
);
1073 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1077 struct CommandList
*c
)
1079 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1080 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1081 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1085 struct CommandList
*c
, int reply_queue
)
1087 dial_down_lockup_detection_during_fw_flash(h
, c
);
1088 atomic_inc(&h
->commands_outstanding
);
1089 switch (c
->cmd_type
) {
1091 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1092 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1095 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1096 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1099 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1100 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1103 set_performant_mode(h
, c
, reply_queue
);
1104 h
->access
.submit_command(h
, c
);
1108 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1110 if (unlikely(hpsa_is_pending_event(c
)))
1111 return finish_cmd(c
);
1113 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1116 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1118 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1121 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1123 if (!h
->hba_inquiry_data
)
1125 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1130 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1131 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1133 /* finds an unused bus, target, lun for a new physical device
1134 * assumes h->devlock is held
1137 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1139 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1141 for (i
= 0; i
< h
->ndevices
; i
++) {
1142 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1143 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1146 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1147 if (i
< HPSA_MAX_DEVICES
) {
1156 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1157 struct hpsa_scsi_dev_t
*dev
, char *description
)
1159 #define LABEL_SIZE 25
1160 char label
[LABEL_SIZE
];
1162 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1165 switch (dev
->devtype
) {
1167 snprintf(label
, LABEL_SIZE
, "controller");
1169 case TYPE_ENCLOSURE
:
1170 snprintf(label
, LABEL_SIZE
, "enclosure");
1174 snprintf(label
, LABEL_SIZE
, "external");
1175 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1176 snprintf(label
, LABEL_SIZE
, "%s",
1177 raid_label
[PHYSICAL_DRIVE
]);
1179 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1180 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1181 raid_label
[dev
->raid_level
]);
1184 snprintf(label
, LABEL_SIZE
, "rom");
1187 snprintf(label
, LABEL_SIZE
, "tape");
1189 case TYPE_MEDIUM_CHANGER
:
1190 snprintf(label
, LABEL_SIZE
, "changer");
1193 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1197 dev_printk(level
, &h
->pdev
->dev
,
1198 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1201 scsi_device_type(dev
->devtype
),
1205 dev
->offload_config
? '+' : '-',
1206 dev
->offload_enabled
? '+' : '-',
1207 dev
->expose_device
);
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1212 struct hpsa_scsi_dev_t
*device
,
1213 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1215 /* assumes h->devlock is held */
1216 int n
= h
->ndevices
;
1218 unsigned char addr1
[8], addr2
[8];
1219 struct hpsa_scsi_dev_t
*sd
;
1221 if (n
>= HPSA_MAX_DEVICES
) {
1222 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1227 /* physical devices do not have lun or target assigned until now. */
1228 if (device
->lun
!= -1)
1229 /* Logical device, lun is already assigned. */
1232 /* If this device a non-zero lun of a multi-lun device
1233 * byte 4 of the 8-byte LUN addr will contain the logical
1234 * unit no, zero otherwise.
1236 if (device
->scsi3addr
[4] == 0) {
1237 /* This is not a non-zero lun of a multi-lun device */
1238 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1239 device
->bus
, &device
->target
, &device
->lun
) != 0)
1244 /* This is a non-zero lun of a multi-lun device.
1245 * Search through our list and find the device which
1246 * has the same 8 byte LUN address, excepting byte 4 and 5.
1247 * Assign the same bus and target for this new LUN.
1248 * Use the logical unit number from the firmware.
1250 memcpy(addr1
, device
->scsi3addr
, 8);
1253 for (i
= 0; i
< n
; i
++) {
1255 memcpy(addr2
, sd
->scsi3addr
, 8);
1258 /* differ only in byte 4 and 5? */
1259 if (memcmp(addr1
, addr2
, 8) == 0) {
1260 device
->bus
= sd
->bus
;
1261 device
->target
= sd
->target
;
1262 device
->lun
= device
->scsi3addr
[4];
1266 if (device
->lun
== -1) {
1267 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1268 " suspect firmware bug or unsupported hardware "
1269 "configuration.\n");
1277 added
[*nadded
] = device
;
1279 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1280 device
->expose_device
? "added" : "masked");
1281 device
->offload_to_be_enabled
= device
->offload_enabled
;
1282 device
->offload_enabled
= 0;
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1288 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1290 int offload_enabled
;
1291 /* assumes h->devlock is held */
1292 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1294 /* Raid level changed. */
1295 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1297 /* Raid offload parameters changed. Careful about the ordering. */
1298 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1300 * if drive is newly offload_enabled, we want to copy the
1301 * raid map data first. If previously offload_enabled and
1302 * offload_config were set, raid map data had better be
1303 * the same as it was before. if raid map data is changed
1304 * then it had better be the case that
1305 * h->dev[entry]->offload_enabled is currently 0.
1307 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1308 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1310 if (new_entry
->hba_ioaccel_enabled
) {
1311 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1312 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1314 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1315 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1316 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1317 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1320 * We can turn off ioaccel offload now, but need to delay turning
1321 * it on until we can update h->dev[entry]->phys_disk[], but we
1322 * can't do that until all the devices are updated.
1324 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1325 if (!new_entry
->offload_enabled
)
1326 h
->dev
[entry
]->offload_enabled
= 0;
1328 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1329 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1330 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1331 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1336 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1337 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1338 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1340 /* assumes h->devlock is held */
1341 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1342 removed
[*nremoved
] = h
->dev
[entry
];
1346 * New physical devices won't have target/lun assigned yet
1347 * so we need to preserve the values in the slot we are replacing.
1349 if (new_entry
->target
== -1) {
1350 new_entry
->target
= h
->dev
[entry
]->target
;
1351 new_entry
->lun
= h
->dev
[entry
]->lun
;
1354 h
->dev
[entry
] = new_entry
;
1355 added
[*nadded
] = new_entry
;
1357 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1358 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1359 new_entry
->offload_enabled
= 0;
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1364 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1366 /* assumes h->devlock is held */
1368 struct hpsa_scsi_dev_t
*sd
;
1370 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1373 removed
[*nremoved
] = h
->dev
[entry
];
1376 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1377 h
->dev
[i
] = h
->dev
[i
+1];
1379 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383 (a)[7] == (b)[7] && \
1384 (a)[6] == (b)[6] && \
1385 (a)[5] == (b)[5] && \
1386 (a)[4] == (b)[4] && \
1387 (a)[3] == (b)[3] && \
1388 (a)[2] == (b)[2] && \
1389 (a)[1] == (b)[1] && \
1392 static void fixup_botched_add(struct ctlr_info
*h
,
1393 struct hpsa_scsi_dev_t
*added
)
1395 /* called when scsi_add_device fails in order to re-adjust
1396 * h->dev[] to match the mid layer's view.
1398 unsigned long flags
;
1401 spin_lock_irqsave(&h
->lock
, flags
);
1402 for (i
= 0; i
< h
->ndevices
; i
++) {
1403 if (h
->dev
[i
] == added
) {
1404 for (j
= i
; j
< h
->ndevices
-1; j
++)
1405 h
->dev
[j
] = h
->dev
[j
+1];
1410 spin_unlock_irqrestore(&h
->lock
, flags
);
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1415 struct hpsa_scsi_dev_t
*dev2
)
1417 /* we compare everything except lun and target as these
1418 * are not yet assigned. Compare parts likely
1421 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1422 sizeof(dev1
->scsi3addr
)) != 0)
1424 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1425 sizeof(dev1
->device_id
)) != 0)
1427 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1429 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1431 if (dev1
->devtype
!= dev2
->devtype
)
1433 if (dev1
->bus
!= dev2
->bus
)
1438 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1439 struct hpsa_scsi_dev_t
*dev2
)
1441 /* Device attributes that can change, but don't mean
1442 * that the device is a different device, nor that the OS
1443 * needs to be told anything about the change.
1445 if (dev1
->raid_level
!= dev2
->raid_level
)
1447 if (dev1
->offload_config
!= dev2
->offload_config
)
1449 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1451 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1452 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1457 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1458 * and return needle location in *index. If scsi3addr matches, but not
1459 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460 * location in *index.
1461 * In the case of a minor device attribute change, such as RAID level, just
1462 * return DEVICE_UPDATED, along with the updated device's location in index.
1463 * If needle not found, return DEVICE_NOT_FOUND.
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1466 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1475 return DEVICE_NOT_FOUND
;
1477 for (i
= 0; i
< haystack_size
; i
++) {
1478 if (haystack
[i
] == NULL
) /* previously removed. */
1480 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1482 if (device_is_the_same(needle
, haystack
[i
])) {
1483 if (device_updated(needle
, haystack
[i
]))
1484 return DEVICE_UPDATED
;
1487 /* Keep offline devices offline */
1488 if (needle
->volume_offline
)
1489 return DEVICE_NOT_FOUND
;
1490 return DEVICE_CHANGED
;
1495 return DEVICE_NOT_FOUND
;
1498 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1499 unsigned char scsi3addr
[])
1501 struct offline_device_entry
*device
;
1502 unsigned long flags
;
1504 /* Check to see if device is already on the list */
1505 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1506 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1507 if (memcmp(device
->scsi3addr
, scsi3addr
,
1508 sizeof(device
->scsi3addr
)) == 0) {
1509 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1513 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1515 /* Device is not on the list, add it. */
1516 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1518 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1521 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1522 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1523 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1524 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1529 struct hpsa_scsi_dev_t
*sd
)
1531 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1532 dev_info(&h
->pdev
->dev
,
1533 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534 h
->scsi_host
->host_no
,
1535 sd
->bus
, sd
->target
, sd
->lun
);
1536 switch (sd
->volume_offline
) {
1539 case HPSA_LV_UNDERGOING_ERASE
:
1540 dev_info(&h
->pdev
->dev
,
1541 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542 h
->scsi_host
->host_no
,
1543 sd
->bus
, sd
->target
, sd
->lun
);
1545 case HPSA_LV_NOT_AVAILABLE
:
1546 dev_info(&h
->pdev
->dev
,
1547 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548 h
->scsi_host
->host_no
,
1549 sd
->bus
, sd
->target
, sd
->lun
);
1551 case HPSA_LV_UNDERGOING_RPI
:
1552 dev_info(&h
->pdev
->dev
,
1553 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554 h
->scsi_host
->host_no
,
1555 sd
->bus
, sd
->target
, sd
->lun
);
1557 case HPSA_LV_PENDING_RPI
:
1558 dev_info(&h
->pdev
->dev
,
1559 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560 h
->scsi_host
->host_no
,
1561 sd
->bus
, sd
->target
, sd
->lun
);
1563 case HPSA_LV_ENCRYPTED_NO_KEY
:
1564 dev_info(&h
->pdev
->dev
,
1565 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566 h
->scsi_host
->host_no
,
1567 sd
->bus
, sd
->target
, sd
->lun
);
1569 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1570 dev_info(&h
->pdev
->dev
,
1571 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572 h
->scsi_host
->host_no
,
1573 sd
->bus
, sd
->target
, sd
->lun
);
1575 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1576 dev_info(&h
->pdev
->dev
,
1577 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578 h
->scsi_host
->host_no
,
1579 sd
->bus
, sd
->target
, sd
->lun
);
1581 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1582 dev_info(&h
->pdev
->dev
,
1583 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584 h
->scsi_host
->host_no
,
1585 sd
->bus
, sd
->target
, sd
->lun
);
1587 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1588 dev_info(&h
->pdev
->dev
,
1589 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590 h
->scsi_host
->host_no
,
1591 sd
->bus
, sd
->target
, sd
->lun
);
1593 case HPSA_LV_PENDING_ENCRYPTION
:
1594 dev_info(&h
->pdev
->dev
,
1595 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596 h
->scsi_host
->host_no
,
1597 sd
->bus
, sd
->target
, sd
->lun
);
1599 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1600 dev_info(&h
->pdev
->dev
,
1601 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602 h
->scsi_host
->host_no
,
1603 sd
->bus
, sd
->target
, sd
->lun
);
1609 * Figure the list of physical drive pointers for a logical drive with
1610 * raid offload configured.
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1613 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1614 struct hpsa_scsi_dev_t
*logical_drive
)
1616 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1617 struct raid_map_disk_data
*dd
= &map
->data
[0];
1619 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1620 le16_to_cpu(map
->metadata_disks_per_row
);
1621 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1622 le16_to_cpu(map
->layout_map_count
) *
1623 total_disks_per_row
;
1624 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1625 total_disks_per_row
;
1628 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1629 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1631 logical_drive
->nphysical_disks
= nraid_map_entries
;
1634 for (i
= 0; i
< nraid_map_entries
; i
++) {
1635 logical_drive
->phys_disk
[i
] = NULL
;
1636 if (!logical_drive
->offload_config
)
1638 for (j
= 0; j
< ndevices
; j
++) {
1641 if (dev
[j
]->devtype
!= TYPE_DISK
)
1643 if (is_logical_device(dev
[j
]))
1645 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1648 logical_drive
->phys_disk
[i
] = dev
[j
];
1650 qdepth
= min(h
->nr_cmds
, qdepth
+
1651 logical_drive
->phys_disk
[i
]->queue_depth
);
1656 * This can happen if a physical drive is removed and
1657 * the logical drive is degraded. In that case, the RAID
1658 * map data will refer to a physical disk which isn't actually
1659 * present. And in that case offload_enabled should already
1660 * be 0, but we'll turn it off here just in case
1662 if (!logical_drive
->phys_disk
[i
]) {
1663 logical_drive
->offload_enabled
= 0;
1664 logical_drive
->offload_to_be_enabled
= 0;
1665 logical_drive
->queue_depth
= 8;
1668 if (nraid_map_entries
)
1670 * This is correct for reads, too high for full stripe writes,
1671 * way too high for partial stripe writes
1673 logical_drive
->queue_depth
= qdepth
;
1675 logical_drive
->queue_depth
= h
->nr_cmds
;
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1679 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1683 for (i
= 0; i
< ndevices
; i
++) {
1686 if (dev
[i
]->devtype
!= TYPE_DISK
)
1688 if (!is_logical_device(dev
[i
]))
1692 * If offload is currently enabled, the RAID map and
1693 * phys_disk[] assignment *better* not be changing
1694 * and since it isn't changing, we do not need to
1697 if (dev
[i
]->offload_enabled
)
1700 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1704 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1711 if (is_logical_device(device
)) /* RAID */
1712 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1713 device
->target
, device
->lun
);
1715 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1720 static void hpsa_remove_device(struct ctlr_info
*h
,
1721 struct hpsa_scsi_dev_t
*device
)
1723 struct scsi_device
*sdev
= NULL
;
1728 if (is_logical_device(device
)) { /* RAID */
1729 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1730 device
->target
, device
->lun
);
1732 scsi_remove_device(sdev
);
1733 scsi_device_put(sdev
);
1736 * We don't expect to get here. Future commands
1737 * to this device will get a selection timeout as
1738 * if the device were gone.
1740 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1741 "didn't find device for removal.");
1744 hpsa_remove_sas_device(device
);
1747 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1748 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1750 /* sd contains scsi3 addresses and devtypes, and inquiry
1751 * data. This function takes what's in sd to be the current
1752 * reality and updates h->dev[] to reflect that reality.
1754 int i
, entry
, device_change
, changes
= 0;
1755 struct hpsa_scsi_dev_t
*csd
;
1756 unsigned long flags
;
1757 struct hpsa_scsi_dev_t
**added
, **removed
;
1758 int nadded
, nremoved
;
1761 * A reset can cause a device status to change
1762 * re-schedule the scan to see what happened.
1764 if (h
->reset_in_progress
) {
1765 h
->drv_req_rescan
= 1;
1769 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1770 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1772 if (!added
|| !removed
) {
1773 dev_warn(&h
->pdev
->dev
, "out of memory in "
1774 "adjust_hpsa_scsi_table\n");
1778 spin_lock_irqsave(&h
->devlock
, flags
);
1780 /* find any devices in h->dev[] that are not in
1781 * sd[] and remove them from h->dev[], and for any
1782 * devices which have changed, remove the old device
1783 * info and add the new device info.
1784 * If minor device attributes change, just update
1785 * the existing device structure.
1790 while (i
< h
->ndevices
) {
1792 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1793 if (device_change
== DEVICE_NOT_FOUND
) {
1795 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1796 continue; /* remove ^^^, hence i not incremented */
1797 } else if (device_change
== DEVICE_CHANGED
) {
1799 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1800 added
, &nadded
, removed
, &nremoved
);
1801 /* Set it to NULL to prevent it from being freed
1802 * at the bottom of hpsa_update_scsi_devices()
1805 } else if (device_change
== DEVICE_UPDATED
) {
1806 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1811 /* Now, make sure every device listed in sd[] is also
1812 * listed in h->dev[], adding them if they aren't found
1815 for (i
= 0; i
< nsds
; i
++) {
1816 if (!sd
[i
]) /* if already added above. */
1819 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820 * as the SCSI mid-layer does not handle such devices well.
1821 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822 * at 160Hz, and prevents the system from coming up.
1824 if (sd
[i
]->volume_offline
) {
1825 hpsa_show_volume_status(h
, sd
[i
]);
1826 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1830 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1831 h
->ndevices
, &entry
);
1832 if (device_change
== DEVICE_NOT_FOUND
) {
1834 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1836 sd
[i
] = NULL
; /* prevent from being freed later. */
1837 } else if (device_change
== DEVICE_CHANGED
) {
1838 /* should never happen... */
1840 dev_warn(&h
->pdev
->dev
,
1841 "device unexpectedly changed.\n");
1842 /* but if it does happen, we just ignore that device */
1845 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1847 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848 * any logical drives that need it enabled.
1850 for (i
= 0; i
< h
->ndevices
; i
++) {
1851 if (h
->dev
[i
] == NULL
)
1853 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1856 spin_unlock_irqrestore(&h
->devlock
, flags
);
1858 /* Monitor devices which are in one of several NOT READY states to be
1859 * brought online later. This must be done without holding h->devlock,
1860 * so don't touch h->dev[]
1862 for (i
= 0; i
< nsds
; i
++) {
1863 if (!sd
[i
]) /* if already added above. */
1865 if (sd
[i
]->volume_offline
)
1866 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1869 /* Don't notify scsi mid layer of any changes the first time through
1870 * (or if there are no changes) scsi_scan_host will do it later the
1871 * first time through.
1876 /* Notify scsi mid layer of any removed devices */
1877 for (i
= 0; i
< nremoved
; i
++) {
1878 if (removed
[i
] == NULL
)
1880 if (removed
[i
]->expose_device
)
1881 hpsa_remove_device(h
, removed
[i
]);
1886 /* Notify scsi mid layer of any added devices */
1887 for (i
= 0; i
< nadded
; i
++) {
1890 if (added
[i
] == NULL
)
1892 if (!(added
[i
]->expose_device
))
1894 rc
= hpsa_add_device(h
, added
[i
]);
1897 dev_warn(&h
->pdev
->dev
,
1898 "addition failed %d, device not added.", rc
);
1899 /* now we have to remove it from h->dev,
1900 * since it didn't get added to scsi mid layer
1902 fixup_botched_add(h
, added
[i
]);
1903 h
->drv_req_rescan
= 1;
1912 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913 * Assume's h->devlock is held.
1915 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1916 int bus
, int target
, int lun
)
1919 struct hpsa_scsi_dev_t
*sd
;
1921 for (i
= 0; i
< h
->ndevices
; i
++) {
1923 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1929 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1931 struct hpsa_scsi_dev_t
*sd
;
1932 unsigned long flags
;
1933 struct ctlr_info
*h
;
1935 h
= sdev_to_hba(sdev
);
1936 spin_lock_irqsave(&h
->devlock
, flags
);
1937 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
1938 struct scsi_target
*starget
;
1939 struct sas_rphy
*rphy
;
1941 starget
= scsi_target(sdev
);
1942 rphy
= target_to_rphy(starget
);
1943 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
1945 sd
->target
= sdev_id(sdev
);
1946 sd
->lun
= sdev
->lun
;
1949 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1950 sdev_id(sdev
), sdev
->lun
);
1952 if (sd
&& sd
->expose_device
) {
1953 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1954 sdev
->hostdata
= sd
;
1956 sdev
->hostdata
= NULL
;
1957 spin_unlock_irqrestore(&h
->devlock
, flags
);
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1964 struct hpsa_scsi_dev_t
*sd
;
1967 sd
= sdev
->hostdata
;
1968 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
1971 queue_depth
= sd
->queue_depth
!= 0 ?
1972 sd
->queue_depth
: sdev
->host
->can_queue
;
1974 queue_depth
= sdev
->host
->can_queue
;
1976 scsi_change_queue_depth(sdev
, queue_depth
);
1981 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1983 /* nothing to do. */
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1990 if (!h
->ioaccel2_cmd_sg_list
)
1992 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1993 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1994 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1996 kfree(h
->ioaccel2_cmd_sg_list
);
1997 h
->ioaccel2_cmd_sg_list
= NULL
;
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2004 if (h
->chainsize
<= 0)
2007 h
->ioaccel2_cmd_sg_list
=
2008 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2010 if (!h
->ioaccel2_cmd_sg_list
)
2012 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2013 h
->ioaccel2_cmd_sg_list
[i
] =
2014 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2015 h
->maxsgentries
, GFP_KERNEL
);
2016 if (!h
->ioaccel2_cmd_sg_list
[i
])
2022 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2030 if (!h
->cmd_sg_list
)
2032 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2033 kfree(h
->cmd_sg_list
[i
]);
2034 h
->cmd_sg_list
[i
] = NULL
;
2036 kfree(h
->cmd_sg_list
);
2037 h
->cmd_sg_list
= NULL
;
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2044 if (h
->chainsize
<= 0)
2047 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2049 if (!h
->cmd_sg_list
) {
2050 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2053 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2054 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2055 h
->chainsize
, GFP_KERNEL
);
2056 if (!h
->cmd_sg_list
[i
]) {
2057 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2064 hpsa_free_sg_chain_blocks(h
);
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2069 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2071 struct ioaccel2_sg_element
*chain_block
;
2075 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2076 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2077 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2079 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2080 /* prevent subsequent unmapping */
2081 cp
->sg
->address
= 0;
2084 cp
->sg
->address
= cpu_to_le64(temp64
);
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2089 struct io_accel2_cmd
*cp
)
2091 struct ioaccel2_sg_element
*chain_sg
;
2096 temp64
= le64_to_cpu(chain_sg
->address
);
2097 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2098 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2101 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2102 struct CommandList
*c
)
2104 struct SGDescriptor
*chain_sg
, *chain_block
;
2108 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2109 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2110 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2111 chain_len
= sizeof(*chain_sg
) *
2112 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2113 chain_sg
->Len
= cpu_to_le32(chain_len
);
2114 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2116 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2117 /* prevent subsequent unmapping */
2118 chain_sg
->Addr
= cpu_to_le64(0);
2121 chain_sg
->Addr
= cpu_to_le64(temp64
);
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2126 struct CommandList
*c
)
2128 struct SGDescriptor
*chain_sg
;
2130 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2133 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2134 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2135 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2139 /* Decode the various types of errors on ioaccel2 path.
2140 * Return 1 for any error that should generate a RAID path retry.
2141 * Return 0 for errors that don't require a RAID path retry.
2143 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2144 struct CommandList
*c
,
2145 struct scsi_cmnd
*cmd
,
2146 struct io_accel2_cmd
*c2
)
2150 u32 ioaccel2_resid
= 0;
2152 switch (c2
->error_data
.serv_response
) {
2153 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2154 switch (c2
->error_data
.status
) {
2155 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2159 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2160 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2161 if (c2
->error_data
.data_present
!=
2162 IOACCEL2_SENSE_DATA_PRESENT
) {
2163 memset(cmd
->sense_buffer
, 0,
2164 SCSI_SENSE_BUFFERSIZE
);
2167 /* copy the sense data */
2168 data_len
= c2
->error_data
.sense_data_len
;
2169 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2170 data_len
= SCSI_SENSE_BUFFERSIZE
;
2171 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2173 sizeof(c2
->error_data
.sense_data_buff
);
2174 memcpy(cmd
->sense_buffer
,
2175 c2
->error_data
.sense_data_buff
, data_len
);
2178 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2181 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2184 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2187 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2195 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2196 switch (c2
->error_data
.status
) {
2197 case IOACCEL2_STATUS_SR_IO_ERROR
:
2198 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2199 case IOACCEL2_STATUS_SR_OVERRUN
:
2202 case IOACCEL2_STATUS_SR_UNDERRUN
:
2203 cmd
->result
= (DID_OK
<< 16); /* host byte */
2204 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2205 ioaccel2_resid
= get_unaligned_le32(
2206 &c2
->error_data
.resid_cnt
[0]);
2207 scsi_set_resid(cmd
, ioaccel2_resid
);
2209 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2210 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2211 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2212 /* We will get an event from ctlr to trigger rescan */
2219 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2221 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2223 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2226 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2233 return retry
; /* retry on raid path? */
2236 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2237 struct CommandList
*c
)
2239 bool do_wake
= false;
2242 * Prevent the following race in the abort handler:
2244 * 1. LLD is requested to abort a SCSI command
2245 * 2. The SCSI command completes
2246 * 3. The struct CommandList associated with step 2 is made available
2247 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2248 * 5. Abort handler follows scsi_cmnd->host_scribble and
2249 * finds struct CommandList and tries to aborts it
2250 * Now we have aborted the wrong command.
2252 * Reset c->scsi_cmd here so that the abort or reset handler will know
2253 * this command has completed. Then, check to see if the handler is
2254 * waiting for this command, and, if so, wake it.
2256 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2257 mb(); /* Declare command idle before checking for pending events. */
2258 if (c
->abort_pending
) {
2260 c
->abort_pending
= false;
2262 if (c
->reset_pending
) {
2263 unsigned long flags
;
2264 struct hpsa_scsi_dev_t
*dev
;
2267 * There appears to be a reset pending; lock the lock and
2268 * reconfirm. If so, then decrement the count of outstanding
2269 * commands and wake the reset command if this is the last one.
2271 spin_lock_irqsave(&h
->lock
, flags
);
2272 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2273 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2275 c
->reset_pending
= NULL
;
2276 spin_unlock_irqrestore(&h
->lock
, flags
);
2280 wake_up_all(&h
->event_sync_wait_queue
);
2283 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2284 struct CommandList
*c
)
2286 hpsa_cmd_resolve_events(h
, c
);
2287 cmd_tagged_free(h
, c
);
2290 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2291 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2293 hpsa_cmd_resolve_and_free(h
, c
);
2294 cmd
->scsi_done(cmd
);
2297 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2299 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2300 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2303 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2305 cmd
->result
= DID_ABORT
<< 16;
2308 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2309 struct scsi_cmnd
*cmd
)
2311 hpsa_set_scsi_cmd_aborted(cmd
);
2312 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2313 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2314 hpsa_cmd_resolve_and_free(h
, c
);
2317 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2318 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2319 struct hpsa_scsi_dev_t
*dev
)
2321 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2323 /* check for good status */
2324 if (likely(c2
->error_data
.serv_response
== 0 &&
2325 c2
->error_data
.status
== 0)) {
2327 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2331 * Any RAID offload error results in retry which will use
2332 * the normal I/O path so the controller can handle whatever's
2335 if (is_logical_device(dev
) &&
2336 c2
->error_data
.serv_response
==
2337 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2338 if (c2
->error_data
.status
==
2339 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2340 dev
->offload_enabled
= 0;
2342 return hpsa_retry_cmd(h
, c
);
2345 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2346 return hpsa_retry_cmd(h
, c
);
2348 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2351 /* Returns 0 on success, < 0 otherwise. */
2352 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2353 struct CommandList
*cp
)
2355 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2357 switch (tmf_status
) {
2358 case CISS_TMF_COMPLETE
:
2360 * CISS_TMF_COMPLETE never happens, instead,
2361 * ei->CommandStatus == 0 for this case.
2363 case CISS_TMF_SUCCESS
:
2365 case CISS_TMF_INVALID_FRAME
:
2366 case CISS_TMF_NOT_SUPPORTED
:
2367 case CISS_TMF_FAILED
:
2368 case CISS_TMF_WRONG_LUN
:
2369 case CISS_TMF_OVERLAPPED_TAG
:
2372 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2379 static void complete_scsi_command(struct CommandList
*cp
)
2381 struct scsi_cmnd
*cmd
;
2382 struct ctlr_info
*h
;
2383 struct ErrorInfo
*ei
;
2384 struct hpsa_scsi_dev_t
*dev
;
2385 struct io_accel2_cmd
*c2
;
2388 u8 asc
; /* additional sense code */
2389 u8 ascq
; /* additional sense code qualifier */
2390 unsigned long sense_data_size
;
2395 dev
= cmd
->device
->hostdata
;
2396 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2398 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2399 if ((cp
->cmd_type
== CMD_SCSI
) &&
2400 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2401 hpsa_unmap_sg_chain_block(h
, cp
);
2403 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2404 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2405 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2407 cmd
->result
= (DID_OK
<< 16); /* host byte */
2408 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2410 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2411 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2414 * We check for lockup status here as it may be set for
2415 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2416 * fail_all_oustanding_cmds()
2418 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2419 /* DID_NO_CONNECT will prevent a retry */
2420 cmd
->result
= DID_NO_CONNECT
<< 16;
2421 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2424 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2425 if (cp
->reset_pending
)
2426 return hpsa_cmd_resolve_and_free(h
, cp
);
2427 if (cp
->abort_pending
)
2428 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2431 if (cp
->cmd_type
== CMD_IOACCEL2
)
2432 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2434 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2435 if (ei
->CommandStatus
== 0)
2436 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2438 /* For I/O accelerator commands, copy over some fields to the normal
2439 * CISS header used below for error handling.
2441 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2442 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2443 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2444 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2445 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2446 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2447 cp
->Header
.tag
= c
->tag
;
2448 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2449 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2451 /* Any RAID offload error results in retry which will use
2452 * the normal I/O path so the controller can handle whatever's
2455 if (is_logical_device(dev
)) {
2456 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2457 dev
->offload_enabled
= 0;
2458 return hpsa_retry_cmd(h
, cp
);
2462 /* an error has occurred */
2463 switch (ei
->CommandStatus
) {
2465 case CMD_TARGET_STATUS
:
2466 cmd
->result
|= ei
->ScsiStatus
;
2467 /* copy the sense data */
2468 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2469 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2471 sense_data_size
= sizeof(ei
->SenseInfo
);
2472 if (ei
->SenseLen
< sense_data_size
)
2473 sense_data_size
= ei
->SenseLen
;
2474 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2476 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2477 &sense_key
, &asc
, &ascq
);
2478 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2479 if (sense_key
== ABORTED_COMMAND
) {
2480 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2485 /* Problem was not a check condition
2486 * Pass it up to the upper layers...
2488 if (ei
->ScsiStatus
) {
2489 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2490 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2491 "Returning result: 0x%x\n",
2493 sense_key
, asc
, ascq
,
2495 } else { /* scsi status is zero??? How??? */
2496 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2497 "Returning no connection.\n", cp
),
2499 /* Ordinarily, this case should never happen,
2500 * but there is a bug in some released firmware
2501 * revisions that allows it to happen if, for
2502 * example, a 4100 backplane loses power and
2503 * the tape drive is in it. We assume that
2504 * it's a fatal error of some kind because we
2505 * can't show that it wasn't. We will make it
2506 * look like selection timeout since that is
2507 * the most common reason for this to occur,
2508 * and it's severe enough.
2511 cmd
->result
= DID_NO_CONNECT
<< 16;
2515 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2517 case CMD_DATA_OVERRUN
:
2518 dev_warn(&h
->pdev
->dev
,
2519 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2522 /* print_bytes(cp, sizeof(*cp), 1, 0);
2524 /* We get CMD_INVALID if you address a non-existent device
2525 * instead of a selection timeout (no response). You will
2526 * see this if you yank out a drive, then try to access it.
2527 * This is kind of a shame because it means that any other
2528 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2529 * missing target. */
2530 cmd
->result
= DID_NO_CONNECT
<< 16;
2533 case CMD_PROTOCOL_ERR
:
2534 cmd
->result
= DID_ERROR
<< 16;
2535 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2538 case CMD_HARDWARE_ERR
:
2539 cmd
->result
= DID_ERROR
<< 16;
2540 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2543 case CMD_CONNECTION_LOST
:
2544 cmd
->result
= DID_ERROR
<< 16;
2545 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2549 /* Return now to avoid calling scsi_done(). */
2550 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2551 case CMD_ABORT_FAILED
:
2552 cmd
->result
= DID_ERROR
<< 16;
2553 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2556 case CMD_UNSOLICITED_ABORT
:
2557 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2558 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2562 cmd
->result
= DID_TIME_OUT
<< 16;
2563 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2566 case CMD_UNABORTABLE
:
2567 cmd
->result
= DID_ERROR
<< 16;
2568 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2570 case CMD_TMF_STATUS
:
2571 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2572 cmd
->result
= DID_ERROR
<< 16;
2574 case CMD_IOACCEL_DISABLED
:
2575 /* This only handles the direct pass-through case since RAID
2576 * offload is handled above. Just attempt a retry.
2578 cmd
->result
= DID_SOFT_ERROR
<< 16;
2579 dev_warn(&h
->pdev
->dev
,
2580 "cp %p had HP SSD Smart Path error\n", cp
);
2583 cmd
->result
= DID_ERROR
<< 16;
2584 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2585 cp
, ei
->CommandStatus
);
2588 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2591 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2592 struct CommandList
*c
, int sg_used
, int data_direction
)
2596 for (i
= 0; i
< sg_used
; i
++)
2597 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2598 le32_to_cpu(c
->SG
[i
].Len
),
2602 static int hpsa_map_one(struct pci_dev
*pdev
,
2603 struct CommandList
*cp
,
2610 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2611 cp
->Header
.SGList
= 0;
2612 cp
->Header
.SGTotal
= cpu_to_le16(0);
2616 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2617 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2618 /* Prevent subsequent unmap of something never mapped */
2619 cp
->Header
.SGList
= 0;
2620 cp
->Header
.SGTotal
= cpu_to_le16(0);
2623 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2624 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2625 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2626 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2627 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2631 #define NO_TIMEOUT ((unsigned long) -1)
2632 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2633 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2634 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2636 DECLARE_COMPLETION_ONSTACK(wait
);
2639 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2640 if (timeout_msecs
== NO_TIMEOUT
) {
2641 /* TODO: get rid of this no-timeout thing */
2642 wait_for_completion_io(&wait
);
2645 if (!wait_for_completion_io_timeout(&wait
,
2646 msecs_to_jiffies(timeout_msecs
))) {
2647 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2653 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2654 int reply_queue
, unsigned long timeout_msecs
)
2656 if (unlikely(lockup_detected(h
))) {
2657 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2660 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2663 static u32
lockup_detected(struct ctlr_info
*h
)
2666 u32 rc
, *lockup_detected
;
2669 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2670 rc
= *lockup_detected
;
2675 #define MAX_DRIVER_CMD_RETRIES 25
2676 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2677 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2679 int backoff_time
= 10, retry_count
= 0;
2683 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2684 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2689 if (retry_count
> 3) {
2690 msleep(backoff_time
);
2691 if (backoff_time
< 1000)
2694 } while ((check_for_unit_attention(h
, c
) ||
2695 check_for_busy(h
, c
)) &&
2696 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2697 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2698 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2703 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2704 struct CommandList
*c
)
2706 const u8
*cdb
= c
->Request
.CDB
;
2707 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2709 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2710 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2711 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2712 lun
[4], lun
[5], lun
[6], lun
[7],
2713 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2714 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2715 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2716 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2719 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2720 struct CommandList
*cp
)
2722 const struct ErrorInfo
*ei
= cp
->err_info
;
2723 struct device
*d
= &cp
->h
->pdev
->dev
;
2724 u8 sense_key
, asc
, ascq
;
2727 switch (ei
->CommandStatus
) {
2728 case CMD_TARGET_STATUS
:
2729 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2730 sense_len
= sizeof(ei
->SenseInfo
);
2732 sense_len
= ei
->SenseLen
;
2733 decode_sense_data(ei
->SenseInfo
, sense_len
,
2734 &sense_key
, &asc
, &ascq
);
2735 hpsa_print_cmd(h
, "SCSI status", cp
);
2736 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2737 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2738 sense_key
, asc
, ascq
);
2740 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2741 if (ei
->ScsiStatus
== 0)
2742 dev_warn(d
, "SCSI status is abnormally zero. "
2743 "(probably indicates selection timeout "
2744 "reported incorrectly due to a known "
2745 "firmware bug, circa July, 2001.)\n");
2747 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2749 case CMD_DATA_OVERRUN
:
2750 hpsa_print_cmd(h
, "overrun condition", cp
);
2753 /* controller unfortunately reports SCSI passthru's
2754 * to non-existent targets as invalid commands.
2756 hpsa_print_cmd(h
, "invalid command", cp
);
2757 dev_warn(d
, "probably means device no longer present\n");
2760 case CMD_PROTOCOL_ERR
:
2761 hpsa_print_cmd(h
, "protocol error", cp
);
2763 case CMD_HARDWARE_ERR
:
2764 hpsa_print_cmd(h
, "hardware error", cp
);
2766 case CMD_CONNECTION_LOST
:
2767 hpsa_print_cmd(h
, "connection lost", cp
);
2770 hpsa_print_cmd(h
, "aborted", cp
);
2772 case CMD_ABORT_FAILED
:
2773 hpsa_print_cmd(h
, "abort failed", cp
);
2775 case CMD_UNSOLICITED_ABORT
:
2776 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2779 hpsa_print_cmd(h
, "timed out", cp
);
2781 case CMD_UNABORTABLE
:
2782 hpsa_print_cmd(h
, "unabortable", cp
);
2784 case CMD_CTLR_LOCKUP
:
2785 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2788 hpsa_print_cmd(h
, "unknown status", cp
);
2789 dev_warn(d
, "Unknown command status %x\n",
2794 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2795 u16 page
, unsigned char *buf
,
2796 unsigned char bufsize
)
2799 struct CommandList
*c
;
2800 struct ErrorInfo
*ei
;
2804 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2805 page
, scsi3addr
, TYPE_CMD
)) {
2809 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2810 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2814 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2815 hpsa_scsi_interpret_error(h
, c
);
2823 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2824 u8 reset_type
, int reply_queue
)
2827 struct CommandList
*c
;
2828 struct ErrorInfo
*ei
;
2833 /* fill_cmd can't fail here, no data buffer to map. */
2834 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2835 scsi3addr
, TYPE_MSG
);
2836 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2838 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2841 /* no unmap needed here because no data xfer. */
2844 if (ei
->CommandStatus
!= 0) {
2845 hpsa_scsi_interpret_error(h
, c
);
2853 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2854 struct hpsa_scsi_dev_t
*dev
,
2855 unsigned char *scsi3addr
)
2859 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2860 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2862 if (hpsa_is_cmd_idle(c
))
2865 switch (c
->cmd_type
) {
2867 case CMD_IOCTL_PEND
:
2868 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2869 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2874 if (c
->phys_disk
== dev
) {
2875 /* HBA mode match */
2878 /* Possible RAID mode -- check each phys dev. */
2879 /* FIXME: Do we need to take out a lock here? If
2880 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2882 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2883 /* FIXME: an alternate test might be
2885 * match = dev->phys_disk[i]->ioaccel_handle
2886 * == c2->scsi_nexus; */
2887 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2893 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2894 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2895 le32_to_cpu(ac
->it_nexus
);
2899 case 0: /* The command is in the middle of being initialized. */
2904 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2912 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2913 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2918 /* We can really only handle one reset at a time */
2919 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2920 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2924 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2926 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2927 struct CommandList
*c
= h
->cmd_pool
+ i
;
2928 int refcount
= atomic_inc_return(&c
->refcount
);
2930 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2931 unsigned long flags
;
2934 * Mark the target command as having a reset pending,
2935 * then lock a lock so that the command cannot complete
2936 * while we're considering it. If the command is not
2937 * idle then count it; otherwise revoke the event.
2939 c
->reset_pending
= dev
;
2940 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2941 if (!hpsa_is_cmd_idle(c
))
2942 atomic_inc(&dev
->reset_cmds_out
);
2944 c
->reset_pending
= NULL
;
2945 spin_unlock_irqrestore(&h
->lock
, flags
);
2951 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2953 wait_event(h
->event_sync_wait_queue
,
2954 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2955 lockup_detected(h
));
2957 if (unlikely(lockup_detected(h
))) {
2958 dev_warn(&h
->pdev
->dev
,
2959 "Controller lockup detected during reset wait\n");
2964 atomic_set(&dev
->reset_cmds_out
, 0);
2966 mutex_unlock(&h
->reset_mutex
);
2970 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2971 unsigned char *scsi3addr
, unsigned char *raid_level
)
2976 *raid_level
= RAID_UNKNOWN
;
2977 buf
= kzalloc(64, GFP_KERNEL
);
2980 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2982 *raid_level
= buf
[8];
2983 if (*raid_level
> RAID_UNKNOWN
)
2984 *raid_level
= RAID_UNKNOWN
;
2989 #define HPSA_MAP_DEBUG
2990 #ifdef HPSA_MAP_DEBUG
2991 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2992 struct raid_map_data
*map_buff
)
2994 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2996 u16 map_cnt
, row_cnt
, disks_per_row
;
3001 /* Show details only if debugging has been activated. */
3002 if (h
->raid_offload_debug
< 2)
3005 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3006 le32_to_cpu(map_buff
->structure_size
));
3007 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3008 le32_to_cpu(map_buff
->volume_blk_size
));
3009 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3010 le64_to_cpu(map_buff
->volume_blk_cnt
));
3011 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3012 map_buff
->phys_blk_shift
);
3013 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3014 map_buff
->parity_rotation_shift
);
3015 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3016 le16_to_cpu(map_buff
->strip_size
));
3017 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3018 le64_to_cpu(map_buff
->disk_starting_blk
));
3019 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3020 le64_to_cpu(map_buff
->disk_blk_cnt
));
3021 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3022 le16_to_cpu(map_buff
->data_disks_per_row
));
3023 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3024 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3025 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3026 le16_to_cpu(map_buff
->row_cnt
));
3027 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3028 le16_to_cpu(map_buff
->layout_map_count
));
3029 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3030 le16_to_cpu(map_buff
->flags
));
3031 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3032 le16_to_cpu(map_buff
->flags
) &
3033 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3034 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3035 le16_to_cpu(map_buff
->dekindex
));
3036 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3037 for (map
= 0; map
< map_cnt
; map
++) {
3038 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3039 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3040 for (row
= 0; row
< row_cnt
; row
++) {
3041 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3043 le16_to_cpu(map_buff
->data_disks_per_row
);
3044 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3045 dev_info(&h
->pdev
->dev
,
3046 " D%02u: h=0x%04x xor=%u,%u\n",
3047 col
, dd
->ioaccel_handle
,
3048 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3050 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3051 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3052 dev_info(&h
->pdev
->dev
,
3053 " M%02u: h=0x%04x xor=%u,%u\n",
3054 col
, dd
->ioaccel_handle
,
3055 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3060 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3061 __attribute__((unused
)) int rc
,
3062 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3067 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3068 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3071 struct CommandList
*c
;
3072 struct ErrorInfo
*ei
;
3076 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3077 sizeof(this_device
->raid_map
), 0,
3078 scsi3addr
, TYPE_CMD
)) {
3079 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3083 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3084 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3088 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3089 hpsa_scsi_interpret_error(h
, c
);
3095 /* @todo in the future, dynamically allocate RAID map memory */
3096 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3097 sizeof(this_device
->raid_map
)) {
3098 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3101 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3108 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3109 unsigned char scsi3addr
[], u16 bmic_device_index
,
3110 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3113 struct CommandList
*c
;
3114 struct ErrorInfo
*ei
;
3118 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3119 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3123 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3124 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3126 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3127 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3131 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3132 hpsa_scsi_interpret_error(h
, c
);
3140 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3141 struct bmic_identify_controller
*buf
, size_t bufsize
)
3144 struct CommandList
*c
;
3145 struct ErrorInfo
*ei
;
3149 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3150 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3154 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3155 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3159 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3160 hpsa_scsi_interpret_error(h
, c
);
3168 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3169 unsigned char scsi3addr
[], u16 bmic_device_index
,
3170 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3173 struct CommandList
*c
;
3174 struct ErrorInfo
*ei
;
3177 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3178 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3182 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3183 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3185 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3188 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3189 hpsa_scsi_interpret_error(h
, c
);
3198 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3199 unsigned char *scsi3addr
)
3201 struct ReportExtendedLUNdata
*physdev
;
3206 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3210 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3211 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3215 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3217 for (i
= 0; i
< nphysicals
; i
++)
3218 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3219 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3228 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3229 struct hpsa_scsi_dev_t
*dev
)
3234 if (is_hba_lunid(scsi3addr
)) {
3235 struct bmic_sense_subsystem_info
*ssi
;
3237 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3239 dev_warn(&h
->pdev
->dev
,
3240 "%s: out of memory\n", __func__
);
3244 rc
= hpsa_bmic_sense_subsystem_information(h
,
3245 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3247 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3248 h
->sas_address
= sa
;
3253 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3255 dev
->sas_address
= sa
;
3258 /* Get a device id from inquiry page 0x83 */
3259 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3260 unsigned char scsi3addr
[], u8 page
)
3265 unsigned char *buf
, bufsize
;
3267 buf
= kzalloc(256, GFP_KERNEL
);
3271 /* Get the size of the page list first */
3272 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3273 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3274 buf
, HPSA_VPD_HEADER_SZ
);
3276 goto exit_unsupported
;
3278 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3279 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3283 /* Get the whole VPD page list */
3284 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3285 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3288 goto exit_unsupported
;
3291 for (i
= 1; i
<= pages
; i
++)
3292 if (buf
[3 + i
] == page
)
3293 goto exit_supported
;
3302 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3303 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3309 this_device
->offload_config
= 0;
3310 this_device
->offload_enabled
= 0;
3311 this_device
->offload_to_be_enabled
= 0;
3313 buf
= kzalloc(64, GFP_KERNEL
);
3316 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3318 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3319 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3323 #define IOACCEL_STATUS_BYTE 4
3324 #define OFFLOAD_CONFIGURED_BIT 0x01
3325 #define OFFLOAD_ENABLED_BIT 0x02
3326 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3327 this_device
->offload_config
=
3328 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3329 if (this_device
->offload_config
) {
3330 this_device
->offload_enabled
=
3331 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3332 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3333 this_device
->offload_enabled
= 0;
3335 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3341 /* Get the device id from inquiry page 0x83 */
3342 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3343 unsigned char *device_id
, int index
, int buflen
)
3350 buf
= kzalloc(64, GFP_KERNEL
);
3353 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3355 memcpy(device_id
, &buf
[index
], buflen
);
3362 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3363 void *buf
, int bufsize
,
3364 int extended_response
)
3367 struct CommandList
*c
;
3368 unsigned char scsi3addr
[8];
3369 struct ErrorInfo
*ei
;
3373 /* address the controller */
3374 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3375 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3376 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3380 if (extended_response
)
3381 c
->Request
.CDB
[1] = extended_response
;
3382 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3383 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3387 if (ei
->CommandStatus
!= 0 &&
3388 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3389 hpsa_scsi_interpret_error(h
, c
);
3392 struct ReportLUNdata
*rld
= buf
;
3394 if (rld
->extended_response_flag
!= extended_response
) {
3395 dev_err(&h
->pdev
->dev
,
3396 "report luns requested format %u, got %u\n",
3398 rld
->extended_response_flag
);
3407 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3408 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3410 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3411 HPSA_REPORT_PHYS_EXTENDED
);
3414 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3415 struct ReportLUNdata
*buf
, int bufsize
)
3417 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3420 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3421 int bus
, int target
, int lun
)
3424 device
->target
= target
;
3428 /* Use VPD inquiry to get details of volume status */
3429 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3430 unsigned char scsi3addr
[])
3437 buf
= kzalloc(64, GFP_KERNEL
);
3439 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3441 /* Does controller have VPD for logical volume status? */
3442 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3445 /* Get the size of the VPD return buffer */
3446 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3447 buf
, HPSA_VPD_HEADER_SZ
);
3452 /* Now get the whole VPD buffer */
3453 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3454 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3457 status
= buf
[4]; /* status byte */
3463 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3466 /* Determine offline status of a volume.
3469 * 0xff (offline for unknown reasons)
3470 * # (integer code indicating one of several NOT READY states
3471 * describing why a volume is to be kept offline)
3473 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3474 unsigned char scsi3addr
[])
3476 struct CommandList
*c
;
3477 unsigned char *sense
;
3478 u8 sense_key
, asc
, ascq
;
3483 #define ASC_LUN_NOT_READY 0x04
3484 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3485 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3489 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3490 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3493 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3495 sense
= c
->err_info
->SenseInfo
;
3496 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3497 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3499 sense_len
= c
->err_info
->SenseLen
;
3500 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3501 cmd_status
= c
->err_info
->CommandStatus
;
3502 scsi_status
= c
->err_info
->ScsiStatus
;
3505 /* Determine the reason for not ready state */
3506 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3508 /* Keep volume offline in certain cases: */
3510 case HPSA_LV_FAILED
:
3511 case HPSA_LV_UNDERGOING_ERASE
:
3512 case HPSA_LV_NOT_AVAILABLE
:
3513 case HPSA_LV_UNDERGOING_RPI
:
3514 case HPSA_LV_PENDING_RPI
:
3515 case HPSA_LV_ENCRYPTED_NO_KEY
:
3516 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3517 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3518 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3519 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3521 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3522 /* If VPD status page isn't available,
3523 * use ASC/ASCQ to determine state
3525 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3526 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3536 * Find out if a logical device supports aborts by simply trying one.
3537 * Smart Array may claim not to support aborts on logical drives, but
3538 * if a MSA2000 * is connected, the drives on that will be presented
3539 * by the Smart Array as logical drives, and aborts may be sent to
3540 * those devices successfully. So the simplest way to find out is
3541 * to simply try an abort and see how the device responds.
3543 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3544 unsigned char *scsi3addr
)
3546 struct CommandList
*c
;
3547 struct ErrorInfo
*ei
;
3550 u64 tag
= (u64
) -1; /* bogus tag */
3552 /* Assume that physical devices support aborts */
3553 if (!is_logical_dev_addr_mode(scsi3addr
))
3558 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3559 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3560 /* no unmap needed here because no data xfer. */
3562 switch (ei
->CommandStatus
) {
3566 case CMD_UNABORTABLE
:
3567 case CMD_ABORT_FAILED
:
3570 case CMD_TMF_STATUS
:
3571 rc
= hpsa_evaluate_tmf_status(h
, c
);
3581 static void sanitize_inquiry_string(unsigned char *s
, int len
)
3583 bool terminated
= false;
3585 for (; len
> 0; (--len
, ++s
)) {
3588 if (terminated
|| *s
< 0x20 || *s
> 0x7e)
3593 static int hpsa_update_device_info(struct ctlr_info
*h
,
3594 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3595 unsigned char *is_OBDR_device
)
3598 #define OBDR_SIG_OFFSET 43
3599 #define OBDR_TAPE_SIG "$DR-10"
3600 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3601 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3603 unsigned char *inq_buff
;
3604 unsigned char *obdr_sig
;
3607 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3613 /* Do an inquiry to the device to see what it is. */
3614 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3615 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3616 dev_err(&h
->pdev
->dev
,
3617 "%s: inquiry failed, device will be skipped.\n",
3619 rc
= HPSA_INQUIRY_FAILED
;
3623 sanitize_inquiry_string(&inq_buff
[8], 8);
3624 sanitize_inquiry_string(&inq_buff
[16], 16);
3626 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3627 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3628 memcpy(this_device
->vendor
, &inq_buff
[8],
3629 sizeof(this_device
->vendor
));
3630 memcpy(this_device
->model
, &inq_buff
[16],
3631 sizeof(this_device
->model
));
3632 memset(this_device
->device_id
, 0,
3633 sizeof(this_device
->device_id
));
3634 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3635 sizeof(this_device
->device_id
));
3637 if (this_device
->devtype
== TYPE_DISK
&&
3638 is_logical_dev_addr_mode(scsi3addr
)) {
3639 unsigned char volume_offline
;
3641 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3642 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3643 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3644 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3645 this_device
->volume_offline
= volume_offline
;
3646 if (volume_offline
== HPSA_LV_FAILED
) {
3647 rc
= HPSA_LV_FAILED
;
3648 dev_err(&h
->pdev
->dev
,
3649 "%s: LV failed, device will be skipped.\n",
3654 this_device
->raid_level
= RAID_UNKNOWN
;
3655 this_device
->offload_config
= 0;
3656 this_device
->offload_enabled
= 0;
3657 this_device
->offload_to_be_enabled
= 0;
3658 this_device
->hba_ioaccel_enabled
= 0;
3659 this_device
->volume_offline
= 0;
3660 this_device
->queue_depth
= h
->nr_cmds
;
3663 if (is_OBDR_device
) {
3664 /* See if this is a One-Button-Disaster-Recovery device
3665 * by looking for "$DR-10" at offset 43 in inquiry data.
3667 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3668 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3669 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3670 OBDR_SIG_LEN
) == 0);
3680 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3681 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3683 unsigned long flags
;
3686 * See if this device supports aborts. If we already know
3687 * the device, we already know if it supports aborts, otherwise
3688 * we have to find out if it supports aborts by trying one.
3690 spin_lock_irqsave(&h
->devlock
, flags
);
3691 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3692 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3693 entry
>= 0 && entry
< h
->ndevices
) {
3694 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3695 spin_unlock_irqrestore(&h
->devlock
, flags
);
3697 spin_unlock_irqrestore(&h
->devlock
, flags
);
3698 dev
->supports_aborts
=
3699 hpsa_device_supports_aborts(h
, scsi3addr
);
3700 if (dev
->supports_aborts
< 0)
3701 dev
->supports_aborts
= 0;
3706 * Helper function to assign bus, target, lun mapping of devices.
3707 * Logical drive target and lun are assigned at this time, but
3708 * physical device lun and target assignment are deferred (assigned
3709 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3711 static void figure_bus_target_lun(struct ctlr_info
*h
,
3712 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3714 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3716 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3717 /* physical device, target and lun filled in later */
3718 if (is_hba_lunid(lunaddrbytes
))
3719 hpsa_set_bus_target_lun(device
,
3720 HPSA_HBA_BUS
, 0, lunid
& 0x3fff);
3722 /* defer target, lun assignment for physical devices */
3723 hpsa_set_bus_target_lun(device
,
3724 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3727 /* It's a logical device */
3728 if (device
->external
) {
3729 hpsa_set_bus_target_lun(device
,
3730 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3734 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3740 * Get address of physical disk used for an ioaccel2 mode command:
3741 * 1. Extract ioaccel2 handle from the command.
3742 * 2. Find a matching ioaccel2 handle from list of physical disks.
3744 * 1 and set scsi3addr to address of matching physical
3745 * 0 if no matching physical disk was found.
3747 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3748 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3750 struct io_accel2_cmd
*c2
=
3751 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3752 unsigned long flags
;
3755 spin_lock_irqsave(&h
->devlock
, flags
);
3756 for (i
= 0; i
< h
->ndevices
; i
++)
3757 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3758 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3759 sizeof(h
->dev
[i
]->scsi3addr
));
3760 spin_unlock_irqrestore(&h
->devlock
, flags
);
3763 spin_unlock_irqrestore(&h
->devlock
, flags
);
3767 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3768 int i
, int nphysicals
, int nlocal_logicals
)
3770 /* In report logicals, local logicals are listed first,
3771 * then any externals.
3773 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3775 if (i
== raid_ctlr_position
)
3778 if (i
< logicals_start
)
3781 /* i is in logicals range, but still within local logicals */
3782 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3785 return 1; /* it's an external lun */
3789 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3790 * logdev. The number of luns in physdev and logdev are returned in
3791 * *nphysicals and *nlogicals, respectively.
3792 * Returns 0 on success, -1 otherwise.
3794 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3795 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3796 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3798 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3799 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3802 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3803 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3804 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3805 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3806 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3808 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3809 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3812 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3813 /* Reject Logicals in excess of our max capability. */
3814 if (*nlogicals
> HPSA_MAX_LUN
) {
3815 dev_warn(&h
->pdev
->dev
,
3816 "maximum logical LUNs (%d) exceeded. "
3817 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3818 *nlogicals
- HPSA_MAX_LUN
);
3819 *nlogicals
= HPSA_MAX_LUN
;
3821 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3822 dev_warn(&h
->pdev
->dev
,
3823 "maximum logical + physical LUNs (%d) exceeded. "
3824 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3825 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3826 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3831 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3832 int i
, int nphysicals
, int nlogicals
,
3833 struct ReportExtendedLUNdata
*physdev_list
,
3834 struct ReportLUNdata
*logdev_list
)
3836 /* Helper function, figure out where the LUN ID info is coming from
3837 * given index i, lists of physical and logical devices, where in
3838 * the list the raid controller is supposed to appear (first or last)
3841 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3842 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3844 if (i
== raid_ctlr_position
)
3845 return RAID_CTLR_LUNID
;
3847 if (i
< logicals_start
)
3848 return &physdev_list
->LUN
[i
-
3849 (raid_ctlr_position
== 0)].lunid
[0];
3851 if (i
< last_device
)
3852 return &logdev_list
->LUN
[i
- nphysicals
-
3853 (raid_ctlr_position
== 0)][0];
3858 /* get physical drive ioaccel handle and queue depth */
3859 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3860 struct hpsa_scsi_dev_t
*dev
,
3861 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3862 struct bmic_identify_physical_device
*id_phys
)
3865 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3867 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3868 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
3869 dev
->hba_ioaccel_enabled
= 1;
3870 memset(id_phys
, 0, sizeof(*id_phys
));
3871 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
3872 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
3875 /* Reserve space for FW operations */
3876 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3877 #define DRIVE_QUEUE_DEPTH 7
3879 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3880 DRIVE_CMDS_RESERVED_FOR_FW
;
3882 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3885 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
3886 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3887 struct bmic_identify_physical_device
*id_phys
)
3889 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3891 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
3892 this_device
->hba_ioaccel_enabled
= 1;
3894 memcpy(&this_device
->active_path_index
,
3895 &id_phys
->active_path_number
,
3896 sizeof(this_device
->active_path_index
));
3897 memcpy(&this_device
->path_map
,
3898 &id_phys
->redundant_path_present_map
,
3899 sizeof(this_device
->path_map
));
3900 memcpy(&this_device
->box
,
3901 &id_phys
->alternate_paths_phys_box_on_port
,
3902 sizeof(this_device
->box
));
3903 memcpy(&this_device
->phys_connector
,
3904 &id_phys
->alternate_paths_phys_connector
,
3905 sizeof(this_device
->phys_connector
));
3906 memcpy(&this_device
->bay
,
3907 &id_phys
->phys_bay_in_box
,
3908 sizeof(this_device
->bay
));
3911 /* get number of local logical disks. */
3912 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
3913 struct bmic_identify_controller
*id_ctlr
,
3919 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
3923 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
3924 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
3926 if (id_ctlr
->configured_logical_drive_count
< 256)
3927 *nlocals
= id_ctlr
->configured_logical_drive_count
;
3929 *nlocals
= le16_to_cpu(
3930 id_ctlr
->extended_logical_unit_count
);
3936 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
3938 struct bmic_identify_physical_device
*id_phys
;
3939 bool is_spare
= false;
3942 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3946 rc
= hpsa_bmic_id_physical_device(h
,
3948 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
3949 id_phys
, sizeof(*id_phys
));
3951 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
3957 #define RPL_DEV_FLAG_NON_DISK 0x1
3958 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
3959 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
3961 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
3963 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
3964 struct ext_report_lun_entry
*rle
)
3969 if (!MASKED_DEVICE(lunaddrbytes
))
3972 device_flags
= rle
->device_flags
;
3973 device_type
= rle
->device_type
;
3975 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
3976 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
3981 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
3984 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
3988 * Spares may be spun down, we do not want to
3989 * do an Inquiry to a RAID set spare drive as
3990 * that would have them spun up, that is a
3991 * performance hit because I/O to the RAID device
3992 * stops while the spin up occurs which can take
3995 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4001 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4003 /* the idea here is we could get notified
4004 * that some devices have changed, so we do a report
4005 * physical luns and report logical luns cmd, and adjust
4006 * our list of devices accordingly.
4008 * The scsi3addr's of devices won't change so long as the
4009 * adapter is not reset. That means we can rescan and
4010 * tell which devices we already know about, vs. new
4011 * devices, vs. disappearing devices.
4013 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4014 struct ReportLUNdata
*logdev_list
= NULL
;
4015 struct bmic_identify_physical_device
*id_phys
= NULL
;
4016 struct bmic_identify_controller
*id_ctlr
= NULL
;
4019 u32 nlocal_logicals
= 0;
4020 u32 ndev_allocated
= 0;
4021 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4023 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4024 int raid_ctlr_position
;
4025 bool physical_device
;
4026 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4028 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4029 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4030 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4031 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4032 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4033 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4035 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4036 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4037 dev_err(&h
->pdev
->dev
, "out of memory\n");
4040 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4042 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4044 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4045 logdev_list
, &nlogicals
)) {
4046 h
->drv_req_rescan
= 1;
4050 /* Set number of local logicals (non PTRAID) */
4051 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4052 dev_warn(&h
->pdev
->dev
,
4053 "%s: Can't determine number of local logical devices.\n",
4057 /* We might see up to the maximum number of logical and physical disks
4058 * plus external target devices, and a device for the local RAID
4061 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4063 /* Allocate the per device structures */
4064 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4065 if (i
>= HPSA_MAX_DEVICES
) {
4066 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4067 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4068 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4072 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4073 if (!currentsd
[i
]) {
4074 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4075 __FILE__
, __LINE__
);
4076 h
->drv_req_rescan
= 1;
4082 if (is_scsi_rev_5(h
))
4083 raid_ctlr_position
= 0;
4085 raid_ctlr_position
= nphysicals
+ nlogicals
;
4087 /* adjust our table of devices */
4088 n_ext_target_devs
= 0;
4089 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4090 u8
*lunaddrbytes
, is_OBDR
= 0;
4092 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4093 bool skip_device
= false;
4095 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4097 /* Figure out where the LUN ID info is coming from */
4098 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4099 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4102 * Skip over some devices such as a spare.
4104 if (!tmpdevice
->external
&& physical_device
) {
4105 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4106 &physdev_list
->LUN
[phys_dev_index
]);
4111 /* Get device type, vendor, model, device id */
4112 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4114 if (rc
== -ENOMEM
) {
4115 dev_warn(&h
->pdev
->dev
,
4116 "Out of memory, rescan deferred.\n");
4117 h
->drv_req_rescan
= 1;
4121 h
->drv_req_rescan
= 1;
4125 /* Determine if this is a lun from an external target array */
4126 tmpdevice
->external
=
4127 figure_external_status(h
, raid_ctlr_position
, i
,
4128 nphysicals
, nlocal_logicals
);
4130 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4131 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4132 this_device
= currentsd
[ncurrent
];
4134 /* Turn on discovery_polling if there are ext target devices.
4135 * Event-based change notification is unreliable for those.
4137 if (!h
->discovery_polling
) {
4138 if (tmpdevice
->external
) {
4139 h
->discovery_polling
= 1;
4140 dev_info(&h
->pdev
->dev
,
4141 "External target, activate discovery polling.\n");
4146 *this_device
= *tmpdevice
;
4147 this_device
->physical_device
= physical_device
;
4150 * Expose all devices except for physical devices that
4153 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4154 this_device
->expose_device
= 0;
4156 this_device
->expose_device
= 1;
4160 * Get the SAS address for physical devices that are exposed.
4162 if (this_device
->physical_device
&& this_device
->expose_device
)
4163 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4165 switch (this_device
->devtype
) {
4167 /* We don't *really* support actual CD-ROM devices,
4168 * just "One Button Disaster Recovery" tape drive
4169 * which temporarily pretends to be a CD-ROM drive.
4170 * So we check that the device is really an OBDR tape
4171 * device by checking for "$DR-10" in bytes 43-48 of
4178 if (this_device
->physical_device
) {
4179 /* The disk is in HBA mode. */
4180 /* Never use RAID mapper in HBA mode. */
4181 this_device
->offload_enabled
= 0;
4182 hpsa_get_ioaccel_drive_info(h
, this_device
,
4183 physdev_list
, phys_dev_index
, id_phys
);
4184 hpsa_get_path_info(this_device
,
4185 physdev_list
, phys_dev_index
, id_phys
);
4190 case TYPE_MEDIUM_CHANGER
:
4191 case TYPE_ENCLOSURE
:
4195 /* Only present the Smartarray HBA as a RAID controller.
4196 * If it's a RAID controller other than the HBA itself
4197 * (an external RAID controller, MSA500 or similar)
4200 if (!is_hba_lunid(lunaddrbytes
))
4207 if (ncurrent
>= HPSA_MAX_DEVICES
)
4211 if (h
->sas_host
== NULL
) {
4214 rc
= hpsa_add_sas_host(h
);
4216 dev_warn(&h
->pdev
->dev
,
4217 "Could not add sas host %d\n", rc
);
4222 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4225 for (i
= 0; i
< ndev_allocated
; i
++)
4226 kfree(currentsd
[i
]);
4228 kfree(physdev_list
);
4234 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4235 struct scatterlist
*sg
)
4237 u64 addr64
= (u64
) sg_dma_address(sg
);
4238 unsigned int len
= sg_dma_len(sg
);
4240 desc
->Addr
= cpu_to_le64(addr64
);
4241 desc
->Len
= cpu_to_le32(len
);
4246 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4247 * dma mapping and fills in the scatter gather entries of the
4250 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4251 struct CommandList
*cp
,
4252 struct scsi_cmnd
*cmd
)
4254 struct scatterlist
*sg
;
4255 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4256 struct SGDescriptor
*curr_sg
;
4258 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4260 use_sg
= scsi_dma_map(cmd
);
4265 goto sglist_finished
;
4268 * If the number of entries is greater than the max for a single list,
4269 * then we have a chained list; we will set up all but one entry in the
4270 * first list (the last entry is saved for link information);
4271 * otherwise, we don't have a chained list and we'll set up at each of
4272 * the entries in the one list.
4275 chained
= use_sg
> h
->max_cmd_sg_entries
;
4276 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4277 last_sg
= scsi_sg_count(cmd
) - 1;
4278 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4279 hpsa_set_sg_descriptor(curr_sg
, sg
);
4285 * Continue with the chained list. Set curr_sg to the chained
4286 * list. Modify the limit to the total count less the entries
4287 * we've already set up. Resume the scan at the list entry
4288 * where the previous loop left off.
4290 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4291 sg_limit
= use_sg
- sg_limit
;
4292 for_each_sg(sg
, sg
, sg_limit
, i
) {
4293 hpsa_set_sg_descriptor(curr_sg
, sg
);
4298 /* Back the pointer up to the last entry and mark it as "last". */
4299 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4301 if (use_sg
+ chained
> h
->maxSG
)
4302 h
->maxSG
= use_sg
+ chained
;
4305 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4306 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4307 if (hpsa_map_sg_chain_block(h
, cp
)) {
4308 scsi_dma_unmap(cmd
);
4316 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4317 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4321 #define IO_ACCEL_INELIGIBLE (1)
4322 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4328 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4335 if (*cdb_len
== 6) {
4336 block
= get_unaligned_be16(&cdb
[2]);
4341 BUG_ON(*cdb_len
!= 12);
4342 block
= get_unaligned_be32(&cdb
[2]);
4343 block_cnt
= get_unaligned_be32(&cdb
[6]);
4345 if (block_cnt
> 0xffff)
4346 return IO_ACCEL_INELIGIBLE
;
4348 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4350 cdb
[2] = (u8
) (block
>> 24);
4351 cdb
[3] = (u8
) (block
>> 16);
4352 cdb
[4] = (u8
) (block
>> 8);
4353 cdb
[5] = (u8
) (block
);
4355 cdb
[7] = (u8
) (block_cnt
>> 8);
4356 cdb
[8] = (u8
) (block_cnt
);
4364 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4365 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4366 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4368 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4369 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4371 unsigned int total_len
= 0;
4372 struct scatterlist
*sg
;
4375 struct SGDescriptor
*curr_sg
;
4376 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4378 /* TODO: implement chaining support */
4379 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4380 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4381 return IO_ACCEL_INELIGIBLE
;
4384 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4386 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4387 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4388 return IO_ACCEL_INELIGIBLE
;
4391 c
->cmd_type
= CMD_IOACCEL1
;
4393 /* Adjust the DMA address to point to the accelerated command buffer */
4394 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4395 (c
->cmdindex
* sizeof(*cp
));
4396 BUG_ON(c
->busaddr
& 0x0000007F);
4398 use_sg
= scsi_dma_map(cmd
);
4400 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4406 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4407 addr64
= (u64
) sg_dma_address(sg
);
4408 len
= sg_dma_len(sg
);
4410 curr_sg
->Addr
= cpu_to_le64(addr64
);
4411 curr_sg
->Len
= cpu_to_le32(len
);
4412 curr_sg
->Ext
= cpu_to_le32(0);
4415 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4417 switch (cmd
->sc_data_direction
) {
4419 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4421 case DMA_FROM_DEVICE
:
4422 control
|= IOACCEL1_CONTROL_DATA_IN
;
4425 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4428 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4429 cmd
->sc_data_direction
);
4434 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4437 c
->Header
.SGList
= use_sg
;
4438 /* Fill out the command structure to submit */
4439 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4440 cp
->transfer_len
= cpu_to_le32(total_len
);
4441 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4442 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4443 cp
->control
= cpu_to_le32(control
);
4444 memcpy(cp
->CDB
, cdb
, cdb_len
);
4445 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4446 /* Tag was already set at init time. */
4447 enqueue_cmd_and_start_io(h
, c
);
4452 * Queue a command directly to a device behind the controller using the
4453 * I/O accelerator path.
4455 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4456 struct CommandList
*c
)
4458 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4459 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4463 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4464 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4468 * Set encryption parameters for the ioaccel2 request
4470 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4471 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4473 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4474 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4475 struct raid_map_data
*map
= &dev
->raid_map
;
4478 /* Are we doing encryption on this device */
4479 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4481 /* Set the data encryption key index. */
4482 cp
->dekindex
= map
->dekindex
;
4484 /* Set the encryption enable flag, encoded into direction field. */
4485 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4487 /* Set encryption tweak values based on logical block address
4488 * If block size is 512, tweak value is LBA.
4489 * For other block sizes, tweak is (LBA * block size)/ 512)
4491 switch (cmd
->cmnd
[0]) {
4492 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4495 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4499 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4502 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4506 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4509 dev_err(&h
->pdev
->dev
,
4510 "ERROR: %s: size (0x%x) not supported for encryption\n",
4511 __func__
, cmd
->cmnd
[0]);
4516 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4517 first_block
= first_block
*
4518 le32_to_cpu(map
->volume_blk_size
)/512;
4520 cp
->tweak_lower
= cpu_to_le32(first_block
);
4521 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4524 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4525 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4526 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4528 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4529 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4530 struct ioaccel2_sg_element
*curr_sg
;
4532 struct scatterlist
*sg
;
4537 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4539 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4540 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4541 return IO_ACCEL_INELIGIBLE
;
4544 c
->cmd_type
= CMD_IOACCEL2
;
4545 /* Adjust the DMA address to point to the accelerated command buffer */
4546 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4547 (c
->cmdindex
* sizeof(*cp
));
4548 BUG_ON(c
->busaddr
& 0x0000007F);
4550 memset(cp
, 0, sizeof(*cp
));
4551 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4553 use_sg
= scsi_dma_map(cmd
);
4555 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4561 if (use_sg
> h
->ioaccel_maxsg
) {
4562 addr64
= le64_to_cpu(
4563 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4564 curr_sg
->address
= cpu_to_le64(addr64
);
4565 curr_sg
->length
= 0;
4566 curr_sg
->reserved
[0] = 0;
4567 curr_sg
->reserved
[1] = 0;
4568 curr_sg
->reserved
[2] = 0;
4569 curr_sg
->chain_indicator
= IOACCEL2_CHAIN
;
4571 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4573 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4574 addr64
= (u64
) sg_dma_address(sg
);
4575 len
= sg_dma_len(sg
);
4577 curr_sg
->address
= cpu_to_le64(addr64
);
4578 curr_sg
->length
= cpu_to_le32(len
);
4579 curr_sg
->reserved
[0] = 0;
4580 curr_sg
->reserved
[1] = 0;
4581 curr_sg
->reserved
[2] = 0;
4582 curr_sg
->chain_indicator
= 0;
4587 * Set the last s/g element bit
4589 (curr_sg
- 1)->chain_indicator
= IOACCEL2_LAST_SG
;
4591 switch (cmd
->sc_data_direction
) {
4593 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4594 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4596 case DMA_FROM_DEVICE
:
4597 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4598 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4601 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4602 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4605 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4606 cmd
->sc_data_direction
);
4611 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4612 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4615 /* Set encryption parameters, if necessary */
4616 set_encrypt_ioaccel2(h
, c
, cp
);
4618 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4619 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4620 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4622 cp
->data_len
= cpu_to_le32(total_len
);
4623 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4624 offsetof(struct io_accel2_cmd
, error_data
));
4625 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4627 /* fill in sg elements */
4628 if (use_sg
> h
->ioaccel_maxsg
) {
4630 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4631 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4632 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4633 scsi_dma_unmap(cmd
);
4637 cp
->sg_count
= (u8
) use_sg
;
4639 enqueue_cmd_and_start_io(h
, c
);
4644 * Queue a command to the correct I/O accelerator path.
4646 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4647 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4648 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4650 /* Try to honor the device's queue depth */
4651 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4652 phys_disk
->queue_depth
) {
4653 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4654 return IO_ACCEL_INELIGIBLE
;
4656 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4657 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4658 cdb
, cdb_len
, scsi3addr
,
4661 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4662 cdb
, cdb_len
, scsi3addr
,
4666 static void raid_map_helper(struct raid_map_data
*map
,
4667 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4669 if (offload_to_mirror
== 0) {
4670 /* use physical disk in the first mirrored group. */
4671 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4675 /* determine mirror group that *map_index indicates */
4676 *current_group
= *map_index
/
4677 le16_to_cpu(map
->data_disks_per_row
);
4678 if (offload_to_mirror
== *current_group
)
4680 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4681 /* select map index from next group */
4682 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4685 /* select map index from first group */
4686 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4689 } while (offload_to_mirror
!= *current_group
);
4693 * Attempt to perform offload RAID mapping for a logical volume I/O.
4695 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4696 struct CommandList
*c
)
4698 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4699 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4700 struct raid_map_data
*map
= &dev
->raid_map
;
4701 struct raid_map_disk_data
*dd
= &map
->data
[0];
4704 u64 first_block
, last_block
;
4707 u64 first_row
, last_row
;
4708 u32 first_row_offset
, last_row_offset
;
4709 u32 first_column
, last_column
;
4710 u64 r0_first_row
, r0_last_row
;
4711 u32 r5or6_blocks_per_row
;
4712 u64 r5or6_first_row
, r5or6_last_row
;
4713 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4714 u32 r5or6_first_column
, r5or6_last_column
;
4715 u32 total_disks_per_row
;
4717 u32 first_group
, last_group
, current_group
;
4725 #if BITS_PER_LONG == 32
4728 int offload_to_mirror
;
4730 /* check for valid opcode, get LBA and block count */
4731 switch (cmd
->cmnd
[0]) {
4735 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4736 block_cnt
= cmd
->cmnd
[4];
4744 (((u64
) cmd
->cmnd
[2]) << 24) |
4745 (((u64
) cmd
->cmnd
[3]) << 16) |
4746 (((u64
) cmd
->cmnd
[4]) << 8) |
4749 (((u32
) cmd
->cmnd
[7]) << 8) |
4756 (((u64
) cmd
->cmnd
[2]) << 24) |
4757 (((u64
) cmd
->cmnd
[3]) << 16) |
4758 (((u64
) cmd
->cmnd
[4]) << 8) |
4761 (((u32
) cmd
->cmnd
[6]) << 24) |
4762 (((u32
) cmd
->cmnd
[7]) << 16) |
4763 (((u32
) cmd
->cmnd
[8]) << 8) |
4770 (((u64
) cmd
->cmnd
[2]) << 56) |
4771 (((u64
) cmd
->cmnd
[3]) << 48) |
4772 (((u64
) cmd
->cmnd
[4]) << 40) |
4773 (((u64
) cmd
->cmnd
[5]) << 32) |
4774 (((u64
) cmd
->cmnd
[6]) << 24) |
4775 (((u64
) cmd
->cmnd
[7]) << 16) |
4776 (((u64
) cmd
->cmnd
[8]) << 8) |
4779 (((u32
) cmd
->cmnd
[10]) << 24) |
4780 (((u32
) cmd
->cmnd
[11]) << 16) |
4781 (((u32
) cmd
->cmnd
[12]) << 8) |
4785 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4787 last_block
= first_block
+ block_cnt
- 1;
4789 /* check for write to non-RAID-0 */
4790 if (is_write
&& dev
->raid_level
!= 0)
4791 return IO_ACCEL_INELIGIBLE
;
4793 /* check for invalid block or wraparound */
4794 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4795 last_block
< first_block
)
4796 return IO_ACCEL_INELIGIBLE
;
4798 /* calculate stripe information for the request */
4799 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4800 le16_to_cpu(map
->strip_size
);
4801 strip_size
= le16_to_cpu(map
->strip_size
);
4802 #if BITS_PER_LONG == 32
4803 tmpdiv
= first_block
;
4804 (void) do_div(tmpdiv
, blocks_per_row
);
4806 tmpdiv
= last_block
;
4807 (void) do_div(tmpdiv
, blocks_per_row
);
4809 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4810 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4811 tmpdiv
= first_row_offset
;
4812 (void) do_div(tmpdiv
, strip_size
);
4813 first_column
= tmpdiv
;
4814 tmpdiv
= last_row_offset
;
4815 (void) do_div(tmpdiv
, strip_size
);
4816 last_column
= tmpdiv
;
4818 first_row
= first_block
/ blocks_per_row
;
4819 last_row
= last_block
/ blocks_per_row
;
4820 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4821 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4822 first_column
= first_row_offset
/ strip_size
;
4823 last_column
= last_row_offset
/ strip_size
;
4826 /* if this isn't a single row/column then give to the controller */
4827 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4828 return IO_ACCEL_INELIGIBLE
;
4830 /* proceeding with driver mapping */
4831 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4832 le16_to_cpu(map
->metadata_disks_per_row
);
4833 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4834 le16_to_cpu(map
->row_cnt
);
4835 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4837 switch (dev
->raid_level
) {
4839 break; /* nothing special to do */
4841 /* Handles load balance across RAID 1 members.
4842 * (2-drive R1 and R10 with even # of drives.)
4843 * Appropriate for SSDs, not optimal for HDDs
4845 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4846 if (dev
->offload_to_mirror
)
4847 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4848 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4851 /* Handles N-way mirrors (R1-ADM)
4852 * and R10 with # of drives divisible by 3.)
4854 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4856 offload_to_mirror
= dev
->offload_to_mirror
;
4857 raid_map_helper(map
, offload_to_mirror
,
4858 &map_index
, ¤t_group
);
4859 /* set mirror group to use next time */
4861 (offload_to_mirror
>=
4862 le16_to_cpu(map
->layout_map_count
) - 1)
4863 ? 0 : offload_to_mirror
+ 1;
4864 dev
->offload_to_mirror
= offload_to_mirror
;
4865 /* Avoid direct use of dev->offload_to_mirror within this
4866 * function since multiple threads might simultaneously
4867 * increment it beyond the range of dev->layout_map_count -1.
4872 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4875 /* Verify first and last block are in same RAID group */
4876 r5or6_blocks_per_row
=
4877 le16_to_cpu(map
->strip_size
) *
4878 le16_to_cpu(map
->data_disks_per_row
);
4879 BUG_ON(r5or6_blocks_per_row
== 0);
4880 stripesize
= r5or6_blocks_per_row
*
4881 le16_to_cpu(map
->layout_map_count
);
4882 #if BITS_PER_LONG == 32
4883 tmpdiv
= first_block
;
4884 first_group
= do_div(tmpdiv
, stripesize
);
4885 tmpdiv
= first_group
;
4886 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4887 first_group
= tmpdiv
;
4888 tmpdiv
= last_block
;
4889 last_group
= do_div(tmpdiv
, stripesize
);
4890 tmpdiv
= last_group
;
4891 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4892 last_group
= tmpdiv
;
4894 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4895 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4897 if (first_group
!= last_group
)
4898 return IO_ACCEL_INELIGIBLE
;
4900 /* Verify request is in a single row of RAID 5/6 */
4901 #if BITS_PER_LONG == 32
4902 tmpdiv
= first_block
;
4903 (void) do_div(tmpdiv
, stripesize
);
4904 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4905 tmpdiv
= last_block
;
4906 (void) do_div(tmpdiv
, stripesize
);
4907 r5or6_last_row
= r0_last_row
= tmpdiv
;
4909 first_row
= r5or6_first_row
= r0_first_row
=
4910 first_block
/ stripesize
;
4911 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4913 if (r5or6_first_row
!= r5or6_last_row
)
4914 return IO_ACCEL_INELIGIBLE
;
4917 /* Verify request is in a single column */
4918 #if BITS_PER_LONG == 32
4919 tmpdiv
= first_block
;
4920 first_row_offset
= do_div(tmpdiv
, stripesize
);
4921 tmpdiv
= first_row_offset
;
4922 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4923 r5or6_first_row_offset
= first_row_offset
;
4924 tmpdiv
= last_block
;
4925 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4926 tmpdiv
= r5or6_last_row_offset
;
4927 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4928 tmpdiv
= r5or6_first_row_offset
;
4929 (void) do_div(tmpdiv
, map
->strip_size
);
4930 first_column
= r5or6_first_column
= tmpdiv
;
4931 tmpdiv
= r5or6_last_row_offset
;
4932 (void) do_div(tmpdiv
, map
->strip_size
);
4933 r5or6_last_column
= tmpdiv
;
4935 first_row_offset
= r5or6_first_row_offset
=
4936 (u32
)((first_block
% stripesize
) %
4937 r5or6_blocks_per_row
);
4939 r5or6_last_row_offset
=
4940 (u32
)((last_block
% stripesize
) %
4941 r5or6_blocks_per_row
);
4943 first_column
= r5or6_first_column
=
4944 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4946 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4948 if (r5or6_first_column
!= r5or6_last_column
)
4949 return IO_ACCEL_INELIGIBLE
;
4951 /* Request is eligible */
4952 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4953 le16_to_cpu(map
->row_cnt
);
4955 map_index
= (first_group
*
4956 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4957 (map_row
* total_disks_per_row
) + first_column
;
4960 return IO_ACCEL_INELIGIBLE
;
4963 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4964 return IO_ACCEL_INELIGIBLE
;
4966 c
->phys_disk
= dev
->phys_disk
[map_index
];
4968 disk_handle
= dd
[map_index
].ioaccel_handle
;
4969 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4970 first_row
* le16_to_cpu(map
->strip_size
) +
4971 (first_row_offset
- first_column
*
4972 le16_to_cpu(map
->strip_size
));
4973 disk_block_cnt
= block_cnt
;
4975 /* handle differing logical/physical block sizes */
4976 if (map
->phys_blk_shift
) {
4977 disk_block
<<= map
->phys_blk_shift
;
4978 disk_block_cnt
<<= map
->phys_blk_shift
;
4980 BUG_ON(disk_block_cnt
> 0xffff);
4982 /* build the new CDB for the physical disk I/O */
4983 if (disk_block
> 0xffffffff) {
4984 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4986 cdb
[2] = (u8
) (disk_block
>> 56);
4987 cdb
[3] = (u8
) (disk_block
>> 48);
4988 cdb
[4] = (u8
) (disk_block
>> 40);
4989 cdb
[5] = (u8
) (disk_block
>> 32);
4990 cdb
[6] = (u8
) (disk_block
>> 24);
4991 cdb
[7] = (u8
) (disk_block
>> 16);
4992 cdb
[8] = (u8
) (disk_block
>> 8);
4993 cdb
[9] = (u8
) (disk_block
);
4994 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
4995 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
4996 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
4997 cdb
[13] = (u8
) (disk_block_cnt
);
5002 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5004 cdb
[2] = (u8
) (disk_block
>> 24);
5005 cdb
[3] = (u8
) (disk_block
>> 16);
5006 cdb
[4] = (u8
) (disk_block
>> 8);
5007 cdb
[5] = (u8
) (disk_block
);
5009 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5010 cdb
[8] = (u8
) (disk_block_cnt
);
5014 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5016 dev
->phys_disk
[map_index
]);
5020 * Submit commands down the "normal" RAID stack path
5021 * All callers to hpsa_ciss_submit must check lockup_detected
5022 * beforehand, before (opt.) and after calling cmd_alloc
5024 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5025 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5026 unsigned char scsi3addr
[])
5028 cmd
->host_scribble
= (unsigned char *) c
;
5029 c
->cmd_type
= CMD_SCSI
;
5031 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5032 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5033 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5035 /* Fill in the request block... */
5037 c
->Request
.Timeout
= 0;
5038 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5039 c
->Request
.CDBLen
= cmd
->cmd_len
;
5040 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5041 switch (cmd
->sc_data_direction
) {
5043 c
->Request
.type_attr_dir
=
5044 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5046 case DMA_FROM_DEVICE
:
5047 c
->Request
.type_attr_dir
=
5048 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5051 c
->Request
.type_attr_dir
=
5052 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5054 case DMA_BIDIRECTIONAL
:
5055 /* This can happen if a buggy application does a scsi passthru
5056 * and sets both inlen and outlen to non-zero. ( see
5057 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5060 c
->Request
.type_attr_dir
=
5061 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5062 /* This is technically wrong, and hpsa controllers should
5063 * reject it with CMD_INVALID, which is the most correct
5064 * response, but non-fibre backends appear to let it
5065 * slide by, and give the same results as if this field
5066 * were set correctly. Either way is acceptable for
5067 * our purposes here.
5073 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5074 cmd
->sc_data_direction
);
5079 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5080 hpsa_cmd_resolve_and_free(h
, c
);
5081 return SCSI_MLQUEUE_HOST_BUSY
;
5083 enqueue_cmd_and_start_io(h
, c
);
5084 /* the cmd'll come back via intr handler in complete_scsi_command() */
5088 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5089 struct CommandList
*c
)
5091 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5093 /* Zero out all of commandlist except the last field, refcount */
5094 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5095 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5096 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5097 c
->err_info
= h
->errinfo_pool
+ index
;
5098 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5099 err_dma_handle
= h
->errinfo_pool_dhandle
5100 + index
* sizeof(*c
->err_info
);
5101 c
->cmdindex
= index
;
5102 c
->busaddr
= (u32
) cmd_dma_handle
;
5103 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5104 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5106 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5109 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5113 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5114 struct CommandList
*c
= h
->cmd_pool
+ i
;
5116 hpsa_cmd_init(h
, i
, c
);
5117 atomic_set(&c
->refcount
, 0);
5121 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5122 struct CommandList
*c
)
5124 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5126 BUG_ON(c
->cmdindex
!= index
);
5128 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5129 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5130 c
->busaddr
= (u32
) cmd_dma_handle
;
5133 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5134 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5135 unsigned char *scsi3addr
)
5137 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5138 int rc
= IO_ACCEL_INELIGIBLE
;
5140 cmd
->host_scribble
= (unsigned char *) c
;
5142 if (dev
->offload_enabled
) {
5143 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5144 c
->cmd_type
= CMD_SCSI
;
5146 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5147 if (rc
< 0) /* scsi_dma_map failed. */
5148 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5149 } else if (dev
->hba_ioaccel_enabled
) {
5150 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5151 c
->cmd_type
= CMD_SCSI
;
5153 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5154 if (rc
< 0) /* scsi_dma_map failed. */
5155 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5160 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5162 struct scsi_cmnd
*cmd
;
5163 struct hpsa_scsi_dev_t
*dev
;
5164 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5167 dev
= cmd
->device
->hostdata
;
5169 cmd
->result
= DID_NO_CONNECT
<< 16;
5170 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5172 if (c
->reset_pending
)
5173 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5174 if (c
->abort_pending
)
5175 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5176 if (c
->cmd_type
== CMD_IOACCEL2
) {
5177 struct ctlr_info
*h
= c
->h
;
5178 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5181 if (c2
->error_data
.serv_response
==
5182 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5183 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5186 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5188 * If we get here, it means dma mapping failed.
5189 * Try again via scsi mid layer, which will
5190 * then get SCSI_MLQUEUE_HOST_BUSY.
5192 cmd
->result
= DID_IMM_RETRY
<< 16;
5193 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5195 /* else, fall thru and resubmit down CISS path */
5198 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5199 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5201 * If we get here, it means dma mapping failed. Try
5202 * again via scsi mid layer, which will then get
5203 * SCSI_MLQUEUE_HOST_BUSY.
5205 * hpsa_ciss_submit will have already freed c
5206 * if it encountered a dma mapping failure.
5208 cmd
->result
= DID_IMM_RETRY
<< 16;
5209 cmd
->scsi_done(cmd
);
5213 /* Running in struct Scsi_Host->host_lock less mode */
5214 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5216 struct ctlr_info
*h
;
5217 struct hpsa_scsi_dev_t
*dev
;
5218 unsigned char scsi3addr
[8];
5219 struct CommandList
*c
;
5222 /* Get the ptr to our adapter structure out of cmd->host. */
5223 h
= sdev_to_hba(cmd
->device
);
5225 BUG_ON(cmd
->request
->tag
< 0);
5227 dev
= cmd
->device
->hostdata
;
5229 cmd
->result
= DID_NO_CONNECT
<< 16;
5230 cmd
->scsi_done(cmd
);
5234 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5236 if (unlikely(lockup_detected(h
))) {
5237 cmd
->result
= DID_NO_CONNECT
<< 16;
5238 cmd
->scsi_done(cmd
);
5241 c
= cmd_tagged_alloc(h
, cmd
);
5244 * This is necessary because the SML doesn't zero out this field during
5250 * Call alternate submit routine for I/O accelerated commands.
5251 * Retries always go down the normal I/O path.
5253 if (likely(cmd
->retries
== 0 &&
5254 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5255 h
->acciopath_status
)) {
5256 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5259 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5260 hpsa_cmd_resolve_and_free(h
, c
);
5261 return SCSI_MLQUEUE_HOST_BUSY
;
5264 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5267 static void hpsa_scan_complete(struct ctlr_info
*h
)
5269 unsigned long flags
;
5271 spin_lock_irqsave(&h
->scan_lock
, flags
);
5272 h
->scan_finished
= 1;
5273 wake_up(&h
->scan_wait_queue
);
5274 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5277 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5279 struct ctlr_info
*h
= shost_to_hba(sh
);
5280 unsigned long flags
;
5283 * Don't let rescans be initiated on a controller known to be locked
5284 * up. If the controller locks up *during* a rescan, that thread is
5285 * probably hosed, but at least we can prevent new rescan threads from
5286 * piling up on a locked up controller.
5288 if (unlikely(lockup_detected(h
)))
5289 return hpsa_scan_complete(h
);
5292 * If a scan is already waiting to run, no need to add another
5294 spin_lock_irqsave(&h
->scan_lock
, flags
);
5295 if (h
->scan_waiting
) {
5296 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5300 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5302 /* wait until any scan already in progress is finished. */
5304 spin_lock_irqsave(&h
->scan_lock
, flags
);
5305 if (h
->scan_finished
)
5307 h
->scan_waiting
= 1;
5308 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5309 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5310 /* Note: We don't need to worry about a race between this
5311 * thread and driver unload because the midlayer will
5312 * have incremented the reference count, so unload won't
5313 * happen if we're in here.
5316 h
->scan_finished
= 0; /* mark scan as in progress */
5317 h
->scan_waiting
= 0;
5318 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5320 if (unlikely(lockup_detected(h
)))
5321 return hpsa_scan_complete(h
);
5323 hpsa_update_scsi_devices(h
);
5325 hpsa_scan_complete(h
);
5328 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5330 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5337 else if (qdepth
> logical_drive
->queue_depth
)
5338 qdepth
= logical_drive
->queue_depth
;
5340 return scsi_change_queue_depth(sdev
, qdepth
);
5343 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5344 unsigned long elapsed_time
)
5346 struct ctlr_info
*h
= shost_to_hba(sh
);
5347 unsigned long flags
;
5350 spin_lock_irqsave(&h
->scan_lock
, flags
);
5351 finished
= h
->scan_finished
;
5352 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5356 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5358 struct Scsi_Host
*sh
;
5360 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5362 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5369 sh
->max_channel
= 3;
5370 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5371 sh
->max_lun
= HPSA_MAX_LUN
;
5372 sh
->max_id
= HPSA_MAX_LUN
;
5373 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5374 sh
->cmd_per_lun
= sh
->can_queue
;
5375 sh
->sg_tablesize
= h
->maxsgentries
;
5376 sh
->transportt
= hpsa_sas_transport_template
;
5377 sh
->hostdata
[0] = (unsigned long) h
;
5378 sh
->irq
= h
->intr
[h
->intr_mode
];
5379 sh
->unique_id
= sh
->irq
;
5385 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5389 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5391 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5394 scsi_scan_host(h
->scsi_host
);
5399 * The block layer has already gone to the trouble of picking out a unique,
5400 * small-integer tag for this request. We use an offset from that value as
5401 * an index to select our command block. (The offset allows us to reserve the
5402 * low-numbered entries for our own uses.)
5404 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5406 int idx
= scmd
->request
->tag
;
5411 /* Offset to leave space for internal cmds. */
5412 return idx
+= HPSA_NRESERVED_CMDS
;
5416 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5417 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5419 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5420 struct CommandList
*c
, unsigned char lunaddr
[],
5425 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5426 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5427 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5428 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5431 /* no unmap needed here because no data xfer. */
5433 /* Check if the unit is already ready. */
5434 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5438 * The first command sent after reset will receive "unit attention" to
5439 * indicate that the LUN has been reset...this is actually what we're
5440 * looking for (but, success is good too).
5442 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5443 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5444 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5445 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5452 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5453 * returns zero when the unit is ready, and non-zero when giving up.
5455 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5456 struct CommandList
*c
,
5457 unsigned char lunaddr
[], int reply_queue
)
5461 int waittime
= 1; /* seconds */
5463 /* Send test unit ready until device ready, or give up. */
5464 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5467 * Wait for a bit. do this first, because if we send
5468 * the TUR right away, the reset will just abort it.
5470 msleep(1000 * waittime
);
5472 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5476 /* Increase wait time with each try, up to a point. */
5477 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5480 dev_warn(&h
->pdev
->dev
,
5481 "waiting %d secs for device to become ready.\n",
5488 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5489 unsigned char lunaddr
[],
5496 struct CommandList
*c
;
5501 * If no specific reply queue was requested, then send the TUR
5502 * repeatedly, requesting a reply on each reply queue; otherwise execute
5503 * the loop exactly once using only the specified queue.
5505 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5507 last_queue
= h
->nreply_queues
- 1;
5509 first_queue
= reply_queue
;
5510 last_queue
= reply_queue
;
5513 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5514 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5520 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5522 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5528 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5529 * complaining. Doing a host- or bus-reset can't do anything good here.
5531 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5534 struct ctlr_info
*h
;
5535 struct hpsa_scsi_dev_t
*dev
;
5539 /* find the controller to which the command to be aborted was sent */
5540 h
= sdev_to_hba(scsicmd
->device
);
5541 if (h
== NULL
) /* paranoia */
5544 if (lockup_detected(h
))
5547 dev
= scsicmd
->device
->hostdata
;
5549 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5553 /* if controller locked up, we can guarantee command won't complete */
5554 if (lockup_detected(h
)) {
5555 snprintf(msg
, sizeof(msg
),
5556 "cmd %d RESET FAILED, lockup detected",
5557 hpsa_get_cmd_index(scsicmd
));
5558 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5562 /* this reset request might be the result of a lockup; check */
5563 if (detect_controller_lockup(h
)) {
5564 snprintf(msg
, sizeof(msg
),
5565 "cmd %d RESET FAILED, new lockup detected",
5566 hpsa_get_cmd_index(scsicmd
));
5567 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5571 /* Do not attempt on controller */
5572 if (is_hba_lunid(dev
->scsi3addr
))
5575 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5576 reset_type
= HPSA_DEVICE_RESET_MSG
;
5578 reset_type
= HPSA_PHYS_TARGET_RESET
;
5580 sprintf(msg
, "resetting %s",
5581 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5582 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5584 h
->reset_in_progress
= 1;
5586 /* send a reset to the SCSI LUN which the command was sent to */
5587 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5588 DEFAULT_REPLY_QUEUE
);
5589 sprintf(msg
, "reset %s %s",
5590 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5591 rc
== 0 ? "completed successfully" : "failed");
5592 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5593 h
->reset_in_progress
= 0;
5594 return rc
== 0 ? SUCCESS
: FAILED
;
5597 static void swizzle_abort_tag(u8
*tag
)
5601 memcpy(original_tag
, tag
, 8);
5602 tag
[0] = original_tag
[3];
5603 tag
[1] = original_tag
[2];
5604 tag
[2] = original_tag
[1];
5605 tag
[3] = original_tag
[0];
5606 tag
[4] = original_tag
[7];
5607 tag
[5] = original_tag
[6];
5608 tag
[6] = original_tag
[5];
5609 tag
[7] = original_tag
[4];
5612 static void hpsa_get_tag(struct ctlr_info
*h
,
5613 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5616 if (c
->cmd_type
== CMD_IOACCEL1
) {
5617 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5618 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5619 tag
= le64_to_cpu(cm1
->tag
);
5620 *tagupper
= cpu_to_le32(tag
>> 32);
5621 *taglower
= cpu_to_le32(tag
);
5624 if (c
->cmd_type
== CMD_IOACCEL2
) {
5625 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5626 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5627 /* upper tag not used in ioaccel2 mode */
5628 memset(tagupper
, 0, sizeof(*tagupper
));
5629 *taglower
= cm2
->Tag
;
5632 tag
= le64_to_cpu(c
->Header
.tag
);
5633 *tagupper
= cpu_to_le32(tag
>> 32);
5634 *taglower
= cpu_to_le32(tag
);
5637 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5638 struct CommandList
*abort
, int reply_queue
)
5641 struct CommandList
*c
;
5642 struct ErrorInfo
*ei
;
5643 __le32 tagupper
, taglower
;
5647 /* fill_cmd can't fail here, no buffer to map */
5648 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5649 0, 0, scsi3addr
, TYPE_MSG
);
5650 if (h
->needs_abort_tags_swizzled
)
5651 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5652 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5653 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5654 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5655 __func__
, tagupper
, taglower
);
5656 /* no unmap needed here because no data xfer. */
5659 switch (ei
->CommandStatus
) {
5662 case CMD_TMF_STATUS
:
5663 rc
= hpsa_evaluate_tmf_status(h
, c
);
5665 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5669 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5670 __func__
, tagupper
, taglower
);
5671 hpsa_scsi_interpret_error(h
, c
);
5676 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5677 __func__
, tagupper
, taglower
);
5681 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5682 struct CommandList
*command_to_abort
, int reply_queue
)
5684 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5685 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5686 struct io_accel2_cmd
*c2a
=
5687 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5688 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5689 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5692 * We're overlaying struct hpsa_tmf_struct on top of something which
5693 * was allocated as a struct io_accel2_cmd, so we better be sure it
5694 * actually fits, and doesn't overrun the error info space.
5696 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5697 sizeof(struct io_accel2_cmd
));
5698 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5699 offsetof(struct hpsa_tmf_struct
, error_len
) +
5700 sizeof(ac
->error_len
));
5702 c
->cmd_type
= IOACCEL2_TMF
;
5703 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5705 /* Adjust the DMA address to point to the accelerated command buffer */
5706 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5707 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5708 BUG_ON(c
->busaddr
& 0x0000007F);
5710 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5711 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5712 ac
->reply_queue
= reply_queue
;
5713 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5714 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5715 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5716 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5717 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5718 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5719 offsetof(struct io_accel2_cmd
, error_data
));
5720 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5723 /* ioaccel2 path firmware cannot handle abort task requests.
5724 * Change abort requests to physical target reset, and send to the
5725 * address of the physical disk used for the ioaccel 2 command.
5726 * Return 0 on success (IO_OK)
5730 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5731 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5734 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5735 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5736 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5737 unsigned char *psa
= &phys_scsi3addr
[0];
5739 /* Get a pointer to the hpsa logical device. */
5740 scmd
= abort
->scsi_cmd
;
5741 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5743 dev_warn(&h
->pdev
->dev
,
5744 "Cannot abort: no device pointer for command.\n");
5745 return -1; /* not abortable */
5748 if (h
->raid_offload_debug
> 0)
5749 dev_info(&h
->pdev
->dev
,
5750 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5751 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5753 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5754 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5756 if (!dev
->offload_enabled
) {
5757 dev_warn(&h
->pdev
->dev
,
5758 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5759 return -1; /* not abortable */
5762 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5763 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5764 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5765 return -1; /* not abortable */
5768 /* send the reset */
5769 if (h
->raid_offload_debug
> 0)
5770 dev_info(&h
->pdev
->dev
,
5771 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5772 psa
[0], psa
[1], psa
[2], psa
[3],
5773 psa
[4], psa
[5], psa
[6], psa
[7]);
5774 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5776 dev_warn(&h
->pdev
->dev
,
5777 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5778 psa
[0], psa
[1], psa
[2], psa
[3],
5779 psa
[4], psa
[5], psa
[6], psa
[7]);
5780 return rc
; /* failed to reset */
5783 /* wait for device to recover */
5784 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5785 dev_warn(&h
->pdev
->dev
,
5786 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5787 psa
[0], psa
[1], psa
[2], psa
[3],
5788 psa
[4], psa
[5], psa
[6], psa
[7]);
5789 return -1; /* failed to recover */
5792 /* device recovered */
5793 dev_info(&h
->pdev
->dev
,
5794 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5795 psa
[0], psa
[1], psa
[2], psa
[3],
5796 psa
[4], psa
[5], psa
[6], psa
[7]);
5798 return rc
; /* success */
5801 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5802 struct CommandList
*abort
, int reply_queue
)
5805 struct CommandList
*c
;
5806 __le32 taglower
, tagupper
;
5807 struct hpsa_scsi_dev_t
*dev
;
5808 struct io_accel2_cmd
*c2
;
5810 dev
= abort
->scsi_cmd
->device
->hostdata
;
5811 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5815 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5816 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5817 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5818 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5819 dev_dbg(&h
->pdev
->dev
,
5820 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5821 __func__
, tagupper
, taglower
);
5822 /* no unmap needed here because no data xfer. */
5824 dev_dbg(&h
->pdev
->dev
,
5825 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5826 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5827 switch (c2
->error_data
.serv_response
) {
5828 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5829 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5832 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5833 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5834 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5838 dev_warn(&h
->pdev
->dev
,
5839 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5840 __func__
, tagupper
, taglower
,
5841 c2
->error_data
.serv_response
);
5845 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5846 tagupper
, taglower
);
5850 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5851 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5854 * ioccelerator mode 2 commands should be aborted via the
5855 * accelerated path, since RAID path is unaware of these commands,
5856 * but not all underlying firmware can handle abort TMF.
5857 * Change abort to physical device reset when abort TMF is unsupported.
5859 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5860 if (HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
)
5861 return hpsa_send_abort_ioaccel2(h
, abort
,
5864 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
,
5865 abort
, reply_queue
);
5867 return hpsa_send_abort(h
, scsi3addr
, abort
, reply_queue
);
5870 /* Find out which reply queue a command was meant to return on */
5871 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5872 struct CommandList
*c
)
5874 if (c
->cmd_type
== CMD_IOACCEL2
)
5875 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5876 return c
->Header
.ReplyQueue
;
5880 * Limit concurrency of abort commands to prevent
5881 * over-subscription of commands
5883 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5885 #define ABORT_CMD_WAIT_MSECS 5000
5886 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5887 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5888 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5891 /* Send an abort for the specified command.
5892 * If the device and controller support it,
5893 * send a task abort request.
5895 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5899 struct ctlr_info
*h
;
5900 struct hpsa_scsi_dev_t
*dev
;
5901 struct CommandList
*abort
; /* pointer to command to be aborted */
5902 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5903 char msg
[256]; /* For debug messaging. */
5905 __le32 tagupper
, taglower
;
5906 int refcount
, reply_queue
;
5911 if (sc
->device
== NULL
)
5914 /* Find the controller of the command to be aborted */
5915 h
= sdev_to_hba(sc
->device
);
5919 /* Find the device of the command to be aborted */
5920 dev
= sc
->device
->hostdata
;
5922 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5927 /* If controller locked up, we can guarantee command won't complete */
5928 if (lockup_detected(h
)) {
5929 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5930 "ABORT FAILED, lockup detected");
5934 /* This is a good time to check if controller lockup has occurred */
5935 if (detect_controller_lockup(h
)) {
5936 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5937 "ABORT FAILED, new lockup detected");
5941 /* Check that controller supports some kind of task abort */
5942 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5943 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5946 memset(msg
, 0, sizeof(msg
));
5947 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5948 h
->scsi_host
->host_no
, sc
->device
->channel
,
5949 sc
->device
->id
, sc
->device
->lun
,
5950 "Aborting command", sc
);
5952 /* Get SCSI command to be aborted */
5953 abort
= (struct CommandList
*) sc
->host_scribble
;
5954 if (abort
== NULL
) {
5955 /* This can happen if the command already completed. */
5958 refcount
= atomic_inc_return(&abort
->refcount
);
5959 if (refcount
== 1) { /* Command is done already. */
5964 /* Don't bother trying the abort if we know it won't work. */
5965 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5966 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5972 * Check that we're aborting the right command.
5973 * It's possible the CommandList already completed and got re-used.
5975 if (abort
->scsi_cmd
!= sc
) {
5980 abort
->abort_pending
= true;
5981 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5982 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5983 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5984 as
= abort
->scsi_cmd
;
5986 ml
+= sprintf(msg
+ml
,
5987 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5988 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5990 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5991 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5994 * Command is in flight, or possibly already completed
5995 * by the firmware (but not to the scsi mid layer) but we can't
5996 * distinguish which. Send the abort down.
5998 if (wait_for_available_abort_cmd(h
)) {
5999 dev_warn(&h
->pdev
->dev
,
6000 "%s FAILED, timeout waiting for an abort command to become available.\n",
6005 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
, reply_queue
);
6006 atomic_inc(&h
->abort_cmds_available
);
6007 wake_up_all(&h
->abort_cmd_wait_queue
);
6009 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6010 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6011 "FAILED to abort command");
6015 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6016 wait_event(h
->event_sync_wait_queue
,
6017 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6019 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6023 * For operations with an associated SCSI command, a command block is allocated
6024 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6025 * block request tag as an index into a table of entries. cmd_tagged_free() is
6026 * the complement, although cmd_free() may be called instead.
6028 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6029 struct scsi_cmnd
*scmd
)
6031 int idx
= hpsa_get_cmd_index(scmd
);
6032 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6034 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6035 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6036 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6037 /* The index value comes from the block layer, so if it's out of
6038 * bounds, it's probably not our bug.
6043 atomic_inc(&c
->refcount
);
6044 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6046 * We expect that the SCSI layer will hand us a unique tag
6047 * value. Thus, there should never be a collision here between
6048 * two requests...because if the selected command isn't idle
6049 * then someone is going to be very disappointed.
6051 dev_err(&h
->pdev
->dev
,
6052 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6054 if (c
->scsi_cmd
!= NULL
)
6055 scsi_print_command(c
->scsi_cmd
);
6056 scsi_print_command(scmd
);
6059 hpsa_cmd_partial_init(h
, idx
, c
);
6063 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6066 * Release our reference to the block. We don't need to do anything
6067 * else to free it, because it is accessed by index. (There's no point
6068 * in checking the result of the decrement, since we cannot guarantee
6069 * that there isn't a concurrent abort which is also accessing it.)
6071 (void)atomic_dec(&c
->refcount
);
6075 * For operations that cannot sleep, a command block is allocated at init,
6076 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6077 * which ones are free or in use. Lock must be held when calling this.
6078 * cmd_free() is the complement.
6079 * This function never gives up and returns NULL. If it hangs,
6080 * another thread must call cmd_free() to free some tags.
6083 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6085 struct CommandList
*c
;
6090 * There is some *extremely* small but non-zero chance that that
6091 * multiple threads could get in here, and one thread could
6092 * be scanning through the list of bits looking for a free
6093 * one, but the free ones are always behind him, and other
6094 * threads sneak in behind him and eat them before he can
6095 * get to them, so that while there is always a free one, a
6096 * very unlucky thread might be starved anyway, never able to
6097 * beat the other threads. In reality, this happens so
6098 * infrequently as to be indistinguishable from never.
6100 * Note that we start allocating commands before the SCSI host structure
6101 * is initialized. Since the search starts at bit zero, this
6102 * all works, since we have at least one command structure available;
6103 * however, it means that the structures with the low indexes have to be
6104 * reserved for driver-initiated requests, while requests from the block
6105 * layer will use the higher indexes.
6109 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6110 HPSA_NRESERVED_CMDS
,
6112 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6116 c
= h
->cmd_pool
+ i
;
6117 refcount
= atomic_inc_return(&c
->refcount
);
6118 if (unlikely(refcount
> 1)) {
6119 cmd_free(h
, c
); /* already in use */
6120 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6123 set_bit(i
& (BITS_PER_LONG
- 1),
6124 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6125 break; /* it's ours now. */
6127 hpsa_cmd_partial_init(h
, i
, c
);
6132 * This is the complementary operation to cmd_alloc(). Note, however, in some
6133 * corner cases it may also be used to free blocks allocated by
6134 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6135 * the clear-bit is harmless.
6137 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6139 if (atomic_dec_and_test(&c
->refcount
)) {
6142 i
= c
- h
->cmd_pool
;
6143 clear_bit(i
& (BITS_PER_LONG
- 1),
6144 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6148 #ifdef CONFIG_COMPAT
6150 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6153 IOCTL32_Command_struct __user
*arg32
=
6154 (IOCTL32_Command_struct __user
*) arg
;
6155 IOCTL_Command_struct arg64
;
6156 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6160 memset(&arg64
, 0, sizeof(arg64
));
6162 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6163 sizeof(arg64
.LUN_info
));
6164 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6165 sizeof(arg64
.Request
));
6166 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6167 sizeof(arg64
.error_info
));
6168 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6169 err
|= get_user(cp
, &arg32
->buf
);
6170 arg64
.buf
= compat_ptr(cp
);
6171 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6176 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6179 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6180 sizeof(arg32
->error_info
));
6186 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6187 int cmd
, void __user
*arg
)
6189 BIG_IOCTL32_Command_struct __user
*arg32
=
6190 (BIG_IOCTL32_Command_struct __user
*) arg
;
6191 BIG_IOCTL_Command_struct arg64
;
6192 BIG_IOCTL_Command_struct __user
*p
=
6193 compat_alloc_user_space(sizeof(arg64
));
6197 memset(&arg64
, 0, sizeof(arg64
));
6199 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6200 sizeof(arg64
.LUN_info
));
6201 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6202 sizeof(arg64
.Request
));
6203 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6204 sizeof(arg64
.error_info
));
6205 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6206 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6207 err
|= get_user(cp
, &arg32
->buf
);
6208 arg64
.buf
= compat_ptr(cp
);
6209 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6214 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6217 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6218 sizeof(arg32
->error_info
));
6224 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6227 case CCISS_GETPCIINFO
:
6228 case CCISS_GETINTINFO
:
6229 case CCISS_SETINTINFO
:
6230 case CCISS_GETNODENAME
:
6231 case CCISS_SETNODENAME
:
6232 case CCISS_GETHEARTBEAT
:
6233 case CCISS_GETBUSTYPES
:
6234 case CCISS_GETFIRMVER
:
6235 case CCISS_GETDRIVVER
:
6236 case CCISS_REVALIDVOLS
:
6237 case CCISS_DEREGDISK
:
6238 case CCISS_REGNEWDISK
:
6240 case CCISS_RESCANDISK
:
6241 case CCISS_GETLUNINFO
:
6242 return hpsa_ioctl(dev
, cmd
, arg
);
6244 case CCISS_PASSTHRU32
:
6245 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6246 case CCISS_BIG_PASSTHRU32
:
6247 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6250 return -ENOIOCTLCMD
;
6255 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6257 struct hpsa_pci_info pciinfo
;
6261 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6262 pciinfo
.bus
= h
->pdev
->bus
->number
;
6263 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6264 pciinfo
.board_id
= h
->board_id
;
6265 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6270 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6272 DriverVer_type DriverVer
;
6273 unsigned char vmaj
, vmin
, vsubmin
;
6276 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6277 &vmaj
, &vmin
, &vsubmin
);
6279 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6280 "unrecognized.", HPSA_DRIVER_VERSION
);
6285 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6288 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6293 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6295 IOCTL_Command_struct iocommand
;
6296 struct CommandList
*c
;
6303 if (!capable(CAP_SYS_RAWIO
))
6305 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6307 if ((iocommand
.buf_size
< 1) &&
6308 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6311 if (iocommand
.buf_size
> 0) {
6312 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6315 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6316 /* Copy the data into the buffer we created */
6317 if (copy_from_user(buff
, iocommand
.buf
,
6318 iocommand
.buf_size
)) {
6323 memset(buff
, 0, iocommand
.buf_size
);
6328 /* Fill in the command type */
6329 c
->cmd_type
= CMD_IOCTL_PEND
;
6330 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6331 /* Fill in Command Header */
6332 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6333 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6334 c
->Header
.SGList
= 1;
6335 c
->Header
.SGTotal
= cpu_to_le16(1);
6336 } else { /* no buffers to fill */
6337 c
->Header
.SGList
= 0;
6338 c
->Header
.SGTotal
= cpu_to_le16(0);
6340 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6342 /* Fill in Request block */
6343 memcpy(&c
->Request
, &iocommand
.Request
,
6344 sizeof(c
->Request
));
6346 /* Fill in the scatter gather information */
6347 if (iocommand
.buf_size
> 0) {
6348 temp64
= pci_map_single(h
->pdev
, buff
,
6349 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6350 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6351 c
->SG
[0].Addr
= cpu_to_le64(0);
6352 c
->SG
[0].Len
= cpu_to_le32(0);
6356 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6357 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6358 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6360 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6361 if (iocommand
.buf_size
> 0)
6362 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6363 check_ioctl_unit_attention(h
, c
);
6369 /* Copy the error information out */
6370 memcpy(&iocommand
.error_info
, c
->err_info
,
6371 sizeof(iocommand
.error_info
));
6372 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6376 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6377 iocommand
.buf_size
> 0) {
6378 /* Copy the data out of the buffer we created */
6379 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6391 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6393 BIG_IOCTL_Command_struct
*ioc
;
6394 struct CommandList
*c
;
6395 unsigned char **buff
= NULL
;
6396 int *buff_size
= NULL
;
6402 BYTE __user
*data_ptr
;
6406 if (!capable(CAP_SYS_RAWIO
))
6408 ioc
= (BIG_IOCTL_Command_struct
*)
6409 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6414 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6418 if ((ioc
->buf_size
< 1) &&
6419 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6423 /* Check kmalloc limits using all SGs */
6424 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6428 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6432 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6437 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6442 left
= ioc
->buf_size
;
6443 data_ptr
= ioc
->buf
;
6445 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6446 buff_size
[sg_used
] = sz
;
6447 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6448 if (buff
[sg_used
] == NULL
) {
6452 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6453 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6458 memset(buff
[sg_used
], 0, sz
);
6465 c
->cmd_type
= CMD_IOCTL_PEND
;
6466 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6467 c
->Header
.ReplyQueue
= 0;
6468 c
->Header
.SGList
= (u8
) sg_used
;
6469 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6470 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6471 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6472 if (ioc
->buf_size
> 0) {
6474 for (i
= 0; i
< sg_used
; i
++) {
6475 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6476 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6477 if (dma_mapping_error(&h
->pdev
->dev
,
6478 (dma_addr_t
) temp64
)) {
6479 c
->SG
[i
].Addr
= cpu_to_le64(0);
6480 c
->SG
[i
].Len
= cpu_to_le32(0);
6481 hpsa_pci_unmap(h
->pdev
, c
, i
,
6482 PCI_DMA_BIDIRECTIONAL
);
6486 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6487 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6488 c
->SG
[i
].Ext
= cpu_to_le32(0);
6490 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6492 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6494 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6495 check_ioctl_unit_attention(h
, c
);
6501 /* Copy the error information out */
6502 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6503 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6507 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6510 /* Copy the data out of the buffer we created */
6511 BYTE __user
*ptr
= ioc
->buf
;
6512 for (i
= 0; i
< sg_used
; i
++) {
6513 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6517 ptr
+= buff_size
[i
];
6527 for (i
= 0; i
< sg_used
; i
++)
6536 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6537 struct CommandList
*c
)
6539 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6540 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6541 (void) check_for_unit_attention(h
, c
);
6547 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6549 struct ctlr_info
*h
;
6550 void __user
*argp
= (void __user
*)arg
;
6553 h
= sdev_to_hba(dev
);
6556 case CCISS_DEREGDISK
:
6557 case CCISS_REGNEWDISK
:
6559 hpsa_scan_start(h
->scsi_host
);
6561 case CCISS_GETPCIINFO
:
6562 return hpsa_getpciinfo_ioctl(h
, argp
);
6563 case CCISS_GETDRIVVER
:
6564 return hpsa_getdrivver_ioctl(h
, argp
);
6565 case CCISS_PASSTHRU
:
6566 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6568 rc
= hpsa_passthru_ioctl(h
, argp
);
6569 atomic_inc(&h
->passthru_cmds_avail
);
6571 case CCISS_BIG_PASSTHRU
:
6572 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6574 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6575 atomic_inc(&h
->passthru_cmds_avail
);
6582 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6585 struct CommandList
*c
;
6589 /* fill_cmd can't fail here, no data buffer to map */
6590 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6591 RAID_CTLR_LUNID
, TYPE_MSG
);
6592 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6594 enqueue_cmd_and_start_io(h
, c
);
6595 /* Don't wait for completion, the reset won't complete. Don't free
6596 * the command either. This is the last command we will send before
6597 * re-initializing everything, so it doesn't matter and won't leak.
6602 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6603 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6606 int pci_dir
= XFER_NONE
;
6607 u64 tag
; /* for commands to be aborted */
6609 c
->cmd_type
= CMD_IOCTL_PEND
;
6610 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6611 c
->Header
.ReplyQueue
= 0;
6612 if (buff
!= NULL
&& size
> 0) {
6613 c
->Header
.SGList
= 1;
6614 c
->Header
.SGTotal
= cpu_to_le16(1);
6616 c
->Header
.SGList
= 0;
6617 c
->Header
.SGTotal
= cpu_to_le16(0);
6619 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6621 if (cmd_type
== TYPE_CMD
) {
6624 /* are we trying to read a vital product page */
6625 if (page_code
& VPD_PAGE
) {
6626 c
->Request
.CDB
[1] = 0x01;
6627 c
->Request
.CDB
[2] = (page_code
& 0xff);
6629 c
->Request
.CDBLen
= 6;
6630 c
->Request
.type_attr_dir
=
6631 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6632 c
->Request
.Timeout
= 0;
6633 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6634 c
->Request
.CDB
[4] = size
& 0xFF;
6636 case HPSA_REPORT_LOG
:
6637 case HPSA_REPORT_PHYS
:
6638 /* Talking to controller so It's a physical command
6639 mode = 00 target = 0. Nothing to write.
6641 c
->Request
.CDBLen
= 12;
6642 c
->Request
.type_attr_dir
=
6643 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6644 c
->Request
.Timeout
= 0;
6645 c
->Request
.CDB
[0] = cmd
;
6646 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6647 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6648 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6649 c
->Request
.CDB
[9] = size
& 0xFF;
6651 case BMIC_SENSE_DIAG_OPTIONS
:
6652 c
->Request
.CDBLen
= 16;
6653 c
->Request
.type_attr_dir
=
6654 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6655 c
->Request
.Timeout
= 0;
6656 /* Spec says this should be BMIC_WRITE */
6657 c
->Request
.CDB
[0] = BMIC_READ
;
6658 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6660 case BMIC_SET_DIAG_OPTIONS
:
6661 c
->Request
.CDBLen
= 16;
6662 c
->Request
.type_attr_dir
=
6663 TYPE_ATTR_DIR(cmd_type
,
6664 ATTR_SIMPLE
, XFER_WRITE
);
6665 c
->Request
.Timeout
= 0;
6666 c
->Request
.CDB
[0] = BMIC_WRITE
;
6667 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6669 case HPSA_CACHE_FLUSH
:
6670 c
->Request
.CDBLen
= 12;
6671 c
->Request
.type_attr_dir
=
6672 TYPE_ATTR_DIR(cmd_type
,
6673 ATTR_SIMPLE
, XFER_WRITE
);
6674 c
->Request
.Timeout
= 0;
6675 c
->Request
.CDB
[0] = BMIC_WRITE
;
6676 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6677 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6678 c
->Request
.CDB
[8] = size
& 0xFF;
6680 case TEST_UNIT_READY
:
6681 c
->Request
.CDBLen
= 6;
6682 c
->Request
.type_attr_dir
=
6683 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6684 c
->Request
.Timeout
= 0;
6686 case HPSA_GET_RAID_MAP
:
6687 c
->Request
.CDBLen
= 12;
6688 c
->Request
.type_attr_dir
=
6689 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6690 c
->Request
.Timeout
= 0;
6691 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6692 c
->Request
.CDB
[1] = cmd
;
6693 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6694 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6695 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6696 c
->Request
.CDB
[9] = size
& 0xFF;
6698 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6699 c
->Request
.CDBLen
= 10;
6700 c
->Request
.type_attr_dir
=
6701 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6702 c
->Request
.Timeout
= 0;
6703 c
->Request
.CDB
[0] = BMIC_READ
;
6704 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6705 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6706 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6708 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6709 c
->Request
.CDBLen
= 10;
6710 c
->Request
.type_attr_dir
=
6711 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6712 c
->Request
.Timeout
= 0;
6713 c
->Request
.CDB
[0] = BMIC_READ
;
6714 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6715 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6716 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6718 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6719 c
->Request
.CDBLen
= 10;
6720 c
->Request
.type_attr_dir
=
6721 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6722 c
->Request
.Timeout
= 0;
6723 c
->Request
.CDB
[0] = BMIC_READ
;
6724 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6725 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6726 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6728 case BMIC_IDENTIFY_CONTROLLER
:
6729 c
->Request
.CDBLen
= 10;
6730 c
->Request
.type_attr_dir
=
6731 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6732 c
->Request
.Timeout
= 0;
6733 c
->Request
.CDB
[0] = BMIC_READ
;
6734 c
->Request
.CDB
[1] = 0;
6735 c
->Request
.CDB
[2] = 0;
6736 c
->Request
.CDB
[3] = 0;
6737 c
->Request
.CDB
[4] = 0;
6738 c
->Request
.CDB
[5] = 0;
6739 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6740 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6741 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6742 c
->Request
.CDB
[9] = 0;
6745 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6749 } else if (cmd_type
== TYPE_MSG
) {
6752 case HPSA_PHYS_TARGET_RESET
:
6753 c
->Request
.CDBLen
= 16;
6754 c
->Request
.type_attr_dir
=
6755 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6756 c
->Request
.Timeout
= 0; /* Don't time out */
6757 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6758 c
->Request
.CDB
[0] = HPSA_RESET
;
6759 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6760 /* Physical target reset needs no control bytes 4-7*/
6761 c
->Request
.CDB
[4] = 0x00;
6762 c
->Request
.CDB
[5] = 0x00;
6763 c
->Request
.CDB
[6] = 0x00;
6764 c
->Request
.CDB
[7] = 0x00;
6766 case HPSA_DEVICE_RESET_MSG
:
6767 c
->Request
.CDBLen
= 16;
6768 c
->Request
.type_attr_dir
=
6769 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6770 c
->Request
.Timeout
= 0; /* Don't time out */
6771 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6772 c
->Request
.CDB
[0] = cmd
;
6773 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6774 /* If bytes 4-7 are zero, it means reset the */
6776 c
->Request
.CDB
[4] = 0x00;
6777 c
->Request
.CDB
[5] = 0x00;
6778 c
->Request
.CDB
[6] = 0x00;
6779 c
->Request
.CDB
[7] = 0x00;
6781 case HPSA_ABORT_MSG
:
6782 memcpy(&tag
, buff
, sizeof(tag
));
6783 dev_dbg(&h
->pdev
->dev
,
6784 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6785 tag
, c
->Header
.tag
);
6786 c
->Request
.CDBLen
= 16;
6787 c
->Request
.type_attr_dir
=
6788 TYPE_ATTR_DIR(cmd_type
,
6789 ATTR_SIMPLE
, XFER_WRITE
);
6790 c
->Request
.Timeout
= 0; /* Don't time out */
6791 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6792 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6793 c
->Request
.CDB
[2] = 0x00; /* reserved */
6794 c
->Request
.CDB
[3] = 0x00; /* reserved */
6795 /* Tag to abort goes in CDB[4]-CDB[11] */
6796 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6797 c
->Request
.CDB
[12] = 0x00; /* reserved */
6798 c
->Request
.CDB
[13] = 0x00; /* reserved */
6799 c
->Request
.CDB
[14] = 0x00; /* reserved */
6800 c
->Request
.CDB
[15] = 0x00; /* reserved */
6803 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6808 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6812 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6814 pci_dir
= PCI_DMA_FROMDEVICE
;
6817 pci_dir
= PCI_DMA_TODEVICE
;
6820 pci_dir
= PCI_DMA_NONE
;
6823 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6825 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6831 * Map (physical) PCI mem into (virtual) kernel space
6833 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6835 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6836 ulong page_offs
= ((ulong
) base
) - page_base
;
6837 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6840 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6843 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6845 return h
->access
.command_completed(h
, q
);
6848 static inline bool interrupt_pending(struct ctlr_info
*h
)
6850 return h
->access
.intr_pending(h
);
6853 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6855 return (h
->access
.intr_pending(h
) == 0) ||
6856 (h
->interrupts_enabled
== 0);
6859 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6862 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6863 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6869 static inline void finish_cmd(struct CommandList
*c
)
6871 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6872 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6873 || c
->cmd_type
== CMD_IOACCEL2
))
6874 complete_scsi_command(c
);
6875 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6876 complete(c
->waiting
);
6879 /* process completion of an indexed ("direct lookup") command */
6880 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6884 struct CommandList
*c
;
6886 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6887 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6888 c
= h
->cmd_pool
+ tag_index
;
6893 /* Some controllers, like p400, will give us one interrupt
6894 * after a soft reset, even if we turned interrupts off.
6895 * Only need to check for this in the hpsa_xxx_discard_completions
6898 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6900 if (likely(!reset_devices
))
6903 if (likely(h
->interrupts_enabled
))
6906 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6907 "(known firmware bug.) Ignoring.\n");
6913 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6914 * Relies on (h-q[x] == x) being true for x such that
6915 * 0 <= x < MAX_REPLY_QUEUES.
6917 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6919 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6922 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6924 struct ctlr_info
*h
= queue_to_hba(queue
);
6925 u8 q
= *(u8
*) queue
;
6928 if (ignore_bogus_interrupt(h
))
6931 if (interrupt_not_for_us(h
))
6933 h
->last_intr_timestamp
= get_jiffies_64();
6934 while (interrupt_pending(h
)) {
6935 raw_tag
= get_next_completion(h
, q
);
6936 while (raw_tag
!= FIFO_EMPTY
)
6937 raw_tag
= next_command(h
, q
);
6942 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6944 struct ctlr_info
*h
= queue_to_hba(queue
);
6946 u8 q
= *(u8
*) queue
;
6948 if (ignore_bogus_interrupt(h
))
6951 h
->last_intr_timestamp
= get_jiffies_64();
6952 raw_tag
= get_next_completion(h
, q
);
6953 while (raw_tag
!= FIFO_EMPTY
)
6954 raw_tag
= next_command(h
, q
);
6958 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6960 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6962 u8 q
= *(u8
*) queue
;
6964 if (interrupt_not_for_us(h
))
6966 h
->last_intr_timestamp
= get_jiffies_64();
6967 while (interrupt_pending(h
)) {
6968 raw_tag
= get_next_completion(h
, q
);
6969 while (raw_tag
!= FIFO_EMPTY
) {
6970 process_indexed_cmd(h
, raw_tag
);
6971 raw_tag
= next_command(h
, q
);
6977 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6979 struct ctlr_info
*h
= queue_to_hba(queue
);
6981 u8 q
= *(u8
*) queue
;
6983 h
->last_intr_timestamp
= get_jiffies_64();
6984 raw_tag
= get_next_completion(h
, q
);
6985 while (raw_tag
!= FIFO_EMPTY
) {
6986 process_indexed_cmd(h
, raw_tag
);
6987 raw_tag
= next_command(h
, q
);
6992 /* Send a message CDB to the firmware. Careful, this only works
6993 * in simple mode, not performant mode due to the tag lookup.
6994 * We only ever use this immediately after a controller reset.
6996 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7000 struct CommandListHeader CommandHeader
;
7001 struct RequestBlock Request
;
7002 struct ErrDescriptor ErrorDescriptor
;
7004 struct Command
*cmd
;
7005 static const size_t cmd_sz
= sizeof(*cmd
) +
7006 sizeof(cmd
->ErrorDescriptor
);
7010 void __iomem
*vaddr
;
7013 vaddr
= pci_ioremap_bar(pdev
, 0);
7017 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7018 * CCISS commands, so they must be allocated from the lower 4GiB of
7021 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7027 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7033 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7034 * although there's no guarantee, we assume that the address is at
7035 * least 4-byte aligned (most likely, it's page-aligned).
7037 paddr32
= cpu_to_le32(paddr64
);
7039 cmd
->CommandHeader
.ReplyQueue
= 0;
7040 cmd
->CommandHeader
.SGList
= 0;
7041 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7042 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7043 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7045 cmd
->Request
.CDBLen
= 16;
7046 cmd
->Request
.type_attr_dir
=
7047 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7048 cmd
->Request
.Timeout
= 0; /* Don't time out */
7049 cmd
->Request
.CDB
[0] = opcode
;
7050 cmd
->Request
.CDB
[1] = type
;
7051 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7052 cmd
->ErrorDescriptor
.Addr
=
7053 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7054 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7056 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7058 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7059 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7060 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7062 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7067 /* we leak the DMA buffer here ... no choice since the controller could
7068 * still complete the command.
7070 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7071 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7076 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7078 if (tag
& HPSA_ERROR_BIT
) {
7079 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7084 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7089 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7091 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7092 void __iomem
*vaddr
, u32 use_doorbell
)
7096 /* For everything after the P600, the PCI power state method
7097 * of resetting the controller doesn't work, so we have this
7098 * other way using the doorbell register.
7100 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7101 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7103 /* PMC hardware guys tell us we need a 10 second delay after
7104 * doorbell reset and before any attempt to talk to the board
7105 * at all to ensure that this actually works and doesn't fall
7106 * over in some weird corner cases.
7109 } else { /* Try to do it the PCI power state way */
7111 /* Quoting from the Open CISS Specification: "The Power
7112 * Management Control/Status Register (CSR) controls the power
7113 * state of the device. The normal operating state is D0,
7114 * CSR=00h. The software off state is D3, CSR=03h. To reset
7115 * the controller, place the interface device in D3 then to D0,
7116 * this causes a secondary PCI reset which will reset the
7121 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7123 /* enter the D3hot power management state */
7124 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7130 /* enter the D0 power management state */
7131 rc
= pci_set_power_state(pdev
, PCI_D0
);
7136 * The P600 requires a small delay when changing states.
7137 * Otherwise we may think the board did not reset and we bail.
7138 * This for kdump only and is particular to the P600.
7145 static void init_driver_version(char *driver_version
, int len
)
7147 memset(driver_version
, 0, len
);
7148 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7151 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7153 char *driver_version
;
7154 int i
, size
= sizeof(cfgtable
->driver_version
);
7156 driver_version
= kmalloc(size
, GFP_KERNEL
);
7157 if (!driver_version
)
7160 init_driver_version(driver_version
, size
);
7161 for (i
= 0; i
< size
; i
++)
7162 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7163 kfree(driver_version
);
7167 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7168 unsigned char *driver_ver
)
7172 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7173 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7176 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7179 char *driver_ver
, *old_driver_ver
;
7180 int rc
, size
= sizeof(cfgtable
->driver_version
);
7182 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7183 if (!old_driver_ver
)
7185 driver_ver
= old_driver_ver
+ size
;
7187 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7188 * should have been changed, otherwise we know the reset failed.
7190 init_driver_version(old_driver_ver
, size
);
7191 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7192 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7193 kfree(old_driver_ver
);
7196 /* This does a hard reset of the controller using PCI power management
7197 * states or the using the doorbell register.
7199 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7203 u64 cfg_base_addr_index
;
7204 void __iomem
*vaddr
;
7205 unsigned long paddr
;
7206 u32 misc_fw_support
;
7208 struct CfgTable __iomem
*cfgtable
;
7210 u16 command_register
;
7212 /* For controllers as old as the P600, this is very nearly
7215 * pci_save_state(pci_dev);
7216 * pci_set_power_state(pci_dev, PCI_D3hot);
7217 * pci_set_power_state(pci_dev, PCI_D0);
7218 * pci_restore_state(pci_dev);
7220 * For controllers newer than the P600, the pci power state
7221 * method of resetting doesn't work so we have another way
7222 * using the doorbell register.
7225 if (!ctlr_is_resettable(board_id
)) {
7226 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7230 /* if controller is soft- but not hard resettable... */
7231 if (!ctlr_is_hard_resettable(board_id
))
7232 return -ENOTSUPP
; /* try soft reset later. */
7234 /* Save the PCI command register */
7235 pci_read_config_word(pdev
, 4, &command_register
);
7236 pci_save_state(pdev
);
7238 /* find the first memory BAR, so we can find the cfg table */
7239 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7242 vaddr
= remap_pci_mem(paddr
, 0x250);
7246 /* find cfgtable in order to check if reset via doorbell is supported */
7247 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7248 &cfg_base_addr_index
, &cfg_offset
);
7251 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7252 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7257 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7259 goto unmap_cfgtable
;
7261 /* If reset via doorbell register is supported, use that.
7262 * There are two such methods. Favor the newest method.
7264 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7265 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7267 use_doorbell
= DOORBELL_CTLR_RESET2
;
7269 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7271 dev_warn(&pdev
->dev
,
7272 "Soft reset not supported. Firmware update is required.\n");
7273 rc
= -ENOTSUPP
; /* try soft reset */
7274 goto unmap_cfgtable
;
7278 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7280 goto unmap_cfgtable
;
7282 pci_restore_state(pdev
);
7283 pci_write_config_word(pdev
, 4, command_register
);
7285 /* Some devices (notably the HP Smart Array 5i Controller)
7286 need a little pause here */
7287 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7289 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7291 dev_warn(&pdev
->dev
,
7292 "Failed waiting for board to become ready after hard reset\n");
7293 goto unmap_cfgtable
;
7296 rc
= controller_reset_failed(vaddr
);
7298 goto unmap_cfgtable
;
7300 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7301 "controller. Will try soft reset.\n");
7304 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7316 * We cannot read the structure directly, for portability we must use
7318 * This is for debug only.
7320 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7326 dev_info(dev
, "Controller Configuration information\n");
7327 dev_info(dev
, "------------------------------------\n");
7328 for (i
= 0; i
< 4; i
++)
7329 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7330 temp_name
[4] = '\0';
7331 dev_info(dev
, " Signature = %s\n", temp_name
);
7332 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7333 dev_info(dev
, " Transport methods supported = 0x%x\n",
7334 readl(&(tb
->TransportSupport
)));
7335 dev_info(dev
, " Transport methods active = 0x%x\n",
7336 readl(&(tb
->TransportActive
)));
7337 dev_info(dev
, " Requested transport Method = 0x%x\n",
7338 readl(&(tb
->HostWrite
.TransportRequest
)));
7339 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7340 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7341 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7342 readl(&(tb
->HostWrite
.CoalIntCount
)));
7343 dev_info(dev
, " Max outstanding commands = %d\n",
7344 readl(&(tb
->CmdsOutMax
)));
7345 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7346 for (i
= 0; i
< 16; i
++)
7347 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7348 temp_name
[16] = '\0';
7349 dev_info(dev
, " Server Name = %s\n", temp_name
);
7350 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7351 readl(&(tb
->HeartBeat
)));
7352 #endif /* HPSA_DEBUG */
7355 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7357 int i
, offset
, mem_type
, bar_type
;
7359 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7362 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7363 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7364 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7367 mem_type
= pci_resource_flags(pdev
, i
) &
7368 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7370 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7371 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7372 offset
+= 4; /* 32 bit */
7374 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7377 default: /* reserved in PCI 2.2 */
7378 dev_warn(&pdev
->dev
,
7379 "base address is invalid\n");
7384 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7390 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7392 if (h
->msix_vector
) {
7393 if (h
->pdev
->msix_enabled
)
7394 pci_disable_msix(h
->pdev
);
7396 } else if (h
->msi_vector
) {
7397 if (h
->pdev
->msi_enabled
)
7398 pci_disable_msi(h
->pdev
);
7403 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7404 * controllers that are capable. If not, we use legacy INTx mode.
7406 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7408 #ifdef CONFIG_PCI_MSI
7410 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7412 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7413 hpsa_msix_entries
[i
].vector
= 0;
7414 hpsa_msix_entries
[i
].entry
= i
;
7417 /* Some boards advertise MSI but don't really support it */
7418 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7419 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7420 goto default_int_mode
;
7421 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7422 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7423 h
->msix_vector
= MAX_REPLY_QUEUES
;
7424 if (h
->msix_vector
> num_online_cpus())
7425 h
->msix_vector
= num_online_cpus();
7426 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7429 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7431 goto single_msi_mode
;
7432 } else if (err
< h
->msix_vector
) {
7433 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7434 "available\n", err
);
7436 h
->msix_vector
= err
;
7437 for (i
= 0; i
< h
->msix_vector
; i
++)
7438 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7442 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7443 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7444 if (!pci_enable_msi(h
->pdev
))
7447 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7450 #endif /* CONFIG_PCI_MSI */
7451 /* if we get here we're going to use the default interrupt mode */
7452 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7455 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7458 u32 subsystem_vendor_id
, subsystem_device_id
;
7460 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7461 subsystem_device_id
= pdev
->subsystem_device
;
7462 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7463 subsystem_vendor_id
;
7465 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7466 if (*board_id
== products
[i
].board_id
)
7469 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7470 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7472 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7473 "0x%08x, ignoring.\n", *board_id
);
7476 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7480 unsigned long *memory_bar
)
7484 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7485 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7486 /* addressing mode bits already removed */
7487 *memory_bar
= pci_resource_start(pdev
, i
);
7488 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7492 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7496 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7502 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7504 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7506 for (i
= 0; i
< iterations
; i
++) {
7507 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7508 if (wait_for_ready
) {
7509 if (scratchpad
== HPSA_FIRMWARE_READY
)
7512 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7515 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7517 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7521 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7522 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7525 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7526 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7527 *cfg_base_addr
&= (u32
) 0x0000ffff;
7528 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7529 if (*cfg_base_addr_index
== -1) {
7530 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7536 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7538 if (h
->transtable
) {
7539 iounmap(h
->transtable
);
7540 h
->transtable
= NULL
;
7543 iounmap(h
->cfgtable
);
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7551 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7555 u64 cfg_base_addr_index
;
7559 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7560 &cfg_base_addr_index
, &cfg_offset
);
7563 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7564 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7566 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7569 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7572 /* Find performant mode table. */
7573 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7574 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7575 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7576 sizeof(*h
->transtable
));
7577 if (!h
->transtable
) {
7578 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7579 hpsa_free_cfgtables(h
);
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7587 #define MIN_MAX_COMMANDS 16
7588 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7590 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7592 /* Limit commands in memory limited kdump scenario. */
7593 if (reset_devices
&& h
->max_commands
> 32)
7594 h
->max_commands
= 32;
7596 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7597 dev_warn(&h
->pdev
->dev
,
7598 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7601 h
->max_commands
= MIN_MAX_COMMANDS
;
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606 * then we know that chained SG blocks work. (Original smart arrays did not
7607 * support chained SG blocks and would return zero for max sg entries.)
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7611 return h
->maxsgentries
> 512;
7614 /* Interrogate the hardware for some limits:
7615 * max commands, max SG elements without chaining, and with chaining,
7616 * SG chain block size, etc.
7618 static void hpsa_find_board_params(struct ctlr_info
*h
)
7620 hpsa_get_max_perf_mode_cmds(h
);
7621 h
->nr_cmds
= h
->max_commands
;
7622 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7623 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7624 if (hpsa_supports_chained_sg_blocks(h
)) {
7625 /* Limit in-command s/g elements to 32 save dma'able memory. */
7626 h
->max_cmd_sg_entries
= 32;
7627 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7628 h
->maxsgentries
--; /* save one for chain pointer */
7631 * Original smart arrays supported at most 31 s/g entries
7632 * embedded inline in the command (trying to use more
7633 * would lock up the controller)
7635 h
->max_cmd_sg_entries
= 31;
7636 h
->maxsgentries
= 31; /* default to traditional values */
7640 /* Find out what task management functions are supported and cache */
7641 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7642 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7643 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7644 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7645 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7646 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7647 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7652 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7653 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7663 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7664 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7666 driver_support
|= ENABLE_SCSI_PREFETCH
;
7668 driver_support
|= ENABLE_UNIT_ATTN
;
7669 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7672 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7673 * in a prefetch beyond physical memory.
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7679 if (h
->board_id
!= 0x3225103C)
7681 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7682 dma_prefetch
|= 0x8000;
7683 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7690 unsigned long flags
;
7691 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7693 spin_lock_irqsave(&h
->lock
, flags
);
7694 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7695 spin_unlock_irqrestore(&h
->lock
, flags
);
7696 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7698 /* delay and try again */
7699 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7710 unsigned long flags
;
7712 /* under certain very rare conditions, this can take awhile.
7713 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714 * as we enter this code.)
7716 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7717 if (h
->remove_in_progress
)
7719 spin_lock_irqsave(&h
->lock
, flags
);
7720 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7721 spin_unlock_irqrestore(&h
->lock
, flags
);
7722 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7724 /* delay and try again */
7725 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7737 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7738 if (!(trans_support
& SIMPLE_MODE
))
7741 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7743 /* Update the field, and then ring the doorbell */
7744 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7745 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7746 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7747 if (hpsa_wait_for_mode_change_ack(h
))
7749 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7750 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7752 h
->transMethod
= CFGTBL_Trans_Simple
;
7755 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7762 hpsa_free_cfgtables(h
); /* pci_init 4 */
7763 iounmap(h
->vaddr
); /* pci_init 3 */
7765 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7767 * call pci_disable_device before pci_release_regions per
7768 * Documentation/PCI/pci.txt
7770 pci_disable_device(h
->pdev
); /* pci_init 1 */
7771 pci_release_regions(h
->pdev
); /* pci_init 2 */
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info
*h
)
7777 int prod_index
, err
;
7779 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7782 h
->product_name
= products
[prod_index
].product_name
;
7783 h
->access
= *(products
[prod_index
].access
);
7785 h
->needs_abort_tags_swizzled
=
7786 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7788 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7789 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7791 err
= pci_enable_device(h
->pdev
);
7793 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7794 pci_disable_device(h
->pdev
);
7798 err
= pci_request_regions(h
->pdev
, HPSA
);
7800 dev_err(&h
->pdev
->dev
,
7801 "failed to obtain PCI resources\n");
7802 pci_disable_device(h
->pdev
);
7806 pci_set_master(h
->pdev
);
7808 hpsa_interrupt_mode(h
);
7809 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7811 goto clean2
; /* intmode+region, pci */
7812 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7814 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7816 goto clean2
; /* intmode+region, pci */
7818 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7820 goto clean3
; /* vaddr, intmode+region, pci */
7821 err
= hpsa_find_cfgtables(h
);
7823 goto clean3
; /* vaddr, intmode+region, pci */
7824 hpsa_find_board_params(h
);
7826 if (!hpsa_CISS_signature_present(h
)) {
7828 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7830 hpsa_set_driver_support_bits(h
);
7831 hpsa_p600_dma_prefetch_quirk(h
);
7832 err
= hpsa_enter_simple_mode(h
);
7834 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7837 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7838 hpsa_free_cfgtables(h
);
7839 clean3
: /* vaddr, intmode+region, pci */
7842 clean2
: /* intmode+region, pci */
7843 hpsa_disable_interrupt_mode(h
);
7845 * call pci_disable_device before pci_release_regions per
7846 * Documentation/PCI/pci.txt
7848 pci_disable_device(h
->pdev
);
7849 pci_release_regions(h
->pdev
);
7853 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7857 #define HBA_INQUIRY_BYTE_COUNT 64
7858 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7859 if (!h
->hba_inquiry_data
)
7861 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7862 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7864 kfree(h
->hba_inquiry_data
);
7865 h
->hba_inquiry_data
= NULL
;
7869 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7872 void __iomem
*vaddr
;
7877 /* kdump kernel is loading, we don't know in which state is
7878 * the pci interface. The dev->enable_cnt is equal zero
7879 * so we call enable+disable, wait a while and switch it on.
7881 rc
= pci_enable_device(pdev
);
7883 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7886 pci_disable_device(pdev
);
7887 msleep(260); /* a randomly chosen number */
7888 rc
= pci_enable_device(pdev
);
7890 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7894 pci_set_master(pdev
);
7896 vaddr
= pci_ioremap_bar(pdev
, 0);
7897 if (vaddr
== NULL
) {
7901 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7904 /* Reset the controller with a PCI power-cycle or via doorbell */
7905 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7907 /* -ENOTSUPP here means we cannot reset the controller
7908 * but it's already (and still) up and running in
7909 * "performant mode". Or, it might be 640x, which can't reset
7910 * due to concerns about shared bbwc between 6402/6404 pair.
7915 /* Now try to get the controller to respond to a no-op */
7916 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7917 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7918 if (hpsa_noop(pdev
) == 0)
7921 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7922 (i
< 11 ? "; re-trying" : ""));
7927 pci_disable_device(pdev
);
7931 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7933 kfree(h
->cmd_pool_bits
);
7934 h
->cmd_pool_bits
= NULL
;
7936 pci_free_consistent(h
->pdev
,
7937 h
->nr_cmds
* sizeof(struct CommandList
),
7939 h
->cmd_pool_dhandle
);
7941 h
->cmd_pool_dhandle
= 0;
7943 if (h
->errinfo_pool
) {
7944 pci_free_consistent(h
->pdev
,
7945 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7947 h
->errinfo_pool_dhandle
);
7948 h
->errinfo_pool
= NULL
;
7949 h
->errinfo_pool_dhandle
= 0;
7953 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7955 h
->cmd_pool_bits
= kzalloc(
7956 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7957 sizeof(unsigned long), GFP_KERNEL
);
7958 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7959 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7960 &(h
->cmd_pool_dhandle
));
7961 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7962 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7963 &(h
->errinfo_pool_dhandle
));
7964 if ((h
->cmd_pool_bits
== NULL
)
7965 || (h
->cmd_pool
== NULL
)
7966 || (h
->errinfo_pool
== NULL
)) {
7967 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7970 hpsa_preinitialize_commands(h
);
7973 hpsa_free_cmd_pool(h
);
7977 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7981 cpu
= cpumask_first(cpu_online_mask
);
7982 for (i
= 0; i
< h
->msix_vector
; i
++) {
7983 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7984 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7988 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7989 static void hpsa_free_irqs(struct ctlr_info
*h
)
7993 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7994 /* Single reply queue, only one irq to free */
7996 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7997 free_irq(h
->intr
[i
], &h
->q
[i
]);
8002 for (i
= 0; i
< h
->msix_vector
; i
++) {
8003 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8004 free_irq(h
->intr
[i
], &h
->q
[i
]);
8007 for (; i
< MAX_REPLY_QUEUES
; i
++)
8011 /* returns 0 on success; cleans up and returns -Enn on error */
8012 static int hpsa_request_irqs(struct ctlr_info
*h
,
8013 irqreturn_t (*msixhandler
)(int, void *),
8014 irqreturn_t (*intxhandler
)(int, void *))
8019 * initialize h->q[x] = x so that interrupt handlers know which
8022 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8025 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
8026 /* If performant mode and MSI-X, use multiple reply queues */
8027 for (i
= 0; i
< h
->msix_vector
; i
++) {
8028 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8029 rc
= request_irq(h
->intr
[i
], msixhandler
,
8035 dev_err(&h
->pdev
->dev
,
8036 "failed to get irq %d for %s\n",
8037 h
->intr
[i
], h
->devname
);
8038 for (j
= 0; j
< i
; j
++) {
8039 free_irq(h
->intr
[j
], &h
->q
[j
]);
8042 for (; j
< MAX_REPLY_QUEUES
; j
++)
8047 hpsa_irq_affinity_hints(h
);
8049 /* Use single reply pool */
8050 if (h
->msix_vector
> 0 || h
->msi_vector
) {
8052 sprintf(h
->intrname
[h
->intr_mode
],
8053 "%s-msix", h
->devname
);
8055 sprintf(h
->intrname
[h
->intr_mode
],
8056 "%s-msi", h
->devname
);
8057 rc
= request_irq(h
->intr
[h
->intr_mode
],
8059 h
->intrname
[h
->intr_mode
],
8060 &h
->q
[h
->intr_mode
]);
8062 sprintf(h
->intrname
[h
->intr_mode
],
8063 "%s-intx", h
->devname
);
8064 rc
= request_irq(h
->intr
[h
->intr_mode
],
8065 intxhandler
, IRQF_SHARED
,
8066 h
->intrname
[h
->intr_mode
],
8067 &h
->q
[h
->intr_mode
]);
8069 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
8072 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8073 h
->intr
[h
->intr_mode
], h
->devname
);
8080 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8083 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8085 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8086 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8088 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8092 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8093 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8095 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8096 "after soft reset.\n");
8103 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8107 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8108 if (!h
->reply_queue
[i
].head
)
8110 pci_free_consistent(h
->pdev
,
8111 h
->reply_queue_size
,
8112 h
->reply_queue
[i
].head
,
8113 h
->reply_queue
[i
].busaddr
);
8114 h
->reply_queue
[i
].head
= NULL
;
8115 h
->reply_queue
[i
].busaddr
= 0;
8117 h
->reply_queue_size
= 0;
8120 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8122 hpsa_free_performant_mode(h
); /* init_one 7 */
8123 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8124 hpsa_free_cmd_pool(h
); /* init_one 5 */
8125 hpsa_free_irqs(h
); /* init_one 4 */
8126 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8127 h
->scsi_host
= NULL
; /* init_one 3 */
8128 hpsa_free_pci_init(h
); /* init_one 2_5 */
8129 free_percpu(h
->lockup_detected
); /* init_one 2 */
8130 h
->lockup_detected
= NULL
; /* init_one 2 */
8131 if (h
->resubmit_wq
) {
8132 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8133 h
->resubmit_wq
= NULL
;
8135 if (h
->rescan_ctlr_wq
) {
8136 destroy_workqueue(h
->rescan_ctlr_wq
);
8137 h
->rescan_ctlr_wq
= NULL
;
8139 kfree(h
); /* init_one 1 */
8142 /* Called when controller lockup detected. */
8143 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8146 struct CommandList
*c
;
8149 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8150 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8151 c
= h
->cmd_pool
+ i
;
8152 refcount
= atomic_inc_return(&c
->refcount
);
8154 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8156 atomic_dec(&h
->commands_outstanding
);
8161 dev_warn(&h
->pdev
->dev
,
8162 "failed %d commands in fail_all\n", failcount
);
8165 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8169 for_each_online_cpu(cpu
) {
8170 u32
*lockup_detected
;
8171 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8172 *lockup_detected
= value
;
8174 wmb(); /* be sure the per-cpu variables are out to memory */
8177 static void controller_lockup_detected(struct ctlr_info
*h
)
8179 unsigned long flags
;
8180 u32 lockup_detected
;
8182 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8183 spin_lock_irqsave(&h
->lock
, flags
);
8184 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8185 if (!lockup_detected
) {
8186 /* no heartbeat, but controller gave us a zero. */
8187 dev_warn(&h
->pdev
->dev
,
8188 "lockup detected after %d but scratchpad register is zero\n",
8189 h
->heartbeat_sample_interval
/ HZ
);
8190 lockup_detected
= 0xffffffff;
8192 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8193 spin_unlock_irqrestore(&h
->lock
, flags
);
8194 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8195 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8196 pci_disable_device(h
->pdev
);
8197 fail_all_outstanding_cmds(h
);
8200 static int detect_controller_lockup(struct ctlr_info
*h
)
8204 unsigned long flags
;
8206 now
= get_jiffies_64();
8207 /* If we've received an interrupt recently, we're ok. */
8208 if (time_after64(h
->last_intr_timestamp
+
8209 (h
->heartbeat_sample_interval
), now
))
8213 * If we've already checked the heartbeat recently, we're ok.
8214 * This could happen if someone sends us a signal. We
8215 * otherwise don't care about signals in this thread.
8217 if (time_after64(h
->last_heartbeat_timestamp
+
8218 (h
->heartbeat_sample_interval
), now
))
8221 /* If heartbeat has not changed since we last looked, we're not ok. */
8222 spin_lock_irqsave(&h
->lock
, flags
);
8223 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8224 spin_unlock_irqrestore(&h
->lock
, flags
);
8225 if (h
->last_heartbeat
== heartbeat
) {
8226 controller_lockup_detected(h
);
8231 h
->last_heartbeat
= heartbeat
;
8232 h
->last_heartbeat_timestamp
= now
;
8236 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8241 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8244 /* Ask the controller to clear the events we're handling. */
8245 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8246 | CFGTBL_Trans_io_accel2
)) &&
8247 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8248 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8250 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8251 event_type
= "state change";
8252 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8253 event_type
= "configuration change";
8254 /* Stop sending new RAID offload reqs via the IO accelerator */
8255 scsi_block_requests(h
->scsi_host
);
8256 for (i
= 0; i
< h
->ndevices
; i
++)
8257 h
->dev
[i
]->offload_enabled
= 0;
8258 hpsa_drain_accel_commands(h
);
8259 /* Set 'accelerator path config change' bit */
8260 dev_warn(&h
->pdev
->dev
,
8261 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8262 h
->events
, event_type
);
8263 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8264 /* Set the "clear event notify field update" bit 6 */
8265 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8266 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8267 hpsa_wait_for_clear_event_notify_ack(h
);
8268 scsi_unblock_requests(h
->scsi_host
);
8270 /* Acknowledge controller notification events. */
8271 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8272 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8273 hpsa_wait_for_clear_event_notify_ack(h
);
8275 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8276 hpsa_wait_for_mode_change_ack(h
);
8282 /* Check a register on the controller to see if there are configuration
8283 * changes (added/changed/removed logical drives, etc.) which mean that
8284 * we should rescan the controller for devices.
8285 * Also check flag for driver-initiated rescan.
8287 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8289 if (h
->drv_req_rescan
) {
8290 h
->drv_req_rescan
= 0;
8294 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8297 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8298 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8302 * Check if any of the offline devices have become ready
8304 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8306 unsigned long flags
;
8307 struct offline_device_entry
*d
;
8308 struct list_head
*this, *tmp
;
8310 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8311 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8312 d
= list_entry(this, struct offline_device_entry
,
8314 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8315 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8316 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8317 list_del(&d
->offline_list
);
8318 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8321 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8323 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8327 static int hpsa_luns_changed(struct ctlr_info
*h
)
8329 int rc
= 1; /* assume there are changes */
8330 struct ReportLUNdata
*logdev
= NULL
;
8332 /* if we can't find out if lun data has changed,
8333 * assume that it has.
8336 if (!h
->lastlogicals
)
8339 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8341 dev_warn(&h
->pdev
->dev
,
8342 "Out of memory, can't track lun changes.\n");
8345 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8346 dev_warn(&h
->pdev
->dev
,
8347 "report luns failed, can't track lun changes.\n");
8350 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8351 dev_info(&h
->pdev
->dev
,
8352 "Lun changes detected.\n");
8353 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8356 rc
= 0; /* no changes detected. */
8362 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8364 unsigned long flags
;
8365 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8366 struct ctlr_info
, rescan_ctlr_work
);
8369 if (h
->remove_in_progress
)
8372 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8373 scsi_host_get(h
->scsi_host
);
8374 hpsa_ack_ctlr_events(h
);
8375 hpsa_scan_start(h
->scsi_host
);
8376 scsi_host_put(h
->scsi_host
);
8377 } else if (h
->discovery_polling
) {
8378 hpsa_disable_rld_caching(h
);
8379 if (hpsa_luns_changed(h
)) {
8380 struct Scsi_Host
*sh
= NULL
;
8382 dev_info(&h
->pdev
->dev
,
8383 "driver discovery polling rescan.\n");
8384 sh
= scsi_host_get(h
->scsi_host
);
8386 hpsa_scan_start(sh
);
8391 spin_lock_irqsave(&h
->lock
, flags
);
8392 if (!h
->remove_in_progress
)
8393 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8394 h
->heartbeat_sample_interval
);
8395 spin_unlock_irqrestore(&h
->lock
, flags
);
8398 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8400 unsigned long flags
;
8401 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8402 struct ctlr_info
, monitor_ctlr_work
);
8404 detect_controller_lockup(h
);
8405 if (lockup_detected(h
))
8408 spin_lock_irqsave(&h
->lock
, flags
);
8409 if (!h
->remove_in_progress
)
8410 schedule_delayed_work(&h
->monitor_ctlr_work
,
8411 h
->heartbeat_sample_interval
);
8412 spin_unlock_irqrestore(&h
->lock
, flags
);
8415 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8418 struct workqueue_struct
*wq
= NULL
;
8420 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8422 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8427 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8430 struct ctlr_info
*h
;
8431 int try_soft_reset
= 0;
8432 unsigned long flags
;
8435 if (number_of_controllers
== 0)
8436 printk(KERN_INFO DRIVER_NAME
"\n");
8438 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8440 dev_warn(&pdev
->dev
, "Board ID not found\n");
8444 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8446 if (rc
!= -ENOTSUPP
)
8448 /* If the reset fails in a particular way (it has no way to do
8449 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8450 * a soft reset once we get the controller configured up to the
8451 * point that it can accept a command.
8457 reinit_after_soft_reset
:
8459 /* Command structures must be aligned on a 32-byte boundary because
8460 * the 5 lower bits of the address are used by the hardware. and by
8461 * the driver. See comments in hpsa.h for more info.
8463 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8464 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8466 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8472 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8473 INIT_LIST_HEAD(&h
->offline_device_list
);
8474 spin_lock_init(&h
->lock
);
8475 spin_lock_init(&h
->offline_device_lock
);
8476 spin_lock_init(&h
->scan_lock
);
8477 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8478 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8480 /* Allocate and clear per-cpu variable lockup_detected */
8481 h
->lockup_detected
= alloc_percpu(u32
);
8482 if (!h
->lockup_detected
) {
8483 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8485 goto clean1
; /* aer/h */
8487 set_lockup_detected_for_all_cpus(h
, 0);
8489 rc
= hpsa_pci_init(h
);
8491 goto clean2
; /* lu, aer/h */
8493 /* relies on h-> settings made by hpsa_pci_init, including
8494 * interrupt_mode h->intr */
8495 rc
= hpsa_scsi_host_alloc(h
);
8497 goto clean2_5
; /* pci, lu, aer/h */
8499 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8500 h
->ctlr
= number_of_controllers
;
8501 number_of_controllers
++;
8503 /* configure PCI DMA stuff */
8504 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8508 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8512 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8513 goto clean3
; /* shost, pci, lu, aer/h */
8517 /* make sure the board interrupts are off */
8518 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8520 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8522 goto clean3
; /* shost, pci, lu, aer/h */
8523 rc
= hpsa_alloc_cmd_pool(h
);
8525 goto clean4
; /* irq, shost, pci, lu, aer/h */
8526 rc
= hpsa_alloc_sg_chain_blocks(h
);
8528 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8529 init_waitqueue_head(&h
->scan_wait_queue
);
8530 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8531 init_waitqueue_head(&h
->event_sync_wait_queue
);
8532 mutex_init(&h
->reset_mutex
);
8533 h
->scan_finished
= 1; /* no scan currently in progress */
8534 h
->scan_waiting
= 0;
8536 pci_set_drvdata(pdev
, h
);
8539 spin_lock_init(&h
->devlock
);
8540 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8542 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8544 /* hook into SCSI subsystem */
8545 rc
= hpsa_scsi_add_host(h
);
8547 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8549 /* create the resubmit workqueue */
8550 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8551 if (!h
->rescan_ctlr_wq
) {
8556 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8557 if (!h
->resubmit_wq
) {
8559 goto clean7
; /* aer/h */
8563 * At this point, the controller is ready to take commands.
8564 * Now, if reset_devices and the hard reset didn't work, try
8565 * the soft reset and see if that works.
8567 if (try_soft_reset
) {
8569 /* This is kind of gross. We may or may not get a completion
8570 * from the soft reset command, and if we do, then the value
8571 * from the fifo may or may not be valid. So, we wait 10 secs
8572 * after the reset throwing away any completions we get during
8573 * that time. Unregister the interrupt handler and register
8574 * fake ones to scoop up any residual completions.
8576 spin_lock_irqsave(&h
->lock
, flags
);
8577 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8578 spin_unlock_irqrestore(&h
->lock
, flags
);
8580 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8581 hpsa_intx_discard_completions
);
8583 dev_warn(&h
->pdev
->dev
,
8584 "Failed to request_irq after soft reset.\n");
8586 * cannot goto clean7 or free_irqs will be called
8587 * again. Instead, do its work
8589 hpsa_free_performant_mode(h
); /* clean7 */
8590 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8591 hpsa_free_cmd_pool(h
); /* clean5 */
8593 * skip hpsa_free_irqs(h) clean4 since that
8594 * was just called before request_irqs failed
8599 rc
= hpsa_kdump_soft_reset(h
);
8601 /* Neither hard nor soft reset worked, we're hosed. */
8604 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8605 dev_info(&h
->pdev
->dev
,
8606 "Waiting for stale completions to drain.\n");
8607 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8609 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8611 rc
= controller_reset_failed(h
->cfgtable
);
8613 dev_info(&h
->pdev
->dev
,
8614 "Soft reset appears to have failed.\n");
8616 /* since the controller's reset, we have to go back and re-init
8617 * everything. Easiest to just forget what we've done and do it
8620 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8623 /* don't goto clean, we already unallocated */
8626 goto reinit_after_soft_reset
;
8629 /* Enable Accelerated IO path at driver layer */
8630 h
->acciopath_status
= 1;
8631 /* Disable discovery polling.*/
8632 h
->discovery_polling
= 0;
8635 /* Turn the interrupts on so we can service requests */
8636 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8638 hpsa_hba_inquiry(h
);
8640 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8641 if (!h
->lastlogicals
)
8642 dev_info(&h
->pdev
->dev
,
8643 "Can't track change to report lun data\n");
8645 /* Monitor the controller for firmware lockups */
8646 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8647 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8648 schedule_delayed_work(&h
->monitor_ctlr_work
,
8649 h
->heartbeat_sample_interval
);
8650 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8651 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8652 h
->heartbeat_sample_interval
);
8655 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656 hpsa_free_performant_mode(h
);
8657 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8658 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659 hpsa_free_sg_chain_blocks(h
);
8660 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8661 hpsa_free_cmd_pool(h
);
8662 clean4
: /* irq, shost, pci, lu, aer/h */
8664 clean3
: /* shost, pci, lu, aer/h */
8665 scsi_host_put(h
->scsi_host
);
8666 h
->scsi_host
= NULL
;
8667 clean2_5
: /* pci, lu, aer/h */
8668 hpsa_free_pci_init(h
);
8669 clean2
: /* lu, aer/h */
8670 if (h
->lockup_detected
) {
8671 free_percpu(h
->lockup_detected
);
8672 h
->lockup_detected
= NULL
;
8674 clean1
: /* wq/aer/h */
8675 if (h
->resubmit_wq
) {
8676 destroy_workqueue(h
->resubmit_wq
);
8677 h
->resubmit_wq
= NULL
;
8679 if (h
->rescan_ctlr_wq
) {
8680 destroy_workqueue(h
->rescan_ctlr_wq
);
8681 h
->rescan_ctlr_wq
= NULL
;
8687 static void hpsa_flush_cache(struct ctlr_info
*h
)
8690 struct CommandList
*c
;
8693 if (unlikely(lockup_detected(h
)))
8695 flush_buf
= kzalloc(4, GFP_KERNEL
);
8701 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8702 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8705 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8706 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8709 if (c
->err_info
->CommandStatus
!= 0)
8711 dev_warn(&h
->pdev
->dev
,
8712 "error flushing cache on controller\n");
8717 /* Make controller gather fresh report lun data each time we
8718 * send down a report luns request
8720 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8723 struct CommandList
*c
;
8726 /* Don't bother trying to set diag options if locked up */
8727 if (unlikely(h
->lockup_detected
))
8730 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8732 dev_err(&h
->pdev
->dev
,
8733 "Error: failed to disable rld caching, during alloc.\n");
8739 /* first, get the current diag options settings */
8740 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8741 RAID_CTLR_LUNID
, TYPE_CMD
))
8744 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8745 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8746 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8749 /* Now, set the bit for disabling the RLD caching */
8750 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8752 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8753 RAID_CTLR_LUNID
, TYPE_CMD
))
8756 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8757 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8758 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8761 /* Now verify that it got set: */
8762 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8763 RAID_CTLR_LUNID
, TYPE_CMD
))
8766 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8767 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8768 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8771 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8775 dev_err(&h
->pdev
->dev
,
8776 "Error: failed to disable report lun data caching.\n");
8782 static void hpsa_shutdown(struct pci_dev
*pdev
)
8784 struct ctlr_info
*h
;
8786 h
= pci_get_drvdata(pdev
);
8787 /* Turn board interrupts off and send the flush cache command
8788 * sendcmd will turn off interrupt, and send the flush...
8789 * To write all data in the battery backed cache to disks
8791 hpsa_flush_cache(h
);
8792 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8793 hpsa_free_irqs(h
); /* init_one 4 */
8794 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8797 static void hpsa_free_device_info(struct ctlr_info
*h
)
8801 for (i
= 0; i
< h
->ndevices
; i
++) {
8807 static void hpsa_remove_one(struct pci_dev
*pdev
)
8809 struct ctlr_info
*h
;
8810 unsigned long flags
;
8812 if (pci_get_drvdata(pdev
) == NULL
) {
8813 dev_err(&pdev
->dev
, "unable to remove device\n");
8816 h
= pci_get_drvdata(pdev
);
8818 /* Get rid of any controller monitoring work items */
8819 spin_lock_irqsave(&h
->lock
, flags
);
8820 h
->remove_in_progress
= 1;
8821 spin_unlock_irqrestore(&h
->lock
, flags
);
8822 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8823 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8824 destroy_workqueue(h
->rescan_ctlr_wq
);
8825 destroy_workqueue(h
->resubmit_wq
);
8827 hpsa_delete_sas_host(h
);
8830 * Call before disabling interrupts.
8831 * scsi_remove_host can trigger I/O operations especially
8832 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8833 * operations which cannot complete and will hang the system.
8836 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8837 /* includes hpsa_free_irqs - init_one 4 */
8838 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8839 hpsa_shutdown(pdev
);
8841 hpsa_free_device_info(h
); /* scan */
8843 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8844 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8845 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8846 hpsa_free_performant_mode(h
); /* init_one 7 */
8847 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8848 hpsa_free_cmd_pool(h
); /* init_one 5 */
8849 kfree(h
->lastlogicals
);
8851 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8853 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8854 h
->scsi_host
= NULL
; /* init_one 3 */
8856 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8857 hpsa_free_pci_init(h
); /* init_one 2.5 */
8859 free_percpu(h
->lockup_detected
); /* init_one 2 */
8860 h
->lockup_detected
= NULL
; /* init_one 2 */
8861 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8863 kfree(h
); /* init_one 1 */
8866 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8867 __attribute__((unused
)) pm_message_t state
)
8872 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8877 static struct pci_driver hpsa_pci_driver
= {
8879 .probe
= hpsa_init_one
,
8880 .remove
= hpsa_remove_one
,
8881 .id_table
= hpsa_pci_device_id
, /* id_table */
8882 .shutdown
= hpsa_shutdown
,
8883 .suspend
= hpsa_suspend
,
8884 .resume
= hpsa_resume
,
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888 * scatter gather elements supported) and bucket[],
8889 * which is an array of 8 integers. The bucket[] array
8890 * contains 8 different DMA transfer sizes (in 16
8891 * byte increments) which the controller uses to fetch
8892 * commands. This function fills in bucket_map[], which
8893 * maps a given number of scatter gather elements to one of
8894 * the 8 DMA transfer sizes. The point of it is to allow the
8895 * controller to only do as much DMA as needed to fetch the
8896 * command, with the DMA transfer size encoded in the lower
8897 * bits of the command address.
8899 static void calc_bucket_map(int bucket
[], int num_buckets
,
8900 int nsgs
, int min_blocks
, u32
*bucket_map
)
8904 /* Note, bucket_map must have nsgs+1 entries. */
8905 for (i
= 0; i
<= nsgs
; i
++) {
8906 /* Compute size of a command with i SG entries */
8907 size
= i
+ min_blocks
;
8908 b
= num_buckets
; /* Assume the biggest bucket */
8909 /* Find the bucket that is just big enough */
8910 for (j
= 0; j
< num_buckets
; j
++) {
8911 if (bucket
[j
] >= size
) {
8916 /* for a command with i SG entries, use bucket b. */
8922 * return -ENODEV on err, 0 on success (or no action)
8923 * allocates numerous items that must be freed later
8925 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8928 unsigned long register_value
;
8929 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8930 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8931 CFGTBL_Trans_enable_directed_msix
|
8932 (trans_support
& (CFGTBL_Trans_io_accel1
|
8933 CFGTBL_Trans_io_accel2
));
8934 struct access_method access
= SA5_performant_access
;
8936 /* This is a bit complicated. There are 8 registers on
8937 * the controller which we write to to tell it 8 different
8938 * sizes of commands which there may be. It's a way of
8939 * reducing the DMA done to fetch each command. Encoded into
8940 * each command's tag are 3 bits which communicate to the controller
8941 * which of the eight sizes that command fits within. The size of
8942 * each command depends on how many scatter gather entries there are.
8943 * Each SG entry requires 16 bytes. The eight registers are programmed
8944 * with the number of 16-byte blocks a command of that size requires.
8945 * The smallest command possible requires 5 such 16 byte blocks.
8946 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947 * blocks. Note, this only extends to the SG entries contained
8948 * within the command block, and does not extend to chained blocks
8949 * of SG elements. bft[] contains the eight values we write to
8950 * the registers. They are not evenly distributed, but have more
8951 * sizes for small commands, and fewer sizes for larger commands.
8953 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8957 13, 14, 15, 16, 17, 18, 19,
8958 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8959 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8960 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8961 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8962 16 * MIN_IOACCEL2_BFT_ENTRY
);
8963 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8964 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8965 /* 5 = 1 s/g entry or 4k
8966 * 6 = 2 s/g entry or 8k
8967 * 8 = 4 s/g entry or 16k
8968 * 10 = 6 s/g entry or 24k
8971 /* If the controller supports either ioaccel method then
8972 * we can also use the RAID stack submit path that does not
8973 * perform the superfluous readl() after each command submission.
8975 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8976 access
= SA5_performant_access_no_read
;
8978 /* Controller spec: zero out this buffer. */
8979 for (i
= 0; i
< h
->nreply_queues
; i
++)
8980 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8982 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8983 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8984 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8985 for (i
= 0; i
< 8; i
++)
8986 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8988 /* size of controller ring buffer */
8989 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8990 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8991 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8992 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8994 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8995 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8996 writel(h
->reply_queue
[i
].busaddr
,
8997 &h
->transtable
->RepQAddr
[i
].lower
);
9000 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9001 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9003 * enable outbound interrupt coalescing in accelerator mode;
9005 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9006 access
= SA5_ioaccel_mode1_access
;
9007 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9008 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9010 if (trans_support
& CFGTBL_Trans_io_accel2
) {
9011 access
= SA5_ioaccel_mode2_access
;
9012 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9013 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9016 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9017 if (hpsa_wait_for_mode_change_ack(h
)) {
9018 dev_err(&h
->pdev
->dev
,
9019 "performant mode problem - doorbell timeout\n");
9022 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9023 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9024 dev_err(&h
->pdev
->dev
,
9025 "performant mode problem - transport not active\n");
9028 /* Change the access methods to the performant access methods */
9030 h
->transMethod
= transMethod
;
9032 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9033 (trans_support
& CFGTBL_Trans_io_accel2
)))
9036 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9037 /* Set up I/O accelerator mode */
9038 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9039 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9040 h
->reply_queue
[i
].current_entry
=
9041 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9043 bft
[7] = h
->ioaccel_maxsg
+ 8;
9044 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9045 h
->ioaccel1_blockFetchTable
);
9047 /* initialize all reply queue entries to unused */
9048 for (i
= 0; i
< h
->nreply_queues
; i
++)
9049 memset(h
->reply_queue
[i
].head
,
9050 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9051 h
->reply_queue_size
);
9053 /* set all the constant fields in the accelerator command
9054 * frames once at init time to save CPU cycles later.
9056 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9057 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9059 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9060 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9061 (i
* sizeof(struct ErrorInfo
)));
9062 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9063 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9064 cp
->host_context_flags
=
9065 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9066 cp
->timeout_sec
= 0;
9069 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9071 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9072 (i
* sizeof(struct io_accel1_cmd
)));
9074 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9075 u64 cfg_offset
, cfg_base_addr_index
;
9076 u32 bft2_offset
, cfg_base_addr
;
9079 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9080 &cfg_base_addr_index
, &cfg_offset
);
9081 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9082 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9083 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9084 4, h
->ioaccel2_blockFetchTable
);
9085 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9086 BUILD_BUG_ON(offsetof(struct CfgTable
,
9087 io_accel_request_size_offset
) != 0xb8);
9088 h
->ioaccel2_bft2_regs
=
9089 remap_pci_mem(pci_resource_start(h
->pdev
,
9090 cfg_base_addr_index
) +
9091 cfg_offset
+ bft2_offset
,
9093 sizeof(*h
->ioaccel2_bft2_regs
));
9094 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9095 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9097 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9098 if (hpsa_wait_for_mode_change_ack(h
)) {
9099 dev_err(&h
->pdev
->dev
,
9100 "performant mode problem - enabling ioaccel mode\n");
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9109 if (h
->ioaccel_cmd_pool
) {
9110 pci_free_consistent(h
->pdev
,
9111 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9112 h
->ioaccel_cmd_pool
,
9113 h
->ioaccel_cmd_pool_dhandle
);
9114 h
->ioaccel_cmd_pool
= NULL
;
9115 h
->ioaccel_cmd_pool_dhandle
= 0;
9117 kfree(h
->ioaccel1_blockFetchTable
);
9118 h
->ioaccel1_blockFetchTable
= NULL
;
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9125 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9126 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9127 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9129 /* Command structures must be aligned on a 128-byte boundary
9130 * because the 7 lower bits of the address are used by the
9133 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9134 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9135 h
->ioaccel_cmd_pool
=
9136 pci_alloc_consistent(h
->pdev
,
9137 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9138 &(h
->ioaccel_cmd_pool_dhandle
));
9140 h
->ioaccel1_blockFetchTable
=
9141 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9142 sizeof(u32
)), GFP_KERNEL
);
9144 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9145 (h
->ioaccel1_blockFetchTable
== NULL
))
9148 memset(h
->ioaccel_cmd_pool
, 0,
9149 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9153 hpsa_free_ioaccel1_cmd_and_bft(h
);
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9160 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9162 if (h
->ioaccel2_cmd_pool
) {
9163 pci_free_consistent(h
->pdev
,
9164 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9165 h
->ioaccel2_cmd_pool
,
9166 h
->ioaccel2_cmd_pool_dhandle
);
9167 h
->ioaccel2_cmd_pool
= NULL
;
9168 h
->ioaccel2_cmd_pool_dhandle
= 0;
9170 kfree(h
->ioaccel2_blockFetchTable
);
9171 h
->ioaccel2_blockFetchTable
= NULL
;
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9179 /* Allocate ioaccel2 mode command blocks and block fetch table */
9182 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9183 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9184 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9186 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9187 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9188 h
->ioaccel2_cmd_pool
=
9189 pci_alloc_consistent(h
->pdev
,
9190 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9191 &(h
->ioaccel2_cmd_pool_dhandle
));
9193 h
->ioaccel2_blockFetchTable
=
9194 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9195 sizeof(u32
)), GFP_KERNEL
);
9197 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9198 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9203 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9207 memset(h
->ioaccel2_cmd_pool
, 0,
9208 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9212 hpsa_free_ioaccel2_cmd_and_bft(h
);
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9219 kfree(h
->blockFetchTable
);
9220 h
->blockFetchTable
= NULL
;
9221 hpsa_free_reply_queues(h
);
9222 hpsa_free_ioaccel1_cmd_and_bft(h
);
9223 hpsa_free_ioaccel2_cmd_and_bft(h
);
9226 /* return -ENODEV on error, 0 on success (or no action)
9227 * allocates numerous items that must be freed later
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9232 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9233 CFGTBL_Trans_use_short_tags
;
9236 if (hpsa_simple_mode
)
9239 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9240 if (!(trans_support
& PERFORMANT_MODE
))
9243 /* Check for I/O accelerator mode support */
9244 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9245 transMethod
|= CFGTBL_Trans_io_accel1
|
9246 CFGTBL_Trans_enable_directed_msix
;
9247 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9250 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9251 transMethod
|= CFGTBL_Trans_io_accel2
|
9252 CFGTBL_Trans_enable_directed_msix
;
9253 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9258 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9259 hpsa_get_max_perf_mode_cmds(h
);
9260 /* Performant mode ring buffer and supporting data structures */
9261 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9263 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9264 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9265 h
->reply_queue_size
,
9266 &(h
->reply_queue
[i
].busaddr
));
9267 if (!h
->reply_queue
[i
].head
) {
9269 goto clean1
; /* rq, ioaccel */
9271 h
->reply_queue
[i
].size
= h
->max_commands
;
9272 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9273 h
->reply_queue
[i
].current_entry
= 0;
9276 /* Need a block fetch table for performant mode */
9277 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9278 sizeof(u32
)), GFP_KERNEL
);
9279 if (!h
->blockFetchTable
) {
9281 goto clean1
; /* rq, ioaccel */
9284 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9286 goto clean2
; /* bft, rq, ioaccel */
9289 clean2
: /* bft, rq, ioaccel */
9290 kfree(h
->blockFetchTable
);
9291 h
->blockFetchTable
= NULL
;
9292 clean1
: /* rq, ioaccel */
9293 hpsa_free_reply_queues(h
);
9294 hpsa_free_ioaccel1_cmd_and_bft(h
);
9295 hpsa_free_ioaccel2_cmd_and_bft(h
);
9299 static int is_accelerated_cmd(struct CommandList
*c
)
9301 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9304 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9306 struct CommandList
*c
= NULL
;
9307 int i
, accel_cmds_out
;
9310 do { /* wait for all outstanding ioaccel commands to drain out */
9312 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9313 c
= h
->cmd_pool
+ i
;
9314 refcount
= atomic_inc_return(&c
->refcount
);
9315 if (refcount
> 1) /* Command is allocated */
9316 accel_cmds_out
+= is_accelerated_cmd(c
);
9319 if (accel_cmds_out
<= 0)
9325 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9326 struct hpsa_sas_port
*hpsa_sas_port
)
9328 struct hpsa_sas_phy
*hpsa_sas_phy
;
9329 struct sas_phy
*phy
;
9331 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9335 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9336 hpsa_sas_port
->next_phy_index
);
9338 kfree(hpsa_sas_phy
);
9342 hpsa_sas_port
->next_phy_index
++;
9343 hpsa_sas_phy
->phy
= phy
;
9344 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9346 return hpsa_sas_phy
;
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9351 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9353 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9354 if (hpsa_sas_phy
->added_to_port
)
9355 list_del(&hpsa_sas_phy
->phy_list_entry
);
9356 sas_phy_delete(phy
);
9357 kfree(hpsa_sas_phy
);
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9363 struct hpsa_sas_port
*hpsa_sas_port
;
9364 struct sas_phy
*phy
;
9365 struct sas_identify
*identify
;
9367 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9368 phy
= hpsa_sas_phy
->phy
;
9370 identify
= &phy
->identify
;
9371 memset(identify
, 0, sizeof(*identify
));
9372 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9373 identify
->device_type
= SAS_END_DEVICE
;
9374 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9375 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9376 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9377 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9378 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9379 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9380 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9382 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9386 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9387 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9388 &hpsa_sas_port
->phy_list_head
);
9389 hpsa_sas_phy
->added_to_port
= true;
9395 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9396 struct sas_rphy
*rphy
)
9398 struct sas_identify
*identify
;
9400 identify
= &rphy
->identify
;
9401 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9402 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9403 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9405 return sas_rphy_add(rphy
);
9408 static struct hpsa_sas_port
9409 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9413 struct hpsa_sas_port
*hpsa_sas_port
;
9414 struct sas_port
*port
;
9416 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9420 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9421 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9423 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9425 goto free_hpsa_port
;
9427 rc
= sas_port_add(port
);
9431 hpsa_sas_port
->port
= port
;
9432 hpsa_sas_port
->sas_address
= sas_address
;
9433 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9434 &hpsa_sas_node
->port_list_head
);
9436 return hpsa_sas_port
;
9439 sas_port_free(port
);
9441 kfree(hpsa_sas_port
);
9446 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9448 struct hpsa_sas_phy
*hpsa_sas_phy
;
9449 struct hpsa_sas_phy
*next
;
9451 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9452 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9453 hpsa_free_sas_phy(hpsa_sas_phy
);
9455 sas_port_delete(hpsa_sas_port
->port
);
9456 list_del(&hpsa_sas_port
->port_list_entry
);
9457 kfree(hpsa_sas_port
);
9460 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9462 struct hpsa_sas_node
*hpsa_sas_node
;
9464 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9465 if (hpsa_sas_node
) {
9466 hpsa_sas_node
->parent_dev
= parent_dev
;
9467 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9470 return hpsa_sas_node
;
9473 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9475 struct hpsa_sas_port
*hpsa_sas_port
;
9476 struct hpsa_sas_port
*next
;
9481 list_for_each_entry_safe(hpsa_sas_port
, next
,
9482 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9483 hpsa_free_sas_port(hpsa_sas_port
);
9485 kfree(hpsa_sas_node
);
9488 static struct hpsa_scsi_dev_t
9489 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9490 struct sas_rphy
*rphy
)
9493 struct hpsa_scsi_dev_t
*device
;
9495 for (i
= 0; i
< h
->ndevices
; i
++) {
9497 if (!device
->sas_port
)
9499 if (device
->sas_port
->rphy
== rphy
)
9506 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9509 struct device
*parent_dev
;
9510 struct hpsa_sas_node
*hpsa_sas_node
;
9511 struct hpsa_sas_port
*hpsa_sas_port
;
9512 struct hpsa_sas_phy
*hpsa_sas_phy
;
9514 parent_dev
= &h
->scsi_host
->shost_gendev
;
9516 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9520 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9521 if (!hpsa_sas_port
) {
9526 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9527 if (!hpsa_sas_phy
) {
9532 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9536 h
->sas_host
= hpsa_sas_node
;
9541 hpsa_free_sas_phy(hpsa_sas_phy
);
9543 hpsa_free_sas_port(hpsa_sas_port
);
9545 hpsa_free_sas_node(hpsa_sas_node
);
9550 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9552 hpsa_free_sas_node(h
->sas_host
);
9555 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9556 struct hpsa_scsi_dev_t
*device
)
9559 struct hpsa_sas_port
*hpsa_sas_port
;
9560 struct sas_rphy
*rphy
;
9562 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9566 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9572 hpsa_sas_port
->rphy
= rphy
;
9573 device
->sas_port
= hpsa_sas_port
;
9575 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9582 hpsa_free_sas_port(hpsa_sas_port
);
9583 device
->sas_port
= NULL
;
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9590 if (device
->sas_port
) {
9591 hpsa_free_sas_port(device
->sas_port
);
9592 device
->sas_port
= NULL
;
9597 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9609 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9615 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9621 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9627 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9633 hpsa_sas_phy_release(struct sas_phy
*phy
)
9638 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9643 /* SMP = Serial Management Protocol */
9645 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9646 struct request
*req
)
9651 static struct sas_function_template hpsa_sas_transport_functions
= {
9652 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9653 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9654 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9655 .phy_reset
= hpsa_sas_phy_reset
,
9656 .phy_enable
= hpsa_sas_phy_enable
,
9657 .phy_setup
= hpsa_sas_phy_setup
,
9658 .phy_release
= hpsa_sas_phy_release
,
9659 .set_phy_speed
= hpsa_sas_phy_speed
,
9660 .smp_handler
= hpsa_sas_smp_handler
,
9664 * This is it. Register the PCI driver information for the cards we control
9665 * the OS will call our registered routines when it finds one of our cards.
9667 static int __init
hpsa_init(void)
9671 hpsa_sas_transport_template
=
9672 sas_attach_transport(&hpsa_sas_transport_functions
);
9673 if (!hpsa_sas_transport_template
)
9676 rc
= pci_register_driver(&hpsa_pci_driver
);
9679 sas_release_transport(hpsa_sas_transport_template
);
9684 static void __exit
hpsa_cleanup(void)
9686 pci_unregister_driver(&hpsa_pci_driver
);
9687 sas_release_transport(hpsa_sas_transport_template
);
9690 static void __attribute__((unused
)) verify_offsets(void)
9692 #define VERIFY_OFFSET(member, offset) \
9693 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9695 VERIFY_OFFSET(structure_size
, 0);
9696 VERIFY_OFFSET(volume_blk_size
, 4);
9697 VERIFY_OFFSET(volume_blk_cnt
, 8);
9698 VERIFY_OFFSET(phys_blk_shift
, 16);
9699 VERIFY_OFFSET(parity_rotation_shift
, 17);
9700 VERIFY_OFFSET(strip_size
, 18);
9701 VERIFY_OFFSET(disk_starting_blk
, 20);
9702 VERIFY_OFFSET(disk_blk_cnt
, 28);
9703 VERIFY_OFFSET(data_disks_per_row
, 36);
9704 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9705 VERIFY_OFFSET(row_cnt
, 40);
9706 VERIFY_OFFSET(layout_map_count
, 42);
9707 VERIFY_OFFSET(flags
, 44);
9708 VERIFY_OFFSET(dekindex
, 46);
9709 /* VERIFY_OFFSET(reserved, 48 */
9710 VERIFY_OFFSET(data
, 64);
9712 #undef VERIFY_OFFSET
9714 #define VERIFY_OFFSET(member, offset) \
9715 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9717 VERIFY_OFFSET(IU_type
, 0);
9718 VERIFY_OFFSET(direction
, 1);
9719 VERIFY_OFFSET(reply_queue
, 2);
9720 /* VERIFY_OFFSET(reserved1, 3); */
9721 VERIFY_OFFSET(scsi_nexus
, 4);
9722 VERIFY_OFFSET(Tag
, 8);
9723 VERIFY_OFFSET(cdb
, 16);
9724 VERIFY_OFFSET(cciss_lun
, 32);
9725 VERIFY_OFFSET(data_len
, 40);
9726 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9727 VERIFY_OFFSET(sg_count
, 45);
9728 /* VERIFY_OFFSET(reserved3 */
9729 VERIFY_OFFSET(err_ptr
, 48);
9730 VERIFY_OFFSET(err_len
, 56);
9731 /* VERIFY_OFFSET(reserved4 */
9732 VERIFY_OFFSET(sg
, 64);
9734 #undef VERIFY_OFFSET
9736 #define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9739 VERIFY_OFFSET(dev_handle
, 0x00);
9740 VERIFY_OFFSET(reserved1
, 0x02);
9741 VERIFY_OFFSET(function
, 0x03);
9742 VERIFY_OFFSET(reserved2
, 0x04);
9743 VERIFY_OFFSET(err_info
, 0x0C);
9744 VERIFY_OFFSET(reserved3
, 0x10);
9745 VERIFY_OFFSET(err_info_len
, 0x12);
9746 VERIFY_OFFSET(reserved4
, 0x13);
9747 VERIFY_OFFSET(sgl_offset
, 0x14);
9748 VERIFY_OFFSET(reserved5
, 0x15);
9749 VERIFY_OFFSET(transfer_len
, 0x1C);
9750 VERIFY_OFFSET(reserved6
, 0x20);
9751 VERIFY_OFFSET(io_flags
, 0x24);
9752 VERIFY_OFFSET(reserved7
, 0x26);
9753 VERIFY_OFFSET(LUN
, 0x34);
9754 VERIFY_OFFSET(control
, 0x3C);
9755 VERIFY_OFFSET(CDB
, 0x40);
9756 VERIFY_OFFSET(reserved8
, 0x50);
9757 VERIFY_OFFSET(host_context_flags
, 0x60);
9758 VERIFY_OFFSET(timeout_sec
, 0x62);
9759 VERIFY_OFFSET(ReplyQueue
, 0x64);
9760 VERIFY_OFFSET(reserved9
, 0x65);
9761 VERIFY_OFFSET(tag
, 0x68);
9762 VERIFY_OFFSET(host_addr
, 0x70);
9763 VERIFY_OFFSET(CISS_LUN
, 0x78);
9764 VERIFY_OFFSET(SG
, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9768 module_init(hpsa_init
);
9769 module_exit(hpsa_cleanup
);