HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / btrfs / reada.c
blobf2af1f3d4aa832b28897d76f641732acfe8d6746
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
32 #undef DEBUG
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
60 struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
66 struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
69 int err;
70 struct list_head extctl;
71 int refcnt;
72 spinlock_t lock;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
74 int nzones;
75 struct btrfs_device *scheduled_for;
78 struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
88 int ndevs;
89 struct kref refcnt;
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, int level, u64 generation);
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 u64 start, int err)
111 int level = 0;
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
122 if (eb)
123 level = btrfs_header_level(eb);
125 /* find extent */
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
128 if (re)
129 re->refcnt++;
130 spin_unlock(&fs_info->reada_lock);
132 if (!re)
133 return -1;
135 spin_lock(&re->lock);
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
145 if (err == 0) {
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
154 } else {
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
161 nritems = 0;
162 generation = 0;
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
167 u64 n_gen;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
171 btrfs_node_key_to_cpu(eb, &key, i);
172 if (i + 1 < nritems)
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 else
175 next_key = re->top;
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
189 #ifdef DEBUG
190 if (rec->generation != generation) {
191 btrfs_debug(root->fs_info,
192 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
196 #endif
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 reada_add_block(rc, bytenr, &next_key,
201 level - 1, n_gen);
205 * free extctl records
207 while (!list_empty(&list)) {
208 struct reada_control *rc;
209 struct reada_extctl *rec;
211 rec = list_first_entry(&list, struct reada_extctl, list);
212 list_del(&rec->list);
213 rc = rec->rc;
214 kfree(rec);
216 kref_get(&rc->refcnt);
217 if (atomic_dec_and_test(&rc->elems)) {
218 kref_put(&rc->refcnt, reada_control_release);
219 wake_up(&rc->wait);
221 kref_put(&rc->refcnt, reada_control_release);
223 reada_extent_put(fs_info, re); /* one ref for each entry */
225 reada_extent_put(fs_info, re); /* our ref */
226 if (for_dev)
227 atomic_dec(&for_dev->reada_in_flight);
229 return 0;
233 * start is passed separately in case eb in NULL, which may be the case with
234 * failed I/O
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 u64 start, int err)
239 int ret;
241 ret = __readahead_hook(root, eb, start, err);
243 reada_start_machine(root->fs_info);
245 return ret;
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 struct btrfs_device *dev, u64 logical,
250 struct btrfs_bio *bbio)
252 int ret;
253 struct reada_zone *zone;
254 struct btrfs_block_group_cache *cache = NULL;
255 u64 start;
256 u64 end;
257 int i;
259 zone = NULL;
260 spin_lock(&fs_info->reada_lock);
261 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 logical >> PAGE_CACHE_SHIFT, 1);
263 if (ret == 1)
264 kref_get(&zone->refcnt);
265 spin_unlock(&fs_info->reada_lock);
267 if (ret == 1) {
268 if (logical >= zone->start && logical < zone->end)
269 return zone;
270 spin_lock(&fs_info->reada_lock);
271 kref_put(&zone->refcnt, reada_zone_release);
272 spin_unlock(&fs_info->reada_lock);
275 cache = btrfs_lookup_block_group(fs_info, logical);
276 if (!cache)
277 return NULL;
279 start = cache->key.objectid;
280 end = start + cache->key.offset - 1;
281 btrfs_put_block_group(cache);
283 zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 if (!zone)
285 return NULL;
287 zone->start = start;
288 zone->end = end;
289 INIT_LIST_HEAD(&zone->list);
290 spin_lock_init(&zone->lock);
291 zone->locked = 0;
292 kref_init(&zone->refcnt);
293 zone->elems = 0;
294 zone->device = dev; /* our device always sits at index 0 */
295 for (i = 0; i < bbio->num_stripes; ++i) {
296 /* bounds have already been checked */
297 zone->devs[i] = bbio->stripes[i].dev;
299 zone->ndevs = bbio->num_stripes;
301 spin_lock(&fs_info->reada_lock);
302 ret = radix_tree_insert(&dev->reada_zones,
303 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304 zone);
306 if (ret == -EEXIST) {
307 kfree(zone);
308 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 logical >> PAGE_CACHE_SHIFT, 1);
310 if (ret == 1)
311 kref_get(&zone->refcnt);
313 spin_unlock(&fs_info->reada_lock);
315 return zone;
318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 u64 logical,
320 struct btrfs_key *top, int level)
322 int ret;
323 struct reada_extent *re = NULL;
324 struct reada_extent *re_exist = NULL;
325 struct btrfs_fs_info *fs_info = root->fs_info;
326 struct btrfs_bio *bbio = NULL;
327 struct btrfs_device *dev;
328 struct btrfs_device *prev_dev;
329 u32 blocksize;
330 u64 length;
331 int real_stripes;
332 int nzones = 0;
333 int i;
334 unsigned long index = logical >> PAGE_CACHE_SHIFT;
335 int dev_replace_is_ongoing;
337 spin_lock(&fs_info->reada_lock);
338 re = radix_tree_lookup(&fs_info->reada_tree, index);
339 if (re)
340 re->refcnt++;
341 spin_unlock(&fs_info->reada_lock);
343 if (re)
344 return re;
346 re = kzalloc(sizeof(*re), GFP_NOFS);
347 if (!re)
348 return NULL;
350 blocksize = root->nodesize;
351 re->logical = logical;
352 re->top = *top;
353 INIT_LIST_HEAD(&re->extctl);
354 spin_lock_init(&re->lock);
355 re->refcnt = 1;
358 * map block
360 length = blocksize;
361 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
362 &bbio, 0);
363 if (ret || !bbio || length < blocksize)
364 goto error;
366 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
367 btrfs_err(root->fs_info,
368 "readahead: more than %d copies not supported",
369 BTRFS_MAX_MIRRORS);
370 goto error;
373 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
374 for (nzones = 0; nzones < real_stripes; ++nzones) {
375 struct reada_zone *zone;
377 dev = bbio->stripes[nzones].dev;
378 zone = reada_find_zone(fs_info, dev, logical, bbio);
379 if (!zone)
380 break;
382 re->zones[nzones] = zone;
383 spin_lock(&zone->lock);
384 if (!zone->elems)
385 kref_get(&zone->refcnt);
386 ++zone->elems;
387 spin_unlock(&zone->lock);
388 spin_lock(&fs_info->reada_lock);
389 kref_put(&zone->refcnt, reada_zone_release);
390 spin_unlock(&fs_info->reada_lock);
392 re->nzones = nzones;
393 if (nzones == 0) {
394 /* not a single zone found, error and out */
395 goto error;
398 /* insert extent in reada_tree + all per-device trees, all or nothing */
399 btrfs_dev_replace_lock(&fs_info->dev_replace);
400 spin_lock(&fs_info->reada_lock);
401 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402 if (ret == -EEXIST) {
403 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404 BUG_ON(!re_exist);
405 re_exist->refcnt++;
406 spin_unlock(&fs_info->reada_lock);
407 btrfs_dev_replace_unlock(&fs_info->dev_replace);
408 goto error;
410 if (ret) {
411 spin_unlock(&fs_info->reada_lock);
412 btrfs_dev_replace_unlock(&fs_info->dev_replace);
413 goto error;
415 prev_dev = NULL;
416 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417 &fs_info->dev_replace);
418 for (i = 0; i < nzones; ++i) {
419 dev = bbio->stripes[i].dev;
420 if (dev == prev_dev) {
422 * in case of DUP, just add the first zone. As both
423 * are on the same device, there's nothing to gain
424 * from adding both.
425 * Also, it wouldn't work, as the tree is per device
426 * and adding would fail with EEXIST
428 continue;
430 if (!dev->bdev) {
432 * cannot read ahead on missing device, but for RAID5/6,
433 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
434 * device for such case.
436 if (nzones > 1)
437 continue;
439 if (dev_replace_is_ongoing &&
440 dev == fs_info->dev_replace.tgtdev) {
442 * as this device is selected for reading only as
443 * a last resort, skip it for read ahead.
445 continue;
447 prev_dev = dev;
448 ret = radix_tree_insert(&dev->reada_extents, index, re);
449 if (ret) {
450 while (--i >= 0) {
451 dev = bbio->stripes[i].dev;
452 BUG_ON(dev == NULL);
453 /* ignore whether the entry was inserted */
454 radix_tree_delete(&dev->reada_extents, index);
456 BUG_ON(fs_info == NULL);
457 radix_tree_delete(&fs_info->reada_tree, index);
458 spin_unlock(&fs_info->reada_lock);
459 btrfs_dev_replace_unlock(&fs_info->dev_replace);
460 goto error;
463 spin_unlock(&fs_info->reada_lock);
464 btrfs_dev_replace_unlock(&fs_info->dev_replace);
466 btrfs_put_bbio(bbio);
467 return re;
469 error:
470 while (nzones) {
471 struct reada_zone *zone;
473 --nzones;
474 zone = re->zones[nzones];
475 kref_get(&zone->refcnt);
476 spin_lock(&zone->lock);
477 --zone->elems;
478 if (zone->elems == 0) {
480 * no fs_info->reada_lock needed, as this can't be
481 * the last ref
483 kref_put(&zone->refcnt, reada_zone_release);
485 spin_unlock(&zone->lock);
487 spin_lock(&fs_info->reada_lock);
488 kref_put(&zone->refcnt, reada_zone_release);
489 spin_unlock(&fs_info->reada_lock);
491 btrfs_put_bbio(bbio);
492 kfree(re);
493 return re_exist;
496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 struct reada_extent *re)
499 int i;
500 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
502 spin_lock(&fs_info->reada_lock);
503 if (--re->refcnt) {
504 spin_unlock(&fs_info->reada_lock);
505 return;
508 radix_tree_delete(&fs_info->reada_tree, index);
509 for (i = 0; i < re->nzones; ++i) {
510 struct reada_zone *zone = re->zones[i];
512 radix_tree_delete(&zone->device->reada_extents, index);
515 spin_unlock(&fs_info->reada_lock);
517 for (i = 0; i < re->nzones; ++i) {
518 struct reada_zone *zone = re->zones[i];
520 kref_get(&zone->refcnt);
521 spin_lock(&zone->lock);
522 --zone->elems;
523 if (zone->elems == 0) {
524 /* no fs_info->reada_lock needed, as this can't be
525 * the last ref */
526 kref_put(&zone->refcnt, reada_zone_release);
528 spin_unlock(&zone->lock);
530 spin_lock(&fs_info->reada_lock);
531 kref_put(&zone->refcnt, reada_zone_release);
532 spin_unlock(&fs_info->reada_lock);
534 if (re->scheduled_for)
535 atomic_dec(&re->scheduled_for->reada_in_flight);
537 kfree(re);
540 static void reada_zone_release(struct kref *kref)
542 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
544 radix_tree_delete(&zone->device->reada_zones,
545 zone->end >> PAGE_CACHE_SHIFT);
547 kfree(zone);
550 static void reada_control_release(struct kref *kref)
552 struct reada_control *rc = container_of(kref, struct reada_control,
553 refcnt);
555 kfree(rc);
558 static int reada_add_block(struct reada_control *rc, u64 logical,
559 struct btrfs_key *top, int level, u64 generation)
561 struct btrfs_root *root = rc->root;
562 struct reada_extent *re;
563 struct reada_extctl *rec;
565 re = reada_find_extent(root, logical, top, level); /* takes one ref */
566 if (!re)
567 return -1;
569 rec = kzalloc(sizeof(*rec), GFP_NOFS);
570 if (!rec) {
571 reada_extent_put(root->fs_info, re);
572 return -ENOMEM;
575 rec->rc = rc;
576 rec->generation = generation;
577 atomic_inc(&rc->elems);
579 spin_lock(&re->lock);
580 list_add_tail(&rec->list, &re->extctl);
581 spin_unlock(&re->lock);
583 /* leave the ref on the extent */
585 return 0;
589 * called with fs_info->reada_lock held
591 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
593 int i;
594 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
596 for (i = 0; i < zone->ndevs; ++i) {
597 struct reada_zone *peer;
598 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
599 if (peer && peer->device != zone->device)
600 peer->locked = lock;
605 * called with fs_info->reada_lock held
607 static int reada_pick_zone(struct btrfs_device *dev)
609 struct reada_zone *top_zone = NULL;
610 struct reada_zone *top_locked_zone = NULL;
611 u64 top_elems = 0;
612 u64 top_locked_elems = 0;
613 unsigned long index = 0;
614 int ret;
616 if (dev->reada_curr_zone) {
617 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
618 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
619 dev->reada_curr_zone = NULL;
621 /* pick the zone with the most elements */
622 while (1) {
623 struct reada_zone *zone;
625 ret = radix_tree_gang_lookup(&dev->reada_zones,
626 (void **)&zone, index, 1);
627 if (ret == 0)
628 break;
629 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
630 if (zone->locked) {
631 if (zone->elems > top_locked_elems) {
632 top_locked_elems = zone->elems;
633 top_locked_zone = zone;
635 } else {
636 if (zone->elems > top_elems) {
637 top_elems = zone->elems;
638 top_zone = zone;
642 if (top_zone)
643 dev->reada_curr_zone = top_zone;
644 else if (top_locked_zone)
645 dev->reada_curr_zone = top_locked_zone;
646 else
647 return 0;
649 dev->reada_next = dev->reada_curr_zone->start;
650 kref_get(&dev->reada_curr_zone->refcnt);
651 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
653 return 1;
656 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
657 struct btrfs_device *dev)
659 struct reada_extent *re = NULL;
660 int mirror_num = 0;
661 struct extent_buffer *eb = NULL;
662 u64 logical;
663 int ret;
664 int i;
665 int need_kick = 0;
667 spin_lock(&fs_info->reada_lock);
668 if (dev->reada_curr_zone == NULL) {
669 ret = reada_pick_zone(dev);
670 if (!ret) {
671 spin_unlock(&fs_info->reada_lock);
672 return 0;
676 * FIXME currently we issue the reads one extent at a time. If we have
677 * a contiguous block of extents, we could also coagulate them or use
678 * plugging to speed things up
680 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
681 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
682 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
683 ret = reada_pick_zone(dev);
684 if (!ret) {
685 spin_unlock(&fs_info->reada_lock);
686 return 0;
688 re = NULL;
689 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
690 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
692 if (ret == 0) {
693 spin_unlock(&fs_info->reada_lock);
694 return 0;
696 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
697 re->refcnt++;
699 spin_unlock(&fs_info->reada_lock);
702 * find mirror num
704 for (i = 0; i < re->nzones; ++i) {
705 if (re->zones[i]->device == dev) {
706 mirror_num = i + 1;
707 break;
710 logical = re->logical;
712 spin_lock(&re->lock);
713 if (re->scheduled_for == NULL) {
714 re->scheduled_for = dev;
715 need_kick = 1;
717 spin_unlock(&re->lock);
719 reada_extent_put(fs_info, re);
721 if (!need_kick)
722 return 0;
724 atomic_inc(&dev->reada_in_flight);
725 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
726 mirror_num, &eb);
727 if (ret)
728 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
729 else if (eb)
730 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
732 if (eb)
733 free_extent_buffer(eb);
735 return 1;
739 static void reada_start_machine_worker(struct btrfs_work *work)
741 struct reada_machine_work *rmw;
742 struct btrfs_fs_info *fs_info;
743 int old_ioprio;
745 rmw = container_of(work, struct reada_machine_work, work);
746 fs_info = rmw->fs_info;
748 kfree(rmw);
750 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
751 task_nice_ioprio(current));
752 set_task_ioprio(current, BTRFS_IOPRIO_READA);
753 __reada_start_machine(fs_info);
754 set_task_ioprio(current, old_ioprio);
757 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
761 u64 enqueued;
762 u64 total = 0;
763 int i;
765 again:
766 do {
767 enqueued = 0;
768 mutex_lock(&fs_devices->device_list_mutex);
769 list_for_each_entry(device, &fs_devices->devices, dev_list) {
770 if (atomic_read(&device->reada_in_flight) <
771 MAX_IN_FLIGHT)
772 enqueued += reada_start_machine_dev(fs_info,
773 device);
775 mutex_unlock(&fs_devices->device_list_mutex);
776 total += enqueued;
777 } while (enqueued && total < 10000);
778 if (fs_devices->seed) {
779 fs_devices = fs_devices->seed;
780 goto again;
783 if (enqueued == 0)
784 return;
787 * If everything is already in the cache, this is effectively single
788 * threaded. To a) not hold the caller for too long and b) to utilize
789 * more cores, we broke the loop above after 10000 iterations and now
790 * enqueue to workers to finish it. This will distribute the load to
791 * the cores.
793 for (i = 0; i < 2; ++i)
794 reada_start_machine(fs_info);
797 static void reada_start_machine(struct btrfs_fs_info *fs_info)
799 struct reada_machine_work *rmw;
801 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
802 if (!rmw) {
803 /* FIXME we cannot handle this properly right now */
804 BUG();
806 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
807 reada_start_machine_worker, NULL, NULL);
808 rmw->fs_info = fs_info;
810 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
813 #ifdef DEBUG
814 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
816 struct btrfs_device *device;
817 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
818 unsigned long index;
819 int ret;
820 int i;
821 int j;
822 int cnt;
824 spin_lock(&fs_info->reada_lock);
825 list_for_each_entry(device, &fs_devices->devices, dev_list) {
826 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
827 atomic_read(&device->reada_in_flight));
828 index = 0;
829 while (1) {
830 struct reada_zone *zone;
831 ret = radix_tree_gang_lookup(&device->reada_zones,
832 (void **)&zone, index, 1);
833 if (ret == 0)
834 break;
835 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
836 "%d devs", zone->start, zone->end, zone->elems,
837 zone->locked);
838 for (j = 0; j < zone->ndevs; ++j) {
839 printk(KERN_CONT " %lld",
840 zone->devs[j]->devid);
842 if (device->reada_curr_zone == zone)
843 printk(KERN_CONT " curr off %llu",
844 device->reada_next - zone->start);
845 printk(KERN_CONT "\n");
846 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
848 cnt = 0;
849 index = 0;
850 while (all) {
851 struct reada_extent *re = NULL;
853 ret = radix_tree_gang_lookup(&device->reada_extents,
854 (void **)&re, index, 1);
855 if (ret == 0)
856 break;
857 printk(KERN_DEBUG
858 " re: logical %llu size %u empty %d for %lld",
859 re->logical, fs_info->tree_root->nodesize,
860 list_empty(&re->extctl), re->scheduled_for ?
861 re->scheduled_for->devid : -1);
863 for (i = 0; i < re->nzones; ++i) {
864 printk(KERN_CONT " zone %llu-%llu devs",
865 re->zones[i]->start,
866 re->zones[i]->end);
867 for (j = 0; j < re->zones[i]->ndevs; ++j) {
868 printk(KERN_CONT " %lld",
869 re->zones[i]->devs[j]->devid);
872 printk(KERN_CONT "\n");
873 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
874 if (++cnt > 15)
875 break;
879 index = 0;
880 cnt = 0;
881 while (all) {
882 struct reada_extent *re = NULL;
884 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
885 index, 1);
886 if (ret == 0)
887 break;
888 if (!re->scheduled_for) {
889 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
890 continue;
892 printk(KERN_DEBUG
893 "re: logical %llu size %u list empty %d for %lld",
894 re->logical, fs_info->tree_root->nodesize,
895 list_empty(&re->extctl),
896 re->scheduled_for ? re->scheduled_for->devid : -1);
897 for (i = 0; i < re->nzones; ++i) {
898 printk(KERN_CONT " zone %llu-%llu devs",
899 re->zones[i]->start,
900 re->zones[i]->end);
901 for (i = 0; i < re->nzones; ++i) {
902 printk(KERN_CONT " zone %llu-%llu devs",
903 re->zones[i]->start,
904 re->zones[i]->end);
905 for (j = 0; j < re->zones[i]->ndevs; ++j) {
906 printk(KERN_CONT " %lld",
907 re->zones[i]->devs[j]->devid);
911 printk(KERN_CONT "\n");
912 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
914 spin_unlock(&fs_info->reada_lock);
916 #endif
919 * interface
921 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
922 struct btrfs_key *key_start, struct btrfs_key *key_end)
924 struct reada_control *rc;
925 u64 start;
926 u64 generation;
927 int level;
928 int ret;
929 struct extent_buffer *node;
930 static struct btrfs_key max_key = {
931 .objectid = (u64)-1,
932 .type = (u8)-1,
933 .offset = (u64)-1
936 rc = kzalloc(sizeof(*rc), GFP_NOFS);
937 if (!rc)
938 return ERR_PTR(-ENOMEM);
940 rc->root = root;
941 rc->key_start = *key_start;
942 rc->key_end = *key_end;
943 atomic_set(&rc->elems, 0);
944 init_waitqueue_head(&rc->wait);
945 kref_init(&rc->refcnt);
946 kref_get(&rc->refcnt); /* one ref for having elements */
948 node = btrfs_root_node(root);
949 start = node->start;
950 level = btrfs_header_level(node);
951 generation = btrfs_header_generation(node);
952 free_extent_buffer(node);
954 ret = reada_add_block(rc, start, &max_key, level, generation);
955 if (ret) {
956 kfree(rc);
957 return ERR_PTR(ret);
960 reada_start_machine(root->fs_info);
962 return rc;
965 #ifdef DEBUG
966 int btrfs_reada_wait(void *handle)
968 struct reada_control *rc = handle;
970 while (atomic_read(&rc->elems)) {
971 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
972 5 * HZ);
973 dump_devs(rc->root->fs_info,
974 atomic_read(&rc->elems) < 10 ? 1 : 0);
977 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
979 kref_put(&rc->refcnt, reada_control_release);
981 return 0;
983 #else
984 int btrfs_reada_wait(void *handle)
986 struct reada_control *rc = handle;
988 while (atomic_read(&rc->elems)) {
989 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
992 kref_put(&rc->refcnt, reada_control_release);
994 return 0;
996 #endif
998 void btrfs_reada_detach(void *handle)
1000 struct reada_control *rc = handle;
1002 kref_put(&rc->refcnt, reada_control_release);