2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head
*l
)
79 list_for_each_entry_safe(page
, page2
, l
, lru
) {
81 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
82 page_is_file_cache(page
));
83 putback_lru_page(page
);
88 * Restore a potential migration pte to a working pte entry
90 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
91 unsigned long addr
, void *old
)
93 struct mm_struct
*mm
= vma
->vm_mm
;
101 if (unlikely(PageHuge(new))) {
102 ptep
= huge_pte_offset(mm
, addr
);
105 ptl
= &mm
->page_table_lock
;
107 pgd
= pgd_offset(mm
, addr
);
108 if (!pgd_present(*pgd
))
111 pud
= pud_offset(pgd
, addr
);
112 if (!pud_present(*pud
))
115 pmd
= pmd_offset(pud
, addr
);
116 if (pmd_trans_huge(*pmd
))
118 if (!pmd_present(*pmd
))
121 ptep
= pte_offset_map(pmd
, addr
);
124 * Peek to check is_swap_pte() before taking ptlock? No, we
125 * can race mremap's move_ptes(), which skips anon_vma lock.
128 ptl
= pte_lockptr(mm
, pmd
);
133 if (!is_swap_pte(pte
))
136 entry
= pte_to_swp_entry(pte
);
138 if (!is_migration_entry(entry
) ||
139 migration_entry_to_page(entry
) != old
)
143 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
144 if (is_write_migration_entry(entry
))
145 pte
= pte_mkwrite(pte
);
146 #ifdef CONFIG_HUGETLB_PAGE
148 pte
= pte_mkhuge(pte
);
150 flush_cache_page(vma
, addr
, pte_pfn(pte
));
151 set_pte_at(mm
, addr
, ptep
, pte
);
155 hugepage_add_anon_rmap(new, vma
, addr
);
158 } else if (PageAnon(new))
159 page_add_anon_rmap(new, vma
, addr
);
161 page_add_file_rmap(new);
163 /* No need to invalidate - it was non-present before */
164 update_mmu_cache(vma
, addr
, ptep
);
166 pte_unmap_unlock(ptep
, ptl
);
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
175 static void remove_migration_ptes(struct page
*old
, struct page
*new)
177 rmap_walk(new, remove_migration_pte
, old
);
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
185 * This function is called from do_swap_page().
187 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
188 unsigned long address
)
195 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
197 if (!is_swap_pte(pte
))
200 entry
= pte_to_swp_entry(pte
);
201 if (!is_migration_entry(entry
))
204 page
= migration_entry_to_page(entry
);
207 * Once radix-tree replacement of page migration started, page_count
208 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 * against a page without get_page().
210 * So, we use get_page_unless_zero(), here. Even failed, page fault
213 if (!get_page_unless_zero(page
))
215 pte_unmap_unlock(ptep
, ptl
);
216 wait_on_page_locked(page
);
220 pte_unmap_unlock(ptep
, ptl
);
224 /* Returns true if all buffers are successfully locked */
225 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
226 enum migrate_mode mode
)
228 struct buffer_head
*bh
= head
;
230 /* Simple case, sync compaction */
231 if (mode
!= MIGRATE_ASYNC
) {
235 bh
= bh
->b_this_page
;
237 } while (bh
!= head
);
242 /* async case, we cannot block on lock_buffer so use trylock_buffer */
245 if (!trylock_buffer(bh
)) {
247 * We failed to lock the buffer and cannot stall in
248 * async migration. Release the taken locks
250 struct buffer_head
*failed_bh
= bh
;
253 while (bh
!= failed_bh
) {
256 bh
= bh
->b_this_page
;
261 bh
= bh
->b_this_page
;
262 } while (bh
!= head
);
266 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
267 enum migrate_mode mode
)
271 #endif /* CONFIG_BLOCK */
274 * Replace the page in the mapping.
276 * The number of remaining references must be:
277 * 1 for anonymous pages without a mapping
278 * 2 for pages with a mapping
279 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
281 static int migrate_page_move_mapping(struct address_space
*mapping
,
282 struct page
*newpage
, struct page
*page
,
283 struct buffer_head
*head
, enum migrate_mode mode
)
289 /* Anonymous page without mapping */
290 if (page_count(page
) != 1)
295 spin_lock_irq(&mapping
->tree_lock
);
297 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
300 expected_count
= 2 + page_has_private(page
);
301 if (page_count(page
) != expected_count
||
302 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
303 spin_unlock_irq(&mapping
->tree_lock
);
307 if (!page_freeze_refs(page
, expected_count
)) {
308 spin_unlock_irq(&mapping
->tree_lock
);
313 * In the async migration case of moving a page with buffers, lock the
314 * buffers using trylock before the mapping is moved. If the mapping
315 * was moved, we later failed to lock the buffers and could not move
316 * the mapping back due to an elevated page count, we would have to
317 * block waiting on other references to be dropped.
319 if (mode
== MIGRATE_ASYNC
&& head
&&
320 !buffer_migrate_lock_buffers(head
, mode
)) {
321 page_unfreeze_refs(page
, expected_count
);
322 spin_unlock_irq(&mapping
->tree_lock
);
327 * Now we know that no one else is looking at the page.
329 get_page(newpage
); /* add cache reference */
330 if (PageSwapCache(page
)) {
331 SetPageSwapCache(newpage
);
332 set_page_private(newpage
, page_private(page
));
335 radix_tree_replace_slot(pslot
, newpage
);
337 page_unfreeze_refs(page
, expected_count
);
339 * Drop cache reference from old page.
340 * We know this isn't the last reference.
345 * If moved to a different zone then also account
346 * the page for that zone. Other VM counters will be
347 * taken care of when we establish references to the
348 * new page and drop references to the old page.
350 * Note that anonymous pages are accounted for
351 * via NR_FILE_PAGES and NR_ANON_PAGES if they
352 * are mapped to swap space.
354 __dec_zone_page_state(page
, NR_FILE_PAGES
);
355 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
356 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
357 __dec_zone_page_state(page
, NR_SHMEM
);
358 __inc_zone_page_state(newpage
, NR_SHMEM
);
360 spin_unlock_irq(&mapping
->tree_lock
);
366 * The expected number of remaining references is the same as that
367 * of migrate_page_move_mapping().
369 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
370 struct page
*newpage
, struct page
*page
)
376 if (page_count(page
) != 1)
381 spin_lock_irq(&mapping
->tree_lock
);
383 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
386 expected_count
= 2 + page_has_private(page
);
387 if (page_count(page
) != expected_count
||
388 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
389 spin_unlock_irq(&mapping
->tree_lock
);
393 if (!page_freeze_refs(page
, expected_count
)) {
394 spin_unlock_irq(&mapping
->tree_lock
);
400 radix_tree_replace_slot(pslot
, newpage
);
402 page_unfreeze_refs(page
, expected_count
);
406 spin_unlock_irq(&mapping
->tree_lock
);
411 * Copy the page to its new location
413 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
416 copy_huge_page(newpage
, page
);
418 copy_highpage(newpage
, page
);
421 SetPageError(newpage
);
422 if (PageReferenced(page
))
423 SetPageReferenced(newpage
);
424 if (PageUptodate(page
))
425 SetPageUptodate(newpage
);
426 if (TestClearPageActive(page
)) {
427 VM_BUG_ON(PageUnevictable(page
));
428 SetPageActive(newpage
);
429 } else if (TestClearPageUnevictable(page
))
430 SetPageUnevictable(newpage
);
431 if (PageChecked(page
))
432 SetPageChecked(newpage
);
433 if (PageMappedToDisk(page
))
434 SetPageMappedToDisk(newpage
);
436 if (PageDirty(page
)) {
437 clear_page_dirty_for_io(page
);
439 * Want to mark the page and the radix tree as dirty, and
440 * redo the accounting that clear_page_dirty_for_io undid,
441 * but we can't use set_page_dirty because that function
442 * is actually a signal that all of the page has become dirty.
443 * Whereas only part of our page may be dirty.
445 __set_page_dirty_nobuffers(newpage
);
448 mlock_migrate_page(newpage
, page
);
449 ksm_migrate_page(newpage
, page
);
451 ClearPageSwapCache(page
);
452 ClearPagePrivate(page
);
453 set_page_private(page
, 0);
454 page
->mapping
= NULL
;
457 * If any waiters have accumulated on the new page then
460 if (PageWriteback(newpage
))
461 end_page_writeback(newpage
);
464 /************************************************************
465 * Migration functions
466 ***********************************************************/
468 /* Always fail migration. Used for mappings that are not movable */
469 int fail_migrate_page(struct address_space
*mapping
,
470 struct page
*newpage
, struct page
*page
)
474 EXPORT_SYMBOL(fail_migrate_page
);
477 * Common logic to directly migrate a single page suitable for
478 * pages that do not use PagePrivate/PagePrivate2.
480 * Pages are locked upon entry and exit.
482 int migrate_page(struct address_space
*mapping
,
483 struct page
*newpage
, struct page
*page
,
484 enum migrate_mode mode
)
488 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
490 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
495 migrate_page_copy(newpage
, page
);
498 EXPORT_SYMBOL(migrate_page
);
502 * Migration function for pages with buffers. This function can only be used
503 * if the underlying filesystem guarantees that no other references to "page"
506 int buffer_migrate_page(struct address_space
*mapping
,
507 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
509 struct buffer_head
*bh
, *head
;
512 if (!page_has_buffers(page
))
513 return migrate_page(mapping
, newpage
, page
, mode
);
515 head
= page_buffers(page
);
517 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
523 * In the async case, migrate_page_move_mapping locked the buffers
524 * with an IRQ-safe spinlock held. In the sync case, the buffers
525 * need to be locked now
527 if (mode
!= MIGRATE_ASYNC
)
528 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
530 ClearPagePrivate(page
);
531 set_page_private(newpage
, page_private(page
));
532 set_page_private(page
, 0);
538 set_bh_page(bh
, newpage
, bh_offset(bh
));
539 bh
= bh
->b_this_page
;
541 } while (bh
!= head
);
543 SetPagePrivate(newpage
);
545 migrate_page_copy(newpage
, page
);
551 bh
= bh
->b_this_page
;
553 } while (bh
!= head
);
557 EXPORT_SYMBOL(buffer_migrate_page
);
561 * Writeback a page to clean the dirty state
563 static int writeout(struct address_space
*mapping
, struct page
*page
)
565 struct writeback_control wbc
= {
566 .sync_mode
= WB_SYNC_NONE
,
569 .range_end
= LLONG_MAX
,
574 if (!mapping
->a_ops
->writepage
)
575 /* No write method for the address space */
578 if (!clear_page_dirty_for_io(page
))
579 /* Someone else already triggered a write */
583 * A dirty page may imply that the underlying filesystem has
584 * the page on some queue. So the page must be clean for
585 * migration. Writeout may mean we loose the lock and the
586 * page state is no longer what we checked for earlier.
587 * At this point we know that the migration attempt cannot
590 remove_migration_ptes(page
, page
);
592 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
594 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
595 /* unlocked. Relock */
598 return (rc
< 0) ? -EIO
: -EAGAIN
;
602 * Default handling if a filesystem does not provide a migration function.
604 static int fallback_migrate_page(struct address_space
*mapping
,
605 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
607 if (PageDirty(page
)) {
608 /* Only writeback pages in full synchronous migration */
609 if (mode
!= MIGRATE_SYNC
)
611 return writeout(mapping
, page
);
615 * Buffers may be managed in a filesystem specific way.
616 * We must have no buffers or drop them.
618 if (page_has_private(page
) &&
619 !try_to_release_page(page
, GFP_KERNEL
))
622 return migrate_page(mapping
, newpage
, page
, mode
);
626 * Move a page to a newly allocated page
627 * The page is locked and all ptes have been successfully removed.
629 * The new page will have replaced the old page if this function
636 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
637 int remap_swapcache
, enum migrate_mode mode
)
639 struct address_space
*mapping
;
643 * Block others from accessing the page when we get around to
644 * establishing additional references. We are the only one
645 * holding a reference to the new page at this point.
647 if (!trylock_page(newpage
))
650 /* Prepare mapping for the new page.*/
651 newpage
->index
= page
->index
;
652 newpage
->mapping
= page
->mapping
;
653 if (PageSwapBacked(page
))
654 SetPageSwapBacked(newpage
);
656 mapping
= page_mapping(page
);
658 rc
= migrate_page(mapping
, newpage
, page
, mode
);
659 else if (mapping
->a_ops
->migratepage
)
661 * Most pages have a mapping and most filesystems provide a
662 * migratepage callback. Anonymous pages are part of swap
663 * space which also has its own migratepage callback. This
664 * is the most common path for page migration.
666 rc
= mapping
->a_ops
->migratepage(mapping
,
667 newpage
, page
, mode
);
669 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
672 newpage
->mapping
= NULL
;
675 remove_migration_ptes(page
, newpage
);
678 unlock_page(newpage
);
683 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
684 int force
, bool offlining
, enum migrate_mode mode
)
687 int remap_swapcache
= 1;
689 struct mem_cgroup
*mem
;
690 struct anon_vma
*anon_vma
= NULL
;
692 if (!trylock_page(page
)) {
693 if (!force
|| mode
== MIGRATE_ASYNC
)
697 * It's not safe for direct compaction to call lock_page.
698 * For example, during page readahead pages are added locked
699 * to the LRU. Later, when the IO completes the pages are
700 * marked uptodate and unlocked. However, the queueing
701 * could be merging multiple pages for one bio (e.g.
702 * mpage_readpages). If an allocation happens for the
703 * second or third page, the process can end up locking
704 * the same page twice and deadlocking. Rather than
705 * trying to be clever about what pages can be locked,
706 * avoid the use of lock_page for direct compaction
709 if (current
->flags
& PF_MEMALLOC
)
716 * Only memory hotplug's offline_pages() caller has locked out KSM,
717 * and can safely migrate a KSM page. The other cases have skipped
718 * PageKsm along with PageReserved - but it is only now when we have
719 * the page lock that we can be certain it will not go KSM beneath us
720 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
721 * its pagecount raised, but only here do we take the page lock which
724 if (PageKsm(page
) && !offlining
) {
729 /* charge against new page */
730 charge
= mem_cgroup_prepare_migration(page
, newpage
, &mem
, GFP_KERNEL
);
731 if (charge
== -ENOMEM
) {
737 if (PageWriteback(page
)) {
739 * Only in the case of a full syncronous migration is it
740 * necessary to wait for PageWriteback. In the async case,
741 * the retry loop is too short and in the sync-light case,
742 * the overhead of stalling is too much
744 if (mode
!= MIGRATE_SYNC
) {
750 wait_on_page_writeback(page
);
753 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
754 * we cannot notice that anon_vma is freed while we migrates a page.
755 * This get_anon_vma() delays freeing anon_vma pointer until the end
756 * of migration. File cache pages are no problem because of page_lock()
757 * File Caches may use write_page() or lock_page() in migration, then,
758 * just care Anon page here.
760 if (PageAnon(page
)) {
762 * Only page_lock_anon_vma() understands the subtleties of
763 * getting a hold on an anon_vma from outside one of its mms.
765 anon_vma
= page_get_anon_vma(page
);
770 } else if (PageSwapCache(page
)) {
772 * We cannot be sure that the anon_vma of an unmapped
773 * swapcache page is safe to use because we don't
774 * know in advance if the VMA that this page belonged
775 * to still exists. If the VMA and others sharing the
776 * data have been freed, then the anon_vma could
777 * already be invalid.
779 * To avoid this possibility, swapcache pages get
780 * migrated but are not remapped when migration
790 * Corner case handling:
791 * 1. When a new swap-cache page is read into, it is added to the LRU
792 * and treated as swapcache but it has no rmap yet.
793 * Calling try_to_unmap() against a page->mapping==NULL page will
794 * trigger a BUG. So handle it here.
795 * 2. An orphaned page (see truncate_complete_page) might have
796 * fs-private metadata. The page can be picked up due to memory
797 * offlining. Everywhere else except page reclaim, the page is
798 * invisible to the vm, so the page can not be migrated. So try to
799 * free the metadata, so the page can be freed.
801 if (!page
->mapping
) {
802 VM_BUG_ON(PageAnon(page
));
803 if (page_has_private(page
)) {
804 try_to_free_buffers(page
);
810 /* Establish migration ptes or remove ptes */
811 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
814 if (!page_mapped(page
))
815 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
817 if (rc
&& remap_swapcache
)
818 remove_migration_ptes(page
, page
);
820 /* Drop an anon_vma reference if we took one */
822 put_anon_vma(anon_vma
);
826 mem_cgroup_end_migration(mem
, page
, newpage
, rc
== 0);
834 * Obtain the lock on page, remove all ptes and migrate the page
835 * to the newly allocated page in newpage.
837 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
838 struct page
*page
, int force
, bool offlining
,
839 enum migrate_mode mode
)
843 struct page
*newpage
= get_new_page(page
, private, &result
);
848 if (page_count(page
) == 1) {
849 /* page was freed from under us. So we are done. */
853 if (unlikely(PageTransHuge(page
)))
854 if (unlikely(split_huge_page(page
)))
857 rc
= __unmap_and_move(page
, newpage
, force
, offlining
, mode
);
861 * A page that has been migrated has all references
862 * removed and will be freed. A page that has not been
863 * migrated will have kepts its references and be
866 list_del(&page
->lru
);
867 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
868 page_is_file_cache(page
));
869 putback_lru_page(page
);
872 * Move the new page to the LRU. If migration was not successful
873 * then this will free the page.
875 putback_lru_page(newpage
);
880 *result
= page_to_nid(newpage
);
886 * Counterpart of unmap_and_move_page() for hugepage migration.
888 * This function doesn't wait the completion of hugepage I/O
889 * because there is no race between I/O and migration for hugepage.
890 * Note that currently hugepage I/O occurs only in direct I/O
891 * where no lock is held and PG_writeback is irrelevant,
892 * and writeback status of all subpages are counted in the reference
893 * count of the head page (i.e. if all subpages of a 2MB hugepage are
894 * under direct I/O, the reference of the head page is 512 and a bit more.)
895 * This means that when we try to migrate hugepage whose subpages are
896 * doing direct I/O, some references remain after try_to_unmap() and
897 * hugepage migration fails without data corruption.
899 * There is also no race when direct I/O is issued on the page under migration,
900 * because then pte is replaced with migration swap entry and direct I/O code
901 * will wait in the page fault for migration to complete.
903 static int unmap_and_move_huge_page(new_page_t get_new_page
,
904 unsigned long private, struct page
*hpage
,
905 int force
, bool offlining
,
906 enum migrate_mode mode
)
910 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
911 struct anon_vma
*anon_vma
= NULL
;
918 if (!trylock_page(hpage
)) {
919 if (!force
|| mode
!= MIGRATE_SYNC
)
925 anon_vma
= page_get_anon_vma(hpage
);
927 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
929 if (!page_mapped(hpage
))
930 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
933 remove_migration_ptes(hpage
, hpage
);
936 put_anon_vma(anon_vma
);
941 list_del(&hpage
->lru
);
951 *result
= page_to_nid(new_hpage
);
959 * The function takes one list of pages to migrate and a function
960 * that determines from the page to be migrated and the private data
961 * the target of the move and allocates the page.
963 * The function returns after 10 attempts or if no pages
964 * are movable anymore because to has become empty
965 * or no retryable pages exist anymore.
966 * Caller should call putback_lru_pages to return pages to the LRU
967 * or free list only if ret != 0.
969 * Return: Number of pages not migrated or error code.
971 int migrate_pages(struct list_head
*from
,
972 new_page_t get_new_page
, unsigned long private, bool offlining
,
973 enum migrate_mode mode
)
980 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
984 current
->flags
|= PF_SWAPWRITE
;
986 for(pass
= 0; pass
< 10 && retry
; pass
++) {
989 list_for_each_entry_safe(page
, page2
, from
, lru
) {
992 rc
= unmap_and_move(get_new_page
, private,
993 page
, pass
> 2, offlining
,
1005 /* Permanent failure */
1014 current
->flags
&= ~PF_SWAPWRITE
;
1019 return nr_failed
+ retry
;
1022 int migrate_huge_pages(struct list_head
*from
,
1023 new_page_t get_new_page
, unsigned long private, bool offlining
,
1024 enum migrate_mode mode
)
1033 for (pass
= 0; pass
< 10 && retry
; pass
++) {
1036 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1039 rc
= unmap_and_move_huge_page(get_new_page
,
1040 private, page
, pass
> 2, offlining
,
1052 /* Permanent failure */
1063 return nr_failed
+ retry
;
1068 * Move a list of individual pages
1070 struct page_to_node
{
1077 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1080 struct page_to_node
*pm
= (struct page_to_node
*)private;
1082 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1085 if (pm
->node
== MAX_NUMNODES
)
1088 *result
= &pm
->status
;
1090 return alloc_pages_exact_node(pm
->node
,
1091 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1095 * Move a set of pages as indicated in the pm array. The addr
1096 * field must be set to the virtual address of the page to be moved
1097 * and the node number must contain a valid target node.
1098 * The pm array ends with node = MAX_NUMNODES.
1100 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1101 struct page_to_node
*pm
,
1105 struct page_to_node
*pp
;
1106 LIST_HEAD(pagelist
);
1108 down_read(&mm
->mmap_sem
);
1111 * Build a list of pages to migrate
1113 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1114 struct vm_area_struct
*vma
;
1118 vma
= find_vma(mm
, pp
->addr
);
1119 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1122 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1124 err
= PTR_ERR(page
);
1132 /* Use PageReserved to check for zero page */
1133 if (PageReserved(page
) || PageKsm(page
))
1137 err
= page_to_nid(page
);
1139 if (err
== pp
->node
)
1141 * Node already in the right place
1146 if (page_mapcount(page
) > 1 &&
1150 err
= isolate_lru_page(page
);
1152 list_add_tail(&page
->lru
, &pagelist
);
1153 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1154 page_is_file_cache(page
));
1158 * Either remove the duplicate refcount from
1159 * isolate_lru_page() or drop the page ref if it was
1168 if (!list_empty(&pagelist
)) {
1169 err
= migrate_pages(&pagelist
, new_page_node
,
1170 (unsigned long)pm
, 0, MIGRATE_SYNC
);
1172 putback_lru_pages(&pagelist
);
1175 up_read(&mm
->mmap_sem
);
1180 * Migrate an array of page address onto an array of nodes and fill
1181 * the corresponding array of status.
1183 static int do_pages_move(struct mm_struct
*mm
, struct task_struct
*task
,
1184 unsigned long nr_pages
,
1185 const void __user
* __user
*pages
,
1186 const int __user
*nodes
,
1187 int __user
*status
, int flags
)
1189 struct page_to_node
*pm
;
1190 nodemask_t task_nodes
;
1191 unsigned long chunk_nr_pages
;
1192 unsigned long chunk_start
;
1195 task_nodes
= cpuset_mems_allowed(task
);
1198 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1205 * Store a chunk of page_to_node array in a page,
1206 * but keep the last one as a marker
1208 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1210 for (chunk_start
= 0;
1211 chunk_start
< nr_pages
;
1212 chunk_start
+= chunk_nr_pages
) {
1215 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1216 chunk_nr_pages
= nr_pages
- chunk_start
;
1218 /* fill the chunk pm with addrs and nodes from user-space */
1219 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1220 const void __user
*p
;
1224 if (get_user(p
, pages
+ j
+ chunk_start
))
1226 pm
[j
].addr
= (unsigned long) p
;
1228 if (get_user(node
, nodes
+ j
+ chunk_start
))
1232 if (node
< 0 || node
>= MAX_NUMNODES
)
1235 if (!node_state(node
, N_HIGH_MEMORY
))
1239 if (!node_isset(node
, task_nodes
))
1245 /* End marker for this chunk */
1246 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1248 /* Migrate this chunk */
1249 err
= do_move_page_to_node_array(mm
, pm
,
1250 flags
& MPOL_MF_MOVE_ALL
);
1254 /* Return status information */
1255 for (j
= 0; j
< chunk_nr_pages
; j
++)
1256 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1264 free_page((unsigned long)pm
);
1270 * Determine the nodes of an array of pages and store it in an array of status.
1272 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1273 const void __user
**pages
, int *status
)
1277 down_read(&mm
->mmap_sem
);
1279 for (i
= 0; i
< nr_pages
; i
++) {
1280 unsigned long addr
= (unsigned long)(*pages
);
1281 struct vm_area_struct
*vma
;
1285 vma
= find_vma(mm
, addr
);
1286 if (!vma
|| addr
< vma
->vm_start
)
1289 page
= follow_page(vma
, addr
, 0);
1291 err
= PTR_ERR(page
);
1296 /* Use PageReserved to check for zero page */
1297 if (!page
|| PageReserved(page
) || PageKsm(page
))
1300 err
= page_to_nid(page
);
1308 up_read(&mm
->mmap_sem
);
1312 * Determine the nodes of a user array of pages and store it in
1313 * a user array of status.
1315 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1316 const void __user
* __user
*pages
,
1319 #define DO_PAGES_STAT_CHUNK_NR 16
1320 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1321 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1324 unsigned long chunk_nr
;
1326 chunk_nr
= nr_pages
;
1327 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1328 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1330 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1333 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1335 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1340 nr_pages
-= chunk_nr
;
1342 return nr_pages
? -EFAULT
: 0;
1346 * Move a list of pages in the address space of the currently executing
1349 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1350 const void __user
* __user
*, pages
,
1351 const int __user
*, nodes
,
1352 int __user
*, status
, int, flags
)
1354 const struct cred
*cred
= current_cred(), *tcred
;
1355 struct task_struct
*task
;
1356 struct mm_struct
*mm
;
1360 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1363 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1366 /* Find the mm_struct */
1368 task
= pid
? find_task_by_vpid(pid
) : current
;
1373 mm
= get_task_mm(task
);
1380 * Check if this process has the right to modify the specified
1381 * process. The right exists if the process has administrative
1382 * capabilities, superuser privileges or the same
1383 * userid as the target process.
1386 tcred
= __task_cred(task
);
1387 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1388 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1389 !capable(CAP_SYS_NICE
)) {
1396 err
= security_task_movememory(task
);
1401 err
= do_pages_move(mm
, task
, nr_pages
, pages
, nodes
, status
,
1404 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1413 * Call migration functions in the vma_ops that may prepare
1414 * memory in a vm for migration. migration functions may perform
1415 * the migration for vmas that do not have an underlying page struct.
1417 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1418 const nodemask_t
*from
, unsigned long flags
)
1420 struct vm_area_struct
*vma
;
1423 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1424 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1425 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);