bnxt_en: Disable interrupts when allocating CP rings or NQs.
[linux/fpc-iii.git] / mm / migrate.c
blob9638cd59fef1168af699a1caba88445a69a4e6f0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
56 #include "internal.h"
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
71 lru_add_drain_all();
73 return 0;
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
79 lru_add_drain();
81 return 0;
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
135 return 0;
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
169 struct page *page;
170 struct page *page2;
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
231 #endif
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
253 } else
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 return true;
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 spinlock_t *ptl)
313 pte_t pte;
314 swp_entry_t entry;
315 struct page *page;
317 spin_lock(ptl);
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
326 page = migration_entry_to_page(entry);
329 * Once page cache replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 * will occur again.
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 wait_on_page_locked(page);
339 put_page(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 spinlock_t *ptl;
364 struct page *page;
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 wait_on_page_locked(page);
374 put_page(page);
375 return;
376 unlock:
377 spin_unlock(ptl);
379 #endif
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 enum migrate_mode mode)
386 struct buffer_head *bh = head;
388 /* Simple case, sync compaction */
389 if (mode != MIGRATE_ASYNC) {
390 do {
391 get_bh(bh);
392 lock_buffer(bh);
393 bh = bh->b_this_page;
395 } while (bh != head);
397 return true;
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
401 do {
402 get_bh(bh);
403 if (!trylock_buffer(bh)) {
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
408 struct buffer_head *failed_bh = bh;
409 put_bh(failed_bh);
410 bh = head;
411 while (bh != failed_bh) {
412 unlock_buffer(bh);
413 put_bh(bh);
414 bh = bh->b_this_page;
416 return false;
419 bh = bh->b_this_page;
420 } while (bh != head);
421 return true;
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 enum migrate_mode mode)
427 return true;
429 #endif /* CONFIG_BLOCK */
432 * Replace the page in the mapping.
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
439 int migrate_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page,
441 struct buffer_head *head, enum migrate_mode mode,
442 int extra_count)
444 XA_STATE(xas, &mapping->i_pages, page_index(page));
445 struct zone *oldzone, *newzone;
446 int dirty;
447 int expected_count = 1 + extra_count;
450 * Device public or private pages have an extra refcount as they are
451 * ZONE_DEVICE pages.
453 expected_count += is_device_private_page(page);
454 expected_count += is_device_public_page(page);
456 if (!mapping) {
457 /* Anonymous page without mapping */
458 if (page_count(page) != expected_count)
459 return -EAGAIN;
461 /* No turning back from here */
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464 if (PageSwapBacked(page))
465 __SetPageSwapBacked(newpage);
467 return MIGRATEPAGE_SUCCESS;
470 oldzone = page_zone(page);
471 newzone = page_zone(newpage);
473 xas_lock_irq(&xas);
475 expected_count += hpage_nr_pages(page) + page_has_private(page);
476 if (page_count(page) != expected_count || xas_load(&xas) != page) {
477 xas_unlock_irq(&xas);
478 return -EAGAIN;
481 if (!page_ref_freeze(page, expected_count)) {
482 xas_unlock_irq(&xas);
483 return -EAGAIN;
487 * In the async migration case of moving a page with buffers, lock the
488 * buffers using trylock before the mapping is moved. If the mapping
489 * was moved, we later failed to lock the buffers and could not move
490 * the mapping back due to an elevated page count, we would have to
491 * block waiting on other references to be dropped.
493 if (mode == MIGRATE_ASYNC && head &&
494 !buffer_migrate_lock_buffers(head, mode)) {
495 page_ref_unfreeze(page, expected_count);
496 xas_unlock_irq(&xas);
497 return -EAGAIN;
501 * Now we know that no one else is looking at the page:
502 * no turning back from here.
504 newpage->index = page->index;
505 newpage->mapping = page->mapping;
506 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
507 if (PageSwapBacked(page)) {
508 __SetPageSwapBacked(newpage);
509 if (PageSwapCache(page)) {
510 SetPageSwapCache(newpage);
511 set_page_private(newpage, page_private(page));
513 } else {
514 VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 /* Move dirty while page refs frozen and newpage not yet exposed */
518 dirty = PageDirty(page);
519 if (dirty) {
520 ClearPageDirty(page);
521 SetPageDirty(newpage);
524 xas_store(&xas, newpage);
525 if (PageTransHuge(page)) {
526 int i;
528 for (i = 1; i < HPAGE_PMD_NR; i++) {
529 xas_next(&xas);
530 xas_store(&xas, newpage + i);
535 * Drop cache reference from old page by unfreezing
536 * to one less reference.
537 * We know this isn't the last reference.
539 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
541 xas_unlock(&xas);
542 /* Leave irq disabled to prevent preemption while updating stats */
545 * If moved to a different zone then also account
546 * the page for that zone. Other VM counters will be
547 * taken care of when we establish references to the
548 * new page and drop references to the old page.
550 * Note that anonymous pages are accounted for
551 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
552 * are mapped to swap space.
554 if (newzone != oldzone) {
555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
556 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
557 if (PageSwapBacked(page) && !PageSwapCache(page)) {
558 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
559 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
561 if (dirty && mapping_cap_account_dirty(mapping)) {
562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
563 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
564 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
565 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
568 local_irq_enable();
570 return MIGRATEPAGE_SUCCESS;
572 EXPORT_SYMBOL(migrate_page_move_mapping);
575 * The expected number of remaining references is the same as that
576 * of migrate_page_move_mapping().
578 int migrate_huge_page_move_mapping(struct address_space *mapping,
579 struct page *newpage, struct page *page)
581 XA_STATE(xas, &mapping->i_pages, page_index(page));
582 int expected_count;
584 xas_lock_irq(&xas);
585 expected_count = 2 + page_has_private(page);
586 if (page_count(page) != expected_count || xas_load(&xas) != page) {
587 xas_unlock_irq(&xas);
588 return -EAGAIN;
591 if (!page_ref_freeze(page, expected_count)) {
592 xas_unlock_irq(&xas);
593 return -EAGAIN;
596 newpage->index = page->index;
597 newpage->mapping = page->mapping;
599 get_page(newpage);
601 xas_store(&xas, newpage);
603 page_ref_unfreeze(page, expected_count - 1);
605 xas_unlock_irq(&xas);
607 return MIGRATEPAGE_SUCCESS;
611 * Gigantic pages are so large that we do not guarantee that page++ pointer
612 * arithmetic will work across the entire page. We need something more
613 * specialized.
615 static void __copy_gigantic_page(struct page *dst, struct page *src,
616 int nr_pages)
618 int i;
619 struct page *dst_base = dst;
620 struct page *src_base = src;
622 for (i = 0; i < nr_pages; ) {
623 cond_resched();
624 copy_highpage(dst, src);
626 i++;
627 dst = mem_map_next(dst, dst_base, i);
628 src = mem_map_next(src, src_base, i);
632 static void copy_huge_page(struct page *dst, struct page *src)
634 int i;
635 int nr_pages;
637 if (PageHuge(src)) {
638 /* hugetlbfs page */
639 struct hstate *h = page_hstate(src);
640 nr_pages = pages_per_huge_page(h);
642 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
643 __copy_gigantic_page(dst, src, nr_pages);
644 return;
646 } else {
647 /* thp page */
648 BUG_ON(!PageTransHuge(src));
649 nr_pages = hpage_nr_pages(src);
652 for (i = 0; i < nr_pages; i++) {
653 cond_resched();
654 copy_highpage(dst + i, src + i);
659 * Copy the page to its new location
661 void migrate_page_states(struct page *newpage, struct page *page)
663 int cpupid;
665 if (PageError(page))
666 SetPageError(newpage);
667 if (PageReferenced(page))
668 SetPageReferenced(newpage);
669 if (PageUptodate(page))
670 SetPageUptodate(newpage);
671 if (TestClearPageActive(page)) {
672 VM_BUG_ON_PAGE(PageUnevictable(page), page);
673 SetPageActive(newpage);
674 } else if (TestClearPageUnevictable(page))
675 SetPageUnevictable(newpage);
676 if (PageWorkingset(page))
677 SetPageWorkingset(newpage);
678 if (PageChecked(page))
679 SetPageChecked(newpage);
680 if (PageMappedToDisk(page))
681 SetPageMappedToDisk(newpage);
683 /* Move dirty on pages not done by migrate_page_move_mapping() */
684 if (PageDirty(page))
685 SetPageDirty(newpage);
687 if (page_is_young(page))
688 set_page_young(newpage);
689 if (page_is_idle(page))
690 set_page_idle(newpage);
693 * Copy NUMA information to the new page, to prevent over-eager
694 * future migrations of this same page.
696 cpupid = page_cpupid_xchg_last(page, -1);
697 page_cpupid_xchg_last(newpage, cpupid);
699 ksm_migrate_page(newpage, page);
701 * Please do not reorder this without considering how mm/ksm.c's
702 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
704 if (PageSwapCache(page))
705 ClearPageSwapCache(page);
706 ClearPagePrivate(page);
707 set_page_private(page, 0);
710 * If any waiters have accumulated on the new page then
711 * wake them up.
713 if (PageWriteback(newpage))
714 end_page_writeback(newpage);
716 copy_page_owner(page, newpage);
718 mem_cgroup_migrate(page, newpage);
720 EXPORT_SYMBOL(migrate_page_states);
722 void migrate_page_copy(struct page *newpage, struct page *page)
724 if (PageHuge(page) || PageTransHuge(page))
725 copy_huge_page(newpage, page);
726 else
727 copy_highpage(newpage, page);
729 migrate_page_states(newpage, page);
731 EXPORT_SYMBOL(migrate_page_copy);
733 /************************************************************
734 * Migration functions
735 ***********************************************************/
738 * Common logic to directly migrate a single LRU page suitable for
739 * pages that do not use PagePrivate/PagePrivate2.
741 * Pages are locked upon entry and exit.
743 int migrate_page(struct address_space *mapping,
744 struct page *newpage, struct page *page,
745 enum migrate_mode mode)
747 int rc;
749 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
751 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
753 if (rc != MIGRATEPAGE_SUCCESS)
754 return rc;
756 if (mode != MIGRATE_SYNC_NO_COPY)
757 migrate_page_copy(newpage, page);
758 else
759 migrate_page_states(newpage, page);
760 return MIGRATEPAGE_SUCCESS;
762 EXPORT_SYMBOL(migrate_page);
764 #ifdef CONFIG_BLOCK
766 * Migration function for pages with buffers. This function can only be used
767 * if the underlying filesystem guarantees that no other references to "page"
768 * exist.
770 int buffer_migrate_page(struct address_space *mapping,
771 struct page *newpage, struct page *page, enum migrate_mode mode)
773 struct buffer_head *bh, *head;
774 int rc;
776 if (!page_has_buffers(page))
777 return migrate_page(mapping, newpage, page, mode);
779 head = page_buffers(page);
781 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
783 if (rc != MIGRATEPAGE_SUCCESS)
784 return rc;
787 * In the async case, migrate_page_move_mapping locked the buffers
788 * with an IRQ-safe spinlock held. In the sync case, the buffers
789 * need to be locked now
791 if (mode != MIGRATE_ASYNC)
792 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
794 ClearPagePrivate(page);
795 set_page_private(newpage, page_private(page));
796 set_page_private(page, 0);
797 put_page(page);
798 get_page(newpage);
800 bh = head;
801 do {
802 set_bh_page(bh, newpage, bh_offset(bh));
803 bh = bh->b_this_page;
805 } while (bh != head);
807 SetPagePrivate(newpage);
809 if (mode != MIGRATE_SYNC_NO_COPY)
810 migrate_page_copy(newpage, page);
811 else
812 migrate_page_states(newpage, page);
814 bh = head;
815 do {
816 unlock_buffer(bh);
817 put_bh(bh);
818 bh = bh->b_this_page;
820 } while (bh != head);
822 return MIGRATEPAGE_SUCCESS;
824 EXPORT_SYMBOL(buffer_migrate_page);
825 #endif
828 * Writeback a page to clean the dirty state
830 static int writeout(struct address_space *mapping, struct page *page)
832 struct writeback_control wbc = {
833 .sync_mode = WB_SYNC_NONE,
834 .nr_to_write = 1,
835 .range_start = 0,
836 .range_end = LLONG_MAX,
837 .for_reclaim = 1
839 int rc;
841 if (!mapping->a_ops->writepage)
842 /* No write method for the address space */
843 return -EINVAL;
845 if (!clear_page_dirty_for_io(page))
846 /* Someone else already triggered a write */
847 return -EAGAIN;
850 * A dirty page may imply that the underlying filesystem has
851 * the page on some queue. So the page must be clean for
852 * migration. Writeout may mean we loose the lock and the
853 * page state is no longer what we checked for earlier.
854 * At this point we know that the migration attempt cannot
855 * be successful.
857 remove_migration_ptes(page, page, false);
859 rc = mapping->a_ops->writepage(page, &wbc);
861 if (rc != AOP_WRITEPAGE_ACTIVATE)
862 /* unlocked. Relock */
863 lock_page(page);
865 return (rc < 0) ? -EIO : -EAGAIN;
869 * Default handling if a filesystem does not provide a migration function.
871 static int fallback_migrate_page(struct address_space *mapping,
872 struct page *newpage, struct page *page, enum migrate_mode mode)
874 if (PageDirty(page)) {
875 /* Only writeback pages in full synchronous migration */
876 switch (mode) {
877 case MIGRATE_SYNC:
878 case MIGRATE_SYNC_NO_COPY:
879 break;
880 default:
881 return -EBUSY;
883 return writeout(mapping, page);
887 * Buffers may be managed in a filesystem specific way.
888 * We must have no buffers or drop them.
890 if (page_has_private(page) &&
891 !try_to_release_page(page, GFP_KERNEL))
892 return -EAGAIN;
894 return migrate_page(mapping, newpage, page, mode);
898 * Move a page to a newly allocated page
899 * The page is locked and all ptes have been successfully removed.
901 * The new page will have replaced the old page if this function
902 * is successful.
904 * Return value:
905 * < 0 - error code
906 * MIGRATEPAGE_SUCCESS - success
908 static int move_to_new_page(struct page *newpage, struct page *page,
909 enum migrate_mode mode)
911 struct address_space *mapping;
912 int rc = -EAGAIN;
913 bool is_lru = !__PageMovable(page);
915 VM_BUG_ON_PAGE(!PageLocked(page), page);
916 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
918 mapping = page_mapping(page);
920 if (likely(is_lru)) {
921 if (!mapping)
922 rc = migrate_page(mapping, newpage, page, mode);
923 else if (mapping->a_ops->migratepage)
925 * Most pages have a mapping and most filesystems
926 * provide a migratepage callback. Anonymous pages
927 * are part of swap space which also has its own
928 * migratepage callback. This is the most common path
929 * for page migration.
931 rc = mapping->a_ops->migratepage(mapping, newpage,
932 page, mode);
933 else
934 rc = fallback_migrate_page(mapping, newpage,
935 page, mode);
936 } else {
938 * In case of non-lru page, it could be released after
939 * isolation step. In that case, we shouldn't try migration.
941 VM_BUG_ON_PAGE(!PageIsolated(page), page);
942 if (!PageMovable(page)) {
943 rc = MIGRATEPAGE_SUCCESS;
944 __ClearPageIsolated(page);
945 goto out;
948 rc = mapping->a_ops->migratepage(mapping, newpage,
949 page, mode);
950 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
951 !PageIsolated(page));
955 * When successful, old pagecache page->mapping must be cleared before
956 * page is freed; but stats require that PageAnon be left as PageAnon.
958 if (rc == MIGRATEPAGE_SUCCESS) {
959 if (__PageMovable(page)) {
960 VM_BUG_ON_PAGE(!PageIsolated(page), page);
963 * We clear PG_movable under page_lock so any compactor
964 * cannot try to migrate this page.
966 __ClearPageIsolated(page);
970 * Anonymous and movable page->mapping will be cleard by
971 * free_pages_prepare so don't reset it here for keeping
972 * the type to work PageAnon, for example.
974 if (!PageMappingFlags(page))
975 page->mapping = NULL;
977 out:
978 return rc;
981 static int __unmap_and_move(struct page *page, struct page *newpage,
982 int force, enum migrate_mode mode)
984 int rc = -EAGAIN;
985 int page_was_mapped = 0;
986 struct anon_vma *anon_vma = NULL;
987 bool is_lru = !__PageMovable(page);
989 if (!trylock_page(page)) {
990 if (!force || mode == MIGRATE_ASYNC)
991 goto out;
994 * It's not safe for direct compaction to call lock_page.
995 * For example, during page readahead pages are added locked
996 * to the LRU. Later, when the IO completes the pages are
997 * marked uptodate and unlocked. However, the queueing
998 * could be merging multiple pages for one bio (e.g.
999 * mpage_readpages). If an allocation happens for the
1000 * second or third page, the process can end up locking
1001 * the same page twice and deadlocking. Rather than
1002 * trying to be clever about what pages can be locked,
1003 * avoid the use of lock_page for direct compaction
1004 * altogether.
1006 if (current->flags & PF_MEMALLOC)
1007 goto out;
1009 lock_page(page);
1012 if (PageWriteback(page)) {
1014 * Only in the case of a full synchronous migration is it
1015 * necessary to wait for PageWriteback. In the async case,
1016 * the retry loop is too short and in the sync-light case,
1017 * the overhead of stalling is too much
1019 switch (mode) {
1020 case MIGRATE_SYNC:
1021 case MIGRATE_SYNC_NO_COPY:
1022 break;
1023 default:
1024 rc = -EBUSY;
1025 goto out_unlock;
1027 if (!force)
1028 goto out_unlock;
1029 wait_on_page_writeback(page);
1033 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1034 * we cannot notice that anon_vma is freed while we migrates a page.
1035 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 * of migration. File cache pages are no problem because of page_lock()
1037 * File Caches may use write_page() or lock_page() in migration, then,
1038 * just care Anon page here.
1040 * Only page_get_anon_vma() understands the subtleties of
1041 * getting a hold on an anon_vma from outside one of its mms.
1042 * But if we cannot get anon_vma, then we won't need it anyway,
1043 * because that implies that the anon page is no longer mapped
1044 * (and cannot be remapped so long as we hold the page lock).
1046 if (PageAnon(page) && !PageKsm(page))
1047 anon_vma = page_get_anon_vma(page);
1050 * Block others from accessing the new page when we get around to
1051 * establishing additional references. We are usually the only one
1052 * holding a reference to newpage at this point. We used to have a BUG
1053 * here if trylock_page(newpage) fails, but would like to allow for
1054 * cases where there might be a race with the previous use of newpage.
1055 * This is much like races on refcount of oldpage: just don't BUG().
1057 if (unlikely(!trylock_page(newpage)))
1058 goto out_unlock;
1060 if (unlikely(!is_lru)) {
1061 rc = move_to_new_page(newpage, page, mode);
1062 goto out_unlock_both;
1066 * Corner case handling:
1067 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 * and treated as swapcache but it has no rmap yet.
1069 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 * trigger a BUG. So handle it here.
1071 * 2. An orphaned page (see truncate_complete_page) might have
1072 * fs-private metadata. The page can be picked up due to memory
1073 * offlining. Everywhere else except page reclaim, the page is
1074 * invisible to the vm, so the page can not be migrated. So try to
1075 * free the metadata, so the page can be freed.
1077 if (!page->mapping) {
1078 VM_BUG_ON_PAGE(PageAnon(page), page);
1079 if (page_has_private(page)) {
1080 try_to_free_buffers(page);
1081 goto out_unlock_both;
1083 } else if (page_mapped(page)) {
1084 /* Establish migration ptes */
1085 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 page);
1087 try_to_unmap(page,
1088 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1089 page_was_mapped = 1;
1092 if (!page_mapped(page))
1093 rc = move_to_new_page(newpage, page, mode);
1095 if (page_was_mapped)
1096 remove_migration_ptes(page,
1097 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1099 out_unlock_both:
1100 unlock_page(newpage);
1101 out_unlock:
1102 /* Drop an anon_vma reference if we took one */
1103 if (anon_vma)
1104 put_anon_vma(anon_vma);
1105 unlock_page(page);
1106 out:
1108 * If migration is successful, decrease refcount of the newpage
1109 * which will not free the page because new page owner increased
1110 * refcounter. As well, if it is LRU page, add the page to LRU
1111 * list in here. Use the old state of the isolated source page to
1112 * determine if we migrated a LRU page. newpage was already unlocked
1113 * and possibly modified by its owner - don't rely on the page
1114 * state.
1116 if (rc == MIGRATEPAGE_SUCCESS) {
1117 if (unlikely(!is_lru))
1118 put_page(newpage);
1119 else
1120 putback_lru_page(newpage);
1123 return rc;
1127 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1128 * around it.
1130 #if defined(CONFIG_ARM) && \
1131 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1132 #define ICE_noinline noinline
1133 #else
1134 #define ICE_noinline
1135 #endif
1138 * Obtain the lock on page, remove all ptes and migrate the page
1139 * to the newly allocated page in newpage.
1141 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1142 free_page_t put_new_page,
1143 unsigned long private, struct page *page,
1144 int force, enum migrate_mode mode,
1145 enum migrate_reason reason)
1147 int rc = MIGRATEPAGE_SUCCESS;
1148 struct page *newpage;
1150 if (!thp_migration_supported() && PageTransHuge(page))
1151 return -ENOMEM;
1153 newpage = get_new_page(page, private);
1154 if (!newpage)
1155 return -ENOMEM;
1157 if (page_count(page) == 1) {
1158 /* page was freed from under us. So we are done. */
1159 ClearPageActive(page);
1160 ClearPageUnevictable(page);
1161 if (unlikely(__PageMovable(page))) {
1162 lock_page(page);
1163 if (!PageMovable(page))
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1167 if (put_new_page)
1168 put_new_page(newpage, private);
1169 else
1170 put_page(newpage);
1171 goto out;
1174 rc = __unmap_and_move(page, newpage, force, mode);
1175 if (rc == MIGRATEPAGE_SUCCESS)
1176 set_page_owner_migrate_reason(newpage, reason);
1178 out:
1179 if (rc != -EAGAIN) {
1181 * A page that has been migrated has all references
1182 * removed and will be freed. A page that has not been
1183 * migrated will have kepts its references and be
1184 * restored.
1186 list_del(&page->lru);
1189 * Compaction can migrate also non-LRU pages which are
1190 * not accounted to NR_ISOLATED_*. They can be recognized
1191 * as __PageMovable
1193 if (likely(!__PageMovable(page)))
1194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1195 page_is_file_cache(page), -hpage_nr_pages(page));
1199 * If migration is successful, releases reference grabbed during
1200 * isolation. Otherwise, restore the page to right list unless
1201 * we want to retry.
1203 if (rc == MIGRATEPAGE_SUCCESS) {
1204 put_page(page);
1205 if (reason == MR_MEMORY_FAILURE) {
1207 * Set PG_HWPoison on just freed page
1208 * intentionally. Although it's rather weird,
1209 * it's how HWPoison flag works at the moment.
1211 if (set_hwpoison_free_buddy_page(page))
1212 num_poisoned_pages_inc();
1214 } else {
1215 if (rc != -EAGAIN) {
1216 if (likely(!__PageMovable(page))) {
1217 putback_lru_page(page);
1218 goto put_new;
1221 lock_page(page);
1222 if (PageMovable(page))
1223 putback_movable_page(page);
1224 else
1225 __ClearPageIsolated(page);
1226 unlock_page(page);
1227 put_page(page);
1229 put_new:
1230 if (put_new_page)
1231 put_new_page(newpage, private);
1232 else
1233 put_page(newpage);
1236 return rc;
1240 * Counterpart of unmap_and_move_page() for hugepage migration.
1242 * This function doesn't wait the completion of hugepage I/O
1243 * because there is no race between I/O and migration for hugepage.
1244 * Note that currently hugepage I/O occurs only in direct I/O
1245 * where no lock is held and PG_writeback is irrelevant,
1246 * and writeback status of all subpages are counted in the reference
1247 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1248 * under direct I/O, the reference of the head page is 512 and a bit more.)
1249 * This means that when we try to migrate hugepage whose subpages are
1250 * doing direct I/O, some references remain after try_to_unmap() and
1251 * hugepage migration fails without data corruption.
1253 * There is also no race when direct I/O is issued on the page under migration,
1254 * because then pte is replaced with migration swap entry and direct I/O code
1255 * will wait in the page fault for migration to complete.
1257 static int unmap_and_move_huge_page(new_page_t get_new_page,
1258 free_page_t put_new_page, unsigned long private,
1259 struct page *hpage, int force,
1260 enum migrate_mode mode, int reason)
1262 int rc = -EAGAIN;
1263 int page_was_mapped = 0;
1264 struct page *new_hpage;
1265 struct anon_vma *anon_vma = NULL;
1268 * Movability of hugepages depends on architectures and hugepage size.
1269 * This check is necessary because some callers of hugepage migration
1270 * like soft offline and memory hotremove don't walk through page
1271 * tables or check whether the hugepage is pmd-based or not before
1272 * kicking migration.
1274 if (!hugepage_migration_supported(page_hstate(hpage))) {
1275 putback_active_hugepage(hpage);
1276 return -ENOSYS;
1279 new_hpage = get_new_page(hpage, private);
1280 if (!new_hpage)
1281 return -ENOMEM;
1283 if (!trylock_page(hpage)) {
1284 if (!force)
1285 goto out;
1286 switch (mode) {
1287 case MIGRATE_SYNC:
1288 case MIGRATE_SYNC_NO_COPY:
1289 break;
1290 default:
1291 goto out;
1293 lock_page(hpage);
1296 if (PageAnon(hpage))
1297 anon_vma = page_get_anon_vma(hpage);
1299 if (unlikely(!trylock_page(new_hpage)))
1300 goto put_anon;
1302 if (page_mapped(hpage)) {
1303 try_to_unmap(hpage,
1304 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1305 page_was_mapped = 1;
1308 if (!page_mapped(hpage))
1309 rc = move_to_new_page(new_hpage, hpage, mode);
1311 if (page_was_mapped)
1312 remove_migration_ptes(hpage,
1313 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1315 unlock_page(new_hpage);
1317 put_anon:
1318 if (anon_vma)
1319 put_anon_vma(anon_vma);
1321 if (rc == MIGRATEPAGE_SUCCESS) {
1322 move_hugetlb_state(hpage, new_hpage, reason);
1323 put_new_page = NULL;
1326 unlock_page(hpage);
1327 out:
1328 if (rc != -EAGAIN)
1329 putback_active_hugepage(hpage);
1332 * If migration was not successful and there's a freeing callback, use
1333 * it. Otherwise, put_page() will drop the reference grabbed during
1334 * isolation.
1336 if (put_new_page)
1337 put_new_page(new_hpage, private);
1338 else
1339 putback_active_hugepage(new_hpage);
1341 return rc;
1345 * migrate_pages - migrate the pages specified in a list, to the free pages
1346 * supplied as the target for the page migration
1348 * @from: The list of pages to be migrated.
1349 * @get_new_page: The function used to allocate free pages to be used
1350 * as the target of the page migration.
1351 * @put_new_page: The function used to free target pages if migration
1352 * fails, or NULL if no special handling is necessary.
1353 * @private: Private data to be passed on to get_new_page()
1354 * @mode: The migration mode that specifies the constraints for
1355 * page migration, if any.
1356 * @reason: The reason for page migration.
1358 * The function returns after 10 attempts or if no pages are movable any more
1359 * because the list has become empty or no retryable pages exist any more.
1360 * The caller should call putback_movable_pages() to return pages to the LRU
1361 * or free list only if ret != 0.
1363 * Returns the number of pages that were not migrated, or an error code.
1365 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366 free_page_t put_new_page, unsigned long private,
1367 enum migrate_mode mode, int reason)
1369 int retry = 1;
1370 int nr_failed = 0;
1371 int nr_succeeded = 0;
1372 int pass = 0;
1373 struct page *page;
1374 struct page *page2;
1375 int swapwrite = current->flags & PF_SWAPWRITE;
1376 int rc;
1378 if (!swapwrite)
1379 current->flags |= PF_SWAPWRITE;
1381 for(pass = 0; pass < 10 && retry; pass++) {
1382 retry = 0;
1384 list_for_each_entry_safe(page, page2, from, lru) {
1385 retry:
1386 cond_resched();
1388 if (PageHuge(page))
1389 rc = unmap_and_move_huge_page(get_new_page,
1390 put_new_page, private, page,
1391 pass > 2, mode, reason);
1392 else
1393 rc = unmap_and_move(get_new_page, put_new_page,
1394 private, page, pass > 2, mode,
1395 reason);
1397 switch(rc) {
1398 case -ENOMEM:
1400 * THP migration might be unsupported or the
1401 * allocation could've failed so we should
1402 * retry on the same page with the THP split
1403 * to base pages.
1405 * Head page is retried immediately and tail
1406 * pages are added to the tail of the list so
1407 * we encounter them after the rest of the list
1408 * is processed.
1410 if (PageTransHuge(page) && !PageHuge(page)) {
1411 lock_page(page);
1412 rc = split_huge_page_to_list(page, from);
1413 unlock_page(page);
1414 if (!rc) {
1415 list_safe_reset_next(page, page2, lru);
1416 goto retry;
1419 nr_failed++;
1420 goto out;
1421 case -EAGAIN:
1422 retry++;
1423 break;
1424 case MIGRATEPAGE_SUCCESS:
1425 nr_succeeded++;
1426 break;
1427 default:
1429 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1430 * unlike -EAGAIN case, the failed page is
1431 * removed from migration page list and not
1432 * retried in the next outer loop.
1434 nr_failed++;
1435 break;
1439 nr_failed += retry;
1440 rc = nr_failed;
1441 out:
1442 if (nr_succeeded)
1443 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1444 if (nr_failed)
1445 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1446 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1448 if (!swapwrite)
1449 current->flags &= ~PF_SWAPWRITE;
1451 return rc;
1454 #ifdef CONFIG_NUMA
1456 static int store_status(int __user *status, int start, int value, int nr)
1458 while (nr-- > 0) {
1459 if (put_user(value, status + start))
1460 return -EFAULT;
1461 start++;
1464 return 0;
1467 static int do_move_pages_to_node(struct mm_struct *mm,
1468 struct list_head *pagelist, int node)
1470 int err;
1472 if (list_empty(pagelist))
1473 return 0;
1475 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1476 MIGRATE_SYNC, MR_SYSCALL);
1477 if (err)
1478 putback_movable_pages(pagelist);
1479 return err;
1483 * Resolves the given address to a struct page, isolates it from the LRU and
1484 * puts it to the given pagelist.
1485 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1486 * queued or the page doesn't need to be migrated because it is already on
1487 * the target node
1489 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1490 int node, struct list_head *pagelist, bool migrate_all)
1492 struct vm_area_struct *vma;
1493 struct page *page;
1494 unsigned int follflags;
1495 int err;
1497 down_read(&mm->mmap_sem);
1498 err = -EFAULT;
1499 vma = find_vma(mm, addr);
1500 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1501 goto out;
1503 /* FOLL_DUMP to ignore special (like zero) pages */
1504 follflags = FOLL_GET | FOLL_DUMP;
1505 page = follow_page(vma, addr, follflags);
1507 err = PTR_ERR(page);
1508 if (IS_ERR(page))
1509 goto out;
1511 err = -ENOENT;
1512 if (!page)
1513 goto out;
1515 err = 0;
1516 if (page_to_nid(page) == node)
1517 goto out_putpage;
1519 err = -EACCES;
1520 if (page_mapcount(page) > 1 && !migrate_all)
1521 goto out_putpage;
1523 if (PageHuge(page)) {
1524 if (PageHead(page)) {
1525 isolate_huge_page(page, pagelist);
1526 err = 0;
1528 } else {
1529 struct page *head;
1531 head = compound_head(page);
1532 err = isolate_lru_page(head);
1533 if (err)
1534 goto out_putpage;
1536 err = 0;
1537 list_add_tail(&head->lru, pagelist);
1538 mod_node_page_state(page_pgdat(head),
1539 NR_ISOLATED_ANON + page_is_file_cache(head),
1540 hpage_nr_pages(head));
1542 out_putpage:
1544 * Either remove the duplicate refcount from
1545 * isolate_lru_page() or drop the page ref if it was
1546 * not isolated.
1548 put_page(page);
1549 out:
1550 up_read(&mm->mmap_sem);
1551 return err;
1555 * Migrate an array of page address onto an array of nodes and fill
1556 * the corresponding array of status.
1558 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1559 unsigned long nr_pages,
1560 const void __user * __user *pages,
1561 const int __user *nodes,
1562 int __user *status, int flags)
1564 int current_node = NUMA_NO_NODE;
1565 LIST_HEAD(pagelist);
1566 int start, i;
1567 int err = 0, err1;
1569 migrate_prep();
1571 for (i = start = 0; i < nr_pages; i++) {
1572 const void __user *p;
1573 unsigned long addr;
1574 int node;
1576 err = -EFAULT;
1577 if (get_user(p, pages + i))
1578 goto out_flush;
1579 if (get_user(node, nodes + i))
1580 goto out_flush;
1581 addr = (unsigned long)p;
1583 err = -ENODEV;
1584 if (node < 0 || node >= MAX_NUMNODES)
1585 goto out_flush;
1586 if (!node_state(node, N_MEMORY))
1587 goto out_flush;
1589 err = -EACCES;
1590 if (!node_isset(node, task_nodes))
1591 goto out_flush;
1593 if (current_node == NUMA_NO_NODE) {
1594 current_node = node;
1595 start = i;
1596 } else if (node != current_node) {
1597 err = do_move_pages_to_node(mm, &pagelist, current_node);
1598 if (err)
1599 goto out;
1600 err = store_status(status, start, current_node, i - start);
1601 if (err)
1602 goto out;
1603 start = i;
1604 current_node = node;
1608 * Errors in the page lookup or isolation are not fatal and we simply
1609 * report them via status
1611 err = add_page_for_migration(mm, addr, current_node,
1612 &pagelist, flags & MPOL_MF_MOVE_ALL);
1613 if (!err)
1614 continue;
1616 err = store_status(status, i, err, 1);
1617 if (err)
1618 goto out_flush;
1620 err = do_move_pages_to_node(mm, &pagelist, current_node);
1621 if (err)
1622 goto out;
1623 if (i > start) {
1624 err = store_status(status, start, current_node, i - start);
1625 if (err)
1626 goto out;
1628 current_node = NUMA_NO_NODE;
1630 out_flush:
1631 if (list_empty(&pagelist))
1632 return err;
1634 /* Make sure we do not overwrite the existing error */
1635 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1636 if (!err1)
1637 err1 = store_status(status, start, current_node, i - start);
1638 if (!err)
1639 err = err1;
1640 out:
1641 return err;
1645 * Determine the nodes of an array of pages and store it in an array of status.
1647 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1648 const void __user **pages, int *status)
1650 unsigned long i;
1652 down_read(&mm->mmap_sem);
1654 for (i = 0; i < nr_pages; i++) {
1655 unsigned long addr = (unsigned long)(*pages);
1656 struct vm_area_struct *vma;
1657 struct page *page;
1658 int err = -EFAULT;
1660 vma = find_vma(mm, addr);
1661 if (!vma || addr < vma->vm_start)
1662 goto set_status;
1664 /* FOLL_DUMP to ignore special (like zero) pages */
1665 page = follow_page(vma, addr, FOLL_DUMP);
1667 err = PTR_ERR(page);
1668 if (IS_ERR(page))
1669 goto set_status;
1671 err = page ? page_to_nid(page) : -ENOENT;
1672 set_status:
1673 *status = err;
1675 pages++;
1676 status++;
1679 up_read(&mm->mmap_sem);
1683 * Determine the nodes of a user array of pages and store it in
1684 * a user array of status.
1686 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1687 const void __user * __user *pages,
1688 int __user *status)
1690 #define DO_PAGES_STAT_CHUNK_NR 16
1691 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1692 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1694 while (nr_pages) {
1695 unsigned long chunk_nr;
1697 chunk_nr = nr_pages;
1698 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1699 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1701 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1702 break;
1704 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1706 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1707 break;
1709 pages += chunk_nr;
1710 status += chunk_nr;
1711 nr_pages -= chunk_nr;
1713 return nr_pages ? -EFAULT : 0;
1717 * Move a list of pages in the address space of the currently executing
1718 * process.
1720 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1721 const void __user * __user *pages,
1722 const int __user *nodes,
1723 int __user *status, int flags)
1725 struct task_struct *task;
1726 struct mm_struct *mm;
1727 int err;
1728 nodemask_t task_nodes;
1730 /* Check flags */
1731 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1732 return -EINVAL;
1734 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1735 return -EPERM;
1737 /* Find the mm_struct */
1738 rcu_read_lock();
1739 task = pid ? find_task_by_vpid(pid) : current;
1740 if (!task) {
1741 rcu_read_unlock();
1742 return -ESRCH;
1744 get_task_struct(task);
1747 * Check if this process has the right to modify the specified
1748 * process. Use the regular "ptrace_may_access()" checks.
1750 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1751 rcu_read_unlock();
1752 err = -EPERM;
1753 goto out;
1755 rcu_read_unlock();
1757 err = security_task_movememory(task);
1758 if (err)
1759 goto out;
1761 task_nodes = cpuset_mems_allowed(task);
1762 mm = get_task_mm(task);
1763 put_task_struct(task);
1765 if (!mm)
1766 return -EINVAL;
1768 if (nodes)
1769 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1770 nodes, status, flags);
1771 else
1772 err = do_pages_stat(mm, nr_pages, pages, status);
1774 mmput(mm);
1775 return err;
1777 out:
1778 put_task_struct(task);
1779 return err;
1782 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1783 const void __user * __user *, pages,
1784 const int __user *, nodes,
1785 int __user *, status, int, flags)
1787 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1790 #ifdef CONFIG_COMPAT
1791 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1792 compat_uptr_t __user *, pages32,
1793 const int __user *, nodes,
1794 int __user *, status,
1795 int, flags)
1797 const void __user * __user *pages;
1798 int i;
1800 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1801 for (i = 0; i < nr_pages; i++) {
1802 compat_uptr_t p;
1804 if (get_user(p, pages32 + i) ||
1805 put_user(compat_ptr(p), pages + i))
1806 return -EFAULT;
1808 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1810 #endif /* CONFIG_COMPAT */
1812 #ifdef CONFIG_NUMA_BALANCING
1814 * Returns true if this is a safe migration target node for misplaced NUMA
1815 * pages. Currently it only checks the watermarks which crude
1817 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1818 unsigned long nr_migrate_pages)
1820 int z;
1822 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1823 struct zone *zone = pgdat->node_zones + z;
1825 if (!populated_zone(zone))
1826 continue;
1828 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1829 if (!zone_watermark_ok(zone, 0,
1830 high_wmark_pages(zone) +
1831 nr_migrate_pages,
1832 0, 0))
1833 continue;
1834 return true;
1836 return false;
1839 static struct page *alloc_misplaced_dst_page(struct page *page,
1840 unsigned long data)
1842 int nid = (int) data;
1843 struct page *newpage;
1845 newpage = __alloc_pages_node(nid,
1846 (GFP_HIGHUSER_MOVABLE |
1847 __GFP_THISNODE | __GFP_NOMEMALLOC |
1848 __GFP_NORETRY | __GFP_NOWARN) &
1849 ~__GFP_RECLAIM, 0);
1851 return newpage;
1854 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1856 int page_lru;
1858 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1860 /* Avoid migrating to a node that is nearly full */
1861 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1862 return 0;
1864 if (isolate_lru_page(page))
1865 return 0;
1868 * migrate_misplaced_transhuge_page() skips page migration's usual
1869 * check on page_count(), so we must do it here, now that the page
1870 * has been isolated: a GUP pin, or any other pin, prevents migration.
1871 * The expected page count is 3: 1 for page's mapcount and 1 for the
1872 * caller's pin and 1 for the reference taken by isolate_lru_page().
1874 if (PageTransHuge(page) && page_count(page) != 3) {
1875 putback_lru_page(page);
1876 return 0;
1879 page_lru = page_is_file_cache(page);
1880 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1881 hpage_nr_pages(page));
1884 * Isolating the page has taken another reference, so the
1885 * caller's reference can be safely dropped without the page
1886 * disappearing underneath us during migration.
1888 put_page(page);
1889 return 1;
1892 bool pmd_trans_migrating(pmd_t pmd)
1894 struct page *page = pmd_page(pmd);
1895 return PageLocked(page);
1899 * Attempt to migrate a misplaced page to the specified destination
1900 * node. Caller is expected to have an elevated reference count on
1901 * the page that will be dropped by this function before returning.
1903 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1904 int node)
1906 pg_data_t *pgdat = NODE_DATA(node);
1907 int isolated;
1908 int nr_remaining;
1909 LIST_HEAD(migratepages);
1912 * Don't migrate file pages that are mapped in multiple processes
1913 * with execute permissions as they are probably shared libraries.
1915 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1916 (vma->vm_flags & VM_EXEC))
1917 goto out;
1920 * Also do not migrate dirty pages as not all filesystems can move
1921 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1923 if (page_is_file_cache(page) && PageDirty(page))
1924 goto out;
1926 isolated = numamigrate_isolate_page(pgdat, page);
1927 if (!isolated)
1928 goto out;
1930 list_add(&page->lru, &migratepages);
1931 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1932 NULL, node, MIGRATE_ASYNC,
1933 MR_NUMA_MISPLACED);
1934 if (nr_remaining) {
1935 if (!list_empty(&migratepages)) {
1936 list_del(&page->lru);
1937 dec_node_page_state(page, NR_ISOLATED_ANON +
1938 page_is_file_cache(page));
1939 putback_lru_page(page);
1941 isolated = 0;
1942 } else
1943 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1944 BUG_ON(!list_empty(&migratepages));
1945 return isolated;
1947 out:
1948 put_page(page);
1949 return 0;
1951 #endif /* CONFIG_NUMA_BALANCING */
1953 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1955 * Migrates a THP to a given target node. page must be locked and is unlocked
1956 * before returning.
1958 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1959 struct vm_area_struct *vma,
1960 pmd_t *pmd, pmd_t entry,
1961 unsigned long address,
1962 struct page *page, int node)
1964 spinlock_t *ptl;
1965 pg_data_t *pgdat = NODE_DATA(node);
1966 int isolated = 0;
1967 struct page *new_page = NULL;
1968 int page_lru = page_is_file_cache(page);
1969 unsigned long start = address & HPAGE_PMD_MASK;
1971 new_page = alloc_pages_node(node,
1972 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1973 HPAGE_PMD_ORDER);
1974 if (!new_page)
1975 goto out_fail;
1976 prep_transhuge_page(new_page);
1978 isolated = numamigrate_isolate_page(pgdat, page);
1979 if (!isolated) {
1980 put_page(new_page);
1981 goto out_fail;
1984 /* Prepare a page as a migration target */
1985 __SetPageLocked(new_page);
1986 if (PageSwapBacked(page))
1987 __SetPageSwapBacked(new_page);
1989 /* anon mapping, we can simply copy page->mapping to the new page: */
1990 new_page->mapping = page->mapping;
1991 new_page->index = page->index;
1992 /* flush the cache before copying using the kernel virtual address */
1993 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1994 migrate_page_copy(new_page, page);
1995 WARN_ON(PageLRU(new_page));
1997 /* Recheck the target PMD */
1998 ptl = pmd_lock(mm, pmd);
1999 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2000 spin_unlock(ptl);
2002 /* Reverse changes made by migrate_page_copy() */
2003 if (TestClearPageActive(new_page))
2004 SetPageActive(page);
2005 if (TestClearPageUnevictable(new_page))
2006 SetPageUnevictable(page);
2008 unlock_page(new_page);
2009 put_page(new_page); /* Free it */
2011 /* Retake the callers reference and putback on LRU */
2012 get_page(page);
2013 putback_lru_page(page);
2014 mod_node_page_state(page_pgdat(page),
2015 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2017 goto out_unlock;
2020 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2021 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2024 * Overwrite the old entry under pagetable lock and establish
2025 * the new PTE. Any parallel GUP will either observe the old
2026 * page blocking on the page lock, block on the page table
2027 * lock or observe the new page. The SetPageUptodate on the
2028 * new page and page_add_new_anon_rmap guarantee the copy is
2029 * visible before the pagetable update.
2031 page_add_anon_rmap(new_page, vma, start, true);
2033 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2034 * has already been flushed globally. So no TLB can be currently
2035 * caching this non present pmd mapping. There's no need to clear the
2036 * pmd before doing set_pmd_at(), nor to flush the TLB after
2037 * set_pmd_at(). Clearing the pmd here would introduce a race
2038 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2039 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2040 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2041 * pmd.
2043 set_pmd_at(mm, start, pmd, entry);
2044 update_mmu_cache_pmd(vma, address, &entry);
2046 page_ref_unfreeze(page, 2);
2047 mlock_migrate_page(new_page, page);
2048 page_remove_rmap(page, true);
2049 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2051 spin_unlock(ptl);
2053 /* Take an "isolate" reference and put new page on the LRU. */
2054 get_page(new_page);
2055 putback_lru_page(new_page);
2057 unlock_page(new_page);
2058 unlock_page(page);
2059 put_page(page); /* Drop the rmap reference */
2060 put_page(page); /* Drop the LRU isolation reference */
2062 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2063 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2065 mod_node_page_state(page_pgdat(page),
2066 NR_ISOLATED_ANON + page_lru,
2067 -HPAGE_PMD_NR);
2068 return isolated;
2070 out_fail:
2071 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2072 ptl = pmd_lock(mm, pmd);
2073 if (pmd_same(*pmd, entry)) {
2074 entry = pmd_modify(entry, vma->vm_page_prot);
2075 set_pmd_at(mm, start, pmd, entry);
2076 update_mmu_cache_pmd(vma, address, &entry);
2078 spin_unlock(ptl);
2080 out_unlock:
2081 unlock_page(page);
2082 put_page(page);
2083 return 0;
2085 #endif /* CONFIG_NUMA_BALANCING */
2087 #endif /* CONFIG_NUMA */
2089 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2090 struct migrate_vma {
2091 struct vm_area_struct *vma;
2092 unsigned long *dst;
2093 unsigned long *src;
2094 unsigned long cpages;
2095 unsigned long npages;
2096 unsigned long start;
2097 unsigned long end;
2100 static int migrate_vma_collect_hole(unsigned long start,
2101 unsigned long end,
2102 struct mm_walk *walk)
2104 struct migrate_vma *migrate = walk->private;
2105 unsigned long addr;
2107 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2108 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2109 migrate->dst[migrate->npages] = 0;
2110 migrate->npages++;
2111 migrate->cpages++;
2114 return 0;
2117 static int migrate_vma_collect_skip(unsigned long start,
2118 unsigned long end,
2119 struct mm_walk *walk)
2121 struct migrate_vma *migrate = walk->private;
2122 unsigned long addr;
2124 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2125 migrate->dst[migrate->npages] = 0;
2126 migrate->src[migrate->npages++] = 0;
2129 return 0;
2132 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2133 unsigned long start,
2134 unsigned long end,
2135 struct mm_walk *walk)
2137 struct migrate_vma *migrate = walk->private;
2138 struct vm_area_struct *vma = walk->vma;
2139 struct mm_struct *mm = vma->vm_mm;
2140 unsigned long addr = start, unmapped = 0;
2141 spinlock_t *ptl;
2142 pte_t *ptep;
2144 again:
2145 if (pmd_none(*pmdp))
2146 return migrate_vma_collect_hole(start, end, walk);
2148 if (pmd_trans_huge(*pmdp)) {
2149 struct page *page;
2151 ptl = pmd_lock(mm, pmdp);
2152 if (unlikely(!pmd_trans_huge(*pmdp))) {
2153 spin_unlock(ptl);
2154 goto again;
2157 page = pmd_page(*pmdp);
2158 if (is_huge_zero_page(page)) {
2159 spin_unlock(ptl);
2160 split_huge_pmd(vma, pmdp, addr);
2161 if (pmd_trans_unstable(pmdp))
2162 return migrate_vma_collect_skip(start, end,
2163 walk);
2164 } else {
2165 int ret;
2167 get_page(page);
2168 spin_unlock(ptl);
2169 if (unlikely(!trylock_page(page)))
2170 return migrate_vma_collect_skip(start, end,
2171 walk);
2172 ret = split_huge_page(page);
2173 unlock_page(page);
2174 put_page(page);
2175 if (ret)
2176 return migrate_vma_collect_skip(start, end,
2177 walk);
2178 if (pmd_none(*pmdp))
2179 return migrate_vma_collect_hole(start, end,
2180 walk);
2184 if (unlikely(pmd_bad(*pmdp)))
2185 return migrate_vma_collect_skip(start, end, walk);
2187 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2188 arch_enter_lazy_mmu_mode();
2190 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2191 unsigned long mpfn, pfn;
2192 struct page *page;
2193 swp_entry_t entry;
2194 pte_t pte;
2196 pte = *ptep;
2197 pfn = pte_pfn(pte);
2199 if (pte_none(pte)) {
2200 mpfn = MIGRATE_PFN_MIGRATE;
2201 migrate->cpages++;
2202 pfn = 0;
2203 goto next;
2206 if (!pte_present(pte)) {
2207 mpfn = pfn = 0;
2210 * Only care about unaddressable device page special
2211 * page table entry. Other special swap entries are not
2212 * migratable, and we ignore regular swapped page.
2214 entry = pte_to_swp_entry(pte);
2215 if (!is_device_private_entry(entry))
2216 goto next;
2218 page = device_private_entry_to_page(entry);
2219 mpfn = migrate_pfn(page_to_pfn(page))|
2220 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2221 if (is_write_device_private_entry(entry))
2222 mpfn |= MIGRATE_PFN_WRITE;
2223 } else {
2224 if (is_zero_pfn(pfn)) {
2225 mpfn = MIGRATE_PFN_MIGRATE;
2226 migrate->cpages++;
2227 pfn = 0;
2228 goto next;
2230 page = _vm_normal_page(migrate->vma, addr, pte, true);
2231 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2232 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2235 /* FIXME support THP */
2236 if (!page || !page->mapping || PageTransCompound(page)) {
2237 mpfn = pfn = 0;
2238 goto next;
2240 pfn = page_to_pfn(page);
2243 * By getting a reference on the page we pin it and that blocks
2244 * any kind of migration. Side effect is that it "freezes" the
2245 * pte.
2247 * We drop this reference after isolating the page from the lru
2248 * for non device page (device page are not on the lru and thus
2249 * can't be dropped from it).
2251 get_page(page);
2252 migrate->cpages++;
2255 * Optimize for the common case where page is only mapped once
2256 * in one process. If we can lock the page, then we can safely
2257 * set up a special migration page table entry now.
2259 if (trylock_page(page)) {
2260 pte_t swp_pte;
2262 mpfn |= MIGRATE_PFN_LOCKED;
2263 ptep_get_and_clear(mm, addr, ptep);
2265 /* Setup special migration page table entry */
2266 entry = make_migration_entry(page, mpfn &
2267 MIGRATE_PFN_WRITE);
2268 swp_pte = swp_entry_to_pte(entry);
2269 if (pte_soft_dirty(pte))
2270 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2271 set_pte_at(mm, addr, ptep, swp_pte);
2274 * This is like regular unmap: we remove the rmap and
2275 * drop page refcount. Page won't be freed, as we took
2276 * a reference just above.
2278 page_remove_rmap(page, false);
2279 put_page(page);
2281 if (pte_present(pte))
2282 unmapped++;
2285 next:
2286 migrate->dst[migrate->npages] = 0;
2287 migrate->src[migrate->npages++] = mpfn;
2289 arch_leave_lazy_mmu_mode();
2290 pte_unmap_unlock(ptep - 1, ptl);
2292 /* Only flush the TLB if we actually modified any entries */
2293 if (unmapped)
2294 flush_tlb_range(walk->vma, start, end);
2296 return 0;
2300 * migrate_vma_collect() - collect pages over a range of virtual addresses
2301 * @migrate: migrate struct containing all migration information
2303 * This will walk the CPU page table. For each virtual address backed by a
2304 * valid page, it updates the src array and takes a reference on the page, in
2305 * order to pin the page until we lock it and unmap it.
2307 static void migrate_vma_collect(struct migrate_vma *migrate)
2309 struct mm_walk mm_walk;
2311 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2312 mm_walk.pte_entry = NULL;
2313 mm_walk.pte_hole = migrate_vma_collect_hole;
2314 mm_walk.hugetlb_entry = NULL;
2315 mm_walk.test_walk = NULL;
2316 mm_walk.vma = migrate->vma;
2317 mm_walk.mm = migrate->vma->vm_mm;
2318 mm_walk.private = migrate;
2320 mmu_notifier_invalidate_range_start(mm_walk.mm,
2321 migrate->start,
2322 migrate->end);
2323 walk_page_range(migrate->start, migrate->end, &mm_walk);
2324 mmu_notifier_invalidate_range_end(mm_walk.mm,
2325 migrate->start,
2326 migrate->end);
2328 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2332 * migrate_vma_check_page() - check if page is pinned or not
2333 * @page: struct page to check
2335 * Pinned pages cannot be migrated. This is the same test as in
2336 * migrate_page_move_mapping(), except that here we allow migration of a
2337 * ZONE_DEVICE page.
2339 static bool migrate_vma_check_page(struct page *page)
2342 * One extra ref because caller holds an extra reference, either from
2343 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2344 * a device page.
2346 int extra = 1;
2349 * FIXME support THP (transparent huge page), it is bit more complex to
2350 * check them than regular pages, because they can be mapped with a pmd
2351 * or with a pte (split pte mapping).
2353 if (PageCompound(page))
2354 return false;
2356 /* Page from ZONE_DEVICE have one extra reference */
2357 if (is_zone_device_page(page)) {
2359 * Private page can never be pin as they have no valid pte and
2360 * GUP will fail for those. Yet if there is a pending migration
2361 * a thread might try to wait on the pte migration entry and
2362 * will bump the page reference count. Sadly there is no way to
2363 * differentiate a regular pin from migration wait. Hence to
2364 * avoid 2 racing thread trying to migrate back to CPU to enter
2365 * infinite loop (one stoping migration because the other is
2366 * waiting on pte migration entry). We always return true here.
2368 * FIXME proper solution is to rework migration_entry_wait() so
2369 * it does not need to take a reference on page.
2371 if (is_device_private_page(page))
2372 return true;
2375 * Only allow device public page to be migrated and account for
2376 * the extra reference count imply by ZONE_DEVICE pages.
2378 if (!is_device_public_page(page))
2379 return false;
2380 extra++;
2383 /* For file back page */
2384 if (page_mapping(page))
2385 extra += 1 + page_has_private(page);
2387 if ((page_count(page) - extra) > page_mapcount(page))
2388 return false;
2390 return true;
2394 * migrate_vma_prepare() - lock pages and isolate them from the lru
2395 * @migrate: migrate struct containing all migration information
2397 * This locks pages that have been collected by migrate_vma_collect(). Once each
2398 * page is locked it is isolated from the lru (for non-device pages). Finally,
2399 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2400 * migrated by concurrent kernel threads.
2402 static void migrate_vma_prepare(struct migrate_vma *migrate)
2404 const unsigned long npages = migrate->npages;
2405 const unsigned long start = migrate->start;
2406 unsigned long addr, i, restore = 0;
2407 bool allow_drain = true;
2409 lru_add_drain();
2411 for (i = 0; (i < npages) && migrate->cpages; i++) {
2412 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2413 bool remap = true;
2415 if (!page)
2416 continue;
2418 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2420 * Because we are migrating several pages there can be
2421 * a deadlock between 2 concurrent migration where each
2422 * are waiting on each other page lock.
2424 * Make migrate_vma() a best effort thing and backoff
2425 * for any page we can not lock right away.
2427 if (!trylock_page(page)) {
2428 migrate->src[i] = 0;
2429 migrate->cpages--;
2430 put_page(page);
2431 continue;
2433 remap = false;
2434 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2437 /* ZONE_DEVICE pages are not on LRU */
2438 if (!is_zone_device_page(page)) {
2439 if (!PageLRU(page) && allow_drain) {
2440 /* Drain CPU's pagevec */
2441 lru_add_drain_all();
2442 allow_drain = false;
2445 if (isolate_lru_page(page)) {
2446 if (remap) {
2447 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2448 migrate->cpages--;
2449 restore++;
2450 } else {
2451 migrate->src[i] = 0;
2452 unlock_page(page);
2453 migrate->cpages--;
2454 put_page(page);
2456 continue;
2459 /* Drop the reference we took in collect */
2460 put_page(page);
2463 if (!migrate_vma_check_page(page)) {
2464 if (remap) {
2465 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2466 migrate->cpages--;
2467 restore++;
2469 if (!is_zone_device_page(page)) {
2470 get_page(page);
2471 putback_lru_page(page);
2473 } else {
2474 migrate->src[i] = 0;
2475 unlock_page(page);
2476 migrate->cpages--;
2478 if (!is_zone_device_page(page))
2479 putback_lru_page(page);
2480 else
2481 put_page(page);
2486 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2487 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2489 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2490 continue;
2492 remove_migration_pte(page, migrate->vma, addr, page);
2494 migrate->src[i] = 0;
2495 unlock_page(page);
2496 put_page(page);
2497 restore--;
2502 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2503 * @migrate: migrate struct containing all migration information
2505 * Replace page mapping (CPU page table pte) with a special migration pte entry
2506 * and check again if it has been pinned. Pinned pages are restored because we
2507 * cannot migrate them.
2509 * This is the last step before we call the device driver callback to allocate
2510 * destination memory and copy contents of original page over to new page.
2512 static void migrate_vma_unmap(struct migrate_vma *migrate)
2514 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2515 const unsigned long npages = migrate->npages;
2516 const unsigned long start = migrate->start;
2517 unsigned long addr, i, restore = 0;
2519 for (i = 0; i < npages; i++) {
2520 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2522 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2523 continue;
2525 if (page_mapped(page)) {
2526 try_to_unmap(page, flags);
2527 if (page_mapped(page))
2528 goto restore;
2531 if (migrate_vma_check_page(page))
2532 continue;
2534 restore:
2535 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2536 migrate->cpages--;
2537 restore++;
2540 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2541 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2543 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2544 continue;
2546 remove_migration_ptes(page, page, false);
2548 migrate->src[i] = 0;
2549 unlock_page(page);
2550 restore--;
2552 if (is_zone_device_page(page))
2553 put_page(page);
2554 else
2555 putback_lru_page(page);
2559 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2560 unsigned long addr,
2561 struct page *page,
2562 unsigned long *src,
2563 unsigned long *dst)
2565 struct vm_area_struct *vma = migrate->vma;
2566 struct mm_struct *mm = vma->vm_mm;
2567 struct mem_cgroup *memcg;
2568 bool flush = false;
2569 spinlock_t *ptl;
2570 pte_t entry;
2571 pgd_t *pgdp;
2572 p4d_t *p4dp;
2573 pud_t *pudp;
2574 pmd_t *pmdp;
2575 pte_t *ptep;
2577 /* Only allow populating anonymous memory */
2578 if (!vma_is_anonymous(vma))
2579 goto abort;
2581 pgdp = pgd_offset(mm, addr);
2582 p4dp = p4d_alloc(mm, pgdp, addr);
2583 if (!p4dp)
2584 goto abort;
2585 pudp = pud_alloc(mm, p4dp, addr);
2586 if (!pudp)
2587 goto abort;
2588 pmdp = pmd_alloc(mm, pudp, addr);
2589 if (!pmdp)
2590 goto abort;
2592 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2593 goto abort;
2596 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2597 * pte_offset_map() on pmds where a huge pmd might be created
2598 * from a different thread.
2600 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2601 * parallel threads are excluded by other means.
2603 * Here we only have down_read(mmap_sem).
2605 if (pte_alloc(mm, pmdp, addr))
2606 goto abort;
2608 /* See the comment in pte_alloc_one_map() */
2609 if (unlikely(pmd_trans_unstable(pmdp)))
2610 goto abort;
2612 if (unlikely(anon_vma_prepare(vma)))
2613 goto abort;
2614 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2615 goto abort;
2618 * The memory barrier inside __SetPageUptodate makes sure that
2619 * preceding stores to the page contents become visible before
2620 * the set_pte_at() write.
2622 __SetPageUptodate(page);
2624 if (is_zone_device_page(page)) {
2625 if (is_device_private_page(page)) {
2626 swp_entry_t swp_entry;
2628 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2629 entry = swp_entry_to_pte(swp_entry);
2630 } else if (is_device_public_page(page)) {
2631 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2632 if (vma->vm_flags & VM_WRITE)
2633 entry = pte_mkwrite(pte_mkdirty(entry));
2634 entry = pte_mkdevmap(entry);
2636 } else {
2637 entry = mk_pte(page, vma->vm_page_prot);
2638 if (vma->vm_flags & VM_WRITE)
2639 entry = pte_mkwrite(pte_mkdirty(entry));
2642 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2644 if (pte_present(*ptep)) {
2645 unsigned long pfn = pte_pfn(*ptep);
2647 if (!is_zero_pfn(pfn)) {
2648 pte_unmap_unlock(ptep, ptl);
2649 mem_cgroup_cancel_charge(page, memcg, false);
2650 goto abort;
2652 flush = true;
2653 } else if (!pte_none(*ptep)) {
2654 pte_unmap_unlock(ptep, ptl);
2655 mem_cgroup_cancel_charge(page, memcg, false);
2656 goto abort;
2660 * Check for usefaultfd but do not deliver the fault. Instead,
2661 * just back off.
2663 if (userfaultfd_missing(vma)) {
2664 pte_unmap_unlock(ptep, ptl);
2665 mem_cgroup_cancel_charge(page, memcg, false);
2666 goto abort;
2669 inc_mm_counter(mm, MM_ANONPAGES);
2670 page_add_new_anon_rmap(page, vma, addr, false);
2671 mem_cgroup_commit_charge(page, memcg, false, false);
2672 if (!is_zone_device_page(page))
2673 lru_cache_add_active_or_unevictable(page, vma);
2674 get_page(page);
2676 if (flush) {
2677 flush_cache_page(vma, addr, pte_pfn(*ptep));
2678 ptep_clear_flush_notify(vma, addr, ptep);
2679 set_pte_at_notify(mm, addr, ptep, entry);
2680 update_mmu_cache(vma, addr, ptep);
2681 } else {
2682 /* No need to invalidate - it was non-present before */
2683 set_pte_at(mm, addr, ptep, entry);
2684 update_mmu_cache(vma, addr, ptep);
2687 pte_unmap_unlock(ptep, ptl);
2688 *src = MIGRATE_PFN_MIGRATE;
2689 return;
2691 abort:
2692 *src &= ~MIGRATE_PFN_MIGRATE;
2696 * migrate_vma_pages() - migrate meta-data from src page to dst page
2697 * @migrate: migrate struct containing all migration information
2699 * This migrates struct page meta-data from source struct page to destination
2700 * struct page. This effectively finishes the migration from source page to the
2701 * destination page.
2703 static void migrate_vma_pages(struct migrate_vma *migrate)
2705 const unsigned long npages = migrate->npages;
2706 const unsigned long start = migrate->start;
2707 struct vm_area_struct *vma = migrate->vma;
2708 struct mm_struct *mm = vma->vm_mm;
2709 unsigned long addr, i, mmu_start;
2710 bool notified = false;
2712 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2713 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2714 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2715 struct address_space *mapping;
2716 int r;
2718 if (!newpage) {
2719 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2720 continue;
2723 if (!page) {
2724 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2725 continue;
2727 if (!notified) {
2728 mmu_start = addr;
2729 notified = true;
2730 mmu_notifier_invalidate_range_start(mm,
2731 mmu_start,
2732 migrate->end);
2734 migrate_vma_insert_page(migrate, addr, newpage,
2735 &migrate->src[i],
2736 &migrate->dst[i]);
2737 continue;
2740 mapping = page_mapping(page);
2742 if (is_zone_device_page(newpage)) {
2743 if (is_device_private_page(newpage)) {
2745 * For now only support private anonymous when
2746 * migrating to un-addressable device memory.
2748 if (mapping) {
2749 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2750 continue;
2752 } else if (!is_device_public_page(newpage)) {
2754 * Other types of ZONE_DEVICE page are not
2755 * supported.
2757 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2758 continue;
2762 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2763 if (r != MIGRATEPAGE_SUCCESS)
2764 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768 * No need to double call mmu_notifier->invalidate_range() callback as
2769 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2770 * did already call it.
2772 if (notified)
2773 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2774 migrate->end);
2778 * migrate_vma_finalize() - restore CPU page table entry
2779 * @migrate: migrate struct containing all migration information
2781 * This replaces the special migration pte entry with either a mapping to the
2782 * new page if migration was successful for that page, or to the original page
2783 * otherwise.
2785 * This also unlocks the pages and puts them back on the lru, or drops the extra
2786 * refcount, for device pages.
2788 static void migrate_vma_finalize(struct migrate_vma *migrate)
2790 const unsigned long npages = migrate->npages;
2791 unsigned long i;
2793 for (i = 0; i < npages; i++) {
2794 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2795 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2797 if (!page) {
2798 if (newpage) {
2799 unlock_page(newpage);
2800 put_page(newpage);
2802 continue;
2805 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2806 if (newpage) {
2807 unlock_page(newpage);
2808 put_page(newpage);
2810 newpage = page;
2813 remove_migration_ptes(page, newpage, false);
2814 unlock_page(page);
2815 migrate->cpages--;
2817 if (is_zone_device_page(page))
2818 put_page(page);
2819 else
2820 putback_lru_page(page);
2822 if (newpage != page) {
2823 unlock_page(newpage);
2824 if (is_zone_device_page(newpage))
2825 put_page(newpage);
2826 else
2827 putback_lru_page(newpage);
2833 * migrate_vma() - migrate a range of memory inside vma
2835 * @ops: migration callback for allocating destination memory and copying
2836 * @vma: virtual memory area containing the range to be migrated
2837 * @start: start address of the range to migrate (inclusive)
2838 * @end: end address of the range to migrate (exclusive)
2839 * @src: array of hmm_pfn_t containing source pfns
2840 * @dst: array of hmm_pfn_t containing destination pfns
2841 * @private: pointer passed back to each of the callback
2842 * Returns: 0 on success, error code otherwise
2844 * This function tries to migrate a range of memory virtual address range, using
2845 * callbacks to allocate and copy memory from source to destination. First it
2846 * collects all the pages backing each virtual address in the range, saving this
2847 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2848 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2849 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2850 * in the corresponding src array entry. It then restores any pages that are
2851 * pinned, by remapping and unlocking those pages.
2853 * At this point it calls the alloc_and_copy() callback. For documentation on
2854 * what is expected from that callback, see struct migrate_vma_ops comments in
2855 * include/linux/migrate.h
2857 * After the alloc_and_copy() callback, this function goes over each entry in
2858 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2859 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2860 * then the function tries to migrate struct page information from the source
2861 * struct page to the destination struct page. If it fails to migrate the struct
2862 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2863 * array.
2865 * At this point all successfully migrated pages have an entry in the src
2866 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2867 * array entry with MIGRATE_PFN_VALID flag set.
2869 * It then calls the finalize_and_map() callback. See comments for "struct
2870 * migrate_vma_ops", in include/linux/migrate.h for details about
2871 * finalize_and_map() behavior.
2873 * After the finalize_and_map() callback, for successfully migrated pages, this
2874 * function updates the CPU page table to point to new pages, otherwise it
2875 * restores the CPU page table to point to the original source pages.
2877 * Function returns 0 after the above steps, even if no pages were migrated
2878 * (The function only returns an error if any of the arguments are invalid.)
2880 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2881 * unsigned long entries.
2883 int migrate_vma(const struct migrate_vma_ops *ops,
2884 struct vm_area_struct *vma,
2885 unsigned long start,
2886 unsigned long end,
2887 unsigned long *src,
2888 unsigned long *dst,
2889 void *private)
2891 struct migrate_vma migrate;
2893 /* Sanity check the arguments */
2894 start &= PAGE_MASK;
2895 end &= PAGE_MASK;
2896 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2897 vma_is_dax(vma))
2898 return -EINVAL;
2899 if (start < vma->vm_start || start >= vma->vm_end)
2900 return -EINVAL;
2901 if (end <= vma->vm_start || end > vma->vm_end)
2902 return -EINVAL;
2903 if (!ops || !src || !dst || start >= end)
2904 return -EINVAL;
2906 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2907 migrate.src = src;
2908 migrate.dst = dst;
2909 migrate.start = start;
2910 migrate.npages = 0;
2911 migrate.cpages = 0;
2912 migrate.end = end;
2913 migrate.vma = vma;
2915 /* Collect, and try to unmap source pages */
2916 migrate_vma_collect(&migrate);
2917 if (!migrate.cpages)
2918 return 0;
2920 /* Lock and isolate page */
2921 migrate_vma_prepare(&migrate);
2922 if (!migrate.cpages)
2923 return 0;
2925 /* Unmap pages */
2926 migrate_vma_unmap(&migrate);
2927 if (!migrate.cpages)
2928 return 0;
2931 * At this point pages are locked and unmapped, and thus they have
2932 * stable content and can safely be copied to destination memory that
2933 * is allocated by the callback.
2935 * Note that migration can fail in migrate_vma_struct_page() for each
2936 * individual page.
2938 ops->alloc_and_copy(vma, src, dst, start, end, private);
2940 /* This does the real migration of struct page */
2941 migrate_vma_pages(&migrate);
2943 ops->finalize_and_map(vma, src, dst, start, end, private);
2945 /* Unlock and remap pages */
2946 migrate_vma_finalize(&migrate);
2948 return 0;
2950 EXPORT_SYMBOL(migrate_vma);
2951 #endif /* defined(MIGRATE_VMA_HELPER) */