2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
46 #include <asm/pgtable.h>
48 #include <asm/processor.h>
51 #include <asm/machdep.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
57 #include <asm/debug.h>
59 #include <asm/firmware.h>
61 #include <asm/code-patching.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
70 /* Transactional Memory debug */
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #define TM_DEBUG(x...) do { } while(0)
77 extern unsigned long _get_SP(void);
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct
*tsk
)
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
88 if (tsk
== current
&& tsk
->thread
.regs
&&
89 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
90 !test_thread_flag(TIF_RESTORE_TM
)) {
91 tsk
->thread
.ckpt_regs
.msr
= tsk
->thread
.regs
->msr
;
92 set_thread_flag(TIF_RESTORE_TM
);
96 static inline bool msr_tm_active(unsigned long msr
)
98 return MSR_TM_ACTIVE(msr
);
101 static inline bool msr_tm_active(unsigned long msr
) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105 bool strict_msr_control
;
106 EXPORT_SYMBOL(strict_msr_control
);
108 static int __init
enable_strict_msr_control(char *str
)
110 strict_msr_control
= true;
111 pr_info("Enabling strict facility control\n");
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
117 unsigned long msr_check_and_set(unsigned long bits
)
119 unsigned long oldmsr
= mfmsr();
120 unsigned long newmsr
;
122 newmsr
= oldmsr
| bits
;
125 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
129 if (oldmsr
!= newmsr
)
135 void __msr_check_and_clear(unsigned long bits
)
137 unsigned long oldmsr
= mfmsr();
138 unsigned long newmsr
;
140 newmsr
= oldmsr
& ~bits
;
143 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
147 if (oldmsr
!= newmsr
)
150 EXPORT_SYMBOL(__msr_check_and_clear
);
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct
*tsk
)
158 msr
= tsk
->thread
.regs
->msr
;
161 if (cpu_has_feature(CPU_FTR_VSX
))
164 tsk
->thread
.regs
->msr
= msr
;
167 void giveup_fpu(struct task_struct
*tsk
)
169 check_if_tm_restore_required(tsk
);
171 msr_check_and_set(MSR_FP
);
173 msr_check_and_clear(MSR_FP
);
175 EXPORT_SYMBOL(giveup_fpu
);
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
181 void flush_fp_to_thread(struct task_struct
*tsk
)
183 if (tsk
->thread
.regs
) {
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
193 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
197 * the FP register state on context switch,
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
201 BUG_ON(tsk
!= current
);
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
209 void enable_kernel_fp(void)
211 unsigned long cpumsr
;
213 WARN_ON(preemptible());
215 cpumsr
= msr_check_and_set(MSR_FP
);
217 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
218 check_if_tm_restore_required(current
);
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
226 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
228 __giveup_fpu(current
);
231 EXPORT_SYMBOL(enable_kernel_fp
);
233 static int restore_fp(struct task_struct
*tsk
)
235 if (tsk
->thread
.load_fp
|| msr_tm_active(tsk
->thread
.regs
->msr
)) {
236 load_fp_state(¤t
->thread
.fp_state
);
237 current
->thread
.load_fp
++;
243 static int restore_fp(struct task_struct
*tsk
) { return 0; }
244 #endif /* CONFIG_PPC_FPU */
246 #ifdef CONFIG_ALTIVEC
247 #define loadvec(thr) ((thr).load_vec)
249 static void __giveup_altivec(struct task_struct
*tsk
)
254 msr
= tsk
->thread
.regs
->msr
;
257 if (cpu_has_feature(CPU_FTR_VSX
))
260 tsk
->thread
.regs
->msr
= msr
;
263 void giveup_altivec(struct task_struct
*tsk
)
265 check_if_tm_restore_required(tsk
);
267 msr_check_and_set(MSR_VEC
);
268 __giveup_altivec(tsk
);
269 msr_check_and_clear(MSR_VEC
);
271 EXPORT_SYMBOL(giveup_altivec
);
273 void enable_kernel_altivec(void)
275 unsigned long cpumsr
;
277 WARN_ON(preemptible());
279 cpumsr
= msr_check_and_set(MSR_VEC
);
281 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
282 check_if_tm_restore_required(current
);
284 * If a thread has already been reclaimed then the
285 * checkpointed registers are on the CPU but have definitely
286 * been saved by the reclaim code. Don't need to and *cannot*
287 * giveup as this would save to the 'live' structure not the
288 * checkpointed structure.
290 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
292 __giveup_altivec(current
);
295 EXPORT_SYMBOL(enable_kernel_altivec
);
298 * Make sure the VMX/Altivec register state in the
299 * the thread_struct is up to date for task tsk.
301 void flush_altivec_to_thread(struct task_struct
*tsk
)
303 if (tsk
->thread
.regs
) {
305 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
306 BUG_ON(tsk
!= current
);
312 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
314 static int restore_altivec(struct task_struct
*tsk
)
316 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
317 (tsk
->thread
.load_vec
|| msr_tm_active(tsk
->thread
.regs
->msr
))) {
318 load_vr_state(&tsk
->thread
.vr_state
);
319 tsk
->thread
.used_vr
= 1;
320 tsk
->thread
.load_vec
++;
327 #define loadvec(thr) 0
328 static inline int restore_altivec(struct task_struct
*tsk
) { return 0; }
329 #endif /* CONFIG_ALTIVEC */
332 static void __giveup_vsx(struct task_struct
*tsk
)
334 unsigned long msr
= tsk
->thread
.regs
->msr
;
337 * We should never be ssetting MSR_VSX without also setting
340 WARN_ON((msr
& MSR_VSX
) && !((msr
& MSR_FP
) && (msr
& MSR_VEC
)));
342 /* __giveup_fpu will clear MSR_VSX */
346 __giveup_altivec(tsk
);
349 static void giveup_vsx(struct task_struct
*tsk
)
351 check_if_tm_restore_required(tsk
);
353 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
355 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
358 void enable_kernel_vsx(void)
360 unsigned long cpumsr
;
362 WARN_ON(preemptible());
364 cpumsr
= msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
366 if (current
->thread
.regs
&&
367 (current
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
))) {
368 check_if_tm_restore_required(current
);
370 * If a thread has already been reclaimed then the
371 * checkpointed registers are on the CPU but have definitely
372 * been saved by the reclaim code. Don't need to and *cannot*
373 * giveup as this would save to the 'live' structure not the
374 * checkpointed structure.
376 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
378 __giveup_vsx(current
);
381 EXPORT_SYMBOL(enable_kernel_vsx
);
383 void flush_vsx_to_thread(struct task_struct
*tsk
)
385 if (tsk
->thread
.regs
) {
387 if (tsk
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
)) {
388 BUG_ON(tsk
!= current
);
394 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
396 static int restore_vsx(struct task_struct
*tsk
)
398 if (cpu_has_feature(CPU_FTR_VSX
)) {
399 tsk
->thread
.used_vsr
= 1;
406 static inline int restore_vsx(struct task_struct
*tsk
) { return 0; }
407 #endif /* CONFIG_VSX */
410 void giveup_spe(struct task_struct
*tsk
)
412 check_if_tm_restore_required(tsk
);
414 msr_check_and_set(MSR_SPE
);
416 msr_check_and_clear(MSR_SPE
);
418 EXPORT_SYMBOL(giveup_spe
);
420 void enable_kernel_spe(void)
422 WARN_ON(preemptible());
424 msr_check_and_set(MSR_SPE
);
426 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
427 check_if_tm_restore_required(current
);
428 __giveup_spe(current
);
431 EXPORT_SYMBOL(enable_kernel_spe
);
433 void flush_spe_to_thread(struct task_struct
*tsk
)
435 if (tsk
->thread
.regs
) {
437 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
438 BUG_ON(tsk
!= current
);
439 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
445 #endif /* CONFIG_SPE */
447 static unsigned long msr_all_available
;
449 static int __init
init_msr_all_available(void)
451 #ifdef CONFIG_PPC_FPU
452 msr_all_available
|= MSR_FP
;
454 #ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
456 msr_all_available
|= MSR_VEC
;
459 if (cpu_has_feature(CPU_FTR_VSX
))
460 msr_all_available
|= MSR_VSX
;
463 if (cpu_has_feature(CPU_FTR_SPE
))
464 msr_all_available
|= MSR_SPE
;
469 early_initcall(init_msr_all_available
);
471 void giveup_all(struct task_struct
*tsk
)
473 unsigned long usermsr
;
475 if (!tsk
->thread
.regs
)
478 usermsr
= tsk
->thread
.regs
->msr
;
480 if ((usermsr
& msr_all_available
) == 0)
483 msr_check_and_set(msr_all_available
);
484 check_if_tm_restore_required(tsk
);
486 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
488 #ifdef CONFIG_PPC_FPU
489 if (usermsr
& MSR_FP
)
492 #ifdef CONFIG_ALTIVEC
493 if (usermsr
& MSR_VEC
)
494 __giveup_altivec(tsk
);
497 if (usermsr
& MSR_SPE
)
501 msr_check_and_clear(msr_all_available
);
503 EXPORT_SYMBOL(giveup_all
);
505 void restore_math(struct pt_regs
*regs
)
509 if (!msr_tm_active(regs
->msr
) &&
510 !current
->thread
.load_fp
&& !loadvec(current
->thread
))
514 msr_check_and_set(msr_all_available
);
517 * Only reload if the bit is not set in the user MSR, the bit BEING set
518 * indicates that the registers are hot
520 if ((!(msr
& MSR_FP
)) && restore_fp(current
))
521 msr
|= MSR_FP
| current
->thread
.fpexc_mode
;
523 if ((!(msr
& MSR_VEC
)) && restore_altivec(current
))
526 if ((msr
& (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
) &&
527 restore_vsx(current
)) {
531 msr_check_and_clear(msr_all_available
);
536 void save_all(struct task_struct
*tsk
)
538 unsigned long usermsr
;
540 if (!tsk
->thread
.regs
)
543 usermsr
= tsk
->thread
.regs
->msr
;
545 if ((usermsr
& msr_all_available
) == 0)
548 msr_check_and_set(msr_all_available
);
550 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
552 if (usermsr
& MSR_FP
)
555 if (usermsr
& MSR_VEC
)
558 if (usermsr
& MSR_SPE
)
561 msr_check_and_clear(msr_all_available
);
564 void flush_all_to_thread(struct task_struct
*tsk
)
566 if (tsk
->thread
.regs
) {
568 BUG_ON(tsk
!= current
);
572 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
573 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
579 EXPORT_SYMBOL(flush_all_to_thread
);
581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
582 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
583 unsigned long error_code
, int signal_code
, int breakpt
)
587 current
->thread
.trap_nr
= signal_code
;
588 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
589 11, SIGSEGV
) == NOTIFY_STOP
)
592 /* Deliver the signal to userspace */
593 info
.si_signo
= SIGTRAP
;
594 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
595 info
.si_code
= signal_code
;
596 info
.si_addr
= (void __user
*)address
;
597 force_sig_info(SIGTRAP
, &info
, current
);
599 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
600 void do_break (struct pt_regs
*regs
, unsigned long address
,
601 unsigned long error_code
)
605 current
->thread
.trap_nr
= TRAP_HWBKPT
;
606 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
607 11, SIGSEGV
) == NOTIFY_STOP
)
610 if (debugger_break_match(regs
))
613 /* Clear the breakpoint */
614 hw_breakpoint_disable();
616 /* Deliver the signal to userspace */
617 info
.si_signo
= SIGTRAP
;
619 info
.si_code
= TRAP_HWBKPT
;
620 info
.si_addr
= (void __user
*)address
;
621 force_sig_info(SIGTRAP
, &info
, current
);
623 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
625 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
627 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
629 * Set the debug registers back to their default "safe" values.
631 static void set_debug_reg_defaults(struct thread_struct
*thread
)
633 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
634 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
635 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
637 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
641 thread
->debug
.dbcr0
= 0;
644 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
646 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
647 DBCR1_IAC3US
| DBCR1_IAC4US
;
649 * Force Data Address Compare User/Supervisor bits to be User-only
650 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
652 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
654 thread
->debug
.dbcr1
= 0;
658 static void prime_debug_regs(struct debug_reg
*debug
)
661 * We could have inherited MSR_DE from userspace, since
662 * it doesn't get cleared on exception entry. Make sure
663 * MSR_DE is clear before we enable any debug events.
665 mtmsr(mfmsr() & ~MSR_DE
);
667 mtspr(SPRN_IAC1
, debug
->iac1
);
668 mtspr(SPRN_IAC2
, debug
->iac2
);
669 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
670 mtspr(SPRN_IAC3
, debug
->iac3
);
671 mtspr(SPRN_IAC4
, debug
->iac4
);
673 mtspr(SPRN_DAC1
, debug
->dac1
);
674 mtspr(SPRN_DAC2
, debug
->dac2
);
675 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
676 mtspr(SPRN_DVC1
, debug
->dvc1
);
677 mtspr(SPRN_DVC2
, debug
->dvc2
);
679 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
680 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
682 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
686 * Unless neither the old or new thread are making use of the
687 * debug registers, set the debug registers from the values
688 * stored in the new thread.
690 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
692 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
693 || (new_debug
->dbcr0
& DBCR0_IDM
))
694 prime_debug_regs(new_debug
);
696 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
697 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
698 #ifndef CONFIG_HAVE_HW_BREAKPOINT
699 static void set_debug_reg_defaults(struct thread_struct
*thread
)
701 thread
->hw_brk
.address
= 0;
702 thread
->hw_brk
.type
= 0;
703 set_breakpoint(&thread
->hw_brk
);
705 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
706 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
708 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
709 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
711 mtspr(SPRN_DAC1
, dabr
);
712 #ifdef CONFIG_PPC_47x
717 #elif defined(CONFIG_PPC_BOOK3S)
718 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
720 mtspr(SPRN_DABR
, dabr
);
721 if (cpu_has_feature(CPU_FTR_DABRX
))
722 mtspr(SPRN_DABRX
, dabrx
);
725 #elif defined(CONFIG_PPC_8xx)
726 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
728 unsigned long addr
= dabr
& ~HW_BRK_TYPE_DABR
;
729 unsigned long lctrl1
= 0x90000000; /* compare type: equal on E & F */
730 unsigned long lctrl2
= 0x8e000002; /* watchpoint 1 on cmp E | F */
732 if ((dabr
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_READ
)
734 else if ((dabr
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_WRITE
)
736 else if ((dabr
& HW_BRK_TYPE_RDWR
) == 0)
739 mtspr(SPRN_LCTRL2
, 0);
740 mtspr(SPRN_CMPE
, addr
);
741 mtspr(SPRN_CMPF
, addr
+ 4);
742 mtspr(SPRN_LCTRL1
, lctrl1
);
743 mtspr(SPRN_LCTRL2
, lctrl2
);
748 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
754 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
756 unsigned long dabr
, dabrx
;
758 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
759 dabrx
= ((brk
->type
>> 3) & 0x7);
762 return ppc_md
.set_dabr(dabr
, dabrx
);
764 return __set_dabr(dabr
, dabrx
);
767 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
769 unsigned long dawr
, dawrx
, mrd
;
773 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
774 << (63 - 58); //* read/write bits */
775 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
776 << (63 - 59); //* translate */
777 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
778 >> 3; //* PRIM bits */
779 /* dawr length is stored in field MDR bits 48:53. Matches range in
780 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
782 brk->len is in bytes.
783 This aligns up to double word size, shifts and does the bias.
785 mrd
= ((brk
->len
+ 7) >> 3) - 1;
786 dawrx
|= (mrd
& 0x3f) << (63 - 53);
789 return ppc_md
.set_dawr(dawr
, dawrx
);
790 mtspr(SPRN_DAWR
, dawr
);
791 mtspr(SPRN_DAWRX
, dawrx
);
795 void __set_breakpoint(struct arch_hw_breakpoint
*brk
)
797 memcpy(this_cpu_ptr(¤t_brk
), brk
, sizeof(*brk
));
799 if (cpu_has_feature(CPU_FTR_DAWR
))
805 void set_breakpoint(struct arch_hw_breakpoint
*brk
)
808 __set_breakpoint(brk
);
813 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
816 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
817 struct arch_hw_breakpoint
*b
)
819 if (a
->address
!= b
->address
)
821 if (a
->type
!= b
->type
)
823 if (a
->len
!= b
->len
)
828 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
830 static inline bool tm_enabled(struct task_struct
*tsk
)
832 return tsk
&& tsk
->thread
.regs
&& (tsk
->thread
.regs
->msr
& MSR_TM
);
835 static void tm_reclaim_thread(struct thread_struct
*thr
,
836 struct thread_info
*ti
, uint8_t cause
)
839 * Use the current MSR TM suspended bit to track if we have
840 * checkpointed state outstanding.
841 * On signal delivery, we'd normally reclaim the checkpointed
842 * state to obtain stack pointer (see:get_tm_stackpointer()).
843 * This will then directly return to userspace without going
844 * through __switch_to(). However, if the stack frame is bad,
845 * we need to exit this thread which calls __switch_to() which
846 * will again attempt to reclaim the already saved tm state.
847 * Hence we need to check that we've not already reclaimed
849 * We do this using the current MSR, rather tracking it in
850 * some specific thread_struct bit, as it has the additional
851 * benefit of checking for a potential TM bad thing exception.
853 if (!MSR_TM_SUSPENDED(mfmsr()))
857 * If we are in a transaction and FP is off then we can't have
858 * used FP inside that transaction. Hence the checkpointed
859 * state is the same as the live state. We need to copy the
860 * live state to the checkpointed state so that when the
861 * transaction is restored, the checkpointed state is correct
862 * and the aborted transaction sees the correct state. We use
863 * ckpt_regs.msr here as that's what tm_reclaim will use to
864 * determine if it's going to write the checkpointed state or
865 * not. So either this will write the checkpointed registers,
866 * or reclaim will. Similarly for VMX.
868 if ((thr
->ckpt_regs
.msr
& MSR_FP
) == 0)
869 memcpy(&thr
->ckfp_state
, &thr
->fp_state
,
870 sizeof(struct thread_fp_state
));
871 if ((thr
->ckpt_regs
.msr
& MSR_VEC
) == 0)
872 memcpy(&thr
->ckvr_state
, &thr
->vr_state
,
873 sizeof(struct thread_vr_state
));
875 giveup_all(container_of(thr
, struct task_struct
, thread
));
877 tm_reclaim(thr
, thr
->ckpt_regs
.msr
, cause
);
880 void tm_reclaim_current(uint8_t cause
)
883 tm_reclaim_thread(¤t
->thread
, current_thread_info(), cause
);
886 static inline void tm_reclaim_task(struct task_struct
*tsk
)
888 /* We have to work out if we're switching from/to a task that's in the
889 * middle of a transaction.
891 * In switching we need to maintain a 2nd register state as
892 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
893 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
896 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
898 struct thread_struct
*thr
= &tsk
->thread
;
903 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
904 goto out_and_saveregs
;
906 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
907 "ccr=%lx, msr=%lx, trap=%lx)\n",
908 tsk
->pid
, thr
->regs
->nip
,
909 thr
->regs
->ccr
, thr
->regs
->msr
,
912 tm_reclaim_thread(thr
, task_thread_info(tsk
), TM_CAUSE_RESCHED
);
914 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
918 /* Always save the regs here, even if a transaction's not active.
919 * This context-switches a thread's TM info SPRs. We do it here to
920 * be consistent with the restore path (in recheckpoint) which
921 * cannot happen later in _switch().
926 extern void __tm_recheckpoint(struct thread_struct
*thread
,
927 unsigned long orig_msr
);
929 void tm_recheckpoint(struct thread_struct
*thread
,
930 unsigned long orig_msr
)
934 if (!(thread
->regs
->msr
& MSR_TM
))
937 /* We really can't be interrupted here as the TEXASR registers can't
938 * change and later in the trecheckpoint code, we have a userspace R1.
939 * So let's hard disable over this region.
941 local_irq_save(flags
);
944 /* The TM SPRs are restored here, so that TEXASR.FS can be set
945 * before the trecheckpoint and no explosion occurs.
947 tm_restore_sprs(thread
);
949 __tm_recheckpoint(thread
, orig_msr
);
951 local_irq_restore(flags
);
954 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
958 if (!cpu_has_feature(CPU_FTR_TM
))
961 /* Recheckpoint the registers of the thread we're about to switch to.
963 * If the task was using FP, we non-lazily reload both the original and
964 * the speculative FP register states. This is because the kernel
965 * doesn't see if/when a TM rollback occurs, so if we take an FP
966 * unavailable later, we are unable to determine which set of FP regs
967 * need to be restored.
969 if (!tm_enabled(new))
972 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
973 tm_restore_sprs(&new->thread
);
976 msr
= new->thread
.ckpt_regs
.msr
;
977 /* Recheckpoint to restore original checkpointed register state. */
978 TM_DEBUG("*** tm_recheckpoint of pid %d "
979 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
980 new->pid
, new->thread
.regs
->msr
, msr
);
982 tm_recheckpoint(&new->thread
, msr
);
985 * The checkpointed state has been restored but the live state has
986 * not, ensure all the math functionality is turned off to trigger
987 * restore_math() to reload.
989 new->thread
.regs
->msr
&= ~(MSR_FP
| MSR_VEC
| MSR_VSX
);
991 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
992 "(kernel msr 0x%lx)\n",
996 static inline void __switch_to_tm(struct task_struct
*prev
,
997 struct task_struct
*new)
999 if (cpu_has_feature(CPU_FTR_TM
)) {
1000 if (tm_enabled(prev
) || tm_enabled(new))
1003 if (tm_enabled(prev
)) {
1004 prev
->thread
.load_tm
++;
1005 tm_reclaim_task(prev
);
1006 if (!MSR_TM_ACTIVE(prev
->thread
.regs
->msr
) && prev
->thread
.load_tm
== 0)
1007 prev
->thread
.regs
->msr
&= ~MSR_TM
;
1010 tm_recheckpoint_new_task(new);
1015 * This is called if we are on the way out to userspace and the
1016 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1017 * FP and/or vector state and does so if necessary.
1018 * If userspace is inside a transaction (whether active or
1019 * suspended) and FP/VMX/VSX instructions have ever been enabled
1020 * inside that transaction, then we have to keep them enabled
1021 * and keep the FP/VMX/VSX state loaded while ever the transaction
1022 * continues. The reason is that if we didn't, and subsequently
1023 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1024 * we don't know whether it's the same transaction, and thus we
1025 * don't know which of the checkpointed state and the transactional
1028 void restore_tm_state(struct pt_regs
*regs
)
1030 unsigned long msr_diff
;
1033 * This is the only moment we should clear TIF_RESTORE_TM as
1034 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1035 * again, anything else could lead to an incorrect ckpt_msr being
1036 * saved and therefore incorrect signal contexts.
1038 clear_thread_flag(TIF_RESTORE_TM
);
1039 if (!MSR_TM_ACTIVE(regs
->msr
))
1042 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
1043 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
1045 /* Ensure that restore_math() will restore */
1046 if (msr_diff
& MSR_FP
)
1047 current
->thread
.load_fp
= 1;
1048 #ifdef CONFIG_ALTIVEC
1049 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && msr_diff
& MSR_VEC
)
1050 current
->thread
.load_vec
= 1;
1054 regs
->msr
|= msr_diff
;
1058 #define tm_recheckpoint_new_task(new)
1059 #define __switch_to_tm(prev, new)
1060 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1062 static inline void save_sprs(struct thread_struct
*t
)
1064 #ifdef CONFIG_ALTIVEC
1065 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1066 t
->vrsave
= mfspr(SPRN_VRSAVE
);
1068 #ifdef CONFIG_PPC_BOOK3S_64
1069 if (cpu_has_feature(CPU_FTR_DSCR
))
1070 t
->dscr
= mfspr(SPRN_DSCR
);
1072 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1073 t
->bescr
= mfspr(SPRN_BESCR
);
1074 t
->ebbhr
= mfspr(SPRN_EBBHR
);
1075 t
->ebbrr
= mfspr(SPRN_EBBRR
);
1077 t
->fscr
= mfspr(SPRN_FSCR
);
1080 * Note that the TAR is not available for use in the kernel.
1081 * (To provide this, the TAR should be backed up/restored on
1082 * exception entry/exit instead, and be in pt_regs. FIXME,
1083 * this should be in pt_regs anyway (for debug).)
1085 t
->tar
= mfspr(SPRN_TAR
);
1090 static inline void restore_sprs(struct thread_struct
*old_thread
,
1091 struct thread_struct
*new_thread
)
1093 #ifdef CONFIG_ALTIVEC
1094 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1095 old_thread
->vrsave
!= new_thread
->vrsave
)
1096 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1100 u64 dscr
= get_paca()->dscr_default
;
1101 if (new_thread
->dscr_inherit
)
1102 dscr
= new_thread
->dscr
;
1104 if (old_thread
->dscr
!= dscr
)
1105 mtspr(SPRN_DSCR
, dscr
);
1108 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1109 if (old_thread
->bescr
!= new_thread
->bescr
)
1110 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1111 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1112 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1113 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1114 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1116 if (old_thread
->fscr
!= new_thread
->fscr
)
1117 mtspr(SPRN_FSCR
, new_thread
->fscr
);
1119 if (old_thread
->tar
!= new_thread
->tar
)
1120 mtspr(SPRN_TAR
, new_thread
->tar
);
1125 #ifdef CONFIG_PPC_BOOK3S_64
1127 static const u8 dummy_copy_buffer
[CP_SIZE
] __attribute__((aligned(CP_SIZE
)));
1130 struct task_struct
*__switch_to(struct task_struct
*prev
,
1131 struct task_struct
*new)
1133 struct thread_struct
*new_thread
, *old_thread
;
1134 struct task_struct
*last
;
1135 #ifdef CONFIG_PPC_BOOK3S_64
1136 struct ppc64_tlb_batch
*batch
;
1139 new_thread
= &new->thread
;
1140 old_thread
= ¤t
->thread
;
1142 WARN_ON(!irqs_disabled());
1146 * Collect processor utilization data per process
1148 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
1149 struct cpu_usage
*cu
= this_cpu_ptr(&cpu_usage_array
);
1150 long unsigned start_tb
, current_tb
;
1151 start_tb
= old_thread
->start_tb
;
1152 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
1153 old_thread
->accum_tb
+= (current_tb
- start_tb
);
1154 new_thread
->start_tb
= current_tb
;
1156 #endif /* CONFIG_PPC64 */
1158 #ifdef CONFIG_PPC_STD_MMU_64
1159 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1160 if (batch
->active
) {
1161 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1163 __flush_tlb_pending(batch
);
1166 #endif /* CONFIG_PPC_STD_MMU_64 */
1168 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169 switch_booke_debug_regs(&new->thread
.debug
);
1172 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1175 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1176 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk
), &new->thread
.hw_brk
)))
1177 __set_breakpoint(&new->thread
.hw_brk
);
1178 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1182 * We need to save SPRs before treclaim/trecheckpoint as these will
1183 * change a number of them.
1185 save_sprs(&prev
->thread
);
1187 /* Save FPU, Altivec, VSX and SPE state */
1190 __switch_to_tm(prev
, new);
1192 if (!radix_enabled()) {
1194 * We can't take a PMU exception inside _switch() since there
1195 * is a window where the kernel stack SLB and the kernel stack
1196 * are out of sync. Hard disable here.
1202 * Call restore_sprs() before calling _switch(). If we move it after
1203 * _switch() then we miss out on calling it for new tasks. The reason
1204 * for this is we manually create a stack frame for new tasks that
1205 * directly returns through ret_from_fork() or
1206 * ret_from_kernel_thread(). See copy_thread() for details.
1208 restore_sprs(old_thread
, new_thread
);
1210 last
= _switch(old_thread
, new_thread
);
1212 #ifdef CONFIG_PPC_STD_MMU_64
1213 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1214 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1215 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1219 if (current_thread_info()->task
->thread
.regs
) {
1220 restore_math(current_thread_info()->task
->thread
.regs
);
1223 * The copy-paste buffer can only store into foreign real
1224 * addresses, so unprivileged processes can not see the
1225 * data or use it in any way unless they have foreign real
1226 * mappings. We don't have a VAS driver that allocates those
1227 * yet, so no cpabort is required.
1229 if (cpu_has_feature(CPU_FTR_POWER9_DD1
)) {
1231 * DD1 allows paste into normal system memory, so we
1232 * do an unpaired copy here to clear the buffer and
1233 * prevent a covert channel being set up.
1235 * cpabort is not used because it is quite expensive.
1237 asm volatile(PPC_COPY(%0, %1)
1238 : : "r"(dummy_copy_buffer
), "r"(0));
1241 #endif /* CONFIG_PPC_STD_MMU_64 */
1246 static int instructions_to_print
= 16;
1248 static void show_instructions(struct pt_regs
*regs
)
1251 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
1254 printk("Instruction dump:");
1256 for (i
= 0; i
< instructions_to_print
; i
++) {
1262 #if !defined(CONFIG_BOOKE)
1263 /* If executing with the IMMU off, adjust pc rather
1264 * than print XXXXXXXX.
1266 if (!(regs
->msr
& MSR_IR
))
1267 pc
= (unsigned long)phys_to_virt(pc
);
1270 if (!__kernel_text_address(pc
) ||
1271 probe_kernel_address((unsigned int __user
*)pc
, instr
)) {
1272 pr_cont("XXXXXXXX ");
1274 if (regs
->nip
== pc
)
1275 pr_cont("<%08x> ", instr
);
1277 pr_cont("%08x ", instr
);
1291 static struct regbit msr_bits
[] = {
1292 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1314 #ifndef CONFIG_BOOKE
1321 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1325 for (; bits
->bit
; ++bits
)
1326 if (val
& bits
->bit
) {
1327 pr_cont("%s%s", s
, bits
->name
);
1332 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1333 static struct regbit msr_tm_bits
[] = {
1340 static void print_tm_bits(unsigned long val
)
1343 * This only prints something if at least one of the TM bit is set.
1344 * Inside the TM[], the output means:
1345 * E: Enabled (bit 32)
1346 * S: Suspended (bit 33)
1347 * T: Transactional (bit 34)
1349 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1351 print_bits(val
, msr_tm_bits
, "");
1356 static void print_tm_bits(unsigned long val
) {}
1359 static void print_msr_bits(unsigned long val
)
1362 print_bits(val
, msr_bits
, ",");
1368 #define REG "%016lx"
1369 #define REGS_PER_LINE 4
1370 #define LAST_VOLATILE 13
1373 #define REGS_PER_LINE 8
1374 #define LAST_VOLATILE 12
1377 void show_regs(struct pt_regs
* regs
)
1381 show_regs_print_info(KERN_DEFAULT
);
1383 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1384 regs
->nip
, regs
->link
, regs
->ctr
);
1385 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1386 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1387 printk("MSR: "REG
" ", regs
->msr
);
1388 print_msr_bits(regs
->msr
);
1389 pr_cont(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1391 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1392 pr_cont("CFAR: "REG
" ", regs
->orig_gpr3
);
1393 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1394 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1395 pr_cont("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1397 pr_cont("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1400 pr_cont("SOFTE: %ld ", regs
->softe
);
1402 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1403 if (MSR_TM_ACTIVE(regs
->msr
))
1404 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1407 for (i
= 0; i
< 32; i
++) {
1408 if ((i
% REGS_PER_LINE
) == 0)
1409 pr_cont("\nGPR%02d: ", i
);
1410 pr_cont(REG
" ", regs
->gpr
[i
]);
1411 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1415 #ifdef CONFIG_KALLSYMS
1417 * Lookup NIP late so we have the best change of getting the
1418 * above info out without failing
1420 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1421 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1423 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1424 if (!user_mode(regs
))
1425 show_instructions(regs
);
1428 void flush_thread(void)
1430 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1431 flush_ptrace_hw_breakpoint(current
);
1432 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1433 set_debug_reg_defaults(¤t
->thread
);
1434 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1438 release_thread(struct task_struct
*t
)
1443 * this gets called so that we can store coprocessor state into memory and
1444 * copy the current task into the new thread.
1446 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1448 flush_all_to_thread(src
);
1450 * Flush TM state out so we can copy it. __switch_to_tm() does this
1451 * flush but it removes the checkpointed state from the current CPU and
1452 * transitions the CPU out of TM mode. Hence we need to call
1453 * tm_recheckpoint_new_task() (on the same task) to restore the
1454 * checkpointed state back and the TM mode.
1456 * Can't pass dst because it isn't ready. Doesn't matter, passing
1457 * dst is only important for __switch_to()
1459 __switch_to_tm(src
, src
);
1463 clear_task_ebb(dst
);
1468 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1470 #ifdef CONFIG_PPC_STD_MMU_64
1471 unsigned long sp_vsid
;
1472 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1474 if (radix_enabled())
1477 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1478 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1479 << SLB_VSID_SHIFT_1T
;
1481 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1483 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1484 p
->thread
.ksp_vsid
= sp_vsid
;
1493 * Copy architecture-specific thread state
1495 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1496 unsigned long kthread_arg
, struct task_struct
*p
)
1498 struct pt_regs
*childregs
, *kregs
;
1499 extern void ret_from_fork(void);
1500 extern void ret_from_kernel_thread(void);
1502 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1503 struct thread_info
*ti
= task_thread_info(p
);
1505 klp_init_thread_info(ti
);
1507 /* Copy registers */
1508 sp
-= sizeof(struct pt_regs
);
1509 childregs
= (struct pt_regs
*) sp
;
1510 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1512 memset(childregs
, 0, sizeof(struct pt_regs
));
1513 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1516 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1518 clear_tsk_thread_flag(p
, TIF_32BIT
);
1519 childregs
->softe
= 1;
1521 childregs
->gpr
[15] = kthread_arg
;
1522 p
->thread
.regs
= NULL
; /* no user register state */
1523 ti
->flags
|= _TIF_RESTOREALL
;
1524 f
= ret_from_kernel_thread
;
1527 struct pt_regs
*regs
= current_pt_regs();
1528 CHECK_FULL_REGS(regs
);
1531 childregs
->gpr
[1] = usp
;
1532 p
->thread
.regs
= childregs
;
1533 childregs
->gpr
[3] = 0; /* Result from fork() */
1534 if (clone_flags
& CLONE_SETTLS
) {
1536 if (!is_32bit_task())
1537 childregs
->gpr
[13] = childregs
->gpr
[6];
1540 childregs
->gpr
[2] = childregs
->gpr
[6];
1545 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1546 sp
-= STACK_FRAME_OVERHEAD
;
1549 * The way this works is that at some point in the future
1550 * some task will call _switch to switch to the new task.
1551 * That will pop off the stack frame created below and start
1552 * the new task running at ret_from_fork. The new task will
1553 * do some house keeping and then return from the fork or clone
1554 * system call, using the stack frame created above.
1556 ((unsigned long *)sp
)[0] = 0;
1557 sp
-= sizeof(struct pt_regs
);
1558 kregs
= (struct pt_regs
*) sp
;
1559 sp
-= STACK_FRAME_OVERHEAD
;
1562 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
1563 _ALIGN_UP(sizeof(struct thread_info
), 16);
1565 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1566 p
->thread
.ptrace_bps
[0] = NULL
;
1569 p
->thread
.fp_save_area
= NULL
;
1570 #ifdef CONFIG_ALTIVEC
1571 p
->thread
.vr_save_area
= NULL
;
1574 setup_ksp_vsid(p
, sp
);
1577 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1578 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1579 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1581 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1582 p
->thread
.ppr
= INIT_PPR
;
1584 kregs
->nip
= ppc_function_entry(f
);
1589 * Set up a thread for executing a new program
1591 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1594 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1598 * If we exec out of a kernel thread then thread.regs will not be
1601 if (!current
->thread
.regs
) {
1602 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1603 current
->thread
.regs
= regs
- 1;
1606 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1608 * Clear any transactional state, we're exec()ing. The cause is
1609 * not important as there will never be a recheckpoint so it's not
1612 if (MSR_TM_SUSPENDED(mfmsr()))
1613 tm_reclaim_current(0);
1616 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1624 * We have just cleared all the nonvolatile GPRs, so make
1625 * FULL_REGS(regs) return true. This is necessary to allow
1626 * ptrace to examine the thread immediately after exec.
1633 regs
->msr
= MSR_USER
;
1635 if (!is_32bit_task()) {
1636 unsigned long entry
;
1638 if (is_elf2_task()) {
1639 /* Look ma, no function descriptors! */
1644 * The latest iteration of the ABI requires that when
1645 * calling a function (at its global entry point),
1646 * the caller must ensure r12 holds the entry point
1647 * address (so that the function can quickly
1648 * establish addressability).
1650 regs
->gpr
[12] = start
;
1651 /* Make sure that's restored on entry to userspace. */
1652 set_thread_flag(TIF_RESTOREALL
);
1656 /* start is a relocated pointer to the function
1657 * descriptor for the elf _start routine. The first
1658 * entry in the function descriptor is the entry
1659 * address of _start and the second entry is the TOC
1660 * value we need to use.
1662 __get_user(entry
, (unsigned long __user
*)start
);
1663 __get_user(toc
, (unsigned long __user
*)start
+1);
1665 /* Check whether the e_entry function descriptor entries
1666 * need to be relocated before we can use them.
1668 if (load_addr
!= 0) {
1675 regs
->msr
= MSR_USER64
;
1679 regs
->msr
= MSR_USER32
;
1683 current
->thread
.used_vsr
= 0;
1685 current
->thread
.load_fp
= 0;
1686 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1687 current
->thread
.fp_save_area
= NULL
;
1688 #ifdef CONFIG_ALTIVEC
1689 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1690 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1691 current
->thread
.vr_save_area
= NULL
;
1692 current
->thread
.vrsave
= 0;
1693 current
->thread
.used_vr
= 0;
1694 current
->thread
.load_vec
= 0;
1695 #endif /* CONFIG_ALTIVEC */
1697 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1698 current
->thread
.acc
= 0;
1699 current
->thread
.spefscr
= 0;
1700 current
->thread
.used_spe
= 0;
1701 #endif /* CONFIG_SPE */
1702 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1703 current
->thread
.tm_tfhar
= 0;
1704 current
->thread
.tm_texasr
= 0;
1705 current
->thread
.tm_tfiar
= 0;
1706 current
->thread
.load_tm
= 0;
1707 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1709 EXPORT_SYMBOL(start_thread
);
1711 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1712 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1714 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1716 struct pt_regs
*regs
= tsk
->thread
.regs
;
1718 /* This is a bit hairy. If we are an SPE enabled processor
1719 * (have embedded fp) we store the IEEE exception enable flags in
1720 * fpexc_mode. fpexc_mode is also used for setting FP exception
1721 * mode (asyn, precise, disabled) for 'Classic' FP. */
1722 if (val
& PR_FP_EXC_SW_ENABLE
) {
1724 if (cpu_has_feature(CPU_FTR_SPE
)) {
1726 * When the sticky exception bits are set
1727 * directly by userspace, it must call prctl
1728 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729 * in the existing prctl settings) or
1730 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731 * the bits being set). <fenv.h> functions
1732 * saving and restoring the whole
1733 * floating-point environment need to do so
1734 * anyway to restore the prctl settings from
1735 * the saved environment.
1737 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1738 tsk
->thread
.fpexc_mode
= val
&
1739 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1749 /* on a CONFIG_SPE this does not hurt us. The bits that
1750 * __pack_fe01 use do not overlap with bits used for
1751 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1752 * on CONFIG_SPE implementations are reserved so writing to
1753 * them does not change anything */
1754 if (val
> PR_FP_EXC_PRECISE
)
1756 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1757 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1758 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1759 | tsk
->thread
.fpexc_mode
;
1763 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1767 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1769 if (cpu_has_feature(CPU_FTR_SPE
)) {
1771 * When the sticky exception bits are set
1772 * directly by userspace, it must call prctl
1773 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1774 * in the existing prctl settings) or
1775 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1776 * the bits being set). <fenv.h> functions
1777 * saving and restoring the whole
1778 * floating-point environment need to do so
1779 * anyway to restore the prctl settings from
1780 * the saved environment.
1782 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1783 val
= tsk
->thread
.fpexc_mode
;
1790 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1791 return put_user(val
, (unsigned int __user
*) adr
);
1794 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1796 struct pt_regs
*regs
= tsk
->thread
.regs
;
1798 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1799 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1805 if (val
== PR_ENDIAN_BIG
)
1806 regs
->msr
&= ~MSR_LE
;
1807 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1808 regs
->msr
|= MSR_LE
;
1815 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1817 struct pt_regs
*regs
= tsk
->thread
.regs
;
1820 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1821 !cpu_has_feature(CPU_FTR_REAL_LE
))
1827 if (regs
->msr
& MSR_LE
) {
1828 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1829 val
= PR_ENDIAN_LITTLE
;
1831 val
= PR_ENDIAN_PPC_LITTLE
;
1833 val
= PR_ENDIAN_BIG
;
1835 return put_user(val
, (unsigned int __user
*)adr
);
1838 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1840 tsk
->thread
.align_ctl
= val
;
1844 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1846 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1849 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1850 unsigned long nbytes
)
1852 unsigned long stack_page
;
1853 unsigned long cpu
= task_cpu(p
);
1856 * Avoid crashing if the stack has overflowed and corrupted
1857 * task_cpu(p), which is in the thread_info struct.
1859 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1860 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1861 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1862 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1865 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1866 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1867 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1873 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1874 unsigned long nbytes
)
1876 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1878 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1879 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1882 return valid_irq_stack(sp
, p
, nbytes
);
1885 EXPORT_SYMBOL(validate_sp
);
1887 unsigned long get_wchan(struct task_struct
*p
)
1889 unsigned long ip
, sp
;
1892 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1896 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1900 sp
= *(unsigned long *)sp
;
1901 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1904 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1905 if (!in_sched_functions(ip
))
1908 } while (count
++ < 16);
1912 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1914 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1916 unsigned long sp
, ip
, lr
, newsp
;
1919 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1920 int curr_frame
= current
->curr_ret_stack
;
1921 extern void return_to_handler(void);
1922 unsigned long rth
= (unsigned long)return_to_handler
;
1925 sp
= (unsigned long) stack
;
1930 sp
= current_stack_pointer();
1932 sp
= tsk
->thread
.ksp
;
1936 printk("Call Trace:\n");
1938 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1941 stack
= (unsigned long *) sp
;
1943 ip
= stack
[STACK_FRAME_LR_SAVE
];
1944 if (!firstframe
|| ip
!= lr
) {
1945 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1946 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1947 if ((ip
== rth
) && curr_frame
>= 0) {
1949 (void *)current
->ret_stack
[curr_frame
].ret
);
1954 pr_cont(" (unreliable)");
1960 * See if this is an exception frame.
1961 * We look for the "regshere" marker in the current frame.
1963 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1964 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1965 struct pt_regs
*regs
= (struct pt_regs
*)
1966 (sp
+ STACK_FRAME_OVERHEAD
);
1968 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1969 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1974 } while (count
++ < kstack_depth_to_print
);
1978 /* Called with hard IRQs off */
1979 void notrace
__ppc64_runlatch_on(void)
1981 struct thread_info
*ti
= current_thread_info();
1983 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
1985 * Least significant bit (RUN) is the only writable bit of
1986 * the CTRL register, so we can avoid mfspr. 2.06 is not the
1987 * earliest ISA where this is the case, but it's convenient.
1989 mtspr(SPRN_CTRLT
, CTRL_RUNLATCH
);
1994 * Some architectures (e.g., Cell) have writable fields other
1995 * than RUN, so do the read-modify-write.
1997 ctrl
= mfspr(SPRN_CTRLF
);
1998 ctrl
|= CTRL_RUNLATCH
;
1999 mtspr(SPRN_CTRLT
, ctrl
);
2002 ti
->local_flags
|= _TLF_RUNLATCH
;
2005 /* Called with hard IRQs off */
2006 void notrace
__ppc64_runlatch_off(void)
2008 struct thread_info
*ti
= current_thread_info();
2010 ti
->local_flags
&= ~_TLF_RUNLATCH
;
2012 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2013 mtspr(SPRN_CTRLT
, 0);
2017 ctrl
= mfspr(SPRN_CTRLF
);
2018 ctrl
&= ~CTRL_RUNLATCH
;
2019 mtspr(SPRN_CTRLT
, ctrl
);
2022 #endif /* CONFIG_PPC64 */
2024 unsigned long arch_align_stack(unsigned long sp
)
2026 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
2027 sp
-= get_random_int() & ~PAGE_MASK
;
2031 static inline unsigned long brk_rnd(void)
2033 unsigned long rnd
= 0;
2035 /* 8MB for 32bit, 1GB for 64bit */
2036 if (is_32bit_task())
2037 rnd
= (get_random_long() % (1UL<<(23-PAGE_SHIFT
)));
2039 rnd
= (get_random_long() % (1UL<<(30-PAGE_SHIFT
)));
2041 return rnd
<< PAGE_SHIFT
;
2044 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
2046 unsigned long base
= mm
->brk
;
2049 #ifdef CONFIG_PPC_STD_MMU_64
2051 * If we are using 1TB segments and we are allowed to randomise
2052 * the heap, we can put it above 1TB so it is backed by a 1TB
2053 * segment. Otherwise the heap will be in the bottom 1TB
2054 * which always uses 256MB segments and this may result in a
2055 * performance penalty. We don't need to worry about radix. For
2056 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2058 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
2059 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
2062 ret
= PAGE_ALIGN(base
+ brk_rnd());