4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #define pr_fmt(fmt) "numa: " fmt
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
44 static int numa_enabled
= 1;
46 static char *cmdline __initdata
;
48 static int numa_debug
;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
51 int numa_cpu_lookup_table
[NR_CPUS
];
52 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
53 struct pglist_data
*node_data
[MAX_NUMNODES
];
55 EXPORT_SYMBOL(numa_cpu_lookup_table
);
56 EXPORT_SYMBOL(node_to_cpumask_map
);
57 EXPORT_SYMBOL(node_data
);
59 static int min_common_depth
;
60 static int n_mem_addr_cells
, n_mem_size_cells
;
61 static int form1_affinity
;
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth
;
65 static const __be32
*distance_ref_points
;
66 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
72 * Note: cpumask_of_node() is not valid until after this is done.
74 static void __init
setup_node_to_cpumask_map(void)
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids
== MAX_NUMNODES
)
82 /* allocate the map */
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
90 static int __init
fake_numa_create_new_node(unsigned long end_pfn
,
93 unsigned long long mem
;
95 static unsigned int fake_nid
;
96 static unsigned long long curr_boundary
;
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
112 mem
= memparse(p
, &p
);
116 if (mem
< curr_boundary
)
121 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
123 * Skip commas and spaces
125 while (*p
== ',' || *p
== ' ' || *p
== '\t')
131 dbg("created new fake_node with id %d\n", fake_nid
);
137 static void reset_numa_cpu_lookup_table(void)
141 for_each_possible_cpu(cpu
)
142 numa_cpu_lookup_table
[cpu
] = -1;
145 static void update_numa_cpu_lookup_table(unsigned int cpu
, int node
)
147 numa_cpu_lookup_table
[cpu
] = node
;
150 static void map_cpu_to_node(int cpu
, int node
)
152 update_numa_cpu_lookup_table(cpu
, node
);
154 dbg("adding cpu %d to node %d\n", cpu
, node
);
156 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
157 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu
)
163 int node
= numa_cpu_lookup_table
[cpu
];
165 dbg("removing cpu %lu from node %d\n", cpu
, node
);
167 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
168 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
170 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
176 /* must hold reference to node during call */
177 static const __be32
*of_get_associativity(struct device_node
*dev
)
179 return of_get_property(dev
, "ibm,associativity", NULL
);
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
187 static const __be32
*of_get_usable_memory(struct device_node
*memory
)
191 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
192 if (!prop
|| len
< sizeof(unsigned int))
197 int __node_distance(int a
, int b
)
200 int distance
= LOCAL_DISTANCE
;
203 return ((a
== b
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
);
205 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
206 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
209 /* Double the distance for each NUMA level */
215 EXPORT_SYMBOL(__node_distance
);
217 static void initialize_distance_lookup_table(int nid
,
218 const __be32
*associativity
)
225 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
228 entry
= &associativity
[be32_to_cpu(distance_ref_points
[i
]) - 1];
229 distance_lookup_table
[nid
][i
] = of_read_number(entry
, 1);
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
236 static int associativity_to_nid(const __be32
*associativity
)
240 if (min_common_depth
== -1)
243 if (of_read_number(associativity
, 1) >= min_common_depth
)
244 nid
= of_read_number(&associativity
[min_common_depth
], 1);
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
251 of_read_number(associativity
, 1) >= distance_ref_points_depth
) {
253 * Skip the length field and send start of associativity array
255 initialize_distance_lookup_table(nid
, associativity
+ 1);
262 /* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
265 static int of_node_to_nid_single(struct device_node
*device
)
270 tmp
= of_get_associativity(device
);
272 nid
= associativity_to_nid(tmp
);
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node
*device
)
283 nid
= of_node_to_nid_single(device
);
287 device
= of_get_next_parent(device
);
293 EXPORT_SYMBOL(of_node_to_nid
);
295 static int __init
find_min_common_depth(void)
298 struct device_node
*root
;
300 if (firmware_has_feature(FW_FEATURE_OPAL
))
301 root
= of_find_node_by_path("/ibm,opal");
303 root
= of_find_node_by_path("/rtas");
305 root
= of_find_node_by_path("/");
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
319 distance_ref_points
= of_get_property(root
,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth
);
323 if (!distance_ref_points
) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
328 distance_ref_points_depth
/= sizeof(int);
330 if (firmware_has_feature(FW_FEATURE_OPAL
) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY
)) {
332 dbg("Using form 1 affinity\n");
336 if (form1_affinity
) {
337 depth
= of_read_number(distance_ref_points
, 1);
339 if (distance_ref_points_depth
< 2) {
340 printk(KERN_WARNING
"NUMA: "
341 "short ibm,associativity-reference-points\n");
345 depth
= of_read_number(&distance_ref_points
[1], 1);
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
352 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
353 printk(KERN_WARNING
"NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
355 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
366 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
368 struct device_node
*memory
= NULL
;
370 memory
= of_find_node_by_type(memory
, "memory");
372 panic("numa.c: No memory nodes found!");
374 *n_addr_cells
= of_n_addr_cells(memory
);
375 *n_size_cells
= of_n_size_cells(memory
);
379 static unsigned long read_n_cells(int n
, const __be32
**buf
)
381 unsigned long result
= 0;
384 result
= (result
<< 32) | of_read_number(*buf
, 1);
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
394 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const __be32
**cellp
)
398 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
401 drmem
->drc_index
= of_read_number(cp
, 1);
402 drmem
->reserved
= of_read_number(&cp
[1], 1);
403 drmem
->aa_index
= of_read_number(&cp
[2], 1);
404 drmem
->flags
= of_read_number(&cp
[3], 1);
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
416 static int of_get_drconf_memory(struct device_node
*memory
, const __be32
**dm
)
421 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
422 if (!prop
|| len
< sizeof(unsigned int))
425 entries
= of_read_number(prop
++, 1);
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
430 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
441 static u64
of_get_lmb_size(struct device_node
*memory
)
446 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
447 if (!prop
|| len
< sizeof(unsigned int))
450 return read_n_cells(n_mem_size_cells
, &prop
);
453 struct assoc_arrays
{
456 const __be32
*arrays
;
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
469 static int of_get_assoc_arrays(struct device_node
*memory
,
470 struct assoc_arrays
*aa
)
475 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
476 if (!prop
|| len
< 2 * sizeof(unsigned int))
479 aa
->n_arrays
= of_read_number(prop
++, 1);
480 aa
->array_sz
= of_read_number(prop
++, 1);
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
485 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
496 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
497 struct assoc_arrays
*aa
)
500 int nid
= default_nid
;
503 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
504 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
505 drmem
->aa_index
< aa
->n_arrays
) {
506 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
507 nid
= of_read_number(&aa
->arrays
[index
], 1);
509 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
513 index
= drmem
->aa_index
* aa
->array_sz
;
514 initialize_distance_lookup_table(nid
,
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
526 static int numa_setup_cpu(unsigned long lcpu
)
529 struct device_node
*cpu
;
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
536 if ((nid
= numa_cpu_lookup_table
[lcpu
]) >= 0) {
537 map_cpu_to_node(lcpu
, nid
);
541 cpu
= of_get_cpu_node(lcpu
, NULL
);
545 if (cpu_present(lcpu
))
551 nid
= of_node_to_nid_single(cpu
);
554 if (nid
< 0 || !node_online(nid
))
555 nid
= first_online_node
;
557 map_cpu_to_node(lcpu
, nid
);
563 static void verify_cpu_node_mapping(int cpu
, int node
)
565 int base
, sibling
, i
;
567 /* Verify that all the threads in the core belong to the same node */
568 base
= cpu_first_thread_sibling(cpu
);
570 for (i
= 0; i
< threads_per_core
; i
++) {
573 if (sibling
== cpu
|| cpu_is_offline(sibling
))
576 if (cpu_to_node(sibling
) != node
) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu
, sibling
);
584 /* Must run before sched domains notifier. */
585 static int ppc_numa_cpu_prepare(unsigned int cpu
)
589 nid
= numa_setup_cpu(cpu
);
590 verify_cpu_node_mapping(cpu
, nid
);
594 static int ppc_numa_cpu_dead(unsigned int cpu
)
596 #ifdef CONFIG_HOTPLUG_CPU
597 unmap_cpu_from_node(cpu
);
603 * Check and possibly modify a memory region to enforce the memory limit.
605 * Returns the size the region should have to enforce the memory limit.
606 * This will either be the original value of size, a truncated value,
607 * or zero. If the returned value of size is 0 the region should be
608 * discarded as it lies wholly above the memory limit.
610 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
614 * We use memblock_end_of_DRAM() in here instead of memory_limit because
615 * we've already adjusted it for the limit and it takes care of
616 * having memory holes below the limit. Also, in the case of
617 * iommu_is_off, memory_limit is not set but is implicitly enforced.
620 if (start
+ size
<= memblock_end_of_DRAM())
623 if (start
>= memblock_end_of_DRAM())
626 return memblock_end_of_DRAM() - start
;
630 * Reads the counter for a given entry in
631 * linux,drconf-usable-memory property
633 static inline int __init
read_usm_ranges(const __be32
**usm
)
636 * For each lmb in ibm,dynamic-memory a corresponding
637 * entry in linux,drconf-usable-memory property contains
638 * a counter followed by that many (base, size) duple.
639 * read the counter from linux,drconf-usable-memory
641 return read_n_cells(n_mem_size_cells
, usm
);
645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
646 * node. This assumes n_mem_{addr,size}_cells have been set.
648 static void __init
parse_drconf_memory(struct device_node
*memory
)
650 const __be32
*uninitialized_var(dm
), *usm
;
651 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
652 unsigned long lmb_size
, base
, size
, sz
;
654 struct assoc_arrays aa
= { .arrays
= NULL
};
656 n
= of_get_drconf_memory(memory
, &dm
);
660 lmb_size
= of_get_lmb_size(memory
);
664 rc
= of_get_assoc_arrays(memory
, &aa
);
668 /* check if this is a kexec/kdump kernel */
669 usm
= of_get_usable_memory(memory
);
673 for (; n
!= 0; --n
) {
674 struct of_drconf_cell drmem
;
676 read_drconf_cell(&drmem
, &dm
);
678 /* skip this block if the reserved bit is set in flags (0x80)
679 or if the block is not assigned to this partition (0x8) */
680 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
681 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
684 base
= drmem
.base_addr
;
688 if (is_kexec_kdump
) {
689 ranges
= read_usm_ranges(&usm
);
690 if (!ranges
) /* there are no (base, size) duple */
694 if (is_kexec_kdump
) {
695 base
= read_n_cells(n_mem_addr_cells
, &usm
);
696 size
= read_n_cells(n_mem_size_cells
, &usm
);
698 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
699 fake_numa_create_new_node(
700 ((base
+ size
) >> PAGE_SHIFT
),
702 node_set_online(nid
);
703 sz
= numa_enforce_memory_limit(base
, size
);
705 memblock_set_node(base
, sz
,
706 &memblock
.memory
, nid
);
711 static int __init
parse_numa_properties(void)
713 struct device_node
*memory
;
717 if (numa_enabled
== 0) {
718 printk(KERN_WARNING
"NUMA disabled by user\n");
722 min_common_depth
= find_min_common_depth();
724 if (min_common_depth
< 0)
725 return min_common_depth
;
727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
730 * Even though we connect cpus to numa domains later in SMP
731 * init, we need to know the node ids now. This is because
732 * each node to be onlined must have NODE_DATA etc backing it.
734 for_each_present_cpu(i
) {
735 struct device_node
*cpu
;
738 cpu
= of_get_cpu_node(i
, NULL
);
740 nid
= of_node_to_nid_single(cpu
);
744 * Don't fall back to default_nid yet -- we will plug
745 * cpus into nodes once the memory scan has discovered
750 node_set_online(nid
);
753 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
755 for_each_node_by_type(memory
, "memory") {
760 const __be32
*memcell_buf
;
763 memcell_buf
= of_get_property(memory
,
764 "linux,usable-memory", &len
);
765 if (!memcell_buf
|| len
<= 0)
766 memcell_buf
= of_get_property(memory
, "reg", &len
);
767 if (!memcell_buf
|| len
<= 0)
771 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
773 /* these are order-sensitive, and modify the buffer pointer */
774 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
775 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
778 * Assumption: either all memory nodes or none will
779 * have associativity properties. If none, then
780 * everything goes to default_nid.
782 nid
= of_node_to_nid_single(memory
);
786 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
787 node_set_online(nid
);
789 size
= numa_enforce_memory_limit(start
, size
);
791 memblock_set_node(start
, size
, &memblock
.memory
, nid
);
798 * Now do the same thing for each MEMBLOCK listed in the
799 * ibm,dynamic-memory property in the
800 * ibm,dynamic-reconfiguration-memory node.
802 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
804 parse_drconf_memory(memory
);
809 static void __init
setup_nonnuma(void)
811 unsigned long top_of_ram
= memblock_end_of_DRAM();
812 unsigned long total_ram
= memblock_phys_mem_size();
813 unsigned long start_pfn
, end_pfn
;
814 unsigned int nid
= 0;
815 struct memblock_region
*reg
;
817 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
818 top_of_ram
, total_ram
);
819 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
820 (top_of_ram
- total_ram
) >> 20);
822 for_each_memblock(memory
, reg
) {
823 start_pfn
= memblock_region_memory_base_pfn(reg
);
824 end_pfn
= memblock_region_memory_end_pfn(reg
);
826 fake_numa_create_new_node(end_pfn
, &nid
);
827 memblock_set_node(PFN_PHYS(start_pfn
),
828 PFN_PHYS(end_pfn
- start_pfn
),
829 &memblock
.memory
, nid
);
830 node_set_online(nid
);
834 void __init
dump_numa_cpu_topology(void)
837 unsigned int cpu
, count
;
839 if (min_common_depth
== -1 || !numa_enabled
)
842 for_each_online_node(node
) {
843 pr_info("Node %d CPUs:", node
);
847 * If we used a CPU iterator here we would miss printing
848 * the holes in the cpumap.
850 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
851 if (cpumask_test_cpu(cpu
,
852 node_to_cpumask_map
[node
])) {
858 pr_cont("-%u", cpu
- 1);
864 pr_cont("-%u", nr_cpu_ids
- 1);
869 /* Initialize NODE_DATA for a node on the local memory */
870 static void __init
setup_node_data(int nid
, u64 start_pfn
, u64 end_pfn
)
872 u64 spanned_pages
= end_pfn
- start_pfn
;
873 const size_t nd_size
= roundup(sizeof(pg_data_t
), SMP_CACHE_BYTES
);
878 nd_pa
= memblock_alloc_try_nid(nd_size
, SMP_CACHE_BYTES
, nid
);
881 /* report and initialize */
882 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
883 nd_pa
, nd_pa
+ nd_size
- 1);
884 tnid
= early_pfn_to_nid(nd_pa
>> PAGE_SHIFT
);
886 pr_info(" NODE_DATA(%d) on node %d\n", nid
, tnid
);
889 memset(NODE_DATA(nid
), 0, sizeof(pg_data_t
));
890 NODE_DATA(nid
)->node_id
= nid
;
891 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
892 NODE_DATA(nid
)->node_spanned_pages
= spanned_pages
;
895 void __init
initmem_init(void)
899 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
900 max_pfn
= max_low_pfn
;
902 if (parse_numa_properties())
908 * Reduce the possible NUMA nodes to the online NUMA nodes,
909 * since we do not support node hotplug. This ensures that we
910 * lower the maximum NUMA node ID to what is actually present.
912 nodes_and(node_possible_map
, node_possible_map
, node_online_map
);
914 for_each_online_node(nid
) {
915 unsigned long start_pfn
, end_pfn
;
917 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
918 setup_node_data(nid
, start_pfn
, end_pfn
);
919 sparse_memory_present_with_active_regions(nid
);
924 setup_node_to_cpumask_map();
926 reset_numa_cpu_lookup_table();
929 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
930 * even before we online them, so that we can use cpu_to_{node,mem}
931 * early in boot, cf. smp_prepare_cpus().
932 * _nocalls() + manual invocation is used because cpuhp is not yet
933 * initialized for the boot CPU.
935 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE
, "powerpc/numa:prepare",
936 ppc_numa_cpu_prepare
, ppc_numa_cpu_dead
);
937 for_each_present_cpu(cpu
)
941 static int __init
early_numa(char *p
)
946 if (strstr(p
, "off"))
949 if (strstr(p
, "debug"))
952 p
= strstr(p
, "fake=");
954 cmdline
= p
+ strlen("fake=");
958 early_param("numa", early_numa
);
960 static bool topology_updates_enabled
= true;
962 static int __init
early_topology_updates(char *p
)
967 if (!strcmp(p
, "off")) {
968 pr_info("Disabling topology updates\n");
969 topology_updates_enabled
= false;
974 early_param("topology_updates", early_topology_updates
);
976 #ifdef CONFIG_MEMORY_HOTPLUG
978 * Find the node associated with a hot added memory section for
979 * memory represented in the device tree by the property
980 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
982 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
983 unsigned long scn_addr
)
986 unsigned int drconf_cell_cnt
, rc
;
987 unsigned long lmb_size
;
988 struct assoc_arrays aa
;
991 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
992 if (!drconf_cell_cnt
)
995 lmb_size
= of_get_lmb_size(memory
);
999 rc
= of_get_assoc_arrays(memory
, &aa
);
1003 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1004 struct of_drconf_cell drmem
;
1006 read_drconf_cell(&drmem
, &dm
);
1008 /* skip this block if it is reserved or not assigned to
1010 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1011 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1014 if ((scn_addr
< drmem
.base_addr
)
1015 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1018 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1026 * Find the node associated with a hot added memory section for memory
1027 * represented in the device tree as a node (i.e. memory@XXXX) for
1030 static int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1032 struct device_node
*memory
;
1035 for_each_node_by_type(memory
, "memory") {
1036 unsigned long start
, size
;
1038 const __be32
*memcell_buf
;
1041 memcell_buf
= of_get_property(memory
, "reg", &len
);
1042 if (!memcell_buf
|| len
<= 0)
1045 /* ranges in cell */
1046 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1049 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1050 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1052 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1055 nid
= of_node_to_nid_single(memory
);
1063 of_node_put(memory
);
1069 * Find the node associated with a hot added memory section. Section
1070 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1071 * sections are fully contained within a single MEMBLOCK.
1073 int hot_add_scn_to_nid(unsigned long scn_addr
)
1075 struct device_node
*memory
= NULL
;
1078 if (!numa_enabled
|| (min_common_depth
< 0))
1079 return first_online_node
;
1081 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1083 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1084 of_node_put(memory
);
1086 nid
= hot_add_node_scn_to_nid(scn_addr
);
1089 if (nid
< 0 || !node_possible(nid
))
1090 nid
= first_online_node
;
1095 static u64
hot_add_drconf_memory_max(void)
1097 struct device_node
*memory
= NULL
;
1098 struct device_node
*dn
= NULL
;
1099 unsigned int drconf_cell_cnt
= 0;
1101 const __be32
*dm
= NULL
;
1102 const __be64
*lrdr
= NULL
;
1103 struct of_drconf_cell drmem
;
1105 dn
= of_find_node_by_path("/rtas");
1107 lrdr
= of_get_property(dn
, "ibm,lrdr-capacity", NULL
);
1110 return be64_to_cpup(lrdr
);
1113 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1115 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1116 lmb_size
= of_get_lmb_size(memory
);
1118 /* Advance to the last cell, each cell has 6 32 bit integers */
1119 dm
+= (drconf_cell_cnt
- 1) * 6;
1120 read_drconf_cell(&drmem
, &dm
);
1121 of_node_put(memory
);
1122 return drmem
.base_addr
+ lmb_size
;
1128 * memory_hotplug_max - return max address of memory that may be added
1130 * This is currently only used on systems that support drconfig memory
1133 u64
memory_hotplug_max(void)
1135 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1137 #endif /* CONFIG_MEMORY_HOTPLUG */
1139 /* Virtual Processor Home Node (VPHN) support */
1140 #ifdef CONFIG_PPC_SPLPAR
1144 struct topology_update_data
{
1145 struct topology_update_data
*next
;
1151 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1152 static cpumask_t cpu_associativity_changes_mask
;
1153 static int vphn_enabled
;
1154 static int prrn_enabled
;
1155 static void reset_topology_timer(void);
1158 * Store the current values of the associativity change counters in the
1161 static void setup_cpu_associativity_change_counters(void)
1165 /* The VPHN feature supports a maximum of 8 reference points */
1166 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1168 for_each_possible_cpu(cpu
) {
1170 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1171 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1173 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1174 counts
[i
] = hypervisor_counts
[i
];
1179 * The hypervisor maintains a set of 8 associativity change counters in
1180 * the VPA of each cpu that correspond to the associativity levels in the
1181 * ibm,associativity-reference-points property. When an associativity
1182 * level changes, the corresponding counter is incremented.
1184 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1185 * node associativity levels have changed.
1187 * Returns the number of cpus with unhandled associativity changes.
1189 static int update_cpu_associativity_changes_mask(void)
1192 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1194 for_each_possible_cpu(cpu
) {
1196 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1197 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1199 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1200 if (hypervisor_counts
[i
] != counts
[i
]) {
1201 counts
[i
] = hypervisor_counts
[i
];
1206 cpumask_or(changes
, changes
, cpu_sibling_mask(cpu
));
1207 cpu
= cpu_last_thread_sibling(cpu
);
1211 return cpumask_weight(changes
);
1215 * Retrieve the new associativity information for a virtual processor's
1218 static long hcall_vphn(unsigned long cpu
, __be32
*associativity
)
1221 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1223 int hwcpu
= get_hard_smp_processor_id(cpu
);
1225 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1226 vphn_unpack_associativity(retbuf
, associativity
);
1231 static long vphn_get_associativity(unsigned long cpu
,
1232 __be32
*associativity
)
1236 rc
= hcall_vphn(cpu
, associativity
);
1241 "VPHN is not supported. Disabling polling...\n");
1242 stop_topology_update();
1246 "hcall_vphn() experienced a hardware fault "
1247 "preventing VPHN. Disabling polling...\n");
1248 stop_topology_update();
1255 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1256 * characteristics change. This function doesn't perform any locking and is
1257 * only safe to call from stop_machine().
1259 static int update_cpu_topology(void *data
)
1261 struct topology_update_data
*update
;
1267 cpu
= smp_processor_id();
1269 for (update
= data
; update
; update
= update
->next
) {
1270 int new_nid
= update
->new_nid
;
1271 if (cpu
!= update
->cpu
)
1274 unmap_cpu_from_node(cpu
);
1275 map_cpu_to_node(cpu
, new_nid
);
1276 set_cpu_numa_node(cpu
, new_nid
);
1277 set_cpu_numa_mem(cpu
, local_memory_node(new_nid
));
1284 static int update_lookup_table(void *data
)
1286 struct topology_update_data
*update
;
1292 * Upon topology update, the numa-cpu lookup table needs to be updated
1293 * for all threads in the core, including offline CPUs, to ensure that
1294 * future hotplug operations respect the cpu-to-node associativity
1297 for (update
= data
; update
; update
= update
->next
) {
1300 nid
= update
->new_nid
;
1301 base
= cpu_first_thread_sibling(update
->cpu
);
1303 for (j
= 0; j
< threads_per_core
; j
++) {
1304 update_numa_cpu_lookup_table(base
+ j
, nid
);
1312 * Update the node maps and sysfs entries for each cpu whose home node
1313 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1315 * cpus_locked says whether we already hold cpu_hotplug_lock.
1317 int numa_update_cpu_topology(bool cpus_locked
)
1319 unsigned int cpu
, sibling
, changed
= 0;
1320 struct topology_update_data
*updates
, *ud
;
1321 __be32 associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1322 cpumask_t updated_cpus
;
1324 int weight
, new_nid
, i
= 0;
1326 if (!prrn_enabled
&& !vphn_enabled
)
1329 weight
= cpumask_weight(&cpu_associativity_changes_mask
);
1333 updates
= kzalloc(weight
* (sizeof(*updates
)), GFP_KERNEL
);
1337 cpumask_clear(&updated_cpus
);
1339 for_each_cpu(cpu
, &cpu_associativity_changes_mask
) {
1341 * If siblings aren't flagged for changes, updates list
1342 * will be too short. Skip on this update and set for next
1345 if (!cpumask_subset(cpu_sibling_mask(cpu
),
1346 &cpu_associativity_changes_mask
)) {
1347 pr_info("Sibling bits not set for associativity "
1348 "change, cpu%d\n", cpu
);
1349 cpumask_or(&cpu_associativity_changes_mask
,
1350 &cpu_associativity_changes_mask
,
1351 cpu_sibling_mask(cpu
));
1352 cpu
= cpu_last_thread_sibling(cpu
);
1356 /* Use associativity from first thread for all siblings */
1357 vphn_get_associativity(cpu
, associativity
);
1358 new_nid
= associativity_to_nid(associativity
);
1359 if (new_nid
< 0 || !node_online(new_nid
))
1360 new_nid
= first_online_node
;
1362 if (new_nid
== numa_cpu_lookup_table
[cpu
]) {
1363 cpumask_andnot(&cpu_associativity_changes_mask
,
1364 &cpu_associativity_changes_mask
,
1365 cpu_sibling_mask(cpu
));
1366 cpu
= cpu_last_thread_sibling(cpu
);
1370 for_each_cpu(sibling
, cpu_sibling_mask(cpu
)) {
1373 ud
->new_nid
= new_nid
;
1374 ud
->old_nid
= numa_cpu_lookup_table
[sibling
];
1375 cpumask_set_cpu(sibling
, &updated_cpus
);
1377 ud
->next
= &updates
[i
];
1379 cpu
= cpu_last_thread_sibling(cpu
);
1382 pr_debug("Topology update for the following CPUs:\n");
1383 if (cpumask_weight(&updated_cpus
)) {
1384 for (ud
= &updates
[0]; ud
; ud
= ud
->next
) {
1385 pr_debug("cpu %d moving from node %d "
1387 ud
->old_nid
, ud
->new_nid
);
1392 * In cases where we have nothing to update (because the updates list
1393 * is too short or because the new topology is same as the old one),
1394 * skip invoking update_cpu_topology() via stop-machine(). This is
1395 * necessary (and not just a fast-path optimization) since stop-machine
1396 * can end up electing a random CPU to run update_cpu_topology(), and
1397 * thus trick us into setting up incorrect cpu-node mappings (since
1398 * 'updates' is kzalloc()'ed).
1400 * And for the similar reason, we will skip all the following updating.
1402 if (!cpumask_weight(&updated_cpus
))
1406 stop_machine_cpuslocked(update_cpu_topology
, &updates
[0],
1409 stop_machine(update_cpu_topology
, &updates
[0], &updated_cpus
);
1412 * Update the numa-cpu lookup table with the new mappings, even for
1413 * offline CPUs. It is best to perform this update from the stop-
1417 stop_machine_cpuslocked(update_lookup_table
, &updates
[0],
1418 cpumask_of(raw_smp_processor_id()));
1420 stop_machine(update_lookup_table
, &updates
[0],
1421 cpumask_of(raw_smp_processor_id()));
1423 for (ud
= &updates
[0]; ud
; ud
= ud
->next
) {
1424 unregister_cpu_under_node(ud
->cpu
, ud
->old_nid
);
1425 register_cpu_under_node(ud
->cpu
, ud
->new_nid
);
1427 dev
= get_cpu_device(ud
->cpu
);
1429 kobject_uevent(&dev
->kobj
, KOBJ_CHANGE
);
1430 cpumask_clear_cpu(ud
->cpu
, &cpu_associativity_changes_mask
);
1439 int arch_update_cpu_topology(void)
1441 lockdep_assert_cpus_held();
1442 return numa_update_cpu_topology(true);
1445 static void topology_work_fn(struct work_struct
*work
)
1447 rebuild_sched_domains();
1449 static DECLARE_WORK(topology_work
, topology_work_fn
);
1451 static void topology_schedule_update(void)
1453 schedule_work(&topology_work
);
1456 static void topology_timer_fn(unsigned long ignored
)
1458 if (prrn_enabled
&& cpumask_weight(&cpu_associativity_changes_mask
))
1459 topology_schedule_update();
1460 else if (vphn_enabled
) {
1461 if (update_cpu_associativity_changes_mask() > 0)
1462 topology_schedule_update();
1463 reset_topology_timer();
1466 static struct timer_list topology_timer
=
1467 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1469 static void reset_topology_timer(void)
1471 topology_timer
.data
= 0;
1472 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1473 mod_timer(&topology_timer
, topology_timer
.expires
);
1478 static void stage_topology_update(int core_id
)
1480 cpumask_or(&cpu_associativity_changes_mask
,
1481 &cpu_associativity_changes_mask
, cpu_sibling_mask(core_id
));
1482 reset_topology_timer();
1485 static int dt_update_callback(struct notifier_block
*nb
,
1486 unsigned long action
, void *data
)
1488 struct of_reconfig_data
*update
= data
;
1489 int rc
= NOTIFY_DONE
;
1492 case OF_RECONFIG_UPDATE_PROPERTY
:
1493 if (!of_prop_cmp(update
->dn
->type
, "cpu") &&
1494 !of_prop_cmp(update
->prop
->name
, "ibm,associativity")) {
1496 of_property_read_u32(update
->dn
, "reg", &core_id
);
1497 stage_topology_update(core_id
);
1506 static struct notifier_block dt_update_nb
= {
1507 .notifier_call
= dt_update_callback
,
1513 * Start polling for associativity changes.
1515 int start_topology_update(void)
1519 if (firmware_has_feature(FW_FEATURE_PRRN
)) {
1520 if (!prrn_enabled
) {
1524 rc
= of_reconfig_notifier_register(&dt_update_nb
);
1527 } else if (firmware_has_feature(FW_FEATURE_VPHN
) &&
1528 lppaca_shared_proc(get_lppaca())) {
1529 if (!vphn_enabled
) {
1532 setup_cpu_associativity_change_counters();
1533 init_timer_deferrable(&topology_timer
);
1534 reset_topology_timer();
1542 * Disable polling for VPHN associativity changes.
1544 int stop_topology_update(void)
1551 rc
= of_reconfig_notifier_unregister(&dt_update_nb
);
1553 } else if (vphn_enabled
) {
1555 rc
= del_timer_sync(&topology_timer
);
1561 int prrn_is_enabled(void)
1563 return prrn_enabled
;
1566 static int topology_read(struct seq_file
*file
, void *v
)
1568 if (vphn_enabled
|| prrn_enabled
)
1569 seq_puts(file
, "on\n");
1571 seq_puts(file
, "off\n");
1576 static int topology_open(struct inode
*inode
, struct file
*file
)
1578 return single_open(file
, topology_read
, NULL
);
1581 static ssize_t
topology_write(struct file
*file
, const char __user
*buf
,
1582 size_t count
, loff_t
*off
)
1584 char kbuf
[4]; /* "on" or "off" plus null. */
1587 read_len
= count
< 3 ? count
: 3;
1588 if (copy_from_user(kbuf
, buf
, read_len
))
1591 kbuf
[read_len
] = '\0';
1593 if (!strncmp(kbuf
, "on", 2))
1594 start_topology_update();
1595 else if (!strncmp(kbuf
, "off", 3))
1596 stop_topology_update();
1603 static const struct file_operations topology_ops
= {
1605 .write
= topology_write
,
1606 .open
= topology_open
,
1607 .release
= single_release
1610 static int topology_update_init(void)
1612 /* Do not poll for changes if disabled at boot */
1613 if (topology_updates_enabled
)
1614 start_topology_update();
1616 if (!proc_create("powerpc/topology_updates", 0644, NULL
, &topology_ops
))
1621 device_initcall(topology_update_init
);
1622 #endif /* CONFIG_PPC_SPLPAR */