2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/ptrace.h>
45 #include <asm/tlbflush.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
53 * migrate_prep() needs to be called before we start compiling a list of pages
54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55 * undesirable, use migrate_prep_local()
57 int migrate_prep(void)
60 * Clear the LRU lists so pages can be isolated.
61 * Note that pages may be moved off the LRU after we have
62 * drained them. Those pages will fail to migrate like other
63 * pages that may be busy.
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
78 bool isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
80 struct address_space
*mapping
;
83 * Avoid burning cycles with pages that are yet under __free_pages(),
84 * or just got freed under us.
86 * In case we 'win' a race for a movable page being freed under us and
87 * raise its refcount preventing __free_pages() from doing its job
88 * the put_page() at the end of this block will take care of
89 * release this page, thus avoiding a nasty leakage.
91 if (unlikely(!get_page_unless_zero(page
)))
95 * Check PageMovable before holding a PG_lock because page's owner
96 * assumes anybody doesn't touch PG_lock of newly allocated page
97 * so unconditionally grapping the lock ruins page's owner side.
99 if (unlikely(!__PageMovable(page
)))
102 * As movable pages are not isolated from LRU lists, concurrent
103 * compaction threads can race against page migration functions
104 * as well as race against the releasing a page.
106 * In order to avoid having an already isolated movable page
107 * being (wrongly) re-isolated while it is under migration,
108 * or to avoid attempting to isolate pages being released,
109 * lets be sure we have the page lock
110 * before proceeding with the movable page isolation steps.
112 if (unlikely(!trylock_page(page
)))
115 if (!PageMovable(page
) || PageIsolated(page
))
116 goto out_no_isolated
;
118 mapping
= page_mapping(page
);
119 VM_BUG_ON_PAGE(!mapping
, page
);
121 if (!mapping
->a_ops
->isolate_page(page
, mode
))
122 goto out_no_isolated
;
124 /* Driver shouldn't use PG_isolated bit of page->flags */
125 WARN_ON_ONCE(PageIsolated(page
));
126 __SetPageIsolated(page
);
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page
*page
)
142 struct address_space
*mapping
;
144 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
145 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
146 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
148 mapping
= page_mapping(page
);
149 mapping
->a_ops
->putback_page(page
);
150 __ClearPageIsolated(page
);
154 * Put previously isolated pages back onto the appropriate lists
155 * from where they were once taken off for compaction/migration.
157 * This function shall be used whenever the isolated pageset has been
158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159 * and isolate_huge_page().
161 void putback_movable_pages(struct list_head
*l
)
166 list_for_each_entry_safe(page
, page2
, l
, lru
) {
167 if (unlikely(PageHuge(page
))) {
168 putback_active_hugepage(page
);
171 list_del(&page
->lru
);
173 * We isolated non-lru movable page so here we can use
174 * __PageMovable because LRU page's mapping cannot have
175 * PAGE_MAPPING_MOVABLE.
177 if (unlikely(__PageMovable(page
))) {
178 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
180 if (PageMovable(page
))
181 putback_movable_page(page
);
183 __ClearPageIsolated(page
);
187 dec_node_page_state(page
, NR_ISOLATED_ANON
+
188 page_is_file_cache(page
));
189 putback_lru_page(page
);
195 * Restore a potential migration pte to a working pte entry
197 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
198 unsigned long addr
, void *old
)
200 struct mm_struct
*mm
= vma
->vm_mm
;
206 if (unlikely(PageHuge(new))) {
207 ptep
= huge_pte_offset(mm
, addr
);
210 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
212 pmd
= mm_find_pmd(mm
, addr
);
216 ptep
= pte_offset_map(pmd
, addr
);
219 * Peek to check is_swap_pte() before taking ptlock? No, we
220 * can race mremap's move_ptes(), which skips anon_vma lock.
223 ptl
= pte_lockptr(mm
, pmd
);
228 if (!is_swap_pte(pte
))
231 entry
= pte_to_swp_entry(pte
);
233 if (!is_migration_entry(entry
) ||
234 migration_entry_to_page(entry
) != old
)
238 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
239 if (pte_swp_soft_dirty(*ptep
))
240 pte
= pte_mksoft_dirty(pte
);
242 /* Recheck VMA as permissions can change since migration started */
243 if (is_write_migration_entry(entry
))
244 pte
= maybe_mkwrite(pte
, vma
);
246 #ifdef CONFIG_HUGETLB_PAGE
248 pte
= pte_mkhuge(pte
);
249 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
252 flush_dcache_page(new);
253 set_pte_at(mm
, addr
, ptep
, pte
);
257 hugepage_add_anon_rmap(new, vma
, addr
);
259 page_dup_rmap(new, true);
260 } else if (PageAnon(new))
261 page_add_anon_rmap(new, vma
, addr
, false);
263 page_add_file_rmap(new, false);
265 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
268 /* No need to invalidate - it was non-present before */
269 update_mmu_cache(vma
, addr
, ptep
);
271 pte_unmap_unlock(ptep
, ptl
);
277 * Get rid of all migration entries and replace them by
278 * references to the indicated page.
280 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
282 struct rmap_walk_control rwc
= {
283 .rmap_one
= remove_migration_pte
,
288 rmap_walk_locked(new, &rwc
);
290 rmap_walk(new, &rwc
);
294 * Something used the pte of a page under migration. We need to
295 * get to the page and wait until migration is finished.
296 * When we return from this function the fault will be retried.
298 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
307 if (!is_swap_pte(pte
))
310 entry
= pte_to_swp_entry(pte
);
311 if (!is_migration_entry(entry
))
314 page
= migration_entry_to_page(entry
);
317 * Once radix-tree replacement of page migration started, page_count
318 * *must* be zero. And, we don't want to call wait_on_page_locked()
319 * against a page without get_page().
320 * So, we use get_page_unless_zero(), here. Even failed, page fault
323 if (!get_page_unless_zero(page
))
325 pte_unmap_unlock(ptep
, ptl
);
326 wait_on_page_locked(page
);
330 pte_unmap_unlock(ptep
, ptl
);
333 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
334 unsigned long address
)
336 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
337 pte_t
*ptep
= pte_offset_map(pmd
, address
);
338 __migration_entry_wait(mm
, ptep
, ptl
);
341 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
342 struct mm_struct
*mm
, pte_t
*pte
)
344 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
345 __migration_entry_wait(mm
, pte
, ptl
);
349 /* Returns true if all buffers are successfully locked */
350 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
351 enum migrate_mode mode
)
353 struct buffer_head
*bh
= head
;
355 /* Simple case, sync compaction */
356 if (mode
!= MIGRATE_ASYNC
) {
360 bh
= bh
->b_this_page
;
362 } while (bh
!= head
);
367 /* async case, we cannot block on lock_buffer so use trylock_buffer */
370 if (!trylock_buffer(bh
)) {
372 * We failed to lock the buffer and cannot stall in
373 * async migration. Release the taken locks
375 struct buffer_head
*failed_bh
= bh
;
378 while (bh
!= failed_bh
) {
381 bh
= bh
->b_this_page
;
386 bh
= bh
->b_this_page
;
387 } while (bh
!= head
);
391 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
392 enum migrate_mode mode
)
396 #endif /* CONFIG_BLOCK */
399 * Replace the page in the mapping.
401 * The number of remaining references must be:
402 * 1 for anonymous pages without a mapping
403 * 2 for pages with a mapping
404 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
406 int migrate_page_move_mapping(struct address_space
*mapping
,
407 struct page
*newpage
, struct page
*page
,
408 struct buffer_head
*head
, enum migrate_mode mode
,
411 struct zone
*oldzone
, *newzone
;
413 int expected_count
= 1 + extra_count
;
417 /* Anonymous page without mapping */
418 if (page_count(page
) != expected_count
)
421 /* No turning back from here */
422 newpage
->index
= page
->index
;
423 newpage
->mapping
= page
->mapping
;
424 if (PageSwapBacked(page
))
425 __SetPageSwapBacked(newpage
);
427 return MIGRATEPAGE_SUCCESS
;
430 oldzone
= page_zone(page
);
431 newzone
= page_zone(newpage
);
433 spin_lock_irq(&mapping
->tree_lock
);
435 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
438 expected_count
+= 1 + page_has_private(page
);
439 if (page_count(page
) != expected_count
||
440 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
441 spin_unlock_irq(&mapping
->tree_lock
);
445 if (!page_ref_freeze(page
, expected_count
)) {
446 spin_unlock_irq(&mapping
->tree_lock
);
451 * In the async migration case of moving a page with buffers, lock the
452 * buffers using trylock before the mapping is moved. If the mapping
453 * was moved, we later failed to lock the buffers and could not move
454 * the mapping back due to an elevated page count, we would have to
455 * block waiting on other references to be dropped.
457 if (mode
== MIGRATE_ASYNC
&& head
&&
458 !buffer_migrate_lock_buffers(head
, mode
)) {
459 page_ref_unfreeze(page
, expected_count
);
460 spin_unlock_irq(&mapping
->tree_lock
);
465 * Now we know that no one else is looking at the page:
466 * no turning back from here.
468 newpage
->index
= page
->index
;
469 newpage
->mapping
= page
->mapping
;
470 if (PageSwapBacked(page
))
471 __SetPageSwapBacked(newpage
);
473 get_page(newpage
); /* add cache reference */
474 if (PageSwapCache(page
)) {
475 SetPageSwapCache(newpage
);
476 set_page_private(newpage
, page_private(page
));
479 /* Move dirty while page refs frozen and newpage not yet exposed */
480 dirty
= PageDirty(page
);
482 ClearPageDirty(page
);
483 SetPageDirty(newpage
);
486 radix_tree_replace_slot(pslot
, newpage
);
489 * Drop cache reference from old page by unfreezing
490 * to one less reference.
491 * We know this isn't the last reference.
493 page_ref_unfreeze(page
, expected_count
- 1);
495 spin_unlock(&mapping
->tree_lock
);
496 /* Leave irq disabled to prevent preemption while updating stats */
499 * If moved to a different zone then also account
500 * the page for that zone. Other VM counters will be
501 * taken care of when we establish references to the
502 * new page and drop references to the old page.
504 * Note that anonymous pages are accounted for
505 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
506 * are mapped to swap space.
508 if (newzone
!= oldzone
) {
509 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
510 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
511 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
512 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
513 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
515 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
516 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
517 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
518 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
519 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
524 return MIGRATEPAGE_SUCCESS
;
526 EXPORT_SYMBOL(migrate_page_move_mapping
);
529 * The expected number of remaining references is the same as that
530 * of migrate_page_move_mapping().
532 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
533 struct page
*newpage
, struct page
*page
)
538 spin_lock_irq(&mapping
->tree_lock
);
540 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
543 expected_count
= 2 + page_has_private(page
);
544 if (page_count(page
) != expected_count
||
545 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
546 spin_unlock_irq(&mapping
->tree_lock
);
550 if (!page_ref_freeze(page
, expected_count
)) {
551 spin_unlock_irq(&mapping
->tree_lock
);
555 newpage
->index
= page
->index
;
556 newpage
->mapping
= page
->mapping
;
560 radix_tree_replace_slot(pslot
, newpage
);
562 page_ref_unfreeze(page
, expected_count
- 1);
564 spin_unlock_irq(&mapping
->tree_lock
);
566 return MIGRATEPAGE_SUCCESS
;
570 * Gigantic pages are so large that we do not guarantee that page++ pointer
571 * arithmetic will work across the entire page. We need something more
574 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
578 struct page
*dst_base
= dst
;
579 struct page
*src_base
= src
;
581 for (i
= 0; i
< nr_pages
; ) {
583 copy_highpage(dst
, src
);
586 dst
= mem_map_next(dst
, dst_base
, i
);
587 src
= mem_map_next(src
, src_base
, i
);
591 static void copy_huge_page(struct page
*dst
, struct page
*src
)
598 struct hstate
*h
= page_hstate(src
);
599 nr_pages
= pages_per_huge_page(h
);
601 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
602 __copy_gigantic_page(dst
, src
, nr_pages
);
607 BUG_ON(!PageTransHuge(src
));
608 nr_pages
= hpage_nr_pages(src
);
611 for (i
= 0; i
< nr_pages
; i
++) {
613 copy_highpage(dst
+ i
, src
+ i
);
618 * Copy the page to its new location
620 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
624 if (PageHuge(page
) || PageTransHuge(page
))
625 copy_huge_page(newpage
, page
);
627 copy_highpage(newpage
, page
);
630 SetPageError(newpage
);
631 if (PageReferenced(page
))
632 SetPageReferenced(newpage
);
633 if (PageUptodate(page
))
634 SetPageUptodate(newpage
);
635 if (TestClearPageActive(page
)) {
636 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
637 SetPageActive(newpage
);
638 } else if (TestClearPageUnevictable(page
))
639 SetPageUnevictable(newpage
);
640 if (PageChecked(page
))
641 SetPageChecked(newpage
);
642 if (PageMappedToDisk(page
))
643 SetPageMappedToDisk(newpage
);
645 /* Move dirty on pages not done by migrate_page_move_mapping() */
647 SetPageDirty(newpage
);
649 if (page_is_young(page
))
650 set_page_young(newpage
);
651 if (page_is_idle(page
))
652 set_page_idle(newpage
);
655 * Copy NUMA information to the new page, to prevent over-eager
656 * future migrations of this same page.
658 cpupid
= page_cpupid_xchg_last(page
, -1);
659 page_cpupid_xchg_last(newpage
, cpupid
);
661 ksm_migrate_page(newpage
, page
);
663 * Please do not reorder this without considering how mm/ksm.c's
664 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
666 if (PageSwapCache(page
))
667 ClearPageSwapCache(page
);
668 ClearPagePrivate(page
);
669 set_page_private(page
, 0);
672 * If any waiters have accumulated on the new page then
675 if (PageWriteback(newpage
))
676 end_page_writeback(newpage
);
678 copy_page_owner(page
, newpage
);
680 mem_cgroup_migrate(page
, newpage
);
682 EXPORT_SYMBOL(migrate_page_copy
);
684 /************************************************************
685 * Migration functions
686 ***********************************************************/
689 * Common logic to directly migrate a single LRU page suitable for
690 * pages that do not use PagePrivate/PagePrivate2.
692 * Pages are locked upon entry and exit.
694 int migrate_page(struct address_space
*mapping
,
695 struct page
*newpage
, struct page
*page
,
696 enum migrate_mode mode
)
700 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
702 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
704 if (rc
!= MIGRATEPAGE_SUCCESS
)
707 migrate_page_copy(newpage
, page
);
708 return MIGRATEPAGE_SUCCESS
;
710 EXPORT_SYMBOL(migrate_page
);
714 * Migration function for pages with buffers. This function can only be used
715 * if the underlying filesystem guarantees that no other references to "page"
718 int buffer_migrate_page(struct address_space
*mapping
,
719 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
721 struct buffer_head
*bh
, *head
;
724 if (!page_has_buffers(page
))
725 return migrate_page(mapping
, newpage
, page
, mode
);
727 head
= page_buffers(page
);
729 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
731 if (rc
!= MIGRATEPAGE_SUCCESS
)
735 * In the async case, migrate_page_move_mapping locked the buffers
736 * with an IRQ-safe spinlock held. In the sync case, the buffers
737 * need to be locked now
739 if (mode
!= MIGRATE_ASYNC
)
740 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
742 ClearPagePrivate(page
);
743 set_page_private(newpage
, page_private(page
));
744 set_page_private(page
, 0);
750 set_bh_page(bh
, newpage
, bh_offset(bh
));
751 bh
= bh
->b_this_page
;
753 } while (bh
!= head
);
755 SetPagePrivate(newpage
);
757 migrate_page_copy(newpage
, page
);
763 bh
= bh
->b_this_page
;
765 } while (bh
!= head
);
767 return MIGRATEPAGE_SUCCESS
;
769 EXPORT_SYMBOL(buffer_migrate_page
);
773 * Writeback a page to clean the dirty state
775 static int writeout(struct address_space
*mapping
, struct page
*page
)
777 struct writeback_control wbc
= {
778 .sync_mode
= WB_SYNC_NONE
,
781 .range_end
= LLONG_MAX
,
786 if (!mapping
->a_ops
->writepage
)
787 /* No write method for the address space */
790 if (!clear_page_dirty_for_io(page
))
791 /* Someone else already triggered a write */
795 * A dirty page may imply that the underlying filesystem has
796 * the page on some queue. So the page must be clean for
797 * migration. Writeout may mean we loose the lock and the
798 * page state is no longer what we checked for earlier.
799 * At this point we know that the migration attempt cannot
802 remove_migration_ptes(page
, page
, false);
804 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
806 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
807 /* unlocked. Relock */
810 return (rc
< 0) ? -EIO
: -EAGAIN
;
814 * Default handling if a filesystem does not provide a migration function.
816 static int fallback_migrate_page(struct address_space
*mapping
,
817 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
819 if (PageDirty(page
)) {
820 /* Only writeback pages in full synchronous migration */
821 if (mode
!= MIGRATE_SYNC
)
823 return writeout(mapping
, page
);
827 * Buffers may be managed in a filesystem specific way.
828 * We must have no buffers or drop them.
830 if (page_has_private(page
) &&
831 !try_to_release_page(page
, GFP_KERNEL
))
834 return migrate_page(mapping
, newpage
, page
, mode
);
838 * Move a page to a newly allocated page
839 * The page is locked and all ptes have been successfully removed.
841 * The new page will have replaced the old page if this function
846 * MIGRATEPAGE_SUCCESS - success
848 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
849 enum migrate_mode mode
)
851 struct address_space
*mapping
;
853 bool is_lru
= !__PageMovable(page
);
855 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
856 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
858 mapping
= page_mapping(page
);
860 if (likely(is_lru
)) {
862 rc
= migrate_page(mapping
, newpage
, page
, mode
);
863 else if (mapping
->a_ops
->migratepage
)
865 * Most pages have a mapping and most filesystems
866 * provide a migratepage callback. Anonymous pages
867 * are part of swap space which also has its own
868 * migratepage callback. This is the most common path
869 * for page migration.
871 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
874 rc
= fallback_migrate_page(mapping
, newpage
,
878 * In case of non-lru page, it could be released after
879 * isolation step. In that case, we shouldn't try migration.
881 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
882 if (!PageMovable(page
)) {
883 rc
= MIGRATEPAGE_SUCCESS
;
884 __ClearPageIsolated(page
);
888 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
890 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
891 !PageIsolated(page
));
895 * When successful, old pagecache page->mapping must be cleared before
896 * page is freed; but stats require that PageAnon be left as PageAnon.
898 if (rc
== MIGRATEPAGE_SUCCESS
) {
899 if (__PageMovable(page
)) {
900 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
903 * We clear PG_movable under page_lock so any compactor
904 * cannot try to migrate this page.
906 __ClearPageIsolated(page
);
910 * Anonymous and movable page->mapping will be cleard by
911 * free_pages_prepare so don't reset it here for keeping
912 * the type to work PageAnon, for example.
914 if (!PageMappingFlags(page
))
915 page
->mapping
= NULL
;
921 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
922 int force
, enum migrate_mode mode
)
925 int page_was_mapped
= 0;
926 struct anon_vma
*anon_vma
= NULL
;
927 bool is_lru
= !__PageMovable(page
);
929 if (!trylock_page(page
)) {
930 if (!force
|| mode
== MIGRATE_ASYNC
)
934 * It's not safe for direct compaction to call lock_page.
935 * For example, during page readahead pages are added locked
936 * to the LRU. Later, when the IO completes the pages are
937 * marked uptodate and unlocked. However, the queueing
938 * could be merging multiple pages for one bio (e.g.
939 * mpage_readpages). If an allocation happens for the
940 * second or third page, the process can end up locking
941 * the same page twice and deadlocking. Rather than
942 * trying to be clever about what pages can be locked,
943 * avoid the use of lock_page for direct compaction
946 if (current
->flags
& PF_MEMALLOC
)
952 if (PageWriteback(page
)) {
954 * Only in the case of a full synchronous migration is it
955 * necessary to wait for PageWriteback. In the async case,
956 * the retry loop is too short and in the sync-light case,
957 * the overhead of stalling is too much
959 if (mode
!= MIGRATE_SYNC
) {
965 wait_on_page_writeback(page
);
969 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
970 * we cannot notice that anon_vma is freed while we migrates a page.
971 * This get_anon_vma() delays freeing anon_vma pointer until the end
972 * of migration. File cache pages are no problem because of page_lock()
973 * File Caches may use write_page() or lock_page() in migration, then,
974 * just care Anon page here.
976 * Only page_get_anon_vma() understands the subtleties of
977 * getting a hold on an anon_vma from outside one of its mms.
978 * But if we cannot get anon_vma, then we won't need it anyway,
979 * because that implies that the anon page is no longer mapped
980 * (and cannot be remapped so long as we hold the page lock).
982 if (PageAnon(page
) && !PageKsm(page
))
983 anon_vma
= page_get_anon_vma(page
);
986 * Block others from accessing the new page when we get around to
987 * establishing additional references. We are usually the only one
988 * holding a reference to newpage at this point. We used to have a BUG
989 * here if trylock_page(newpage) fails, but would like to allow for
990 * cases where there might be a race with the previous use of newpage.
991 * This is much like races on refcount of oldpage: just don't BUG().
993 if (unlikely(!trylock_page(newpage
)))
996 if (unlikely(!is_lru
)) {
997 rc
= move_to_new_page(newpage
, page
, mode
);
998 goto out_unlock_both
;
1002 * Corner case handling:
1003 * 1. When a new swap-cache page is read into, it is added to the LRU
1004 * and treated as swapcache but it has no rmap yet.
1005 * Calling try_to_unmap() against a page->mapping==NULL page will
1006 * trigger a BUG. So handle it here.
1007 * 2. An orphaned page (see truncate_complete_page) might have
1008 * fs-private metadata. The page can be picked up due to memory
1009 * offlining. Everywhere else except page reclaim, the page is
1010 * invisible to the vm, so the page can not be migrated. So try to
1011 * free the metadata, so the page can be freed.
1013 if (!page
->mapping
) {
1014 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1015 if (page_has_private(page
)) {
1016 try_to_free_buffers(page
);
1017 goto out_unlock_both
;
1019 } else if (page_mapped(page
)) {
1020 /* Establish migration ptes */
1021 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1024 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1025 page_was_mapped
= 1;
1028 if (!page_mapped(page
))
1029 rc
= move_to_new_page(newpage
, page
, mode
);
1031 if (page_was_mapped
)
1032 remove_migration_ptes(page
,
1033 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1036 unlock_page(newpage
);
1038 /* Drop an anon_vma reference if we took one */
1040 put_anon_vma(anon_vma
);
1044 * If migration is successful, decrease refcount of the newpage
1045 * which will not free the page because new page owner increased
1046 * refcounter. As well, if it is LRU page, add the page to LRU
1047 * list in here. Use the old state of the isolated source page to
1048 * determine if we migrated a LRU page. newpage was already unlocked
1049 * and possibly modified by its owner - don't rely on the page
1052 if (rc
== MIGRATEPAGE_SUCCESS
) {
1053 if (unlikely(!is_lru
))
1056 putback_lru_page(newpage
);
1063 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1066 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1067 #define ICE_noinline noinline
1069 #define ICE_noinline
1073 * Obtain the lock on page, remove all ptes and migrate the page
1074 * to the newly allocated page in newpage.
1076 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1077 free_page_t put_new_page
,
1078 unsigned long private, struct page
*page
,
1079 int force
, enum migrate_mode mode
,
1080 enum migrate_reason reason
)
1082 int rc
= MIGRATEPAGE_SUCCESS
;
1084 struct page
*newpage
;
1086 newpage
= get_new_page(page
, private, &result
);
1090 if (page_count(page
) == 1) {
1091 /* page was freed from under us. So we are done. */
1092 ClearPageActive(page
);
1093 ClearPageUnevictable(page
);
1094 if (unlikely(__PageMovable(page
))) {
1096 if (!PageMovable(page
))
1097 __ClearPageIsolated(page
);
1101 put_new_page(newpage
, private);
1107 if (unlikely(PageTransHuge(page
))) {
1109 rc
= split_huge_page(page
);
1115 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1116 if (rc
== MIGRATEPAGE_SUCCESS
)
1117 set_page_owner_migrate_reason(newpage
, reason
);
1120 if (rc
!= -EAGAIN
) {
1122 * A page that has been migrated has all references
1123 * removed and will be freed. A page that has not been
1124 * migrated will have kepts its references and be
1127 list_del(&page
->lru
);
1130 * Compaction can migrate also non-LRU pages which are
1131 * not accounted to NR_ISOLATED_*. They can be recognized
1134 if (likely(!__PageMovable(page
)))
1135 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1136 page_is_file_cache(page
));
1140 * If migration is successful, releases reference grabbed during
1141 * isolation. Otherwise, restore the page to right list unless
1144 if (rc
== MIGRATEPAGE_SUCCESS
) {
1146 if (reason
== MR_MEMORY_FAILURE
) {
1148 * Set PG_HWPoison on just freed page
1149 * intentionally. Although it's rather weird,
1150 * it's how HWPoison flag works at the moment.
1152 if (!test_set_page_hwpoison(page
))
1153 num_poisoned_pages_inc();
1156 if (rc
!= -EAGAIN
) {
1157 if (likely(!__PageMovable(page
))) {
1158 putback_lru_page(page
);
1163 if (PageMovable(page
))
1164 putback_movable_page(page
);
1166 __ClearPageIsolated(page
);
1172 put_new_page(newpage
, private);
1181 *result
= page_to_nid(newpage
);
1187 * Counterpart of unmap_and_move_page() for hugepage migration.
1189 * This function doesn't wait the completion of hugepage I/O
1190 * because there is no race between I/O and migration for hugepage.
1191 * Note that currently hugepage I/O occurs only in direct I/O
1192 * where no lock is held and PG_writeback is irrelevant,
1193 * and writeback status of all subpages are counted in the reference
1194 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1195 * under direct I/O, the reference of the head page is 512 and a bit more.)
1196 * This means that when we try to migrate hugepage whose subpages are
1197 * doing direct I/O, some references remain after try_to_unmap() and
1198 * hugepage migration fails without data corruption.
1200 * There is also no race when direct I/O is issued on the page under migration,
1201 * because then pte is replaced with migration swap entry and direct I/O code
1202 * will wait in the page fault for migration to complete.
1204 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1205 free_page_t put_new_page
, unsigned long private,
1206 struct page
*hpage
, int force
,
1207 enum migrate_mode mode
, int reason
)
1211 int page_was_mapped
= 0;
1212 struct page
*new_hpage
;
1213 struct anon_vma
*anon_vma
= NULL
;
1216 * Movability of hugepages depends on architectures and hugepage size.
1217 * This check is necessary because some callers of hugepage migration
1218 * like soft offline and memory hotremove don't walk through page
1219 * tables or check whether the hugepage is pmd-based or not before
1220 * kicking migration.
1222 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1223 putback_active_hugepage(hpage
);
1227 new_hpage
= get_new_page(hpage
, private, &result
);
1231 if (!trylock_page(hpage
)) {
1232 if (!force
|| mode
!= MIGRATE_SYNC
)
1238 * Check for pages which are in the process of being freed. Without
1239 * page_mapping() set, hugetlbfs specific move page routine will not
1240 * be called and we could leak usage counts for subpools.
1242 if (page_private(hpage
) && !page_mapping(hpage
)) {
1247 if (PageAnon(hpage
))
1248 anon_vma
= page_get_anon_vma(hpage
);
1250 if (unlikely(!trylock_page(new_hpage
)))
1253 if (page_mapped(hpage
)) {
1255 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1256 page_was_mapped
= 1;
1259 if (!page_mapped(hpage
))
1260 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1262 if (page_was_mapped
)
1263 remove_migration_ptes(hpage
,
1264 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1266 unlock_page(new_hpage
);
1270 put_anon_vma(anon_vma
);
1272 if (rc
== MIGRATEPAGE_SUCCESS
) {
1273 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1274 put_new_page
= NULL
;
1275 set_page_owner_migrate_reason(new_hpage
, reason
);
1282 putback_active_hugepage(hpage
);
1285 * If migration was not successful and there's a freeing callback, use
1286 * it. Otherwise, put_page() will drop the reference grabbed during
1290 put_new_page(new_hpage
, private);
1292 putback_active_hugepage(new_hpage
);
1298 *result
= page_to_nid(new_hpage
);
1304 * migrate_pages - migrate the pages specified in a list, to the free pages
1305 * supplied as the target for the page migration
1307 * @from: The list of pages to be migrated.
1308 * @get_new_page: The function used to allocate free pages to be used
1309 * as the target of the page migration.
1310 * @put_new_page: The function used to free target pages if migration
1311 * fails, or NULL if no special handling is necessary.
1312 * @private: Private data to be passed on to get_new_page()
1313 * @mode: The migration mode that specifies the constraints for
1314 * page migration, if any.
1315 * @reason: The reason for page migration.
1317 * The function returns after 10 attempts or if no pages are movable any more
1318 * because the list has become empty or no retryable pages exist any more.
1319 * The caller should call putback_movable_pages() to return pages to the LRU
1320 * or free list only if ret != 0.
1322 * Returns the number of pages that were not migrated, or an error code.
1324 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1325 free_page_t put_new_page
, unsigned long private,
1326 enum migrate_mode mode
, int reason
)
1330 int nr_succeeded
= 0;
1334 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1338 current
->flags
|= PF_SWAPWRITE
;
1340 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1343 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1347 rc
= unmap_and_move_huge_page(get_new_page
,
1348 put_new_page
, private, page
,
1349 pass
> 2, mode
, reason
);
1351 rc
= unmap_and_move(get_new_page
, put_new_page
,
1352 private, page
, pass
> 2, mode
,
1362 case MIGRATEPAGE_SUCCESS
:
1367 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1368 * unlike -EAGAIN case, the failed page is
1369 * removed from migration page list and not
1370 * retried in the next outer loop.
1381 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1383 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1384 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1387 current
->flags
&= ~PF_SWAPWRITE
;
1394 * Move a list of individual pages
1396 struct page_to_node
{
1403 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1406 struct page_to_node
*pm
= (struct page_to_node
*)private;
1408 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1411 if (pm
->node
== MAX_NUMNODES
)
1414 *result
= &pm
->status
;
1417 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1420 return __alloc_pages_node(pm
->node
,
1421 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1425 * Move a set of pages as indicated in the pm array. The addr
1426 * field must be set to the virtual address of the page to be moved
1427 * and the node number must contain a valid target node.
1428 * The pm array ends with node = MAX_NUMNODES.
1430 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1431 struct page_to_node
*pm
,
1435 struct page_to_node
*pp
;
1436 LIST_HEAD(pagelist
);
1438 down_read(&mm
->mmap_sem
);
1441 * Build a list of pages to migrate
1443 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1444 struct vm_area_struct
*vma
;
1448 vma
= find_vma(mm
, pp
->addr
);
1449 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1452 /* FOLL_DUMP to ignore special (like zero) pages */
1453 page
= follow_page(vma
, pp
->addr
,
1454 FOLL_GET
| FOLL_SPLIT
| FOLL_DUMP
);
1456 err
= PTR_ERR(page
);
1465 err
= page_to_nid(page
);
1467 if (err
== pp
->node
)
1469 * Node already in the right place
1474 if (page_mapcount(page
) > 1 &&
1478 if (PageHuge(page
)) {
1480 isolate_huge_page(page
, &pagelist
);
1484 err
= isolate_lru_page(page
);
1486 list_add_tail(&page
->lru
, &pagelist
);
1487 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1488 page_is_file_cache(page
));
1492 * Either remove the duplicate refcount from
1493 * isolate_lru_page() or drop the page ref if it was
1502 if (!list_empty(&pagelist
)) {
1503 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1504 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1506 putback_movable_pages(&pagelist
);
1509 up_read(&mm
->mmap_sem
);
1514 * Migrate an array of page address onto an array of nodes and fill
1515 * the corresponding array of status.
1517 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1518 unsigned long nr_pages
,
1519 const void __user
* __user
*pages
,
1520 const int __user
*nodes
,
1521 int __user
*status
, int flags
)
1523 struct page_to_node
*pm
;
1524 unsigned long chunk_nr_pages
;
1525 unsigned long chunk_start
;
1529 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1536 * Store a chunk of page_to_node array in a page,
1537 * but keep the last one as a marker
1539 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1541 for (chunk_start
= 0;
1542 chunk_start
< nr_pages
;
1543 chunk_start
+= chunk_nr_pages
) {
1546 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1547 chunk_nr_pages
= nr_pages
- chunk_start
;
1549 /* fill the chunk pm with addrs and nodes from user-space */
1550 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1551 const void __user
*p
;
1555 if (get_user(p
, pages
+ j
+ chunk_start
))
1557 pm
[j
].addr
= (unsigned long) p
;
1559 if (get_user(node
, nodes
+ j
+ chunk_start
))
1563 if (node
< 0 || node
>= MAX_NUMNODES
)
1566 if (!node_state(node
, N_MEMORY
))
1570 if (!node_isset(node
, task_nodes
))
1576 /* End marker for this chunk */
1577 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1579 /* Migrate this chunk */
1580 err
= do_move_page_to_node_array(mm
, pm
,
1581 flags
& MPOL_MF_MOVE_ALL
);
1585 /* Return status information */
1586 for (j
= 0; j
< chunk_nr_pages
; j
++)
1587 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1595 free_page((unsigned long)pm
);
1601 * Determine the nodes of an array of pages and store it in an array of status.
1603 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1604 const void __user
**pages
, int *status
)
1608 down_read(&mm
->mmap_sem
);
1610 for (i
= 0; i
< nr_pages
; i
++) {
1611 unsigned long addr
= (unsigned long)(*pages
);
1612 struct vm_area_struct
*vma
;
1616 vma
= find_vma(mm
, addr
);
1617 if (!vma
|| addr
< vma
->vm_start
)
1620 /* FOLL_DUMP to ignore special (like zero) pages */
1621 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1623 err
= PTR_ERR(page
);
1627 err
= page
? page_to_nid(page
) : -ENOENT
;
1635 up_read(&mm
->mmap_sem
);
1639 * Determine the nodes of a user array of pages and store it in
1640 * a user array of status.
1642 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1643 const void __user
* __user
*pages
,
1646 #define DO_PAGES_STAT_CHUNK_NR 16
1647 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1648 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1651 unsigned long chunk_nr
;
1653 chunk_nr
= nr_pages
;
1654 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1655 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1657 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1660 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1662 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1667 nr_pages
-= chunk_nr
;
1669 return nr_pages
? -EFAULT
: 0;
1673 * Move a list of pages in the address space of the currently executing
1676 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1677 const void __user
* __user
*, pages
,
1678 const int __user
*, nodes
,
1679 int __user
*, status
, int, flags
)
1681 struct task_struct
*task
;
1682 struct mm_struct
*mm
;
1684 nodemask_t task_nodes
;
1687 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1690 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1693 /* Find the mm_struct */
1695 task
= pid
? find_task_by_vpid(pid
) : current
;
1700 get_task_struct(task
);
1703 * Check if this process has the right to modify the specified
1704 * process. Use the regular "ptrace_may_access()" checks.
1706 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1713 err
= security_task_movememory(task
);
1717 task_nodes
= cpuset_mems_allowed(task
);
1718 mm
= get_task_mm(task
);
1719 put_task_struct(task
);
1725 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1726 nodes
, status
, flags
);
1728 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1734 put_task_struct(task
);
1738 #ifdef CONFIG_NUMA_BALANCING
1740 * Returns true if this is a safe migration target node for misplaced NUMA
1741 * pages. Currently it only checks the watermarks which crude
1743 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1744 unsigned long nr_migrate_pages
)
1748 if (!pgdat_reclaimable(pgdat
))
1751 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1752 struct zone
*zone
= pgdat
->node_zones
+ z
;
1754 if (!populated_zone(zone
))
1757 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1758 if (!zone_watermark_ok(zone
, 0,
1759 high_wmark_pages(zone
) +
1768 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1772 int nid
= (int) data
;
1773 struct page
*newpage
;
1775 newpage
= __alloc_pages_node(nid
,
1776 (GFP_HIGHUSER_MOVABLE
|
1777 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1778 __GFP_NORETRY
| __GFP_NOWARN
) &
1785 * page migration rate limiting control.
1786 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1787 * window of time. Default here says do not migrate more than 1280M per second.
1789 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1790 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1792 /* Returns true if the node is migrate rate-limited after the update */
1793 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1794 unsigned long nr_pages
)
1797 * Rate-limit the amount of data that is being migrated to a node.
1798 * Optimal placement is no good if the memory bus is saturated and
1799 * all the time is being spent migrating!
1801 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1802 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1803 pgdat
->numabalancing_migrate_nr_pages
= 0;
1804 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1805 msecs_to_jiffies(migrate_interval_millisecs
);
1806 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1808 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1809 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1815 * This is an unlocked non-atomic update so errors are possible.
1816 * The consequences are failing to migrate when we potentiall should
1817 * have which is not severe enough to warrant locking. If it is ever
1818 * a problem, it can be converted to a per-cpu counter.
1820 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1824 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1828 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1830 /* Avoid migrating to a node that is nearly full */
1831 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1834 if (isolate_lru_page(page
))
1838 * migrate_misplaced_transhuge_page() skips page migration's usual
1839 * check on page_count(), so we must do it here, now that the page
1840 * has been isolated: a GUP pin, or any other pin, prevents migration.
1841 * The expected page count is 3: 1 for page's mapcount and 1 for the
1842 * caller's pin and 1 for the reference taken by isolate_lru_page().
1844 if (PageTransHuge(page
) && page_count(page
) != 3) {
1845 putback_lru_page(page
);
1849 page_lru
= page_is_file_cache(page
);
1850 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1851 hpage_nr_pages(page
));
1854 * Isolating the page has taken another reference, so the
1855 * caller's reference can be safely dropped without the page
1856 * disappearing underneath us during migration.
1862 bool pmd_trans_migrating(pmd_t pmd
)
1864 struct page
*page
= pmd_page(pmd
);
1865 return PageLocked(page
);
1869 * Attempt to migrate a misplaced page to the specified destination
1870 * node. Caller is expected to have an elevated reference count on
1871 * the page that will be dropped by this function before returning.
1873 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1876 pg_data_t
*pgdat
= NODE_DATA(node
);
1879 LIST_HEAD(migratepages
);
1882 * Don't migrate file pages that are mapped in multiple processes
1883 * with execute permissions as they are probably shared libraries.
1885 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1886 (vma
->vm_flags
& VM_EXEC
))
1890 * Rate-limit the amount of data that is being migrated to a node.
1891 * Optimal placement is no good if the memory bus is saturated and
1892 * all the time is being spent migrating!
1894 if (numamigrate_update_ratelimit(pgdat
, 1))
1897 isolated
= numamigrate_isolate_page(pgdat
, page
);
1901 list_add(&page
->lru
, &migratepages
);
1902 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1903 NULL
, node
, MIGRATE_ASYNC
,
1906 if (!list_empty(&migratepages
)) {
1907 list_del(&page
->lru
);
1908 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1909 page_is_file_cache(page
));
1910 putback_lru_page(page
);
1914 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1915 BUG_ON(!list_empty(&migratepages
));
1922 #endif /* CONFIG_NUMA_BALANCING */
1924 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1926 * Migrates a THP to a given target node. page must be locked and is unlocked
1929 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1930 struct vm_area_struct
*vma
,
1931 pmd_t
*pmd
, pmd_t entry
,
1932 unsigned long address
,
1933 struct page
*page
, int node
)
1936 pg_data_t
*pgdat
= NODE_DATA(node
);
1938 struct page
*new_page
= NULL
;
1939 int page_lru
= page_is_file_cache(page
);
1940 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1941 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1945 * Rate-limit the amount of data that is being migrated to a node.
1946 * Optimal placement is no good if the memory bus is saturated and
1947 * all the time is being spent migrating!
1949 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1952 new_page
= alloc_pages_node(node
,
1953 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
1957 prep_transhuge_page(new_page
);
1959 isolated
= numamigrate_isolate_page(pgdat
, page
);
1965 * We are not sure a pending tlb flush here is for a huge page
1966 * mapping or not. Hence use the tlb range variant
1968 if (mm_tlb_flush_pending(mm
))
1969 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1971 /* Prepare a page as a migration target */
1972 __SetPageLocked(new_page
);
1973 __SetPageSwapBacked(new_page
);
1975 /* anon mapping, we can simply copy page->mapping to the new page: */
1976 new_page
->mapping
= page
->mapping
;
1977 new_page
->index
= page
->index
;
1978 migrate_page_copy(new_page
, page
);
1979 WARN_ON(PageLRU(new_page
));
1981 /* Recheck the target PMD */
1982 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1983 ptl
= pmd_lock(mm
, pmd
);
1984 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1987 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1989 /* Reverse changes made by migrate_page_copy() */
1990 if (TestClearPageActive(new_page
))
1991 SetPageActive(page
);
1992 if (TestClearPageUnevictable(new_page
))
1993 SetPageUnevictable(page
);
1995 unlock_page(new_page
);
1996 put_page(new_page
); /* Free it */
1998 /* Retake the callers reference and putback on LRU */
2000 putback_lru_page(page
);
2001 mod_node_page_state(page_pgdat(page
),
2002 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2008 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2009 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2012 * Clear the old entry under pagetable lock and establish the new PTE.
2013 * Any parallel GUP will either observe the old page blocking on the
2014 * page lock, block on the page table lock or observe the new page.
2015 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2016 * guarantee the copy is visible before the pagetable update.
2018 flush_cache_range(vma
, mmun_start
, mmun_end
);
2019 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2020 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2021 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2022 update_mmu_cache_pmd(vma
, address
, &entry
);
2024 if (page_count(page
) != 2) {
2025 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
2026 flush_pmd_tlb_range(vma
, mmun_start
, mmun_end
);
2027 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
2028 update_mmu_cache_pmd(vma
, address
, &entry
);
2029 page_remove_rmap(new_page
, true);
2033 mlock_migrate_page(new_page
, page
);
2034 page_remove_rmap(page
, true);
2035 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2038 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2040 /* Take an "isolate" reference and put new page on the LRU. */
2042 putback_lru_page(new_page
);
2044 unlock_page(new_page
);
2046 put_page(page
); /* Drop the rmap reference */
2047 put_page(page
); /* Drop the LRU isolation reference */
2049 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2050 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2052 mod_node_page_state(page_pgdat(page
),
2053 NR_ISOLATED_ANON
+ page_lru
,
2058 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2060 ptl
= pmd_lock(mm
, pmd
);
2061 if (pmd_same(*pmd
, entry
)) {
2062 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2063 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2064 update_mmu_cache_pmd(vma
, address
, &entry
);
2073 #endif /* CONFIG_NUMA_BALANCING */
2075 #endif /* CONFIG_NUMA */