2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode
;
87 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
88 MODULE_PARM_DESC(hpsa_simple_mode
,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id
[] = {
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
149 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
153 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products
[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access
},
161 {0x40800E11, "Smart Array 5i", &SA5B_access
},
162 {0x40820E11, "Smart Array 532", &SA5B_access
},
163 {0x40830E11, "Smart Array 5312", &SA5B_access
},
164 {0x409A0E11, "Smart Array 641", &SA5A_access
},
165 {0x409B0E11, "Smart Array 642", &SA5A_access
},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
168 {0x40910E11, "Smart Array 6i", &SA5A_access
},
169 {0x3225103C, "Smart Array P600", &SA5A_access
},
170 {0x3223103C, "Smart Array P800", &SA5A_access
},
171 {0x3234103C, "Smart Array P400", &SA5A_access
},
172 {0x3235103C, "Smart Array P400i", &SA5A_access
},
173 {0x3211103C, "Smart Array E200i", &SA5A_access
},
174 {0x3212103C, "Smart Array E200", &SA5A_access
},
175 {0x3213103C, "Smart Array E200i", &SA5A_access
},
176 {0x3214103C, "Smart Array E200i", &SA5A_access
},
177 {0x3215103C, "Smart Array E200i", &SA5A_access
},
178 {0x3237103C, "Smart Array E500", &SA5A_access
},
179 {0x323D103C, "Smart Array P700m", &SA5A_access
},
180 {0x3241103C, "Smart Array P212", &SA5_access
},
181 {0x3243103C, "Smart Array P410", &SA5_access
},
182 {0x3245103C, "Smart Array P410i", &SA5_access
},
183 {0x3247103C, "Smart Array P411", &SA5_access
},
184 {0x3249103C, "Smart Array P812", &SA5_access
},
185 {0x324A103C, "Smart Array P712m", &SA5_access
},
186 {0x324B103C, "Smart Array P711m", &SA5_access
},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access
},
189 {0x3351103C, "Smart Array P420", &SA5_access
},
190 {0x3352103C, "Smart Array P421", &SA5_access
},
191 {0x3353103C, "Smart Array P822", &SA5_access
},
192 {0x3354103C, "Smart Array P420i", &SA5_access
},
193 {0x3355103C, "Smart Array P220i", &SA5_access
},
194 {0x3356103C, "Smart Array P721m", &SA5_access
},
195 {0x1920103C, "Smart Array P430i", &SA5_access
},
196 {0x1921103C, "Smart Array P830i", &SA5_access
},
197 {0x1922103C, "Smart Array P430", &SA5_access
},
198 {0x1923103C, "Smart Array P431", &SA5_access
},
199 {0x1924103C, "Smart Array P830", &SA5_access
},
200 {0x1925103C, "Smart Array P831", &SA5_access
},
201 {0x1926103C, "Smart Array P731m", &SA5_access
},
202 {0x1928103C, "Smart Array P230i", &SA5_access
},
203 {0x1929103C, "Smart Array P530", &SA5_access
},
204 {0x21BD103C, "Smart Array P244br", &SA5_access
},
205 {0x21BE103C, "Smart Array P741m", &SA5_access
},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
209 {0x21C2103C, "Smart Array P440", &SA5_access
},
210 {0x21C3103C, "Smart Array P441", &SA5_access
},
211 {0x21C4103C, "Smart Array", &SA5_access
},
212 {0x21C5103C, "Smart Array P841", &SA5_access
},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
214 {0x21C7103C, "Smart HBA H240", &SA5_access
},
215 {0x21C8103C, "Smart HBA H241", &SA5_access
},
216 {0x21C9103C, "Smart Array", &SA5_access
},
217 {0x21CA103C, "Smart Array P246br", &SA5_access
},
218 {0x21CB103C, "Smart Array P840", &SA5_access
},
219 {0x21CC103C, "Smart Array", &SA5_access
},
220 {0x21CD103C, "Smart Array", &SA5_access
},
221 {0x21CE103C, "Smart HBA", &SA5_access
},
222 {0x05809005, "SmartHBA-SA", &SA5_access
},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
236 static struct scsi_transport_template
*hpsa_sas_transport_template
;
237 static int hpsa_add_sas_host(struct ctlr_info
*h
);
238 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
239 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
240 struct hpsa_scsi_dev_t
*device
);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
244 struct sas_rphy
*rphy
);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy
;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle
;
250 static int number_of_controllers
;
252 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
253 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
254 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
257 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
261 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
262 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
263 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
264 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
265 struct scsi_cmnd
*scmd
);
266 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
267 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
269 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
274 static void hpsa_scan_start(struct Scsi_Host
*);
275 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
276 unsigned long elapsed_time
);
277 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
280 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
281 static int hpsa_slave_configure(struct scsi_device
*sdev
);
282 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
284 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
285 static int check_for_unit_attention(struct ctlr_info
*h
,
286 struct CommandList
*c
);
287 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
288 struct CommandList
*c
);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket
, int num_buckets
,
291 int nsgs
, int min_blocks
, u32
*bucket_map
);
292 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
294 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
295 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
296 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
298 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
299 unsigned long *memory_bar
);
300 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
302 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
303 unsigned char lunaddr
[],
305 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
307 static inline void finish_cmd(struct CommandList
*c
);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
312 static void hpsa_flush_cache(struct ctlr_info
*h
);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
314 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
315 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
316 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
317 static u32
lockup_detected(struct ctlr_info
*h
);
318 static int detect_controller_lockup(struct ctlr_info
*h
);
319 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
321 struct ReportExtendedLUNdata
*buf
, int bufsize
);
322 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
323 unsigned char scsi3addr
[], u8 page
);
324 static int hpsa_luns_changed(struct ctlr_info
*h
);
325 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
326 struct hpsa_scsi_dev_t
*dev
,
327 unsigned char *scsi3addr
);
329 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
331 unsigned long *priv
= shost_priv(sdev
->host
);
332 return (struct ctlr_info
*) *priv
;
335 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
337 unsigned long *priv
= shost_priv(sh
);
338 return (struct ctlr_info
*) *priv
;
341 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
343 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
346 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
348 return c
->reset_pending
;
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
353 u8
*sense_key
, u8
*asc
, u8
*ascq
)
355 struct scsi_sense_hdr sshdr
;
362 if (sense_data_len
< 1)
365 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
367 *sense_key
= sshdr
.sense_key
;
373 static int check_for_unit_attention(struct ctlr_info
*h
,
374 struct CommandList
*c
)
376 u8 sense_key
, asc
, ascq
;
379 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
380 sense_len
= sizeof(c
->err_info
->SenseInfo
);
382 sense_len
= c
->err_info
->SenseLen
;
384 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
385 &sense_key
, &asc
, &ascq
);
386 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
391 dev_warn(&h
->pdev
->dev
,
392 "%s: a state change detected, command retried\n",
396 dev_warn(&h
->pdev
->dev
,
397 "%s: LUN failure detected\n", h
->devname
);
399 case REPORT_LUNS_CHANGED
:
400 dev_warn(&h
->pdev
->dev
,
401 "%s: report LUN data changed\n", h
->devname
);
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
408 dev_warn(&h
->pdev
->dev
,
409 "%s: a power on or device reset detected\n",
412 case UNIT_ATTENTION_CLEARED
:
413 dev_warn(&h
->pdev
->dev
,
414 "%s: unit attention cleared by another initiator\n",
418 dev_warn(&h
->pdev
->dev
,
419 "%s: unknown unit attention detected\n",
426 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
428 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
429 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
430 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
432 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
436 static u32
lockup_detected(struct ctlr_info
*h
);
437 static ssize_t
host_show_lockup_detected(struct device
*dev
,
438 struct device_attribute
*attr
, char *buf
)
442 struct Scsi_Host
*shost
= class_to_shost(dev
);
444 h
= shost_to_hba(shost
);
445 ld
= lockup_detected(h
);
447 return sprintf(buf
, "ld=%d\n", ld
);
450 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
451 struct device_attribute
*attr
,
452 const char *buf
, size_t count
)
456 struct Scsi_Host
*shost
= class_to_shost(dev
);
459 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
461 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
462 strncpy(tmpbuf
, buf
, len
);
464 if (sscanf(tmpbuf
, "%d", &status
) != 1)
466 h
= shost_to_hba(shost
);
467 h
->acciopath_status
= !!status
;
468 dev_warn(&h
->pdev
->dev
,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h
->acciopath_status
? "enabled" : "disabled");
474 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
475 struct device_attribute
*attr
,
476 const char *buf
, size_t count
)
478 int debug_level
, len
;
480 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
485 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
486 strncpy(tmpbuf
, buf
, len
);
488 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
492 h
= shost_to_hba(shost
);
493 h
->raid_offload_debug
= debug_level
;
494 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
495 h
->raid_offload_debug
);
499 static ssize_t
host_store_rescan(struct device
*dev
,
500 struct device_attribute
*attr
,
501 const char *buf
, size_t count
)
504 struct Scsi_Host
*shost
= class_to_shost(dev
);
505 h
= shost_to_hba(shost
);
506 hpsa_scan_start(h
->scsi_host
);
510 static ssize_t
host_show_firmware_revision(struct device
*dev
,
511 struct device_attribute
*attr
, char *buf
)
514 struct Scsi_Host
*shost
= class_to_shost(dev
);
515 unsigned char *fwrev
;
517 h
= shost_to_hba(shost
);
518 if (!h
->hba_inquiry_data
)
520 fwrev
= &h
->hba_inquiry_data
[32];
521 return snprintf(buf
, 20, "%c%c%c%c\n",
522 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
525 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
526 struct device_attribute
*attr
, char *buf
)
528 struct Scsi_Host
*shost
= class_to_shost(dev
);
529 struct ctlr_info
*h
= shost_to_hba(shost
);
531 return snprintf(buf
, 20, "%d\n",
532 atomic_read(&h
->commands_outstanding
));
535 static ssize_t
host_show_transport_mode(struct device
*dev
,
536 struct device_attribute
*attr
, char *buf
)
539 struct Scsi_Host
*shost
= class_to_shost(dev
);
541 h
= shost_to_hba(shost
);
542 return snprintf(buf
, 20, "%s\n",
543 h
->transMethod
& CFGTBL_Trans_Performant
?
544 "performant" : "simple");
547 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
548 struct device_attribute
*attr
, char *buf
)
551 struct Scsi_Host
*shost
= class_to_shost(dev
);
553 h
= shost_to_hba(shost
);
554 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
555 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller
[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller
[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
603 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
607 for (i
= 0; i
< nelems
; i
++)
608 if (a
[i
] == board_id
)
613 static int ctlr_is_hard_resettable(u32 board_id
)
615 return !board_id_in_array(unresettable_controller
,
616 ARRAY_SIZE(unresettable_controller
), board_id
);
619 static int ctlr_is_soft_resettable(u32 board_id
)
621 return !board_id_in_array(soft_unresettable_controller
,
622 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
625 static int ctlr_is_resettable(u32 board_id
)
627 return ctlr_is_hard_resettable(board_id
) ||
628 ctlr_is_soft_resettable(board_id
);
631 static ssize_t
host_show_resettable(struct device
*dev
,
632 struct device_attribute
*attr
, char *buf
)
635 struct Scsi_Host
*shost
= class_to_shost(dev
);
637 h
= shost_to_hba(shost
);
638 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
643 return (scsi3addr
[3] & 0xC0) == 0x40;
646 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
661 return !device
->physical_device
;
664 static ssize_t
raid_level_show(struct device
*dev
,
665 struct device_attribute
*attr
, char *buf
)
668 unsigned char rlevel
;
670 struct scsi_device
*sdev
;
671 struct hpsa_scsi_dev_t
*hdev
;
674 sdev
= to_scsi_device(dev
);
675 h
= sdev_to_hba(sdev
);
676 spin_lock_irqsave(&h
->lock
, flags
);
677 hdev
= sdev
->hostdata
;
679 spin_unlock_irqrestore(&h
->lock
, flags
);
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev
)) {
685 spin_unlock_irqrestore(&h
->lock
, flags
);
686 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
690 rlevel
= hdev
->raid_level
;
691 spin_unlock_irqrestore(&h
->lock
, flags
);
692 if (rlevel
> RAID_UNKNOWN
)
693 rlevel
= RAID_UNKNOWN
;
694 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
698 static ssize_t
lunid_show(struct device
*dev
,
699 struct device_attribute
*attr
, char *buf
)
702 struct scsi_device
*sdev
;
703 struct hpsa_scsi_dev_t
*hdev
;
705 unsigned char lunid
[8];
707 sdev
= to_scsi_device(dev
);
708 h
= sdev_to_hba(sdev
);
709 spin_lock_irqsave(&h
->lock
, flags
);
710 hdev
= sdev
->hostdata
;
712 spin_unlock_irqrestore(&h
->lock
, flags
);
715 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
716 spin_unlock_irqrestore(&h
->lock
, flags
);
717 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
720 static ssize_t
unique_id_show(struct device
*dev
,
721 struct device_attribute
*attr
, char *buf
)
724 struct scsi_device
*sdev
;
725 struct hpsa_scsi_dev_t
*hdev
;
727 unsigned char sn
[16];
729 sdev
= to_scsi_device(dev
);
730 h
= sdev_to_hba(sdev
);
731 spin_lock_irqsave(&h
->lock
, flags
);
732 hdev
= sdev
->hostdata
;
734 spin_unlock_irqrestore(&h
->lock
, flags
);
737 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
738 spin_unlock_irqrestore(&h
->lock
, flags
);
739 return snprintf(buf
, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn
[0], sn
[1], sn
[2], sn
[3],
743 sn
[4], sn
[5], sn
[6], sn
[7],
744 sn
[8], sn
[9], sn
[10], sn
[11],
745 sn
[12], sn
[13], sn
[14], sn
[15]);
748 static ssize_t
sas_address_show(struct device
*dev
,
749 struct device_attribute
*attr
, char *buf
)
752 struct scsi_device
*sdev
;
753 struct hpsa_scsi_dev_t
*hdev
;
757 sdev
= to_scsi_device(dev
);
758 h
= sdev_to_hba(sdev
);
759 spin_lock_irqsave(&h
->lock
, flags
);
760 hdev
= sdev
->hostdata
;
761 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
762 spin_unlock_irqrestore(&h
->lock
, flags
);
765 sas_address
= hdev
->sas_address
;
766 spin_unlock_irqrestore(&h
->lock
, flags
);
768 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
771 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
772 struct device_attribute
*attr
, char *buf
)
775 struct scsi_device
*sdev
;
776 struct hpsa_scsi_dev_t
*hdev
;
780 sdev
= to_scsi_device(dev
);
781 h
= sdev_to_hba(sdev
);
782 spin_lock_irqsave(&h
->lock
, flags
);
783 hdev
= sdev
->hostdata
;
785 spin_unlock_irqrestore(&h
->lock
, flags
);
788 offload_enabled
= hdev
->offload_enabled
;
789 spin_unlock_irqrestore(&h
->lock
, flags
);
790 return snprintf(buf
, 20, "%d\n", offload_enabled
);
794 static ssize_t
path_info_show(struct device
*dev
,
795 struct device_attribute
*attr
, char *buf
)
798 struct scsi_device
*sdev
;
799 struct hpsa_scsi_dev_t
*hdev
;
805 u8 path_map_index
= 0;
807 unsigned char phys_connector
[2];
809 sdev
= to_scsi_device(dev
);
810 h
= sdev_to_hba(sdev
);
811 spin_lock_irqsave(&h
->devlock
, flags
);
812 hdev
= sdev
->hostdata
;
814 spin_unlock_irqrestore(&h
->devlock
, flags
);
819 for (i
= 0; i
< MAX_PATHS
; i
++) {
820 path_map_index
= 1<<i
;
821 if (i
== hdev
->active_path_index
)
823 else if (hdev
->path_map
& path_map_index
)
828 output_len
+= scnprintf(buf
+ output_len
,
829 PAGE_SIZE
- output_len
,
830 "[%d:%d:%d:%d] %20.20s ",
831 h
->scsi_host
->host_no
,
832 hdev
->bus
, hdev
->target
, hdev
->lun
,
833 scsi_device_type(hdev
->devtype
));
835 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
836 output_len
+= scnprintf(buf
+ output_len
,
837 PAGE_SIZE
- output_len
,
843 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
844 sizeof(phys_connector
));
845 if (phys_connector
[0] < '0')
846 phys_connector
[0] = '0';
847 if (phys_connector
[1] < '0')
848 phys_connector
[1] = '0';
849 output_len
+= scnprintf(buf
+ output_len
,
850 PAGE_SIZE
- output_len
,
853 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
854 hdev
->expose_device
) {
855 if (box
== 0 || box
== 0xFF) {
856 output_len
+= scnprintf(buf
+ output_len
,
857 PAGE_SIZE
- output_len
,
861 output_len
+= scnprintf(buf
+ output_len
,
862 PAGE_SIZE
- output_len
,
863 "BOX: %hhu BAY: %hhu %s\n",
866 } else if (box
!= 0 && box
!= 0xFF) {
867 output_len
+= scnprintf(buf
+ output_len
,
868 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
871 output_len
+= scnprintf(buf
+ output_len
,
872 PAGE_SIZE
- output_len
, "%s\n", active
);
875 spin_unlock_irqrestore(&h
->devlock
, flags
);
879 static ssize_t
host_show_ctlr_num(struct device
*dev
,
880 struct device_attribute
*attr
, char *buf
)
883 struct Scsi_Host
*shost
= class_to_shost(dev
);
885 h
= shost_to_hba(shost
);
886 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
889 static ssize_t
host_show_legacy_board(struct device
*dev
,
890 struct device_attribute
*attr
, char *buf
)
893 struct Scsi_Host
*shost
= class_to_shost(dev
);
895 h
= shost_to_hba(shost
);
896 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
899 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
900 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
901 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
902 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
903 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
904 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
905 host_show_hp_ssd_smart_path_enabled
, NULL
);
906 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
907 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
908 host_show_hp_ssd_smart_path_status
,
909 host_store_hp_ssd_smart_path_status
);
910 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
911 host_store_raid_offload_debug
);
912 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
913 host_show_firmware_revision
, NULL
);
914 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
915 host_show_commands_outstanding
, NULL
);
916 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
917 host_show_transport_mode
, NULL
);
918 static DEVICE_ATTR(resettable
, S_IRUGO
,
919 host_show_resettable
, NULL
);
920 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
921 host_show_lockup_detected
, NULL
);
922 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
923 host_show_ctlr_num
, NULL
);
924 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
925 host_show_legacy_board
, NULL
);
927 static struct device_attribute
*hpsa_sdev_attrs
[] = {
928 &dev_attr_raid_level
,
931 &dev_attr_hp_ssd_smart_path_enabled
,
933 &dev_attr_sas_address
,
937 static struct device_attribute
*hpsa_shost_attrs
[] = {
939 &dev_attr_firmware_revision
,
940 &dev_attr_commands_outstanding
,
941 &dev_attr_transport_mode
,
942 &dev_attr_resettable
,
943 &dev_attr_hp_ssd_smart_path_status
,
944 &dev_attr_raid_offload_debug
,
945 &dev_attr_lockup_detected
,
947 &dev_attr_legacy_board
,
951 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
952 HPSA_MAX_CONCURRENT_PASSTHRUS)
954 static struct scsi_host_template hpsa_driver_template
= {
955 .module
= THIS_MODULE
,
958 .queuecommand
= hpsa_scsi_queue_command
,
959 .scan_start
= hpsa_scan_start
,
960 .scan_finished
= hpsa_scan_finished
,
961 .change_queue_depth
= hpsa_change_queue_depth
,
963 .use_clustering
= ENABLE_CLUSTERING
,
964 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
966 .slave_alloc
= hpsa_slave_alloc
,
967 .slave_configure
= hpsa_slave_configure
,
968 .slave_destroy
= hpsa_slave_destroy
,
970 .compat_ioctl
= hpsa_compat_ioctl
,
972 .sdev_attrs
= hpsa_sdev_attrs
,
973 .shost_attrs
= hpsa_shost_attrs
,
978 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
981 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
983 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
984 return h
->access
.command_completed(h
, q
);
986 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
987 return h
->access
.command_completed(h
, q
);
989 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
990 a
= rq
->head
[rq
->current_entry
];
992 atomic_dec(&h
->commands_outstanding
);
996 /* Check for wraparound */
997 if (rq
->current_entry
== h
->max_commands
) {
998 rq
->current_entry
= 0;
1005 * There are some special bits in the bus address of the
1006 * command that we have to set for the controller to know
1007 * how to process the command:
1009 * Normal performant mode:
1010 * bit 0: 1 means performant mode, 0 means simple mode.
1011 * bits 1-3 = block fetch table entry
1012 * bits 4-6 = command type (== 0)
1015 * bit 0 = "performant mode" bit.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 110)
1018 * (command type is needed because ioaccel1 mode
1019 * commands are submitted through the same register as normal
1020 * mode commands, so this is how the controller knows whether
1021 * the command is normal mode or ioaccel1 mode.)
1024 * bit 0 = "performant mode" bit.
1025 * bits 1-4 = block fetch table entry (note extra bit)
1026 * bits 4-6 = not needed, because ioaccel2 mode has
1027 * a separate special register for submitting commands.
1031 * set_performant_mode: Modify the tag for cciss performant
1032 * set bit 0 for pull model, bits 3-1 for block fetch
1035 #define DEFAULT_REPLY_QUEUE (-1)
1036 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1039 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1040 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1041 if (unlikely(!h
->msix_vectors
))
1043 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1044 c
->Header
.ReplyQueue
=
1045 raw_smp_processor_id() % h
->nreply_queues
;
1047 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1051 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1052 struct CommandList
*c
,
1055 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1058 * Tell the controller to post the reply to the queue for this
1059 * processor. This seems to give the best I/O throughput.
1061 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1062 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1064 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1066 * Set the bits in the address sent down to include:
1067 * - performant mode bit (bit 0)
1068 * - pull count (bits 1-3)
1069 * - command type (bits 4-6)
1071 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1072 IOACCEL1_BUSADDR_CMDTYPE
;
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1076 struct CommandList
*c
,
1079 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1080 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1082 /* Tell the controller to post the reply to the queue for this
1083 * processor. This seems to give the best I/O throughput.
1085 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1086 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1088 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1089 /* Set the bits in the address sent down to include:
1090 * - performant mode bit not used in ioaccel mode 2
1091 * - pull count (bits 0-3)
1092 * - command type isn't needed for ioaccel2
1094 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1097 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1098 struct CommandList
*c
,
1101 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1104 * Tell the controller to post the reply to the queue for this
1105 * processor. This seems to give the best I/O throughput.
1107 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1108 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1110 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1112 * Set the bits in the address sent down to include:
1113 * - performant mode bit not used in ioaccel mode 2
1114 * - pull count (bits 0-3)
1115 * - command type isn't needed for ioaccel2
1117 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1120 static int is_firmware_flash_cmd(u8
*cdb
)
1122 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1126 * During firmware flash, the heartbeat register may not update as frequently
1127 * as it should. So we dial down lockup detection during firmware flash. and
1128 * dial it back up when firmware flash completes.
1130 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1131 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1132 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1133 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1134 struct CommandList
*c
)
1136 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1138 atomic_inc(&h
->firmware_flash_in_progress
);
1139 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1142 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1143 struct CommandList
*c
)
1145 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1146 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1147 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1150 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1151 struct CommandList
*c
, int reply_queue
)
1153 dial_down_lockup_detection_during_fw_flash(h
, c
);
1154 atomic_inc(&h
->commands_outstanding
);
1155 switch (c
->cmd_type
) {
1157 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1158 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1161 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1162 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1165 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1166 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1169 set_performant_mode(h
, c
, reply_queue
);
1170 h
->access
.submit_command(h
, c
);
1174 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1176 if (unlikely(hpsa_is_pending_event(c
)))
1177 return finish_cmd(c
);
1179 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1182 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1184 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1187 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1189 if (!h
->hba_inquiry_data
)
1191 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1196 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1197 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1199 /* finds an unused bus, target, lun for a new physical device
1200 * assumes h->devlock is held
1203 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1205 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1207 for (i
= 0; i
< h
->ndevices
; i
++) {
1208 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1209 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1212 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1213 if (i
< HPSA_MAX_DEVICES
) {
1222 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1223 struct hpsa_scsi_dev_t
*dev
, char *description
)
1225 #define LABEL_SIZE 25
1226 char label
[LABEL_SIZE
];
1228 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1231 switch (dev
->devtype
) {
1233 snprintf(label
, LABEL_SIZE
, "controller");
1235 case TYPE_ENCLOSURE
:
1236 snprintf(label
, LABEL_SIZE
, "enclosure");
1241 snprintf(label
, LABEL_SIZE
, "external");
1242 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1243 snprintf(label
, LABEL_SIZE
, "%s",
1244 raid_label
[PHYSICAL_DRIVE
]);
1246 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1247 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1248 raid_label
[dev
->raid_level
]);
1251 snprintf(label
, LABEL_SIZE
, "rom");
1254 snprintf(label
, LABEL_SIZE
, "tape");
1256 case TYPE_MEDIUM_CHANGER
:
1257 snprintf(label
, LABEL_SIZE
, "changer");
1260 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1264 dev_printk(level
, &h
->pdev
->dev
,
1265 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1268 scsi_device_type(dev
->devtype
),
1272 dev
->offload_config
? '+' : '-',
1273 dev
->offload_enabled
? '+' : '-',
1274 dev
->expose_device
);
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1279 struct hpsa_scsi_dev_t
*device
,
1280 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1282 /* assumes h->devlock is held */
1283 int n
= h
->ndevices
;
1285 unsigned char addr1
[8], addr2
[8];
1286 struct hpsa_scsi_dev_t
*sd
;
1288 if (n
>= HPSA_MAX_DEVICES
) {
1289 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1294 /* physical devices do not have lun or target assigned until now. */
1295 if (device
->lun
!= -1)
1296 /* Logical device, lun is already assigned. */
1299 /* If this device a non-zero lun of a multi-lun device
1300 * byte 4 of the 8-byte LUN addr will contain the logical
1301 * unit no, zero otherwise.
1303 if (device
->scsi3addr
[4] == 0) {
1304 /* This is not a non-zero lun of a multi-lun device */
1305 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1306 device
->bus
, &device
->target
, &device
->lun
) != 0)
1311 /* This is a non-zero lun of a multi-lun device.
1312 * Search through our list and find the device which
1313 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 * Assign the same bus and target for this new LUN.
1315 * Use the logical unit number from the firmware.
1317 memcpy(addr1
, device
->scsi3addr
, 8);
1320 for (i
= 0; i
< n
; i
++) {
1322 memcpy(addr2
, sd
->scsi3addr
, 8);
1325 /* differ only in byte 4 and 5? */
1326 if (memcmp(addr1
, addr2
, 8) == 0) {
1327 device
->bus
= sd
->bus
;
1328 device
->target
= sd
->target
;
1329 device
->lun
= device
->scsi3addr
[4];
1333 if (device
->lun
== -1) {
1334 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1335 " suspect firmware bug or unsupported hardware "
1336 "configuration.\n");
1344 added
[*nadded
] = device
;
1346 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1347 device
->expose_device
? "added" : "masked");
1348 device
->offload_to_be_enabled
= device
->offload_enabled
;
1349 device
->offload_enabled
= 0;
1353 /* Update an entry in h->dev[] array. */
1354 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1355 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1357 int offload_enabled
;
1358 /* assumes h->devlock is held */
1359 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1361 /* Raid level changed. */
1362 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. if raid map data is changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1374 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1375 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1377 if (new_entry
->hba_ioaccel_enabled
) {
1378 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1382 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1383 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1384 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * it on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1391 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1392 if (!new_entry
->offload_enabled
)
1393 h
->dev
[entry
]->offload_enabled
= 0;
1395 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1396 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1397 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1398 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1403 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1404 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1405 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1407 /* assumes h->devlock is held */
1408 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1409 removed
[*nremoved
] = h
->dev
[entry
];
1413 * New physical devices won't have target/lun assigned yet
1414 * so we need to preserve the values in the slot we are replacing.
1416 if (new_entry
->target
== -1) {
1417 new_entry
->target
= h
->dev
[entry
]->target
;
1418 new_entry
->lun
= h
->dev
[entry
]->lun
;
1421 h
->dev
[entry
] = new_entry
;
1422 added
[*nadded
] = new_entry
;
1424 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1425 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1426 new_entry
->offload_enabled
= 0;
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1431 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1433 /* assumes h->devlock is held */
1435 struct hpsa_scsi_dev_t
*sd
;
1437 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1440 removed
[*nremoved
] = h
->dev
[entry
];
1443 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1444 h
->dev
[i
] = h
->dev
[i
+1];
1446 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1459 static void fixup_botched_add(struct ctlr_info
*h
,
1460 struct hpsa_scsi_dev_t
*added
)
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1465 unsigned long flags
;
1468 spin_lock_irqsave(&h
->lock
, flags
);
1469 for (i
= 0; i
< h
->ndevices
; i
++) {
1470 if (h
->dev
[i
] == added
) {
1471 for (j
= i
; j
< h
->ndevices
-1; j
++)
1472 h
->dev
[j
] = h
->dev
[j
+1];
1477 spin_unlock_irqrestore(&h
->lock
, flags
);
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1482 struct hpsa_scsi_dev_t
*dev2
)
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1488 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1489 sizeof(dev1
->scsi3addr
)) != 0)
1491 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1492 sizeof(dev1
->device_id
)) != 0)
1494 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1496 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1498 if (dev1
->devtype
!= dev2
->devtype
)
1500 if (dev1
->bus
!= dev2
->bus
)
1505 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1506 struct hpsa_scsi_dev_t
*dev2
)
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1512 if (dev1
->raid_level
!= dev2
->raid_level
)
1514 if (dev1
->offload_config
!= dev2
->offload_config
)
1516 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1518 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1519 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1524 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1525 * and return needle location in *index. If scsi3addr matches, but not
1526 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1527 * location in *index.
1528 * In the case of a minor device attribute change, such as RAID level, just
1529 * return DEVICE_UPDATED, along with the updated device's location in index.
1530 * If needle not found, return DEVICE_NOT_FOUND.
1532 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1533 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1537 #define DEVICE_NOT_FOUND 0
1538 #define DEVICE_CHANGED 1
1539 #define DEVICE_SAME 2
1540 #define DEVICE_UPDATED 3
1542 return DEVICE_NOT_FOUND
;
1544 for (i
= 0; i
< haystack_size
; i
++) {
1545 if (haystack
[i
] == NULL
) /* previously removed. */
1547 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1549 if (device_is_the_same(needle
, haystack
[i
])) {
1550 if (device_updated(needle
, haystack
[i
]))
1551 return DEVICE_UPDATED
;
1554 /* Keep offline devices offline */
1555 if (needle
->volume_offline
)
1556 return DEVICE_NOT_FOUND
;
1557 return DEVICE_CHANGED
;
1562 return DEVICE_NOT_FOUND
;
1565 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1566 unsigned char scsi3addr
[])
1568 struct offline_device_entry
*device
;
1569 unsigned long flags
;
1571 /* Check to see if device is already on the list */
1572 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1573 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1574 if (memcmp(device
->scsi3addr
, scsi3addr
,
1575 sizeof(device
->scsi3addr
)) == 0) {
1576 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1580 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1582 /* Device is not on the list, add it. */
1583 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1587 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1588 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1589 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1590 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1593 /* Print a message explaining various offline volume states */
1594 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1595 struct hpsa_scsi_dev_t
*sd
)
1597 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1598 dev_info(&h
->pdev
->dev
,
1599 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1600 h
->scsi_host
->host_no
,
1601 sd
->bus
, sd
->target
, sd
->lun
);
1602 switch (sd
->volume_offline
) {
1605 case HPSA_LV_UNDERGOING_ERASE
:
1606 dev_info(&h
->pdev
->dev
,
1607 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1608 h
->scsi_host
->host_no
,
1609 sd
->bus
, sd
->target
, sd
->lun
);
1611 case HPSA_LV_NOT_AVAILABLE
:
1612 dev_info(&h
->pdev
->dev
,
1613 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1614 h
->scsi_host
->host_no
,
1615 sd
->bus
, sd
->target
, sd
->lun
);
1617 case HPSA_LV_UNDERGOING_RPI
:
1618 dev_info(&h
->pdev
->dev
,
1619 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1620 h
->scsi_host
->host_no
,
1621 sd
->bus
, sd
->target
, sd
->lun
);
1623 case HPSA_LV_PENDING_RPI
:
1624 dev_info(&h
->pdev
->dev
,
1625 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1626 h
->scsi_host
->host_no
,
1627 sd
->bus
, sd
->target
, sd
->lun
);
1629 case HPSA_LV_ENCRYPTED_NO_KEY
:
1630 dev_info(&h
->pdev
->dev
,
1631 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1632 h
->scsi_host
->host_no
,
1633 sd
->bus
, sd
->target
, sd
->lun
);
1635 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1636 dev_info(&h
->pdev
->dev
,
1637 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1638 h
->scsi_host
->host_no
,
1639 sd
->bus
, sd
->target
, sd
->lun
);
1641 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1642 dev_info(&h
->pdev
->dev
,
1643 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1644 h
->scsi_host
->host_no
,
1645 sd
->bus
, sd
->target
, sd
->lun
);
1647 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1648 dev_info(&h
->pdev
->dev
,
1649 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1650 h
->scsi_host
->host_no
,
1651 sd
->bus
, sd
->target
, sd
->lun
);
1653 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1654 dev_info(&h
->pdev
->dev
,
1655 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1656 h
->scsi_host
->host_no
,
1657 sd
->bus
, sd
->target
, sd
->lun
);
1659 case HPSA_LV_PENDING_ENCRYPTION
:
1660 dev_info(&h
->pdev
->dev
,
1661 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1662 h
->scsi_host
->host_no
,
1663 sd
->bus
, sd
->target
, sd
->lun
);
1665 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1666 dev_info(&h
->pdev
->dev
,
1667 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1668 h
->scsi_host
->host_no
,
1669 sd
->bus
, sd
->target
, sd
->lun
);
1675 * Figure the list of physical drive pointers for a logical drive with
1676 * raid offload configured.
1678 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1679 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1680 struct hpsa_scsi_dev_t
*logical_drive
)
1682 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1683 struct raid_map_disk_data
*dd
= &map
->data
[0];
1685 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1686 le16_to_cpu(map
->metadata_disks_per_row
);
1687 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1688 le16_to_cpu(map
->layout_map_count
) *
1689 total_disks_per_row
;
1690 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1691 total_disks_per_row
;
1694 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1695 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1697 logical_drive
->nphysical_disks
= nraid_map_entries
;
1700 for (i
= 0; i
< nraid_map_entries
; i
++) {
1701 logical_drive
->phys_disk
[i
] = NULL
;
1702 if (!logical_drive
->offload_config
)
1704 for (j
= 0; j
< ndevices
; j
++) {
1707 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1708 dev
[j
]->devtype
!= TYPE_ZBC
)
1710 if (is_logical_device(dev
[j
]))
1712 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1715 logical_drive
->phys_disk
[i
] = dev
[j
];
1717 qdepth
= min(h
->nr_cmds
, qdepth
+
1718 logical_drive
->phys_disk
[i
]->queue_depth
);
1723 * This can happen if a physical drive is removed and
1724 * the logical drive is degraded. In that case, the RAID
1725 * map data will refer to a physical disk which isn't actually
1726 * present. And in that case offload_enabled should already
1727 * be 0, but we'll turn it off here just in case
1729 if (!logical_drive
->phys_disk
[i
]) {
1730 logical_drive
->offload_enabled
= 0;
1731 logical_drive
->offload_to_be_enabled
= 0;
1732 logical_drive
->queue_depth
= 8;
1735 if (nraid_map_entries
)
1737 * This is correct for reads, too high for full stripe writes,
1738 * way too high for partial stripe writes
1740 logical_drive
->queue_depth
= qdepth
;
1742 logical_drive
->queue_depth
= h
->nr_cmds
;
1745 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1746 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1750 for (i
= 0; i
< ndevices
; i
++) {
1753 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1754 dev
[i
]->devtype
!= TYPE_ZBC
)
1756 if (!is_logical_device(dev
[i
]))
1760 * If offload is currently enabled, the RAID map and
1761 * phys_disk[] assignment *better* not be changing
1762 * and since it isn't changing, we do not need to
1765 if (dev
[i
]->offload_enabled
)
1768 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1772 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1779 if (is_logical_device(device
)) /* RAID */
1780 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1781 device
->target
, device
->lun
);
1783 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1788 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1789 struct hpsa_scsi_dev_t
*dev
)
1794 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1795 struct CommandList
*c
= h
->cmd_pool
+ i
;
1796 int refcount
= atomic_inc_return(&c
->refcount
);
1798 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1800 unsigned long flags
;
1802 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1803 if (!hpsa_is_cmd_idle(c
))
1805 spin_unlock_irqrestore(&h
->lock
, flags
);
1814 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1815 struct hpsa_scsi_dev_t
*device
)
1821 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1826 dev_warn(&h
->pdev
->dev
,
1827 "%s: removing device with %d outstanding commands!\n",
1833 static void hpsa_remove_device(struct ctlr_info
*h
,
1834 struct hpsa_scsi_dev_t
*device
)
1836 struct scsi_device
*sdev
= NULL
;
1841 if (is_logical_device(device
)) { /* RAID */
1842 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1843 device
->target
, device
->lun
);
1845 scsi_remove_device(sdev
);
1846 scsi_device_put(sdev
);
1849 * We don't expect to get here. Future commands
1850 * to this device will get a selection timeout as
1851 * if the device were gone.
1853 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1854 "didn't find device for removal.");
1858 device
->removed
= 1;
1859 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1861 hpsa_remove_sas_device(device
);
1865 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1866 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1868 /* sd contains scsi3 addresses and devtypes, and inquiry
1869 * data. This function takes what's in sd to be the current
1870 * reality and updates h->dev[] to reflect that reality.
1872 int i
, entry
, device_change
, changes
= 0;
1873 struct hpsa_scsi_dev_t
*csd
;
1874 unsigned long flags
;
1875 struct hpsa_scsi_dev_t
**added
, **removed
;
1876 int nadded
, nremoved
;
1879 * A reset can cause a device status to change
1880 * re-schedule the scan to see what happened.
1882 spin_lock_irqsave(&h
->reset_lock
, flags
);
1883 if (h
->reset_in_progress
) {
1884 h
->drv_req_rescan
= 1;
1885 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1888 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1890 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1891 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1893 if (!added
|| !removed
) {
1894 dev_warn(&h
->pdev
->dev
, "out of memory in "
1895 "adjust_hpsa_scsi_table\n");
1899 spin_lock_irqsave(&h
->devlock
, flags
);
1901 /* find any devices in h->dev[] that are not in
1902 * sd[] and remove them from h->dev[], and for any
1903 * devices which have changed, remove the old device
1904 * info and add the new device info.
1905 * If minor device attributes change, just update
1906 * the existing device structure.
1911 while (i
< h
->ndevices
) {
1913 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1914 if (device_change
== DEVICE_NOT_FOUND
) {
1916 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1917 continue; /* remove ^^^, hence i not incremented */
1918 } else if (device_change
== DEVICE_CHANGED
) {
1920 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1921 added
, &nadded
, removed
, &nremoved
);
1922 /* Set it to NULL to prevent it from being freed
1923 * at the bottom of hpsa_update_scsi_devices()
1926 } else if (device_change
== DEVICE_UPDATED
) {
1927 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1932 /* Now, make sure every device listed in sd[] is also
1933 * listed in h->dev[], adding them if they aren't found
1936 for (i
= 0; i
< nsds
; i
++) {
1937 if (!sd
[i
]) /* if already added above. */
1940 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1941 * as the SCSI mid-layer does not handle such devices well.
1942 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1943 * at 160Hz, and prevents the system from coming up.
1945 if (sd
[i
]->volume_offline
) {
1946 hpsa_show_volume_status(h
, sd
[i
]);
1947 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1951 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1952 h
->ndevices
, &entry
);
1953 if (device_change
== DEVICE_NOT_FOUND
) {
1955 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1957 sd
[i
] = NULL
; /* prevent from being freed later. */
1958 } else if (device_change
== DEVICE_CHANGED
) {
1959 /* should never happen... */
1961 dev_warn(&h
->pdev
->dev
,
1962 "device unexpectedly changed.\n");
1963 /* but if it does happen, we just ignore that device */
1966 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1968 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1969 * any logical drives that need it enabled.
1971 for (i
= 0; i
< h
->ndevices
; i
++) {
1972 if (h
->dev
[i
] == NULL
)
1974 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1977 spin_unlock_irqrestore(&h
->devlock
, flags
);
1979 /* Monitor devices which are in one of several NOT READY states to be
1980 * brought online later. This must be done without holding h->devlock,
1981 * so don't touch h->dev[]
1983 for (i
= 0; i
< nsds
; i
++) {
1984 if (!sd
[i
]) /* if already added above. */
1986 if (sd
[i
]->volume_offline
)
1987 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1990 /* Don't notify scsi mid layer of any changes the first time through
1991 * (or if there are no changes) scsi_scan_host will do it later the
1992 * first time through.
1997 /* Notify scsi mid layer of any removed devices */
1998 for (i
= 0; i
< nremoved
; i
++) {
1999 if (removed
[i
] == NULL
)
2001 if (removed
[i
]->expose_device
)
2002 hpsa_remove_device(h
, removed
[i
]);
2007 /* Notify scsi mid layer of any added devices */
2008 for (i
= 0; i
< nadded
; i
++) {
2011 if (added
[i
] == NULL
)
2013 if (!(added
[i
]->expose_device
))
2015 rc
= hpsa_add_device(h
, added
[i
]);
2018 dev_warn(&h
->pdev
->dev
,
2019 "addition failed %d, device not added.", rc
);
2020 /* now we have to remove it from h->dev,
2021 * since it didn't get added to scsi mid layer
2023 fixup_botched_add(h
, added
[i
]);
2024 h
->drv_req_rescan
= 1;
2033 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2034 * Assume's h->devlock is held.
2036 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2037 int bus
, int target
, int lun
)
2040 struct hpsa_scsi_dev_t
*sd
;
2042 for (i
= 0; i
< h
->ndevices
; i
++) {
2044 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2050 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2052 struct hpsa_scsi_dev_t
*sd
= NULL
;
2053 unsigned long flags
;
2054 struct ctlr_info
*h
;
2056 h
= sdev_to_hba(sdev
);
2057 spin_lock_irqsave(&h
->devlock
, flags
);
2058 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2059 struct scsi_target
*starget
;
2060 struct sas_rphy
*rphy
;
2062 starget
= scsi_target(sdev
);
2063 rphy
= target_to_rphy(starget
);
2064 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2066 sd
->target
= sdev_id(sdev
);
2067 sd
->lun
= sdev
->lun
;
2071 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2072 sdev_id(sdev
), sdev
->lun
);
2074 if (sd
&& sd
->expose_device
) {
2075 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2076 sdev
->hostdata
= sd
;
2078 sdev
->hostdata
= NULL
;
2079 spin_unlock_irqrestore(&h
->devlock
, flags
);
2083 /* configure scsi device based on internal per-device structure */
2084 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2086 struct hpsa_scsi_dev_t
*sd
;
2089 sd
= sdev
->hostdata
;
2090 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2094 queue_depth
= EXTERNAL_QD
;
2096 queue_depth
= sd
->queue_depth
!= 0 ?
2097 sd
->queue_depth
: sdev
->host
->can_queue
;
2099 queue_depth
= sdev
->host
->can_queue
;
2101 scsi_change_queue_depth(sdev
, queue_depth
);
2106 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2108 /* nothing to do. */
2111 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2115 if (!h
->ioaccel2_cmd_sg_list
)
2117 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2118 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2119 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2121 kfree(h
->ioaccel2_cmd_sg_list
);
2122 h
->ioaccel2_cmd_sg_list
= NULL
;
2125 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2129 if (h
->chainsize
<= 0)
2132 h
->ioaccel2_cmd_sg_list
=
2133 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2135 if (!h
->ioaccel2_cmd_sg_list
)
2137 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2138 h
->ioaccel2_cmd_sg_list
[i
] =
2139 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2140 h
->maxsgentries
, GFP_KERNEL
);
2141 if (!h
->ioaccel2_cmd_sg_list
[i
])
2147 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2151 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2155 if (!h
->cmd_sg_list
)
2157 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2158 kfree(h
->cmd_sg_list
[i
]);
2159 h
->cmd_sg_list
[i
] = NULL
;
2161 kfree(h
->cmd_sg_list
);
2162 h
->cmd_sg_list
= NULL
;
2165 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2169 if (h
->chainsize
<= 0)
2172 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2174 if (!h
->cmd_sg_list
)
2177 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2178 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2179 h
->chainsize
, GFP_KERNEL
);
2180 if (!h
->cmd_sg_list
[i
])
2187 hpsa_free_sg_chain_blocks(h
);
2191 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2192 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2194 struct ioaccel2_sg_element
*chain_block
;
2198 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2199 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2200 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2202 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2203 /* prevent subsequent unmapping */
2204 cp
->sg
->address
= 0;
2207 cp
->sg
->address
= cpu_to_le64(temp64
);
2211 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2212 struct io_accel2_cmd
*cp
)
2214 struct ioaccel2_sg_element
*chain_sg
;
2219 temp64
= le64_to_cpu(chain_sg
->address
);
2220 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2221 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2224 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2225 struct CommandList
*c
)
2227 struct SGDescriptor
*chain_sg
, *chain_block
;
2231 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2232 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2233 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2234 chain_len
= sizeof(*chain_sg
) *
2235 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2236 chain_sg
->Len
= cpu_to_le32(chain_len
);
2237 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2239 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2240 /* prevent subsequent unmapping */
2241 chain_sg
->Addr
= cpu_to_le64(0);
2244 chain_sg
->Addr
= cpu_to_le64(temp64
);
2248 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2249 struct CommandList
*c
)
2251 struct SGDescriptor
*chain_sg
;
2253 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2256 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2257 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2258 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2262 /* Decode the various types of errors on ioaccel2 path.
2263 * Return 1 for any error that should generate a RAID path retry.
2264 * Return 0 for errors that don't require a RAID path retry.
2266 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2267 struct CommandList
*c
,
2268 struct scsi_cmnd
*cmd
,
2269 struct io_accel2_cmd
*c2
,
2270 struct hpsa_scsi_dev_t
*dev
)
2274 u32 ioaccel2_resid
= 0;
2276 switch (c2
->error_data
.serv_response
) {
2277 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2278 switch (c2
->error_data
.status
) {
2279 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2281 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2282 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2283 if (c2
->error_data
.data_present
!=
2284 IOACCEL2_SENSE_DATA_PRESENT
) {
2285 memset(cmd
->sense_buffer
, 0,
2286 SCSI_SENSE_BUFFERSIZE
);
2289 /* copy the sense data */
2290 data_len
= c2
->error_data
.sense_data_len
;
2291 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2292 data_len
= SCSI_SENSE_BUFFERSIZE
;
2293 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2295 sizeof(c2
->error_data
.sense_data_buff
);
2296 memcpy(cmd
->sense_buffer
,
2297 c2
->error_data
.sense_data_buff
, data_len
);
2300 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2303 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2306 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2309 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2317 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2318 switch (c2
->error_data
.status
) {
2319 case IOACCEL2_STATUS_SR_IO_ERROR
:
2320 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2321 case IOACCEL2_STATUS_SR_OVERRUN
:
2324 case IOACCEL2_STATUS_SR_UNDERRUN
:
2325 cmd
->result
= (DID_OK
<< 16); /* host byte */
2326 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2327 ioaccel2_resid
= get_unaligned_le32(
2328 &c2
->error_data
.resid_cnt
[0]);
2329 scsi_set_resid(cmd
, ioaccel2_resid
);
2331 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2332 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2333 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2335 * Did an HBA disk disappear? We will eventually
2336 * get a state change event from the controller but
2337 * in the meantime, we need to tell the OS that the
2338 * HBA disk is no longer there and stop I/O
2339 * from going down. This allows the potential re-insert
2340 * of the disk to get the same device node.
2342 if (dev
->physical_device
&& dev
->expose_device
) {
2343 cmd
->result
= DID_NO_CONNECT
<< 16;
2345 h
->drv_req_rescan
= 1;
2346 dev_warn(&h
->pdev
->dev
,
2347 "%s: device is gone!\n", __func__
);
2350 * Retry by sending down the RAID path.
2351 * We will get an event from ctlr to
2352 * trigger rescan regardless.
2360 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2362 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2364 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2367 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2374 return retry
; /* retry on raid path? */
2377 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2378 struct CommandList
*c
)
2380 bool do_wake
= false;
2383 * Reset c->scsi_cmd here so that the reset handler will know
2384 * this command has completed. Then, check to see if the handler is
2385 * waiting for this command, and, if so, wake it.
2387 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2388 mb(); /* Declare command idle before checking for pending events. */
2389 if (c
->reset_pending
) {
2390 unsigned long flags
;
2391 struct hpsa_scsi_dev_t
*dev
;
2394 * There appears to be a reset pending; lock the lock and
2395 * reconfirm. If so, then decrement the count of outstanding
2396 * commands and wake the reset command if this is the last one.
2398 spin_lock_irqsave(&h
->lock
, flags
);
2399 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2400 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2402 c
->reset_pending
= NULL
;
2403 spin_unlock_irqrestore(&h
->lock
, flags
);
2407 wake_up_all(&h
->event_sync_wait_queue
);
2410 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2411 struct CommandList
*c
)
2413 hpsa_cmd_resolve_events(h
, c
);
2414 cmd_tagged_free(h
, c
);
2417 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2418 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2420 hpsa_cmd_resolve_and_free(h
, c
);
2421 if (cmd
&& cmd
->scsi_done
)
2422 cmd
->scsi_done(cmd
);
2425 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2427 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2428 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2431 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2432 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2433 struct hpsa_scsi_dev_t
*dev
)
2435 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2437 /* check for good status */
2438 if (likely(c2
->error_data
.serv_response
== 0 &&
2439 c2
->error_data
.status
== 0))
2440 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2443 * Any RAID offload error results in retry which will use
2444 * the normal I/O path so the controller can handle whatever's
2447 if (is_logical_device(dev
) &&
2448 c2
->error_data
.serv_response
==
2449 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2450 if (c2
->error_data
.status
==
2451 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2452 dev
->offload_enabled
= 0;
2453 dev
->offload_to_be_enabled
= 0;
2456 return hpsa_retry_cmd(h
, c
);
2459 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2460 return hpsa_retry_cmd(h
, c
);
2462 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2467 struct CommandList
*cp
)
2469 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2471 switch (tmf_status
) {
2472 case CISS_TMF_COMPLETE
:
2474 * CISS_TMF_COMPLETE never happens, instead,
2475 * ei->CommandStatus == 0 for this case.
2477 case CISS_TMF_SUCCESS
:
2479 case CISS_TMF_INVALID_FRAME
:
2480 case CISS_TMF_NOT_SUPPORTED
:
2481 case CISS_TMF_FAILED
:
2482 case CISS_TMF_WRONG_LUN
:
2483 case CISS_TMF_OVERLAPPED_TAG
:
2486 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2493 static void complete_scsi_command(struct CommandList
*cp
)
2495 struct scsi_cmnd
*cmd
;
2496 struct ctlr_info
*h
;
2497 struct ErrorInfo
*ei
;
2498 struct hpsa_scsi_dev_t
*dev
;
2499 struct io_accel2_cmd
*c2
;
2502 u8 asc
; /* additional sense code */
2503 u8 ascq
; /* additional sense code qualifier */
2504 unsigned long sense_data_size
;
2511 cmd
->result
= DID_NO_CONNECT
<< 16;
2512 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2515 dev
= cmd
->device
->hostdata
;
2517 cmd
->result
= DID_NO_CONNECT
<< 16;
2518 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2520 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2522 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2523 if ((cp
->cmd_type
== CMD_SCSI
) &&
2524 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2525 hpsa_unmap_sg_chain_block(h
, cp
);
2527 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2528 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2529 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2531 cmd
->result
= (DID_OK
<< 16); /* host byte */
2532 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2534 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2535 if (dev
->physical_device
&& dev
->expose_device
&&
2537 cmd
->result
= DID_NO_CONNECT
<< 16;
2538 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2540 if (likely(cp
->phys_disk
!= NULL
))
2541 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2545 * We check for lockup status here as it may be set for
2546 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547 * fail_all_oustanding_cmds()
2549 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2550 /* DID_NO_CONNECT will prevent a retry */
2551 cmd
->result
= DID_NO_CONNECT
<< 16;
2552 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2555 if ((unlikely(hpsa_is_pending_event(cp
))))
2556 if (cp
->reset_pending
)
2557 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2559 if (cp
->cmd_type
== CMD_IOACCEL2
)
2560 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2562 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2563 if (ei
->CommandStatus
== 0)
2564 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2566 /* For I/O accelerator commands, copy over some fields to the normal
2567 * CISS header used below for error handling.
2569 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2570 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2571 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2572 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2573 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2574 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2575 cp
->Header
.tag
= c
->tag
;
2576 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2577 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2579 /* Any RAID offload error results in retry which will use
2580 * the normal I/O path so the controller can handle whatever's
2583 if (is_logical_device(dev
)) {
2584 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2585 dev
->offload_enabled
= 0;
2586 return hpsa_retry_cmd(h
, cp
);
2590 /* an error has occurred */
2591 switch (ei
->CommandStatus
) {
2593 case CMD_TARGET_STATUS
:
2594 cmd
->result
|= ei
->ScsiStatus
;
2595 /* copy the sense data */
2596 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2597 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2599 sense_data_size
= sizeof(ei
->SenseInfo
);
2600 if (ei
->SenseLen
< sense_data_size
)
2601 sense_data_size
= ei
->SenseLen
;
2602 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2604 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2605 &sense_key
, &asc
, &ascq
);
2606 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2607 if (sense_key
== ABORTED_COMMAND
) {
2608 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2613 /* Problem was not a check condition
2614 * Pass it up to the upper layers...
2616 if (ei
->ScsiStatus
) {
2617 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2618 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2619 "Returning result: 0x%x\n",
2621 sense_key
, asc
, ascq
,
2623 } else { /* scsi status is zero??? How??? */
2624 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2625 "Returning no connection.\n", cp
),
2627 /* Ordinarily, this case should never happen,
2628 * but there is a bug in some released firmware
2629 * revisions that allows it to happen if, for
2630 * example, a 4100 backplane loses power and
2631 * the tape drive is in it. We assume that
2632 * it's a fatal error of some kind because we
2633 * can't show that it wasn't. We will make it
2634 * look like selection timeout since that is
2635 * the most common reason for this to occur,
2636 * and it's severe enough.
2639 cmd
->result
= DID_NO_CONNECT
<< 16;
2643 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2645 case CMD_DATA_OVERRUN
:
2646 dev_warn(&h
->pdev
->dev
,
2647 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2650 /* print_bytes(cp, sizeof(*cp), 1, 0);
2652 /* We get CMD_INVALID if you address a non-existent device
2653 * instead of a selection timeout (no response). You will
2654 * see this if you yank out a drive, then try to access it.
2655 * This is kind of a shame because it means that any other
2656 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2657 * missing target. */
2658 cmd
->result
= DID_NO_CONNECT
<< 16;
2661 case CMD_PROTOCOL_ERR
:
2662 cmd
->result
= DID_ERROR
<< 16;
2663 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2666 case CMD_HARDWARE_ERR
:
2667 cmd
->result
= DID_ERROR
<< 16;
2668 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2671 case CMD_CONNECTION_LOST
:
2672 cmd
->result
= DID_ERROR
<< 16;
2673 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2677 cmd
->result
= DID_ABORT
<< 16;
2679 case CMD_ABORT_FAILED
:
2680 cmd
->result
= DID_ERROR
<< 16;
2681 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2684 case CMD_UNSOLICITED_ABORT
:
2685 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2686 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2690 cmd
->result
= DID_TIME_OUT
<< 16;
2691 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2694 case CMD_UNABORTABLE
:
2695 cmd
->result
= DID_ERROR
<< 16;
2696 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2698 case CMD_TMF_STATUS
:
2699 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2700 cmd
->result
= DID_ERROR
<< 16;
2702 case CMD_IOACCEL_DISABLED
:
2703 /* This only handles the direct pass-through case since RAID
2704 * offload is handled above. Just attempt a retry.
2706 cmd
->result
= DID_SOFT_ERROR
<< 16;
2707 dev_warn(&h
->pdev
->dev
,
2708 "cp %p had HP SSD Smart Path error\n", cp
);
2711 cmd
->result
= DID_ERROR
<< 16;
2712 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2713 cp
, ei
->CommandStatus
);
2716 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2719 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2720 struct CommandList
*c
, int sg_used
, int data_direction
)
2724 for (i
= 0; i
< sg_used
; i
++)
2725 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2726 le32_to_cpu(c
->SG
[i
].Len
),
2730 static int hpsa_map_one(struct pci_dev
*pdev
,
2731 struct CommandList
*cp
,
2738 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2739 cp
->Header
.SGList
= 0;
2740 cp
->Header
.SGTotal
= cpu_to_le16(0);
2744 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2745 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2746 /* Prevent subsequent unmap of something never mapped */
2747 cp
->Header
.SGList
= 0;
2748 cp
->Header
.SGTotal
= cpu_to_le16(0);
2751 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2752 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2753 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2754 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2755 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2759 #define NO_TIMEOUT ((unsigned long) -1)
2760 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2761 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2762 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2764 DECLARE_COMPLETION_ONSTACK(wait
);
2767 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2768 if (timeout_msecs
== NO_TIMEOUT
) {
2769 /* TODO: get rid of this no-timeout thing */
2770 wait_for_completion_io(&wait
);
2773 if (!wait_for_completion_io_timeout(&wait
,
2774 msecs_to_jiffies(timeout_msecs
))) {
2775 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2781 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2782 int reply_queue
, unsigned long timeout_msecs
)
2784 if (unlikely(lockup_detected(h
))) {
2785 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2788 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2791 static u32
lockup_detected(struct ctlr_info
*h
)
2794 u32 rc
, *lockup_detected
;
2797 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2798 rc
= *lockup_detected
;
2803 #define MAX_DRIVER_CMD_RETRIES 25
2804 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2805 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2807 int backoff_time
= 10, retry_count
= 0;
2811 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2812 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2817 if (retry_count
> 3) {
2818 msleep(backoff_time
);
2819 if (backoff_time
< 1000)
2822 } while ((check_for_unit_attention(h
, c
) ||
2823 check_for_busy(h
, c
)) &&
2824 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2825 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2826 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2831 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2832 struct CommandList
*c
)
2834 const u8
*cdb
= c
->Request
.CDB
;
2835 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2837 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2841 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2842 struct CommandList
*cp
)
2844 const struct ErrorInfo
*ei
= cp
->err_info
;
2845 struct device
*d
= &cp
->h
->pdev
->dev
;
2846 u8 sense_key
, asc
, ascq
;
2849 switch (ei
->CommandStatus
) {
2850 case CMD_TARGET_STATUS
:
2851 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2852 sense_len
= sizeof(ei
->SenseInfo
);
2854 sense_len
= ei
->SenseLen
;
2855 decode_sense_data(ei
->SenseInfo
, sense_len
,
2856 &sense_key
, &asc
, &ascq
);
2857 hpsa_print_cmd(h
, "SCSI status", cp
);
2858 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2859 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860 sense_key
, asc
, ascq
);
2862 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2863 if (ei
->ScsiStatus
== 0)
2864 dev_warn(d
, "SCSI status is abnormally zero. "
2865 "(probably indicates selection timeout "
2866 "reported incorrectly due to a known "
2867 "firmware bug, circa July, 2001.)\n");
2869 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2871 case CMD_DATA_OVERRUN
:
2872 hpsa_print_cmd(h
, "overrun condition", cp
);
2875 /* controller unfortunately reports SCSI passthru's
2876 * to non-existent targets as invalid commands.
2878 hpsa_print_cmd(h
, "invalid command", cp
);
2879 dev_warn(d
, "probably means device no longer present\n");
2882 case CMD_PROTOCOL_ERR
:
2883 hpsa_print_cmd(h
, "protocol error", cp
);
2885 case CMD_HARDWARE_ERR
:
2886 hpsa_print_cmd(h
, "hardware error", cp
);
2888 case CMD_CONNECTION_LOST
:
2889 hpsa_print_cmd(h
, "connection lost", cp
);
2892 hpsa_print_cmd(h
, "aborted", cp
);
2894 case CMD_ABORT_FAILED
:
2895 hpsa_print_cmd(h
, "abort failed", cp
);
2897 case CMD_UNSOLICITED_ABORT
:
2898 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2901 hpsa_print_cmd(h
, "timed out", cp
);
2903 case CMD_UNABORTABLE
:
2904 hpsa_print_cmd(h
, "unabortable", cp
);
2906 case CMD_CTLR_LOCKUP
:
2907 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2910 hpsa_print_cmd(h
, "unknown status", cp
);
2911 dev_warn(d
, "Unknown command status %x\n",
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2917 u16 page
, unsigned char *buf
,
2918 unsigned char bufsize
)
2921 struct CommandList
*c
;
2922 struct ErrorInfo
*ei
;
2926 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2927 page
, scsi3addr
, TYPE_CMD
)) {
2931 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2932 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2936 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2937 hpsa_scsi_interpret_error(h
, c
);
2945 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2946 u8 reset_type
, int reply_queue
)
2949 struct CommandList
*c
;
2950 struct ErrorInfo
*ei
;
2955 /* fill_cmd can't fail here, no data buffer to map. */
2956 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2957 scsi3addr
, TYPE_MSG
);
2958 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2960 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2963 /* no unmap needed here because no data xfer. */
2966 if (ei
->CommandStatus
!= 0) {
2967 hpsa_scsi_interpret_error(h
, c
);
2975 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2976 struct hpsa_scsi_dev_t
*dev
,
2977 unsigned char *scsi3addr
)
2981 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2982 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2984 if (hpsa_is_cmd_idle(c
))
2987 switch (c
->cmd_type
) {
2989 case CMD_IOCTL_PEND
:
2990 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2991 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2996 if (c
->phys_disk
== dev
) {
2997 /* HBA mode match */
3000 /* Possible RAID mode -- check each phys dev. */
3001 /* FIXME: Do we need to take out a lock here? If
3002 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3005 /* FIXME: an alternate test might be
3007 * match = dev->phys_disk[i]->ioaccel_handle
3008 * == c2->scsi_nexus; */
3009 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3015 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3016 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3017 le32_to_cpu(ac
->it_nexus
);
3021 case 0: /* The command is in the middle of being initialized. */
3026 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3034 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3035 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3040 /* We can really only handle one reset at a time */
3041 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3042 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3046 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3048 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3049 struct CommandList
*c
= h
->cmd_pool
+ i
;
3050 int refcount
= atomic_inc_return(&c
->refcount
);
3052 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3053 unsigned long flags
;
3056 * Mark the target command as having a reset pending,
3057 * then lock a lock so that the command cannot complete
3058 * while we're considering it. If the command is not
3059 * idle then count it; otherwise revoke the event.
3061 c
->reset_pending
= dev
;
3062 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3063 if (!hpsa_is_cmd_idle(c
))
3064 atomic_inc(&dev
->reset_cmds_out
);
3066 c
->reset_pending
= NULL
;
3067 spin_unlock_irqrestore(&h
->lock
, flags
);
3073 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3075 wait_event(h
->event_sync_wait_queue
,
3076 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3077 lockup_detected(h
));
3079 if (unlikely(lockup_detected(h
))) {
3080 dev_warn(&h
->pdev
->dev
,
3081 "Controller lockup detected during reset wait\n");
3086 atomic_set(&dev
->reset_cmds_out
, 0);
3088 rc
= wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3090 mutex_unlock(&h
->reset_mutex
);
3094 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3095 unsigned char *scsi3addr
, unsigned char *raid_level
)
3100 *raid_level
= RAID_UNKNOWN
;
3101 buf
= kzalloc(64, GFP_KERNEL
);
3105 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3106 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3109 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3110 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3113 *raid_level
= buf
[8];
3114 if (*raid_level
> RAID_UNKNOWN
)
3115 *raid_level
= RAID_UNKNOWN
;
3121 #define HPSA_MAP_DEBUG
3122 #ifdef HPSA_MAP_DEBUG
3123 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3124 struct raid_map_data
*map_buff
)
3126 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3128 u16 map_cnt
, row_cnt
, disks_per_row
;
3133 /* Show details only if debugging has been activated. */
3134 if (h
->raid_offload_debug
< 2)
3137 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3138 le32_to_cpu(map_buff
->structure_size
));
3139 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3140 le32_to_cpu(map_buff
->volume_blk_size
));
3141 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3142 le64_to_cpu(map_buff
->volume_blk_cnt
));
3143 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3144 map_buff
->phys_blk_shift
);
3145 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3146 map_buff
->parity_rotation_shift
);
3147 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3148 le16_to_cpu(map_buff
->strip_size
));
3149 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3150 le64_to_cpu(map_buff
->disk_starting_blk
));
3151 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3152 le64_to_cpu(map_buff
->disk_blk_cnt
));
3153 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3154 le16_to_cpu(map_buff
->data_disks_per_row
));
3155 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3156 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3157 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3158 le16_to_cpu(map_buff
->row_cnt
));
3159 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3160 le16_to_cpu(map_buff
->layout_map_count
));
3161 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3162 le16_to_cpu(map_buff
->flags
));
3163 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3164 le16_to_cpu(map_buff
->flags
) &
3165 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3166 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3167 le16_to_cpu(map_buff
->dekindex
));
3168 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3169 for (map
= 0; map
< map_cnt
; map
++) {
3170 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3171 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3172 for (row
= 0; row
< row_cnt
; row
++) {
3173 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3175 le16_to_cpu(map_buff
->data_disks_per_row
);
3176 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3177 dev_info(&h
->pdev
->dev
,
3178 " D%02u: h=0x%04x xor=%u,%u\n",
3179 col
, dd
->ioaccel_handle
,
3180 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3182 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3183 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3184 dev_info(&h
->pdev
->dev
,
3185 " M%02u: h=0x%04x xor=%u,%u\n",
3186 col
, dd
->ioaccel_handle
,
3187 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3192 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3193 __attribute__((unused
)) int rc
,
3194 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3199 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3200 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3203 struct CommandList
*c
;
3204 struct ErrorInfo
*ei
;
3208 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3209 sizeof(this_device
->raid_map
), 0,
3210 scsi3addr
, TYPE_CMD
)) {
3211 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3215 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3216 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3220 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3221 hpsa_scsi_interpret_error(h
, c
);
3227 /* @todo in the future, dynamically allocate RAID map memory */
3228 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3229 sizeof(this_device
->raid_map
)) {
3230 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3233 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3240 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3241 unsigned char scsi3addr
[], u16 bmic_device_index
,
3242 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3245 struct CommandList
*c
;
3246 struct ErrorInfo
*ei
;
3250 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3251 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3255 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3256 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3258 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3259 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3263 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3264 hpsa_scsi_interpret_error(h
, c
);
3272 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3273 struct bmic_identify_controller
*buf
, size_t bufsize
)
3276 struct CommandList
*c
;
3277 struct ErrorInfo
*ei
;
3281 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3282 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3286 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3287 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3291 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3292 hpsa_scsi_interpret_error(h
, c
);
3300 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3301 unsigned char scsi3addr
[], u16 bmic_device_index
,
3302 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3305 struct CommandList
*c
;
3306 struct ErrorInfo
*ei
;
3309 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3310 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3314 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3315 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3317 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3320 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3321 hpsa_scsi_interpret_error(h
, c
);
3331 * get enclosure information
3332 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3333 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3334 * Uses id_physical_device to determine the box_index.
3336 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3337 unsigned char *scsi3addr
,
3338 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3339 struct hpsa_scsi_dev_t
*encl_dev
)
3342 struct CommandList
*c
= NULL
;
3343 struct ErrorInfo
*ei
= NULL
;
3344 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3345 struct bmic_identify_physical_device
*id_phys
= NULL
;
3346 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3347 u16 bmic_device_index
= 0;
3349 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3351 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3356 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3361 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3365 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3369 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3370 id_phys
, sizeof(*id_phys
));
3372 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3373 __func__
, encl_dev
->external
, bmic_device_index
);
3379 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3380 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3385 if (id_phys
->phys_connector
[1] == 'E')
3386 c
->Request
.CDB
[5] = id_phys
->box_index
;
3388 c
->Request
.CDB
[5] = 0;
3390 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3396 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3401 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3402 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3403 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3414 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3415 "Error, could not get enclosure information\n");
3418 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3419 unsigned char *scsi3addr
)
3421 struct ReportExtendedLUNdata
*physdev
;
3426 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3430 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3431 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3435 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3437 for (i
= 0; i
< nphysicals
; i
++)
3438 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3439 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3448 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3449 struct hpsa_scsi_dev_t
*dev
)
3454 if (is_hba_lunid(scsi3addr
)) {
3455 struct bmic_sense_subsystem_info
*ssi
;
3457 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3461 rc
= hpsa_bmic_sense_subsystem_information(h
,
3462 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3464 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3465 h
->sas_address
= sa
;
3470 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3472 dev
->sas_address
= sa
;
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3477 unsigned char scsi3addr
[], u8 page
)
3482 unsigned char *buf
, bufsize
;
3484 buf
= kzalloc(256, GFP_KERNEL
);
3488 /* Get the size of the page list first */
3489 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3490 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3491 buf
, HPSA_VPD_HEADER_SZ
);
3493 goto exit_unsupported
;
3495 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3496 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3500 /* Get the whole VPD page list */
3501 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3502 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3505 goto exit_unsupported
;
3508 for (i
= 1; i
<= pages
; i
++)
3509 if (buf
[3 + i
] == page
)
3510 goto exit_supported
;
3519 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3520 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3526 this_device
->offload_config
= 0;
3527 this_device
->offload_enabled
= 0;
3528 this_device
->offload_to_be_enabled
= 0;
3530 buf
= kzalloc(64, GFP_KERNEL
);
3533 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3535 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3536 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3544 this_device
->offload_config
=
3545 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3546 if (this_device
->offload_config
) {
3547 this_device
->offload_enabled
=
3548 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3549 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3550 this_device
->offload_enabled
= 0;
3552 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3560 unsigned char *device_id
, int index
, int buflen
)
3565 /* Does controller have VPD for device id? */
3566 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3567 return 1; /* not supported */
3569 buf
= kzalloc(64, GFP_KERNEL
);
3573 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3574 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3578 memcpy(device_id
, &buf
[8], buflen
);
3583 return rc
; /*0 - got id, otherwise, didn't */
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3587 void *buf
, int bufsize
,
3588 int extended_response
)
3591 struct CommandList
*c
;
3592 unsigned char scsi3addr
[8];
3593 struct ErrorInfo
*ei
;
3597 /* address the controller */
3598 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3599 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3600 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3604 if (extended_response
)
3605 c
->Request
.CDB
[1] = extended_response
;
3606 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3607 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3611 if (ei
->CommandStatus
!= 0 &&
3612 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3613 hpsa_scsi_interpret_error(h
, c
);
3616 struct ReportLUNdata
*rld
= buf
;
3618 if (rld
->extended_response_flag
!= extended_response
) {
3619 if (!h
->legacy_board
) {
3620 dev_err(&h
->pdev
->dev
,
3621 "report luns requested format %u, got %u\n",
3623 rld
->extended_response_flag
);
3634 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3635 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3638 struct ReportLUNdata
*lbuf
;
3640 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3641 HPSA_REPORT_PHYS_EXTENDED
);
3642 if (!rc
|| rc
!= -EOPNOTSUPP
)
3645 /* REPORT PHYS EXTENDED is not supported */
3646 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3650 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3655 /* Copy ReportLUNdata header */
3656 memcpy(buf
, lbuf
, 8);
3657 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3658 for (i
= 0; i
< nphys
; i
++)
3659 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3665 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3666 struct ReportLUNdata
*buf
, int bufsize
)
3668 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3671 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3672 int bus
, int target
, int lun
)
3675 device
->target
= target
;
3679 /* Use VPD inquiry to get details of volume status */
3680 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3681 unsigned char scsi3addr
[])
3688 buf
= kzalloc(64, GFP_KERNEL
);
3690 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3692 /* Does controller have VPD for logical volume status? */
3693 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3696 /* Get the size of the VPD return buffer */
3697 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3698 buf
, HPSA_VPD_HEADER_SZ
);
3703 /* Now get the whole VPD buffer */
3704 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3705 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3708 status
= buf
[4]; /* status byte */
3714 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3717 /* Determine offline status of a volume.
3720 * 0xff (offline for unknown reasons)
3721 * # (integer code indicating one of several NOT READY states
3722 * describing why a volume is to be kept offline)
3724 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3725 unsigned char scsi3addr
[])
3727 struct CommandList
*c
;
3728 unsigned char *sense
;
3729 u8 sense_key
, asc
, ascq
;
3734 #define ASC_LUN_NOT_READY 0x04
3735 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3736 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3740 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3741 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3745 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3747 sense
= c
->err_info
->SenseInfo
;
3748 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3749 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3751 sense_len
= c
->err_info
->SenseLen
;
3752 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3753 cmd_status
= c
->err_info
->CommandStatus
;
3754 scsi_status
= c
->err_info
->ScsiStatus
;
3757 /* Determine the reason for not ready state */
3758 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3760 /* Keep volume offline in certain cases: */
3762 case HPSA_LV_FAILED
:
3763 case HPSA_LV_UNDERGOING_ERASE
:
3764 case HPSA_LV_NOT_AVAILABLE
:
3765 case HPSA_LV_UNDERGOING_RPI
:
3766 case HPSA_LV_PENDING_RPI
:
3767 case HPSA_LV_ENCRYPTED_NO_KEY
:
3768 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3769 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3770 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3771 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3773 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3774 /* If VPD status page isn't available,
3775 * use ASC/ASCQ to determine state
3777 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3778 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3787 static int hpsa_update_device_info(struct ctlr_info
*h
,
3788 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3789 unsigned char *is_OBDR_device
)
3792 #define OBDR_SIG_OFFSET 43
3793 #define OBDR_TAPE_SIG "$DR-10"
3794 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3795 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3797 unsigned char *inq_buff
;
3798 unsigned char *obdr_sig
;
3801 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3807 /* Do an inquiry to the device to see what it is. */
3808 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3809 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3810 dev_err(&h
->pdev
->dev
,
3811 "%s: inquiry failed, device will be skipped.\n",
3813 rc
= HPSA_INQUIRY_FAILED
;
3817 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3818 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3820 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3821 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3822 memcpy(this_device
->vendor
, &inq_buff
[8],
3823 sizeof(this_device
->vendor
));
3824 memcpy(this_device
->model
, &inq_buff
[16],
3825 sizeof(this_device
->model
));
3826 this_device
->rev
= inq_buff
[2];
3827 memset(this_device
->device_id
, 0,
3828 sizeof(this_device
->device_id
));
3829 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3830 sizeof(this_device
->device_id
)) < 0)
3831 dev_err(&h
->pdev
->dev
,
3832 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3834 h
->scsi_host
->host_no
,
3835 this_device
->target
, this_device
->lun
,
3836 scsi_device_type(this_device
->devtype
),
3837 this_device
->model
);
3839 if ((this_device
->devtype
== TYPE_DISK
||
3840 this_device
->devtype
== TYPE_ZBC
) &&
3841 is_logical_dev_addr_mode(scsi3addr
)) {
3842 unsigned char volume_offline
;
3844 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3845 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3846 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3847 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3848 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
3851 * Legacy boards might not support volume status
3853 dev_info(&h
->pdev
->dev
,
3854 "C0:T%d:L%d Volume status not available, assuming online.\n",
3855 this_device
->target
, this_device
->lun
);
3858 this_device
->volume_offline
= volume_offline
;
3859 if (volume_offline
== HPSA_LV_FAILED
) {
3860 rc
= HPSA_LV_FAILED
;
3861 dev_err(&h
->pdev
->dev
,
3862 "%s: LV failed, device will be skipped.\n",
3867 this_device
->raid_level
= RAID_UNKNOWN
;
3868 this_device
->offload_config
= 0;
3869 this_device
->offload_enabled
= 0;
3870 this_device
->offload_to_be_enabled
= 0;
3871 this_device
->hba_ioaccel_enabled
= 0;
3872 this_device
->volume_offline
= 0;
3873 this_device
->queue_depth
= h
->nr_cmds
;
3876 if (this_device
->external
)
3877 this_device
->queue_depth
= EXTERNAL_QD
;
3879 if (is_OBDR_device
) {
3880 /* See if this is a One-Button-Disaster-Recovery device
3881 * by looking for "$DR-10" at offset 43 in inquiry data.
3883 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3884 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3885 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3886 OBDR_SIG_LEN
) == 0);
3897 * Helper function to assign bus, target, lun mapping of devices.
3898 * Logical drive target and lun are assigned at this time, but
3899 * physical device lun and target assignment are deferred (assigned
3900 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3902 static void figure_bus_target_lun(struct ctlr_info
*h
,
3903 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3905 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3907 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3908 /* physical device, target and lun filled in later */
3909 if (is_hba_lunid(lunaddrbytes
)) {
3910 int bus
= HPSA_HBA_BUS
;
3913 bus
= HPSA_LEGACY_HBA_BUS
;
3914 hpsa_set_bus_target_lun(device
,
3915 bus
, 0, lunid
& 0x3fff);
3917 /* defer target, lun assignment for physical devices */
3918 hpsa_set_bus_target_lun(device
,
3919 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3922 /* It's a logical device */
3923 if (device
->external
) {
3924 hpsa_set_bus_target_lun(device
,
3925 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3929 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3933 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3934 int i
, int nphysicals
, int nlocal_logicals
)
3936 /* In report logicals, local logicals are listed first,
3937 * then any externals.
3939 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3941 if (i
== raid_ctlr_position
)
3944 if (i
< logicals_start
)
3947 /* i is in logicals range, but still within local logicals */
3948 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3951 return 1; /* it's an external lun */
3955 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3956 * logdev. The number of luns in physdev and logdev are returned in
3957 * *nphysicals and *nlogicals, respectively.
3958 * Returns 0 on success, -1 otherwise.
3960 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3961 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3962 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3964 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3965 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3968 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3969 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3970 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3971 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3972 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3974 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3975 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3978 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3979 /* Reject Logicals in excess of our max capability. */
3980 if (*nlogicals
> HPSA_MAX_LUN
) {
3981 dev_warn(&h
->pdev
->dev
,
3982 "maximum logical LUNs (%d) exceeded. "
3983 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3984 *nlogicals
- HPSA_MAX_LUN
);
3985 *nlogicals
= HPSA_MAX_LUN
;
3987 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3988 dev_warn(&h
->pdev
->dev
,
3989 "maximum logical + physical LUNs (%d) exceeded. "
3990 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3991 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3992 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3997 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3998 int i
, int nphysicals
, int nlogicals
,
3999 struct ReportExtendedLUNdata
*physdev_list
,
4000 struct ReportLUNdata
*logdev_list
)
4002 /* Helper function, figure out where the LUN ID info is coming from
4003 * given index i, lists of physical and logical devices, where in
4004 * the list the raid controller is supposed to appear (first or last)
4007 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4008 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4010 if (i
== raid_ctlr_position
)
4011 return RAID_CTLR_LUNID
;
4013 if (i
< logicals_start
)
4014 return &physdev_list
->LUN
[i
-
4015 (raid_ctlr_position
== 0)].lunid
[0];
4017 if (i
< last_device
)
4018 return &logdev_list
->LUN
[i
- nphysicals
-
4019 (raid_ctlr_position
== 0)][0];
4024 /* get physical drive ioaccel handle and queue depth */
4025 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4026 struct hpsa_scsi_dev_t
*dev
,
4027 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4028 struct bmic_identify_physical_device
*id_phys
)
4031 struct ext_report_lun_entry
*rle
;
4033 rle
= &rlep
->LUN
[rle_index
];
4035 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4036 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4037 dev
->hba_ioaccel_enabled
= 1;
4038 memset(id_phys
, 0, sizeof(*id_phys
));
4039 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4040 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4043 /* Reserve space for FW operations */
4044 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4045 #define DRIVE_QUEUE_DEPTH 7
4047 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4048 DRIVE_CMDS_RESERVED_FOR_FW
;
4050 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4053 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4054 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4055 struct bmic_identify_physical_device
*id_phys
)
4057 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4059 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4060 this_device
->hba_ioaccel_enabled
= 1;
4062 memcpy(&this_device
->active_path_index
,
4063 &id_phys
->active_path_number
,
4064 sizeof(this_device
->active_path_index
));
4065 memcpy(&this_device
->path_map
,
4066 &id_phys
->redundant_path_present_map
,
4067 sizeof(this_device
->path_map
));
4068 memcpy(&this_device
->box
,
4069 &id_phys
->alternate_paths_phys_box_on_port
,
4070 sizeof(this_device
->box
));
4071 memcpy(&this_device
->phys_connector
,
4072 &id_phys
->alternate_paths_phys_connector
,
4073 sizeof(this_device
->phys_connector
));
4074 memcpy(&this_device
->bay
,
4075 &id_phys
->phys_bay_in_box
,
4076 sizeof(this_device
->bay
));
4079 /* get number of local logical disks. */
4080 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4081 struct bmic_identify_controller
*id_ctlr
,
4087 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4091 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4092 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4094 if (id_ctlr
->configured_logical_drive_count
< 256)
4095 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4097 *nlocals
= le16_to_cpu(
4098 id_ctlr
->extended_logical_unit_count
);
4104 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4106 struct bmic_identify_physical_device
*id_phys
;
4107 bool is_spare
= false;
4110 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4114 rc
= hpsa_bmic_id_physical_device(h
,
4116 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4117 id_phys
, sizeof(*id_phys
));
4119 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4125 #define RPL_DEV_FLAG_NON_DISK 0x1
4126 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4127 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4129 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4131 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4132 struct ext_report_lun_entry
*rle
)
4137 if (!MASKED_DEVICE(lunaddrbytes
))
4140 device_flags
= rle
->device_flags
;
4141 device_type
= rle
->device_type
;
4143 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4144 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4149 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4152 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4156 * Spares may be spun down, we do not want to
4157 * do an Inquiry to a RAID set spare drive as
4158 * that would have them spun up, that is a
4159 * performance hit because I/O to the RAID device
4160 * stops while the spin up occurs which can take
4163 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4169 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4171 /* the idea here is we could get notified
4172 * that some devices have changed, so we do a report
4173 * physical luns and report logical luns cmd, and adjust
4174 * our list of devices accordingly.
4176 * The scsi3addr's of devices won't change so long as the
4177 * adapter is not reset. That means we can rescan and
4178 * tell which devices we already know about, vs. new
4179 * devices, vs. disappearing devices.
4181 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4182 struct ReportLUNdata
*logdev_list
= NULL
;
4183 struct bmic_identify_physical_device
*id_phys
= NULL
;
4184 struct bmic_identify_controller
*id_ctlr
= NULL
;
4187 u32 nlocal_logicals
= 0;
4188 u32 ndev_allocated
= 0;
4189 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4191 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4192 int raid_ctlr_position
;
4193 bool physical_device
;
4194 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4196 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4197 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4198 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4199 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4200 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4201 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4203 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4204 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4205 dev_err(&h
->pdev
->dev
, "out of memory\n");
4208 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4210 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4212 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4213 logdev_list
, &nlogicals
)) {
4214 h
->drv_req_rescan
= 1;
4218 /* Set number of local logicals (non PTRAID) */
4219 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4220 dev_warn(&h
->pdev
->dev
,
4221 "%s: Can't determine number of local logical devices.\n",
4225 /* We might see up to the maximum number of logical and physical disks
4226 * plus external target devices, and a device for the local RAID
4229 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4231 /* Allocate the per device structures */
4232 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4233 if (i
>= HPSA_MAX_DEVICES
) {
4234 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4235 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4236 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4240 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4241 if (!currentsd
[i
]) {
4242 h
->drv_req_rescan
= 1;
4248 if (is_scsi_rev_5(h
))
4249 raid_ctlr_position
= 0;
4251 raid_ctlr_position
= nphysicals
+ nlogicals
;
4253 /* adjust our table of devices */
4254 n_ext_target_devs
= 0;
4255 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4256 u8
*lunaddrbytes
, is_OBDR
= 0;
4258 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4259 bool skip_device
= false;
4261 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4263 /* Figure out where the LUN ID info is coming from */
4264 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4265 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4267 /* Determine if this is a lun from an external target array */
4268 tmpdevice
->external
=
4269 figure_external_status(h
, raid_ctlr_position
, i
,
4270 nphysicals
, nlocal_logicals
);
4273 * Skip over some devices such as a spare.
4275 if (!tmpdevice
->external
&& physical_device
) {
4276 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4277 &physdev_list
->LUN
[phys_dev_index
]);
4282 /* Get device type, vendor, model, device id */
4283 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4285 if (rc
== -ENOMEM
) {
4286 dev_warn(&h
->pdev
->dev
,
4287 "Out of memory, rescan deferred.\n");
4288 h
->drv_req_rescan
= 1;
4292 h
->drv_req_rescan
= 1;
4296 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4297 this_device
= currentsd
[ncurrent
];
4299 /* Turn on discovery_polling if there are ext target devices.
4300 * Event-based change notification is unreliable for those.
4302 if (!h
->discovery_polling
) {
4303 if (tmpdevice
->external
) {
4304 h
->discovery_polling
= 1;
4305 dev_info(&h
->pdev
->dev
,
4306 "External target, activate discovery polling.\n");
4311 *this_device
= *tmpdevice
;
4312 this_device
->physical_device
= physical_device
;
4315 * Expose all devices except for physical devices that
4318 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4319 this_device
->expose_device
= 0;
4321 this_device
->expose_device
= 1;
4325 * Get the SAS address for physical devices that are exposed.
4327 if (this_device
->physical_device
&& this_device
->expose_device
)
4328 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4330 switch (this_device
->devtype
) {
4332 /* We don't *really* support actual CD-ROM devices,
4333 * just "One Button Disaster Recovery" tape drive
4334 * which temporarily pretends to be a CD-ROM drive.
4335 * So we check that the device is really an OBDR tape
4336 * device by checking for "$DR-10" in bytes 43-48 of
4344 if (this_device
->physical_device
) {
4345 /* The disk is in HBA mode. */
4346 /* Never use RAID mapper in HBA mode. */
4347 this_device
->offload_enabled
= 0;
4348 hpsa_get_ioaccel_drive_info(h
, this_device
,
4349 physdev_list
, phys_dev_index
, id_phys
);
4350 hpsa_get_path_info(this_device
,
4351 physdev_list
, phys_dev_index
, id_phys
);
4356 case TYPE_MEDIUM_CHANGER
:
4359 case TYPE_ENCLOSURE
:
4360 if (!this_device
->external
)
4361 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4362 physdev_list
, phys_dev_index
,
4367 /* Only present the Smartarray HBA as a RAID controller.
4368 * If it's a RAID controller other than the HBA itself
4369 * (an external RAID controller, MSA500 or similar)
4372 if (!is_hba_lunid(lunaddrbytes
))
4379 if (ncurrent
>= HPSA_MAX_DEVICES
)
4383 if (h
->sas_host
== NULL
) {
4386 rc
= hpsa_add_sas_host(h
);
4388 dev_warn(&h
->pdev
->dev
,
4389 "Could not add sas host %d\n", rc
);
4394 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4397 for (i
= 0; i
< ndev_allocated
; i
++)
4398 kfree(currentsd
[i
]);
4400 kfree(physdev_list
);
4406 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4407 struct scatterlist
*sg
)
4409 u64 addr64
= (u64
) sg_dma_address(sg
);
4410 unsigned int len
= sg_dma_len(sg
);
4412 desc
->Addr
= cpu_to_le64(addr64
);
4413 desc
->Len
= cpu_to_le32(len
);
4418 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4419 * dma mapping and fills in the scatter gather entries of the
4422 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4423 struct CommandList
*cp
,
4424 struct scsi_cmnd
*cmd
)
4426 struct scatterlist
*sg
;
4427 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4428 struct SGDescriptor
*curr_sg
;
4430 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4432 use_sg
= scsi_dma_map(cmd
);
4437 goto sglist_finished
;
4440 * If the number of entries is greater than the max for a single list,
4441 * then we have a chained list; we will set up all but one entry in the
4442 * first list (the last entry is saved for link information);
4443 * otherwise, we don't have a chained list and we'll set up at each of
4444 * the entries in the one list.
4447 chained
= use_sg
> h
->max_cmd_sg_entries
;
4448 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4449 last_sg
= scsi_sg_count(cmd
) - 1;
4450 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4451 hpsa_set_sg_descriptor(curr_sg
, sg
);
4457 * Continue with the chained list. Set curr_sg to the chained
4458 * list. Modify the limit to the total count less the entries
4459 * we've already set up. Resume the scan at the list entry
4460 * where the previous loop left off.
4462 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4463 sg_limit
= use_sg
- sg_limit
;
4464 for_each_sg(sg
, sg
, sg_limit
, i
) {
4465 hpsa_set_sg_descriptor(curr_sg
, sg
);
4470 /* Back the pointer up to the last entry and mark it as "last". */
4471 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4473 if (use_sg
+ chained
> h
->maxSG
)
4474 h
->maxSG
= use_sg
+ chained
;
4477 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4478 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4479 if (hpsa_map_sg_chain_block(h
, cp
)) {
4480 scsi_dma_unmap(cmd
);
4488 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4489 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4494 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4495 u8
*cdb
, int cdb_len
,
4502 outlen
= scnprintf(buf
, BUFLEN
,
4503 "%s: Blocking zero-length request: CDB:", func
);
4504 for (i
= 0; i
< cdb_len
; i
++)
4505 outlen
+= scnprintf(buf
+outlen
, BUFLEN
- outlen
,
4507 dev_warn(&h
->pdev
->dev
, "%s\n", buf
);
4510 #define IO_ACCEL_INELIGIBLE 1
4511 /* zero-length transfers trigger hardware errors. */
4512 static bool is_zero_length_transfer(u8
*cdb
)
4516 /* Block zero-length transfer sizes on certain commands. */
4520 case VERIFY
: /* 0x2F */
4521 case WRITE_VERIFY
: /* 0x2E */
4522 block_cnt
= get_unaligned_be16(&cdb
[7]);
4526 case VERIFY_12
: /* 0xAF */
4527 case WRITE_VERIFY_12
: /* 0xAE */
4528 block_cnt
= get_unaligned_be32(&cdb
[6]);
4532 case VERIFY_16
: /* 0x8F */
4533 block_cnt
= get_unaligned_be32(&cdb
[10]);
4539 return block_cnt
== 0;
4542 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4548 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4555 if (*cdb_len
== 6) {
4556 block
= (((cdb
[1] & 0x1F) << 16) |
4563 BUG_ON(*cdb_len
!= 12);
4564 block
= get_unaligned_be32(&cdb
[2]);
4565 block_cnt
= get_unaligned_be32(&cdb
[6]);
4567 if (block_cnt
> 0xffff)
4568 return IO_ACCEL_INELIGIBLE
;
4570 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4572 cdb
[2] = (u8
) (block
>> 24);
4573 cdb
[3] = (u8
) (block
>> 16);
4574 cdb
[4] = (u8
) (block
>> 8);
4575 cdb
[5] = (u8
) (block
);
4577 cdb
[7] = (u8
) (block_cnt
>> 8);
4578 cdb
[8] = (u8
) (block_cnt
);
4586 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4587 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4588 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4590 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4591 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4593 unsigned int total_len
= 0;
4594 struct scatterlist
*sg
;
4597 struct SGDescriptor
*curr_sg
;
4598 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4600 /* TODO: implement chaining support */
4601 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4602 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4603 return IO_ACCEL_INELIGIBLE
;
4606 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4608 if (is_zero_length_transfer(cdb
)) {
4609 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4610 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4611 return IO_ACCEL_INELIGIBLE
;
4614 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4615 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4616 return IO_ACCEL_INELIGIBLE
;
4619 c
->cmd_type
= CMD_IOACCEL1
;
4621 /* Adjust the DMA address to point to the accelerated command buffer */
4622 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4623 (c
->cmdindex
* sizeof(*cp
));
4624 BUG_ON(c
->busaddr
& 0x0000007F);
4626 use_sg
= scsi_dma_map(cmd
);
4628 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4634 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4635 addr64
= (u64
) sg_dma_address(sg
);
4636 len
= sg_dma_len(sg
);
4638 curr_sg
->Addr
= cpu_to_le64(addr64
);
4639 curr_sg
->Len
= cpu_to_le32(len
);
4640 curr_sg
->Ext
= cpu_to_le32(0);
4643 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4645 switch (cmd
->sc_data_direction
) {
4647 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4649 case DMA_FROM_DEVICE
:
4650 control
|= IOACCEL1_CONTROL_DATA_IN
;
4653 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4656 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4657 cmd
->sc_data_direction
);
4662 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4665 c
->Header
.SGList
= use_sg
;
4666 /* Fill out the command structure to submit */
4667 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4668 cp
->transfer_len
= cpu_to_le32(total_len
);
4669 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4670 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4671 cp
->control
= cpu_to_le32(control
);
4672 memcpy(cp
->CDB
, cdb
, cdb_len
);
4673 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4674 /* Tag was already set at init time. */
4675 enqueue_cmd_and_start_io(h
, c
);
4680 * Queue a command directly to a device behind the controller using the
4681 * I/O accelerator path.
4683 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4684 struct CommandList
*c
)
4686 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4687 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4694 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4695 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4699 * Set encryption parameters for the ioaccel2 request
4701 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4702 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4704 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4705 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4706 struct raid_map_data
*map
= &dev
->raid_map
;
4709 /* Are we doing encryption on this device */
4710 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4712 /* Set the data encryption key index. */
4713 cp
->dekindex
= map
->dekindex
;
4715 /* Set the encryption enable flag, encoded into direction field. */
4716 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4718 /* Set encryption tweak values based on logical block address
4719 * If block size is 512, tweak value is LBA.
4720 * For other block sizes, tweak is (LBA * block size)/ 512)
4722 switch (cmd
->cmnd
[0]) {
4723 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4726 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4727 (cmd
->cmnd
[2] << 8) |
4732 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4735 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4739 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4742 dev_err(&h
->pdev
->dev
,
4743 "ERROR: %s: size (0x%x) not supported for encryption\n",
4744 __func__
, cmd
->cmnd
[0]);
4749 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4750 first_block
= first_block
*
4751 le32_to_cpu(map
->volume_blk_size
)/512;
4753 cp
->tweak_lower
= cpu_to_le32(first_block
);
4754 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4757 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4758 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4759 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4761 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4762 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4763 struct ioaccel2_sg_element
*curr_sg
;
4765 struct scatterlist
*sg
;
4773 if (!cmd
->device
->hostdata
)
4776 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4778 if (is_zero_length_transfer(cdb
)) {
4779 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4780 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4781 return IO_ACCEL_INELIGIBLE
;
4784 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4785 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4786 return IO_ACCEL_INELIGIBLE
;
4789 c
->cmd_type
= CMD_IOACCEL2
;
4790 /* Adjust the DMA address to point to the accelerated command buffer */
4791 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4792 (c
->cmdindex
* sizeof(*cp
));
4793 BUG_ON(c
->busaddr
& 0x0000007F);
4795 memset(cp
, 0, sizeof(*cp
));
4796 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4798 use_sg
= scsi_dma_map(cmd
);
4800 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4806 if (use_sg
> h
->ioaccel_maxsg
) {
4807 addr64
= le64_to_cpu(
4808 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4809 curr_sg
->address
= cpu_to_le64(addr64
);
4810 curr_sg
->length
= 0;
4811 curr_sg
->reserved
[0] = 0;
4812 curr_sg
->reserved
[1] = 0;
4813 curr_sg
->reserved
[2] = 0;
4814 curr_sg
->chain_indicator
= 0x80;
4816 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4818 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4819 addr64
= (u64
) sg_dma_address(sg
);
4820 len
= sg_dma_len(sg
);
4822 curr_sg
->address
= cpu_to_le64(addr64
);
4823 curr_sg
->length
= cpu_to_le32(len
);
4824 curr_sg
->reserved
[0] = 0;
4825 curr_sg
->reserved
[1] = 0;
4826 curr_sg
->reserved
[2] = 0;
4827 curr_sg
->chain_indicator
= 0;
4831 switch (cmd
->sc_data_direction
) {
4833 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4834 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4836 case DMA_FROM_DEVICE
:
4837 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4838 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4841 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4842 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4845 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4846 cmd
->sc_data_direction
);
4851 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4852 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4855 /* Set encryption parameters, if necessary */
4856 set_encrypt_ioaccel2(h
, c
, cp
);
4858 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4859 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4860 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4862 cp
->data_len
= cpu_to_le32(total_len
);
4863 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4864 offsetof(struct io_accel2_cmd
, error_data
));
4865 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4867 /* fill in sg elements */
4868 if (use_sg
> h
->ioaccel_maxsg
) {
4870 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4871 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4872 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4873 scsi_dma_unmap(cmd
);
4877 cp
->sg_count
= (u8
) use_sg
;
4879 enqueue_cmd_and_start_io(h
, c
);
4884 * Queue a command to the correct I/O accelerator path.
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4887 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4888 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4890 if (!c
->scsi_cmd
->device
)
4893 if (!c
->scsi_cmd
->device
->hostdata
)
4896 /* Try to honor the device's queue depth */
4897 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4898 phys_disk
->queue_depth
) {
4899 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4900 return IO_ACCEL_INELIGIBLE
;
4902 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4903 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4904 cdb
, cdb_len
, scsi3addr
,
4907 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4908 cdb
, cdb_len
, scsi3addr
,
4912 static void raid_map_helper(struct raid_map_data
*map
,
4913 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4915 if (offload_to_mirror
== 0) {
4916 /* use physical disk in the first mirrored group. */
4917 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4921 /* determine mirror group that *map_index indicates */
4922 *current_group
= *map_index
/
4923 le16_to_cpu(map
->data_disks_per_row
);
4924 if (offload_to_mirror
== *current_group
)
4926 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4927 /* select map index from next group */
4928 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4931 /* select map index from first group */
4932 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4935 } while (offload_to_mirror
!= *current_group
);
4939 * Attempt to perform offload RAID mapping for a logical volume I/O.
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4942 struct CommandList
*c
)
4944 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4945 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4946 struct raid_map_data
*map
= &dev
->raid_map
;
4947 struct raid_map_disk_data
*dd
= &map
->data
[0];
4950 u64 first_block
, last_block
;
4953 u64 first_row
, last_row
;
4954 u32 first_row_offset
, last_row_offset
;
4955 u32 first_column
, last_column
;
4956 u64 r0_first_row
, r0_last_row
;
4957 u32 r5or6_blocks_per_row
;
4958 u64 r5or6_first_row
, r5or6_last_row
;
4959 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4960 u32 r5or6_first_column
, r5or6_last_column
;
4961 u32 total_disks_per_row
;
4963 u32 first_group
, last_group
, current_group
;
4971 #if BITS_PER_LONG == 32
4974 int offload_to_mirror
;
4979 /* check for valid opcode, get LBA and block count */
4980 switch (cmd
->cmnd
[0]) {
4984 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4985 (cmd
->cmnd
[2] << 8) |
4987 block_cnt
= cmd
->cmnd
[4];
4995 (((u64
) cmd
->cmnd
[2]) << 24) |
4996 (((u64
) cmd
->cmnd
[3]) << 16) |
4997 (((u64
) cmd
->cmnd
[4]) << 8) |
5000 (((u32
) cmd
->cmnd
[7]) << 8) |
5007 (((u64
) cmd
->cmnd
[2]) << 24) |
5008 (((u64
) cmd
->cmnd
[3]) << 16) |
5009 (((u64
) cmd
->cmnd
[4]) << 8) |
5012 (((u32
) cmd
->cmnd
[6]) << 24) |
5013 (((u32
) cmd
->cmnd
[7]) << 16) |
5014 (((u32
) cmd
->cmnd
[8]) << 8) |
5021 (((u64
) cmd
->cmnd
[2]) << 56) |
5022 (((u64
) cmd
->cmnd
[3]) << 48) |
5023 (((u64
) cmd
->cmnd
[4]) << 40) |
5024 (((u64
) cmd
->cmnd
[5]) << 32) |
5025 (((u64
) cmd
->cmnd
[6]) << 24) |
5026 (((u64
) cmd
->cmnd
[7]) << 16) |
5027 (((u64
) cmd
->cmnd
[8]) << 8) |
5030 (((u32
) cmd
->cmnd
[10]) << 24) |
5031 (((u32
) cmd
->cmnd
[11]) << 16) |
5032 (((u32
) cmd
->cmnd
[12]) << 8) |
5036 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5038 last_block
= first_block
+ block_cnt
- 1;
5040 /* check for write to non-RAID-0 */
5041 if (is_write
&& dev
->raid_level
!= 0)
5042 return IO_ACCEL_INELIGIBLE
;
5044 /* check for invalid block or wraparound */
5045 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5046 last_block
< first_block
)
5047 return IO_ACCEL_INELIGIBLE
;
5049 /* calculate stripe information for the request */
5050 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5051 le16_to_cpu(map
->strip_size
);
5052 strip_size
= le16_to_cpu(map
->strip_size
);
5053 #if BITS_PER_LONG == 32
5054 tmpdiv
= first_block
;
5055 (void) do_div(tmpdiv
, blocks_per_row
);
5057 tmpdiv
= last_block
;
5058 (void) do_div(tmpdiv
, blocks_per_row
);
5060 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5061 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5062 tmpdiv
= first_row_offset
;
5063 (void) do_div(tmpdiv
, strip_size
);
5064 first_column
= tmpdiv
;
5065 tmpdiv
= last_row_offset
;
5066 (void) do_div(tmpdiv
, strip_size
);
5067 last_column
= tmpdiv
;
5069 first_row
= first_block
/ blocks_per_row
;
5070 last_row
= last_block
/ blocks_per_row
;
5071 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5072 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5073 first_column
= first_row_offset
/ strip_size
;
5074 last_column
= last_row_offset
/ strip_size
;
5077 /* if this isn't a single row/column then give to the controller */
5078 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5079 return IO_ACCEL_INELIGIBLE
;
5081 /* proceeding with driver mapping */
5082 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5083 le16_to_cpu(map
->metadata_disks_per_row
);
5084 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5085 le16_to_cpu(map
->row_cnt
);
5086 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5088 switch (dev
->raid_level
) {
5090 break; /* nothing special to do */
5092 /* Handles load balance across RAID 1 members.
5093 * (2-drive R1 and R10 with even # of drives.)
5094 * Appropriate for SSDs, not optimal for HDDs
5096 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5097 if (dev
->offload_to_mirror
)
5098 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5099 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5102 /* Handles N-way mirrors (R1-ADM)
5103 * and R10 with # of drives divisible by 3.)
5105 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5107 offload_to_mirror
= dev
->offload_to_mirror
;
5108 raid_map_helper(map
, offload_to_mirror
,
5109 &map_index
, ¤t_group
);
5110 /* set mirror group to use next time */
5112 (offload_to_mirror
>=
5113 le16_to_cpu(map
->layout_map_count
) - 1)
5114 ? 0 : offload_to_mirror
+ 1;
5115 dev
->offload_to_mirror
= offload_to_mirror
;
5116 /* Avoid direct use of dev->offload_to_mirror within this
5117 * function since multiple threads might simultaneously
5118 * increment it beyond the range of dev->layout_map_count -1.
5123 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5126 /* Verify first and last block are in same RAID group */
5127 r5or6_blocks_per_row
=
5128 le16_to_cpu(map
->strip_size
) *
5129 le16_to_cpu(map
->data_disks_per_row
);
5130 BUG_ON(r5or6_blocks_per_row
== 0);
5131 stripesize
= r5or6_blocks_per_row
*
5132 le16_to_cpu(map
->layout_map_count
);
5133 #if BITS_PER_LONG == 32
5134 tmpdiv
= first_block
;
5135 first_group
= do_div(tmpdiv
, stripesize
);
5136 tmpdiv
= first_group
;
5137 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5138 first_group
= tmpdiv
;
5139 tmpdiv
= last_block
;
5140 last_group
= do_div(tmpdiv
, stripesize
);
5141 tmpdiv
= last_group
;
5142 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5143 last_group
= tmpdiv
;
5145 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5146 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5148 if (first_group
!= last_group
)
5149 return IO_ACCEL_INELIGIBLE
;
5151 /* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153 tmpdiv
= first_block
;
5154 (void) do_div(tmpdiv
, stripesize
);
5155 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5156 tmpdiv
= last_block
;
5157 (void) do_div(tmpdiv
, stripesize
);
5158 r5or6_last_row
= r0_last_row
= tmpdiv
;
5160 first_row
= r5or6_first_row
= r0_first_row
=
5161 first_block
/ stripesize
;
5162 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5164 if (r5or6_first_row
!= r5or6_last_row
)
5165 return IO_ACCEL_INELIGIBLE
;
5168 /* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170 tmpdiv
= first_block
;
5171 first_row_offset
= do_div(tmpdiv
, stripesize
);
5172 tmpdiv
= first_row_offset
;
5173 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5174 r5or6_first_row_offset
= first_row_offset
;
5175 tmpdiv
= last_block
;
5176 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5177 tmpdiv
= r5or6_last_row_offset
;
5178 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5179 tmpdiv
= r5or6_first_row_offset
;
5180 (void) do_div(tmpdiv
, map
->strip_size
);
5181 first_column
= r5or6_first_column
= tmpdiv
;
5182 tmpdiv
= r5or6_last_row_offset
;
5183 (void) do_div(tmpdiv
, map
->strip_size
);
5184 r5or6_last_column
= tmpdiv
;
5186 first_row_offset
= r5or6_first_row_offset
=
5187 (u32
)((first_block
% stripesize
) %
5188 r5or6_blocks_per_row
);
5190 r5or6_last_row_offset
=
5191 (u32
)((last_block
% stripesize
) %
5192 r5or6_blocks_per_row
);
5194 first_column
= r5or6_first_column
=
5195 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5197 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5199 if (r5or6_first_column
!= r5or6_last_column
)
5200 return IO_ACCEL_INELIGIBLE
;
5202 /* Request is eligible */
5203 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5204 le16_to_cpu(map
->row_cnt
);
5206 map_index
= (first_group
*
5207 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5208 (map_row
* total_disks_per_row
) + first_column
;
5211 return IO_ACCEL_INELIGIBLE
;
5214 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5215 return IO_ACCEL_INELIGIBLE
;
5217 c
->phys_disk
= dev
->phys_disk
[map_index
];
5219 return IO_ACCEL_INELIGIBLE
;
5221 disk_handle
= dd
[map_index
].ioaccel_handle
;
5222 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5223 first_row
* le16_to_cpu(map
->strip_size
) +
5224 (first_row_offset
- first_column
*
5225 le16_to_cpu(map
->strip_size
));
5226 disk_block_cnt
= block_cnt
;
5228 /* handle differing logical/physical block sizes */
5229 if (map
->phys_blk_shift
) {
5230 disk_block
<<= map
->phys_blk_shift
;
5231 disk_block_cnt
<<= map
->phys_blk_shift
;
5233 BUG_ON(disk_block_cnt
> 0xffff);
5235 /* build the new CDB for the physical disk I/O */
5236 if (disk_block
> 0xffffffff) {
5237 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5239 cdb
[2] = (u8
) (disk_block
>> 56);
5240 cdb
[3] = (u8
) (disk_block
>> 48);
5241 cdb
[4] = (u8
) (disk_block
>> 40);
5242 cdb
[5] = (u8
) (disk_block
>> 32);
5243 cdb
[6] = (u8
) (disk_block
>> 24);
5244 cdb
[7] = (u8
) (disk_block
>> 16);
5245 cdb
[8] = (u8
) (disk_block
>> 8);
5246 cdb
[9] = (u8
) (disk_block
);
5247 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5248 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5249 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5250 cdb
[13] = (u8
) (disk_block_cnt
);
5255 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5257 cdb
[2] = (u8
) (disk_block
>> 24);
5258 cdb
[3] = (u8
) (disk_block
>> 16);
5259 cdb
[4] = (u8
) (disk_block
>> 8);
5260 cdb
[5] = (u8
) (disk_block
);
5262 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5263 cdb
[8] = (u8
) (disk_block_cnt
);
5267 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5269 dev
->phys_disk
[map_index
]);
5273 * Submit commands down the "normal" RAID stack path
5274 * All callers to hpsa_ciss_submit must check lockup_detected
5275 * beforehand, before (opt.) and after calling cmd_alloc
5277 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5278 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5279 unsigned char scsi3addr
[])
5281 cmd
->host_scribble
= (unsigned char *) c
;
5282 c
->cmd_type
= CMD_SCSI
;
5284 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5285 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5286 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5288 /* Fill in the request block... */
5290 c
->Request
.Timeout
= 0;
5291 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5292 c
->Request
.CDBLen
= cmd
->cmd_len
;
5293 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5294 switch (cmd
->sc_data_direction
) {
5296 c
->Request
.type_attr_dir
=
5297 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5299 case DMA_FROM_DEVICE
:
5300 c
->Request
.type_attr_dir
=
5301 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5304 c
->Request
.type_attr_dir
=
5305 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5307 case DMA_BIDIRECTIONAL
:
5308 /* This can happen if a buggy application does a scsi passthru
5309 * and sets both inlen and outlen to non-zero. ( see
5310 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5313 c
->Request
.type_attr_dir
=
5314 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5315 /* This is technically wrong, and hpsa controllers should
5316 * reject it with CMD_INVALID, which is the most correct
5317 * response, but non-fibre backends appear to let it
5318 * slide by, and give the same results as if this field
5319 * were set correctly. Either way is acceptable for
5320 * our purposes here.
5326 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5327 cmd
->sc_data_direction
);
5332 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5333 hpsa_cmd_resolve_and_free(h
, c
);
5334 return SCSI_MLQUEUE_HOST_BUSY
;
5336 enqueue_cmd_and_start_io(h
, c
);
5337 /* the cmd'll come back via intr handler in complete_scsi_command() */
5341 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5342 struct CommandList
*c
)
5344 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5346 /* Zero out all of commandlist except the last field, refcount */
5347 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5348 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5349 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5350 c
->err_info
= h
->errinfo_pool
+ index
;
5351 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5352 err_dma_handle
= h
->errinfo_pool_dhandle
5353 + index
* sizeof(*c
->err_info
);
5354 c
->cmdindex
= index
;
5355 c
->busaddr
= (u32
) cmd_dma_handle
;
5356 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5357 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5359 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5362 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5366 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5367 struct CommandList
*c
= h
->cmd_pool
+ i
;
5369 hpsa_cmd_init(h
, i
, c
);
5370 atomic_set(&c
->refcount
, 0);
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5375 struct CommandList
*c
)
5377 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5379 BUG_ON(c
->cmdindex
!= index
);
5381 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5382 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5383 c
->busaddr
= (u32
) cmd_dma_handle
;
5386 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5387 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5388 unsigned char *scsi3addr
)
5390 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5391 int rc
= IO_ACCEL_INELIGIBLE
;
5394 return SCSI_MLQUEUE_HOST_BUSY
;
5396 cmd
->host_scribble
= (unsigned char *) c
;
5398 if (dev
->offload_enabled
) {
5399 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5400 c
->cmd_type
= CMD_SCSI
;
5402 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5403 if (rc
< 0) /* scsi_dma_map failed. */
5404 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5405 } else if (dev
->hba_ioaccel_enabled
) {
5406 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5407 c
->cmd_type
= CMD_SCSI
;
5409 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5410 if (rc
< 0) /* scsi_dma_map failed. */
5411 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5416 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5418 struct scsi_cmnd
*cmd
;
5419 struct hpsa_scsi_dev_t
*dev
;
5420 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5423 dev
= cmd
->device
->hostdata
;
5425 cmd
->result
= DID_NO_CONNECT
<< 16;
5426 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5428 if (c
->reset_pending
)
5429 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5430 if (c
->cmd_type
== CMD_IOACCEL2
) {
5431 struct ctlr_info
*h
= c
->h
;
5432 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5435 if (c2
->error_data
.serv_response
==
5436 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5437 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5440 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5442 * If we get here, it means dma mapping failed.
5443 * Try again via scsi mid layer, which will
5444 * then get SCSI_MLQUEUE_HOST_BUSY.
5446 cmd
->result
= DID_IMM_RETRY
<< 16;
5447 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5449 /* else, fall thru and resubmit down CISS path */
5452 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5453 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5455 * If we get here, it means dma mapping failed. Try
5456 * again via scsi mid layer, which will then get
5457 * SCSI_MLQUEUE_HOST_BUSY.
5459 * hpsa_ciss_submit will have already freed c
5460 * if it encountered a dma mapping failure.
5462 cmd
->result
= DID_IMM_RETRY
<< 16;
5463 cmd
->scsi_done(cmd
);
5467 /* Running in struct Scsi_Host->host_lock less mode */
5468 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5470 struct ctlr_info
*h
;
5471 struct hpsa_scsi_dev_t
*dev
;
5472 unsigned char scsi3addr
[8];
5473 struct CommandList
*c
;
5476 /* Get the ptr to our adapter structure out of cmd->host. */
5477 h
= sdev_to_hba(cmd
->device
);
5479 BUG_ON(cmd
->request
->tag
< 0);
5481 dev
= cmd
->device
->hostdata
;
5483 cmd
->result
= DID_NO_CONNECT
<< 16;
5484 cmd
->scsi_done(cmd
);
5489 cmd
->result
= DID_NO_CONNECT
<< 16;
5490 cmd
->scsi_done(cmd
);
5494 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5496 if (unlikely(lockup_detected(h
))) {
5497 cmd
->result
= DID_NO_CONNECT
<< 16;
5498 cmd
->scsi_done(cmd
);
5501 c
= cmd_tagged_alloc(h
, cmd
);
5504 * Call alternate submit routine for I/O accelerated commands.
5505 * Retries always go down the normal I/O path.
5507 if (likely(cmd
->retries
== 0 &&
5508 !blk_rq_is_passthrough(cmd
->request
) &&
5509 h
->acciopath_status
)) {
5510 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5513 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5514 hpsa_cmd_resolve_and_free(h
, c
);
5515 return SCSI_MLQUEUE_HOST_BUSY
;
5518 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5521 static void hpsa_scan_complete(struct ctlr_info
*h
)
5523 unsigned long flags
;
5525 spin_lock_irqsave(&h
->scan_lock
, flags
);
5526 h
->scan_finished
= 1;
5527 wake_up(&h
->scan_wait_queue
);
5528 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5531 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5533 struct ctlr_info
*h
= shost_to_hba(sh
);
5534 unsigned long flags
;
5537 * Don't let rescans be initiated on a controller known to be locked
5538 * up. If the controller locks up *during* a rescan, that thread is
5539 * probably hosed, but at least we can prevent new rescan threads from
5540 * piling up on a locked up controller.
5542 if (unlikely(lockup_detected(h
)))
5543 return hpsa_scan_complete(h
);
5546 * If a scan is already waiting to run, no need to add another
5548 spin_lock_irqsave(&h
->scan_lock
, flags
);
5549 if (h
->scan_waiting
) {
5550 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5554 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5556 /* wait until any scan already in progress is finished. */
5558 spin_lock_irqsave(&h
->scan_lock
, flags
);
5559 if (h
->scan_finished
)
5561 h
->scan_waiting
= 1;
5562 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5563 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5564 /* Note: We don't need to worry about a race between this
5565 * thread and driver unload because the midlayer will
5566 * have incremented the reference count, so unload won't
5567 * happen if we're in here.
5570 h
->scan_finished
= 0; /* mark scan as in progress */
5571 h
->scan_waiting
= 0;
5572 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5574 if (unlikely(lockup_detected(h
)))
5575 return hpsa_scan_complete(h
);
5578 * Do the scan after a reset completion
5580 spin_lock_irqsave(&h
->reset_lock
, flags
);
5581 if (h
->reset_in_progress
) {
5582 h
->drv_req_rescan
= 1;
5583 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5584 hpsa_scan_complete(h
);
5587 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5589 hpsa_update_scsi_devices(h
);
5591 hpsa_scan_complete(h
);
5594 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5596 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5603 else if (qdepth
> logical_drive
->queue_depth
)
5604 qdepth
= logical_drive
->queue_depth
;
5606 return scsi_change_queue_depth(sdev
, qdepth
);
5609 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5610 unsigned long elapsed_time
)
5612 struct ctlr_info
*h
= shost_to_hba(sh
);
5613 unsigned long flags
;
5616 spin_lock_irqsave(&h
->scan_lock
, flags
);
5617 finished
= h
->scan_finished
;
5618 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5622 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5624 struct Scsi_Host
*sh
;
5626 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5628 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5635 sh
->max_channel
= 3;
5636 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5637 sh
->max_lun
= HPSA_MAX_LUN
;
5638 sh
->max_id
= HPSA_MAX_LUN
;
5639 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5640 sh
->cmd_per_lun
= sh
->can_queue
;
5641 sh
->sg_tablesize
= h
->maxsgentries
;
5642 sh
->transportt
= hpsa_sas_transport_template
;
5643 sh
->hostdata
[0] = (unsigned long) h
;
5644 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5645 sh
->unique_id
= sh
->irq
;
5651 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5655 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5657 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5660 scsi_scan_host(h
->scsi_host
);
5665 * The block layer has already gone to the trouble of picking out a unique,
5666 * small-integer tag for this request. We use an offset from that value as
5667 * an index to select our command block. (The offset allows us to reserve the
5668 * low-numbered entries for our own uses.)
5670 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5672 int idx
= scmd
->request
->tag
;
5677 /* Offset to leave space for internal cmds. */
5678 return idx
+= HPSA_NRESERVED_CMDS
;
5682 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5683 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5685 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5686 struct CommandList
*c
, unsigned char lunaddr
[],
5691 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5692 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5693 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5694 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5697 /* no unmap needed here because no data xfer. */
5699 /* Check if the unit is already ready. */
5700 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5704 * The first command sent after reset will receive "unit attention" to
5705 * indicate that the LUN has been reset...this is actually what we're
5706 * looking for (but, success is good too).
5708 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5709 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5710 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5711 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5718 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5719 * returns zero when the unit is ready, and non-zero when giving up.
5721 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5722 struct CommandList
*c
,
5723 unsigned char lunaddr
[], int reply_queue
)
5727 int waittime
= 1; /* seconds */
5729 /* Send test unit ready until device ready, or give up. */
5730 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5733 * Wait for a bit. do this first, because if we send
5734 * the TUR right away, the reset will just abort it.
5736 msleep(1000 * waittime
);
5738 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5742 /* Increase wait time with each try, up to a point. */
5743 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5746 dev_warn(&h
->pdev
->dev
,
5747 "waiting %d secs for device to become ready.\n",
5754 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5755 unsigned char lunaddr
[],
5762 struct CommandList
*c
;
5767 * If no specific reply queue was requested, then send the TUR
5768 * repeatedly, requesting a reply on each reply queue; otherwise execute
5769 * the loop exactly once using only the specified queue.
5771 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5773 last_queue
= h
->nreply_queues
- 1;
5775 first_queue
= reply_queue
;
5776 last_queue
= reply_queue
;
5779 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5780 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5786 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5788 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5794 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5795 * complaining. Doing a host- or bus-reset can't do anything good here.
5797 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5800 struct ctlr_info
*h
;
5801 struct hpsa_scsi_dev_t
*dev
;
5804 unsigned long flags
;
5806 /* find the controller to which the command to be aborted was sent */
5807 h
= sdev_to_hba(scsicmd
->device
);
5808 if (h
== NULL
) /* paranoia */
5811 spin_lock_irqsave(&h
->reset_lock
, flags
);
5812 h
->reset_in_progress
= 1;
5813 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5815 if (lockup_detected(h
)) {
5817 goto return_reset_status
;
5820 dev
= scsicmd
->device
->hostdata
;
5822 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5824 goto return_reset_status
;
5827 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5829 goto return_reset_status
;
5832 /* if controller locked up, we can guarantee command won't complete */
5833 if (lockup_detected(h
)) {
5834 snprintf(msg
, sizeof(msg
),
5835 "cmd %d RESET FAILED, lockup detected",
5836 hpsa_get_cmd_index(scsicmd
));
5837 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5839 goto return_reset_status
;
5842 /* this reset request might be the result of a lockup; check */
5843 if (detect_controller_lockup(h
)) {
5844 snprintf(msg
, sizeof(msg
),
5845 "cmd %d RESET FAILED, new lockup detected",
5846 hpsa_get_cmd_index(scsicmd
));
5847 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5849 goto return_reset_status
;
5852 /* Do not attempt on controller */
5853 if (is_hba_lunid(dev
->scsi3addr
)) {
5855 goto return_reset_status
;
5858 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5859 reset_type
= HPSA_DEVICE_RESET_MSG
;
5861 reset_type
= HPSA_PHYS_TARGET_RESET
;
5863 sprintf(msg
, "resetting %s",
5864 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5865 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5867 /* send a reset to the SCSI LUN which the command was sent to */
5868 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5869 DEFAULT_REPLY_QUEUE
);
5875 sprintf(msg
, "reset %s %s",
5876 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5877 rc
== SUCCESS
? "completed successfully" : "failed");
5878 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5880 return_reset_status
:
5881 spin_lock_irqsave(&h
->reset_lock
, flags
);
5882 h
->reset_in_progress
= 0;
5883 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5888 * For operations with an associated SCSI command, a command block is allocated
5889 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5890 * block request tag as an index into a table of entries. cmd_tagged_free() is
5891 * the complement, although cmd_free() may be called instead.
5893 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5894 struct scsi_cmnd
*scmd
)
5896 int idx
= hpsa_get_cmd_index(scmd
);
5897 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5899 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5900 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5901 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5902 /* The index value comes from the block layer, so if it's out of
5903 * bounds, it's probably not our bug.
5908 atomic_inc(&c
->refcount
);
5909 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5911 * We expect that the SCSI layer will hand us a unique tag
5912 * value. Thus, there should never be a collision here between
5913 * two requests...because if the selected command isn't idle
5914 * then someone is going to be very disappointed.
5916 dev_err(&h
->pdev
->dev
,
5917 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5919 if (c
->scsi_cmd
!= NULL
)
5920 scsi_print_command(c
->scsi_cmd
);
5921 scsi_print_command(scmd
);
5924 hpsa_cmd_partial_init(h
, idx
, c
);
5928 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5931 * Release our reference to the block. We don't need to do anything
5932 * else to free it, because it is accessed by index.
5934 (void)atomic_dec(&c
->refcount
);
5938 * For operations that cannot sleep, a command block is allocated at init,
5939 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5940 * which ones are free or in use. Lock must be held when calling this.
5941 * cmd_free() is the complement.
5942 * This function never gives up and returns NULL. If it hangs,
5943 * another thread must call cmd_free() to free some tags.
5946 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5948 struct CommandList
*c
;
5953 * There is some *extremely* small but non-zero chance that that
5954 * multiple threads could get in here, and one thread could
5955 * be scanning through the list of bits looking for a free
5956 * one, but the free ones are always behind him, and other
5957 * threads sneak in behind him and eat them before he can
5958 * get to them, so that while there is always a free one, a
5959 * very unlucky thread might be starved anyway, never able to
5960 * beat the other threads. In reality, this happens so
5961 * infrequently as to be indistinguishable from never.
5963 * Note that we start allocating commands before the SCSI host structure
5964 * is initialized. Since the search starts at bit zero, this
5965 * all works, since we have at least one command structure available;
5966 * however, it means that the structures with the low indexes have to be
5967 * reserved for driver-initiated requests, while requests from the block
5968 * layer will use the higher indexes.
5972 i
= find_next_zero_bit(h
->cmd_pool_bits
,
5973 HPSA_NRESERVED_CMDS
,
5975 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
5979 c
= h
->cmd_pool
+ i
;
5980 refcount
= atomic_inc_return(&c
->refcount
);
5981 if (unlikely(refcount
> 1)) {
5982 cmd_free(h
, c
); /* already in use */
5983 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
5986 set_bit(i
& (BITS_PER_LONG
- 1),
5987 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5988 break; /* it's ours now. */
5990 hpsa_cmd_partial_init(h
, i
, c
);
5995 * This is the complementary operation to cmd_alloc(). Note, however, in some
5996 * corner cases it may also be used to free blocks allocated by
5997 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5998 * the clear-bit is harmless.
6000 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6002 if (atomic_dec_and_test(&c
->refcount
)) {
6005 i
= c
- h
->cmd_pool
;
6006 clear_bit(i
& (BITS_PER_LONG
- 1),
6007 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6011 #ifdef CONFIG_COMPAT
6013 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6016 IOCTL32_Command_struct __user
*arg32
=
6017 (IOCTL32_Command_struct __user
*) arg
;
6018 IOCTL_Command_struct arg64
;
6019 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6023 memset(&arg64
, 0, sizeof(arg64
));
6025 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6026 sizeof(arg64
.LUN_info
));
6027 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6028 sizeof(arg64
.Request
));
6029 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6030 sizeof(arg64
.error_info
));
6031 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6032 err
|= get_user(cp
, &arg32
->buf
);
6033 arg64
.buf
= compat_ptr(cp
);
6034 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6039 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6042 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6043 sizeof(arg32
->error_info
));
6049 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6050 int cmd
, void __user
*arg
)
6052 BIG_IOCTL32_Command_struct __user
*arg32
=
6053 (BIG_IOCTL32_Command_struct __user
*) arg
;
6054 BIG_IOCTL_Command_struct arg64
;
6055 BIG_IOCTL_Command_struct __user
*p
=
6056 compat_alloc_user_space(sizeof(arg64
));
6060 memset(&arg64
, 0, sizeof(arg64
));
6062 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6063 sizeof(arg64
.LUN_info
));
6064 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6065 sizeof(arg64
.Request
));
6066 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6067 sizeof(arg64
.error_info
));
6068 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6069 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6070 err
|= get_user(cp
, &arg32
->buf
);
6071 arg64
.buf
= compat_ptr(cp
);
6072 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6077 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6080 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6081 sizeof(arg32
->error_info
));
6087 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6090 case CCISS_GETPCIINFO
:
6091 case CCISS_GETINTINFO
:
6092 case CCISS_SETINTINFO
:
6093 case CCISS_GETNODENAME
:
6094 case CCISS_SETNODENAME
:
6095 case CCISS_GETHEARTBEAT
:
6096 case CCISS_GETBUSTYPES
:
6097 case CCISS_GETFIRMVER
:
6098 case CCISS_GETDRIVVER
:
6099 case CCISS_REVALIDVOLS
:
6100 case CCISS_DEREGDISK
:
6101 case CCISS_REGNEWDISK
:
6103 case CCISS_RESCANDISK
:
6104 case CCISS_GETLUNINFO
:
6105 return hpsa_ioctl(dev
, cmd
, arg
);
6107 case CCISS_PASSTHRU32
:
6108 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6109 case CCISS_BIG_PASSTHRU32
:
6110 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6113 return -ENOIOCTLCMD
;
6118 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6120 struct hpsa_pci_info pciinfo
;
6124 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6125 pciinfo
.bus
= h
->pdev
->bus
->number
;
6126 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6127 pciinfo
.board_id
= h
->board_id
;
6128 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6133 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6135 DriverVer_type DriverVer
;
6136 unsigned char vmaj
, vmin
, vsubmin
;
6139 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6140 &vmaj
, &vmin
, &vsubmin
);
6142 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6143 "unrecognized.", HPSA_DRIVER_VERSION
);
6148 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6151 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6156 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6158 IOCTL_Command_struct iocommand
;
6159 struct CommandList
*c
;
6166 if (!capable(CAP_SYS_RAWIO
))
6168 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6170 if ((iocommand
.buf_size
< 1) &&
6171 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6174 if (iocommand
.buf_size
> 0) {
6175 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6178 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6179 /* Copy the data into the buffer we created */
6180 if (copy_from_user(buff
, iocommand
.buf
,
6181 iocommand
.buf_size
)) {
6186 memset(buff
, 0, iocommand
.buf_size
);
6191 /* Fill in the command type */
6192 c
->cmd_type
= CMD_IOCTL_PEND
;
6193 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6194 /* Fill in Command Header */
6195 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6196 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6197 c
->Header
.SGList
= 1;
6198 c
->Header
.SGTotal
= cpu_to_le16(1);
6199 } else { /* no buffers to fill */
6200 c
->Header
.SGList
= 0;
6201 c
->Header
.SGTotal
= cpu_to_le16(0);
6203 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6205 /* Fill in Request block */
6206 memcpy(&c
->Request
, &iocommand
.Request
,
6207 sizeof(c
->Request
));
6209 /* Fill in the scatter gather information */
6210 if (iocommand
.buf_size
> 0) {
6211 temp64
= pci_map_single(h
->pdev
, buff
,
6212 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6213 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6214 c
->SG
[0].Addr
= cpu_to_le64(0);
6215 c
->SG
[0].Len
= cpu_to_le32(0);
6219 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6220 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6221 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6223 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6225 if (iocommand
.buf_size
> 0)
6226 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6227 check_ioctl_unit_attention(h
, c
);
6233 /* Copy the error information out */
6234 memcpy(&iocommand
.error_info
, c
->err_info
,
6235 sizeof(iocommand
.error_info
));
6236 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6240 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6241 iocommand
.buf_size
> 0) {
6242 /* Copy the data out of the buffer we created */
6243 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6255 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6257 BIG_IOCTL_Command_struct
*ioc
;
6258 struct CommandList
*c
;
6259 unsigned char **buff
= NULL
;
6260 int *buff_size
= NULL
;
6266 BYTE __user
*data_ptr
;
6270 if (!capable(CAP_SYS_RAWIO
))
6272 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6277 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6281 if ((ioc
->buf_size
< 1) &&
6282 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6286 /* Check kmalloc limits using all SGs */
6287 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6291 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6295 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6300 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6305 left
= ioc
->buf_size
;
6306 data_ptr
= ioc
->buf
;
6308 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6309 buff_size
[sg_used
] = sz
;
6310 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6311 if (buff
[sg_used
] == NULL
) {
6315 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6316 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6321 memset(buff
[sg_used
], 0, sz
);
6328 c
->cmd_type
= CMD_IOCTL_PEND
;
6329 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6330 c
->Header
.ReplyQueue
= 0;
6331 c
->Header
.SGList
= (u8
) sg_used
;
6332 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6333 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6334 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6335 if (ioc
->buf_size
> 0) {
6337 for (i
= 0; i
< sg_used
; i
++) {
6338 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6339 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6340 if (dma_mapping_error(&h
->pdev
->dev
,
6341 (dma_addr_t
) temp64
)) {
6342 c
->SG
[i
].Addr
= cpu_to_le64(0);
6343 c
->SG
[i
].Len
= cpu_to_le32(0);
6344 hpsa_pci_unmap(h
->pdev
, c
, i
,
6345 PCI_DMA_BIDIRECTIONAL
);
6349 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6350 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6351 c
->SG
[i
].Ext
= cpu_to_le32(0);
6353 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6355 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6358 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6359 check_ioctl_unit_attention(h
, c
);
6365 /* Copy the error information out */
6366 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6367 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6371 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6374 /* Copy the data out of the buffer we created */
6375 BYTE __user
*ptr
= ioc
->buf
;
6376 for (i
= 0; i
< sg_used
; i
++) {
6377 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6381 ptr
+= buff_size
[i
];
6391 for (i
= 0; i
< sg_used
; i
++)
6400 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6401 struct CommandList
*c
)
6403 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6404 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6405 (void) check_for_unit_attention(h
, c
);
6411 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6413 struct ctlr_info
*h
;
6414 void __user
*argp
= (void __user
*)arg
;
6417 h
= sdev_to_hba(dev
);
6420 case CCISS_DEREGDISK
:
6421 case CCISS_REGNEWDISK
:
6423 hpsa_scan_start(h
->scsi_host
);
6425 case CCISS_GETPCIINFO
:
6426 return hpsa_getpciinfo_ioctl(h
, argp
);
6427 case CCISS_GETDRIVVER
:
6428 return hpsa_getdrivver_ioctl(h
, argp
);
6429 case CCISS_PASSTHRU
:
6430 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6432 rc
= hpsa_passthru_ioctl(h
, argp
);
6433 atomic_inc(&h
->passthru_cmds_avail
);
6435 case CCISS_BIG_PASSTHRU
:
6436 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6438 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6439 atomic_inc(&h
->passthru_cmds_avail
);
6446 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6449 struct CommandList
*c
;
6453 /* fill_cmd can't fail here, no data buffer to map */
6454 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6455 RAID_CTLR_LUNID
, TYPE_MSG
);
6456 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6458 enqueue_cmd_and_start_io(h
, c
);
6459 /* Don't wait for completion, the reset won't complete. Don't free
6460 * the command either. This is the last command we will send before
6461 * re-initializing everything, so it doesn't matter and won't leak.
6466 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6467 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6470 int pci_dir
= XFER_NONE
;
6472 c
->cmd_type
= CMD_IOCTL_PEND
;
6473 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6474 c
->Header
.ReplyQueue
= 0;
6475 if (buff
!= NULL
&& size
> 0) {
6476 c
->Header
.SGList
= 1;
6477 c
->Header
.SGTotal
= cpu_to_le16(1);
6479 c
->Header
.SGList
= 0;
6480 c
->Header
.SGTotal
= cpu_to_le16(0);
6482 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6484 if (cmd_type
== TYPE_CMD
) {
6487 /* are we trying to read a vital product page */
6488 if (page_code
& VPD_PAGE
) {
6489 c
->Request
.CDB
[1] = 0x01;
6490 c
->Request
.CDB
[2] = (page_code
& 0xff);
6492 c
->Request
.CDBLen
= 6;
6493 c
->Request
.type_attr_dir
=
6494 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6495 c
->Request
.Timeout
= 0;
6496 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6497 c
->Request
.CDB
[4] = size
& 0xFF;
6499 case HPSA_REPORT_LOG
:
6500 case HPSA_REPORT_PHYS
:
6501 /* Talking to controller so It's a physical command
6502 mode = 00 target = 0. Nothing to write.
6504 c
->Request
.CDBLen
= 12;
6505 c
->Request
.type_attr_dir
=
6506 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6507 c
->Request
.Timeout
= 0;
6508 c
->Request
.CDB
[0] = cmd
;
6509 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6510 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6511 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6512 c
->Request
.CDB
[9] = size
& 0xFF;
6514 case BMIC_SENSE_DIAG_OPTIONS
:
6515 c
->Request
.CDBLen
= 16;
6516 c
->Request
.type_attr_dir
=
6517 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6518 c
->Request
.Timeout
= 0;
6519 /* Spec says this should be BMIC_WRITE */
6520 c
->Request
.CDB
[0] = BMIC_READ
;
6521 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6523 case BMIC_SET_DIAG_OPTIONS
:
6524 c
->Request
.CDBLen
= 16;
6525 c
->Request
.type_attr_dir
=
6526 TYPE_ATTR_DIR(cmd_type
,
6527 ATTR_SIMPLE
, XFER_WRITE
);
6528 c
->Request
.Timeout
= 0;
6529 c
->Request
.CDB
[0] = BMIC_WRITE
;
6530 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6532 case HPSA_CACHE_FLUSH
:
6533 c
->Request
.CDBLen
= 12;
6534 c
->Request
.type_attr_dir
=
6535 TYPE_ATTR_DIR(cmd_type
,
6536 ATTR_SIMPLE
, XFER_WRITE
);
6537 c
->Request
.Timeout
= 0;
6538 c
->Request
.CDB
[0] = BMIC_WRITE
;
6539 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6540 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6541 c
->Request
.CDB
[8] = size
& 0xFF;
6543 case TEST_UNIT_READY
:
6544 c
->Request
.CDBLen
= 6;
6545 c
->Request
.type_attr_dir
=
6546 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6547 c
->Request
.Timeout
= 0;
6549 case HPSA_GET_RAID_MAP
:
6550 c
->Request
.CDBLen
= 12;
6551 c
->Request
.type_attr_dir
=
6552 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6553 c
->Request
.Timeout
= 0;
6554 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6555 c
->Request
.CDB
[1] = cmd
;
6556 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6557 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6558 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6559 c
->Request
.CDB
[9] = size
& 0xFF;
6561 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6562 c
->Request
.CDBLen
= 10;
6563 c
->Request
.type_attr_dir
=
6564 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6565 c
->Request
.Timeout
= 0;
6566 c
->Request
.CDB
[0] = BMIC_READ
;
6567 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6568 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6569 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6571 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6572 c
->Request
.CDBLen
= 10;
6573 c
->Request
.type_attr_dir
=
6574 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6575 c
->Request
.Timeout
= 0;
6576 c
->Request
.CDB
[0] = BMIC_READ
;
6577 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6578 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6579 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6581 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6582 c
->Request
.CDBLen
= 10;
6583 c
->Request
.type_attr_dir
=
6584 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6585 c
->Request
.Timeout
= 0;
6586 c
->Request
.CDB
[0] = BMIC_READ
;
6587 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6588 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6589 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6591 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6592 c
->Request
.CDBLen
= 10;
6593 c
->Request
.type_attr_dir
=
6594 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6595 c
->Request
.Timeout
= 0;
6596 c
->Request
.CDB
[0] = BMIC_READ
;
6597 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6598 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6599 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6601 case BMIC_IDENTIFY_CONTROLLER
:
6602 c
->Request
.CDBLen
= 10;
6603 c
->Request
.type_attr_dir
=
6604 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6605 c
->Request
.Timeout
= 0;
6606 c
->Request
.CDB
[0] = BMIC_READ
;
6607 c
->Request
.CDB
[1] = 0;
6608 c
->Request
.CDB
[2] = 0;
6609 c
->Request
.CDB
[3] = 0;
6610 c
->Request
.CDB
[4] = 0;
6611 c
->Request
.CDB
[5] = 0;
6612 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6613 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6614 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6615 c
->Request
.CDB
[9] = 0;
6618 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6621 } else if (cmd_type
== TYPE_MSG
) {
6624 case HPSA_PHYS_TARGET_RESET
:
6625 c
->Request
.CDBLen
= 16;
6626 c
->Request
.type_attr_dir
=
6627 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6628 c
->Request
.Timeout
= 0; /* Don't time out */
6629 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6630 c
->Request
.CDB
[0] = HPSA_RESET
;
6631 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6632 /* Physical target reset needs no control bytes 4-7*/
6633 c
->Request
.CDB
[4] = 0x00;
6634 c
->Request
.CDB
[5] = 0x00;
6635 c
->Request
.CDB
[6] = 0x00;
6636 c
->Request
.CDB
[7] = 0x00;
6638 case HPSA_DEVICE_RESET_MSG
:
6639 c
->Request
.CDBLen
= 16;
6640 c
->Request
.type_attr_dir
=
6641 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6642 c
->Request
.Timeout
= 0; /* Don't time out */
6643 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6644 c
->Request
.CDB
[0] = cmd
;
6645 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6646 /* If bytes 4-7 are zero, it means reset the */
6648 c
->Request
.CDB
[4] = 0x00;
6649 c
->Request
.CDB
[5] = 0x00;
6650 c
->Request
.CDB
[6] = 0x00;
6651 c
->Request
.CDB
[7] = 0x00;
6654 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6659 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6663 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6665 pci_dir
= PCI_DMA_FROMDEVICE
;
6668 pci_dir
= PCI_DMA_TODEVICE
;
6671 pci_dir
= PCI_DMA_NONE
;
6674 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6676 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6682 * Map (physical) PCI mem into (virtual) kernel space
6684 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6686 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6687 ulong page_offs
= ((ulong
) base
) - page_base
;
6688 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6691 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6694 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6696 return h
->access
.command_completed(h
, q
);
6699 static inline bool interrupt_pending(struct ctlr_info
*h
)
6701 return h
->access
.intr_pending(h
);
6704 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6706 return (h
->access
.intr_pending(h
) == 0) ||
6707 (h
->interrupts_enabled
== 0);
6710 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6713 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6714 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6720 static inline void finish_cmd(struct CommandList
*c
)
6722 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6723 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6724 || c
->cmd_type
== CMD_IOACCEL2
))
6725 complete_scsi_command(c
);
6726 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6727 complete(c
->waiting
);
6730 /* process completion of an indexed ("direct lookup") command */
6731 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6735 struct CommandList
*c
;
6737 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6738 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6739 c
= h
->cmd_pool
+ tag_index
;
6744 /* Some controllers, like p400, will give us one interrupt
6745 * after a soft reset, even if we turned interrupts off.
6746 * Only need to check for this in the hpsa_xxx_discard_completions
6749 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6751 if (likely(!reset_devices
))
6754 if (likely(h
->interrupts_enabled
))
6757 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6758 "(known firmware bug.) Ignoring.\n");
6764 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6765 * Relies on (h-q[x] == x) being true for x such that
6766 * 0 <= x < MAX_REPLY_QUEUES.
6768 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6770 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6773 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6775 struct ctlr_info
*h
= queue_to_hba(queue
);
6776 u8 q
= *(u8
*) queue
;
6779 if (ignore_bogus_interrupt(h
))
6782 if (interrupt_not_for_us(h
))
6784 h
->last_intr_timestamp
= get_jiffies_64();
6785 while (interrupt_pending(h
)) {
6786 raw_tag
= get_next_completion(h
, q
);
6787 while (raw_tag
!= FIFO_EMPTY
)
6788 raw_tag
= next_command(h
, q
);
6793 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6795 struct ctlr_info
*h
= queue_to_hba(queue
);
6797 u8 q
= *(u8
*) queue
;
6799 if (ignore_bogus_interrupt(h
))
6802 h
->last_intr_timestamp
= get_jiffies_64();
6803 raw_tag
= get_next_completion(h
, q
);
6804 while (raw_tag
!= FIFO_EMPTY
)
6805 raw_tag
= next_command(h
, q
);
6809 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6811 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6813 u8 q
= *(u8
*) queue
;
6815 if (interrupt_not_for_us(h
))
6817 h
->last_intr_timestamp
= get_jiffies_64();
6818 while (interrupt_pending(h
)) {
6819 raw_tag
= get_next_completion(h
, q
);
6820 while (raw_tag
!= FIFO_EMPTY
) {
6821 process_indexed_cmd(h
, raw_tag
);
6822 raw_tag
= next_command(h
, q
);
6828 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6830 struct ctlr_info
*h
= queue_to_hba(queue
);
6832 u8 q
= *(u8
*) queue
;
6834 h
->last_intr_timestamp
= get_jiffies_64();
6835 raw_tag
= get_next_completion(h
, q
);
6836 while (raw_tag
!= FIFO_EMPTY
) {
6837 process_indexed_cmd(h
, raw_tag
);
6838 raw_tag
= next_command(h
, q
);
6843 /* Send a message CDB to the firmware. Careful, this only works
6844 * in simple mode, not performant mode due to the tag lookup.
6845 * We only ever use this immediately after a controller reset.
6847 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6851 struct CommandListHeader CommandHeader
;
6852 struct RequestBlock Request
;
6853 struct ErrDescriptor ErrorDescriptor
;
6855 struct Command
*cmd
;
6856 static const size_t cmd_sz
= sizeof(*cmd
) +
6857 sizeof(cmd
->ErrorDescriptor
);
6861 void __iomem
*vaddr
;
6864 vaddr
= pci_ioremap_bar(pdev
, 0);
6868 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6869 * CCISS commands, so they must be allocated from the lower 4GiB of
6872 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6878 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6884 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6885 * although there's no guarantee, we assume that the address is at
6886 * least 4-byte aligned (most likely, it's page-aligned).
6888 paddr32
= cpu_to_le32(paddr64
);
6890 cmd
->CommandHeader
.ReplyQueue
= 0;
6891 cmd
->CommandHeader
.SGList
= 0;
6892 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6893 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6894 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6896 cmd
->Request
.CDBLen
= 16;
6897 cmd
->Request
.type_attr_dir
=
6898 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6899 cmd
->Request
.Timeout
= 0; /* Don't time out */
6900 cmd
->Request
.CDB
[0] = opcode
;
6901 cmd
->Request
.CDB
[1] = type
;
6902 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6903 cmd
->ErrorDescriptor
.Addr
=
6904 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6905 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6907 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6909 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6910 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6911 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6913 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6918 /* we leak the DMA buffer here ... no choice since the controller could
6919 * still complete the command.
6921 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6922 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6927 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6929 if (tag
& HPSA_ERROR_BIT
) {
6930 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6935 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6940 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6942 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6943 void __iomem
*vaddr
, u32 use_doorbell
)
6947 /* For everything after the P600, the PCI power state method
6948 * of resetting the controller doesn't work, so we have this
6949 * other way using the doorbell register.
6951 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
6952 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
6954 /* PMC hardware guys tell us we need a 10 second delay after
6955 * doorbell reset and before any attempt to talk to the board
6956 * at all to ensure that this actually works and doesn't fall
6957 * over in some weird corner cases.
6960 } else { /* Try to do it the PCI power state way */
6962 /* Quoting from the Open CISS Specification: "The Power
6963 * Management Control/Status Register (CSR) controls the power
6964 * state of the device. The normal operating state is D0,
6965 * CSR=00h. The software off state is D3, CSR=03h. To reset
6966 * the controller, place the interface device in D3 then to D0,
6967 * this causes a secondary PCI reset which will reset the
6972 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
6974 /* enter the D3hot power management state */
6975 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
6981 /* enter the D0 power management state */
6982 rc
= pci_set_power_state(pdev
, PCI_D0
);
6987 * The P600 requires a small delay when changing states.
6988 * Otherwise we may think the board did not reset and we bail.
6989 * This for kdump only and is particular to the P600.
6996 static void init_driver_version(char *driver_version
, int len
)
6998 memset(driver_version
, 0, len
);
6999 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7002 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7004 char *driver_version
;
7005 int i
, size
= sizeof(cfgtable
->driver_version
);
7007 driver_version
= kmalloc(size
, GFP_KERNEL
);
7008 if (!driver_version
)
7011 init_driver_version(driver_version
, size
);
7012 for (i
= 0; i
< size
; i
++)
7013 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7014 kfree(driver_version
);
7018 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7019 unsigned char *driver_ver
)
7023 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7024 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7027 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7030 char *driver_ver
, *old_driver_ver
;
7031 int rc
, size
= sizeof(cfgtable
->driver_version
);
7033 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7034 if (!old_driver_ver
)
7036 driver_ver
= old_driver_ver
+ size
;
7038 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7039 * should have been changed, otherwise we know the reset failed.
7041 init_driver_version(old_driver_ver
, size
);
7042 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7043 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7044 kfree(old_driver_ver
);
7047 /* This does a hard reset of the controller using PCI power management
7048 * states or the using the doorbell register.
7050 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7054 u64 cfg_base_addr_index
;
7055 void __iomem
*vaddr
;
7056 unsigned long paddr
;
7057 u32 misc_fw_support
;
7059 struct CfgTable __iomem
*cfgtable
;
7061 u16 command_register
;
7063 /* For controllers as old as the P600, this is very nearly
7066 * pci_save_state(pci_dev);
7067 * pci_set_power_state(pci_dev, PCI_D3hot);
7068 * pci_set_power_state(pci_dev, PCI_D0);
7069 * pci_restore_state(pci_dev);
7071 * For controllers newer than the P600, the pci power state
7072 * method of resetting doesn't work so we have another way
7073 * using the doorbell register.
7076 if (!ctlr_is_resettable(board_id
)) {
7077 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7081 /* if controller is soft- but not hard resettable... */
7082 if (!ctlr_is_hard_resettable(board_id
))
7083 return -ENOTSUPP
; /* try soft reset later. */
7085 /* Save the PCI command register */
7086 pci_read_config_word(pdev
, 4, &command_register
);
7087 pci_save_state(pdev
);
7089 /* find the first memory BAR, so we can find the cfg table */
7090 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7093 vaddr
= remap_pci_mem(paddr
, 0x250);
7097 /* find cfgtable in order to check if reset via doorbell is supported */
7098 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7099 &cfg_base_addr_index
, &cfg_offset
);
7102 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7103 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7108 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7110 goto unmap_cfgtable
;
7112 /* If reset via doorbell register is supported, use that.
7113 * There are two such methods. Favor the newest method.
7115 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7116 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7118 use_doorbell
= DOORBELL_CTLR_RESET2
;
7120 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7122 dev_warn(&pdev
->dev
,
7123 "Soft reset not supported. Firmware update is required.\n");
7124 rc
= -ENOTSUPP
; /* try soft reset */
7125 goto unmap_cfgtable
;
7129 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7131 goto unmap_cfgtable
;
7133 pci_restore_state(pdev
);
7134 pci_write_config_word(pdev
, 4, command_register
);
7136 /* Some devices (notably the HP Smart Array 5i Controller)
7137 need a little pause here */
7138 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7140 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7142 dev_warn(&pdev
->dev
,
7143 "Failed waiting for board to become ready after hard reset\n");
7144 goto unmap_cfgtable
;
7147 rc
= controller_reset_failed(vaddr
);
7149 goto unmap_cfgtable
;
7151 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7152 "controller. Will try soft reset.\n");
7155 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7167 * We cannot read the structure directly, for portability we must use
7169 * This is for debug only.
7171 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7177 dev_info(dev
, "Controller Configuration information\n");
7178 dev_info(dev
, "------------------------------------\n");
7179 for (i
= 0; i
< 4; i
++)
7180 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7181 temp_name
[4] = '\0';
7182 dev_info(dev
, " Signature = %s\n", temp_name
);
7183 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7184 dev_info(dev
, " Transport methods supported = 0x%x\n",
7185 readl(&(tb
->TransportSupport
)));
7186 dev_info(dev
, " Transport methods active = 0x%x\n",
7187 readl(&(tb
->TransportActive
)));
7188 dev_info(dev
, " Requested transport Method = 0x%x\n",
7189 readl(&(tb
->HostWrite
.TransportRequest
)));
7190 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7191 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7192 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7193 readl(&(tb
->HostWrite
.CoalIntCount
)));
7194 dev_info(dev
, " Max outstanding commands = %d\n",
7195 readl(&(tb
->CmdsOutMax
)));
7196 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7197 for (i
= 0; i
< 16; i
++)
7198 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7199 temp_name
[16] = '\0';
7200 dev_info(dev
, " Server Name = %s\n", temp_name
);
7201 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7202 readl(&(tb
->HeartBeat
)));
7203 #endif /* HPSA_DEBUG */
7206 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7208 int i
, offset
, mem_type
, bar_type
;
7210 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7213 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7214 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7215 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7218 mem_type
= pci_resource_flags(pdev
, i
) &
7219 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7221 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7222 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7223 offset
+= 4; /* 32 bit */
7225 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7228 default: /* reserved in PCI 2.2 */
7229 dev_warn(&pdev
->dev
,
7230 "base address is invalid\n");
7235 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7241 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7243 pci_free_irq_vectors(h
->pdev
);
7244 h
->msix_vectors
= 0;
7247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7248 * controllers that are capable. If not, we use legacy INTx mode.
7250 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7252 unsigned int flags
= PCI_IRQ_LEGACY
;
7255 /* Some boards advertise MSI but don't really support it */
7256 switch (h
->board_id
) {
7263 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7264 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7266 h
->msix_vectors
= ret
;
7270 flags
|= PCI_IRQ_MSI
;
7274 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7280 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7284 u32 subsystem_vendor_id
, subsystem_device_id
;
7286 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7287 subsystem_device_id
= pdev
->subsystem_device
;
7288 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7289 subsystem_vendor_id
;
7292 *legacy_board
= false;
7293 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7294 if (*board_id
== products
[i
].board_id
) {
7295 if (products
[i
].access
!= &SA5A_access
&&
7296 products
[i
].access
!= &SA5B_access
)
7298 dev_warn(&pdev
->dev
,
7299 "legacy board ID: 0x%08x\n",
7302 *legacy_board
= true;
7306 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7308 *legacy_board
= true;
7309 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7312 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7313 unsigned long *memory_bar
)
7317 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7318 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7319 /* addressing mode bits already removed */
7320 *memory_bar
= pci_resource_start(pdev
, i
);
7321 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7325 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7329 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7335 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7337 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7339 for (i
= 0; i
< iterations
; i
++) {
7340 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7341 if (wait_for_ready
) {
7342 if (scratchpad
== HPSA_FIRMWARE_READY
)
7345 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7348 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7350 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7354 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7355 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7358 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7359 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7360 *cfg_base_addr
&= (u32
) 0x0000ffff;
7361 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7362 if (*cfg_base_addr_index
== -1) {
7363 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7369 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7371 if (h
->transtable
) {
7372 iounmap(h
->transtable
);
7373 h
->transtable
= NULL
;
7376 iounmap(h
->cfgtable
);
7381 /* Find and map CISS config table and transfer table
7382 + * several items must be unmapped (freed) later
7384 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7388 u64 cfg_base_addr_index
;
7392 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7393 &cfg_base_addr_index
, &cfg_offset
);
7396 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7397 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7399 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7402 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7405 /* Find performant mode table. */
7406 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7407 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7408 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7409 sizeof(*h
->transtable
));
7410 if (!h
->transtable
) {
7411 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7412 hpsa_free_cfgtables(h
);
7418 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7420 #define MIN_MAX_COMMANDS 16
7421 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7423 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7425 /* Limit commands in memory limited kdump scenario. */
7426 if (reset_devices
&& h
->max_commands
> 32)
7427 h
->max_commands
= 32;
7429 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7430 dev_warn(&h
->pdev
->dev
,
7431 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7434 h
->max_commands
= MIN_MAX_COMMANDS
;
7438 /* If the controller reports that the total max sg entries is greater than 512,
7439 * then we know that chained SG blocks work. (Original smart arrays did not
7440 * support chained SG blocks and would return zero for max sg entries.)
7442 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7444 return h
->maxsgentries
> 512;
7447 /* Interrogate the hardware for some limits:
7448 * max commands, max SG elements without chaining, and with chaining,
7449 * SG chain block size, etc.
7451 static void hpsa_find_board_params(struct ctlr_info
*h
)
7453 hpsa_get_max_perf_mode_cmds(h
);
7454 h
->nr_cmds
= h
->max_commands
;
7455 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7456 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7457 if (hpsa_supports_chained_sg_blocks(h
)) {
7458 /* Limit in-command s/g elements to 32 save dma'able memory. */
7459 h
->max_cmd_sg_entries
= 32;
7460 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7461 h
->maxsgentries
--; /* save one for chain pointer */
7464 * Original smart arrays supported at most 31 s/g entries
7465 * embedded inline in the command (trying to use more
7466 * would lock up the controller)
7468 h
->max_cmd_sg_entries
= 31;
7469 h
->maxsgentries
= 31; /* default to traditional values */
7473 /* Find out what task management functions are supported and cache */
7474 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7475 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7476 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7477 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7478 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7479 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7480 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7483 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7485 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7486 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7492 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7496 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7497 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7499 driver_support
|= ENABLE_SCSI_PREFETCH
;
7501 driver_support
|= ENABLE_UNIT_ATTN
;
7502 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7505 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7506 * in a prefetch beyond physical memory.
7508 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7512 if (h
->board_id
!= 0x3225103C)
7514 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7515 dma_prefetch
|= 0x8000;
7516 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7519 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7523 unsigned long flags
;
7524 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7525 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7526 spin_lock_irqsave(&h
->lock
, flags
);
7527 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7528 spin_unlock_irqrestore(&h
->lock
, flags
);
7529 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7531 /* delay and try again */
7532 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7539 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7543 unsigned long flags
;
7545 /* under certain very rare conditions, this can take awhile.
7546 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7547 * as we enter this code.)
7549 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7550 if (h
->remove_in_progress
)
7552 spin_lock_irqsave(&h
->lock
, flags
);
7553 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7554 spin_unlock_irqrestore(&h
->lock
, flags
);
7555 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7557 /* delay and try again */
7558 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7565 /* return -ENODEV or other reason on error, 0 on success */
7566 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7570 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7571 if (!(trans_support
& SIMPLE_MODE
))
7574 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7576 /* Update the field, and then ring the doorbell */
7577 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7578 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7579 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7580 if (hpsa_wait_for_mode_change_ack(h
))
7582 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7583 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7585 h
->transMethod
= CFGTBL_Trans_Simple
;
7588 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7592 /* free items allocated or mapped by hpsa_pci_init */
7593 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7595 hpsa_free_cfgtables(h
); /* pci_init 4 */
7596 iounmap(h
->vaddr
); /* pci_init 3 */
7598 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7600 * call pci_disable_device before pci_release_regions per
7601 * Documentation/PCI/pci.txt
7603 pci_disable_device(h
->pdev
); /* pci_init 1 */
7604 pci_release_regions(h
->pdev
); /* pci_init 2 */
7607 /* several items must be freed later */
7608 static int hpsa_pci_init(struct ctlr_info
*h
)
7610 int prod_index
, err
;
7613 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7616 h
->product_name
= products
[prod_index
].product_name
;
7617 h
->access
= *(products
[prod_index
].access
);
7618 h
->legacy_board
= legacy_board
;
7619 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7620 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7622 err
= pci_enable_device(h
->pdev
);
7624 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7625 pci_disable_device(h
->pdev
);
7629 err
= pci_request_regions(h
->pdev
, HPSA
);
7631 dev_err(&h
->pdev
->dev
,
7632 "failed to obtain PCI resources\n");
7633 pci_disable_device(h
->pdev
);
7637 pci_set_master(h
->pdev
);
7639 err
= hpsa_interrupt_mode(h
);
7642 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7644 goto clean2
; /* intmode+region, pci */
7645 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7647 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7649 goto clean2
; /* intmode+region, pci */
7651 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7653 goto clean3
; /* vaddr, intmode+region, pci */
7654 err
= hpsa_find_cfgtables(h
);
7656 goto clean3
; /* vaddr, intmode+region, pci */
7657 hpsa_find_board_params(h
);
7659 if (!hpsa_CISS_signature_present(h
)) {
7661 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7663 hpsa_set_driver_support_bits(h
);
7664 hpsa_p600_dma_prefetch_quirk(h
);
7665 err
= hpsa_enter_simple_mode(h
);
7667 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7670 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7671 hpsa_free_cfgtables(h
);
7672 clean3
: /* vaddr, intmode+region, pci */
7675 clean2
: /* intmode+region, pci */
7676 hpsa_disable_interrupt_mode(h
);
7679 * call pci_disable_device before pci_release_regions per
7680 * Documentation/PCI/pci.txt
7682 pci_disable_device(h
->pdev
);
7683 pci_release_regions(h
->pdev
);
7687 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7691 #define HBA_INQUIRY_BYTE_COUNT 64
7692 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7693 if (!h
->hba_inquiry_data
)
7695 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7696 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7698 kfree(h
->hba_inquiry_data
);
7699 h
->hba_inquiry_data
= NULL
;
7703 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7706 void __iomem
*vaddr
;
7711 /* kdump kernel is loading, we don't know in which state is
7712 * the pci interface. The dev->enable_cnt is equal zero
7713 * so we call enable+disable, wait a while and switch it on.
7715 rc
= pci_enable_device(pdev
);
7717 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7720 pci_disable_device(pdev
);
7721 msleep(260); /* a randomly chosen number */
7722 rc
= pci_enable_device(pdev
);
7724 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7728 pci_set_master(pdev
);
7730 vaddr
= pci_ioremap_bar(pdev
, 0);
7731 if (vaddr
== NULL
) {
7735 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7738 /* Reset the controller with a PCI power-cycle or via doorbell */
7739 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7741 /* -ENOTSUPP here means we cannot reset the controller
7742 * but it's already (and still) up and running in
7743 * "performant mode". Or, it might be 640x, which can't reset
7744 * due to concerns about shared bbwc between 6402/6404 pair.
7749 /* Now try to get the controller to respond to a no-op */
7750 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7751 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7752 if (hpsa_noop(pdev
) == 0)
7755 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7756 (i
< 11 ? "; re-trying" : ""));
7761 pci_disable_device(pdev
);
7765 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7767 kfree(h
->cmd_pool_bits
);
7768 h
->cmd_pool_bits
= NULL
;
7770 pci_free_consistent(h
->pdev
,
7771 h
->nr_cmds
* sizeof(struct CommandList
),
7773 h
->cmd_pool_dhandle
);
7775 h
->cmd_pool_dhandle
= 0;
7777 if (h
->errinfo_pool
) {
7778 pci_free_consistent(h
->pdev
,
7779 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7781 h
->errinfo_pool_dhandle
);
7782 h
->errinfo_pool
= NULL
;
7783 h
->errinfo_pool_dhandle
= 0;
7787 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7789 h
->cmd_pool_bits
= kzalloc(
7790 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7791 sizeof(unsigned long), GFP_KERNEL
);
7792 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7793 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7794 &(h
->cmd_pool_dhandle
));
7795 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7796 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7797 &(h
->errinfo_pool_dhandle
));
7798 if ((h
->cmd_pool_bits
== NULL
)
7799 || (h
->cmd_pool
== NULL
)
7800 || (h
->errinfo_pool
== NULL
)) {
7801 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7804 hpsa_preinitialize_commands(h
);
7807 hpsa_free_cmd_pool(h
);
7811 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7812 static void hpsa_free_irqs(struct ctlr_info
*h
)
7816 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
7817 /* Single reply queue, only one irq to free */
7818 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
7819 h
->q
[h
->intr_mode
] = 0;
7823 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7824 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
7827 for (; i
< MAX_REPLY_QUEUES
; i
++)
7831 /* returns 0 on success; cleans up and returns -Enn on error */
7832 static int hpsa_request_irqs(struct ctlr_info
*h
,
7833 irqreturn_t (*msixhandler
)(int, void *),
7834 irqreturn_t (*intxhandler
)(int, void *))
7839 * initialize h->q[x] = x so that interrupt handlers know which
7842 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7845 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
7846 /* If performant mode and MSI-X, use multiple reply queues */
7847 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7848 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7849 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
7855 dev_err(&h
->pdev
->dev
,
7856 "failed to get irq %d for %s\n",
7857 pci_irq_vector(h
->pdev
, i
), h
->devname
);
7858 for (j
= 0; j
< i
; j
++) {
7859 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
7862 for (; j
< MAX_REPLY_QUEUES
; j
++)
7868 /* Use single reply pool */
7869 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
7870 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
7871 h
->msix_vectors
? "x" : "");
7872 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
7875 &h
->q
[h
->intr_mode
]);
7877 sprintf(h
->intrname
[h
->intr_mode
],
7878 "%s-intx", h
->devname
);
7879 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
7880 intxhandler
, IRQF_SHARED
,
7882 &h
->q
[h
->intr_mode
]);
7886 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7887 pci_irq_vector(h
->pdev
, 0), h
->devname
);
7894 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7897 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7899 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7900 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7902 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7906 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7907 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7909 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
7910 "after soft reset.\n");
7917 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
7921 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7922 if (!h
->reply_queue
[i
].head
)
7924 pci_free_consistent(h
->pdev
,
7925 h
->reply_queue_size
,
7926 h
->reply_queue
[i
].head
,
7927 h
->reply_queue
[i
].busaddr
);
7928 h
->reply_queue
[i
].head
= NULL
;
7929 h
->reply_queue
[i
].busaddr
= 0;
7931 h
->reply_queue_size
= 0;
7934 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
7936 hpsa_free_performant_mode(h
); /* init_one 7 */
7937 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
7938 hpsa_free_cmd_pool(h
); /* init_one 5 */
7939 hpsa_free_irqs(h
); /* init_one 4 */
7940 scsi_host_put(h
->scsi_host
); /* init_one 3 */
7941 h
->scsi_host
= NULL
; /* init_one 3 */
7942 hpsa_free_pci_init(h
); /* init_one 2_5 */
7943 free_percpu(h
->lockup_detected
); /* init_one 2 */
7944 h
->lockup_detected
= NULL
; /* init_one 2 */
7945 if (h
->resubmit_wq
) {
7946 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
7947 h
->resubmit_wq
= NULL
;
7949 if (h
->rescan_ctlr_wq
) {
7950 destroy_workqueue(h
->rescan_ctlr_wq
);
7951 h
->rescan_ctlr_wq
= NULL
;
7953 kfree(h
); /* init_one 1 */
7956 /* Called when controller lockup detected. */
7957 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
7960 struct CommandList
*c
;
7963 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
7964 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7965 c
= h
->cmd_pool
+ i
;
7966 refcount
= atomic_inc_return(&c
->refcount
);
7968 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
7970 atomic_dec(&h
->commands_outstanding
);
7975 dev_warn(&h
->pdev
->dev
,
7976 "failed %d commands in fail_all\n", failcount
);
7979 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
7983 for_each_online_cpu(cpu
) {
7984 u32
*lockup_detected
;
7985 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
7986 *lockup_detected
= value
;
7988 wmb(); /* be sure the per-cpu variables are out to memory */
7991 static void controller_lockup_detected(struct ctlr_info
*h
)
7993 unsigned long flags
;
7994 u32 lockup_detected
;
7996 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7997 spin_lock_irqsave(&h
->lock
, flags
);
7998 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7999 if (!lockup_detected
) {
8000 /* no heartbeat, but controller gave us a zero. */
8001 dev_warn(&h
->pdev
->dev
,
8002 "lockup detected after %d but scratchpad register is zero\n",
8003 h
->heartbeat_sample_interval
/ HZ
);
8004 lockup_detected
= 0xffffffff;
8006 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8007 spin_unlock_irqrestore(&h
->lock
, flags
);
8008 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8009 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8010 pci_disable_device(h
->pdev
);
8011 fail_all_outstanding_cmds(h
);
8014 static int detect_controller_lockup(struct ctlr_info
*h
)
8018 unsigned long flags
;
8020 now
= get_jiffies_64();
8021 /* If we've received an interrupt recently, we're ok. */
8022 if (time_after64(h
->last_intr_timestamp
+
8023 (h
->heartbeat_sample_interval
), now
))
8027 * If we've already checked the heartbeat recently, we're ok.
8028 * This could happen if someone sends us a signal. We
8029 * otherwise don't care about signals in this thread.
8031 if (time_after64(h
->last_heartbeat_timestamp
+
8032 (h
->heartbeat_sample_interval
), now
))
8035 /* If heartbeat has not changed since we last looked, we're not ok. */
8036 spin_lock_irqsave(&h
->lock
, flags
);
8037 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8038 spin_unlock_irqrestore(&h
->lock
, flags
);
8039 if (h
->last_heartbeat
== heartbeat
) {
8040 controller_lockup_detected(h
);
8045 h
->last_heartbeat
= heartbeat
;
8046 h
->last_heartbeat_timestamp
= now
;
8050 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8055 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8058 /* Ask the controller to clear the events we're handling. */
8059 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8060 | CFGTBL_Trans_io_accel2
)) &&
8061 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8062 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8064 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8065 event_type
= "state change";
8066 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8067 event_type
= "configuration change";
8068 /* Stop sending new RAID offload reqs via the IO accelerator */
8069 scsi_block_requests(h
->scsi_host
);
8070 for (i
= 0; i
< h
->ndevices
; i
++) {
8071 h
->dev
[i
]->offload_enabled
= 0;
8072 h
->dev
[i
]->offload_to_be_enabled
= 0;
8074 hpsa_drain_accel_commands(h
);
8075 /* Set 'accelerator path config change' bit */
8076 dev_warn(&h
->pdev
->dev
,
8077 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8078 h
->events
, event_type
);
8079 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8080 /* Set the "clear event notify field update" bit 6 */
8081 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8082 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8083 hpsa_wait_for_clear_event_notify_ack(h
);
8084 scsi_unblock_requests(h
->scsi_host
);
8086 /* Acknowledge controller notification events. */
8087 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8088 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8089 hpsa_wait_for_clear_event_notify_ack(h
);
8091 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8092 hpsa_wait_for_mode_change_ack(h
);
8098 /* Check a register on the controller to see if there are configuration
8099 * changes (added/changed/removed logical drives, etc.) which mean that
8100 * we should rescan the controller for devices.
8101 * Also check flag for driver-initiated rescan.
8103 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8105 if (h
->drv_req_rescan
) {
8106 h
->drv_req_rescan
= 0;
8110 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8113 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8114 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8118 * Check if any of the offline devices have become ready
8120 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8122 unsigned long flags
;
8123 struct offline_device_entry
*d
;
8124 struct list_head
*this, *tmp
;
8126 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8127 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8128 d
= list_entry(this, struct offline_device_entry
,
8130 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8131 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8132 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8133 list_del(&d
->offline_list
);
8134 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8137 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8139 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8143 static int hpsa_luns_changed(struct ctlr_info
*h
)
8145 int rc
= 1; /* assume there are changes */
8146 struct ReportLUNdata
*logdev
= NULL
;
8148 /* if we can't find out if lun data has changed,
8149 * assume that it has.
8152 if (!h
->lastlogicals
)
8155 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8159 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8160 dev_warn(&h
->pdev
->dev
,
8161 "report luns failed, can't track lun changes.\n");
8164 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8165 dev_info(&h
->pdev
->dev
,
8166 "Lun changes detected.\n");
8167 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8170 rc
= 0; /* no changes detected. */
8176 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8178 struct Scsi_Host
*sh
= NULL
;
8179 unsigned long flags
;
8182 * Do the scan after the reset
8184 spin_lock_irqsave(&h
->reset_lock
, flags
);
8185 if (h
->reset_in_progress
) {
8186 h
->drv_req_rescan
= 1;
8187 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8190 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8192 sh
= scsi_host_get(h
->scsi_host
);
8194 hpsa_scan_start(sh
);
8196 h
->drv_req_rescan
= 0;
8201 * watch for controller events
8203 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8205 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8206 struct ctlr_info
, event_monitor_work
);
8207 unsigned long flags
;
8209 spin_lock_irqsave(&h
->lock
, flags
);
8210 if (h
->remove_in_progress
) {
8211 spin_unlock_irqrestore(&h
->lock
, flags
);
8214 spin_unlock_irqrestore(&h
->lock
, flags
);
8216 if (hpsa_ctlr_needs_rescan(h
)) {
8217 hpsa_ack_ctlr_events(h
);
8218 hpsa_perform_rescan(h
);
8221 spin_lock_irqsave(&h
->lock
, flags
);
8222 if (!h
->remove_in_progress
)
8223 schedule_delayed_work(&h
->event_monitor_work
,
8224 HPSA_EVENT_MONITOR_INTERVAL
);
8225 spin_unlock_irqrestore(&h
->lock
, flags
);
8228 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8230 unsigned long flags
;
8231 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8232 struct ctlr_info
, rescan_ctlr_work
);
8234 spin_lock_irqsave(&h
->lock
, flags
);
8235 if (h
->remove_in_progress
) {
8236 spin_unlock_irqrestore(&h
->lock
, flags
);
8239 spin_unlock_irqrestore(&h
->lock
, flags
);
8241 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8242 hpsa_perform_rescan(h
);
8243 } else if (h
->discovery_polling
) {
8244 hpsa_disable_rld_caching(h
);
8245 if (hpsa_luns_changed(h
)) {
8246 dev_info(&h
->pdev
->dev
,
8247 "driver discovery polling rescan.\n");
8248 hpsa_perform_rescan(h
);
8251 spin_lock_irqsave(&h
->lock
, flags
);
8252 if (!h
->remove_in_progress
)
8253 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8254 h
->heartbeat_sample_interval
);
8255 spin_unlock_irqrestore(&h
->lock
, flags
);
8258 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8260 unsigned long flags
;
8261 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8262 struct ctlr_info
, monitor_ctlr_work
);
8264 detect_controller_lockup(h
);
8265 if (lockup_detected(h
))
8268 spin_lock_irqsave(&h
->lock
, flags
);
8269 if (!h
->remove_in_progress
)
8270 schedule_delayed_work(&h
->monitor_ctlr_work
,
8271 h
->heartbeat_sample_interval
);
8272 spin_unlock_irqrestore(&h
->lock
, flags
);
8275 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8278 struct workqueue_struct
*wq
= NULL
;
8280 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8282 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8287 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8290 struct ctlr_info
*h
;
8291 int try_soft_reset
= 0;
8292 unsigned long flags
;
8295 if (number_of_controllers
== 0)
8296 printk(KERN_INFO DRIVER_NAME
"\n");
8298 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8300 dev_warn(&pdev
->dev
, "Board ID not found\n");
8304 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8306 if (rc
!= -ENOTSUPP
)
8308 /* If the reset fails in a particular way (it has no way to do
8309 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8310 * a soft reset once we get the controller configured up to the
8311 * point that it can accept a command.
8317 reinit_after_soft_reset
:
8319 /* Command structures must be aligned on a 32-byte boundary because
8320 * the 5 lower bits of the address are used by the hardware. and by
8321 * the driver. See comments in hpsa.h for more info.
8323 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8324 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8326 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8332 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8333 INIT_LIST_HEAD(&h
->offline_device_list
);
8334 spin_lock_init(&h
->lock
);
8335 spin_lock_init(&h
->offline_device_lock
);
8336 spin_lock_init(&h
->scan_lock
);
8337 spin_lock_init(&h
->reset_lock
);
8338 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8340 /* Allocate and clear per-cpu variable lockup_detected */
8341 h
->lockup_detected
= alloc_percpu(u32
);
8342 if (!h
->lockup_detected
) {
8343 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8345 goto clean1
; /* aer/h */
8347 set_lockup_detected_for_all_cpus(h
, 0);
8349 rc
= hpsa_pci_init(h
);
8351 goto clean2
; /* lu, aer/h */
8353 /* relies on h-> settings made by hpsa_pci_init, including
8354 * interrupt_mode h->intr */
8355 rc
= hpsa_scsi_host_alloc(h
);
8357 goto clean2_5
; /* pci, lu, aer/h */
8359 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8360 h
->ctlr
= number_of_controllers
;
8361 number_of_controllers
++;
8363 /* configure PCI DMA stuff */
8364 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8368 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8372 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8373 goto clean3
; /* shost, pci, lu, aer/h */
8377 /* make sure the board interrupts are off */
8378 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8380 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8382 goto clean3
; /* shost, pci, lu, aer/h */
8383 rc
= hpsa_alloc_cmd_pool(h
);
8385 goto clean4
; /* irq, shost, pci, lu, aer/h */
8386 rc
= hpsa_alloc_sg_chain_blocks(h
);
8388 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8389 init_waitqueue_head(&h
->scan_wait_queue
);
8390 init_waitqueue_head(&h
->event_sync_wait_queue
);
8391 mutex_init(&h
->reset_mutex
);
8392 h
->scan_finished
= 1; /* no scan currently in progress */
8393 h
->scan_waiting
= 0;
8395 pci_set_drvdata(pdev
, h
);
8398 spin_lock_init(&h
->devlock
);
8399 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8401 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8403 /* create the resubmit workqueue */
8404 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8405 if (!h
->rescan_ctlr_wq
) {
8410 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8411 if (!h
->resubmit_wq
) {
8413 goto clean7
; /* aer/h */
8417 * At this point, the controller is ready to take commands.
8418 * Now, if reset_devices and the hard reset didn't work, try
8419 * the soft reset and see if that works.
8421 if (try_soft_reset
) {
8423 /* This is kind of gross. We may or may not get a completion
8424 * from the soft reset command, and if we do, then the value
8425 * from the fifo may or may not be valid. So, we wait 10 secs
8426 * after the reset throwing away any completions we get during
8427 * that time. Unregister the interrupt handler and register
8428 * fake ones to scoop up any residual completions.
8430 spin_lock_irqsave(&h
->lock
, flags
);
8431 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8432 spin_unlock_irqrestore(&h
->lock
, flags
);
8434 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8435 hpsa_intx_discard_completions
);
8437 dev_warn(&h
->pdev
->dev
,
8438 "Failed to request_irq after soft reset.\n");
8440 * cannot goto clean7 or free_irqs will be called
8441 * again. Instead, do its work
8443 hpsa_free_performant_mode(h
); /* clean7 */
8444 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8445 hpsa_free_cmd_pool(h
); /* clean5 */
8447 * skip hpsa_free_irqs(h) clean4 since that
8448 * was just called before request_irqs failed
8453 rc
= hpsa_kdump_soft_reset(h
);
8455 /* Neither hard nor soft reset worked, we're hosed. */
8458 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8459 dev_info(&h
->pdev
->dev
,
8460 "Waiting for stale completions to drain.\n");
8461 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8463 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8465 rc
= controller_reset_failed(h
->cfgtable
);
8467 dev_info(&h
->pdev
->dev
,
8468 "Soft reset appears to have failed.\n");
8470 /* since the controller's reset, we have to go back and re-init
8471 * everything. Easiest to just forget what we've done and do it
8474 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8477 /* don't goto clean, we already unallocated */
8480 goto reinit_after_soft_reset
;
8483 /* Enable Accelerated IO path at driver layer */
8484 h
->acciopath_status
= 1;
8485 /* Disable discovery polling.*/
8486 h
->discovery_polling
= 0;
8489 /* Turn the interrupts on so we can service requests */
8490 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8492 hpsa_hba_inquiry(h
);
8494 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8495 if (!h
->lastlogicals
)
8496 dev_info(&h
->pdev
->dev
,
8497 "Can't track change to report lun data\n");
8499 /* hook into SCSI subsystem */
8500 rc
= hpsa_scsi_add_host(h
);
8502 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8504 /* Monitor the controller for firmware lockups */
8505 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8506 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8507 schedule_delayed_work(&h
->monitor_ctlr_work
,
8508 h
->heartbeat_sample_interval
);
8509 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8510 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8511 h
->heartbeat_sample_interval
);
8512 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8513 schedule_delayed_work(&h
->event_monitor_work
,
8514 HPSA_EVENT_MONITOR_INTERVAL
);
8517 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8518 hpsa_free_performant_mode(h
);
8519 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8520 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8521 hpsa_free_sg_chain_blocks(h
);
8522 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8523 hpsa_free_cmd_pool(h
);
8524 clean4
: /* irq, shost, pci, lu, aer/h */
8526 clean3
: /* shost, pci, lu, aer/h */
8527 scsi_host_put(h
->scsi_host
);
8528 h
->scsi_host
= NULL
;
8529 clean2_5
: /* pci, lu, aer/h */
8530 hpsa_free_pci_init(h
);
8531 clean2
: /* lu, aer/h */
8532 if (h
->lockup_detected
) {
8533 free_percpu(h
->lockup_detected
);
8534 h
->lockup_detected
= NULL
;
8536 clean1
: /* wq/aer/h */
8537 if (h
->resubmit_wq
) {
8538 destroy_workqueue(h
->resubmit_wq
);
8539 h
->resubmit_wq
= NULL
;
8541 if (h
->rescan_ctlr_wq
) {
8542 destroy_workqueue(h
->rescan_ctlr_wq
);
8543 h
->rescan_ctlr_wq
= NULL
;
8549 static void hpsa_flush_cache(struct ctlr_info
*h
)
8552 struct CommandList
*c
;
8555 if (unlikely(lockup_detected(h
)))
8557 flush_buf
= kzalloc(4, GFP_KERNEL
);
8563 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8564 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8567 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8568 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8571 if (c
->err_info
->CommandStatus
!= 0)
8573 dev_warn(&h
->pdev
->dev
,
8574 "error flushing cache on controller\n");
8579 /* Make controller gather fresh report lun data each time we
8580 * send down a report luns request
8582 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8585 struct CommandList
*c
;
8588 /* Don't bother trying to set diag options if locked up */
8589 if (unlikely(h
->lockup_detected
))
8592 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8598 /* first, get the current diag options settings */
8599 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8600 RAID_CTLR_LUNID
, TYPE_CMD
))
8603 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8604 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8605 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8608 /* Now, set the bit for disabling the RLD caching */
8609 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8611 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8612 RAID_CTLR_LUNID
, TYPE_CMD
))
8615 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8616 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8617 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8620 /* Now verify that it got set: */
8621 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8622 RAID_CTLR_LUNID
, TYPE_CMD
))
8625 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8626 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8627 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8630 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8634 dev_err(&h
->pdev
->dev
,
8635 "Error: failed to disable report lun data caching.\n");
8641 static void hpsa_shutdown(struct pci_dev
*pdev
)
8643 struct ctlr_info
*h
;
8645 h
= pci_get_drvdata(pdev
);
8646 /* Turn board interrupts off and send the flush cache command
8647 * sendcmd will turn off interrupt, and send the flush...
8648 * To write all data in the battery backed cache to disks
8650 hpsa_flush_cache(h
);
8651 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8652 hpsa_free_irqs(h
); /* init_one 4 */
8653 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8656 static void hpsa_free_device_info(struct ctlr_info
*h
)
8660 for (i
= 0; i
< h
->ndevices
; i
++) {
8666 static void hpsa_remove_one(struct pci_dev
*pdev
)
8668 struct ctlr_info
*h
;
8669 unsigned long flags
;
8671 if (pci_get_drvdata(pdev
) == NULL
) {
8672 dev_err(&pdev
->dev
, "unable to remove device\n");
8675 h
= pci_get_drvdata(pdev
);
8677 /* Get rid of any controller monitoring work items */
8678 spin_lock_irqsave(&h
->lock
, flags
);
8679 h
->remove_in_progress
= 1;
8680 spin_unlock_irqrestore(&h
->lock
, flags
);
8681 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8682 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8683 cancel_delayed_work_sync(&h
->event_monitor_work
);
8684 destroy_workqueue(h
->rescan_ctlr_wq
);
8685 destroy_workqueue(h
->resubmit_wq
);
8688 * Call before disabling interrupts.
8689 * scsi_remove_host can trigger I/O operations especially
8690 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8691 * operations which cannot complete and will hang the system.
8694 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8695 /* includes hpsa_free_irqs - init_one 4 */
8696 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8697 hpsa_shutdown(pdev
);
8699 hpsa_free_device_info(h
); /* scan */
8701 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8702 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8703 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8704 hpsa_free_performant_mode(h
); /* init_one 7 */
8705 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8706 hpsa_free_cmd_pool(h
); /* init_one 5 */
8707 kfree(h
->lastlogicals
);
8709 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8711 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8712 h
->scsi_host
= NULL
; /* init_one 3 */
8714 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8715 hpsa_free_pci_init(h
); /* init_one 2.5 */
8717 free_percpu(h
->lockup_detected
); /* init_one 2 */
8718 h
->lockup_detected
= NULL
; /* init_one 2 */
8719 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8721 hpsa_delete_sas_host(h
);
8723 kfree(h
); /* init_one 1 */
8726 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8727 __attribute__((unused
)) pm_message_t state
)
8732 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8737 static struct pci_driver hpsa_pci_driver
= {
8739 .probe
= hpsa_init_one
,
8740 .remove
= hpsa_remove_one
,
8741 .id_table
= hpsa_pci_device_id
, /* id_table */
8742 .shutdown
= hpsa_shutdown
,
8743 .suspend
= hpsa_suspend
,
8744 .resume
= hpsa_resume
,
8747 /* Fill in bucket_map[], given nsgs (the max number of
8748 * scatter gather elements supported) and bucket[],
8749 * which is an array of 8 integers. The bucket[] array
8750 * contains 8 different DMA transfer sizes (in 16
8751 * byte increments) which the controller uses to fetch
8752 * commands. This function fills in bucket_map[], which
8753 * maps a given number of scatter gather elements to one of
8754 * the 8 DMA transfer sizes. The point of it is to allow the
8755 * controller to only do as much DMA as needed to fetch the
8756 * command, with the DMA transfer size encoded in the lower
8757 * bits of the command address.
8759 static void calc_bucket_map(int bucket
[], int num_buckets
,
8760 int nsgs
, int min_blocks
, u32
*bucket_map
)
8764 /* Note, bucket_map must have nsgs+1 entries. */
8765 for (i
= 0; i
<= nsgs
; i
++) {
8766 /* Compute size of a command with i SG entries */
8767 size
= i
+ min_blocks
;
8768 b
= num_buckets
; /* Assume the biggest bucket */
8769 /* Find the bucket that is just big enough */
8770 for (j
= 0; j
< num_buckets
; j
++) {
8771 if (bucket
[j
] >= size
) {
8776 /* for a command with i SG entries, use bucket b. */
8782 * return -ENODEV on err, 0 on success (or no action)
8783 * allocates numerous items that must be freed later
8785 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8788 unsigned long register_value
;
8789 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8790 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8791 CFGTBL_Trans_enable_directed_msix
|
8792 (trans_support
& (CFGTBL_Trans_io_accel1
|
8793 CFGTBL_Trans_io_accel2
));
8794 struct access_method access
= SA5_performant_access
;
8796 /* This is a bit complicated. There are 8 registers on
8797 * the controller which we write to to tell it 8 different
8798 * sizes of commands which there may be. It's a way of
8799 * reducing the DMA done to fetch each command. Encoded into
8800 * each command's tag are 3 bits which communicate to the controller
8801 * which of the eight sizes that command fits within. The size of
8802 * each command depends on how many scatter gather entries there are.
8803 * Each SG entry requires 16 bytes. The eight registers are programmed
8804 * with the number of 16-byte blocks a command of that size requires.
8805 * The smallest command possible requires 5 such 16 byte blocks.
8806 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8807 * blocks. Note, this only extends to the SG entries contained
8808 * within the command block, and does not extend to chained blocks
8809 * of SG elements. bft[] contains the eight values we write to
8810 * the registers. They are not evenly distributed, but have more
8811 * sizes for small commands, and fewer sizes for larger commands.
8813 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8814 #define MIN_IOACCEL2_BFT_ENTRY 5
8815 #define HPSA_IOACCEL2_HEADER_SZ 4
8816 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8817 13, 14, 15, 16, 17, 18, 19,
8818 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8819 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8820 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8821 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8822 16 * MIN_IOACCEL2_BFT_ENTRY
);
8823 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8824 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8825 /* 5 = 1 s/g entry or 4k
8826 * 6 = 2 s/g entry or 8k
8827 * 8 = 4 s/g entry or 16k
8828 * 10 = 6 s/g entry or 24k
8831 /* If the controller supports either ioaccel method then
8832 * we can also use the RAID stack submit path that does not
8833 * perform the superfluous readl() after each command submission.
8835 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8836 access
= SA5_performant_access_no_read
;
8838 /* Controller spec: zero out this buffer. */
8839 for (i
= 0; i
< h
->nreply_queues
; i
++)
8840 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8842 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8843 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8844 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8845 for (i
= 0; i
< 8; i
++)
8846 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8848 /* size of controller ring buffer */
8849 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8850 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8851 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8852 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8854 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8855 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8856 writel(h
->reply_queue
[i
].busaddr
,
8857 &h
->transtable
->RepQAddr
[i
].lower
);
8860 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8861 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8863 * enable outbound interrupt coalescing in accelerator mode;
8865 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8866 access
= SA5_ioaccel_mode1_access
;
8867 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8868 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8870 if (trans_support
& CFGTBL_Trans_io_accel2
)
8871 access
= SA5_ioaccel_mode2_access
;
8872 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8873 if (hpsa_wait_for_mode_change_ack(h
)) {
8874 dev_err(&h
->pdev
->dev
,
8875 "performant mode problem - doorbell timeout\n");
8878 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8879 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8880 dev_err(&h
->pdev
->dev
,
8881 "performant mode problem - transport not active\n");
8884 /* Change the access methods to the performant access methods */
8886 h
->transMethod
= transMethod
;
8888 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8889 (trans_support
& CFGTBL_Trans_io_accel2
)))
8892 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8893 /* Set up I/O accelerator mode */
8894 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8895 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8896 h
->reply_queue
[i
].current_entry
=
8897 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8899 bft
[7] = h
->ioaccel_maxsg
+ 8;
8900 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8901 h
->ioaccel1_blockFetchTable
);
8903 /* initialize all reply queue entries to unused */
8904 for (i
= 0; i
< h
->nreply_queues
; i
++)
8905 memset(h
->reply_queue
[i
].head
,
8906 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8907 h
->reply_queue_size
);
8909 /* set all the constant fields in the accelerator command
8910 * frames once at init time to save CPU cycles later.
8912 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8913 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8915 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8916 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8917 (i
* sizeof(struct ErrorInfo
)));
8918 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8919 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8920 cp
->host_context_flags
=
8921 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8922 cp
->timeout_sec
= 0;
8925 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8927 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8928 (i
* sizeof(struct io_accel1_cmd
)));
8930 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8931 u64 cfg_offset
, cfg_base_addr_index
;
8932 u32 bft2_offset
, cfg_base_addr
;
8935 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8936 &cfg_base_addr_index
, &cfg_offset
);
8937 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8938 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8939 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8940 4, h
->ioaccel2_blockFetchTable
);
8941 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8942 BUILD_BUG_ON(offsetof(struct CfgTable
,
8943 io_accel_request_size_offset
) != 0xb8);
8944 h
->ioaccel2_bft2_regs
=
8945 remap_pci_mem(pci_resource_start(h
->pdev
,
8946 cfg_base_addr_index
) +
8947 cfg_offset
+ bft2_offset
,
8949 sizeof(*h
->ioaccel2_bft2_regs
));
8950 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8951 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
8953 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8954 if (hpsa_wait_for_mode_change_ack(h
)) {
8955 dev_err(&h
->pdev
->dev
,
8956 "performant mode problem - enabling ioaccel mode\n");
8962 /* Free ioaccel1 mode command blocks and block fetch table */
8963 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8965 if (h
->ioaccel_cmd_pool
) {
8966 pci_free_consistent(h
->pdev
,
8967 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8968 h
->ioaccel_cmd_pool
,
8969 h
->ioaccel_cmd_pool_dhandle
);
8970 h
->ioaccel_cmd_pool
= NULL
;
8971 h
->ioaccel_cmd_pool_dhandle
= 0;
8973 kfree(h
->ioaccel1_blockFetchTable
);
8974 h
->ioaccel1_blockFetchTable
= NULL
;
8977 /* Allocate ioaccel1 mode command blocks and block fetch table */
8978 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8981 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8982 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
8983 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
8985 /* Command structures must be aligned on a 128-byte boundary
8986 * because the 7 lower bits of the address are used by the
8989 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
8990 IOACCEL1_COMMANDLIST_ALIGNMENT
);
8991 h
->ioaccel_cmd_pool
=
8992 pci_alloc_consistent(h
->pdev
,
8993 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8994 &(h
->ioaccel_cmd_pool_dhandle
));
8996 h
->ioaccel1_blockFetchTable
=
8997 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8998 sizeof(u32
)), GFP_KERNEL
);
9000 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9001 (h
->ioaccel1_blockFetchTable
== NULL
))
9004 memset(h
->ioaccel_cmd_pool
, 0,
9005 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9009 hpsa_free_ioaccel1_cmd_and_bft(h
);
9013 /* Free ioaccel2 mode command blocks and block fetch table */
9014 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9016 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9018 if (h
->ioaccel2_cmd_pool
) {
9019 pci_free_consistent(h
->pdev
,
9020 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9021 h
->ioaccel2_cmd_pool
,
9022 h
->ioaccel2_cmd_pool_dhandle
);
9023 h
->ioaccel2_cmd_pool
= NULL
;
9024 h
->ioaccel2_cmd_pool_dhandle
= 0;
9026 kfree(h
->ioaccel2_blockFetchTable
);
9027 h
->ioaccel2_blockFetchTable
= NULL
;
9030 /* Allocate ioaccel2 mode command blocks and block fetch table */
9031 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9035 /* Allocate ioaccel2 mode command blocks and block fetch table */
9038 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9039 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9040 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9042 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9043 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9044 h
->ioaccel2_cmd_pool
=
9045 pci_alloc_consistent(h
->pdev
,
9046 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9047 &(h
->ioaccel2_cmd_pool_dhandle
));
9049 h
->ioaccel2_blockFetchTable
=
9050 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9051 sizeof(u32
)), GFP_KERNEL
);
9053 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9054 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9059 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9063 memset(h
->ioaccel2_cmd_pool
, 0,
9064 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9068 hpsa_free_ioaccel2_cmd_and_bft(h
);
9072 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9073 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9075 kfree(h
->blockFetchTable
);
9076 h
->blockFetchTable
= NULL
;
9077 hpsa_free_reply_queues(h
);
9078 hpsa_free_ioaccel1_cmd_and_bft(h
);
9079 hpsa_free_ioaccel2_cmd_and_bft(h
);
9082 /* return -ENODEV on error, 0 on success (or no action)
9083 * allocates numerous items that must be freed later
9085 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9088 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9089 CFGTBL_Trans_use_short_tags
;
9092 if (hpsa_simple_mode
)
9095 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9096 if (!(trans_support
& PERFORMANT_MODE
))
9099 /* Check for I/O accelerator mode support */
9100 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9101 transMethod
|= CFGTBL_Trans_io_accel1
|
9102 CFGTBL_Trans_enable_directed_msix
;
9103 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9106 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9107 transMethod
|= CFGTBL_Trans_io_accel2
|
9108 CFGTBL_Trans_enable_directed_msix
;
9109 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9114 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9115 hpsa_get_max_perf_mode_cmds(h
);
9116 /* Performant mode ring buffer and supporting data structures */
9117 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9119 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9120 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9121 h
->reply_queue_size
,
9122 &(h
->reply_queue
[i
].busaddr
));
9123 if (!h
->reply_queue
[i
].head
) {
9125 goto clean1
; /* rq, ioaccel */
9127 h
->reply_queue
[i
].size
= h
->max_commands
;
9128 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9129 h
->reply_queue
[i
].current_entry
= 0;
9132 /* Need a block fetch table for performant mode */
9133 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9134 sizeof(u32
)), GFP_KERNEL
);
9135 if (!h
->blockFetchTable
) {
9137 goto clean1
; /* rq, ioaccel */
9140 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9142 goto clean2
; /* bft, rq, ioaccel */
9145 clean2
: /* bft, rq, ioaccel */
9146 kfree(h
->blockFetchTable
);
9147 h
->blockFetchTable
= NULL
;
9148 clean1
: /* rq, ioaccel */
9149 hpsa_free_reply_queues(h
);
9150 hpsa_free_ioaccel1_cmd_and_bft(h
);
9151 hpsa_free_ioaccel2_cmd_and_bft(h
);
9155 static int is_accelerated_cmd(struct CommandList
*c
)
9157 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9160 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9162 struct CommandList
*c
= NULL
;
9163 int i
, accel_cmds_out
;
9166 do { /* wait for all outstanding ioaccel commands to drain out */
9168 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9169 c
= h
->cmd_pool
+ i
;
9170 refcount
= atomic_inc_return(&c
->refcount
);
9171 if (refcount
> 1) /* Command is allocated */
9172 accel_cmds_out
+= is_accelerated_cmd(c
);
9175 if (accel_cmds_out
<= 0)
9181 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9182 struct hpsa_sas_port
*hpsa_sas_port
)
9184 struct hpsa_sas_phy
*hpsa_sas_phy
;
9185 struct sas_phy
*phy
;
9187 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9191 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9192 hpsa_sas_port
->next_phy_index
);
9194 kfree(hpsa_sas_phy
);
9198 hpsa_sas_port
->next_phy_index
++;
9199 hpsa_sas_phy
->phy
= phy
;
9200 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9202 return hpsa_sas_phy
;
9205 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9207 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9209 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9211 if (hpsa_sas_phy
->added_to_port
)
9212 list_del(&hpsa_sas_phy
->phy_list_entry
);
9213 kfree(hpsa_sas_phy
);
9216 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9219 struct hpsa_sas_port
*hpsa_sas_port
;
9220 struct sas_phy
*phy
;
9221 struct sas_identify
*identify
;
9223 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9224 phy
= hpsa_sas_phy
->phy
;
9226 identify
= &phy
->identify
;
9227 memset(identify
, 0, sizeof(*identify
));
9228 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9229 identify
->device_type
= SAS_END_DEVICE
;
9230 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9231 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9232 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9233 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9234 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9235 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9236 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9238 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9242 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9243 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9244 &hpsa_sas_port
->phy_list_head
);
9245 hpsa_sas_phy
->added_to_port
= true;
9251 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9252 struct sas_rphy
*rphy
)
9254 struct sas_identify
*identify
;
9256 identify
= &rphy
->identify
;
9257 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9258 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9259 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9261 return sas_rphy_add(rphy
);
9264 static struct hpsa_sas_port
9265 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9269 struct hpsa_sas_port
*hpsa_sas_port
;
9270 struct sas_port
*port
;
9272 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9276 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9277 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9279 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9281 goto free_hpsa_port
;
9283 rc
= sas_port_add(port
);
9287 hpsa_sas_port
->port
= port
;
9288 hpsa_sas_port
->sas_address
= sas_address
;
9289 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9290 &hpsa_sas_node
->port_list_head
);
9292 return hpsa_sas_port
;
9295 sas_port_free(port
);
9297 kfree(hpsa_sas_port
);
9302 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9304 struct hpsa_sas_phy
*hpsa_sas_phy
;
9305 struct hpsa_sas_phy
*next
;
9307 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9308 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9309 hpsa_free_sas_phy(hpsa_sas_phy
);
9311 sas_port_delete(hpsa_sas_port
->port
);
9312 list_del(&hpsa_sas_port
->port_list_entry
);
9313 kfree(hpsa_sas_port
);
9316 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9318 struct hpsa_sas_node
*hpsa_sas_node
;
9320 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9321 if (hpsa_sas_node
) {
9322 hpsa_sas_node
->parent_dev
= parent_dev
;
9323 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9326 return hpsa_sas_node
;
9329 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9331 struct hpsa_sas_port
*hpsa_sas_port
;
9332 struct hpsa_sas_port
*next
;
9337 list_for_each_entry_safe(hpsa_sas_port
, next
,
9338 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9339 hpsa_free_sas_port(hpsa_sas_port
);
9341 kfree(hpsa_sas_node
);
9344 static struct hpsa_scsi_dev_t
9345 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9346 struct sas_rphy
*rphy
)
9349 struct hpsa_scsi_dev_t
*device
;
9351 for (i
= 0; i
< h
->ndevices
; i
++) {
9353 if (!device
->sas_port
)
9355 if (device
->sas_port
->rphy
== rphy
)
9362 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9365 struct device
*parent_dev
;
9366 struct hpsa_sas_node
*hpsa_sas_node
;
9367 struct hpsa_sas_port
*hpsa_sas_port
;
9368 struct hpsa_sas_phy
*hpsa_sas_phy
;
9370 parent_dev
= &h
->scsi_host
->shost_gendev
;
9372 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9376 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9377 if (!hpsa_sas_port
) {
9382 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9383 if (!hpsa_sas_phy
) {
9388 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9392 h
->sas_host
= hpsa_sas_node
;
9397 hpsa_free_sas_phy(hpsa_sas_phy
);
9399 hpsa_free_sas_port(hpsa_sas_port
);
9401 hpsa_free_sas_node(hpsa_sas_node
);
9406 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9408 hpsa_free_sas_node(h
->sas_host
);
9411 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9412 struct hpsa_scsi_dev_t
*device
)
9415 struct hpsa_sas_port
*hpsa_sas_port
;
9416 struct sas_rphy
*rphy
;
9418 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9422 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9428 hpsa_sas_port
->rphy
= rphy
;
9429 device
->sas_port
= hpsa_sas_port
;
9431 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9438 hpsa_free_sas_port(hpsa_sas_port
);
9439 device
->sas_port
= NULL
;
9444 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9446 if (device
->sas_port
) {
9447 hpsa_free_sas_port(device
->sas_port
);
9448 device
->sas_port
= NULL
;
9453 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9459 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9466 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9472 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9478 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9484 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9490 hpsa_sas_phy_release(struct sas_phy
*phy
)
9495 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9500 static struct sas_function_template hpsa_sas_transport_functions
= {
9501 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9502 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9503 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9504 .phy_reset
= hpsa_sas_phy_reset
,
9505 .phy_enable
= hpsa_sas_phy_enable
,
9506 .phy_setup
= hpsa_sas_phy_setup
,
9507 .phy_release
= hpsa_sas_phy_release
,
9508 .set_phy_speed
= hpsa_sas_phy_speed
,
9512 * This is it. Register the PCI driver information for the cards we control
9513 * the OS will call our registered routines when it finds one of our cards.
9515 static int __init
hpsa_init(void)
9519 hpsa_sas_transport_template
=
9520 sas_attach_transport(&hpsa_sas_transport_functions
);
9521 if (!hpsa_sas_transport_template
)
9524 rc
= pci_register_driver(&hpsa_pci_driver
);
9527 sas_release_transport(hpsa_sas_transport_template
);
9532 static void __exit
hpsa_cleanup(void)
9534 pci_unregister_driver(&hpsa_pci_driver
);
9535 sas_release_transport(hpsa_sas_transport_template
);
9538 static void __attribute__((unused
)) verify_offsets(void)
9540 #define VERIFY_OFFSET(member, offset) \
9541 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9543 VERIFY_OFFSET(structure_size
, 0);
9544 VERIFY_OFFSET(volume_blk_size
, 4);
9545 VERIFY_OFFSET(volume_blk_cnt
, 8);
9546 VERIFY_OFFSET(phys_blk_shift
, 16);
9547 VERIFY_OFFSET(parity_rotation_shift
, 17);
9548 VERIFY_OFFSET(strip_size
, 18);
9549 VERIFY_OFFSET(disk_starting_blk
, 20);
9550 VERIFY_OFFSET(disk_blk_cnt
, 28);
9551 VERIFY_OFFSET(data_disks_per_row
, 36);
9552 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9553 VERIFY_OFFSET(row_cnt
, 40);
9554 VERIFY_OFFSET(layout_map_count
, 42);
9555 VERIFY_OFFSET(flags
, 44);
9556 VERIFY_OFFSET(dekindex
, 46);
9557 /* VERIFY_OFFSET(reserved, 48 */
9558 VERIFY_OFFSET(data
, 64);
9560 #undef VERIFY_OFFSET
9562 #define VERIFY_OFFSET(member, offset) \
9563 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9565 VERIFY_OFFSET(IU_type
, 0);
9566 VERIFY_OFFSET(direction
, 1);
9567 VERIFY_OFFSET(reply_queue
, 2);
9568 /* VERIFY_OFFSET(reserved1, 3); */
9569 VERIFY_OFFSET(scsi_nexus
, 4);
9570 VERIFY_OFFSET(Tag
, 8);
9571 VERIFY_OFFSET(cdb
, 16);
9572 VERIFY_OFFSET(cciss_lun
, 32);
9573 VERIFY_OFFSET(data_len
, 40);
9574 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9575 VERIFY_OFFSET(sg_count
, 45);
9576 /* VERIFY_OFFSET(reserved3 */
9577 VERIFY_OFFSET(err_ptr
, 48);
9578 VERIFY_OFFSET(err_len
, 56);
9579 /* VERIFY_OFFSET(reserved4 */
9580 VERIFY_OFFSET(sg
, 64);
9582 #undef VERIFY_OFFSET
9584 #define VERIFY_OFFSET(member, offset) \
9585 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9587 VERIFY_OFFSET(dev_handle
, 0x00);
9588 VERIFY_OFFSET(reserved1
, 0x02);
9589 VERIFY_OFFSET(function
, 0x03);
9590 VERIFY_OFFSET(reserved2
, 0x04);
9591 VERIFY_OFFSET(err_info
, 0x0C);
9592 VERIFY_OFFSET(reserved3
, 0x10);
9593 VERIFY_OFFSET(err_info_len
, 0x12);
9594 VERIFY_OFFSET(reserved4
, 0x13);
9595 VERIFY_OFFSET(sgl_offset
, 0x14);
9596 VERIFY_OFFSET(reserved5
, 0x15);
9597 VERIFY_OFFSET(transfer_len
, 0x1C);
9598 VERIFY_OFFSET(reserved6
, 0x20);
9599 VERIFY_OFFSET(io_flags
, 0x24);
9600 VERIFY_OFFSET(reserved7
, 0x26);
9601 VERIFY_OFFSET(LUN
, 0x34);
9602 VERIFY_OFFSET(control
, 0x3C);
9603 VERIFY_OFFSET(CDB
, 0x40);
9604 VERIFY_OFFSET(reserved8
, 0x50);
9605 VERIFY_OFFSET(host_context_flags
, 0x60);
9606 VERIFY_OFFSET(timeout_sec
, 0x62);
9607 VERIFY_OFFSET(ReplyQueue
, 0x64);
9608 VERIFY_OFFSET(reserved9
, 0x65);
9609 VERIFY_OFFSET(tag
, 0x68);
9610 VERIFY_OFFSET(host_addr
, 0x70);
9611 VERIFY_OFFSET(CISS_LUN
, 0x78);
9612 VERIFY_OFFSET(SG
, 0x78 + 8);
9613 #undef VERIFY_OFFSET
9616 module_init(hpsa_init
);
9617 module_exit(hpsa_cleanup
);