1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
77 /* flags stating the success for a syscall */
78 #define AUDITSC_INVALID 0
79 #define AUDITSC_SUCCESS 1
80 #define AUDITSC_FAILURE 2
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* max length to print of cmdline/proctitle value during audit */
86 #define MAX_PROCTITLE_AUDIT_LEN 128
88 /* number of audit rules */
91 /* determines whether we collect data for signals sent */
94 struct audit_aux_data
{
95 struct audit_aux_data
*next
;
99 #define AUDIT_AUX_IPCPERM 0
101 /* Number of target pids per aux struct. */
102 #define AUDIT_AUX_PIDS 16
104 struct audit_aux_data_pids
{
105 struct audit_aux_data d
;
106 pid_t target_pid
[AUDIT_AUX_PIDS
];
107 kuid_t target_auid
[AUDIT_AUX_PIDS
];
108 kuid_t target_uid
[AUDIT_AUX_PIDS
];
109 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
110 u32 target_sid
[AUDIT_AUX_PIDS
];
111 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
115 struct audit_aux_data_bprm_fcaps
{
116 struct audit_aux_data d
;
117 struct audit_cap_data fcap
;
118 unsigned int fcap_ver
;
119 struct audit_cap_data old_pcap
;
120 struct audit_cap_data new_pcap
;
123 struct audit_tree_refs
{
124 struct audit_tree_refs
*next
;
125 struct audit_chunk
*c
[31];
128 static inline int open_arg(int flags
, int mask
)
130 int n
= ACC_MODE(flags
);
131 if (flags
& (O_TRUNC
| O_CREAT
))
132 n
|= AUDIT_PERM_WRITE
;
136 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
143 switch (audit_classify_syscall(ctx
->arch
, n
)) {
145 if ((mask
& AUDIT_PERM_WRITE
) &&
146 audit_match_class(AUDIT_CLASS_WRITE
, n
))
148 if ((mask
& AUDIT_PERM_READ
) &&
149 audit_match_class(AUDIT_CLASS_READ
, n
))
151 if ((mask
& AUDIT_PERM_ATTR
) &&
152 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
155 case 1: /* 32bit on biarch */
156 if ((mask
& AUDIT_PERM_WRITE
) &&
157 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
159 if ((mask
& AUDIT_PERM_READ
) &&
160 audit_match_class(AUDIT_CLASS_READ_32
, n
))
162 if ((mask
& AUDIT_PERM_ATTR
) &&
163 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
167 return mask
& ACC_MODE(ctx
->argv
[1]);
169 return mask
& ACC_MODE(ctx
->argv
[2]);
170 case 4: /* socketcall */
171 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
173 return mask
& AUDIT_PERM_EXEC
;
179 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
181 struct audit_names
*n
;
182 umode_t mode
= (umode_t
)val
;
187 list_for_each_entry(n
, &ctx
->names_list
, list
) {
188 if ((n
->ino
!= -1) &&
189 ((n
->mode
& S_IFMT
) == mode
))
197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
198 * ->first_trees points to its beginning, ->trees - to the current end of data.
199 * ->tree_count is the number of free entries in array pointed to by ->trees.
200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
202 * it's going to remain 1-element for almost any setup) until we free context itself.
203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
206 #ifdef CONFIG_AUDIT_TREE
207 static void audit_set_auditable(struct audit_context
*ctx
)
211 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
215 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
217 struct audit_tree_refs
*p
= ctx
->trees
;
218 int left
= ctx
->tree_count
;
220 p
->c
[--left
] = chunk
;
221 ctx
->tree_count
= left
;
230 ctx
->tree_count
= 30;
236 static int grow_tree_refs(struct audit_context
*ctx
)
238 struct audit_tree_refs
*p
= ctx
->trees
;
239 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
245 p
->next
= ctx
->trees
;
247 ctx
->first_trees
= ctx
->trees
;
248 ctx
->tree_count
= 31;
253 static void unroll_tree_refs(struct audit_context
*ctx
,
254 struct audit_tree_refs
*p
, int count
)
256 #ifdef CONFIG_AUDIT_TREE
257 struct audit_tree_refs
*q
;
260 /* we started with empty chain */
261 p
= ctx
->first_trees
;
263 /* if the very first allocation has failed, nothing to do */
268 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
270 audit_put_chunk(q
->c
[n
]);
274 while (n
-- > ctx
->tree_count
) {
275 audit_put_chunk(q
->c
[n
]);
279 ctx
->tree_count
= count
;
283 static void free_tree_refs(struct audit_context
*ctx
)
285 struct audit_tree_refs
*p
, *q
;
286 for (p
= ctx
->first_trees
; p
; p
= q
) {
292 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
294 #ifdef CONFIG_AUDIT_TREE
295 struct audit_tree_refs
*p
;
300 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
301 for (n
= 0; n
< 31; n
++)
302 if (audit_tree_match(p
->c
[n
], tree
))
307 for (n
= ctx
->tree_count
; n
< 31; n
++)
308 if (audit_tree_match(p
->c
[n
], tree
))
315 static int audit_compare_uid(kuid_t uid
,
316 struct audit_names
*name
,
317 struct audit_field
*f
,
318 struct audit_context
*ctx
)
320 struct audit_names
*n
;
324 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
330 list_for_each_entry(n
, &ctx
->names_list
, list
) {
331 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
339 static int audit_compare_gid(kgid_t gid
,
340 struct audit_names
*name
,
341 struct audit_field
*f
,
342 struct audit_context
*ctx
)
344 struct audit_names
*n
;
348 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
354 list_for_each_entry(n
, &ctx
->names_list
, list
) {
355 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
363 static int audit_field_compare(struct task_struct
*tsk
,
364 const struct cred
*cred
,
365 struct audit_field
*f
,
366 struct audit_context
*ctx
,
367 struct audit_names
*name
)
370 /* process to file object comparisons */
371 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
372 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
373 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
374 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
376 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
378 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
380 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
382 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
383 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
384 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
386 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
388 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
389 /* uid comparisons */
390 case AUDIT_COMPARE_UID_TO_AUID
:
391 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
392 case AUDIT_COMPARE_UID_TO_EUID
:
393 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
394 case AUDIT_COMPARE_UID_TO_SUID
:
395 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
396 case AUDIT_COMPARE_UID_TO_FSUID
:
397 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
398 /* auid comparisons */
399 case AUDIT_COMPARE_AUID_TO_EUID
:
400 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
401 case AUDIT_COMPARE_AUID_TO_SUID
:
402 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_AUID_TO_FSUID
:
404 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
405 /* euid comparisons */
406 case AUDIT_COMPARE_EUID_TO_SUID
:
407 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
408 case AUDIT_COMPARE_EUID_TO_FSUID
:
409 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
410 /* suid comparisons */
411 case AUDIT_COMPARE_SUID_TO_FSUID
:
412 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
413 /* gid comparisons */
414 case AUDIT_COMPARE_GID_TO_EGID
:
415 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
416 case AUDIT_COMPARE_GID_TO_SGID
:
417 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
418 case AUDIT_COMPARE_GID_TO_FSGID
:
419 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
420 /* egid comparisons */
421 case AUDIT_COMPARE_EGID_TO_SGID
:
422 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
423 case AUDIT_COMPARE_EGID_TO_FSGID
:
424 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
425 /* sgid comparison */
426 case AUDIT_COMPARE_SGID_TO_FSGID
:
427 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
435 /* Determine if any context name data matches a rule's watch data */
436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
439 * If task_creation is true, this is an explicit indication that we are
440 * filtering a task rule at task creation time. This and tsk == current are
441 * the only situations where tsk->cred may be accessed without an rcu read lock.
443 static int audit_filter_rules(struct task_struct
*tsk
,
444 struct audit_krule
*rule
,
445 struct audit_context
*ctx
,
446 struct audit_names
*name
,
447 enum audit_state
*state
,
450 const struct cred
*cred
;
454 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
456 for (i
= 0; i
< rule
->field_count
; i
++) {
457 struct audit_field
*f
= &rule
->fields
[i
];
458 struct audit_names
*n
;
464 pid
= task_pid_nr(tsk
);
465 result
= audit_comparator(pid
, f
->op
, f
->val
);
470 ctx
->ppid
= task_ppid_nr(tsk
);
471 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
475 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
478 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
481 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
484 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
487 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
488 if (f
->op
== Audit_equal
) {
490 result
= in_group_p(f
->gid
);
491 } else if (f
->op
== Audit_not_equal
) {
493 result
= !in_group_p(f
->gid
);
497 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
498 if (f
->op
== Audit_equal
) {
500 result
= in_egroup_p(f
->gid
);
501 } else if (f
->op
== Audit_not_equal
) {
503 result
= !in_egroup_p(f
->gid
);
507 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
510 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
513 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
517 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
521 if (ctx
&& ctx
->return_valid
)
522 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
525 if (ctx
&& ctx
->return_valid
) {
527 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
529 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
534 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
535 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
538 list_for_each_entry(n
, &ctx
->names_list
, list
) {
539 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
549 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
550 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
553 list_for_each_entry(n
, &ctx
->names_list
, list
) {
554 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
564 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
566 list_for_each_entry(n
, &ctx
->names_list
, list
) {
567 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
576 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
578 list_for_each_entry(n
, &ctx
->names_list
, list
) {
579 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
588 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
590 list_for_each_entry(n
, &ctx
->names_list
, list
) {
591 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
600 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
604 result
= match_tree_refs(ctx
, rule
->tree
);
609 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
611 case AUDIT_LOGINUID_SET
:
612 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
614 case AUDIT_SUBJ_USER
:
615 case AUDIT_SUBJ_ROLE
:
616 case AUDIT_SUBJ_TYPE
:
619 /* NOTE: this may return negative values indicating
620 a temporary error. We simply treat this as a
621 match for now to avoid losing information that
622 may be wanted. An error message will also be
626 security_task_getsecid(tsk
, &sid
);
629 result
= security_audit_rule_match(sid
, f
->type
,
638 case AUDIT_OBJ_LEV_LOW
:
639 case AUDIT_OBJ_LEV_HIGH
:
640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 /* Find files that match */
645 result
= security_audit_rule_match(
646 name
->osid
, f
->type
, f
->op
,
649 list_for_each_entry(n
, &ctx
->names_list
, list
) {
650 if (security_audit_rule_match(n
->osid
, f
->type
,
658 /* Find ipc objects that match */
659 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
661 if (security_audit_rule_match(ctx
->ipc
.osid
,
672 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
674 case AUDIT_FILTERKEY
:
675 /* ignore this field for filtering */
679 result
= audit_match_perm(ctx
, f
->val
);
682 result
= audit_match_filetype(ctx
, f
->val
);
684 case AUDIT_FIELD_COMPARE
:
685 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
693 if (rule
->prio
<= ctx
->prio
)
695 if (rule
->filterkey
) {
696 kfree(ctx
->filterkey
);
697 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
699 ctx
->prio
= rule
->prio
;
701 switch (rule
->action
) {
702 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
703 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
708 /* At process creation time, we can determine if system-call auditing is
709 * completely disabled for this task. Since we only have the task
710 * structure at this point, we can only check uid and gid.
712 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
714 struct audit_entry
*e
;
715 enum audit_state state
;
718 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
719 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
721 if (state
== AUDIT_RECORD_CONTEXT
)
722 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
728 return AUDIT_BUILD_CONTEXT
;
731 /* At syscall entry and exit time, this filter is called if the
732 * audit_state is not low enough that auditing cannot take place, but is
733 * also not high enough that we already know we have to write an audit
734 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
736 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
737 struct audit_context
*ctx
,
738 struct list_head
*list
)
740 struct audit_entry
*e
;
741 enum audit_state state
;
743 if (audit_pid
&& tsk
->tgid
== audit_pid
)
744 return AUDIT_DISABLED
;
747 if (!list_empty(list
)) {
748 int word
= AUDIT_WORD(ctx
->major
);
749 int bit
= AUDIT_BIT(ctx
->major
);
751 list_for_each_entry_rcu(e
, list
, list
) {
752 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
753 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
756 ctx
->current_state
= state
;
762 return AUDIT_BUILD_CONTEXT
;
766 * Given an audit_name check the inode hash table to see if they match.
767 * Called holding the rcu read lock to protect the use of audit_inode_hash
769 static int audit_filter_inode_name(struct task_struct
*tsk
,
770 struct audit_names
*n
,
771 struct audit_context
*ctx
) {
773 int h
= audit_hash_ino((u32
)n
->ino
);
774 struct list_head
*list
= &audit_inode_hash
[h
];
775 struct audit_entry
*e
;
776 enum audit_state state
;
778 word
= AUDIT_WORD(ctx
->major
);
779 bit
= AUDIT_BIT(ctx
->major
);
781 if (list_empty(list
))
784 list_for_each_entry_rcu(e
, list
, list
) {
785 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
786 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
787 ctx
->current_state
= state
;
795 /* At syscall exit time, this filter is called if any audit_names have been
796 * collected during syscall processing. We only check rules in sublists at hash
797 * buckets applicable to the inode numbers in audit_names.
798 * Regarding audit_state, same rules apply as for audit_filter_syscall().
800 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
802 struct audit_names
*n
;
804 if (audit_pid
&& tsk
->tgid
== audit_pid
)
809 list_for_each_entry(n
, &ctx
->names_list
, list
) {
810 if (audit_filter_inode_name(tsk
, n
, ctx
))
816 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
817 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
821 struct audit_context
*context
= tsk
->audit_context
;
825 context
->return_valid
= return_valid
;
828 * we need to fix up the return code in the audit logs if the actual
829 * return codes are later going to be fixed up by the arch specific
832 * This is actually a test for:
833 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
834 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
836 * but is faster than a bunch of ||
838 if (unlikely(return_code
<= -ERESTARTSYS
) &&
839 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
840 (return_code
!= -ENOIOCTLCMD
))
841 context
->return_code
= -EINTR
;
843 context
->return_code
= return_code
;
845 if (context
->in_syscall
&& !context
->dummy
) {
846 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
847 audit_filter_inodes(tsk
, context
);
850 tsk
->audit_context
= NULL
;
854 static inline void audit_proctitle_free(struct audit_context
*context
)
856 kfree(context
->proctitle
.value
);
857 context
->proctitle
.value
= NULL
;
858 context
->proctitle
.len
= 0;
861 static inline void audit_free_names(struct audit_context
*context
)
863 struct audit_names
*n
, *next
;
866 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
869 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
870 " name_count=%d put_count=%d ino_count=%d"
871 " [NOT freeing]\n", __FILE__
, __LINE__
,
872 context
->serial
, context
->major
, context
->in_syscall
,
873 context
->name_count
, context
->put_count
,
875 list_for_each_entry(n
, &context
->names_list
, list
) {
876 pr_err("names[%d] = %p = %s\n", i
++, n
->name
,
877 n
->name
->name
?: "(null)");
884 context
->put_count
= 0;
885 context
->ino_count
= 0;
888 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
890 if (n
->name
&& n
->name_put
)
891 final_putname(n
->name
);
895 context
->name_count
= 0;
896 path_put(&context
->pwd
);
897 context
->pwd
.dentry
= NULL
;
898 context
->pwd
.mnt
= NULL
;
901 static inline void audit_free_aux(struct audit_context
*context
)
903 struct audit_aux_data
*aux
;
905 while ((aux
= context
->aux
)) {
906 context
->aux
= aux
->next
;
909 while ((aux
= context
->aux_pids
)) {
910 context
->aux_pids
= aux
->next
;
915 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
917 struct audit_context
*context
;
919 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
922 context
->state
= state
;
923 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
924 INIT_LIST_HEAD(&context
->killed_trees
);
925 INIT_LIST_HEAD(&context
->names_list
);
930 * audit_alloc - allocate an audit context block for a task
933 * Filter on the task information and allocate a per-task audit context
934 * if necessary. Doing so turns on system call auditing for the
935 * specified task. This is called from copy_process, so no lock is
938 int audit_alloc(struct task_struct
*tsk
)
940 struct audit_context
*context
;
941 enum audit_state state
;
944 if (likely(!audit_ever_enabled
))
945 return 0; /* Return if not auditing. */
947 state
= audit_filter_task(tsk
, &key
);
948 if (state
== AUDIT_DISABLED
) {
949 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
953 if (!(context
= audit_alloc_context(state
))) {
955 audit_log_lost("out of memory in audit_alloc");
958 context
->filterkey
= key
;
960 tsk
->audit_context
= context
;
961 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
965 static inline void audit_free_context(struct audit_context
*context
)
967 audit_free_names(context
);
968 unroll_tree_refs(context
, NULL
, 0);
969 free_tree_refs(context
);
970 audit_free_aux(context
);
971 kfree(context
->filterkey
);
972 kfree(context
->sockaddr
);
973 audit_proctitle_free(context
);
977 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
978 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
981 struct audit_buffer
*ab
;
986 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
990 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
991 from_kuid(&init_user_ns
, auid
),
992 from_kuid(&init_user_ns
, uid
), sessionid
);
994 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
995 audit_log_format(ab
, " obj=(none)");
998 audit_log_format(ab
, " obj=%s", ctx
);
999 security_release_secctx(ctx
, len
);
1002 audit_log_format(ab
, " ocomm=");
1003 audit_log_untrustedstring(ab
, comm
);
1010 * to_send and len_sent accounting are very loose estimates. We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundary)
1014 * why snprintf? an int is up to 12 digits long. if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message. In one 7500 byte message we can log up to
1017 * about 1000 min size arguments. That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1020 static int audit_log_single_execve_arg(struct audit_context
*context
,
1021 struct audit_buffer
**ab
,
1024 const char __user
*p
,
1027 char arg_num_len_buf
[12];
1028 const char __user
*tmp_p
= p
;
1029 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1031 size_t len
, len_left
, to_send
;
1032 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1033 unsigned int i
, has_cntl
= 0, too_long
= 0;
1036 /* strnlen_user includes the null we don't want to send */
1037 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1040 * We just created this mm, if we can't find the strings
1041 * we just copied into it something is _very_ wrong. Similar
1042 * for strings that are too long, we should not have created
1045 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1047 send_sig(SIGKILL
, current
, 0);
1051 /* walk the whole argument looking for non-ascii chars */
1053 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1054 to_send
= MAX_EXECVE_AUDIT_LEN
;
1057 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1059 * There is no reason for this copy to be short. We just
1060 * copied them here, and the mm hasn't been exposed to user-
1065 send_sig(SIGKILL
, current
, 0);
1068 buf
[to_send
] = '\0';
1069 has_cntl
= audit_string_contains_control(buf
, to_send
);
1072 * hex messages get logged as 2 bytes, so we can only
1073 * send half as much in each message
1075 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1078 len_left
-= to_send
;
1080 } while (len_left
> 0);
1084 if (len
> max_execve_audit_len
)
1087 /* rewalk the argument actually logging the message */
1088 for (i
= 0; len_left
> 0; i
++) {
1091 if (len_left
> max_execve_audit_len
)
1092 to_send
= max_execve_audit_len
;
1096 /* do we have space left to send this argument in this ab? */
1097 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1099 room_left
-= (to_send
* 2);
1101 room_left
-= to_send
;
1102 if (room_left
< 0) {
1105 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1111 * first record needs to say how long the original string was
1112 * so we can be sure nothing was lost.
1114 if ((i
== 0) && (too_long
))
1115 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1116 has_cntl
? 2*len
: len
);
1119 * normally arguments are small enough to fit and we already
1120 * filled buf above when we checked for control characters
1121 * so don't bother with another copy_from_user
1123 if (len
>= max_execve_audit_len
)
1124 ret
= copy_from_user(buf
, p
, to_send
);
1129 send_sig(SIGKILL
, current
, 0);
1132 buf
[to_send
] = '\0';
1134 /* actually log it */
1135 audit_log_format(*ab
, " a%d", arg_num
);
1137 audit_log_format(*ab
, "[%d]", i
);
1138 audit_log_format(*ab
, "=");
1140 audit_log_n_hex(*ab
, buf
, to_send
);
1142 audit_log_string(*ab
, buf
);
1145 len_left
-= to_send
;
1146 *len_sent
+= arg_num_len
;
1148 *len_sent
+= to_send
* 2;
1150 *len_sent
+= to_send
;
1152 /* include the null we didn't log */
1156 static void audit_log_execve_info(struct audit_context
*context
,
1157 struct audit_buffer
**ab
)
1160 size_t len_sent
= 0;
1161 const char __user
*p
;
1164 p
= (const char __user
*)current
->mm
->arg_start
;
1166 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1169 * we need some kernel buffer to hold the userspace args. Just
1170 * allocate one big one rather than allocating one of the right size
1171 * for every single argument inside audit_log_single_execve_arg()
1172 * should be <8k allocation so should be pretty safe.
1174 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1176 audit_panic("out of memory for argv string");
1180 for (i
= 0; i
< context
->execve
.argc
; i
++) {
1181 len
= audit_log_single_execve_arg(context
, ab
, i
,
1190 static void show_special(struct audit_context
*context
, int *call_panic
)
1192 struct audit_buffer
*ab
;
1195 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1199 switch (context
->type
) {
1200 case AUDIT_SOCKETCALL
: {
1201 int nargs
= context
->socketcall
.nargs
;
1202 audit_log_format(ab
, "nargs=%d", nargs
);
1203 for (i
= 0; i
< nargs
; i
++)
1204 audit_log_format(ab
, " a%d=%lx", i
,
1205 context
->socketcall
.args
[i
]);
1208 u32 osid
= context
->ipc
.osid
;
1210 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1211 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1212 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1217 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1218 audit_log_format(ab
, " osid=%u", osid
);
1221 audit_log_format(ab
, " obj=%s", ctx
);
1222 security_release_secctx(ctx
, len
);
1225 if (context
->ipc
.has_perm
) {
1227 ab
= audit_log_start(context
, GFP_KERNEL
,
1228 AUDIT_IPC_SET_PERM
);
1231 audit_log_format(ab
,
1232 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1233 context
->ipc
.qbytes
,
1234 context
->ipc
.perm_uid
,
1235 context
->ipc
.perm_gid
,
1236 context
->ipc
.perm_mode
);
1239 case AUDIT_MQ_OPEN
: {
1240 audit_log_format(ab
,
1241 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1242 "mq_msgsize=%ld mq_curmsgs=%ld",
1243 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1244 context
->mq_open
.attr
.mq_flags
,
1245 context
->mq_open
.attr
.mq_maxmsg
,
1246 context
->mq_open
.attr
.mq_msgsize
,
1247 context
->mq_open
.attr
.mq_curmsgs
);
1249 case AUDIT_MQ_SENDRECV
: {
1250 audit_log_format(ab
,
1251 "mqdes=%d msg_len=%zd msg_prio=%u "
1252 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1253 context
->mq_sendrecv
.mqdes
,
1254 context
->mq_sendrecv
.msg_len
,
1255 context
->mq_sendrecv
.msg_prio
,
1256 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1257 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1259 case AUDIT_MQ_NOTIFY
: {
1260 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1261 context
->mq_notify
.mqdes
,
1262 context
->mq_notify
.sigev_signo
);
1264 case AUDIT_MQ_GETSETATTR
: {
1265 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1266 audit_log_format(ab
,
1267 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1269 context
->mq_getsetattr
.mqdes
,
1270 attr
->mq_flags
, attr
->mq_maxmsg
,
1271 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1273 case AUDIT_CAPSET
: {
1274 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1275 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1276 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1277 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1280 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1281 context
->mmap
.flags
);
1283 case AUDIT_EXECVE
: {
1284 audit_log_execve_info(context
, &ab
);
1290 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1292 char *end
= proctitle
+ len
- 1;
1293 while (end
> proctitle
&& !isprint(*end
))
1296 /* catch the case where proctitle is only 1 non-print character */
1297 len
= end
- proctitle
+ 1;
1298 len
-= isprint(proctitle
[len
-1]) == 0;
1302 static void audit_log_proctitle(struct task_struct
*tsk
,
1303 struct audit_context
*context
)
1307 char *msg
= "(null)";
1308 int len
= strlen(msg
);
1309 struct audit_buffer
*ab
;
1311 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1313 return; /* audit_panic or being filtered */
1315 audit_log_format(ab
, "proctitle=");
1318 if (!context
->proctitle
.value
) {
1319 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1322 /* Historically called this from procfs naming */
1323 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1328 res
= audit_proctitle_rtrim(buf
, res
);
1333 context
->proctitle
.value
= buf
;
1334 context
->proctitle
.len
= res
;
1336 msg
= context
->proctitle
.value
;
1337 len
= context
->proctitle
.len
;
1339 audit_log_n_untrustedstring(ab
, msg
, len
);
1343 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1345 int i
, call_panic
= 0;
1346 struct audit_buffer
*ab
;
1347 struct audit_aux_data
*aux
;
1348 struct audit_names
*n
;
1350 /* tsk == current */
1351 context
->personality
= tsk
->personality
;
1353 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1355 return; /* audit_panic has been called */
1356 audit_log_format(ab
, "arch=%x syscall=%d",
1357 context
->arch
, context
->major
);
1358 if (context
->personality
!= PER_LINUX
)
1359 audit_log_format(ab
, " per=%lx", context
->personality
);
1360 if (context
->return_valid
)
1361 audit_log_format(ab
, " success=%s exit=%ld",
1362 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1363 context
->return_code
);
1365 audit_log_format(ab
,
1366 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1371 context
->name_count
);
1373 audit_log_task_info(ab
, tsk
);
1374 audit_log_key(ab
, context
->filterkey
);
1377 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1379 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1381 continue; /* audit_panic has been called */
1383 switch (aux
->type
) {
1385 case AUDIT_BPRM_FCAPS
: {
1386 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1387 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1388 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1389 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1390 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1391 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1392 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1393 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1394 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1395 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1396 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1404 show_special(context
, &call_panic
);
1406 if (context
->fds
[0] >= 0) {
1407 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1409 audit_log_format(ab
, "fd0=%d fd1=%d",
1410 context
->fds
[0], context
->fds
[1]);
1415 if (context
->sockaddr_len
) {
1416 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1418 audit_log_format(ab
, "saddr=");
1419 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1420 context
->sockaddr_len
);
1425 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1426 struct audit_aux_data_pids
*axs
= (void *)aux
;
1428 for (i
= 0; i
< axs
->pid_count
; i
++)
1429 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1430 axs
->target_auid
[i
],
1432 axs
->target_sessionid
[i
],
1434 axs
->target_comm
[i
]))
1438 if (context
->target_pid
&&
1439 audit_log_pid_context(context
, context
->target_pid
,
1440 context
->target_auid
, context
->target_uid
,
1441 context
->target_sessionid
,
1442 context
->target_sid
, context
->target_comm
))
1445 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1446 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1448 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1454 list_for_each_entry(n
, &context
->names_list
, list
) {
1457 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1460 audit_log_proctitle(tsk
, context
);
1462 /* Send end of event record to help user space know we are finished */
1463 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1467 audit_panic("error converting sid to string");
1471 * audit_free - free a per-task audit context
1472 * @tsk: task whose audit context block to free
1474 * Called from copy_process and do_exit
1476 void __audit_free(struct task_struct
*tsk
)
1478 struct audit_context
*context
;
1480 context
= audit_take_context(tsk
, 0, 0);
1484 /* Check for system calls that do not go through the exit
1485 * function (e.g., exit_group), then free context block.
1486 * We use GFP_ATOMIC here because we might be doing this
1487 * in the context of the idle thread */
1488 /* that can happen only if we are called from do_exit() */
1489 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1490 audit_log_exit(context
, tsk
);
1491 if (!list_empty(&context
->killed_trees
))
1492 audit_kill_trees(&context
->killed_trees
);
1494 audit_free_context(context
);
1498 * audit_syscall_entry - fill in an audit record at syscall entry
1499 * @arch: architecture type
1500 * @major: major syscall type (function)
1501 * @a1: additional syscall register 1
1502 * @a2: additional syscall register 2
1503 * @a3: additional syscall register 3
1504 * @a4: additional syscall register 4
1506 * Fill in audit context at syscall entry. This only happens if the
1507 * audit context was created when the task was created and the state or
1508 * filters demand the audit context be built. If the state from the
1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510 * then the record will be written at syscall exit time (otherwise, it
1511 * will only be written if another part of the kernel requests that it
1514 void __audit_syscall_entry(int arch
, int major
,
1515 unsigned long a1
, unsigned long a2
,
1516 unsigned long a3
, unsigned long a4
)
1518 struct task_struct
*tsk
= current
;
1519 struct audit_context
*context
= tsk
->audit_context
;
1520 enum audit_state state
;
1525 BUG_ON(context
->in_syscall
|| context
->name_count
);
1530 context
->arch
= arch
;
1531 context
->major
= major
;
1532 context
->argv
[0] = a1
;
1533 context
->argv
[1] = a2
;
1534 context
->argv
[2] = a3
;
1535 context
->argv
[3] = a4
;
1537 state
= context
->state
;
1538 context
->dummy
= !audit_n_rules
;
1539 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1541 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1543 if (state
== AUDIT_DISABLED
)
1546 context
->serial
= 0;
1547 context
->ctime
= CURRENT_TIME
;
1548 context
->in_syscall
= 1;
1549 context
->current_state
= state
;
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1564 void __audit_syscall_exit(int success
, long return_code
)
1566 struct task_struct
*tsk
= current
;
1567 struct audit_context
*context
;
1570 success
= AUDITSC_SUCCESS
;
1572 success
= AUDITSC_FAILURE
;
1574 context
= audit_take_context(tsk
, success
, return_code
);
1578 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1579 audit_log_exit(context
, tsk
);
1581 context
->in_syscall
= 0;
1582 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1584 if (!list_empty(&context
->killed_trees
))
1585 audit_kill_trees(&context
->killed_trees
);
1587 audit_free_names(context
);
1588 unroll_tree_refs(context
, NULL
, 0);
1589 audit_free_aux(context
);
1590 context
->aux
= NULL
;
1591 context
->aux_pids
= NULL
;
1592 context
->target_pid
= 0;
1593 context
->target_sid
= 0;
1594 context
->sockaddr_len
= 0;
1596 context
->fds
[0] = -1;
1597 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1598 kfree(context
->filterkey
);
1599 context
->filterkey
= NULL
;
1601 tsk
->audit_context
= context
;
1604 static inline void handle_one(const struct inode
*inode
)
1606 #ifdef CONFIG_AUDIT_TREE
1607 struct audit_context
*context
;
1608 struct audit_tree_refs
*p
;
1609 struct audit_chunk
*chunk
;
1611 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1613 context
= current
->audit_context
;
1615 count
= context
->tree_count
;
1617 chunk
= audit_tree_lookup(inode
);
1621 if (likely(put_tree_ref(context
, chunk
)))
1623 if (unlikely(!grow_tree_refs(context
))) {
1624 pr_warn("out of memory, audit has lost a tree reference\n");
1625 audit_set_auditable(context
);
1626 audit_put_chunk(chunk
);
1627 unroll_tree_refs(context
, p
, count
);
1630 put_tree_ref(context
, chunk
);
1634 static void handle_path(const struct dentry
*dentry
)
1636 #ifdef CONFIG_AUDIT_TREE
1637 struct audit_context
*context
;
1638 struct audit_tree_refs
*p
;
1639 const struct dentry
*d
, *parent
;
1640 struct audit_chunk
*drop
;
1644 context
= current
->audit_context
;
1646 count
= context
->tree_count
;
1651 seq
= read_seqbegin(&rename_lock
);
1653 struct inode
*inode
= d
->d_inode
;
1654 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1655 struct audit_chunk
*chunk
;
1656 chunk
= audit_tree_lookup(inode
);
1658 if (unlikely(!put_tree_ref(context
, chunk
))) {
1664 parent
= d
->d_parent
;
1669 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1672 /* just a race with rename */
1673 unroll_tree_refs(context
, p
, count
);
1676 audit_put_chunk(drop
);
1677 if (grow_tree_refs(context
)) {
1678 /* OK, got more space */
1679 unroll_tree_refs(context
, p
, count
);
1683 pr_warn("out of memory, audit has lost a tree reference\n");
1684 unroll_tree_refs(context
, p
, count
);
1685 audit_set_auditable(context
);
1692 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1695 struct audit_names
*aname
;
1697 if (context
->name_count
< AUDIT_NAMES
) {
1698 aname
= &context
->preallocated_names
[context
->name_count
];
1699 memset(aname
, 0, sizeof(*aname
));
1701 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1704 aname
->should_free
= true;
1707 aname
->ino
= (unsigned long)-1;
1709 list_add_tail(&aname
->list
, &context
->names_list
);
1711 context
->name_count
++;
1713 context
->ino_count
++;
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1727 __audit_reusename(const __user
char *uptr
)
1729 struct audit_context
*context
= current
->audit_context
;
1730 struct audit_names
*n
;
1732 list_for_each_entry(n
, &context
->names_list
, list
) {
1735 if (n
->name
->uptr
== uptr
)
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1748 void __audit_getname(struct filename
*name
)
1750 struct audit_context
*context
= current
->audit_context
;
1751 struct audit_names
*n
;
1753 if (!context
->in_syscall
) {
1754 #if AUDIT_DEBUG == 2
1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756 __FILE__
, __LINE__
, context
->serial
, name
);
1763 /* The filename _must_ have a populated ->name */
1764 BUG_ON(!name
->name
);
1767 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1772 n
->name_len
= AUDIT_NAME_FULL
;
1776 if (!context
->pwd
.dentry
)
1777 get_fs_pwd(current
->fs
, &context
->pwd
);
1780 /* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1787 void audit_putname(struct filename
*name
)
1789 struct audit_context
*context
= current
->audit_context
;
1792 if (!name
->aname
|| !context
->in_syscall
) {
1793 #if AUDIT_DEBUG == 2
1794 pr_err("%s:%d(:%d): final_putname(%p)\n",
1795 __FILE__
, __LINE__
, context
->serial
, name
);
1796 if (context
->name_count
) {
1797 struct audit_names
*n
;
1800 list_for_each_entry(n
, &context
->names_list
, list
)
1801 pr_err("name[%d] = %p = %s\n", i
++, n
->name
,
1802 n
->name
->name
?: "(null)");
1805 final_putname(name
);
1809 ++context
->put_count
;
1810 if (context
->put_count
> context
->name_count
) {
1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812 " name_count=%d put_count=%d\n",
1814 context
->serial
, context
->major
,
1815 context
->in_syscall
, name
->name
,
1816 context
->name_count
, context
->put_count
);
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1829 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1832 struct audit_context
*context
= current
->audit_context
;
1833 const struct inode
*inode
= dentry
->d_inode
;
1834 struct audit_names
*n
;
1835 bool parent
= flags
& AUDIT_INODE_PARENT
;
1837 if (!context
->in_syscall
)
1844 /* The struct filename _must_ have a populated ->name */
1845 BUG_ON(!name
->name
);
1848 * If we have a pointer to an audit_names entry already, then we can
1849 * just use it directly if the type is correct.
1854 if (n
->type
== AUDIT_TYPE_PARENT
||
1855 n
->type
== AUDIT_TYPE_UNKNOWN
)
1858 if (n
->type
!= AUDIT_TYPE_PARENT
)
1863 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1864 /* does the name pointer match? */
1865 if (!n
->name
|| n
->name
->name
!= name
->name
)
1868 /* match the correct record type */
1870 if (n
->type
== AUDIT_TYPE_PARENT
||
1871 n
->type
== AUDIT_TYPE_UNKNOWN
)
1874 if (n
->type
!= AUDIT_TYPE_PARENT
)
1880 /* unable to find the name from a previous getname(). Allocate a new
1883 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
1888 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1889 n
->type
= AUDIT_TYPE_PARENT
;
1890 if (flags
& AUDIT_INODE_HIDDEN
)
1893 n
->name_len
= AUDIT_NAME_FULL
;
1894 n
->type
= AUDIT_TYPE_NORMAL
;
1896 handle_path(dentry
);
1897 audit_copy_inode(n
, dentry
, inode
);
1901 * __audit_inode_child - collect inode info for created/removed objects
1902 * @parent: inode of dentry parent
1903 * @dentry: dentry being audited
1904 * @type: AUDIT_TYPE_* value that we're looking for
1906 * For syscalls that create or remove filesystem objects, audit_inode
1907 * can only collect information for the filesystem object's parent.
1908 * This call updates the audit context with the child's information.
1909 * Syscalls that create a new filesystem object must be hooked after
1910 * the object is created. Syscalls that remove a filesystem object
1911 * must be hooked prior, in order to capture the target inode during
1912 * unsuccessful attempts.
1914 void __audit_inode_child(const struct inode
*parent
,
1915 const struct dentry
*dentry
,
1916 const unsigned char type
)
1918 struct audit_context
*context
= current
->audit_context
;
1919 const struct inode
*inode
= dentry
->d_inode
;
1920 const char *dname
= dentry
->d_name
.name
;
1921 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1923 if (!context
->in_syscall
)
1929 /* look for a parent entry first */
1930 list_for_each_entry(n
, &context
->names_list
, list
) {
1931 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
1934 if (n
->ino
== parent
->i_ino
&&
1935 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
1941 /* is there a matching child entry? */
1942 list_for_each_entry(n
, &context
->names_list
, list
) {
1943 /* can only match entries that have a name */
1944 if (!n
->name
|| n
->type
!= type
)
1947 /* if we found a parent, make sure this one is a child of it */
1948 if (found_parent
&& (n
->name
!= found_parent
->name
))
1951 if (!strcmp(dname
, n
->name
->name
) ||
1952 !audit_compare_dname_path(dname
, n
->name
->name
,
1954 found_parent
->name_len
:
1961 if (!found_parent
) {
1962 /* create a new, "anonymous" parent record */
1963 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1966 audit_copy_inode(n
, NULL
, parent
);
1970 found_child
= audit_alloc_name(context
, type
);
1974 /* Re-use the name belonging to the slot for a matching parent
1975 * directory. All names for this context are relinquished in
1976 * audit_free_names() */
1978 found_child
->name
= found_parent
->name
;
1979 found_child
->name_len
= AUDIT_NAME_FULL
;
1980 /* don't call __putname() */
1981 found_child
->name_put
= false;
1985 audit_copy_inode(found_child
, dentry
, inode
);
1987 found_child
->ino
= (unsigned long)-1;
1989 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1992 * auditsc_get_stamp - get local copies of audit_context values
1993 * @ctx: audit_context for the task
1994 * @t: timespec to store time recorded in the audit_context
1995 * @serial: serial value that is recorded in the audit_context
1997 * Also sets the context as auditable.
1999 int auditsc_get_stamp(struct audit_context
*ctx
,
2000 struct timespec
*t
, unsigned int *serial
)
2002 if (!ctx
->in_syscall
)
2005 ctx
->serial
= audit_serial();
2006 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2007 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2008 *serial
= ctx
->serial
;
2011 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2016 /* global counter which is incremented every time something logs in */
2017 static atomic_t session_id
= ATOMIC_INIT(0);
2019 static int audit_set_loginuid_perm(kuid_t loginuid
)
2021 /* if we are unset, we don't need privs */
2022 if (!audit_loginuid_set(current
))
2024 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
2027 /* it is set, you need permission */
2028 if (!capable(CAP_AUDIT_CONTROL
))
2030 /* reject if this is not an unset and we don't allow that */
2031 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
2036 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
2037 unsigned int oldsessionid
, unsigned int sessionid
,
2040 struct audit_buffer
*ab
;
2041 uid_t uid
, oldloginuid
, loginuid
;
2046 uid
= from_kuid(&init_user_ns
, task_uid(current
));
2047 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
2048 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
2050 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2053 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
2054 audit_log_task_context(ab
);
2055 audit_log_format(ab
, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056 oldloginuid
, loginuid
, oldsessionid
, sessionid
, !rc
);
2061 * audit_set_loginuid - set current task's audit_context loginuid
2062 * @loginuid: loginuid value
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2068 int audit_set_loginuid(kuid_t loginuid
)
2070 struct task_struct
*task
= current
;
2071 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2075 oldloginuid
= audit_get_loginuid(current
);
2076 oldsessionid
= audit_get_sessionid(current
);
2078 rc
= audit_set_loginuid_perm(loginuid
);
2082 /* are we setting or clearing? */
2083 if (uid_valid(loginuid
))
2084 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2086 task
->sessionid
= sessionid
;
2087 task
->loginuid
= loginuid
;
2089 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2097 * @attr: queue attributes
2100 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2102 struct audit_context
*context
= current
->audit_context
;
2105 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2107 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2109 context
->mq_open
.oflag
= oflag
;
2110 context
->mq_open
.mode
= mode
;
2112 context
->type
= AUDIT_MQ_OPEN
;
2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
2120 * @abs_timeout: Message timeout in absolute time
2123 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2124 const struct timespec
*abs_timeout
)
2126 struct audit_context
*context
= current
->audit_context
;
2127 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2130 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2132 memset(p
, 0, sizeof(struct timespec
));
2134 context
->mq_sendrecv
.mqdes
= mqdes
;
2135 context
->mq_sendrecv
.msg_len
= msg_len
;
2136 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2138 context
->type
= AUDIT_MQ_SENDRECV
;
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
2144 * @notification: Notification event
2148 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2150 struct audit_context
*context
= current
->audit_context
;
2153 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2155 context
->mq_notify
.sigev_signo
= 0;
2157 context
->mq_notify
.mqdes
= mqdes
;
2158 context
->type
= AUDIT_MQ_NOTIFY
;
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2167 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2169 struct audit_context
*context
= current
->audit_context
;
2170 context
->mq_getsetattr
.mqdes
= mqdes
;
2171 context
->mq_getsetattr
.mqstat
= *mqstat
;
2172 context
->type
= AUDIT_MQ_GETSETATTR
;
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2180 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2182 struct audit_context
*context
= current
->audit_context
;
2183 context
->ipc
.uid
= ipcp
->uid
;
2184 context
->ipc
.gid
= ipcp
->gid
;
2185 context
->ipc
.mode
= ipcp
->mode
;
2186 context
->ipc
.has_perm
= 0;
2187 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2188 context
->type
= AUDIT_IPC
;
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2198 * Called only after audit_ipc_obj().
2200 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2202 struct audit_context
*context
= current
->audit_context
;
2204 context
->ipc
.qbytes
= qbytes
;
2205 context
->ipc
.perm_uid
= uid
;
2206 context
->ipc
.perm_gid
= gid
;
2207 context
->ipc
.perm_mode
= mode
;
2208 context
->ipc
.has_perm
= 1;
2211 void __audit_bprm(struct linux_binprm
*bprm
)
2213 struct audit_context
*context
= current
->audit_context
;
2215 context
->type
= AUDIT_EXECVE
;
2216 context
->execve
.argc
= bprm
->argc
;
2221 * audit_socketcall - record audit data for sys_socketcall
2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2226 int __audit_socketcall(int nargs
, unsigned long *args
)
2228 struct audit_context
*context
= current
->audit_context
;
2230 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2232 context
->type
= AUDIT_SOCKETCALL
;
2233 context
->socketcall
.nargs
= nargs
;
2234 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2244 void __audit_fd_pair(int fd1
, int fd2
)
2246 struct audit_context
*context
= current
->audit_context
;
2247 context
->fds
[0] = fd1
;
2248 context
->fds
[1] = fd2
;
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2256 * Returns 0 for success or NULL context or < 0 on error.
2258 int __audit_sockaddr(int len
, void *a
)
2260 struct audit_context
*context
= current
->audit_context
;
2262 if (!context
->sockaddr
) {
2263 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2266 context
->sockaddr
= p
;
2269 context
->sockaddr_len
= len
;
2270 memcpy(context
->sockaddr
, a
, len
);
2274 void __audit_ptrace(struct task_struct
*t
)
2276 struct audit_context
*context
= current
->audit_context
;
2278 context
->target_pid
= task_pid_nr(t
);
2279 context
->target_auid
= audit_get_loginuid(t
);
2280 context
->target_uid
= task_uid(t
);
2281 context
->target_sessionid
= audit_get_sessionid(t
);
2282 security_task_getsecid(t
, &context
->target_sid
);
2283 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2294 int __audit_signal_info(int sig
, struct task_struct
*t
)
2296 struct audit_aux_data_pids
*axp
;
2297 struct task_struct
*tsk
= current
;
2298 struct audit_context
*ctx
= tsk
->audit_context
;
2299 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2301 if (audit_pid
&& t
->tgid
== audit_pid
) {
2302 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2303 audit_sig_pid
= task_pid_nr(tsk
);
2304 if (uid_valid(tsk
->loginuid
))
2305 audit_sig_uid
= tsk
->loginuid
;
2307 audit_sig_uid
= uid
;
2308 security_task_getsecid(tsk
, &audit_sig_sid
);
2310 if (!audit_signals
|| audit_dummy_context())
2314 /* optimize the common case by putting first signal recipient directly
2315 * in audit_context */
2316 if (!ctx
->target_pid
) {
2317 ctx
->target_pid
= task_tgid_nr(t
);
2318 ctx
->target_auid
= audit_get_loginuid(t
);
2319 ctx
->target_uid
= t_uid
;
2320 ctx
->target_sessionid
= audit_get_sessionid(t
);
2321 security_task_getsecid(t
, &ctx
->target_sid
);
2322 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2326 axp
= (void *)ctx
->aux_pids
;
2327 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2328 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2332 axp
->d
.type
= AUDIT_OBJ_PID
;
2333 axp
->d
.next
= ctx
->aux_pids
;
2334 ctx
->aux_pids
= (void *)axp
;
2336 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2338 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2339 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2340 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2341 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2342 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2343 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2360 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2361 const struct cred
*new, const struct cred
*old
)
2363 struct audit_aux_data_bprm_fcaps
*ax
;
2364 struct audit_context
*context
= current
->audit_context
;
2365 struct cpu_vfs_cap_data vcaps
;
2366 struct dentry
*dentry
;
2368 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2372 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2373 ax
->d
.next
= context
->aux
;
2374 context
->aux
= (void *)ax
;
2376 dentry
= dget(bprm
->file
->f_dentry
);
2377 get_vfs_caps_from_disk(dentry
, &vcaps
);
2380 ax
->fcap
.permitted
= vcaps
.permitted
;
2381 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2382 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2383 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2385 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2386 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2387 ax
->old_pcap
.effective
= old
->cap_effective
;
2389 ax
->new_pcap
.permitted
= new->cap_permitted
;
2390 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2391 ax
->new_pcap
.effective
= new->cap_effective
;
2396 * __audit_log_capset - store information about the arguments to the capset syscall
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
2400 * Record the aguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2403 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2405 struct audit_context
*context
= current
->audit_context
;
2406 context
->capset
.pid
= task_pid_nr(current
);
2407 context
->capset
.cap
.effective
= new->cap_effective
;
2408 context
->capset
.cap
.inheritable
= new->cap_effective
;
2409 context
->capset
.cap
.permitted
= new->cap_permitted
;
2410 context
->type
= AUDIT_CAPSET
;
2413 void __audit_mmap_fd(int fd
, int flags
)
2415 struct audit_context
*context
= current
->audit_context
;
2416 context
->mmap
.fd
= fd
;
2417 context
->mmap
.flags
= flags
;
2418 context
->type
= AUDIT_MMAP
;
2421 static void audit_log_task(struct audit_buffer
*ab
)
2425 unsigned int sessionid
;
2426 struct mm_struct
*mm
= current
->mm
;
2428 auid
= audit_get_loginuid(current
);
2429 sessionid
= audit_get_sessionid(current
);
2430 current_uid_gid(&uid
, &gid
);
2432 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2433 from_kuid(&init_user_ns
, auid
),
2434 from_kuid(&init_user_ns
, uid
),
2435 from_kgid(&init_user_ns
, gid
),
2437 audit_log_task_context(ab
);
2438 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2439 audit_log_untrustedstring(ab
, current
->comm
);
2441 down_read(&mm
->mmap_sem
);
2443 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
2444 up_read(&mm
->mmap_sem
);
2446 audit_log_format(ab
, " exe=(null)");
2450 * audit_core_dumps - record information about processes that end abnormally
2451 * @signr: signal value
2453 * If a process ends with a core dump, something fishy is going on and we
2454 * should record the event for investigation.
2456 void audit_core_dumps(long signr
)
2458 struct audit_buffer
*ab
;
2463 if (signr
== SIGQUIT
) /* don't care for those */
2466 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2470 audit_log_format(ab
, " sig=%ld", signr
);
2474 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2476 struct audit_buffer
*ab
;
2478 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2482 audit_log_format(ab
, " sig=%ld", signr
);
2483 audit_log_format(ab
, " syscall=%ld", syscall
);
2484 audit_log_format(ab
, " compat=%d", is_compat_task());
2485 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2486 audit_log_format(ab
, " code=0x%x", code
);
2490 struct list_head
*audit_killed_trees(void)
2492 struct audit_context
*ctx
= current
->audit_context
;
2493 if (likely(!ctx
|| !ctx
->in_syscall
))
2495 return &ctx
->killed_trees
;