2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
56 struct cpuhp_cpu_state
{
57 enum cpuhp_state state
;
58 enum cpuhp_state target
;
59 enum cpuhp_state fail
;
61 struct task_struct
*thread
;
66 struct hlist_node
*node
;
67 struct hlist_node
*last
;
68 enum cpuhp_state cb_state
;
70 struct completion done_up
;
71 struct completion done_down
;
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
76 .fail
= CPUHP_INVALID
,
80 cpumask_t cpus_booted_once_mask
;
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map
=
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
86 static struct lockdep_map cpuhp_state_down_map
=
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
90 static inline void cpuhp_lock_acquire(bool bringup
)
92 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
95 static inline void cpuhp_lock_release(bool bringup
)
97 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
101 static inline void cpuhp_lock_acquire(bool bringup
) { }
102 static inline void cpuhp_lock_release(bool bringup
) { }
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
116 int (*single
)(unsigned int cpu
);
117 int (*multi
)(unsigned int cpu
,
118 struct hlist_node
*node
);
121 int (*single
)(unsigned int cpu
);
122 int (*multi
)(unsigned int cpu
,
123 struct hlist_node
*node
);
125 struct hlist_head list
;
130 static DEFINE_MUTEX(cpuhp_state_mutex
);
131 static struct cpuhp_step cpuhp_hp_states
[];
133 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
135 return cpuhp_hp_states
+ state
;
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
146 * Called from cpu hotplug and from the state register machinery.
148 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
149 bool bringup
, struct hlist_node
*node
,
150 struct hlist_node
**lastp
)
152 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
153 struct cpuhp_step
*step
= cpuhp_get_step(state
);
154 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
155 int (*cb
)(unsigned int cpu
);
158 if (st
->fail
== state
) {
159 st
->fail
= CPUHP_INVALID
;
161 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
167 if (!step
->multi_instance
) {
168 WARN_ON_ONCE(lastp
&& *lastp
);
169 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
172 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
174 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
177 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
181 /* Single invocation for instance add/remove */
183 WARN_ON_ONCE(lastp
&& *lastp
);
184 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
185 ret
= cbm(cpu
, node
);
186 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
190 /* State transition. Invoke on all instances */
192 hlist_for_each(node
, &step
->list
) {
193 if (lastp
&& node
== *lastp
)
196 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
197 ret
= cbm(cpu
, node
);
198 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
212 /* Rollback the instances if one failed */
213 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
217 hlist_for_each(node
, &step
->list
) {
221 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
222 ret
= cbm(cpu
, node
);
223 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
225 * Rollback must not fail,
233 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
239 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
244 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
245 wait_for_completion(done
);
248 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
250 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
259 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock
);
264 bool cpuhp_tasks_frozen
;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
271 void cpu_maps_update_begin(void)
273 mutex_lock(&cpu_add_remove_lock
);
276 void cpu_maps_update_done(void)
278 mutex_unlock(&cpu_add_remove_lock
);
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
285 static int cpu_hotplug_disabled
;
287 #ifdef CONFIG_HOTPLUG_CPU
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
291 void cpus_read_lock(void)
293 percpu_down_read(&cpu_hotplug_lock
);
295 EXPORT_SYMBOL_GPL(cpus_read_lock
);
297 int cpus_read_trylock(void)
299 return percpu_down_read_trylock(&cpu_hotplug_lock
);
301 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
303 void cpus_read_unlock(void)
305 percpu_up_read(&cpu_hotplug_lock
);
307 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
309 void cpus_write_lock(void)
311 percpu_down_write(&cpu_hotplug_lock
);
314 void cpus_write_unlock(void)
316 percpu_up_write(&cpu_hotplug_lock
);
319 void lockdep_assert_cpus_held(void)
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
327 if (system_state
< SYSTEM_RUNNING
)
330 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
333 static void lockdep_acquire_cpus_lock(void)
335 rwsem_acquire(&cpu_hotplug_lock
.rw_sem
.dep_map
, 0, 0, _THIS_IP_
);
338 static void lockdep_release_cpus_lock(void)
340 rwsem_release(&cpu_hotplug_lock
.rw_sem
.dep_map
, 1, _THIS_IP_
);
344 * Wait for currently running CPU hotplug operations to complete (if any) and
345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347 * hotplug path before performing hotplug operations. So acquiring that lock
348 * guarantees mutual exclusion from any currently running hotplug operations.
350 void cpu_hotplug_disable(void)
352 cpu_maps_update_begin();
353 cpu_hotplug_disabled
++;
354 cpu_maps_update_done();
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
358 static void __cpu_hotplug_enable(void)
360 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
362 cpu_hotplug_disabled
--;
365 void cpu_hotplug_enable(void)
367 cpu_maps_update_begin();
368 __cpu_hotplug_enable();
369 cpu_maps_update_done();
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
375 static void lockdep_acquire_cpus_lock(void)
379 static void lockdep_release_cpus_lock(void)
383 #endif /* CONFIG_HOTPLUG_CPU */
386 * Architectures that need SMT-specific errata handling during SMT hotplug
387 * should override this.
389 void __weak
arch_smt_update(void) { }
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
394 void __init
cpu_smt_disable(bool force
)
396 if (!cpu_smt_possible())
400 pr_info("SMT: Force disabled\n");
401 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
403 pr_info("SMT: disabled\n");
404 cpu_smt_control
= CPU_SMT_DISABLED
;
409 * The decision whether SMT is supported can only be done after the full
410 * CPU identification. Called from architecture code.
412 void __init
cpu_smt_check_topology(void)
414 if (!topology_smt_supported())
415 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
418 static int __init
smt_cmdline_disable(char *str
)
420 cpu_smt_disable(str
&& !strcmp(str
, "force"));
423 early_param("nosmt", smt_cmdline_disable
);
425 static inline bool cpu_smt_allowed(unsigned int cpu
)
427 if (cpu_smt_control
== CPU_SMT_ENABLED
)
430 if (topology_is_primary_thread(cpu
))
434 * On x86 it's required to boot all logical CPUs at least once so
435 * that the init code can get a chance to set CR4.MCE on each
436 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
437 * core will shutdown the machine.
439 return !cpumask_test_cpu(cpu
, &cpus_booted_once_mask
);
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443 bool cpu_smt_possible(void)
445 return cpu_smt_control
!= CPU_SMT_FORCE_DISABLED
&&
446 cpu_smt_control
!= CPU_SMT_NOT_SUPPORTED
;
448 EXPORT_SYMBOL_GPL(cpu_smt_possible
);
450 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
453 static inline enum cpuhp_state
454 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
456 enum cpuhp_state prev_state
= st
->state
;
458 st
->rollback
= false;
463 st
->bringup
= st
->state
< target
;
469 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
474 * If we have st->last we need to undo partial multi_instance of this
475 * state first. Otherwise start undo at the previous state.
484 st
->target
= prev_state
;
485 st
->bringup
= !st
->bringup
;
488 /* Regular hotplug invocation of the AP hotplug thread */
489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
491 if (!st
->single
&& st
->state
== st
->target
)
496 * Make sure the above stores are visible before should_run becomes
497 * true. Paired with the mb() above in cpuhp_thread_fun()
500 st
->should_run
= true;
501 wake_up_process(st
->thread
);
502 wait_for_ap_thread(st
, st
->bringup
);
505 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
507 enum cpuhp_state prev_state
;
510 prev_state
= cpuhp_set_state(st
, target
);
512 if ((ret
= st
->result
)) {
513 cpuhp_reset_state(st
, prev_state
);
520 static int bringup_wait_for_ap(unsigned int cpu
)
522 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 wait_for_ap_thread(st
, true);
526 if (WARN_ON_ONCE((!cpu_online(cpu
))))
529 /* Unpark the hotplug thread of the target cpu */
530 kthread_unpark(st
->thread
);
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
539 if (!cpu_smt_allowed(cpu
))
542 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
545 return cpuhp_kick_ap(st
, st
->target
);
548 static int bringup_cpu(unsigned int cpu
)
550 struct task_struct
*idle
= idle_thread_get(cpu
);
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
560 /* Arch-specific enabling code. */
561 ret
= __cpu_up(cpu
, idle
);
565 return bringup_wait_for_ap(cpu
);
568 static int finish_cpu(unsigned int cpu
)
570 struct task_struct
*idle
= idle_thread_get(cpu
);
571 struct mm_struct
*mm
= idle
->active_mm
;
574 * idle_task_exit() will have switched to &init_mm, now
575 * clean up any remaining active_mm state.
578 idle
->active_mm
= &init_mm
;
584 * Hotplug state machine related functions
587 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
589 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
590 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state
*st
)
595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
))
598 * When CPU hotplug is disabled, then taking the CPU down is not
599 * possible because takedown_cpu() and the architecture and
600 * subsystem specific mechanisms are not available. So the CPU
601 * which would be completely unplugged again needs to stay around
602 * in the current state.
604 return st
->state
<= CPUHP_BRINGUP_CPU
;
607 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
608 enum cpuhp_state target
)
610 enum cpuhp_state prev_state
= st
->state
;
613 while (st
->state
< target
) {
615 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
617 if (can_rollback_cpu(st
)) {
618 st
->target
= prev_state
;
619 undo_cpu_up(cpu
, st
);
628 * The cpu hotplug threads manage the bringup and teardown of the cpus
630 static void cpuhp_create(unsigned int cpu
)
632 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
634 init_completion(&st
->done_up
);
635 init_completion(&st
->done_down
);
638 static int cpuhp_should_run(unsigned int cpu
)
640 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
642 return st
->should_run
;
646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647 * callbacks when a state gets [un]installed at runtime.
649 * Each invocation of this function by the smpboot thread does a single AP
652 * It has 3 modes of operation:
653 * - single: runs st->cb_state
654 * - up: runs ++st->state, while st->state < st->target
655 * - down: runs st->state--, while st->state > st->target
657 * When complete or on error, should_run is cleared and the completion is fired.
659 static void cpuhp_thread_fun(unsigned int cpu
)
661 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
662 bool bringup
= st
->bringup
;
663 enum cpuhp_state state
;
665 if (WARN_ON_ONCE(!st
->should_run
))
669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 * that if we see ->should_run we also see the rest of the state.
675 * The BP holds the hotplug lock, but we're now running on the AP,
676 * ensure that anybody asserting the lock is held, will actually find
679 lockdep_acquire_cpus_lock();
680 cpuhp_lock_acquire(bringup
);
683 state
= st
->cb_state
;
684 st
->should_run
= false;
689 st
->should_run
= (st
->state
< st
->target
);
690 WARN_ON_ONCE(st
->state
> st
->target
);
694 st
->should_run
= (st
->state
> st
->target
);
695 WARN_ON_ONCE(st
->state
< st
->target
);
699 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
701 if (cpuhp_is_atomic_state(state
)) {
703 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
707 * STARTING/DYING must not fail!
709 WARN_ON_ONCE(st
->result
);
711 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
716 * If we fail on a rollback, we're up a creek without no
717 * paddle, no way forward, no way back. We loose, thanks for
720 WARN_ON_ONCE(st
->rollback
);
721 st
->should_run
= false;
724 cpuhp_lock_release(bringup
);
725 lockdep_release_cpus_lock();
728 complete_ap_thread(st
, bringup
);
731 /* Invoke a single callback on a remote cpu */
733 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
734 struct hlist_node
*node
)
736 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
739 if (!cpu_online(cpu
))
742 cpuhp_lock_acquire(false);
743 cpuhp_lock_release(false);
745 cpuhp_lock_acquire(true);
746 cpuhp_lock_release(true);
749 * If we are up and running, use the hotplug thread. For early calls
750 * we invoke the thread function directly.
753 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
755 st
->rollback
= false;
759 st
->bringup
= bringup
;
760 st
->cb_state
= state
;
766 * If we failed and did a partial, do a rollback.
768 if ((ret
= st
->result
) && st
->last
) {
770 st
->bringup
= !bringup
;
776 * Clean up the leftovers so the next hotplug operation wont use stale
779 st
->node
= st
->last
= NULL
;
783 static int cpuhp_kick_ap_work(unsigned int cpu
)
785 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
786 enum cpuhp_state prev_state
= st
->state
;
789 cpuhp_lock_acquire(false);
790 cpuhp_lock_release(false);
792 cpuhp_lock_acquire(true);
793 cpuhp_lock_release(true);
795 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
796 ret
= cpuhp_kick_ap(st
, st
->target
);
797 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
802 static struct smp_hotplug_thread cpuhp_threads
= {
803 .store
= &cpuhp_state
.thread
,
804 .create
= &cpuhp_create
,
805 .thread_should_run
= cpuhp_should_run
,
806 .thread_fn
= cpuhp_thread_fun
,
807 .thread_comm
= "cpuhp/%u",
811 void __init
cpuhp_threads_init(void)
813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
814 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
817 #ifdef CONFIG_HOTPLUG_CPU
819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
822 * This function walks all processes, finds a valid mm struct for each one and
823 * then clears a corresponding bit in mm's cpumask. While this all sounds
824 * trivial, there are various non-obvious corner cases, which this function
825 * tries to solve in a safe manner.
827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
828 * be called only for an already offlined CPU.
830 void clear_tasks_mm_cpumask(int cpu
)
832 struct task_struct
*p
;
835 * This function is called after the cpu is taken down and marked
836 * offline, so its not like new tasks will ever get this cpu set in
837 * their mm mask. -- Peter Zijlstra
838 * Thus, we may use rcu_read_lock() here, instead of grabbing
839 * full-fledged tasklist_lock.
841 WARN_ON(cpu_online(cpu
));
843 for_each_process(p
) {
844 struct task_struct
*t
;
847 * Main thread might exit, but other threads may still have
848 * a valid mm. Find one.
850 t
= find_lock_task_mm(p
);
853 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
859 /* Take this CPU down. */
860 static int take_cpu_down(void *_param
)
862 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
863 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
864 int err
, cpu
= smp_processor_id();
867 /* Ensure this CPU doesn't handle any more interrupts. */
868 err
= __cpu_disable();
873 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
874 * do this step again.
876 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
878 /* Invoke the former CPU_DYING callbacks */
879 for (; st
->state
> target
; st
->state
--) {
880 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
882 * DYING must not fail!
887 /* Give up timekeeping duties */
888 tick_handover_do_timer();
889 /* Remove CPU from timer broadcasting */
890 tick_offline_cpu(cpu
);
891 /* Park the stopper thread */
892 stop_machine_park(cpu
);
896 static int takedown_cpu(unsigned int cpu
)
898 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
901 /* Park the smpboot threads */
902 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
905 * Prevent irq alloc/free while the dying cpu reorganizes the
906 * interrupt affinities.
911 * So now all preempt/rcu users must observe !cpu_active().
913 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
915 /* CPU refused to die */
917 /* Unpark the hotplug thread so we can rollback there */
918 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
921 BUG_ON(cpu_online(cpu
));
924 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
925 * all runnable tasks from the CPU, there's only the idle task left now
926 * that the migration thread is done doing the stop_machine thing.
928 * Wait for the stop thread to go away.
930 wait_for_ap_thread(st
, false);
931 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
933 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
936 hotplug_cpu__broadcast_tick_pull(cpu
);
937 /* This actually kills the CPU. */
940 tick_cleanup_dead_cpu(cpu
);
941 rcutree_migrate_callbacks(cpu
);
945 static void cpuhp_complete_idle_dead(void *arg
)
947 struct cpuhp_cpu_state
*st
= arg
;
949 complete_ap_thread(st
, false);
952 void cpuhp_report_idle_dead(void)
954 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
956 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
957 rcu_report_dead(smp_processor_id());
958 st
->state
= CPUHP_AP_IDLE_DEAD
;
960 * We cannot call complete after rcu_report_dead() so we delegate it
963 smp_call_function_single(cpumask_first(cpu_online_mask
),
964 cpuhp_complete_idle_dead
, st
, 0);
967 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
969 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
970 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
973 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
974 enum cpuhp_state target
)
976 enum cpuhp_state prev_state
= st
->state
;
979 for (; st
->state
> target
; st
->state
--) {
980 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
982 st
->target
= prev_state
;
983 if (st
->state
< prev_state
)
984 undo_cpu_down(cpu
, st
);
991 /* Requires cpu_add_remove_lock to be held */
992 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
993 enum cpuhp_state target
)
995 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
996 int prev_state
, ret
= 0;
998 if (num_online_cpus() == 1)
1001 if (!cpu_present(cpu
))
1006 cpuhp_tasks_frozen
= tasks_frozen
;
1008 prev_state
= cpuhp_set_state(st
, target
);
1010 * If the current CPU state is in the range of the AP hotplug thread,
1011 * then we need to kick the thread.
1013 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
1014 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
1015 ret
= cpuhp_kick_ap_work(cpu
);
1017 * The AP side has done the error rollback already. Just
1018 * return the error code..
1024 * We might have stopped still in the range of the AP hotplug
1025 * thread. Nothing to do anymore.
1027 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1030 st
->target
= target
;
1033 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034 * to do the further cleanups.
1036 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1037 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1038 cpuhp_reset_state(st
, prev_state
);
1039 __cpuhp_kick_ap(st
);
1043 cpus_write_unlock();
1045 * Do post unplug cleanup. This is still protected against
1046 * concurrent CPU hotplug via cpu_add_remove_lock.
1048 lockup_detector_cleanup();
1053 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1055 if (cpu_hotplug_disabled
)
1057 return _cpu_down(cpu
, 0, target
);
1060 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1064 cpu_maps_update_begin();
1065 err
= cpu_down_maps_locked(cpu
, target
);
1066 cpu_maps_update_done();
1070 int cpu_down(unsigned int cpu
)
1072 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1074 EXPORT_SYMBOL(cpu_down
);
1077 #define takedown_cpu NULL
1078 #endif /*CONFIG_HOTPLUG_CPU*/
1081 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1082 * @cpu: cpu that just started
1084 * It must be called by the arch code on the new cpu, before the new cpu
1085 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1087 void notify_cpu_starting(unsigned int cpu
)
1089 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1090 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1093 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1094 cpumask_set_cpu(cpu
, &cpus_booted_once_mask
);
1095 while (st
->state
< target
) {
1097 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1099 * STARTING must not fail!
1106 * Called from the idle task. Wake up the controlling task which brings the
1107 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1108 * online bringup to the hotplug thread.
1110 void cpuhp_online_idle(enum cpuhp_state state
)
1112 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1114 /* Happens for the boot cpu */
1115 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1119 * Unpart the stopper thread before we start the idle loop (and start
1120 * scheduling); this ensures the stopper task is always available.
1122 stop_machine_unpark(smp_processor_id());
1124 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1125 complete_ap_thread(st
, true);
1128 /* Requires cpu_add_remove_lock to be held */
1129 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1131 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1132 struct task_struct
*idle
;
1137 if (!cpu_present(cpu
)) {
1143 * The caller of do_cpu_up might have raced with another
1144 * caller. Ignore it for now.
1146 if (st
->state
>= target
)
1149 if (st
->state
== CPUHP_OFFLINE
) {
1150 /* Let it fail before we try to bring the cpu up */
1151 idle
= idle_thread_get(cpu
);
1153 ret
= PTR_ERR(idle
);
1158 cpuhp_tasks_frozen
= tasks_frozen
;
1160 cpuhp_set_state(st
, target
);
1162 * If the current CPU state is in the range of the AP hotplug thread,
1163 * then we need to kick the thread once more.
1165 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1166 ret
= cpuhp_kick_ap_work(cpu
);
1168 * The AP side has done the error rollback already. Just
1169 * return the error code..
1176 * Try to reach the target state. We max out on the BP at
1177 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1178 * responsible for bringing it up to the target state.
1180 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1181 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1183 cpus_write_unlock();
1188 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1192 if (!cpu_possible(cpu
)) {
1193 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1195 #if defined(CONFIG_IA64)
1196 pr_err("please check additional_cpus= boot parameter\n");
1201 err
= try_online_node(cpu_to_node(cpu
));
1205 cpu_maps_update_begin();
1207 if (cpu_hotplug_disabled
) {
1211 if (!cpu_smt_allowed(cpu
)) {
1216 err
= _cpu_up(cpu
, 0, target
);
1218 cpu_maps_update_done();
1222 int cpu_up(unsigned int cpu
)
1224 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1226 EXPORT_SYMBOL_GPL(cpu_up
);
1228 #ifdef CONFIG_PM_SLEEP_SMP
1229 static cpumask_var_t frozen_cpus
;
1231 int __freeze_secondary_cpus(int primary
, bool suspend
)
1235 cpu_maps_update_begin();
1236 if (primary
== -1) {
1237 primary
= cpumask_first(cpu_online_mask
);
1238 if (!housekeeping_cpu(primary
, HK_FLAG_TIMER
))
1239 primary
= housekeeping_any_cpu(HK_FLAG_TIMER
);
1241 if (!cpu_online(primary
))
1242 primary
= cpumask_first(cpu_online_mask
);
1246 * We take down all of the non-boot CPUs in one shot to avoid races
1247 * with the userspace trying to use the CPU hotplug at the same time
1249 cpumask_clear(frozen_cpus
);
1251 pr_info("Disabling non-boot CPUs ...\n");
1252 for_each_online_cpu(cpu
) {
1256 if (suspend
&& pm_wakeup_pending()) {
1257 pr_info("Wakeup pending. Abort CPU freeze\n");
1262 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1263 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1264 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1266 cpumask_set_cpu(cpu
, frozen_cpus
);
1268 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1274 BUG_ON(num_online_cpus() > 1);
1276 pr_err("Non-boot CPUs are not disabled\n");
1279 * Make sure the CPUs won't be enabled by someone else. We need to do
1280 * this even in case of failure as all disable_nonboot_cpus() users are
1281 * supposed to do enable_nonboot_cpus() on the failure path.
1283 cpu_hotplug_disabled
++;
1285 cpu_maps_update_done();
1289 void __weak
arch_enable_nonboot_cpus_begin(void)
1293 void __weak
arch_enable_nonboot_cpus_end(void)
1297 void enable_nonboot_cpus(void)
1301 /* Allow everyone to use the CPU hotplug again */
1302 cpu_maps_update_begin();
1303 __cpu_hotplug_enable();
1304 if (cpumask_empty(frozen_cpus
))
1307 pr_info("Enabling non-boot CPUs ...\n");
1309 arch_enable_nonboot_cpus_begin();
1311 for_each_cpu(cpu
, frozen_cpus
) {
1312 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1313 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1314 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1316 pr_info("CPU%d is up\n", cpu
);
1319 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1322 arch_enable_nonboot_cpus_end();
1324 cpumask_clear(frozen_cpus
);
1326 cpu_maps_update_done();
1329 static int __init
alloc_frozen_cpus(void)
1331 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1335 core_initcall(alloc_frozen_cpus
);
1338 * When callbacks for CPU hotplug notifications are being executed, we must
1339 * ensure that the state of the system with respect to the tasks being frozen
1340 * or not, as reported by the notification, remains unchanged *throughout the
1341 * duration* of the execution of the callbacks.
1342 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1344 * This synchronization is implemented by mutually excluding regular CPU
1345 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1346 * Hibernate notifications.
1349 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1350 unsigned long action
, void *ptr
)
1354 case PM_SUSPEND_PREPARE
:
1355 case PM_HIBERNATION_PREPARE
:
1356 cpu_hotplug_disable();
1359 case PM_POST_SUSPEND
:
1360 case PM_POST_HIBERNATION
:
1361 cpu_hotplug_enable();
1372 static int __init
cpu_hotplug_pm_sync_init(void)
1375 * cpu_hotplug_pm_callback has higher priority than x86
1376 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1377 * to disable cpu hotplug to avoid cpu hotplug race.
1379 pm_notifier(cpu_hotplug_pm_callback
, 0);
1382 core_initcall(cpu_hotplug_pm_sync_init
);
1384 #endif /* CONFIG_PM_SLEEP_SMP */
1388 #endif /* CONFIG_SMP */
1390 /* Boot processor state steps */
1391 static struct cpuhp_step cpuhp_hp_states
[] = {
1394 .startup
.single
= NULL
,
1395 .teardown
.single
= NULL
,
1398 [CPUHP_CREATE_THREADS
]= {
1399 .name
= "threads:prepare",
1400 .startup
.single
= smpboot_create_threads
,
1401 .teardown
.single
= NULL
,
1404 [CPUHP_PERF_PREPARE
] = {
1405 .name
= "perf:prepare",
1406 .startup
.single
= perf_event_init_cpu
,
1407 .teardown
.single
= perf_event_exit_cpu
,
1409 [CPUHP_WORKQUEUE_PREP
] = {
1410 .name
= "workqueue:prepare",
1411 .startup
.single
= workqueue_prepare_cpu
,
1412 .teardown
.single
= NULL
,
1414 [CPUHP_HRTIMERS_PREPARE
] = {
1415 .name
= "hrtimers:prepare",
1416 .startup
.single
= hrtimers_prepare_cpu
,
1417 .teardown
.single
= hrtimers_dead_cpu
,
1419 [CPUHP_SMPCFD_PREPARE
] = {
1420 .name
= "smpcfd:prepare",
1421 .startup
.single
= smpcfd_prepare_cpu
,
1422 .teardown
.single
= smpcfd_dead_cpu
,
1424 [CPUHP_RELAY_PREPARE
] = {
1425 .name
= "relay:prepare",
1426 .startup
.single
= relay_prepare_cpu
,
1427 .teardown
.single
= NULL
,
1429 [CPUHP_SLAB_PREPARE
] = {
1430 .name
= "slab:prepare",
1431 .startup
.single
= slab_prepare_cpu
,
1432 .teardown
.single
= slab_dead_cpu
,
1434 [CPUHP_RCUTREE_PREP
] = {
1435 .name
= "RCU/tree:prepare",
1436 .startup
.single
= rcutree_prepare_cpu
,
1437 .teardown
.single
= rcutree_dead_cpu
,
1440 * On the tear-down path, timers_dead_cpu() must be invoked
1441 * before blk_mq_queue_reinit_notify() from notify_dead(),
1442 * otherwise a RCU stall occurs.
1444 [CPUHP_TIMERS_PREPARE
] = {
1445 .name
= "timers:prepare",
1446 .startup
.single
= timers_prepare_cpu
,
1447 .teardown
.single
= timers_dead_cpu
,
1449 /* Kicks the plugged cpu into life */
1450 [CPUHP_BRINGUP_CPU
] = {
1451 .name
= "cpu:bringup",
1452 .startup
.single
= bringup_cpu
,
1453 .teardown
.single
= finish_cpu
,
1456 /* Final state before CPU kills itself */
1457 [CPUHP_AP_IDLE_DEAD
] = {
1458 .name
= "idle:dead",
1461 * Last state before CPU enters the idle loop to die. Transient state
1462 * for synchronization.
1464 [CPUHP_AP_OFFLINE
] = {
1465 .name
= "ap:offline",
1468 /* First state is scheduler control. Interrupts are disabled */
1469 [CPUHP_AP_SCHED_STARTING
] = {
1470 .name
= "sched:starting",
1471 .startup
.single
= sched_cpu_starting
,
1472 .teardown
.single
= sched_cpu_dying
,
1474 [CPUHP_AP_RCUTREE_DYING
] = {
1475 .name
= "RCU/tree:dying",
1476 .startup
.single
= NULL
,
1477 .teardown
.single
= rcutree_dying_cpu
,
1479 [CPUHP_AP_SMPCFD_DYING
] = {
1480 .name
= "smpcfd:dying",
1481 .startup
.single
= NULL
,
1482 .teardown
.single
= smpcfd_dying_cpu
,
1484 /* Entry state on starting. Interrupts enabled from here on. Transient
1485 * state for synchronsization */
1486 [CPUHP_AP_ONLINE
] = {
1487 .name
= "ap:online",
1490 * Handled on controll processor until the plugged processor manages
1493 [CPUHP_TEARDOWN_CPU
] = {
1494 .name
= "cpu:teardown",
1495 .startup
.single
= NULL
,
1496 .teardown
.single
= takedown_cpu
,
1499 /* Handle smpboot threads park/unpark */
1500 [CPUHP_AP_SMPBOOT_THREADS
] = {
1501 .name
= "smpboot/threads:online",
1502 .startup
.single
= smpboot_unpark_threads
,
1503 .teardown
.single
= smpboot_park_threads
,
1505 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1506 .name
= "irq/affinity:online",
1507 .startup
.single
= irq_affinity_online_cpu
,
1508 .teardown
.single
= NULL
,
1510 [CPUHP_AP_PERF_ONLINE
] = {
1511 .name
= "perf:online",
1512 .startup
.single
= perf_event_init_cpu
,
1513 .teardown
.single
= perf_event_exit_cpu
,
1515 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1516 .name
= "lockup_detector:online",
1517 .startup
.single
= lockup_detector_online_cpu
,
1518 .teardown
.single
= lockup_detector_offline_cpu
,
1520 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1521 .name
= "workqueue:online",
1522 .startup
.single
= workqueue_online_cpu
,
1523 .teardown
.single
= workqueue_offline_cpu
,
1525 [CPUHP_AP_RCUTREE_ONLINE
] = {
1526 .name
= "RCU/tree:online",
1527 .startup
.single
= rcutree_online_cpu
,
1528 .teardown
.single
= rcutree_offline_cpu
,
1532 * The dynamically registered state space is here
1536 /* Last state is scheduler control setting the cpu active */
1537 [CPUHP_AP_ACTIVE
] = {
1538 .name
= "sched:active",
1539 .startup
.single
= sched_cpu_activate
,
1540 .teardown
.single
= sched_cpu_deactivate
,
1544 /* CPU is fully up and running. */
1547 .startup
.single
= NULL
,
1548 .teardown
.single
= NULL
,
1552 /* Sanity check for callbacks */
1553 static int cpuhp_cb_check(enum cpuhp_state state
)
1555 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1561 * Returns a free for dynamic slot assignment of the Online state. The states
1562 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1563 * by having no name assigned.
1565 static int cpuhp_reserve_state(enum cpuhp_state state
)
1567 enum cpuhp_state i
, end
;
1568 struct cpuhp_step
*step
;
1571 case CPUHP_AP_ONLINE_DYN
:
1572 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1573 end
= CPUHP_AP_ONLINE_DYN_END
;
1575 case CPUHP_BP_PREPARE_DYN
:
1576 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1577 end
= CPUHP_BP_PREPARE_DYN_END
;
1583 for (i
= state
; i
<= end
; i
++, step
++) {
1587 WARN(1, "No more dynamic states available for CPU hotplug\n");
1591 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1592 int (*startup
)(unsigned int cpu
),
1593 int (*teardown
)(unsigned int cpu
),
1594 bool multi_instance
)
1596 /* (Un)Install the callbacks for further cpu hotplug operations */
1597 struct cpuhp_step
*sp
;
1601 * If name is NULL, then the state gets removed.
1603 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1604 * the first allocation from these dynamic ranges, so the removal
1605 * would trigger a new allocation and clear the wrong (already
1606 * empty) state, leaving the callbacks of the to be cleared state
1607 * dangling, which causes wreckage on the next hotplug operation.
1609 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1610 state
== CPUHP_BP_PREPARE_DYN
)) {
1611 ret
= cpuhp_reserve_state(state
);
1616 sp
= cpuhp_get_step(state
);
1617 if (name
&& sp
->name
)
1620 sp
->startup
.single
= startup
;
1621 sp
->teardown
.single
= teardown
;
1623 sp
->multi_instance
= multi_instance
;
1624 INIT_HLIST_HEAD(&sp
->list
);
1628 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1630 return cpuhp_get_step(state
)->teardown
.single
;
1634 * Call the startup/teardown function for a step either on the AP or
1635 * on the current CPU.
1637 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1638 struct hlist_node
*node
)
1640 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1644 * If there's nothing to do, we done.
1645 * Relies on the union for multi_instance.
1647 if ((bringup
&& !sp
->startup
.single
) ||
1648 (!bringup
&& !sp
->teardown
.single
))
1651 * The non AP bound callbacks can fail on bringup. On teardown
1652 * e.g. module removal we crash for now.
1655 if (cpuhp_is_ap_state(state
))
1656 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1658 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1660 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1662 BUG_ON(ret
&& !bringup
);
1667 * Called from __cpuhp_setup_state on a recoverable failure.
1669 * Note: The teardown callbacks for rollback are not allowed to fail!
1671 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1672 struct hlist_node
*node
)
1676 /* Roll back the already executed steps on the other cpus */
1677 for_each_present_cpu(cpu
) {
1678 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1679 int cpustate
= st
->state
;
1681 if (cpu
>= failedcpu
)
1684 /* Did we invoke the startup call on that cpu ? */
1685 if (cpustate
>= state
)
1686 cpuhp_issue_call(cpu
, state
, false, node
);
1690 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1691 struct hlist_node
*node
,
1694 struct cpuhp_step
*sp
;
1698 lockdep_assert_cpus_held();
1700 sp
= cpuhp_get_step(state
);
1701 if (sp
->multi_instance
== false)
1704 mutex_lock(&cpuhp_state_mutex
);
1706 if (!invoke
|| !sp
->startup
.multi
)
1710 * Try to call the startup callback for each present cpu
1711 * depending on the hotplug state of the cpu.
1713 for_each_present_cpu(cpu
) {
1714 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1715 int cpustate
= st
->state
;
1717 if (cpustate
< state
)
1720 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1722 if (sp
->teardown
.multi
)
1723 cpuhp_rollback_install(cpu
, state
, node
);
1729 hlist_add_head(node
, &sp
->list
);
1731 mutex_unlock(&cpuhp_state_mutex
);
1735 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1741 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1745 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1748 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1749 * @state: The state to setup
1750 * @invoke: If true, the startup function is invoked for cpus where
1751 * cpu state >= @state
1752 * @startup: startup callback function
1753 * @teardown: teardown callback function
1754 * @multi_instance: State is set up for multiple instances which get
1757 * The caller needs to hold cpus read locked while calling this function.
1760 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1761 * 0 for all other states
1762 * On failure: proper (negative) error code
1764 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1765 const char *name
, bool invoke
,
1766 int (*startup
)(unsigned int cpu
),
1767 int (*teardown
)(unsigned int cpu
),
1768 bool multi_instance
)
1773 lockdep_assert_cpus_held();
1775 if (cpuhp_cb_check(state
) || !name
)
1778 mutex_lock(&cpuhp_state_mutex
);
1780 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1783 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1784 if (ret
> 0 && dynstate
) {
1789 if (ret
|| !invoke
|| !startup
)
1793 * Try to call the startup callback for each present cpu
1794 * depending on the hotplug state of the cpu.
1796 for_each_present_cpu(cpu
) {
1797 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1798 int cpustate
= st
->state
;
1800 if (cpustate
< state
)
1803 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1806 cpuhp_rollback_install(cpu
, state
, NULL
);
1807 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1812 mutex_unlock(&cpuhp_state_mutex
);
1814 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1815 * dynamically allocated state in case of success.
1817 if (!ret
&& dynstate
)
1821 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1823 int __cpuhp_setup_state(enum cpuhp_state state
,
1824 const char *name
, bool invoke
,
1825 int (*startup
)(unsigned int cpu
),
1826 int (*teardown
)(unsigned int cpu
),
1827 bool multi_instance
)
1832 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1833 teardown
, multi_instance
);
1837 EXPORT_SYMBOL(__cpuhp_setup_state
);
1839 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1840 struct hlist_node
*node
, bool invoke
)
1842 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1845 BUG_ON(cpuhp_cb_check(state
));
1847 if (!sp
->multi_instance
)
1851 mutex_lock(&cpuhp_state_mutex
);
1853 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1856 * Call the teardown callback for each present cpu depending
1857 * on the hotplug state of the cpu. This function is not
1858 * allowed to fail currently!
1860 for_each_present_cpu(cpu
) {
1861 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1862 int cpustate
= st
->state
;
1864 if (cpustate
>= state
)
1865 cpuhp_issue_call(cpu
, state
, false, node
);
1870 mutex_unlock(&cpuhp_state_mutex
);
1875 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1878 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1879 * @state: The state to remove
1880 * @invoke: If true, the teardown function is invoked for cpus where
1881 * cpu state >= @state
1883 * The caller needs to hold cpus read locked while calling this function.
1884 * The teardown callback is currently not allowed to fail. Think
1885 * about module removal!
1887 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1889 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1892 BUG_ON(cpuhp_cb_check(state
));
1894 lockdep_assert_cpus_held();
1896 mutex_lock(&cpuhp_state_mutex
);
1897 if (sp
->multi_instance
) {
1898 WARN(!hlist_empty(&sp
->list
),
1899 "Error: Removing state %d which has instances left.\n",
1904 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1908 * Call the teardown callback for each present cpu depending
1909 * on the hotplug state of the cpu. This function is not
1910 * allowed to fail currently!
1912 for_each_present_cpu(cpu
) {
1913 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1914 int cpustate
= st
->state
;
1916 if (cpustate
>= state
)
1917 cpuhp_issue_call(cpu
, state
, false, NULL
);
1920 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1921 mutex_unlock(&cpuhp_state_mutex
);
1923 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1925 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1928 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1931 EXPORT_SYMBOL(__cpuhp_remove_state
);
1933 #ifdef CONFIG_HOTPLUG_SMT
1934 static void cpuhp_offline_cpu_device(unsigned int cpu
)
1936 struct device
*dev
= get_cpu_device(cpu
);
1938 dev
->offline
= true;
1939 /* Tell user space about the state change */
1940 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
1943 static void cpuhp_online_cpu_device(unsigned int cpu
)
1945 struct device
*dev
= get_cpu_device(cpu
);
1947 dev
->offline
= false;
1948 /* Tell user space about the state change */
1949 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
1952 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
1956 cpu_maps_update_begin();
1957 for_each_online_cpu(cpu
) {
1958 if (topology_is_primary_thread(cpu
))
1960 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
1964 * As this needs to hold the cpu maps lock it's impossible
1965 * to call device_offline() because that ends up calling
1966 * cpu_down() which takes cpu maps lock. cpu maps lock
1967 * needs to be held as this might race against in kernel
1968 * abusers of the hotplug machinery (thermal management).
1970 * So nothing would update device:offline state. That would
1971 * leave the sysfs entry stale and prevent onlining after
1972 * smt control has been changed to 'off' again. This is
1973 * called under the sysfs hotplug lock, so it is properly
1974 * serialized against the regular offline usage.
1976 cpuhp_offline_cpu_device(cpu
);
1979 cpu_smt_control
= ctrlval
;
1980 cpu_maps_update_done();
1984 int cpuhp_smt_enable(void)
1988 cpu_maps_update_begin();
1989 cpu_smt_control
= CPU_SMT_ENABLED
;
1990 for_each_present_cpu(cpu
) {
1991 /* Skip online CPUs and CPUs on offline nodes */
1992 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
1994 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
1997 /* See comment in cpuhp_smt_disable() */
1998 cpuhp_online_cpu_device(cpu
);
2000 cpu_maps_update_done();
2005 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2006 static ssize_t
show_cpuhp_state(struct device
*dev
,
2007 struct device_attribute
*attr
, char *buf
)
2009 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2011 return sprintf(buf
, "%d\n", st
->state
);
2013 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
2015 static ssize_t
write_cpuhp_target(struct device
*dev
,
2016 struct device_attribute
*attr
,
2017 const char *buf
, size_t count
)
2019 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2020 struct cpuhp_step
*sp
;
2023 ret
= kstrtoint(buf
, 10, &target
);
2027 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2028 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
2031 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
2035 ret
= lock_device_hotplug_sysfs();
2039 mutex_lock(&cpuhp_state_mutex
);
2040 sp
= cpuhp_get_step(target
);
2041 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
2042 mutex_unlock(&cpuhp_state_mutex
);
2046 if (st
->state
< target
)
2047 ret
= do_cpu_up(dev
->id
, target
);
2049 ret
= do_cpu_down(dev
->id
, target
);
2051 unlock_device_hotplug();
2052 return ret
? ret
: count
;
2055 static ssize_t
show_cpuhp_target(struct device
*dev
,
2056 struct device_attribute
*attr
, char *buf
)
2058 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2060 return sprintf(buf
, "%d\n", st
->target
);
2062 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
2065 static ssize_t
write_cpuhp_fail(struct device
*dev
,
2066 struct device_attribute
*attr
,
2067 const char *buf
, size_t count
)
2069 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2070 struct cpuhp_step
*sp
;
2073 ret
= kstrtoint(buf
, 10, &fail
);
2077 if (fail
< CPUHP_OFFLINE
|| fail
> CPUHP_ONLINE
)
2081 * Cannot fail STARTING/DYING callbacks.
2083 if (cpuhp_is_atomic_state(fail
))
2087 * Cannot fail anything that doesn't have callbacks.
2089 mutex_lock(&cpuhp_state_mutex
);
2090 sp
= cpuhp_get_step(fail
);
2091 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
2093 mutex_unlock(&cpuhp_state_mutex
);
2102 static ssize_t
show_cpuhp_fail(struct device
*dev
,
2103 struct device_attribute
*attr
, char *buf
)
2105 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2107 return sprintf(buf
, "%d\n", st
->fail
);
2110 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
2112 static struct attribute
*cpuhp_cpu_attrs
[] = {
2113 &dev_attr_state
.attr
,
2114 &dev_attr_target
.attr
,
2115 &dev_attr_fail
.attr
,
2119 static const struct attribute_group cpuhp_cpu_attr_group
= {
2120 .attrs
= cpuhp_cpu_attrs
,
2125 static ssize_t
show_cpuhp_states(struct device
*dev
,
2126 struct device_attribute
*attr
, char *buf
)
2128 ssize_t cur
, res
= 0;
2131 mutex_lock(&cpuhp_state_mutex
);
2132 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2133 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2136 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2141 mutex_unlock(&cpuhp_state_mutex
);
2144 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
2146 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2147 &dev_attr_states
.attr
,
2151 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2152 .attrs
= cpuhp_cpu_root_attrs
,
2157 #ifdef CONFIG_HOTPLUG_SMT
2160 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2161 const char *buf
, size_t count
)
2165 if (sysfs_streq(buf
, "on"))
2166 ctrlval
= CPU_SMT_ENABLED
;
2167 else if (sysfs_streq(buf
, "off"))
2168 ctrlval
= CPU_SMT_DISABLED
;
2169 else if (sysfs_streq(buf
, "forceoff"))
2170 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2174 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2177 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2180 ret
= lock_device_hotplug_sysfs();
2184 if (ctrlval
!= cpu_smt_control
) {
2186 case CPU_SMT_ENABLED
:
2187 ret
= cpuhp_smt_enable();
2189 case CPU_SMT_DISABLED
:
2190 case CPU_SMT_FORCE_DISABLED
:
2191 ret
= cpuhp_smt_disable(ctrlval
);
2196 unlock_device_hotplug();
2197 return ret
? ret
: count
;
2200 #else /* !CONFIG_HOTPLUG_SMT */
2202 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2203 const char *buf
, size_t count
)
2207 #endif /* CONFIG_HOTPLUG_SMT */
2209 static const char *smt_states
[] = {
2210 [CPU_SMT_ENABLED
] = "on",
2211 [CPU_SMT_DISABLED
] = "off",
2212 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2213 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2214 [CPU_SMT_NOT_IMPLEMENTED
] = "notimplemented",
2218 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2220 const char *state
= smt_states
[cpu_smt_control
];
2222 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", state
);
2226 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2227 const char *buf
, size_t count
)
2229 return __store_smt_control(dev
, attr
, buf
, count
);
2231 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2234 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2236 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", sched_smt_active());
2238 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2240 static struct attribute
*cpuhp_smt_attrs
[] = {
2241 &dev_attr_control
.attr
,
2242 &dev_attr_active
.attr
,
2246 static const struct attribute_group cpuhp_smt_attr_group
= {
2247 .attrs
= cpuhp_smt_attrs
,
2252 static int __init
cpu_smt_sysfs_init(void)
2254 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2255 &cpuhp_smt_attr_group
);
2258 static int __init
cpuhp_sysfs_init(void)
2262 ret
= cpu_smt_sysfs_init();
2266 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2267 &cpuhp_cpu_root_attr_group
);
2271 for_each_possible_cpu(cpu
) {
2272 struct device
*dev
= get_cpu_device(cpu
);
2276 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2282 device_initcall(cpuhp_sysfs_init
);
2283 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2286 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2287 * represents all NR_CPUS bits binary values of 1<<nr.
2289 * It is used by cpumask_of() to get a constant address to a CPU
2290 * mask value that has a single bit set only.
2293 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2294 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2295 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2296 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2297 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2299 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2301 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2302 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2303 #if BITS_PER_LONG > 32
2304 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2305 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2308 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2310 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2311 EXPORT_SYMBOL(cpu_all_bits
);
2313 #ifdef CONFIG_INIT_ALL_POSSIBLE
2314 struct cpumask __cpu_possible_mask __read_mostly
2317 struct cpumask __cpu_possible_mask __read_mostly
;
2319 EXPORT_SYMBOL(__cpu_possible_mask
);
2321 struct cpumask __cpu_online_mask __read_mostly
;
2322 EXPORT_SYMBOL(__cpu_online_mask
);
2324 struct cpumask __cpu_present_mask __read_mostly
;
2325 EXPORT_SYMBOL(__cpu_present_mask
);
2327 struct cpumask __cpu_active_mask __read_mostly
;
2328 EXPORT_SYMBOL(__cpu_active_mask
);
2330 atomic_t __num_online_cpus __read_mostly
;
2331 EXPORT_SYMBOL(__num_online_cpus
);
2333 void init_cpu_present(const struct cpumask
*src
)
2335 cpumask_copy(&__cpu_present_mask
, src
);
2338 void init_cpu_possible(const struct cpumask
*src
)
2340 cpumask_copy(&__cpu_possible_mask
, src
);
2343 void init_cpu_online(const struct cpumask
*src
)
2345 cpumask_copy(&__cpu_online_mask
, src
);
2348 void set_cpu_online(unsigned int cpu
, bool online
)
2351 * atomic_inc/dec() is required to handle the horrid abuse of this
2352 * function by the reboot and kexec code which invoke it from
2353 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2354 * regular CPU hotplug is properly serialized.
2356 * Note, that the fact that __num_online_cpus is of type atomic_t
2357 * does not protect readers which are not serialized against
2358 * concurrent hotplug operations.
2361 if (!cpumask_test_and_set_cpu(cpu
, &__cpu_online_mask
))
2362 atomic_inc(&__num_online_cpus
);
2364 if (cpumask_test_and_clear_cpu(cpu
, &__cpu_online_mask
))
2365 atomic_dec(&__num_online_cpus
);
2370 * Activate the first processor.
2372 void __init
boot_cpu_init(void)
2374 int cpu
= smp_processor_id();
2376 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2377 set_cpu_online(cpu
, true);
2378 set_cpu_active(cpu
, true);
2379 set_cpu_present(cpu
, true);
2380 set_cpu_possible(cpu
, true);
2383 __boot_cpu_id
= cpu
;
2388 * Must be called _AFTER_ setting up the per_cpu areas
2390 void __init
boot_cpu_hotplug_init(void)
2393 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask
);
2395 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);
2399 * These are used for a global "mitigations=" cmdline option for toggling
2400 * optional CPU mitigations.
2402 enum cpu_mitigations
{
2403 CPU_MITIGATIONS_OFF
,
2404 CPU_MITIGATIONS_AUTO
,
2405 CPU_MITIGATIONS_AUTO_NOSMT
,
2408 static enum cpu_mitigations cpu_mitigations __ro_after_init
=
2409 CPU_MITIGATIONS_AUTO
;
2411 static int __init
mitigations_parse_cmdline(char *arg
)
2413 if (!strcmp(arg
, "off"))
2414 cpu_mitigations
= CPU_MITIGATIONS_OFF
;
2415 else if (!strcmp(arg
, "auto"))
2416 cpu_mitigations
= CPU_MITIGATIONS_AUTO
;
2417 else if (!strcmp(arg
, "auto,nosmt"))
2418 cpu_mitigations
= CPU_MITIGATIONS_AUTO_NOSMT
;
2420 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2425 early_param("mitigations", mitigations_parse_cmdline
);
2427 /* mitigations=off */
2428 bool cpu_mitigations_off(void)
2430 return cpu_mitigations
== CPU_MITIGATIONS_OFF
;
2432 EXPORT_SYMBOL_GPL(cpu_mitigations_off
);
2434 /* mitigations=auto,nosmt */
2435 bool cpu_mitigations_auto_nosmt(void)
2437 return cpu_mitigations
== CPU_MITIGATIONS_AUTO_NOSMT
;
2439 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt
);