bnxt_en: Fix NULL ptr dereference crash in bnxt_fw_reset_task()
[linux/fpc-iii.git] / kernel / cpu.c
blob7527825ac7daa3ce52fec987d74085875d33b88a
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
40 #include "smpboot.h"
42 /**
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
56 struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
60 #ifdef CONFIG_SMP
61 struct task_struct *thread;
62 bool should_run;
63 bool rollback;
64 bool single;
65 bool bringup;
66 struct hlist_node *node;
67 struct hlist_node *last;
68 enum cpuhp_state cb_state;
69 int result;
70 struct completion done_up;
71 struct completion done_down;
72 #endif
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 .fail = CPUHP_INVALID,
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90 static inline void cpuhp_lock_acquire(bool bringup)
92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95 static inline void cpuhp_lock_release(bool bringup)
97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
99 #else
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
104 #endif
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
113 struct cpuhp_step {
114 const char *name;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } startup;
120 union {
121 int (*single)(unsigned int cpu);
122 int (*multi)(unsigned int cpu,
123 struct hlist_node *node);
124 } teardown;
125 struct hlist_head list;
126 bool cant_stop;
127 bool multi_instance;
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
135 return cpuhp_hp_states + state;
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
146 * Called from cpu hotplug and from the state register machinery.
148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 bool bringup, struct hlist_node *node,
150 struct hlist_node **lastp)
152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 struct cpuhp_step *step = cpuhp_get_step(state);
154 int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 int (*cb)(unsigned int cpu);
156 int ret, cnt;
158 if (st->fail == state) {
159 st->fail = CPUHP_INVALID;
161 if (!(bringup ? step->startup.single : step->teardown.single))
162 return 0;
164 return -EAGAIN;
167 if (!step->multi_instance) {
168 WARN_ON_ONCE(lastp && *lastp);
169 cb = bringup ? step->startup.single : step->teardown.single;
170 if (!cb)
171 return 0;
172 trace_cpuhp_enter(cpu, st->target, state, cb);
173 ret = cb(cpu);
174 trace_cpuhp_exit(cpu, st->state, state, ret);
175 return ret;
177 cbm = bringup ? step->startup.multi : step->teardown.multi;
178 if (!cbm)
179 return 0;
181 /* Single invocation for instance add/remove */
182 if (node) {
183 WARN_ON_ONCE(lastp && *lastp);
184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 ret = cbm(cpu, node);
186 trace_cpuhp_exit(cpu, st->state, state, ret);
187 return ret;
190 /* State transition. Invoke on all instances */
191 cnt = 0;
192 hlist_for_each(node, &step->list) {
193 if (lastp && node == *lastp)
194 break;
196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 ret = cbm(cpu, node);
198 trace_cpuhp_exit(cpu, st->state, state, ret);
199 if (ret) {
200 if (!lastp)
201 goto err;
203 *lastp = node;
204 return ret;
206 cnt++;
208 if (lastp)
209 *lastp = NULL;
210 return 0;
211 err:
212 /* Rollback the instances if one failed */
213 cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 if (!cbm)
215 return ret;
217 hlist_for_each(node, &step->list) {
218 if (!cnt--)
219 break;
221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 ret = cbm(cpu, node);
223 trace_cpuhp_exit(cpu, st->state, state, ret);
225 * Rollback must not fail,
227 WARN_ON_ONCE(ret);
229 return ret;
232 #ifdef CONFIG_SMP
233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 wait_for_completion(done);
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
250 struct completion *done = bringup ? &st->done_up : &st->done_down;
251 complete(done);
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
271 void cpu_maps_update_begin(void)
273 mutex_lock(&cpu_add_remove_lock);
276 void cpu_maps_update_done(void)
278 mutex_unlock(&cpu_add_remove_lock);
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
285 static int cpu_hotplug_disabled;
287 #ifdef CONFIG_HOTPLUG_CPU
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
291 void cpus_read_lock(void)
293 percpu_down_read(&cpu_hotplug_lock);
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
297 int cpus_read_trylock(void)
299 return percpu_down_read_trylock(&cpu_hotplug_lock);
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
303 void cpus_read_unlock(void)
305 percpu_up_read(&cpu_hotplug_lock);
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
309 void cpus_write_lock(void)
311 percpu_down_write(&cpu_hotplug_lock);
314 void cpus_write_unlock(void)
316 percpu_up_write(&cpu_hotplug_lock);
319 void lockdep_assert_cpus_held(void)
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
325 * unheld locks.
327 if (system_state < SYSTEM_RUNNING)
328 return;
330 percpu_rwsem_assert_held(&cpu_hotplug_lock);
333 static void lockdep_acquire_cpus_lock(void)
335 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
338 static void lockdep_release_cpus_lock(void)
340 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
344 * Wait for currently running CPU hotplug operations to complete (if any) and
345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347 * hotplug path before performing hotplug operations. So acquiring that lock
348 * guarantees mutual exclusion from any currently running hotplug operations.
350 void cpu_hotplug_disable(void)
352 cpu_maps_update_begin();
353 cpu_hotplug_disabled++;
354 cpu_maps_update_done();
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
358 static void __cpu_hotplug_enable(void)
360 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
361 return;
362 cpu_hotplug_disabled--;
365 void cpu_hotplug_enable(void)
367 cpu_maps_update_begin();
368 __cpu_hotplug_enable();
369 cpu_maps_update_done();
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
373 #else
375 static void lockdep_acquire_cpus_lock(void)
379 static void lockdep_release_cpus_lock(void)
383 #endif /* CONFIG_HOTPLUG_CPU */
386 * Architectures that need SMT-specific errata handling during SMT hotplug
387 * should override this.
389 void __weak arch_smt_update(void) { }
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
394 void __init cpu_smt_disable(bool force)
396 if (!cpu_smt_possible())
397 return;
399 if (force) {
400 pr_info("SMT: Force disabled\n");
401 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 } else {
403 pr_info("SMT: disabled\n");
404 cpu_smt_control = CPU_SMT_DISABLED;
409 * The decision whether SMT is supported can only be done after the full
410 * CPU identification. Called from architecture code.
412 void __init cpu_smt_check_topology(void)
414 if (!topology_smt_supported())
415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
418 static int __init smt_cmdline_disable(char *str)
420 cpu_smt_disable(str && !strcmp(str, "force"));
421 return 0;
423 early_param("nosmt", smt_cmdline_disable);
425 static inline bool cpu_smt_allowed(unsigned int cpu)
427 if (cpu_smt_control == CPU_SMT_ENABLED)
428 return true;
430 if (topology_is_primary_thread(cpu))
431 return true;
434 * On x86 it's required to boot all logical CPUs at least once so
435 * that the init code can get a chance to set CR4.MCE on each
436 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
437 * core will shutdown the machine.
439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443 bool cpu_smt_possible(void)
445 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
446 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
448 EXPORT_SYMBOL_GPL(cpu_smt_possible);
449 #else
450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
451 #endif
453 static inline enum cpuhp_state
454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
456 enum cpuhp_state prev_state = st->state;
458 st->rollback = false;
459 st->last = NULL;
461 st->target = target;
462 st->single = false;
463 st->bringup = st->state < target;
465 return prev_state;
468 static inline void
469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
471 st->rollback = true;
474 * If we have st->last we need to undo partial multi_instance of this
475 * state first. Otherwise start undo at the previous state.
477 if (!st->last) {
478 if (st->bringup)
479 st->state--;
480 else
481 st->state++;
484 st->target = prev_state;
485 st->bringup = !st->bringup;
488 /* Regular hotplug invocation of the AP hotplug thread */
489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
491 if (!st->single && st->state == st->target)
492 return;
494 st->result = 0;
496 * Make sure the above stores are visible before should_run becomes
497 * true. Paired with the mb() above in cpuhp_thread_fun()
499 smp_mb();
500 st->should_run = true;
501 wake_up_process(st->thread);
502 wait_for_ap_thread(st, st->bringup);
505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
507 enum cpuhp_state prev_state;
508 int ret;
510 prev_state = cpuhp_set_state(st, target);
511 __cpuhp_kick_ap(st);
512 if ((ret = st->result)) {
513 cpuhp_reset_state(st, prev_state);
514 __cpuhp_kick_ap(st);
517 return ret;
520 static int bringup_wait_for_ap(unsigned int cpu)
522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 wait_for_ap_thread(st, true);
526 if (WARN_ON_ONCE((!cpu_online(cpu))))
527 return -ECANCELED;
529 /* Unpark the hotplug thread of the target cpu */
530 kthread_unpark(st->thread);
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
537 * primary sibling.
539 if (!cpu_smt_allowed(cpu))
540 return -ECANCELED;
542 if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 return 0;
545 return cpuhp_kick_ap(st, st->target);
548 static int bringup_cpu(unsigned int cpu)
550 struct task_struct *idle = idle_thread_get(cpu);
551 int ret;
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
558 irq_lock_sparse();
560 /* Arch-specific enabling code. */
561 ret = __cpu_up(cpu, idle);
562 irq_unlock_sparse();
563 if (ret)
564 return ret;
565 return bringup_wait_for_ap(cpu);
568 static int finish_cpu(unsigned int cpu)
570 struct task_struct *idle = idle_thread_get(cpu);
571 struct mm_struct *mm = idle->active_mm;
574 * idle_task_exit() will have switched to &init_mm, now
575 * clean up any remaining active_mm state.
577 if (mm != &init_mm)
578 idle->active_mm = &init_mm;
579 mmdrop(mm);
580 return 0;
584 * Hotplug state machine related functions
587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
589 for (st->state--; st->state > st->target; st->state--)
590 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
596 return true;
598 * When CPU hotplug is disabled, then taking the CPU down is not
599 * possible because takedown_cpu() and the architecture and
600 * subsystem specific mechanisms are not available. So the CPU
601 * which would be completely unplugged again needs to stay around
602 * in the current state.
604 return st->state <= CPUHP_BRINGUP_CPU;
607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
608 enum cpuhp_state target)
610 enum cpuhp_state prev_state = st->state;
611 int ret = 0;
613 while (st->state < target) {
614 st->state++;
615 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
616 if (ret) {
617 if (can_rollback_cpu(st)) {
618 st->target = prev_state;
619 undo_cpu_up(cpu, st);
621 break;
624 return ret;
628 * The cpu hotplug threads manage the bringup and teardown of the cpus
630 static void cpuhp_create(unsigned int cpu)
632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
634 init_completion(&st->done_up);
635 init_completion(&st->done_down);
638 static int cpuhp_should_run(unsigned int cpu)
640 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
642 return st->should_run;
646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647 * callbacks when a state gets [un]installed at runtime.
649 * Each invocation of this function by the smpboot thread does a single AP
650 * state callback.
652 * It has 3 modes of operation:
653 * - single: runs st->cb_state
654 * - up: runs ++st->state, while st->state < st->target
655 * - down: runs st->state--, while st->state > st->target
657 * When complete or on error, should_run is cleared and the completion is fired.
659 static void cpuhp_thread_fun(unsigned int cpu)
661 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
662 bool bringup = st->bringup;
663 enum cpuhp_state state;
665 if (WARN_ON_ONCE(!st->should_run))
666 return;
669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 * that if we see ->should_run we also see the rest of the state.
672 smp_mb();
675 * The BP holds the hotplug lock, but we're now running on the AP,
676 * ensure that anybody asserting the lock is held, will actually find
677 * it so.
679 lockdep_acquire_cpus_lock();
680 cpuhp_lock_acquire(bringup);
682 if (st->single) {
683 state = st->cb_state;
684 st->should_run = false;
685 } else {
686 if (bringup) {
687 st->state++;
688 state = st->state;
689 st->should_run = (st->state < st->target);
690 WARN_ON_ONCE(st->state > st->target);
691 } else {
692 state = st->state;
693 st->state--;
694 st->should_run = (st->state > st->target);
695 WARN_ON_ONCE(st->state < st->target);
699 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
701 if (cpuhp_is_atomic_state(state)) {
702 local_irq_disable();
703 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
704 local_irq_enable();
707 * STARTING/DYING must not fail!
709 WARN_ON_ONCE(st->result);
710 } else {
711 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
714 if (st->result) {
716 * If we fail on a rollback, we're up a creek without no
717 * paddle, no way forward, no way back. We loose, thanks for
718 * playing.
720 WARN_ON_ONCE(st->rollback);
721 st->should_run = false;
724 cpuhp_lock_release(bringup);
725 lockdep_release_cpus_lock();
727 if (!st->should_run)
728 complete_ap_thread(st, bringup);
731 /* Invoke a single callback on a remote cpu */
732 static int
733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
734 struct hlist_node *node)
736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
737 int ret;
739 if (!cpu_online(cpu))
740 return 0;
742 cpuhp_lock_acquire(false);
743 cpuhp_lock_release(false);
745 cpuhp_lock_acquire(true);
746 cpuhp_lock_release(true);
749 * If we are up and running, use the hotplug thread. For early calls
750 * we invoke the thread function directly.
752 if (!st->thread)
753 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
755 st->rollback = false;
756 st->last = NULL;
758 st->node = node;
759 st->bringup = bringup;
760 st->cb_state = state;
761 st->single = true;
763 __cpuhp_kick_ap(st);
766 * If we failed and did a partial, do a rollback.
768 if ((ret = st->result) && st->last) {
769 st->rollback = true;
770 st->bringup = !bringup;
772 __cpuhp_kick_ap(st);
776 * Clean up the leftovers so the next hotplug operation wont use stale
777 * data.
779 st->node = st->last = NULL;
780 return ret;
783 static int cpuhp_kick_ap_work(unsigned int cpu)
785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786 enum cpuhp_state prev_state = st->state;
787 int ret;
789 cpuhp_lock_acquire(false);
790 cpuhp_lock_release(false);
792 cpuhp_lock_acquire(true);
793 cpuhp_lock_release(true);
795 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
796 ret = cpuhp_kick_ap(st, st->target);
797 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
799 return ret;
802 static struct smp_hotplug_thread cpuhp_threads = {
803 .store = &cpuhp_state.thread,
804 .create = &cpuhp_create,
805 .thread_should_run = cpuhp_should_run,
806 .thread_fn = cpuhp_thread_fun,
807 .thread_comm = "cpuhp/%u",
808 .selfparking = true,
811 void __init cpuhp_threads_init(void)
813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
814 kthread_unpark(this_cpu_read(cpuhp_state.thread));
817 #ifdef CONFIG_HOTPLUG_CPU
819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
820 * @cpu: a CPU id
822 * This function walks all processes, finds a valid mm struct for each one and
823 * then clears a corresponding bit in mm's cpumask. While this all sounds
824 * trivial, there are various non-obvious corner cases, which this function
825 * tries to solve in a safe manner.
827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
828 * be called only for an already offlined CPU.
830 void clear_tasks_mm_cpumask(int cpu)
832 struct task_struct *p;
835 * This function is called after the cpu is taken down and marked
836 * offline, so its not like new tasks will ever get this cpu set in
837 * their mm mask. -- Peter Zijlstra
838 * Thus, we may use rcu_read_lock() here, instead of grabbing
839 * full-fledged tasklist_lock.
841 WARN_ON(cpu_online(cpu));
842 rcu_read_lock();
843 for_each_process(p) {
844 struct task_struct *t;
847 * Main thread might exit, but other threads may still have
848 * a valid mm. Find one.
850 t = find_lock_task_mm(p);
851 if (!t)
852 continue;
853 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
854 task_unlock(t);
856 rcu_read_unlock();
859 /* Take this CPU down. */
860 static int take_cpu_down(void *_param)
862 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
863 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
864 int err, cpu = smp_processor_id();
865 int ret;
867 /* Ensure this CPU doesn't handle any more interrupts. */
868 err = __cpu_disable();
869 if (err < 0)
870 return err;
873 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
874 * do this step again.
876 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
877 st->state--;
878 /* Invoke the former CPU_DYING callbacks */
879 for (; st->state > target; st->state--) {
880 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
882 * DYING must not fail!
884 WARN_ON_ONCE(ret);
887 /* Give up timekeeping duties */
888 tick_handover_do_timer();
889 /* Remove CPU from timer broadcasting */
890 tick_offline_cpu(cpu);
891 /* Park the stopper thread */
892 stop_machine_park(cpu);
893 return 0;
896 static int takedown_cpu(unsigned int cpu)
898 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 int err;
901 /* Park the smpboot threads */
902 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
905 * Prevent irq alloc/free while the dying cpu reorganizes the
906 * interrupt affinities.
908 irq_lock_sparse();
911 * So now all preempt/rcu users must observe !cpu_active().
913 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
914 if (err) {
915 /* CPU refused to die */
916 irq_unlock_sparse();
917 /* Unpark the hotplug thread so we can rollback there */
918 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
919 return err;
921 BUG_ON(cpu_online(cpu));
924 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
925 * all runnable tasks from the CPU, there's only the idle task left now
926 * that the migration thread is done doing the stop_machine thing.
928 * Wait for the stop thread to go away.
930 wait_for_ap_thread(st, false);
931 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
933 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
934 irq_unlock_sparse();
936 hotplug_cpu__broadcast_tick_pull(cpu);
937 /* This actually kills the CPU. */
938 __cpu_die(cpu);
940 tick_cleanup_dead_cpu(cpu);
941 rcutree_migrate_callbacks(cpu);
942 return 0;
945 static void cpuhp_complete_idle_dead(void *arg)
947 struct cpuhp_cpu_state *st = arg;
949 complete_ap_thread(st, false);
952 void cpuhp_report_idle_dead(void)
954 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
956 BUG_ON(st->state != CPUHP_AP_OFFLINE);
957 rcu_report_dead(smp_processor_id());
958 st->state = CPUHP_AP_IDLE_DEAD;
960 * We cannot call complete after rcu_report_dead() so we delegate it
961 * to an online cpu.
963 smp_call_function_single(cpumask_first(cpu_online_mask),
964 cpuhp_complete_idle_dead, st, 0);
967 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
969 for (st->state++; st->state < st->target; st->state++)
970 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
973 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
974 enum cpuhp_state target)
976 enum cpuhp_state prev_state = st->state;
977 int ret = 0;
979 for (; st->state > target; st->state--) {
980 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
981 if (ret) {
982 st->target = prev_state;
983 if (st->state < prev_state)
984 undo_cpu_down(cpu, st);
985 break;
988 return ret;
991 /* Requires cpu_add_remove_lock to be held */
992 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
993 enum cpuhp_state target)
995 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
996 int prev_state, ret = 0;
998 if (num_online_cpus() == 1)
999 return -EBUSY;
1001 if (!cpu_present(cpu))
1002 return -EINVAL;
1004 cpus_write_lock();
1006 cpuhp_tasks_frozen = tasks_frozen;
1008 prev_state = cpuhp_set_state(st, target);
1010 * If the current CPU state is in the range of the AP hotplug thread,
1011 * then we need to kick the thread.
1013 if (st->state > CPUHP_TEARDOWN_CPU) {
1014 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1015 ret = cpuhp_kick_ap_work(cpu);
1017 * The AP side has done the error rollback already. Just
1018 * return the error code..
1020 if (ret)
1021 goto out;
1024 * We might have stopped still in the range of the AP hotplug
1025 * thread. Nothing to do anymore.
1027 if (st->state > CPUHP_TEARDOWN_CPU)
1028 goto out;
1030 st->target = target;
1033 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034 * to do the further cleanups.
1036 ret = cpuhp_down_callbacks(cpu, st, target);
1037 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1038 cpuhp_reset_state(st, prev_state);
1039 __cpuhp_kick_ap(st);
1042 out:
1043 cpus_write_unlock();
1045 * Do post unplug cleanup. This is still protected against
1046 * concurrent CPU hotplug via cpu_add_remove_lock.
1048 lockup_detector_cleanup();
1049 arch_smt_update();
1050 return ret;
1053 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1055 if (cpu_hotplug_disabled)
1056 return -EBUSY;
1057 return _cpu_down(cpu, 0, target);
1060 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1062 int err;
1064 cpu_maps_update_begin();
1065 err = cpu_down_maps_locked(cpu, target);
1066 cpu_maps_update_done();
1067 return err;
1070 int cpu_down(unsigned int cpu)
1072 return do_cpu_down(cpu, CPUHP_OFFLINE);
1074 EXPORT_SYMBOL(cpu_down);
1076 #else
1077 #define takedown_cpu NULL
1078 #endif /*CONFIG_HOTPLUG_CPU*/
1081 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1082 * @cpu: cpu that just started
1084 * It must be called by the arch code on the new cpu, before the new cpu
1085 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1087 void notify_cpu_starting(unsigned int cpu)
1089 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1090 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1091 int ret;
1093 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1094 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1095 while (st->state < target) {
1096 st->state++;
1097 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1099 * STARTING must not fail!
1101 WARN_ON_ONCE(ret);
1106 * Called from the idle task. Wake up the controlling task which brings the
1107 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1108 * online bringup to the hotplug thread.
1110 void cpuhp_online_idle(enum cpuhp_state state)
1112 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1114 /* Happens for the boot cpu */
1115 if (state != CPUHP_AP_ONLINE_IDLE)
1116 return;
1119 * Unpart the stopper thread before we start the idle loop (and start
1120 * scheduling); this ensures the stopper task is always available.
1122 stop_machine_unpark(smp_processor_id());
1124 st->state = CPUHP_AP_ONLINE_IDLE;
1125 complete_ap_thread(st, true);
1128 /* Requires cpu_add_remove_lock to be held */
1129 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1132 struct task_struct *idle;
1133 int ret = 0;
1135 cpus_write_lock();
1137 if (!cpu_present(cpu)) {
1138 ret = -EINVAL;
1139 goto out;
1143 * The caller of do_cpu_up might have raced with another
1144 * caller. Ignore it for now.
1146 if (st->state >= target)
1147 goto out;
1149 if (st->state == CPUHP_OFFLINE) {
1150 /* Let it fail before we try to bring the cpu up */
1151 idle = idle_thread_get(cpu);
1152 if (IS_ERR(idle)) {
1153 ret = PTR_ERR(idle);
1154 goto out;
1158 cpuhp_tasks_frozen = tasks_frozen;
1160 cpuhp_set_state(st, target);
1162 * If the current CPU state is in the range of the AP hotplug thread,
1163 * then we need to kick the thread once more.
1165 if (st->state > CPUHP_BRINGUP_CPU) {
1166 ret = cpuhp_kick_ap_work(cpu);
1168 * The AP side has done the error rollback already. Just
1169 * return the error code..
1171 if (ret)
1172 goto out;
1176 * Try to reach the target state. We max out on the BP at
1177 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1178 * responsible for bringing it up to the target state.
1180 target = min((int)target, CPUHP_BRINGUP_CPU);
1181 ret = cpuhp_up_callbacks(cpu, st, target);
1182 out:
1183 cpus_write_unlock();
1184 arch_smt_update();
1185 return ret;
1188 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1190 int err = 0;
1192 if (!cpu_possible(cpu)) {
1193 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1194 cpu);
1195 #if defined(CONFIG_IA64)
1196 pr_err("please check additional_cpus= boot parameter\n");
1197 #endif
1198 return -EINVAL;
1201 err = try_online_node(cpu_to_node(cpu));
1202 if (err)
1203 return err;
1205 cpu_maps_update_begin();
1207 if (cpu_hotplug_disabled) {
1208 err = -EBUSY;
1209 goto out;
1211 if (!cpu_smt_allowed(cpu)) {
1212 err = -EPERM;
1213 goto out;
1216 err = _cpu_up(cpu, 0, target);
1217 out:
1218 cpu_maps_update_done();
1219 return err;
1222 int cpu_up(unsigned int cpu)
1224 return do_cpu_up(cpu, CPUHP_ONLINE);
1226 EXPORT_SYMBOL_GPL(cpu_up);
1228 #ifdef CONFIG_PM_SLEEP_SMP
1229 static cpumask_var_t frozen_cpus;
1231 int __freeze_secondary_cpus(int primary, bool suspend)
1233 int cpu, error = 0;
1235 cpu_maps_update_begin();
1236 if (primary == -1) {
1237 primary = cpumask_first(cpu_online_mask);
1238 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1239 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1240 } else {
1241 if (!cpu_online(primary))
1242 primary = cpumask_first(cpu_online_mask);
1246 * We take down all of the non-boot CPUs in one shot to avoid races
1247 * with the userspace trying to use the CPU hotplug at the same time
1249 cpumask_clear(frozen_cpus);
1251 pr_info("Disabling non-boot CPUs ...\n");
1252 for_each_online_cpu(cpu) {
1253 if (cpu == primary)
1254 continue;
1256 if (suspend && pm_wakeup_pending()) {
1257 pr_info("Wakeup pending. Abort CPU freeze\n");
1258 error = -EBUSY;
1259 break;
1262 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1263 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1264 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1265 if (!error)
1266 cpumask_set_cpu(cpu, frozen_cpus);
1267 else {
1268 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1269 break;
1273 if (!error)
1274 BUG_ON(num_online_cpus() > 1);
1275 else
1276 pr_err("Non-boot CPUs are not disabled\n");
1279 * Make sure the CPUs won't be enabled by someone else. We need to do
1280 * this even in case of failure as all disable_nonboot_cpus() users are
1281 * supposed to do enable_nonboot_cpus() on the failure path.
1283 cpu_hotplug_disabled++;
1285 cpu_maps_update_done();
1286 return error;
1289 void __weak arch_enable_nonboot_cpus_begin(void)
1293 void __weak arch_enable_nonboot_cpus_end(void)
1297 void enable_nonboot_cpus(void)
1299 int cpu, error;
1301 /* Allow everyone to use the CPU hotplug again */
1302 cpu_maps_update_begin();
1303 __cpu_hotplug_enable();
1304 if (cpumask_empty(frozen_cpus))
1305 goto out;
1307 pr_info("Enabling non-boot CPUs ...\n");
1309 arch_enable_nonboot_cpus_begin();
1311 for_each_cpu(cpu, frozen_cpus) {
1312 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1313 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1314 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1315 if (!error) {
1316 pr_info("CPU%d is up\n", cpu);
1317 continue;
1319 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1322 arch_enable_nonboot_cpus_end();
1324 cpumask_clear(frozen_cpus);
1325 out:
1326 cpu_maps_update_done();
1329 static int __init alloc_frozen_cpus(void)
1331 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1332 return -ENOMEM;
1333 return 0;
1335 core_initcall(alloc_frozen_cpus);
1338 * When callbacks for CPU hotplug notifications are being executed, we must
1339 * ensure that the state of the system with respect to the tasks being frozen
1340 * or not, as reported by the notification, remains unchanged *throughout the
1341 * duration* of the execution of the callbacks.
1342 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1344 * This synchronization is implemented by mutually excluding regular CPU
1345 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1346 * Hibernate notifications.
1348 static int
1349 cpu_hotplug_pm_callback(struct notifier_block *nb,
1350 unsigned long action, void *ptr)
1352 switch (action) {
1354 case PM_SUSPEND_PREPARE:
1355 case PM_HIBERNATION_PREPARE:
1356 cpu_hotplug_disable();
1357 break;
1359 case PM_POST_SUSPEND:
1360 case PM_POST_HIBERNATION:
1361 cpu_hotplug_enable();
1362 break;
1364 default:
1365 return NOTIFY_DONE;
1368 return NOTIFY_OK;
1372 static int __init cpu_hotplug_pm_sync_init(void)
1375 * cpu_hotplug_pm_callback has higher priority than x86
1376 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1377 * to disable cpu hotplug to avoid cpu hotplug race.
1379 pm_notifier(cpu_hotplug_pm_callback, 0);
1380 return 0;
1382 core_initcall(cpu_hotplug_pm_sync_init);
1384 #endif /* CONFIG_PM_SLEEP_SMP */
1386 int __boot_cpu_id;
1388 #endif /* CONFIG_SMP */
1390 /* Boot processor state steps */
1391 static struct cpuhp_step cpuhp_hp_states[] = {
1392 [CPUHP_OFFLINE] = {
1393 .name = "offline",
1394 .startup.single = NULL,
1395 .teardown.single = NULL,
1397 #ifdef CONFIG_SMP
1398 [CPUHP_CREATE_THREADS]= {
1399 .name = "threads:prepare",
1400 .startup.single = smpboot_create_threads,
1401 .teardown.single = NULL,
1402 .cant_stop = true,
1404 [CPUHP_PERF_PREPARE] = {
1405 .name = "perf:prepare",
1406 .startup.single = perf_event_init_cpu,
1407 .teardown.single = perf_event_exit_cpu,
1409 [CPUHP_WORKQUEUE_PREP] = {
1410 .name = "workqueue:prepare",
1411 .startup.single = workqueue_prepare_cpu,
1412 .teardown.single = NULL,
1414 [CPUHP_HRTIMERS_PREPARE] = {
1415 .name = "hrtimers:prepare",
1416 .startup.single = hrtimers_prepare_cpu,
1417 .teardown.single = hrtimers_dead_cpu,
1419 [CPUHP_SMPCFD_PREPARE] = {
1420 .name = "smpcfd:prepare",
1421 .startup.single = smpcfd_prepare_cpu,
1422 .teardown.single = smpcfd_dead_cpu,
1424 [CPUHP_RELAY_PREPARE] = {
1425 .name = "relay:prepare",
1426 .startup.single = relay_prepare_cpu,
1427 .teardown.single = NULL,
1429 [CPUHP_SLAB_PREPARE] = {
1430 .name = "slab:prepare",
1431 .startup.single = slab_prepare_cpu,
1432 .teardown.single = slab_dead_cpu,
1434 [CPUHP_RCUTREE_PREP] = {
1435 .name = "RCU/tree:prepare",
1436 .startup.single = rcutree_prepare_cpu,
1437 .teardown.single = rcutree_dead_cpu,
1440 * On the tear-down path, timers_dead_cpu() must be invoked
1441 * before blk_mq_queue_reinit_notify() from notify_dead(),
1442 * otherwise a RCU stall occurs.
1444 [CPUHP_TIMERS_PREPARE] = {
1445 .name = "timers:prepare",
1446 .startup.single = timers_prepare_cpu,
1447 .teardown.single = timers_dead_cpu,
1449 /* Kicks the plugged cpu into life */
1450 [CPUHP_BRINGUP_CPU] = {
1451 .name = "cpu:bringup",
1452 .startup.single = bringup_cpu,
1453 .teardown.single = finish_cpu,
1454 .cant_stop = true,
1456 /* Final state before CPU kills itself */
1457 [CPUHP_AP_IDLE_DEAD] = {
1458 .name = "idle:dead",
1461 * Last state before CPU enters the idle loop to die. Transient state
1462 * for synchronization.
1464 [CPUHP_AP_OFFLINE] = {
1465 .name = "ap:offline",
1466 .cant_stop = true,
1468 /* First state is scheduler control. Interrupts are disabled */
1469 [CPUHP_AP_SCHED_STARTING] = {
1470 .name = "sched:starting",
1471 .startup.single = sched_cpu_starting,
1472 .teardown.single = sched_cpu_dying,
1474 [CPUHP_AP_RCUTREE_DYING] = {
1475 .name = "RCU/tree:dying",
1476 .startup.single = NULL,
1477 .teardown.single = rcutree_dying_cpu,
1479 [CPUHP_AP_SMPCFD_DYING] = {
1480 .name = "smpcfd:dying",
1481 .startup.single = NULL,
1482 .teardown.single = smpcfd_dying_cpu,
1484 /* Entry state on starting. Interrupts enabled from here on. Transient
1485 * state for synchronsization */
1486 [CPUHP_AP_ONLINE] = {
1487 .name = "ap:online",
1490 * Handled on controll processor until the plugged processor manages
1491 * this itself.
1493 [CPUHP_TEARDOWN_CPU] = {
1494 .name = "cpu:teardown",
1495 .startup.single = NULL,
1496 .teardown.single = takedown_cpu,
1497 .cant_stop = true,
1499 /* Handle smpboot threads park/unpark */
1500 [CPUHP_AP_SMPBOOT_THREADS] = {
1501 .name = "smpboot/threads:online",
1502 .startup.single = smpboot_unpark_threads,
1503 .teardown.single = smpboot_park_threads,
1505 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1506 .name = "irq/affinity:online",
1507 .startup.single = irq_affinity_online_cpu,
1508 .teardown.single = NULL,
1510 [CPUHP_AP_PERF_ONLINE] = {
1511 .name = "perf:online",
1512 .startup.single = perf_event_init_cpu,
1513 .teardown.single = perf_event_exit_cpu,
1515 [CPUHP_AP_WATCHDOG_ONLINE] = {
1516 .name = "lockup_detector:online",
1517 .startup.single = lockup_detector_online_cpu,
1518 .teardown.single = lockup_detector_offline_cpu,
1520 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1521 .name = "workqueue:online",
1522 .startup.single = workqueue_online_cpu,
1523 .teardown.single = workqueue_offline_cpu,
1525 [CPUHP_AP_RCUTREE_ONLINE] = {
1526 .name = "RCU/tree:online",
1527 .startup.single = rcutree_online_cpu,
1528 .teardown.single = rcutree_offline_cpu,
1530 #endif
1532 * The dynamically registered state space is here
1535 #ifdef CONFIG_SMP
1536 /* Last state is scheduler control setting the cpu active */
1537 [CPUHP_AP_ACTIVE] = {
1538 .name = "sched:active",
1539 .startup.single = sched_cpu_activate,
1540 .teardown.single = sched_cpu_deactivate,
1542 #endif
1544 /* CPU is fully up and running. */
1545 [CPUHP_ONLINE] = {
1546 .name = "online",
1547 .startup.single = NULL,
1548 .teardown.single = NULL,
1552 /* Sanity check for callbacks */
1553 static int cpuhp_cb_check(enum cpuhp_state state)
1555 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1556 return -EINVAL;
1557 return 0;
1561 * Returns a free for dynamic slot assignment of the Online state. The states
1562 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1563 * by having no name assigned.
1565 static int cpuhp_reserve_state(enum cpuhp_state state)
1567 enum cpuhp_state i, end;
1568 struct cpuhp_step *step;
1570 switch (state) {
1571 case CPUHP_AP_ONLINE_DYN:
1572 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1573 end = CPUHP_AP_ONLINE_DYN_END;
1574 break;
1575 case CPUHP_BP_PREPARE_DYN:
1576 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1577 end = CPUHP_BP_PREPARE_DYN_END;
1578 break;
1579 default:
1580 return -EINVAL;
1583 for (i = state; i <= end; i++, step++) {
1584 if (!step->name)
1585 return i;
1587 WARN(1, "No more dynamic states available for CPU hotplug\n");
1588 return -ENOSPC;
1591 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1592 int (*startup)(unsigned int cpu),
1593 int (*teardown)(unsigned int cpu),
1594 bool multi_instance)
1596 /* (Un)Install the callbacks for further cpu hotplug operations */
1597 struct cpuhp_step *sp;
1598 int ret = 0;
1601 * If name is NULL, then the state gets removed.
1603 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1604 * the first allocation from these dynamic ranges, so the removal
1605 * would trigger a new allocation and clear the wrong (already
1606 * empty) state, leaving the callbacks of the to be cleared state
1607 * dangling, which causes wreckage on the next hotplug operation.
1609 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1610 state == CPUHP_BP_PREPARE_DYN)) {
1611 ret = cpuhp_reserve_state(state);
1612 if (ret < 0)
1613 return ret;
1614 state = ret;
1616 sp = cpuhp_get_step(state);
1617 if (name && sp->name)
1618 return -EBUSY;
1620 sp->startup.single = startup;
1621 sp->teardown.single = teardown;
1622 sp->name = name;
1623 sp->multi_instance = multi_instance;
1624 INIT_HLIST_HEAD(&sp->list);
1625 return ret;
1628 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1630 return cpuhp_get_step(state)->teardown.single;
1634 * Call the startup/teardown function for a step either on the AP or
1635 * on the current CPU.
1637 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1638 struct hlist_node *node)
1640 struct cpuhp_step *sp = cpuhp_get_step(state);
1641 int ret;
1644 * If there's nothing to do, we done.
1645 * Relies on the union for multi_instance.
1647 if ((bringup && !sp->startup.single) ||
1648 (!bringup && !sp->teardown.single))
1649 return 0;
1651 * The non AP bound callbacks can fail on bringup. On teardown
1652 * e.g. module removal we crash for now.
1654 #ifdef CONFIG_SMP
1655 if (cpuhp_is_ap_state(state))
1656 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1657 else
1658 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1659 #else
1660 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1661 #endif
1662 BUG_ON(ret && !bringup);
1663 return ret;
1667 * Called from __cpuhp_setup_state on a recoverable failure.
1669 * Note: The teardown callbacks for rollback are not allowed to fail!
1671 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1672 struct hlist_node *node)
1674 int cpu;
1676 /* Roll back the already executed steps on the other cpus */
1677 for_each_present_cpu(cpu) {
1678 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1679 int cpustate = st->state;
1681 if (cpu >= failedcpu)
1682 break;
1684 /* Did we invoke the startup call on that cpu ? */
1685 if (cpustate >= state)
1686 cpuhp_issue_call(cpu, state, false, node);
1690 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1691 struct hlist_node *node,
1692 bool invoke)
1694 struct cpuhp_step *sp;
1695 int cpu;
1696 int ret;
1698 lockdep_assert_cpus_held();
1700 sp = cpuhp_get_step(state);
1701 if (sp->multi_instance == false)
1702 return -EINVAL;
1704 mutex_lock(&cpuhp_state_mutex);
1706 if (!invoke || !sp->startup.multi)
1707 goto add_node;
1710 * Try to call the startup callback for each present cpu
1711 * depending on the hotplug state of the cpu.
1713 for_each_present_cpu(cpu) {
1714 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1715 int cpustate = st->state;
1717 if (cpustate < state)
1718 continue;
1720 ret = cpuhp_issue_call(cpu, state, true, node);
1721 if (ret) {
1722 if (sp->teardown.multi)
1723 cpuhp_rollback_install(cpu, state, node);
1724 goto unlock;
1727 add_node:
1728 ret = 0;
1729 hlist_add_head(node, &sp->list);
1730 unlock:
1731 mutex_unlock(&cpuhp_state_mutex);
1732 return ret;
1735 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1736 bool invoke)
1738 int ret;
1740 cpus_read_lock();
1741 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1742 cpus_read_unlock();
1743 return ret;
1745 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1748 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1749 * @state: The state to setup
1750 * @invoke: If true, the startup function is invoked for cpus where
1751 * cpu state >= @state
1752 * @startup: startup callback function
1753 * @teardown: teardown callback function
1754 * @multi_instance: State is set up for multiple instances which get
1755 * added afterwards.
1757 * The caller needs to hold cpus read locked while calling this function.
1758 * Returns:
1759 * On success:
1760 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1761 * 0 for all other states
1762 * On failure: proper (negative) error code
1764 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1765 const char *name, bool invoke,
1766 int (*startup)(unsigned int cpu),
1767 int (*teardown)(unsigned int cpu),
1768 bool multi_instance)
1770 int cpu, ret = 0;
1771 bool dynstate;
1773 lockdep_assert_cpus_held();
1775 if (cpuhp_cb_check(state) || !name)
1776 return -EINVAL;
1778 mutex_lock(&cpuhp_state_mutex);
1780 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1781 multi_instance);
1783 dynstate = state == CPUHP_AP_ONLINE_DYN;
1784 if (ret > 0 && dynstate) {
1785 state = ret;
1786 ret = 0;
1789 if (ret || !invoke || !startup)
1790 goto out;
1793 * Try to call the startup callback for each present cpu
1794 * depending on the hotplug state of the cpu.
1796 for_each_present_cpu(cpu) {
1797 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1798 int cpustate = st->state;
1800 if (cpustate < state)
1801 continue;
1803 ret = cpuhp_issue_call(cpu, state, true, NULL);
1804 if (ret) {
1805 if (teardown)
1806 cpuhp_rollback_install(cpu, state, NULL);
1807 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1808 goto out;
1811 out:
1812 mutex_unlock(&cpuhp_state_mutex);
1814 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1815 * dynamically allocated state in case of success.
1817 if (!ret && dynstate)
1818 return state;
1819 return ret;
1821 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1823 int __cpuhp_setup_state(enum cpuhp_state state,
1824 const char *name, bool invoke,
1825 int (*startup)(unsigned int cpu),
1826 int (*teardown)(unsigned int cpu),
1827 bool multi_instance)
1829 int ret;
1831 cpus_read_lock();
1832 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1833 teardown, multi_instance);
1834 cpus_read_unlock();
1835 return ret;
1837 EXPORT_SYMBOL(__cpuhp_setup_state);
1839 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1840 struct hlist_node *node, bool invoke)
1842 struct cpuhp_step *sp = cpuhp_get_step(state);
1843 int cpu;
1845 BUG_ON(cpuhp_cb_check(state));
1847 if (!sp->multi_instance)
1848 return -EINVAL;
1850 cpus_read_lock();
1851 mutex_lock(&cpuhp_state_mutex);
1853 if (!invoke || !cpuhp_get_teardown_cb(state))
1854 goto remove;
1856 * Call the teardown callback for each present cpu depending
1857 * on the hotplug state of the cpu. This function is not
1858 * allowed to fail currently!
1860 for_each_present_cpu(cpu) {
1861 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1862 int cpustate = st->state;
1864 if (cpustate >= state)
1865 cpuhp_issue_call(cpu, state, false, node);
1868 remove:
1869 hlist_del(node);
1870 mutex_unlock(&cpuhp_state_mutex);
1871 cpus_read_unlock();
1873 return 0;
1875 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1878 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1879 * @state: The state to remove
1880 * @invoke: If true, the teardown function is invoked for cpus where
1881 * cpu state >= @state
1883 * The caller needs to hold cpus read locked while calling this function.
1884 * The teardown callback is currently not allowed to fail. Think
1885 * about module removal!
1887 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1889 struct cpuhp_step *sp = cpuhp_get_step(state);
1890 int cpu;
1892 BUG_ON(cpuhp_cb_check(state));
1894 lockdep_assert_cpus_held();
1896 mutex_lock(&cpuhp_state_mutex);
1897 if (sp->multi_instance) {
1898 WARN(!hlist_empty(&sp->list),
1899 "Error: Removing state %d which has instances left.\n",
1900 state);
1901 goto remove;
1904 if (!invoke || !cpuhp_get_teardown_cb(state))
1905 goto remove;
1908 * Call the teardown callback for each present cpu depending
1909 * on the hotplug state of the cpu. This function is not
1910 * allowed to fail currently!
1912 for_each_present_cpu(cpu) {
1913 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1914 int cpustate = st->state;
1916 if (cpustate >= state)
1917 cpuhp_issue_call(cpu, state, false, NULL);
1919 remove:
1920 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1921 mutex_unlock(&cpuhp_state_mutex);
1923 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1925 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1927 cpus_read_lock();
1928 __cpuhp_remove_state_cpuslocked(state, invoke);
1929 cpus_read_unlock();
1931 EXPORT_SYMBOL(__cpuhp_remove_state);
1933 #ifdef CONFIG_HOTPLUG_SMT
1934 static void cpuhp_offline_cpu_device(unsigned int cpu)
1936 struct device *dev = get_cpu_device(cpu);
1938 dev->offline = true;
1939 /* Tell user space about the state change */
1940 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1943 static void cpuhp_online_cpu_device(unsigned int cpu)
1945 struct device *dev = get_cpu_device(cpu);
1947 dev->offline = false;
1948 /* Tell user space about the state change */
1949 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1952 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
1954 int cpu, ret = 0;
1956 cpu_maps_update_begin();
1957 for_each_online_cpu(cpu) {
1958 if (topology_is_primary_thread(cpu))
1959 continue;
1960 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1961 if (ret)
1962 break;
1964 * As this needs to hold the cpu maps lock it's impossible
1965 * to call device_offline() because that ends up calling
1966 * cpu_down() which takes cpu maps lock. cpu maps lock
1967 * needs to be held as this might race against in kernel
1968 * abusers of the hotplug machinery (thermal management).
1970 * So nothing would update device:offline state. That would
1971 * leave the sysfs entry stale and prevent onlining after
1972 * smt control has been changed to 'off' again. This is
1973 * called under the sysfs hotplug lock, so it is properly
1974 * serialized against the regular offline usage.
1976 cpuhp_offline_cpu_device(cpu);
1978 if (!ret)
1979 cpu_smt_control = ctrlval;
1980 cpu_maps_update_done();
1981 return ret;
1984 int cpuhp_smt_enable(void)
1986 int cpu, ret = 0;
1988 cpu_maps_update_begin();
1989 cpu_smt_control = CPU_SMT_ENABLED;
1990 for_each_present_cpu(cpu) {
1991 /* Skip online CPUs and CPUs on offline nodes */
1992 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
1993 continue;
1994 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
1995 if (ret)
1996 break;
1997 /* See comment in cpuhp_smt_disable() */
1998 cpuhp_online_cpu_device(cpu);
2000 cpu_maps_update_done();
2001 return ret;
2003 #endif
2005 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2006 static ssize_t show_cpuhp_state(struct device *dev,
2007 struct device_attribute *attr, char *buf)
2009 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2011 return sprintf(buf, "%d\n", st->state);
2013 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2015 static ssize_t write_cpuhp_target(struct device *dev,
2016 struct device_attribute *attr,
2017 const char *buf, size_t count)
2019 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2020 struct cpuhp_step *sp;
2021 int target, ret;
2023 ret = kstrtoint(buf, 10, &target);
2024 if (ret)
2025 return ret;
2027 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2028 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2029 return -EINVAL;
2030 #else
2031 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2032 return -EINVAL;
2033 #endif
2035 ret = lock_device_hotplug_sysfs();
2036 if (ret)
2037 return ret;
2039 mutex_lock(&cpuhp_state_mutex);
2040 sp = cpuhp_get_step(target);
2041 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2042 mutex_unlock(&cpuhp_state_mutex);
2043 if (ret)
2044 goto out;
2046 if (st->state < target)
2047 ret = do_cpu_up(dev->id, target);
2048 else
2049 ret = do_cpu_down(dev->id, target);
2050 out:
2051 unlock_device_hotplug();
2052 return ret ? ret : count;
2055 static ssize_t show_cpuhp_target(struct device *dev,
2056 struct device_attribute *attr, char *buf)
2058 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2060 return sprintf(buf, "%d\n", st->target);
2062 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2065 static ssize_t write_cpuhp_fail(struct device *dev,
2066 struct device_attribute *attr,
2067 const char *buf, size_t count)
2069 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2070 struct cpuhp_step *sp;
2071 int fail, ret;
2073 ret = kstrtoint(buf, 10, &fail);
2074 if (ret)
2075 return ret;
2077 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2078 return -EINVAL;
2081 * Cannot fail STARTING/DYING callbacks.
2083 if (cpuhp_is_atomic_state(fail))
2084 return -EINVAL;
2087 * Cannot fail anything that doesn't have callbacks.
2089 mutex_lock(&cpuhp_state_mutex);
2090 sp = cpuhp_get_step(fail);
2091 if (!sp->startup.single && !sp->teardown.single)
2092 ret = -EINVAL;
2093 mutex_unlock(&cpuhp_state_mutex);
2094 if (ret)
2095 return ret;
2097 st->fail = fail;
2099 return count;
2102 static ssize_t show_cpuhp_fail(struct device *dev,
2103 struct device_attribute *attr, char *buf)
2105 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2107 return sprintf(buf, "%d\n", st->fail);
2110 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2112 static struct attribute *cpuhp_cpu_attrs[] = {
2113 &dev_attr_state.attr,
2114 &dev_attr_target.attr,
2115 &dev_attr_fail.attr,
2116 NULL
2119 static const struct attribute_group cpuhp_cpu_attr_group = {
2120 .attrs = cpuhp_cpu_attrs,
2121 .name = "hotplug",
2122 NULL
2125 static ssize_t show_cpuhp_states(struct device *dev,
2126 struct device_attribute *attr, char *buf)
2128 ssize_t cur, res = 0;
2129 int i;
2131 mutex_lock(&cpuhp_state_mutex);
2132 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2133 struct cpuhp_step *sp = cpuhp_get_step(i);
2135 if (sp->name) {
2136 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2137 buf += cur;
2138 res += cur;
2141 mutex_unlock(&cpuhp_state_mutex);
2142 return res;
2144 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2146 static struct attribute *cpuhp_cpu_root_attrs[] = {
2147 &dev_attr_states.attr,
2148 NULL
2151 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2152 .attrs = cpuhp_cpu_root_attrs,
2153 .name = "hotplug",
2154 NULL
2157 #ifdef CONFIG_HOTPLUG_SMT
2159 static ssize_t
2160 __store_smt_control(struct device *dev, struct device_attribute *attr,
2161 const char *buf, size_t count)
2163 int ctrlval, ret;
2165 if (sysfs_streq(buf, "on"))
2166 ctrlval = CPU_SMT_ENABLED;
2167 else if (sysfs_streq(buf, "off"))
2168 ctrlval = CPU_SMT_DISABLED;
2169 else if (sysfs_streq(buf, "forceoff"))
2170 ctrlval = CPU_SMT_FORCE_DISABLED;
2171 else
2172 return -EINVAL;
2174 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2175 return -EPERM;
2177 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2178 return -ENODEV;
2180 ret = lock_device_hotplug_sysfs();
2181 if (ret)
2182 return ret;
2184 if (ctrlval != cpu_smt_control) {
2185 switch (ctrlval) {
2186 case CPU_SMT_ENABLED:
2187 ret = cpuhp_smt_enable();
2188 break;
2189 case CPU_SMT_DISABLED:
2190 case CPU_SMT_FORCE_DISABLED:
2191 ret = cpuhp_smt_disable(ctrlval);
2192 break;
2196 unlock_device_hotplug();
2197 return ret ? ret : count;
2200 #else /* !CONFIG_HOTPLUG_SMT */
2201 static ssize_t
2202 __store_smt_control(struct device *dev, struct device_attribute *attr,
2203 const char *buf, size_t count)
2205 return -ENODEV;
2207 #endif /* CONFIG_HOTPLUG_SMT */
2209 static const char *smt_states[] = {
2210 [CPU_SMT_ENABLED] = "on",
2211 [CPU_SMT_DISABLED] = "off",
2212 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2213 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2214 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2217 static ssize_t
2218 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2220 const char *state = smt_states[cpu_smt_control];
2222 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2225 static ssize_t
2226 store_smt_control(struct device *dev, struct device_attribute *attr,
2227 const char *buf, size_t count)
2229 return __store_smt_control(dev, attr, buf, count);
2231 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2233 static ssize_t
2234 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2236 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2238 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2240 static struct attribute *cpuhp_smt_attrs[] = {
2241 &dev_attr_control.attr,
2242 &dev_attr_active.attr,
2243 NULL
2246 static const struct attribute_group cpuhp_smt_attr_group = {
2247 .attrs = cpuhp_smt_attrs,
2248 .name = "smt",
2249 NULL
2252 static int __init cpu_smt_sysfs_init(void)
2254 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2255 &cpuhp_smt_attr_group);
2258 static int __init cpuhp_sysfs_init(void)
2260 int cpu, ret;
2262 ret = cpu_smt_sysfs_init();
2263 if (ret)
2264 return ret;
2266 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2267 &cpuhp_cpu_root_attr_group);
2268 if (ret)
2269 return ret;
2271 for_each_possible_cpu(cpu) {
2272 struct device *dev = get_cpu_device(cpu);
2274 if (!dev)
2275 continue;
2276 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2277 if (ret)
2278 return ret;
2280 return 0;
2282 device_initcall(cpuhp_sysfs_init);
2283 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2286 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2287 * represents all NR_CPUS bits binary values of 1<<nr.
2289 * It is used by cpumask_of() to get a constant address to a CPU
2290 * mask value that has a single bit set only.
2293 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2294 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2295 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2296 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2297 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2299 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2301 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2302 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2303 #if BITS_PER_LONG > 32
2304 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2305 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2306 #endif
2308 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2310 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2311 EXPORT_SYMBOL(cpu_all_bits);
2313 #ifdef CONFIG_INIT_ALL_POSSIBLE
2314 struct cpumask __cpu_possible_mask __read_mostly
2315 = {CPU_BITS_ALL};
2316 #else
2317 struct cpumask __cpu_possible_mask __read_mostly;
2318 #endif
2319 EXPORT_SYMBOL(__cpu_possible_mask);
2321 struct cpumask __cpu_online_mask __read_mostly;
2322 EXPORT_SYMBOL(__cpu_online_mask);
2324 struct cpumask __cpu_present_mask __read_mostly;
2325 EXPORT_SYMBOL(__cpu_present_mask);
2327 struct cpumask __cpu_active_mask __read_mostly;
2328 EXPORT_SYMBOL(__cpu_active_mask);
2330 atomic_t __num_online_cpus __read_mostly;
2331 EXPORT_SYMBOL(__num_online_cpus);
2333 void init_cpu_present(const struct cpumask *src)
2335 cpumask_copy(&__cpu_present_mask, src);
2338 void init_cpu_possible(const struct cpumask *src)
2340 cpumask_copy(&__cpu_possible_mask, src);
2343 void init_cpu_online(const struct cpumask *src)
2345 cpumask_copy(&__cpu_online_mask, src);
2348 void set_cpu_online(unsigned int cpu, bool online)
2351 * atomic_inc/dec() is required to handle the horrid abuse of this
2352 * function by the reboot and kexec code which invoke it from
2353 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2354 * regular CPU hotplug is properly serialized.
2356 * Note, that the fact that __num_online_cpus is of type atomic_t
2357 * does not protect readers which are not serialized against
2358 * concurrent hotplug operations.
2360 if (online) {
2361 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2362 atomic_inc(&__num_online_cpus);
2363 } else {
2364 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2365 atomic_dec(&__num_online_cpus);
2370 * Activate the first processor.
2372 void __init boot_cpu_init(void)
2374 int cpu = smp_processor_id();
2376 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2377 set_cpu_online(cpu, true);
2378 set_cpu_active(cpu, true);
2379 set_cpu_present(cpu, true);
2380 set_cpu_possible(cpu, true);
2382 #ifdef CONFIG_SMP
2383 __boot_cpu_id = cpu;
2384 #endif
2388 * Must be called _AFTER_ setting up the per_cpu areas
2390 void __init boot_cpu_hotplug_init(void)
2392 #ifdef CONFIG_SMP
2393 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2394 #endif
2395 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2399 * These are used for a global "mitigations=" cmdline option for toggling
2400 * optional CPU mitigations.
2402 enum cpu_mitigations {
2403 CPU_MITIGATIONS_OFF,
2404 CPU_MITIGATIONS_AUTO,
2405 CPU_MITIGATIONS_AUTO_NOSMT,
2408 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2409 CPU_MITIGATIONS_AUTO;
2411 static int __init mitigations_parse_cmdline(char *arg)
2413 if (!strcmp(arg, "off"))
2414 cpu_mitigations = CPU_MITIGATIONS_OFF;
2415 else if (!strcmp(arg, "auto"))
2416 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2417 else if (!strcmp(arg, "auto,nosmt"))
2418 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2419 else
2420 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2421 arg);
2423 return 0;
2425 early_param("mitigations", mitigations_parse_cmdline);
2427 /* mitigations=off */
2428 bool cpu_mitigations_off(void)
2430 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2432 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2434 /* mitigations=auto,nosmt */
2435 bool cpu_mitigations_auto_nosmt(void)
2437 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2439 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);