Linux 2.6.31.6
[linux/fpc-iii.git] / arch / x86 / kernel / kvm.c
blob63b0ec8d3d4a4d8856ed21f7f9a174d7732c5ce0
1 /*
2 * KVM paravirt_ops implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19 * Copyright IBM Corporation, 2007
20 * Authors: Anthony Liguori <aliguori@us.ibm.com>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <asm/timer.h>
32 #define MMU_QUEUE_SIZE 1024
34 struct kvm_para_state {
35 u8 mmu_queue[MMU_QUEUE_SIZE];
36 int mmu_queue_len;
39 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
41 static struct kvm_para_state *kvm_para_state(void)
43 return &per_cpu(para_state, raw_smp_processor_id());
47 * No need for any "IO delay" on KVM
49 static void kvm_io_delay(void)
53 static void kvm_mmu_op(void *buffer, unsigned len)
55 int r;
56 unsigned long a1, a2;
58 do {
59 a1 = __pa(buffer);
60 a2 = 0; /* on i386 __pa() always returns <4G */
61 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
62 buffer += r;
63 len -= r;
64 } while (len);
67 static void mmu_queue_flush(struct kvm_para_state *state)
69 if (state->mmu_queue_len) {
70 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
71 state->mmu_queue_len = 0;
75 static void kvm_deferred_mmu_op(void *buffer, int len)
77 struct kvm_para_state *state = kvm_para_state();
79 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
80 kvm_mmu_op(buffer, len);
81 return;
83 if (state->mmu_queue_len + len > sizeof state->mmu_queue)
84 mmu_queue_flush(state);
85 memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
86 state->mmu_queue_len += len;
89 static void kvm_mmu_write(void *dest, u64 val)
91 __u64 pte_phys;
92 struct kvm_mmu_op_write_pte wpte;
94 #ifdef CONFIG_HIGHPTE
95 struct page *page;
96 unsigned long dst = (unsigned long) dest;
98 page = kmap_atomic_to_page(dest);
99 pte_phys = page_to_pfn(page);
100 pte_phys <<= PAGE_SHIFT;
101 pte_phys += (dst & ~(PAGE_MASK));
102 #else
103 pte_phys = (unsigned long)__pa(dest);
104 #endif
105 wpte.header.op = KVM_MMU_OP_WRITE_PTE;
106 wpte.pte_val = val;
107 wpte.pte_phys = pte_phys;
109 kvm_deferred_mmu_op(&wpte, sizeof wpte);
113 * We only need to hook operations that are MMU writes. We hook these so that
114 * we can use lazy MMU mode to batch these operations. We could probably
115 * improve the performance of the host code if we used some of the information
116 * here to simplify processing of batched writes.
118 static void kvm_set_pte(pte_t *ptep, pte_t pte)
120 kvm_mmu_write(ptep, pte_val(pte));
123 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
124 pte_t *ptep, pte_t pte)
126 kvm_mmu_write(ptep, pte_val(pte));
129 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
131 kvm_mmu_write(pmdp, pmd_val(pmd));
134 #if PAGETABLE_LEVELS >= 3
135 #ifdef CONFIG_X86_PAE
136 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
138 kvm_mmu_write(ptep, pte_val(pte));
141 static void kvm_pte_clear(struct mm_struct *mm,
142 unsigned long addr, pte_t *ptep)
144 kvm_mmu_write(ptep, 0);
147 static void kvm_pmd_clear(pmd_t *pmdp)
149 kvm_mmu_write(pmdp, 0);
151 #endif
153 static void kvm_set_pud(pud_t *pudp, pud_t pud)
155 kvm_mmu_write(pudp, pud_val(pud));
158 #if PAGETABLE_LEVELS == 4
159 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
161 kvm_mmu_write(pgdp, pgd_val(pgd));
163 #endif
164 #endif /* PAGETABLE_LEVELS >= 3 */
166 static void kvm_flush_tlb(void)
168 struct kvm_mmu_op_flush_tlb ftlb = {
169 .header.op = KVM_MMU_OP_FLUSH_TLB,
172 kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
175 static void kvm_release_pt(unsigned long pfn)
177 struct kvm_mmu_op_release_pt rpt = {
178 .header.op = KVM_MMU_OP_RELEASE_PT,
179 .pt_phys = (u64)pfn << PAGE_SHIFT,
182 kvm_mmu_op(&rpt, sizeof rpt);
185 static void kvm_enter_lazy_mmu(void)
187 paravirt_enter_lazy_mmu();
190 static void kvm_leave_lazy_mmu(void)
192 struct kvm_para_state *state = kvm_para_state();
194 mmu_queue_flush(state);
195 paravirt_leave_lazy_mmu();
198 static void __init paravirt_ops_setup(void)
200 pv_info.name = "KVM";
201 pv_info.paravirt_enabled = 1;
203 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
204 pv_cpu_ops.io_delay = kvm_io_delay;
206 if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
207 pv_mmu_ops.set_pte = kvm_set_pte;
208 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
209 pv_mmu_ops.set_pmd = kvm_set_pmd;
210 #if PAGETABLE_LEVELS >= 3
211 #ifdef CONFIG_X86_PAE
212 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
213 pv_mmu_ops.pte_clear = kvm_pte_clear;
214 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
215 #endif
216 pv_mmu_ops.set_pud = kvm_set_pud;
217 #if PAGETABLE_LEVELS == 4
218 pv_mmu_ops.set_pgd = kvm_set_pgd;
219 #endif
220 #endif
221 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
222 pv_mmu_ops.release_pte = kvm_release_pt;
223 pv_mmu_ops.release_pmd = kvm_release_pt;
224 pv_mmu_ops.release_pud = kvm_release_pt;
226 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
227 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
229 #ifdef CONFIG_X86_IO_APIC
230 no_timer_check = 1;
231 #endif
234 void __init kvm_guest_init(void)
236 if (!kvm_para_available())
237 return;
239 paravirt_ops_setup();