mtd: rawnand: Get rid of chip->ecc_{strength,step}_ds
[linux/fpc-iii.git] / drivers / mtd / nand / raw / marvell_nand.c
blob825c47b3fa0d1b02f96db1df4e11b56f7aa00367
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell NAND flash controller driver
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
37 * when BCH is chosen:
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
54 * bytes.
56 * The controller has certain limitations that are handled by the
57 * driver:
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
70 * supported layouts.
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
74 * markers.
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94 #define FIFO_DEPTH 8
95 #define FIFO_REP(x) (x / sizeof(u32))
96 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE 2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN 7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD 0
103 #define POLL_TIMEOUT 100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT 1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT 3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1 5
110 #define MAX_ADDRESS_CYC_NFCV2 7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX 0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL 0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL 0x700
120 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
122 /* NAND controller data flash control register */
123 #define NDCR 0x00
124 #define NDCR_ALL_INT GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM BIT(7)
126 #define NDCR_CS0_CMDDM BIT(8)
127 #define NDCR_RDYM BIT(11)
128 #define NDCR_ND_ARB_EN BIT(12)
129 #define NDCR_RA_START BIT(15)
130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M BIT(26)
133 #define NDCR_DWIDTH_C BIT(27)
134 #define NDCR_ND_RUN BIT(28)
135 #define NDCR_DMA_EN BIT(29)
136 #define NDCR_ECC_EN BIT(30)
137 #define NDCR_SPARE_EN BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
141 /* NAND interface timing parameter 0 register */
142 #define NDTR0 0x04
143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE BIT(7)
147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR BIT(26)
153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
155 /* NAND interface timing parameter 1 register */
156 #define NDTR1 0x0C
157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE BIT(14)
161 #define NDTR1_WAIT_MODE BIT(15)
162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
164 /* NAND controller status register */
165 #define NDSR 0x14
166 #define NDSR_WRCMDREQ BIT(0)
167 #define NDSR_RDDREQ BIT(1)
168 #define NDSR_WRDREQ BIT(2)
169 #define NDSR_CORERR BIT(3)
170 #define NDSR_UNCERR BIT(4)
171 #define NDSR_CMDD(cs) BIT(8 - cs)
172 #define NDSR_RDY(rb) BIT(11 + rb)
173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
175 /* NAND ECC control register */
176 #define NDECCCTRL 0x28
177 #define NDECCCTRL_BCH_EN BIT(0)
179 /* NAND controller data buffer register */
180 #define NDDB 0x40
182 /* NAND controller command buffer 0 register */
183 #define NDCB0 0x48
184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC BIT(19)
189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
190 #define NDCB0_CSEL BIT(24)
191 #define NDCB0_RDY_BYP BIT(27)
192 #define NDCB0_LEN_OVRD BIT(28)
193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
195 /* NAND controller command buffer 1 register */
196 #define NDCB1 0x4C
197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x) (x << 16)
200 /* NAND controller command buffer 2 register */
201 #define NDCB2 0x50
202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
205 /* NAND controller command buffer 3 register */
206 #define NDCB3 0x54
207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211 #define TYPE_READ 0
212 #define TYPE_WRITE 1
213 #define TYPE_ERASE 2
214 #define TYPE_READ_ID 3
215 #define TYPE_STATUS 4
216 #define TYPE_RESET 5
217 #define TYPE_NAKED_CMD 6
218 #define TYPE_NAKED_ADDR 7
219 #define TYPE_MASK 7
220 #define XTYPE_MONOLITHIC_RW 0
221 #define XTYPE_LAST_NAKED_RW 1
222 #define XTYPE_FINAL_COMMAND 3
223 #define XTYPE_READ 4
224 #define XTYPE_WRITE_DISPATCH 4
225 #define XTYPE_NAKED_RW 5
226 #define XTYPE_COMMAND_DISPATCH 6
227 #define XTYPE_MASK 7
230 * Marvell ECC engine works differently than the others, in order to limit the
231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
232 * per subpage, and depending on a the desired strength needed by the NAND chip,
233 * a particular layout mixing data/spare/ecc is defined, with a possible last
234 * chunk smaller that the others.
236 * @writesize: Full page size on which the layout applies
237 * @chunk: Desired ECC chunk size on which the layout applies
238 * @strength: Desired ECC strength (per chunk size bytes) on which the
239 * layout applies
240 * @nchunks: Total number of chunks
241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
242 * repetitions of the pattern:
243 * (data_bytes + spare_bytes + ecc_bytes).
244 * @data_bytes: Number of data bytes per chunk
245 * @spare_bytes: Number of spare bytes per chunk
246 * @ecc_bytes: Number of ecc bytes per chunk
247 * @last_data_bytes: Number of data bytes in the last chunk
248 * @last_spare_bytes: Number of spare bytes in the last chunk
249 * @last_ecc_bytes: Number of ecc bytes in the last chunk
251 struct marvell_hw_ecc_layout {
252 /* Constraints */
253 int writesize;
254 int chunk;
255 int strength;
256 /* Corresponding layout */
257 int nchunks;
258 int full_chunk_cnt;
259 int data_bytes;
260 int spare_bytes;
261 int ecc_bytes;
262 int last_data_bytes;
263 int last_spare_bytes;
264 int last_ecc_bytes;
267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
269 .writesize = ws, \
270 .chunk = dc, \
271 .strength = ds, \
272 .nchunks = nc, \
273 .full_chunk_cnt = fcc, \
274 .data_bytes = db, \
275 .spare_bytes = sb, \
276 .ecc_bytes = eb, \
277 .last_data_bytes = ldb, \
278 .last_spare_bytes = lsb, \
279 .last_ecc_bytes = leb, \
282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
296 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
297 * The datasheet describes the logic with an error: ADDR5 field is once
298 * declared at the beginning of NDCB2, and another time at its end. Because the
299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
300 * to use the last bit of this field instead of the first ones.
302 * @cs: Wanted CE lane.
303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
304 * selecting the wanted CE lane. This is set once when
305 * the Device Tree is probed.
306 * @rb: Ready/Busy pin for the flash chip
308 struct marvell_nand_chip_sel {
309 unsigned int cs;
310 u32 ndcb0_csel;
311 unsigned int rb;
315 * NAND chip structure: stores NAND chip device related information
317 * @chip: Base NAND chip structure
318 * @node: Used to store NAND chips into a list
319 * @layout NAND layout when using hardware ECC
320 * @ndcr: Controller register value for this NAND chip
321 * @ndtr0: Timing registers 0 value for this NAND chip
322 * @ndtr1: Timing registers 1 value for this NAND chip
323 * @selected_die: Current active CS
324 * @nsels: Number of CS lines required by the NAND chip
325 * @sels: Array of CS lines descriptions
327 struct marvell_nand_chip {
328 struct nand_chip chip;
329 struct list_head node;
330 const struct marvell_hw_ecc_layout *layout;
331 u32 ndcr;
332 u32 ndtr0;
333 u32 ndtr1;
334 int addr_cyc;
335 int selected_die;
336 unsigned int nsels;
337 struct marvell_nand_chip_sel sels[0];
340 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
342 return container_of(chip, struct marvell_nand_chip, chip);
345 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
346 *nand)
348 return &nand->sels[nand->selected_die];
352 * NAND controller capabilities for distinction between compatible strings
354 * @max_cs_nb: Number of Chip Select lines available
355 * @max_rb_nb: Number of Ready/Busy lines available
356 * @need_system_controller: Indicates if the SoC needs to have access to the
357 * system controller (ie. to enable the NAND controller)
358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
359 * fashion way
360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
361 * BCH error detection and correction algorithm,
362 * NDCB3 register has been added
363 * @use_dma: Use dma for data transfers
365 struct marvell_nfc_caps {
366 unsigned int max_cs_nb;
367 unsigned int max_rb_nb;
368 bool need_system_controller;
369 bool legacy_of_bindings;
370 bool is_nfcv2;
371 bool use_dma;
375 * NAND controller structure: stores Marvell NAND controller information
377 * @controller: Base controller structure
378 * @dev: Parent device (used to print error messages)
379 * @regs: NAND controller registers
380 * @core_clk: Core clock
381 * @reg_clk: Registers clock
382 * @complete: Completion object to wait for NAND controller events
383 * @assigned_cs: Bitmask describing already assigned CS lines
384 * @chips: List containing all the NAND chips attached to
385 * this NAND controller
386 * @caps: NAND controller capabilities for each compatible string
387 * @dma_chan: DMA channel (NFCv1 only)
388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
390 struct marvell_nfc {
391 struct nand_controller controller;
392 struct device *dev;
393 void __iomem *regs;
394 struct clk *core_clk;
395 struct clk *reg_clk;
396 struct completion complete;
397 unsigned long assigned_cs;
398 struct list_head chips;
399 struct nand_chip *selected_chip;
400 const struct marvell_nfc_caps *caps;
402 /* DMA (NFCv1 only) */
403 bool use_dma;
404 struct dma_chan *dma_chan;
405 u8 *dma_buf;
408 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
410 return container_of(ctrl, struct marvell_nfc, controller);
414 * NAND controller timings expressed in NAND Controller clock cycles
416 * @tRP: ND_nRE pulse width
417 * @tRH: ND_nRE high duration
418 * @tWP: ND_nWE pulse time
419 * @tWH: ND_nWE high duration
420 * @tCS: Enable signal setup time
421 * @tCH: Enable signal hold time
422 * @tADL: Address to write data delay
423 * @tAR: ND_ALE low to ND_nRE low delay
424 * @tWHR: ND_nWE high to ND_nRE low for status read
425 * @tRHW: ND_nRE high duration, read to write delay
426 * @tR: ND_nWE high to ND_nRE low for read
428 struct marvell_nfc_timings {
429 /* NDTR0 fields */
430 unsigned int tRP;
431 unsigned int tRH;
432 unsigned int tWP;
433 unsigned int tWH;
434 unsigned int tCS;
435 unsigned int tCH;
436 unsigned int tADL;
437 /* NDTR1 fields */
438 unsigned int tAR;
439 unsigned int tWHR;
440 unsigned int tRHW;
441 unsigned int tR;
445 * Derives a duration in numbers of clock cycles.
447 * @ps: Duration in pico-seconds
448 * @period_ns: Clock period in nano-seconds
450 * Convert the duration in nano-seconds, then divide by the period and
451 * return the number of clock periods.
453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
455 period_ns))
458 * NAND driver structure filled during the parsing of the ->exec_op() subop
459 * subset of instructions.
461 * @ndcb: Array of values written to NDCBx registers
462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
464 * @rdy_delay_ns: Optional delay after waiting for the RB pin
465 * @data_delay_ns: Optional delay after the data xfer
466 * @data_instr_idx: Index of the data instruction in the subop
467 * @data_instr: Pointer to the data instruction in the subop
469 struct marvell_nfc_op {
470 u32 ndcb[4];
471 unsigned int cle_ale_delay_ns;
472 unsigned int rdy_timeout_ms;
473 unsigned int rdy_delay_ns;
474 unsigned int data_delay_ns;
475 unsigned int data_instr_idx;
476 const struct nand_op_instr *data_instr;
480 * Internal helper to conditionnally apply a delay (from the above structure,
481 * most of the time).
483 static void cond_delay(unsigned int ns)
485 if (!ns)
486 return;
488 if (ns < 10000)
489 ndelay(ns);
490 else
491 udelay(DIV_ROUND_UP(ns, 1000));
495 * The controller has many flags that could generate interrupts, most of them
496 * are disabled and polling is used. For the very slow signals, using interrupts
497 * may relax the CPU charge.
499 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
501 u32 reg;
503 /* Writing 1 disables the interrupt */
504 reg = readl_relaxed(nfc->regs + NDCR);
505 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
508 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
510 u32 reg;
512 /* Writing 0 enables the interrupt */
513 reg = readl_relaxed(nfc->regs + NDCR);
514 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
517 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
519 u32 reg;
521 reg = readl_relaxed(nfc->regs + NDSR);
522 writel_relaxed(int_mask, nfc->regs + NDSR);
524 return reg & int_mask;
527 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
528 bool force_8bit)
530 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
531 u32 ndcr;
534 * Callers of this function do not verify if the NAND is using a 16-bit
535 * an 8-bit bus for normal operations, so we need to take care of that
536 * here by leaving the configuration unchanged if the NAND does not have
537 * the NAND_BUSWIDTH_16 flag set.
539 if (!(chip->options & NAND_BUSWIDTH_16))
540 return;
542 ndcr = readl_relaxed(nfc->regs + NDCR);
544 if (force_8bit)
545 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
546 else
547 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
549 writel_relaxed(ndcr, nfc->regs + NDCR);
552 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
554 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
555 u32 val;
556 int ret;
559 * The command is being processed, wait for the ND_RUN bit to be
560 * cleared by the NFC. If not, we must clear it by hand.
562 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
563 (val & NDCR_ND_RUN) == 0,
564 POLL_PERIOD, POLL_TIMEOUT);
565 if (ret) {
566 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
567 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
568 nfc->regs + NDCR);
569 return ret;
572 return 0;
576 * Any time a command has to be sent to the controller, the following sequence
577 * has to be followed:
578 * - call marvell_nfc_prepare_cmd()
579 * -> activate the ND_RUN bit that will kind of 'start a job'
580 * -> wait the signal indicating the NFC is waiting for a command
581 * - send the command (cmd and address cycles)
582 * - enventually send or receive the data
583 * - call marvell_nfc_end_cmd() with the corresponding flag
584 * -> wait the flag to be triggered or cancel the job with a timeout
586 * The following helpers are here to factorize the code a bit so that
587 * specialized functions responsible for executing the actual NAND
588 * operations do not have to replicate the same code blocks.
590 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
592 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
593 u32 ndcr, val;
594 int ret;
596 /* Poll ND_RUN and clear NDSR before issuing any command */
597 ret = marvell_nfc_wait_ndrun(chip);
598 if (ret) {
599 dev_err(nfc->dev, "Last operation did not succeed\n");
600 return ret;
603 ndcr = readl_relaxed(nfc->regs + NDCR);
604 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
606 /* Assert ND_RUN bit and wait the NFC to be ready */
607 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
608 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
609 val & NDSR_WRCMDREQ,
610 POLL_PERIOD, POLL_TIMEOUT);
611 if (ret) {
612 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
613 return -ETIMEDOUT;
616 /* Command may be written, clear WRCMDREQ status bit */
617 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
619 return 0;
622 static void marvell_nfc_send_cmd(struct nand_chip *chip,
623 struct marvell_nfc_op *nfc_op)
625 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
626 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
628 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
629 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
630 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
631 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
633 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
634 nfc->regs + NDCB0);
635 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
636 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
639 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
640 * fields are used (only available on NFCv2).
642 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
643 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
644 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
645 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
649 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
650 const char *label)
652 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
653 u32 val;
654 int ret;
656 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
657 val & flag,
658 POLL_PERIOD, POLL_TIMEOUT);
660 if (ret) {
661 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
662 label, val);
663 if (nfc->dma_chan)
664 dmaengine_terminate_all(nfc->dma_chan);
665 return ret;
669 * DMA function uses this helper to poll on CMDD bits without wanting
670 * them to be cleared.
672 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
673 return 0;
675 writel_relaxed(flag, nfc->regs + NDSR);
677 return 0;
680 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
682 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
683 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
685 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
688 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
690 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
691 u32 pending;
692 int ret;
694 /* Timeout is expressed in ms */
695 if (!timeout_ms)
696 timeout_ms = IRQ_TIMEOUT;
698 init_completion(&nfc->complete);
700 marvell_nfc_enable_int(nfc, NDCR_RDYM);
701 ret = wait_for_completion_timeout(&nfc->complete,
702 msecs_to_jiffies(timeout_ms));
703 marvell_nfc_disable_int(nfc, NDCR_RDYM);
704 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
707 * In case the interrupt was not served in the required time frame,
708 * check if the ISR was not served or if something went actually wrong.
710 if (ret && !pending) {
711 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
712 return -ETIMEDOUT;
715 return 0;
718 static void marvell_nfc_select_target(struct nand_chip *chip,
719 unsigned int die_nr)
721 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
722 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
723 u32 ndcr_generic;
725 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
726 return;
728 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
729 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
732 * Reset the NDCR register to a clean state for this particular chip,
733 * also clear ND_RUN bit.
735 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
736 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
737 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
739 /* Also reset the interrupt status register */
740 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
742 nfc->selected_chip = chip;
743 marvell_nand->selected_die = die_nr;
746 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
748 struct marvell_nfc *nfc = dev_id;
749 u32 st = readl_relaxed(nfc->regs + NDSR);
750 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
753 * RDY interrupt mask is one bit in NDCR while there are two status
754 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
756 if (st & NDSR_RDY(1))
757 st |= NDSR_RDY(0);
759 if (!(st & ien))
760 return IRQ_NONE;
762 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
764 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
765 complete(&nfc->complete);
767 return IRQ_HANDLED;
770 /* HW ECC related functions */
771 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
773 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
774 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
776 if (!(ndcr & NDCR_ECC_EN)) {
777 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
780 * When enabling BCH, set threshold to 0 to always know the
781 * number of corrected bitflips.
783 if (chip->ecc.algo == NAND_ECC_BCH)
784 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
788 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
790 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
791 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
793 if (ndcr & NDCR_ECC_EN) {
794 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
795 if (chip->ecc.algo == NAND_ECC_BCH)
796 writel_relaxed(0, nfc->regs + NDECCCTRL);
800 /* DMA related helpers */
801 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
803 u32 reg;
805 reg = readl_relaxed(nfc->regs + NDCR);
806 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
809 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
811 u32 reg;
813 reg = readl_relaxed(nfc->regs + NDCR);
814 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
817 /* Read/write PIO/DMA accessors */
818 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
819 enum dma_data_direction direction,
820 unsigned int len)
822 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
823 struct dma_async_tx_descriptor *tx;
824 struct scatterlist sg;
825 dma_cookie_t cookie;
826 int ret;
828 marvell_nfc_enable_dma(nfc);
829 /* Prepare the DMA transfer */
830 sg_init_one(&sg, nfc->dma_buf, dma_len);
831 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
832 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
833 direction == DMA_FROM_DEVICE ?
834 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
835 DMA_PREP_INTERRUPT);
836 if (!tx) {
837 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
838 return -ENXIO;
841 /* Do the task and wait for it to finish */
842 cookie = dmaengine_submit(tx);
843 ret = dma_submit_error(cookie);
844 if (ret)
845 return -EIO;
847 dma_async_issue_pending(nfc->dma_chan);
848 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
849 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
850 marvell_nfc_disable_dma(nfc);
851 if (ret) {
852 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
853 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
854 dmaengine_terminate_all(nfc->dma_chan);
855 return -ETIMEDOUT;
858 return 0;
861 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
862 unsigned int len)
864 unsigned int last_len = len % FIFO_DEPTH;
865 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
866 int i;
868 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
869 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
871 if (last_len) {
872 u8 tmp_buf[FIFO_DEPTH];
874 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
875 memcpy(in + last_full_offset, tmp_buf, last_len);
878 return 0;
881 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
882 unsigned int len)
884 unsigned int last_len = len % FIFO_DEPTH;
885 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
886 int i;
888 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
889 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
891 if (last_len) {
892 u8 tmp_buf[FIFO_DEPTH];
894 memcpy(tmp_buf, out + last_full_offset, last_len);
895 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
898 return 0;
901 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
902 u8 *data, int data_len,
903 u8 *spare, int spare_len,
904 u8 *ecc, int ecc_len,
905 unsigned int *max_bitflips)
907 struct mtd_info *mtd = nand_to_mtd(chip);
908 int bf;
911 * Blank pages (all 0xFF) that have not been written may be recognized
912 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
913 * check if the entire page (with ECC bytes) is actually blank or not.
915 if (!data)
916 data_len = 0;
917 if (!spare)
918 spare_len = 0;
919 if (!ecc)
920 ecc_len = 0;
922 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
923 spare, spare_len, chip->ecc.strength);
924 if (bf < 0) {
925 mtd->ecc_stats.failed++;
926 return;
929 /* Update the stats and max_bitflips */
930 mtd->ecc_stats.corrected += bf;
931 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
935 * Check a chunk is correct or not according to hardware ECC engine.
936 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
937 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
938 * value indicating that a check on the emptyness of the subpage must be
939 * performed before declaring the subpage corrupted.
941 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
942 unsigned int *max_bitflips)
944 struct mtd_info *mtd = nand_to_mtd(chip);
945 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
946 int bf = 0;
947 u32 ndsr;
949 ndsr = readl_relaxed(nfc->regs + NDSR);
951 /* Check uncorrectable error flag */
952 if (ndsr & NDSR_UNCERR) {
953 writel_relaxed(ndsr, nfc->regs + NDSR);
956 * Do not increment ->ecc_stats.failed now, instead, return a
957 * non-zero value to indicate that this chunk was apparently
958 * bad, and it should be check to see if it empty or not. If
959 * the chunk (with ECC bytes) is not declared empty, the calling
960 * function must increment the failure count.
962 return -EBADMSG;
965 /* Check correctable error flag */
966 if (ndsr & NDSR_CORERR) {
967 writel_relaxed(ndsr, nfc->regs + NDSR);
969 if (chip->ecc.algo == NAND_ECC_BCH)
970 bf = NDSR_ERRCNT(ndsr);
971 else
972 bf = 1;
975 /* Update the stats and max_bitflips */
976 mtd->ecc_stats.corrected += bf;
977 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
979 return 0;
982 /* Hamming read helpers */
983 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
984 u8 *data_buf, u8 *oob_buf,
985 bool raw, int page)
987 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
989 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
990 struct marvell_nfc_op nfc_op = {
991 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
992 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
993 NDCB0_DBC |
994 NDCB0_CMD1(NAND_CMD_READ0) |
995 NDCB0_CMD2(NAND_CMD_READSTART),
996 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
997 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
999 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1000 int ret;
1002 /* NFCv2 needs more information about the operation being executed */
1003 if (nfc->caps->is_nfcv2)
1004 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1006 ret = marvell_nfc_prepare_cmd(chip);
1007 if (ret)
1008 return ret;
1010 marvell_nfc_send_cmd(chip, &nfc_op);
1011 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1012 "RDDREQ while draining FIFO (data/oob)");
1013 if (ret)
1014 return ret;
1017 * Read the page then the OOB area. Unlike what is shown in current
1018 * documentation, spare bytes are protected by the ECC engine, and must
1019 * be at the beginning of the OOB area or running this driver on legacy
1020 * systems will prevent the discovery of the BBM/BBT.
1022 if (nfc->use_dma) {
1023 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1024 lt->data_bytes + oob_bytes);
1025 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1026 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1027 } else {
1028 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1029 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1032 ret = marvell_nfc_wait_cmdd(chip);
1033 return ret;
1036 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1037 int oob_required, int page)
1039 marvell_nfc_select_target(chip, chip->cur_cs);
1040 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1041 true, page);
1044 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1045 int oob_required, int page)
1047 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1048 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1049 int max_bitflips = 0, ret;
1050 u8 *raw_buf;
1052 marvell_nfc_select_target(chip, chip->cur_cs);
1053 marvell_nfc_enable_hw_ecc(chip);
1054 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1055 page);
1056 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1057 marvell_nfc_disable_hw_ecc(chip);
1059 if (!ret)
1060 return max_bitflips;
1063 * When ECC failures are detected, check if the full page has been
1064 * written or not. Ignore the failure if it is actually empty.
1066 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1067 if (!raw_buf)
1068 return -ENOMEM;
1070 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1071 lt->data_bytes, true, page);
1072 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1073 &max_bitflips);
1074 kfree(raw_buf);
1076 return max_bitflips;
1080 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1081 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1082 * also stands for ->read_oob().
1084 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1086 u8 *buf = nand_get_data_buf(chip);
1088 marvell_nfc_select_target(chip, chip->cur_cs);
1089 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1090 true, page);
1093 /* Hamming write helpers */
1094 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1095 const u8 *data_buf,
1096 const u8 *oob_buf, bool raw,
1097 int page)
1099 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1100 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1101 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1102 struct marvell_nfc_op nfc_op = {
1103 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1104 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1105 NDCB0_CMD1(NAND_CMD_SEQIN) |
1106 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1107 NDCB0_DBC,
1108 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1109 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1111 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1112 int ret;
1114 /* NFCv2 needs more information about the operation being executed */
1115 if (nfc->caps->is_nfcv2)
1116 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1118 ret = marvell_nfc_prepare_cmd(chip);
1119 if (ret)
1120 return ret;
1122 marvell_nfc_send_cmd(chip, &nfc_op);
1123 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1124 "WRDREQ while loading FIFO (data)");
1125 if (ret)
1126 return ret;
1128 /* Write the page then the OOB area */
1129 if (nfc->use_dma) {
1130 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1131 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1132 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1133 lt->ecc_bytes + lt->spare_bytes);
1134 } else {
1135 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1136 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1139 ret = marvell_nfc_wait_cmdd(chip);
1140 if (ret)
1141 return ret;
1143 ret = marvell_nfc_wait_op(chip,
1144 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1145 return ret;
1148 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1149 const u8 *buf,
1150 int oob_required, int page)
1152 marvell_nfc_select_target(chip, chip->cur_cs);
1153 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1154 true, page);
1157 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1158 const u8 *buf,
1159 int oob_required, int page)
1161 int ret;
1163 marvell_nfc_select_target(chip, chip->cur_cs);
1164 marvell_nfc_enable_hw_ecc(chip);
1165 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1166 false, page);
1167 marvell_nfc_disable_hw_ecc(chip);
1169 return ret;
1173 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1174 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1175 * also stands for ->write_oob().
1177 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1178 int page)
1180 struct mtd_info *mtd = nand_to_mtd(chip);
1181 u8 *buf = nand_get_data_buf(chip);
1183 memset(buf, 0xFF, mtd->writesize);
1185 marvell_nfc_select_target(chip, chip->cur_cs);
1186 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1187 true, page);
1190 /* BCH read helpers */
1191 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1192 int oob_required, int page)
1194 struct mtd_info *mtd = nand_to_mtd(chip);
1195 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1196 u8 *oob = chip->oob_poi;
1197 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1198 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1199 lt->last_spare_bytes;
1200 int data_len = lt->data_bytes;
1201 int spare_len = lt->spare_bytes;
1202 int ecc_len = lt->ecc_bytes;
1203 int chunk;
1205 marvell_nfc_select_target(chip, chip->cur_cs);
1207 if (oob_required)
1208 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1210 nand_read_page_op(chip, page, 0, NULL, 0);
1212 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1213 /* Update last chunk length */
1214 if (chunk >= lt->full_chunk_cnt) {
1215 data_len = lt->last_data_bytes;
1216 spare_len = lt->last_spare_bytes;
1217 ecc_len = lt->last_ecc_bytes;
1220 /* Read data bytes*/
1221 nand_change_read_column_op(chip, chunk * chunk_size,
1222 buf + (lt->data_bytes * chunk),
1223 data_len, false);
1225 /* Read spare bytes */
1226 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1227 spare_len, false);
1229 /* Read ECC bytes */
1230 nand_read_data_op(chip, oob + ecc_offset +
1231 (ALIGN(lt->ecc_bytes, 32) * chunk),
1232 ecc_len, false);
1235 return 0;
1238 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1239 u8 *data, unsigned int data_len,
1240 u8 *spare, unsigned int spare_len,
1241 int page)
1243 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1244 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1245 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1246 int i, ret;
1247 struct marvell_nfc_op nfc_op = {
1248 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1249 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1250 NDCB0_LEN_OVRD,
1251 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1252 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1253 .ndcb[3] = data_len + spare_len,
1256 ret = marvell_nfc_prepare_cmd(chip);
1257 if (ret)
1258 return;
1260 if (chunk == 0)
1261 nfc_op.ndcb[0] |= NDCB0_DBC |
1262 NDCB0_CMD1(NAND_CMD_READ0) |
1263 NDCB0_CMD2(NAND_CMD_READSTART);
1266 * Trigger the monolithic read on the first chunk, then naked read on
1267 * intermediate chunks and finally a last naked read on the last chunk.
1269 if (chunk == 0)
1270 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1271 else if (chunk < lt->nchunks - 1)
1272 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1273 else
1274 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1276 marvell_nfc_send_cmd(chip, &nfc_op);
1279 * According to the datasheet, when reading from NDDB
1280 * with BCH enabled, after each 32 bytes reads, we
1281 * have to make sure that the NDSR.RDDREQ bit is set.
1283 * Drain the FIFO, 8 32-bit reads at a time, and skip
1284 * the polling on the last read.
1286 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1288 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1289 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1290 "RDDREQ while draining FIFO (data)");
1291 marvell_nfc_xfer_data_in_pio(nfc, data,
1292 FIFO_DEPTH * BCH_SEQ_READS);
1293 data += FIFO_DEPTH * BCH_SEQ_READS;
1296 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1297 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1298 "RDDREQ while draining FIFO (OOB)");
1299 marvell_nfc_xfer_data_in_pio(nfc, spare,
1300 FIFO_DEPTH * BCH_SEQ_READS);
1301 spare += FIFO_DEPTH * BCH_SEQ_READS;
1305 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1306 u8 *buf, int oob_required,
1307 int page)
1309 struct mtd_info *mtd = nand_to_mtd(chip);
1310 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1311 int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1312 u8 *data = buf, *spare = chip->oob_poi;
1313 int max_bitflips = 0;
1314 u32 failure_mask = 0;
1315 int chunk, ret;
1317 marvell_nfc_select_target(chip, chip->cur_cs);
1320 * With BCH, OOB is not fully used (and thus not read entirely), not
1321 * expected bytes could show up at the end of the OOB buffer if not
1322 * explicitly erased.
1324 if (oob_required)
1325 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1327 marvell_nfc_enable_hw_ecc(chip);
1329 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1330 /* Update length for the last chunk */
1331 if (chunk >= lt->full_chunk_cnt) {
1332 data_len = lt->last_data_bytes;
1333 spare_len = lt->last_spare_bytes;
1336 /* Read the chunk and detect number of bitflips */
1337 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1338 spare, spare_len, page);
1339 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1340 if (ret)
1341 failure_mask |= BIT(chunk);
1343 data += data_len;
1344 spare += spare_len;
1347 marvell_nfc_disable_hw_ecc(chip);
1349 if (!failure_mask)
1350 return max_bitflips;
1353 * Please note that dumping the ECC bytes during a normal read with OOB
1354 * area would add a significant overhead as ECC bytes are "consumed" by
1355 * the controller in normal mode and must be re-read in raw mode. To
1356 * avoid dropping the performances, we prefer not to include them. The
1357 * user should re-read the page in raw mode if ECC bytes are required.
1361 * In case there is any subpage read error reported by ->correct(), we
1362 * usually re-read only ECC bytes in raw mode and check if the whole
1363 * page is empty. In this case, it is normal that the ECC check failed
1364 * and we just ignore the error.
1366 * However, it has been empirically observed that for some layouts (e.g
1367 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1368 * bits and may create itself bitflips in the erased area. To overcome
1369 * this strange behavior, the whole page is re-read in raw mode, not
1370 * only the ECC bytes.
1372 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1373 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1374 int data_off, spare_off, ecc_off;
1375 int data_len, spare_len, ecc_len;
1377 /* No failure reported for this chunk, move to the next one */
1378 if (!(failure_mask & BIT(chunk)))
1379 continue;
1381 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1382 lt->ecc_bytes);
1383 spare_off_in_page = data_off_in_page +
1384 (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1385 lt->last_data_bytes);
1386 ecc_off_in_page = spare_off_in_page +
1387 (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1388 lt->last_spare_bytes);
1390 data_off = chunk * lt->data_bytes;
1391 spare_off = chunk * lt->spare_bytes;
1392 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1393 lt->last_spare_bytes +
1394 (chunk * (lt->ecc_bytes + 2));
1396 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1397 lt->last_data_bytes;
1398 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1399 lt->last_spare_bytes;
1400 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1401 lt->last_ecc_bytes;
1404 * Only re-read the ECC bytes, unless we are using the 2k/8b
1405 * layout which is buggy in the sense that the ECC engine will
1406 * try to correct data bytes anyway, creating bitflips. In this
1407 * case, re-read the entire page.
1409 if (lt->writesize == 2048 && lt->strength == 8) {
1410 nand_change_read_column_op(chip, data_off_in_page,
1411 buf + data_off, data_len,
1412 false);
1413 nand_change_read_column_op(chip, spare_off_in_page,
1414 chip->oob_poi + spare_off, spare_len,
1415 false);
1418 nand_change_read_column_op(chip, ecc_off_in_page,
1419 chip->oob_poi + ecc_off, ecc_len,
1420 false);
1422 /* Check the entire chunk (data + spare + ecc) for emptyness */
1423 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1424 chip->oob_poi + spare_off, spare_len,
1425 chip->oob_poi + ecc_off, ecc_len,
1426 &max_bitflips);
1429 return max_bitflips;
1432 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1434 u8 *buf = nand_get_data_buf(chip);
1436 return chip->ecc.read_page_raw(chip, buf, true, page);
1439 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1441 u8 *buf = nand_get_data_buf(chip);
1443 return chip->ecc.read_page(chip, buf, true, page);
1446 /* BCH write helpers */
1447 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1448 const u8 *buf,
1449 int oob_required, int page)
1451 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1452 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1453 int data_len = lt->data_bytes;
1454 int spare_len = lt->spare_bytes;
1455 int ecc_len = lt->ecc_bytes;
1456 int spare_offset = 0;
1457 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1458 lt->last_spare_bytes;
1459 int chunk;
1461 marvell_nfc_select_target(chip, chip->cur_cs);
1463 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1465 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1466 if (chunk >= lt->full_chunk_cnt) {
1467 data_len = lt->last_data_bytes;
1468 spare_len = lt->last_spare_bytes;
1469 ecc_len = lt->last_ecc_bytes;
1472 /* Point to the column of the next chunk */
1473 nand_change_write_column_op(chip, chunk * full_chunk_size,
1474 NULL, 0, false);
1476 /* Write the data */
1477 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1478 data_len, false);
1480 if (!oob_required)
1481 continue;
1483 /* Write the spare bytes */
1484 if (spare_len)
1485 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1486 spare_len, false);
1488 /* Write the ECC bytes */
1489 if (ecc_len)
1490 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1491 ecc_len, false);
1493 spare_offset += spare_len;
1494 ecc_offset += ALIGN(ecc_len, 32);
1497 return nand_prog_page_end_op(chip);
1500 static int
1501 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1502 const u8 *data, unsigned int data_len,
1503 const u8 *spare, unsigned int spare_len,
1504 int page)
1506 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1507 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1508 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1509 u32 xtype;
1510 int ret;
1511 struct marvell_nfc_op nfc_op = {
1512 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1513 .ndcb[3] = data_len + spare_len,
1517 * First operation dispatches the CMD_SEQIN command, issue the address
1518 * cycles and asks for the first chunk of data.
1519 * All operations in the middle (if any) will issue a naked write and
1520 * also ask for data.
1521 * Last operation (if any) asks for the last chunk of data through a
1522 * last naked write.
1524 if (chunk == 0) {
1525 if (lt->nchunks == 1)
1526 xtype = XTYPE_MONOLITHIC_RW;
1527 else
1528 xtype = XTYPE_WRITE_DISPATCH;
1530 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1531 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1532 NDCB0_CMD1(NAND_CMD_SEQIN);
1533 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1534 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1535 } else if (chunk < lt->nchunks - 1) {
1536 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1537 } else {
1538 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1541 /* Always dispatch the PAGEPROG command on the last chunk */
1542 if (chunk == lt->nchunks - 1)
1543 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1545 ret = marvell_nfc_prepare_cmd(chip);
1546 if (ret)
1547 return ret;
1549 marvell_nfc_send_cmd(chip, &nfc_op);
1550 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1551 "WRDREQ while loading FIFO (data)");
1552 if (ret)
1553 return ret;
1555 /* Transfer the contents */
1556 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1557 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1559 return 0;
1562 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1563 const u8 *buf,
1564 int oob_required, int page)
1566 struct mtd_info *mtd = nand_to_mtd(chip);
1567 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1568 const u8 *data = buf;
1569 const u8 *spare = chip->oob_poi;
1570 int data_len = lt->data_bytes;
1571 int spare_len = lt->spare_bytes;
1572 int chunk, ret;
1574 marvell_nfc_select_target(chip, chip->cur_cs);
1576 /* Spare data will be written anyway, so clear it to avoid garbage */
1577 if (!oob_required)
1578 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1580 marvell_nfc_enable_hw_ecc(chip);
1582 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1583 if (chunk >= lt->full_chunk_cnt) {
1584 data_len = lt->last_data_bytes;
1585 spare_len = lt->last_spare_bytes;
1588 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1589 spare, spare_len, page);
1590 data += data_len;
1591 spare += spare_len;
1594 * Waiting only for CMDD or PAGED is not enough, ECC are
1595 * partially written. No flag is set once the operation is
1596 * really finished but the ND_RUN bit is cleared, so wait for it
1597 * before stepping into the next command.
1599 marvell_nfc_wait_ndrun(chip);
1602 ret = marvell_nfc_wait_op(chip,
1603 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1605 marvell_nfc_disable_hw_ecc(chip);
1607 if (ret)
1608 return ret;
1610 return 0;
1613 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1614 int page)
1616 struct mtd_info *mtd = nand_to_mtd(chip);
1617 u8 *buf = nand_get_data_buf(chip);
1619 memset(buf, 0xFF, mtd->writesize);
1621 return chip->ecc.write_page_raw(chip, buf, true, page);
1624 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1626 struct mtd_info *mtd = nand_to_mtd(chip);
1627 u8 *buf = nand_get_data_buf(chip);
1629 memset(buf, 0xFF, mtd->writesize);
1631 return chip->ecc.write_page(chip, buf, true, page);
1634 /* NAND framework ->exec_op() hooks and related helpers */
1635 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1636 const struct nand_subop *subop,
1637 struct marvell_nfc_op *nfc_op)
1639 const struct nand_op_instr *instr = NULL;
1640 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1641 bool first_cmd = true;
1642 unsigned int op_id;
1643 int i;
1645 /* Reset the input structure as most of its fields will be OR'ed */
1646 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1648 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1649 unsigned int offset, naddrs;
1650 const u8 *addrs;
1651 int len;
1653 instr = &subop->instrs[op_id];
1655 switch (instr->type) {
1656 case NAND_OP_CMD_INSTR:
1657 if (first_cmd)
1658 nfc_op->ndcb[0] |=
1659 NDCB0_CMD1(instr->ctx.cmd.opcode);
1660 else
1661 nfc_op->ndcb[0] |=
1662 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1663 NDCB0_DBC;
1665 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1666 first_cmd = false;
1667 break;
1669 case NAND_OP_ADDR_INSTR:
1670 offset = nand_subop_get_addr_start_off(subop, op_id);
1671 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1672 addrs = &instr->ctx.addr.addrs[offset];
1674 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1676 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1677 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1679 if (naddrs >= 5)
1680 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1681 if (naddrs >= 6)
1682 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1683 if (naddrs == 7)
1684 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1686 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1687 break;
1689 case NAND_OP_DATA_IN_INSTR:
1690 nfc_op->data_instr = instr;
1691 nfc_op->data_instr_idx = op_id;
1692 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1693 if (nfc->caps->is_nfcv2) {
1694 nfc_op->ndcb[0] |=
1695 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1696 NDCB0_LEN_OVRD;
1697 len = nand_subop_get_data_len(subop, op_id);
1698 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1700 nfc_op->data_delay_ns = instr->delay_ns;
1701 break;
1703 case NAND_OP_DATA_OUT_INSTR:
1704 nfc_op->data_instr = instr;
1705 nfc_op->data_instr_idx = op_id;
1706 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1707 if (nfc->caps->is_nfcv2) {
1708 nfc_op->ndcb[0] |=
1709 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1710 NDCB0_LEN_OVRD;
1711 len = nand_subop_get_data_len(subop, op_id);
1712 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1714 nfc_op->data_delay_ns = instr->delay_ns;
1715 break;
1717 case NAND_OP_WAITRDY_INSTR:
1718 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1719 nfc_op->rdy_delay_ns = instr->delay_ns;
1720 break;
1725 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1726 const struct nand_subop *subop,
1727 struct marvell_nfc_op *nfc_op)
1729 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1730 const struct nand_op_instr *instr = nfc_op->data_instr;
1731 unsigned int op_id = nfc_op->data_instr_idx;
1732 unsigned int len = nand_subop_get_data_len(subop, op_id);
1733 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1734 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1735 int ret;
1737 if (instr->ctx.data.force_8bit)
1738 marvell_nfc_force_byte_access(chip, true);
1740 if (reading) {
1741 u8 *in = instr->ctx.data.buf.in + offset;
1743 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1744 } else {
1745 const u8 *out = instr->ctx.data.buf.out + offset;
1747 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1750 if (instr->ctx.data.force_8bit)
1751 marvell_nfc_force_byte_access(chip, false);
1753 return ret;
1756 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1757 const struct nand_subop *subop)
1759 struct marvell_nfc_op nfc_op;
1760 bool reading;
1761 int ret;
1763 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1764 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1766 ret = marvell_nfc_prepare_cmd(chip);
1767 if (ret)
1768 return ret;
1770 marvell_nfc_send_cmd(chip, &nfc_op);
1771 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1772 "RDDREQ/WRDREQ while draining raw data");
1773 if (ret)
1774 return ret;
1776 cond_delay(nfc_op.cle_ale_delay_ns);
1778 if (reading) {
1779 if (nfc_op.rdy_timeout_ms) {
1780 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1781 if (ret)
1782 return ret;
1785 cond_delay(nfc_op.rdy_delay_ns);
1788 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1789 ret = marvell_nfc_wait_cmdd(chip);
1790 if (ret)
1791 return ret;
1793 cond_delay(nfc_op.data_delay_ns);
1795 if (!reading) {
1796 if (nfc_op.rdy_timeout_ms) {
1797 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1798 if (ret)
1799 return ret;
1802 cond_delay(nfc_op.rdy_delay_ns);
1806 * NDCR ND_RUN bit should be cleared automatically at the end of each
1807 * operation but experience shows that the behavior is buggy when it
1808 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1810 if (!reading) {
1811 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1813 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1814 nfc->regs + NDCR);
1817 return 0;
1820 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1821 const struct nand_subop *subop)
1823 struct marvell_nfc_op nfc_op;
1824 int ret;
1826 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1829 * Naked access are different in that they need to be flagged as naked
1830 * by the controller. Reset the controller registers fields that inform
1831 * on the type and refill them according to the ongoing operation.
1833 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1834 NDCB0_CMD_XTYPE(XTYPE_MASK));
1835 switch (subop->instrs[0].type) {
1836 case NAND_OP_CMD_INSTR:
1837 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1838 break;
1839 case NAND_OP_ADDR_INSTR:
1840 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1841 break;
1842 case NAND_OP_DATA_IN_INSTR:
1843 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1844 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1845 break;
1846 case NAND_OP_DATA_OUT_INSTR:
1847 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1848 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1849 break;
1850 default:
1851 /* This should never happen */
1852 break;
1855 ret = marvell_nfc_prepare_cmd(chip);
1856 if (ret)
1857 return ret;
1859 marvell_nfc_send_cmd(chip, &nfc_op);
1861 if (!nfc_op.data_instr) {
1862 ret = marvell_nfc_wait_cmdd(chip);
1863 cond_delay(nfc_op.cle_ale_delay_ns);
1864 return ret;
1867 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1868 "RDDREQ/WRDREQ while draining raw data");
1869 if (ret)
1870 return ret;
1872 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1873 ret = marvell_nfc_wait_cmdd(chip);
1874 if (ret)
1875 return ret;
1878 * NDCR ND_RUN bit should be cleared automatically at the end of each
1879 * operation but experience shows that the behavior is buggy when it
1880 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1882 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1883 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1885 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1886 nfc->regs + NDCR);
1889 return 0;
1892 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1893 const struct nand_subop *subop)
1895 struct marvell_nfc_op nfc_op;
1896 int ret;
1898 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1900 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1901 cond_delay(nfc_op.rdy_delay_ns);
1903 return ret;
1906 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1907 const struct nand_subop *subop)
1909 struct marvell_nfc_op nfc_op;
1910 int ret;
1912 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1913 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1916 ret = marvell_nfc_prepare_cmd(chip);
1917 if (ret)
1918 return ret;
1920 marvell_nfc_send_cmd(chip, &nfc_op);
1921 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1922 "RDDREQ while reading ID");
1923 if (ret)
1924 return ret;
1926 cond_delay(nfc_op.cle_ale_delay_ns);
1928 if (nfc_op.rdy_timeout_ms) {
1929 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1930 if (ret)
1931 return ret;
1934 cond_delay(nfc_op.rdy_delay_ns);
1936 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1937 ret = marvell_nfc_wait_cmdd(chip);
1938 if (ret)
1939 return ret;
1941 cond_delay(nfc_op.data_delay_ns);
1943 return 0;
1946 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1947 const struct nand_subop *subop)
1949 struct marvell_nfc_op nfc_op;
1950 int ret;
1952 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1953 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1954 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1956 ret = marvell_nfc_prepare_cmd(chip);
1957 if (ret)
1958 return ret;
1960 marvell_nfc_send_cmd(chip, &nfc_op);
1961 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1962 "RDDREQ while reading status");
1963 if (ret)
1964 return ret;
1966 cond_delay(nfc_op.cle_ale_delay_ns);
1968 if (nfc_op.rdy_timeout_ms) {
1969 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1970 if (ret)
1971 return ret;
1974 cond_delay(nfc_op.rdy_delay_ns);
1976 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1977 ret = marvell_nfc_wait_cmdd(chip);
1978 if (ret)
1979 return ret;
1981 cond_delay(nfc_op.data_delay_ns);
1983 return 0;
1986 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1987 const struct nand_subop *subop)
1989 struct marvell_nfc_op nfc_op;
1990 int ret;
1992 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1993 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1995 ret = marvell_nfc_prepare_cmd(chip);
1996 if (ret)
1997 return ret;
1999 marvell_nfc_send_cmd(chip, &nfc_op);
2000 ret = marvell_nfc_wait_cmdd(chip);
2001 if (ret)
2002 return ret;
2004 cond_delay(nfc_op.cle_ale_delay_ns);
2006 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2007 if (ret)
2008 return ret;
2010 cond_delay(nfc_op.rdy_delay_ns);
2012 return 0;
2015 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2016 const struct nand_subop *subop)
2018 struct marvell_nfc_op nfc_op;
2019 int ret;
2021 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2022 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2024 ret = marvell_nfc_prepare_cmd(chip);
2025 if (ret)
2026 return ret;
2028 marvell_nfc_send_cmd(chip, &nfc_op);
2029 ret = marvell_nfc_wait_cmdd(chip);
2030 if (ret)
2031 return ret;
2033 cond_delay(nfc_op.cle_ale_delay_ns);
2035 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2036 if (ret)
2037 return ret;
2039 cond_delay(nfc_op.rdy_delay_ns);
2041 return 0;
2044 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2045 /* Monolithic reads/writes */
2046 NAND_OP_PARSER_PATTERN(
2047 marvell_nfc_monolithic_access_exec,
2048 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2049 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2050 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2051 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2052 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2053 NAND_OP_PARSER_PATTERN(
2054 marvell_nfc_monolithic_access_exec,
2055 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2056 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2057 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2058 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2059 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2060 /* Naked commands */
2061 NAND_OP_PARSER_PATTERN(
2062 marvell_nfc_naked_access_exec,
2063 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2064 NAND_OP_PARSER_PATTERN(
2065 marvell_nfc_naked_access_exec,
2066 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2067 NAND_OP_PARSER_PATTERN(
2068 marvell_nfc_naked_access_exec,
2069 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2070 NAND_OP_PARSER_PATTERN(
2071 marvell_nfc_naked_access_exec,
2072 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2073 NAND_OP_PARSER_PATTERN(
2074 marvell_nfc_naked_waitrdy_exec,
2075 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2078 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2079 /* Naked commands not supported, use a function for each pattern */
2080 NAND_OP_PARSER_PATTERN(
2081 marvell_nfc_read_id_type_exec,
2082 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2083 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2084 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2085 NAND_OP_PARSER_PATTERN(
2086 marvell_nfc_erase_cmd_type_exec,
2087 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2089 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2090 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2091 NAND_OP_PARSER_PATTERN(
2092 marvell_nfc_read_status_exec,
2093 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2094 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2095 NAND_OP_PARSER_PATTERN(
2096 marvell_nfc_reset_cmd_type_exec,
2097 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2098 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2099 NAND_OP_PARSER_PATTERN(
2100 marvell_nfc_naked_waitrdy_exec,
2101 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2104 static int marvell_nfc_exec_op(struct nand_chip *chip,
2105 const struct nand_operation *op,
2106 bool check_only)
2108 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2110 marvell_nfc_select_target(chip, op->cs);
2112 if (nfc->caps->is_nfcv2)
2113 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2114 op, check_only);
2115 else
2116 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2117 op, check_only);
2121 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2122 * usable.
2124 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2125 struct mtd_oob_region *oobregion)
2127 struct nand_chip *chip = mtd_to_nand(mtd);
2128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2130 if (section)
2131 return -ERANGE;
2133 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2134 lt->last_ecc_bytes;
2135 oobregion->offset = mtd->oobsize - oobregion->length;
2137 return 0;
2140 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2141 struct mtd_oob_region *oobregion)
2143 struct nand_chip *chip = mtd_to_nand(mtd);
2144 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2146 if (section)
2147 return -ERANGE;
2150 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2151 * 4KB page / 4bit BCH combination.
2153 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2154 oobregion->offset = 6;
2155 else
2156 oobregion->offset = 2;
2158 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2159 lt->last_spare_bytes - oobregion->offset;
2161 return 0;
2164 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2165 .ecc = marvell_nand_ooblayout_ecc,
2166 .free = marvell_nand_ooblayout_free,
2169 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2170 struct nand_ecc_ctrl *ecc)
2172 struct nand_chip *chip = mtd_to_nand(mtd);
2173 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2174 const struct marvell_hw_ecc_layout *l;
2175 int i;
2177 if (!nfc->caps->is_nfcv2 &&
2178 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2179 dev_err(nfc->dev,
2180 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2181 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2182 return -ENOTSUPP;
2185 to_marvell_nand(chip)->layout = NULL;
2186 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2187 l = &marvell_nfc_layouts[i];
2188 if (mtd->writesize == l->writesize &&
2189 ecc->size == l->chunk && ecc->strength == l->strength) {
2190 to_marvell_nand(chip)->layout = l;
2191 break;
2195 if (!to_marvell_nand(chip)->layout ||
2196 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2197 dev_err(nfc->dev,
2198 "ECC strength %d at page size %d is not supported\n",
2199 ecc->strength, mtd->writesize);
2200 return -ENOTSUPP;
2203 /* Special care for the layout 2k/8-bit/512B */
2204 if (l->writesize == 2048 && l->strength == 8) {
2205 if (mtd->oobsize < 128) {
2206 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2207 return -ENOTSUPP;
2208 } else {
2209 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2213 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2214 ecc->steps = l->nchunks;
2215 ecc->size = l->data_bytes;
2217 if (ecc->strength == 1) {
2218 chip->ecc.algo = NAND_ECC_HAMMING;
2219 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2220 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2221 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2222 ecc->read_oob = ecc->read_oob_raw;
2223 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2224 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2225 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2226 ecc->write_oob = ecc->write_oob_raw;
2227 } else {
2228 chip->ecc.algo = NAND_ECC_BCH;
2229 ecc->strength = 16;
2230 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2231 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2232 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2233 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2234 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2235 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2236 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2237 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2240 return 0;
2243 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2244 struct nand_ecc_ctrl *ecc)
2246 struct nand_chip *chip = mtd_to_nand(mtd);
2247 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2248 int ret;
2250 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2251 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2252 ecc->size = chip->base.eccreq.step_size;
2253 ecc->strength = chip->base.eccreq.strength;
2254 } else {
2255 dev_info(nfc->dev,
2256 "No minimum ECC strength, using 1b/512B\n");
2257 ecc->size = 512;
2258 ecc->strength = 1;
2262 switch (ecc->mode) {
2263 case NAND_ECC_HW:
2264 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2265 if (ret)
2266 return ret;
2267 break;
2268 case NAND_ECC_NONE:
2269 case NAND_ECC_SOFT:
2270 case NAND_ECC_ON_DIE:
2271 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2272 mtd->writesize != SZ_2K) {
2273 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2274 mtd->writesize);
2275 return -EINVAL;
2277 break;
2278 default:
2279 return -EINVAL;
2282 return 0;
2285 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2286 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2288 static struct nand_bbt_descr bbt_main_descr = {
2289 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2290 NAND_BBT_2BIT | NAND_BBT_VERSION,
2291 .offs = 8,
2292 .len = 6,
2293 .veroffs = 14,
2294 .maxblocks = 8, /* Last 8 blocks in each chip */
2295 .pattern = bbt_pattern
2298 static struct nand_bbt_descr bbt_mirror_descr = {
2299 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2300 NAND_BBT_2BIT | NAND_BBT_VERSION,
2301 .offs = 8,
2302 .len = 6,
2303 .veroffs = 14,
2304 .maxblocks = 8, /* Last 8 blocks in each chip */
2305 .pattern = bbt_mirror_pattern
2308 static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
2309 const struct nand_data_interface
2310 *conf)
2312 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2313 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2314 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2315 const struct nand_sdr_timings *sdr;
2316 struct marvell_nfc_timings nfc_tmg;
2317 int read_delay;
2319 sdr = nand_get_sdr_timings(conf);
2320 if (IS_ERR(sdr))
2321 return PTR_ERR(sdr);
2324 * SDR timings are given in pico-seconds while NFC timings must be
2325 * expressed in NAND controller clock cycles, which is half of the
2326 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2327 * This is not written anywhere in the datasheet but was observed
2328 * with an oscilloscope.
2330 * NFC datasheet gives equations from which thoses calculations
2331 * are derived, they tend to be slightly more restrictives than the
2332 * given core timings and may improve the overall speed.
2334 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2335 nfc_tmg.tRH = nfc_tmg.tRP;
2336 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2337 nfc_tmg.tWH = nfc_tmg.tWP;
2338 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2339 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2340 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2342 * Read delay is the time of propagation from SoC pins to NFC internal
2343 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2344 * EDO mode, an additional delay of tRH must be taken into account so
2345 * the data is sampled on the falling edge instead of the rising edge.
2347 read_delay = sdr->tRC_min >= 30000 ?
2348 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2350 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2352 * tWHR and tRHW are supposed to be read to write delays (and vice
2353 * versa) but in some cases, ie. when doing a change column, they must
2354 * be greater than that to be sure tCCS delay is respected.
2356 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2357 period_ns) - 2,
2358 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2359 period_ns);
2362 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2363 * NFCv1: No WAIT_MODE, tR must be maximal.
2365 if (nfc->caps->is_nfcv2) {
2366 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2367 } else {
2368 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2369 period_ns);
2370 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2371 nfc_tmg.tR = nfc_tmg.tCH - 3;
2372 else
2373 nfc_tmg.tR = 0;
2376 if (chipnr < 0)
2377 return 0;
2379 marvell_nand->ndtr0 =
2380 NDTR0_TRP(nfc_tmg.tRP) |
2381 NDTR0_TRH(nfc_tmg.tRH) |
2382 NDTR0_ETRP(nfc_tmg.tRP) |
2383 NDTR0_TWP(nfc_tmg.tWP) |
2384 NDTR0_TWH(nfc_tmg.tWH) |
2385 NDTR0_TCS(nfc_tmg.tCS) |
2386 NDTR0_TCH(nfc_tmg.tCH);
2388 marvell_nand->ndtr1 =
2389 NDTR1_TAR(nfc_tmg.tAR) |
2390 NDTR1_TWHR(nfc_tmg.tWHR) |
2391 NDTR1_TR(nfc_tmg.tR);
2393 if (nfc->caps->is_nfcv2) {
2394 marvell_nand->ndtr0 |=
2395 NDTR0_RD_CNT_DEL(read_delay) |
2396 NDTR0_SELCNTR |
2397 NDTR0_TADL(nfc_tmg.tADL);
2399 marvell_nand->ndtr1 |=
2400 NDTR1_TRHW(nfc_tmg.tRHW) |
2401 NDTR1_WAIT_MODE;
2404 return 0;
2407 static int marvell_nand_attach_chip(struct nand_chip *chip)
2409 struct mtd_info *mtd = nand_to_mtd(chip);
2410 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2411 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2412 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2413 int ret;
2415 if (pdata && pdata->flash_bbt)
2416 chip->bbt_options |= NAND_BBT_USE_FLASH;
2418 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2420 * We'll use a bad block table stored in-flash and don't
2421 * allow writing the bad block marker to the flash.
2423 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2424 chip->bbt_td = &bbt_main_descr;
2425 chip->bbt_md = &bbt_mirror_descr;
2428 /* Save the chip-specific fields of NDCR */
2429 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2430 if (chip->options & NAND_BUSWIDTH_16)
2431 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2434 * On small page NANDs, only one cycle is needed to pass the
2435 * column address.
2437 if (mtd->writesize <= 512) {
2438 marvell_nand->addr_cyc = 1;
2439 } else {
2440 marvell_nand->addr_cyc = 2;
2441 marvell_nand->ndcr |= NDCR_RA_START;
2445 * Now add the number of cycles needed to pass the row
2446 * address.
2448 * Addressing a chip using CS 2 or 3 should also need the third row
2449 * cycle but due to inconsistance in the documentation and lack of
2450 * hardware to test this situation, this case is not supported.
2452 if (chip->options & NAND_ROW_ADDR_3)
2453 marvell_nand->addr_cyc += 3;
2454 else
2455 marvell_nand->addr_cyc += 2;
2457 if (pdata) {
2458 chip->ecc.size = pdata->ecc_step_size;
2459 chip->ecc.strength = pdata->ecc_strength;
2462 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2463 if (ret) {
2464 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2465 return ret;
2468 if (chip->ecc.mode == NAND_ECC_HW) {
2470 * Subpage write not available with hardware ECC, prohibit also
2471 * subpage read as in userspace subpage access would still be
2472 * allowed and subpage write, if used, would lead to numerous
2473 * uncorrectable ECC errors.
2475 chip->options |= NAND_NO_SUBPAGE_WRITE;
2478 if (pdata || nfc->caps->legacy_of_bindings) {
2480 * We keep the MTD name unchanged to avoid breaking platforms
2481 * where the MTD cmdline parser is used and the bootloader
2482 * has not been updated to use the new naming scheme.
2484 mtd->name = "pxa3xx_nand-0";
2485 } else if (!mtd->name) {
2487 * If the new bindings are used and the bootloader has not been
2488 * updated to pass a new mtdparts parameter on the cmdline, you
2489 * should define the following property in your NAND node, ie:
2491 * label = "main-storage";
2493 * This way, mtd->name will be set by the core when
2494 * nand_set_flash_node() is called.
2496 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2497 "%s:nand.%d", dev_name(nfc->dev),
2498 marvell_nand->sels[0].cs);
2499 if (!mtd->name) {
2500 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2501 return -ENOMEM;
2505 return 0;
2508 static const struct nand_controller_ops marvell_nand_controller_ops = {
2509 .attach_chip = marvell_nand_attach_chip,
2510 .exec_op = marvell_nfc_exec_op,
2511 .setup_data_interface = marvell_nfc_setup_data_interface,
2514 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2515 struct device_node *np)
2517 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2518 struct marvell_nand_chip *marvell_nand;
2519 struct mtd_info *mtd;
2520 struct nand_chip *chip;
2521 int nsels, ret, i;
2522 u32 cs, rb;
2525 * The legacy "num-cs" property indicates the number of CS on the only
2526 * chip connected to the controller (legacy bindings does not support
2527 * more than one chip). The CS and RB pins are always the #0.
2529 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2530 * properties must be filled. For each chip, expressed as a subnode,
2531 * "reg" points to the CS lines and "nand-rb" to the RB line.
2533 if (pdata || nfc->caps->legacy_of_bindings) {
2534 nsels = 1;
2535 } else {
2536 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2537 if (nsels <= 0) {
2538 dev_err(dev, "missing/invalid reg property\n");
2539 return -EINVAL;
2543 /* Alloc the nand chip structure */
2544 marvell_nand = devm_kzalloc(dev,
2545 struct_size(marvell_nand, sels, nsels),
2546 GFP_KERNEL);
2547 if (!marvell_nand) {
2548 dev_err(dev, "could not allocate chip structure\n");
2549 return -ENOMEM;
2552 marvell_nand->nsels = nsels;
2553 marvell_nand->selected_die = -1;
2555 for (i = 0; i < nsels; i++) {
2556 if (pdata || nfc->caps->legacy_of_bindings) {
2558 * Legacy bindings use the CS lines in natural
2559 * order (0, 1, ...)
2561 cs = i;
2562 } else {
2563 /* Retrieve CS id */
2564 ret = of_property_read_u32_index(np, "reg", i, &cs);
2565 if (ret) {
2566 dev_err(dev, "could not retrieve reg property: %d\n",
2567 ret);
2568 return ret;
2572 if (cs >= nfc->caps->max_cs_nb) {
2573 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2574 cs, nfc->caps->max_cs_nb);
2575 return -EINVAL;
2578 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2579 dev_err(dev, "CS %d already assigned\n", cs);
2580 return -EINVAL;
2584 * The cs variable represents the chip select id, which must be
2585 * converted in bit fields for NDCB0 and NDCB2 to select the
2586 * right chip. Unfortunately, due to a lack of information on
2587 * the subject and incoherent documentation, the user should not
2588 * use CS1 and CS3 at all as asserting them is not supported in
2589 * a reliable way (due to multiplexing inside ADDR5 field).
2591 marvell_nand->sels[i].cs = cs;
2592 switch (cs) {
2593 case 0:
2594 case 2:
2595 marvell_nand->sels[i].ndcb0_csel = 0;
2596 break;
2597 case 1:
2598 case 3:
2599 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2600 break;
2601 default:
2602 return -EINVAL;
2605 /* Retrieve RB id */
2606 if (pdata || nfc->caps->legacy_of_bindings) {
2607 /* Legacy bindings always use RB #0 */
2608 rb = 0;
2609 } else {
2610 ret = of_property_read_u32_index(np, "nand-rb", i,
2611 &rb);
2612 if (ret) {
2613 dev_err(dev,
2614 "could not retrieve RB property: %d\n",
2615 ret);
2616 return ret;
2620 if (rb >= nfc->caps->max_rb_nb) {
2621 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2622 rb, nfc->caps->max_rb_nb);
2623 return -EINVAL;
2626 marvell_nand->sels[i].rb = rb;
2629 chip = &marvell_nand->chip;
2630 chip->controller = &nfc->controller;
2631 nand_set_flash_node(chip, np);
2633 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2634 chip->options |= NAND_KEEP_TIMINGS;
2636 mtd = nand_to_mtd(chip);
2637 mtd->dev.parent = dev;
2640 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2641 * in the DT node, this entry will be overwritten in nand_scan_ident().
2643 chip->ecc.mode = NAND_ECC_HW;
2646 * Save a reference value for timing registers before
2647 * ->setup_data_interface() is called.
2649 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2650 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2652 chip->options |= NAND_BUSWIDTH_AUTO;
2654 ret = nand_scan(chip, marvell_nand->nsels);
2655 if (ret) {
2656 dev_err(dev, "could not scan the nand chip\n");
2657 return ret;
2660 if (pdata)
2661 /* Legacy bindings support only one chip */
2662 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2663 else
2664 ret = mtd_device_register(mtd, NULL, 0);
2665 if (ret) {
2666 dev_err(dev, "failed to register mtd device: %d\n", ret);
2667 nand_release(chip);
2668 return ret;
2671 list_add_tail(&marvell_nand->node, &nfc->chips);
2673 return 0;
2676 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2678 struct device_node *np = dev->of_node;
2679 struct device_node *nand_np;
2680 int max_cs = nfc->caps->max_cs_nb;
2681 int nchips;
2682 int ret;
2684 if (!np)
2685 nchips = 1;
2686 else
2687 nchips = of_get_child_count(np);
2689 if (nchips > max_cs) {
2690 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2691 max_cs);
2692 return -EINVAL;
2696 * Legacy bindings do not use child nodes to exhibit NAND chip
2697 * properties and layout. Instead, NAND properties are mixed with the
2698 * controller ones, and partitions are defined as direct subnodes of the
2699 * NAND controller node.
2701 if (nfc->caps->legacy_of_bindings) {
2702 ret = marvell_nand_chip_init(dev, nfc, np);
2703 return ret;
2706 for_each_child_of_node(np, nand_np) {
2707 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2708 if (ret) {
2709 of_node_put(nand_np);
2710 return ret;
2714 return 0;
2717 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2719 struct marvell_nand_chip *entry, *temp;
2721 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2722 nand_release(&entry->chip);
2723 list_del(&entry->node);
2727 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2729 struct platform_device *pdev = container_of(nfc->dev,
2730 struct platform_device,
2731 dev);
2732 struct dma_slave_config config = {};
2733 struct resource *r;
2734 int ret;
2736 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2737 dev_warn(nfc->dev,
2738 "DMA not enabled in configuration\n");
2739 return -ENOTSUPP;
2742 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2743 if (ret)
2744 return ret;
2746 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
2747 if (!nfc->dma_chan) {
2748 dev_err(nfc->dev,
2749 "Unable to request data DMA channel\n");
2750 return -ENODEV;
2753 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2754 if (!r)
2755 return -ENXIO;
2757 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2758 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2759 config.src_addr = r->start + NDDB;
2760 config.dst_addr = r->start + NDDB;
2761 config.src_maxburst = 32;
2762 config.dst_maxburst = 32;
2763 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2764 if (ret < 0) {
2765 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2766 return ret;
2770 * DMA must act on length multiple of 32 and this length may be
2771 * bigger than the destination buffer. Use this buffer instead
2772 * for DMA transfers and then copy the desired amount of data to
2773 * the provided buffer.
2775 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2776 if (!nfc->dma_buf)
2777 return -ENOMEM;
2779 nfc->use_dma = true;
2781 return 0;
2784 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2787 * ECC operations and interruptions are only enabled when specifically
2788 * needed. ECC shall not be activated in the early stages (fails probe).
2789 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2790 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2791 * offset in the read page and this will fail the protection.
2793 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2794 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2795 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2796 writel_relaxed(0, nfc->regs + NDECCCTRL);
2799 static int marvell_nfc_init(struct marvell_nfc *nfc)
2801 struct device_node *np = nfc->dev->of_node;
2804 * Some SoCs like A7k/A8k need to enable manually the NAND
2805 * controller, gated clocks and reset bits to avoid being bootloader
2806 * dependent. This is done through the use of the System Functions
2807 * registers.
2809 if (nfc->caps->need_system_controller) {
2810 struct regmap *sysctrl_base =
2811 syscon_regmap_lookup_by_phandle(np,
2812 "marvell,system-controller");
2814 if (IS_ERR(sysctrl_base))
2815 return PTR_ERR(sysctrl_base);
2817 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2818 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2819 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2820 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2821 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2823 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2824 GENCONF_CLK_GATING_CTRL_ND_GATE,
2825 GENCONF_CLK_GATING_CTRL_ND_GATE);
2827 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2828 GENCONF_ND_CLK_CTRL_EN,
2829 GENCONF_ND_CLK_CTRL_EN);
2832 /* Configure the DMA if appropriate */
2833 if (!nfc->caps->is_nfcv2)
2834 marvell_nfc_init_dma(nfc);
2836 marvell_nfc_reset(nfc);
2838 return 0;
2841 static int marvell_nfc_probe(struct platform_device *pdev)
2843 struct device *dev = &pdev->dev;
2844 struct resource *r;
2845 struct marvell_nfc *nfc;
2846 int ret;
2847 int irq;
2849 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2850 GFP_KERNEL);
2851 if (!nfc)
2852 return -ENOMEM;
2854 nfc->dev = dev;
2855 nand_controller_init(&nfc->controller);
2856 nfc->controller.ops = &marvell_nand_controller_ops;
2857 INIT_LIST_HEAD(&nfc->chips);
2859 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2860 nfc->regs = devm_ioremap_resource(dev, r);
2861 if (IS_ERR(nfc->regs))
2862 return PTR_ERR(nfc->regs);
2864 irq = platform_get_irq(pdev, 0);
2865 if (irq < 0) {
2866 dev_err(dev, "failed to retrieve irq\n");
2867 return irq;
2870 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2872 /* Managed the legacy case (when the first clock was not named) */
2873 if (nfc->core_clk == ERR_PTR(-ENOENT))
2874 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2876 if (IS_ERR(nfc->core_clk))
2877 return PTR_ERR(nfc->core_clk);
2879 ret = clk_prepare_enable(nfc->core_clk);
2880 if (ret)
2881 return ret;
2883 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2884 if (IS_ERR(nfc->reg_clk)) {
2885 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2886 ret = PTR_ERR(nfc->reg_clk);
2887 goto unprepare_core_clk;
2890 nfc->reg_clk = NULL;
2893 ret = clk_prepare_enable(nfc->reg_clk);
2894 if (ret)
2895 goto unprepare_core_clk;
2897 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2898 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2899 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2900 0, "marvell-nfc", nfc);
2901 if (ret)
2902 goto unprepare_reg_clk;
2904 /* Get NAND controller capabilities */
2905 if (pdev->id_entry)
2906 nfc->caps = (void *)pdev->id_entry->driver_data;
2907 else
2908 nfc->caps = of_device_get_match_data(&pdev->dev);
2910 if (!nfc->caps) {
2911 dev_err(dev, "Could not retrieve NFC caps\n");
2912 ret = -EINVAL;
2913 goto unprepare_reg_clk;
2916 /* Init the controller and then probe the chips */
2917 ret = marvell_nfc_init(nfc);
2918 if (ret)
2919 goto unprepare_reg_clk;
2921 platform_set_drvdata(pdev, nfc);
2923 ret = marvell_nand_chips_init(dev, nfc);
2924 if (ret)
2925 goto unprepare_reg_clk;
2927 return 0;
2929 unprepare_reg_clk:
2930 clk_disable_unprepare(nfc->reg_clk);
2931 unprepare_core_clk:
2932 clk_disable_unprepare(nfc->core_clk);
2934 return ret;
2937 static int marvell_nfc_remove(struct platform_device *pdev)
2939 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2941 marvell_nand_chips_cleanup(nfc);
2943 if (nfc->use_dma) {
2944 dmaengine_terminate_all(nfc->dma_chan);
2945 dma_release_channel(nfc->dma_chan);
2948 clk_disable_unprepare(nfc->reg_clk);
2949 clk_disable_unprepare(nfc->core_clk);
2951 return 0;
2954 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2956 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2957 struct marvell_nand_chip *chip;
2959 list_for_each_entry(chip, &nfc->chips, node)
2960 marvell_nfc_wait_ndrun(&chip->chip);
2962 clk_disable_unprepare(nfc->reg_clk);
2963 clk_disable_unprepare(nfc->core_clk);
2965 return 0;
2968 static int __maybe_unused marvell_nfc_resume(struct device *dev)
2970 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2971 int ret;
2973 ret = clk_prepare_enable(nfc->core_clk);
2974 if (ret < 0)
2975 return ret;
2977 ret = clk_prepare_enable(nfc->reg_clk);
2978 if (ret < 0)
2979 return ret;
2982 * Reset nfc->selected_chip so the next command will cause the timing
2983 * registers to be restored in marvell_nfc_select_chip().
2985 nfc->selected_chip = NULL;
2987 /* Reset registers that have lost their contents */
2988 marvell_nfc_reset(nfc);
2990 return 0;
2993 static const struct dev_pm_ops marvell_nfc_pm_ops = {
2994 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2997 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2998 .max_cs_nb = 4,
2999 .max_rb_nb = 2,
3000 .need_system_controller = true,
3001 .is_nfcv2 = true,
3004 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3005 .max_cs_nb = 4,
3006 .max_rb_nb = 2,
3007 .is_nfcv2 = true,
3010 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3011 .max_cs_nb = 2,
3012 .max_rb_nb = 1,
3013 .use_dma = true,
3016 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3017 .max_cs_nb = 4,
3018 .max_rb_nb = 2,
3019 .need_system_controller = true,
3020 .legacy_of_bindings = true,
3021 .is_nfcv2 = true,
3024 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3025 .max_cs_nb = 4,
3026 .max_rb_nb = 2,
3027 .legacy_of_bindings = true,
3028 .is_nfcv2 = true,
3031 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3032 .max_cs_nb = 2,
3033 .max_rb_nb = 1,
3034 .legacy_of_bindings = true,
3035 .use_dma = true,
3038 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3040 .name = "pxa3xx-nand",
3041 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3043 { /* sentinel */ },
3045 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3047 static const struct of_device_id marvell_nfc_of_ids[] = {
3049 .compatible = "marvell,armada-8k-nand-controller",
3050 .data = &marvell_armada_8k_nfc_caps,
3053 .compatible = "marvell,armada370-nand-controller",
3054 .data = &marvell_armada370_nfc_caps,
3057 .compatible = "marvell,pxa3xx-nand-controller",
3058 .data = &marvell_pxa3xx_nfc_caps,
3060 /* Support for old/deprecated bindings: */
3062 .compatible = "marvell,armada-8k-nand",
3063 .data = &marvell_armada_8k_nfc_legacy_caps,
3066 .compatible = "marvell,armada370-nand",
3067 .data = &marvell_armada370_nfc_legacy_caps,
3070 .compatible = "marvell,pxa3xx-nand",
3071 .data = &marvell_pxa3xx_nfc_legacy_caps,
3073 { /* sentinel */ },
3075 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3077 static struct platform_driver marvell_nfc_driver = {
3078 .driver = {
3079 .name = "marvell-nfc",
3080 .of_match_table = marvell_nfc_of_ids,
3081 .pm = &marvell_nfc_pm_ops,
3083 .id_table = marvell_nfc_platform_ids,
3084 .probe = marvell_nfc_probe,
3085 .remove = marvell_nfc_remove,
3087 module_platform_driver(marvell_nfc_driver);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Marvell NAND controller driver");