1 // SPDX-License-Identifier: GPL-2.0
3 * Marvell NAND flash controller driver
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
56 * The controller has certain limitations that are handled by the
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95 #define FIFO_REP(x) (x / sizeof(u32))
96 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE 2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN 7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD 0
103 #define POLL_TIMEOUT 100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT 1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT 3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1 5
110 #define MAX_ADDRESS_CYC_NFCV2 7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX 0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL 0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL 0x700
120 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
122 /* NAND controller data flash control register */
124 #define NDCR_ALL_INT GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM BIT(7)
126 #define NDCR_CS0_CMDDM BIT(8)
127 #define NDCR_RDYM BIT(11)
128 #define NDCR_ND_ARB_EN BIT(12)
129 #define NDCR_RA_START BIT(15)
130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M BIT(26)
133 #define NDCR_DWIDTH_C BIT(27)
134 #define NDCR_ND_RUN BIT(28)
135 #define NDCR_DMA_EN BIT(29)
136 #define NDCR_ECC_EN BIT(30)
137 #define NDCR_SPARE_EN BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
141 /* NAND interface timing parameter 0 register */
143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE BIT(7)
147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR BIT(26)
153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
155 /* NAND interface timing parameter 1 register */
157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE BIT(14)
161 #define NDTR1_WAIT_MODE BIT(15)
162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
164 /* NAND controller status register */
166 #define NDSR_WRCMDREQ BIT(0)
167 #define NDSR_RDDREQ BIT(1)
168 #define NDSR_WRDREQ BIT(2)
169 #define NDSR_CORERR BIT(3)
170 #define NDSR_UNCERR BIT(4)
171 #define NDSR_CMDD(cs) BIT(8 - cs)
172 #define NDSR_RDY(rb) BIT(11 + rb)
173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
175 /* NAND ECC control register */
176 #define NDECCCTRL 0x28
177 #define NDECCCTRL_BCH_EN BIT(0)
179 /* NAND controller data buffer register */
182 /* NAND controller command buffer 0 register */
184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC BIT(19)
189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
190 #define NDCB0_CSEL BIT(24)
191 #define NDCB0_RDY_BYP BIT(27)
192 #define NDCB0_LEN_OVRD BIT(28)
193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
195 /* NAND controller command buffer 1 register */
197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x) (x << 16)
200 /* NAND controller command buffer 2 register */
202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
205 /* NAND controller command buffer 3 register */
207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
214 #define TYPE_READ_ID 3
215 #define TYPE_STATUS 4
217 #define TYPE_NAKED_CMD 6
218 #define TYPE_NAKED_ADDR 7
220 #define XTYPE_MONOLITHIC_RW 0
221 #define XTYPE_LAST_NAKED_RW 1
222 #define XTYPE_FINAL_COMMAND 3
224 #define XTYPE_WRITE_DISPATCH 4
225 #define XTYPE_NAKED_RW 5
226 #define XTYPE_COMMAND_DISPATCH 6
230 * Marvell ECC engine works differently than the others, in order to limit the
231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
232 * per subpage, and depending on a the desired strength needed by the NAND chip,
233 * a particular layout mixing data/spare/ecc is defined, with a possible last
234 * chunk smaller that the others.
236 * @writesize: Full page size on which the layout applies
237 * @chunk: Desired ECC chunk size on which the layout applies
238 * @strength: Desired ECC strength (per chunk size bytes) on which the
240 * @nchunks: Total number of chunks
241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
242 * repetitions of the pattern:
243 * (data_bytes + spare_bytes + ecc_bytes).
244 * @data_bytes: Number of data bytes per chunk
245 * @spare_bytes: Number of spare bytes per chunk
246 * @ecc_bytes: Number of ecc bytes per chunk
247 * @last_data_bytes: Number of data bytes in the last chunk
248 * @last_spare_bytes: Number of spare bytes in the last chunk
249 * @last_ecc_bytes: Number of ecc bytes in the last chunk
251 struct marvell_hw_ecc_layout
{
256 /* Corresponding layout */
263 int last_spare_bytes
;
267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
273 .full_chunk_cnt = fcc, \
277 .last_data_bytes = ldb, \
278 .last_spare_bytes = lsb, \
279 .last_ecc_bytes = leb, \
282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts
[] = {
284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
296 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
297 * The datasheet describes the logic with an error: ADDR5 field is once
298 * declared at the beginning of NDCB2, and another time at its end. Because the
299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
300 * to use the last bit of this field instead of the first ones.
302 * @cs: Wanted CE lane.
303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
304 * selecting the wanted CE lane. This is set once when
305 * the Device Tree is probed.
306 * @rb: Ready/Busy pin for the flash chip
308 struct marvell_nand_chip_sel
{
315 * NAND chip structure: stores NAND chip device related information
317 * @chip: Base NAND chip structure
318 * @node: Used to store NAND chips into a list
319 * @layout NAND layout when using hardware ECC
320 * @ndcr: Controller register value for this NAND chip
321 * @ndtr0: Timing registers 0 value for this NAND chip
322 * @ndtr1: Timing registers 1 value for this NAND chip
323 * @selected_die: Current active CS
324 * @nsels: Number of CS lines required by the NAND chip
325 * @sels: Array of CS lines descriptions
327 struct marvell_nand_chip
{
328 struct nand_chip chip
;
329 struct list_head node
;
330 const struct marvell_hw_ecc_layout
*layout
;
337 struct marvell_nand_chip_sel sels
[0];
340 static inline struct marvell_nand_chip
*to_marvell_nand(struct nand_chip
*chip
)
342 return container_of(chip
, struct marvell_nand_chip
, chip
);
345 static inline struct marvell_nand_chip_sel
*to_nand_sel(struct marvell_nand_chip
348 return &nand
->sels
[nand
->selected_die
];
352 * NAND controller capabilities for distinction between compatible strings
354 * @max_cs_nb: Number of Chip Select lines available
355 * @max_rb_nb: Number of Ready/Busy lines available
356 * @need_system_controller: Indicates if the SoC needs to have access to the
357 * system controller (ie. to enable the NAND controller)
358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
361 * BCH error detection and correction algorithm,
362 * NDCB3 register has been added
363 * @use_dma: Use dma for data transfers
365 struct marvell_nfc_caps
{
366 unsigned int max_cs_nb
;
367 unsigned int max_rb_nb
;
368 bool need_system_controller
;
369 bool legacy_of_bindings
;
375 * NAND controller structure: stores Marvell NAND controller information
377 * @controller: Base controller structure
378 * @dev: Parent device (used to print error messages)
379 * @regs: NAND controller registers
380 * @core_clk: Core clock
381 * @reg_clk: Registers clock
382 * @complete: Completion object to wait for NAND controller events
383 * @assigned_cs: Bitmask describing already assigned CS lines
384 * @chips: List containing all the NAND chips attached to
385 * this NAND controller
386 * @caps: NAND controller capabilities for each compatible string
387 * @dma_chan: DMA channel (NFCv1 only)
388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
391 struct nand_controller controller
;
394 struct clk
*core_clk
;
396 struct completion complete
;
397 unsigned long assigned_cs
;
398 struct list_head chips
;
399 struct nand_chip
*selected_chip
;
400 const struct marvell_nfc_caps
*caps
;
402 /* DMA (NFCv1 only) */
404 struct dma_chan
*dma_chan
;
408 static inline struct marvell_nfc
*to_marvell_nfc(struct nand_controller
*ctrl
)
410 return container_of(ctrl
, struct marvell_nfc
, controller
);
414 * NAND controller timings expressed in NAND Controller clock cycles
416 * @tRP: ND_nRE pulse width
417 * @tRH: ND_nRE high duration
418 * @tWP: ND_nWE pulse time
419 * @tWH: ND_nWE high duration
420 * @tCS: Enable signal setup time
421 * @tCH: Enable signal hold time
422 * @tADL: Address to write data delay
423 * @tAR: ND_ALE low to ND_nRE low delay
424 * @tWHR: ND_nWE high to ND_nRE low for status read
425 * @tRHW: ND_nRE high duration, read to write delay
426 * @tR: ND_nWE high to ND_nRE low for read
428 struct marvell_nfc_timings
{
445 * Derives a duration in numbers of clock cycles.
447 * @ps: Duration in pico-seconds
448 * @period_ns: Clock period in nano-seconds
450 * Convert the duration in nano-seconds, then divide by the period and
451 * return the number of clock periods.
453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
458 * NAND driver structure filled during the parsing of the ->exec_op() subop
459 * subset of instructions.
461 * @ndcb: Array of values written to NDCBx registers
462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
464 * @rdy_delay_ns: Optional delay after waiting for the RB pin
465 * @data_delay_ns: Optional delay after the data xfer
466 * @data_instr_idx: Index of the data instruction in the subop
467 * @data_instr: Pointer to the data instruction in the subop
469 struct marvell_nfc_op
{
471 unsigned int cle_ale_delay_ns
;
472 unsigned int rdy_timeout_ms
;
473 unsigned int rdy_delay_ns
;
474 unsigned int data_delay_ns
;
475 unsigned int data_instr_idx
;
476 const struct nand_op_instr
*data_instr
;
480 * Internal helper to conditionnally apply a delay (from the above structure,
483 static void cond_delay(unsigned int ns
)
491 udelay(DIV_ROUND_UP(ns
, 1000));
495 * The controller has many flags that could generate interrupts, most of them
496 * are disabled and polling is used. For the very slow signals, using interrupts
497 * may relax the CPU charge.
499 static void marvell_nfc_disable_int(struct marvell_nfc
*nfc
, u32 int_mask
)
503 /* Writing 1 disables the interrupt */
504 reg
= readl_relaxed(nfc
->regs
+ NDCR
);
505 writel_relaxed(reg
| int_mask
, nfc
->regs
+ NDCR
);
508 static void marvell_nfc_enable_int(struct marvell_nfc
*nfc
, u32 int_mask
)
512 /* Writing 0 enables the interrupt */
513 reg
= readl_relaxed(nfc
->regs
+ NDCR
);
514 writel_relaxed(reg
& ~int_mask
, nfc
->regs
+ NDCR
);
517 static u32
marvell_nfc_clear_int(struct marvell_nfc
*nfc
, u32 int_mask
)
521 reg
= readl_relaxed(nfc
->regs
+ NDSR
);
522 writel_relaxed(int_mask
, nfc
->regs
+ NDSR
);
524 return reg
& int_mask
;
527 static void marvell_nfc_force_byte_access(struct nand_chip
*chip
,
530 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
534 * Callers of this function do not verify if the NAND is using a 16-bit
535 * an 8-bit bus for normal operations, so we need to take care of that
536 * here by leaving the configuration unchanged if the NAND does not have
537 * the NAND_BUSWIDTH_16 flag set.
539 if (!(chip
->options
& NAND_BUSWIDTH_16
))
542 ndcr
= readl_relaxed(nfc
->regs
+ NDCR
);
545 ndcr
&= ~(NDCR_DWIDTH_M
| NDCR_DWIDTH_C
);
547 ndcr
|= NDCR_DWIDTH_M
| NDCR_DWIDTH_C
;
549 writel_relaxed(ndcr
, nfc
->regs
+ NDCR
);
552 static int marvell_nfc_wait_ndrun(struct nand_chip
*chip
)
554 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
559 * The command is being processed, wait for the ND_RUN bit to be
560 * cleared by the NFC. If not, we must clear it by hand.
562 ret
= readl_relaxed_poll_timeout(nfc
->regs
+ NDCR
, val
,
563 (val
& NDCR_ND_RUN
) == 0,
564 POLL_PERIOD
, POLL_TIMEOUT
);
566 dev_err(nfc
->dev
, "Timeout on NAND controller run mode\n");
567 writel_relaxed(readl(nfc
->regs
+ NDCR
) & ~NDCR_ND_RUN
,
576 * Any time a command has to be sent to the controller, the following sequence
577 * has to be followed:
578 * - call marvell_nfc_prepare_cmd()
579 * -> activate the ND_RUN bit that will kind of 'start a job'
580 * -> wait the signal indicating the NFC is waiting for a command
581 * - send the command (cmd and address cycles)
582 * - enventually send or receive the data
583 * - call marvell_nfc_end_cmd() with the corresponding flag
584 * -> wait the flag to be triggered or cancel the job with a timeout
586 * The following helpers are here to factorize the code a bit so that
587 * specialized functions responsible for executing the actual NAND
588 * operations do not have to replicate the same code blocks.
590 static int marvell_nfc_prepare_cmd(struct nand_chip
*chip
)
592 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
596 /* Poll ND_RUN and clear NDSR before issuing any command */
597 ret
= marvell_nfc_wait_ndrun(chip
);
599 dev_err(nfc
->dev
, "Last operation did not succeed\n");
603 ndcr
= readl_relaxed(nfc
->regs
+ NDCR
);
604 writel_relaxed(readl(nfc
->regs
+ NDSR
), nfc
->regs
+ NDSR
);
606 /* Assert ND_RUN bit and wait the NFC to be ready */
607 writel_relaxed(ndcr
| NDCR_ND_RUN
, nfc
->regs
+ NDCR
);
608 ret
= readl_relaxed_poll_timeout(nfc
->regs
+ NDSR
, val
,
610 POLL_PERIOD
, POLL_TIMEOUT
);
612 dev_err(nfc
->dev
, "Timeout on WRCMDRE\n");
616 /* Command may be written, clear WRCMDREQ status bit */
617 writel_relaxed(NDSR_WRCMDREQ
, nfc
->regs
+ NDSR
);
622 static void marvell_nfc_send_cmd(struct nand_chip
*chip
,
623 struct marvell_nfc_op
*nfc_op
)
625 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
626 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
628 dev_dbg(nfc
->dev
, "\nNDCR: 0x%08x\n"
629 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
630 (u32
)readl_relaxed(nfc
->regs
+ NDCR
), nfc_op
->ndcb
[0],
631 nfc_op
->ndcb
[1], nfc_op
->ndcb
[2], nfc_op
->ndcb
[3]);
633 writel_relaxed(to_nand_sel(marvell_nand
)->ndcb0_csel
| nfc_op
->ndcb
[0],
635 writel_relaxed(nfc_op
->ndcb
[1], nfc
->regs
+ NDCB0
);
636 writel(nfc_op
->ndcb
[2], nfc
->regs
+ NDCB0
);
639 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
640 * fields are used (only available on NFCv2).
642 if (nfc_op
->ndcb
[0] & NDCB0_LEN_OVRD
||
643 NDCB0_ADDR_GET_NUM_CYC(nfc_op
->ndcb
[0]) >= 6) {
644 if (!WARN_ON_ONCE(!nfc
->caps
->is_nfcv2
))
645 writel(nfc_op
->ndcb
[3], nfc
->regs
+ NDCB0
);
649 static int marvell_nfc_end_cmd(struct nand_chip
*chip
, int flag
,
652 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
656 ret
= readl_relaxed_poll_timeout(nfc
->regs
+ NDSR
, val
,
658 POLL_PERIOD
, POLL_TIMEOUT
);
661 dev_err(nfc
->dev
, "Timeout on %s (NDSR: 0x%08x)\n",
664 dmaengine_terminate_all(nfc
->dma_chan
);
669 * DMA function uses this helper to poll on CMDD bits without wanting
670 * them to be cleared.
672 if (nfc
->use_dma
&& (readl_relaxed(nfc
->regs
+ NDCR
) & NDCR_DMA_EN
))
675 writel_relaxed(flag
, nfc
->regs
+ NDSR
);
680 static int marvell_nfc_wait_cmdd(struct nand_chip
*chip
)
682 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
683 int cs_flag
= NDSR_CMDD(to_nand_sel(marvell_nand
)->ndcb0_csel
);
685 return marvell_nfc_end_cmd(chip
, cs_flag
, "CMDD");
688 static int marvell_nfc_wait_op(struct nand_chip
*chip
, unsigned int timeout_ms
)
690 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
694 /* Timeout is expressed in ms */
696 timeout_ms
= IRQ_TIMEOUT
;
698 init_completion(&nfc
->complete
);
700 marvell_nfc_enable_int(nfc
, NDCR_RDYM
);
701 ret
= wait_for_completion_timeout(&nfc
->complete
,
702 msecs_to_jiffies(timeout_ms
));
703 marvell_nfc_disable_int(nfc
, NDCR_RDYM
);
704 pending
= marvell_nfc_clear_int(nfc
, NDSR_RDY(0) | NDSR_RDY(1));
707 * In case the interrupt was not served in the required time frame,
708 * check if the ISR was not served or if something went actually wrong.
710 if (ret
&& !pending
) {
711 dev_err(nfc
->dev
, "Timeout waiting for RB signal\n");
718 static void marvell_nfc_select_target(struct nand_chip
*chip
,
721 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
722 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
725 if (chip
== nfc
->selected_chip
&& die_nr
== marvell_nand
->selected_die
)
728 writel_relaxed(marvell_nand
->ndtr0
, nfc
->regs
+ NDTR0
);
729 writel_relaxed(marvell_nand
->ndtr1
, nfc
->regs
+ NDTR1
);
732 * Reset the NDCR register to a clean state for this particular chip,
733 * also clear ND_RUN bit.
735 ndcr_generic
= readl_relaxed(nfc
->regs
+ NDCR
) &
736 NDCR_GENERIC_FIELDS_MASK
& ~NDCR_ND_RUN
;
737 writel_relaxed(ndcr_generic
| marvell_nand
->ndcr
, nfc
->regs
+ NDCR
);
739 /* Also reset the interrupt status register */
740 marvell_nfc_clear_int(nfc
, NDCR_ALL_INT
);
742 nfc
->selected_chip
= chip
;
743 marvell_nand
->selected_die
= die_nr
;
746 static irqreturn_t
marvell_nfc_isr(int irq
, void *dev_id
)
748 struct marvell_nfc
*nfc
= dev_id
;
749 u32 st
= readl_relaxed(nfc
->regs
+ NDSR
);
750 u32 ien
= (~readl_relaxed(nfc
->regs
+ NDCR
)) & NDCR_ALL_INT
;
753 * RDY interrupt mask is one bit in NDCR while there are two status
754 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
756 if (st
& NDSR_RDY(1))
762 marvell_nfc_disable_int(nfc
, st
& NDCR_ALL_INT
);
764 if (st
& (NDSR_RDY(0) | NDSR_RDY(1)))
765 complete(&nfc
->complete
);
770 /* HW ECC related functions */
771 static void marvell_nfc_enable_hw_ecc(struct nand_chip
*chip
)
773 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
774 u32 ndcr
= readl_relaxed(nfc
->regs
+ NDCR
);
776 if (!(ndcr
& NDCR_ECC_EN
)) {
777 writel_relaxed(ndcr
| NDCR_ECC_EN
, nfc
->regs
+ NDCR
);
780 * When enabling BCH, set threshold to 0 to always know the
781 * number of corrected bitflips.
783 if (chip
->ecc
.algo
== NAND_ECC_BCH
)
784 writel_relaxed(NDECCCTRL_BCH_EN
, nfc
->regs
+ NDECCCTRL
);
788 static void marvell_nfc_disable_hw_ecc(struct nand_chip
*chip
)
790 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
791 u32 ndcr
= readl_relaxed(nfc
->regs
+ NDCR
);
793 if (ndcr
& NDCR_ECC_EN
) {
794 writel_relaxed(ndcr
& ~NDCR_ECC_EN
, nfc
->regs
+ NDCR
);
795 if (chip
->ecc
.algo
== NAND_ECC_BCH
)
796 writel_relaxed(0, nfc
->regs
+ NDECCCTRL
);
800 /* DMA related helpers */
801 static void marvell_nfc_enable_dma(struct marvell_nfc
*nfc
)
805 reg
= readl_relaxed(nfc
->regs
+ NDCR
);
806 writel_relaxed(reg
| NDCR_DMA_EN
, nfc
->regs
+ NDCR
);
809 static void marvell_nfc_disable_dma(struct marvell_nfc
*nfc
)
813 reg
= readl_relaxed(nfc
->regs
+ NDCR
);
814 writel_relaxed(reg
& ~NDCR_DMA_EN
, nfc
->regs
+ NDCR
);
817 /* Read/write PIO/DMA accessors */
818 static int marvell_nfc_xfer_data_dma(struct marvell_nfc
*nfc
,
819 enum dma_data_direction direction
,
822 unsigned int dma_len
= min_t(int, ALIGN(len
, 32), MAX_CHUNK_SIZE
);
823 struct dma_async_tx_descriptor
*tx
;
824 struct scatterlist sg
;
828 marvell_nfc_enable_dma(nfc
);
829 /* Prepare the DMA transfer */
830 sg_init_one(&sg
, nfc
->dma_buf
, dma_len
);
831 dma_map_sg(nfc
->dma_chan
->device
->dev
, &sg
, 1, direction
);
832 tx
= dmaengine_prep_slave_sg(nfc
->dma_chan
, &sg
, 1,
833 direction
== DMA_FROM_DEVICE
?
834 DMA_DEV_TO_MEM
: DMA_MEM_TO_DEV
,
837 dev_err(nfc
->dev
, "Could not prepare DMA S/G list\n");
841 /* Do the task and wait for it to finish */
842 cookie
= dmaengine_submit(tx
);
843 ret
= dma_submit_error(cookie
);
847 dma_async_issue_pending(nfc
->dma_chan
);
848 ret
= marvell_nfc_wait_cmdd(nfc
->selected_chip
);
849 dma_unmap_sg(nfc
->dma_chan
->device
->dev
, &sg
, 1, direction
);
850 marvell_nfc_disable_dma(nfc
);
852 dev_err(nfc
->dev
, "Timeout waiting for DMA (status: %d)\n",
853 dmaengine_tx_status(nfc
->dma_chan
, cookie
, NULL
));
854 dmaengine_terminate_all(nfc
->dma_chan
);
861 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc
*nfc
, u8
*in
,
864 unsigned int last_len
= len
% FIFO_DEPTH
;
865 unsigned int last_full_offset
= round_down(len
, FIFO_DEPTH
);
868 for (i
= 0; i
< last_full_offset
; i
+= FIFO_DEPTH
)
869 ioread32_rep(nfc
->regs
+ NDDB
, in
+ i
, FIFO_REP(FIFO_DEPTH
));
872 u8 tmp_buf
[FIFO_DEPTH
];
874 ioread32_rep(nfc
->regs
+ NDDB
, tmp_buf
, FIFO_REP(FIFO_DEPTH
));
875 memcpy(in
+ last_full_offset
, tmp_buf
, last_len
);
881 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc
*nfc
, const u8
*out
,
884 unsigned int last_len
= len
% FIFO_DEPTH
;
885 unsigned int last_full_offset
= round_down(len
, FIFO_DEPTH
);
888 for (i
= 0; i
< last_full_offset
; i
+= FIFO_DEPTH
)
889 iowrite32_rep(nfc
->regs
+ NDDB
, out
+ i
, FIFO_REP(FIFO_DEPTH
));
892 u8 tmp_buf
[FIFO_DEPTH
];
894 memcpy(tmp_buf
, out
+ last_full_offset
, last_len
);
895 iowrite32_rep(nfc
->regs
+ NDDB
, tmp_buf
, FIFO_REP(FIFO_DEPTH
));
901 static void marvell_nfc_check_empty_chunk(struct nand_chip
*chip
,
902 u8
*data
, int data_len
,
903 u8
*spare
, int spare_len
,
904 u8
*ecc
, int ecc_len
,
905 unsigned int *max_bitflips
)
907 struct mtd_info
*mtd
= nand_to_mtd(chip
);
911 * Blank pages (all 0xFF) that have not been written may be recognized
912 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
913 * check if the entire page (with ECC bytes) is actually blank or not.
922 bf
= nand_check_erased_ecc_chunk(data
, data_len
, ecc
, ecc_len
,
923 spare
, spare_len
, chip
->ecc
.strength
);
925 mtd
->ecc_stats
.failed
++;
929 /* Update the stats and max_bitflips */
930 mtd
->ecc_stats
.corrected
+= bf
;
931 *max_bitflips
= max_t(unsigned int, *max_bitflips
, bf
);
935 * Check a chunk is correct or not according to hardware ECC engine.
936 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
937 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
938 * value indicating that a check on the emptyness of the subpage must be
939 * performed before declaring the subpage corrupted.
941 static int marvell_nfc_hw_ecc_correct(struct nand_chip
*chip
,
942 unsigned int *max_bitflips
)
944 struct mtd_info
*mtd
= nand_to_mtd(chip
);
945 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
949 ndsr
= readl_relaxed(nfc
->regs
+ NDSR
);
951 /* Check uncorrectable error flag */
952 if (ndsr
& NDSR_UNCERR
) {
953 writel_relaxed(ndsr
, nfc
->regs
+ NDSR
);
956 * Do not increment ->ecc_stats.failed now, instead, return a
957 * non-zero value to indicate that this chunk was apparently
958 * bad, and it should be check to see if it empty or not. If
959 * the chunk (with ECC bytes) is not declared empty, the calling
960 * function must increment the failure count.
965 /* Check correctable error flag */
966 if (ndsr
& NDSR_CORERR
) {
967 writel_relaxed(ndsr
, nfc
->regs
+ NDSR
);
969 if (chip
->ecc
.algo
== NAND_ECC_BCH
)
970 bf
= NDSR_ERRCNT(ndsr
);
975 /* Update the stats and max_bitflips */
976 mtd
->ecc_stats
.corrected
+= bf
;
977 *max_bitflips
= max_t(unsigned int, *max_bitflips
, bf
);
982 /* Hamming read helpers */
983 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip
*chip
,
984 u8
*data_buf
, u8
*oob_buf
,
987 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
988 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
989 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
990 struct marvell_nfc_op nfc_op
= {
991 .ndcb
[0] = NDCB0_CMD_TYPE(TYPE_READ
) |
992 NDCB0_ADDR_CYC(marvell_nand
->addr_cyc
) |
994 NDCB0_CMD1(NAND_CMD_READ0
) |
995 NDCB0_CMD2(NAND_CMD_READSTART
),
996 .ndcb
[1] = NDCB1_ADDRS_PAGE(page
),
997 .ndcb
[2] = NDCB2_ADDR5_PAGE(page
),
999 unsigned int oob_bytes
= lt
->spare_bytes
+ (raw
? lt
->ecc_bytes
: 0);
1002 /* NFCv2 needs more information about the operation being executed */
1003 if (nfc
->caps
->is_nfcv2
)
1004 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW
);
1006 ret
= marvell_nfc_prepare_cmd(chip
);
1010 marvell_nfc_send_cmd(chip
, &nfc_op
);
1011 ret
= marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
,
1012 "RDDREQ while draining FIFO (data/oob)");
1017 * Read the page then the OOB area. Unlike what is shown in current
1018 * documentation, spare bytes are protected by the ECC engine, and must
1019 * be at the beginning of the OOB area or running this driver on legacy
1020 * systems will prevent the discovery of the BBM/BBT.
1023 marvell_nfc_xfer_data_dma(nfc
, DMA_FROM_DEVICE
,
1024 lt
->data_bytes
+ oob_bytes
);
1025 memcpy(data_buf
, nfc
->dma_buf
, lt
->data_bytes
);
1026 memcpy(oob_buf
, nfc
->dma_buf
+ lt
->data_bytes
, oob_bytes
);
1028 marvell_nfc_xfer_data_in_pio(nfc
, data_buf
, lt
->data_bytes
);
1029 marvell_nfc_xfer_data_in_pio(nfc
, oob_buf
, oob_bytes
);
1032 ret
= marvell_nfc_wait_cmdd(chip
);
1036 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip
*chip
, u8
*buf
,
1037 int oob_required
, int page
)
1039 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1040 return marvell_nfc_hw_ecc_hmg_do_read_page(chip
, buf
, chip
->oob_poi
,
1044 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip
*chip
, u8
*buf
,
1045 int oob_required
, int page
)
1047 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1048 unsigned int full_sz
= lt
->data_bytes
+ lt
->spare_bytes
+ lt
->ecc_bytes
;
1049 int max_bitflips
= 0, ret
;
1052 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1053 marvell_nfc_enable_hw_ecc(chip
);
1054 marvell_nfc_hw_ecc_hmg_do_read_page(chip
, buf
, chip
->oob_poi
, false,
1056 ret
= marvell_nfc_hw_ecc_correct(chip
, &max_bitflips
);
1057 marvell_nfc_disable_hw_ecc(chip
);
1060 return max_bitflips
;
1063 * When ECC failures are detected, check if the full page has been
1064 * written or not. Ignore the failure if it is actually empty.
1066 raw_buf
= kmalloc(full_sz
, GFP_KERNEL
);
1070 marvell_nfc_hw_ecc_hmg_do_read_page(chip
, raw_buf
, raw_buf
+
1071 lt
->data_bytes
, true, page
);
1072 marvell_nfc_check_empty_chunk(chip
, raw_buf
, full_sz
, NULL
, 0, NULL
, 0,
1076 return max_bitflips
;
1080 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1081 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1082 * also stands for ->read_oob().
1084 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip
*chip
, int page
)
1086 u8
*buf
= nand_get_data_buf(chip
);
1088 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1089 return marvell_nfc_hw_ecc_hmg_do_read_page(chip
, buf
, chip
->oob_poi
,
1093 /* Hamming write helpers */
1094 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip
*chip
,
1096 const u8
*oob_buf
, bool raw
,
1099 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
1100 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1101 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1102 struct marvell_nfc_op nfc_op
= {
1103 .ndcb
[0] = NDCB0_CMD_TYPE(TYPE_WRITE
) |
1104 NDCB0_ADDR_CYC(marvell_nand
->addr_cyc
) |
1105 NDCB0_CMD1(NAND_CMD_SEQIN
) |
1106 NDCB0_CMD2(NAND_CMD_PAGEPROG
) |
1108 .ndcb
[1] = NDCB1_ADDRS_PAGE(page
),
1109 .ndcb
[2] = NDCB2_ADDR5_PAGE(page
),
1111 unsigned int oob_bytes
= lt
->spare_bytes
+ (raw
? lt
->ecc_bytes
: 0);
1114 /* NFCv2 needs more information about the operation being executed */
1115 if (nfc
->caps
->is_nfcv2
)
1116 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW
);
1118 ret
= marvell_nfc_prepare_cmd(chip
);
1122 marvell_nfc_send_cmd(chip
, &nfc_op
);
1123 ret
= marvell_nfc_end_cmd(chip
, NDSR_WRDREQ
,
1124 "WRDREQ while loading FIFO (data)");
1128 /* Write the page then the OOB area */
1130 memcpy(nfc
->dma_buf
, data_buf
, lt
->data_bytes
);
1131 memcpy(nfc
->dma_buf
+ lt
->data_bytes
, oob_buf
, oob_bytes
);
1132 marvell_nfc_xfer_data_dma(nfc
, DMA_TO_DEVICE
, lt
->data_bytes
+
1133 lt
->ecc_bytes
+ lt
->spare_bytes
);
1135 marvell_nfc_xfer_data_out_pio(nfc
, data_buf
, lt
->data_bytes
);
1136 marvell_nfc_xfer_data_out_pio(nfc
, oob_buf
, oob_bytes
);
1139 ret
= marvell_nfc_wait_cmdd(chip
);
1143 ret
= marvell_nfc_wait_op(chip
,
1144 PSEC_TO_MSEC(chip
->data_interface
.timings
.sdr
.tPROG_max
));
1148 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip
*chip
,
1150 int oob_required
, int page
)
1152 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1153 return marvell_nfc_hw_ecc_hmg_do_write_page(chip
, buf
, chip
->oob_poi
,
1157 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip
*chip
,
1159 int oob_required
, int page
)
1163 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1164 marvell_nfc_enable_hw_ecc(chip
);
1165 ret
= marvell_nfc_hw_ecc_hmg_do_write_page(chip
, buf
, chip
->oob_poi
,
1167 marvell_nfc_disable_hw_ecc(chip
);
1173 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1174 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1175 * also stands for ->write_oob().
1177 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip
*chip
,
1180 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1181 u8
*buf
= nand_get_data_buf(chip
);
1183 memset(buf
, 0xFF, mtd
->writesize
);
1185 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1186 return marvell_nfc_hw_ecc_hmg_do_write_page(chip
, buf
, chip
->oob_poi
,
1190 /* BCH read helpers */
1191 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip
*chip
, u8
*buf
,
1192 int oob_required
, int page
)
1194 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1195 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1196 u8
*oob
= chip
->oob_poi
;
1197 int chunk_size
= lt
->data_bytes
+ lt
->spare_bytes
+ lt
->ecc_bytes
;
1198 int ecc_offset
= (lt
->full_chunk_cnt
* lt
->spare_bytes
) +
1199 lt
->last_spare_bytes
;
1200 int data_len
= lt
->data_bytes
;
1201 int spare_len
= lt
->spare_bytes
;
1202 int ecc_len
= lt
->ecc_bytes
;
1205 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1208 memset(chip
->oob_poi
, 0xFF, mtd
->oobsize
);
1210 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1212 for (chunk
= 0; chunk
< lt
->nchunks
; chunk
++) {
1213 /* Update last chunk length */
1214 if (chunk
>= lt
->full_chunk_cnt
) {
1215 data_len
= lt
->last_data_bytes
;
1216 spare_len
= lt
->last_spare_bytes
;
1217 ecc_len
= lt
->last_ecc_bytes
;
1220 /* Read data bytes*/
1221 nand_change_read_column_op(chip
, chunk
* chunk_size
,
1222 buf
+ (lt
->data_bytes
* chunk
),
1225 /* Read spare bytes */
1226 nand_read_data_op(chip
, oob
+ (lt
->spare_bytes
* chunk
),
1229 /* Read ECC bytes */
1230 nand_read_data_op(chip
, oob
+ ecc_offset
+
1231 (ALIGN(lt
->ecc_bytes
, 32) * chunk
),
1238 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip
*chip
, int chunk
,
1239 u8
*data
, unsigned int data_len
,
1240 u8
*spare
, unsigned int spare_len
,
1243 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
1244 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1245 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1247 struct marvell_nfc_op nfc_op
= {
1248 .ndcb
[0] = NDCB0_CMD_TYPE(TYPE_READ
) |
1249 NDCB0_ADDR_CYC(marvell_nand
->addr_cyc
) |
1251 .ndcb
[1] = NDCB1_ADDRS_PAGE(page
),
1252 .ndcb
[2] = NDCB2_ADDR5_PAGE(page
),
1253 .ndcb
[3] = data_len
+ spare_len
,
1256 ret
= marvell_nfc_prepare_cmd(chip
);
1261 nfc_op
.ndcb
[0] |= NDCB0_DBC
|
1262 NDCB0_CMD1(NAND_CMD_READ0
) |
1263 NDCB0_CMD2(NAND_CMD_READSTART
);
1266 * Trigger the monolithic read on the first chunk, then naked read on
1267 * intermediate chunks and finally a last naked read on the last chunk.
1270 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW
);
1271 else if (chunk
< lt
->nchunks
- 1)
1272 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW
);
1274 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW
);
1276 marvell_nfc_send_cmd(chip
, &nfc_op
);
1279 * According to the datasheet, when reading from NDDB
1280 * with BCH enabled, after each 32 bytes reads, we
1281 * have to make sure that the NDSR.RDDREQ bit is set.
1283 * Drain the FIFO, 8 32-bit reads at a time, and skip
1284 * the polling on the last read.
1286 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1288 for (i
= 0; i
< data_len
; i
+= FIFO_DEPTH
* BCH_SEQ_READS
) {
1289 marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
,
1290 "RDDREQ while draining FIFO (data)");
1291 marvell_nfc_xfer_data_in_pio(nfc
, data
,
1292 FIFO_DEPTH
* BCH_SEQ_READS
);
1293 data
+= FIFO_DEPTH
* BCH_SEQ_READS
;
1296 for (i
= 0; i
< spare_len
; i
+= FIFO_DEPTH
* BCH_SEQ_READS
) {
1297 marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
,
1298 "RDDREQ while draining FIFO (OOB)");
1299 marvell_nfc_xfer_data_in_pio(nfc
, spare
,
1300 FIFO_DEPTH
* BCH_SEQ_READS
);
1301 spare
+= FIFO_DEPTH
* BCH_SEQ_READS
;
1305 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip
*chip
,
1306 u8
*buf
, int oob_required
,
1309 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1310 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1311 int data_len
= lt
->data_bytes
, spare_len
= lt
->spare_bytes
;
1312 u8
*data
= buf
, *spare
= chip
->oob_poi
;
1313 int max_bitflips
= 0;
1314 u32 failure_mask
= 0;
1317 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1320 * With BCH, OOB is not fully used (and thus not read entirely), not
1321 * expected bytes could show up at the end of the OOB buffer if not
1322 * explicitly erased.
1325 memset(chip
->oob_poi
, 0xFF, mtd
->oobsize
);
1327 marvell_nfc_enable_hw_ecc(chip
);
1329 for (chunk
= 0; chunk
< lt
->nchunks
; chunk
++) {
1330 /* Update length for the last chunk */
1331 if (chunk
>= lt
->full_chunk_cnt
) {
1332 data_len
= lt
->last_data_bytes
;
1333 spare_len
= lt
->last_spare_bytes
;
1336 /* Read the chunk and detect number of bitflips */
1337 marvell_nfc_hw_ecc_bch_read_chunk(chip
, chunk
, data
, data_len
,
1338 spare
, spare_len
, page
);
1339 ret
= marvell_nfc_hw_ecc_correct(chip
, &max_bitflips
);
1341 failure_mask
|= BIT(chunk
);
1347 marvell_nfc_disable_hw_ecc(chip
);
1350 return max_bitflips
;
1353 * Please note that dumping the ECC bytes during a normal read with OOB
1354 * area would add a significant overhead as ECC bytes are "consumed" by
1355 * the controller in normal mode and must be re-read in raw mode. To
1356 * avoid dropping the performances, we prefer not to include them. The
1357 * user should re-read the page in raw mode if ECC bytes are required.
1361 * In case there is any subpage read error reported by ->correct(), we
1362 * usually re-read only ECC bytes in raw mode and check if the whole
1363 * page is empty. In this case, it is normal that the ECC check failed
1364 * and we just ignore the error.
1366 * However, it has been empirically observed that for some layouts (e.g
1367 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1368 * bits and may create itself bitflips in the erased area. To overcome
1369 * this strange behavior, the whole page is re-read in raw mode, not
1370 * only the ECC bytes.
1372 for (chunk
= 0; chunk
< lt
->nchunks
; chunk
++) {
1373 int data_off_in_page
, spare_off_in_page
, ecc_off_in_page
;
1374 int data_off
, spare_off
, ecc_off
;
1375 int data_len
, spare_len
, ecc_len
;
1377 /* No failure reported for this chunk, move to the next one */
1378 if (!(failure_mask
& BIT(chunk
)))
1381 data_off_in_page
= chunk
* (lt
->data_bytes
+ lt
->spare_bytes
+
1383 spare_off_in_page
= data_off_in_page
+
1384 (chunk
< lt
->full_chunk_cnt
? lt
->data_bytes
:
1385 lt
->last_data_bytes
);
1386 ecc_off_in_page
= spare_off_in_page
+
1387 (chunk
< lt
->full_chunk_cnt
? lt
->spare_bytes
:
1388 lt
->last_spare_bytes
);
1390 data_off
= chunk
* lt
->data_bytes
;
1391 spare_off
= chunk
* lt
->spare_bytes
;
1392 ecc_off
= (lt
->full_chunk_cnt
* lt
->spare_bytes
) +
1393 lt
->last_spare_bytes
+
1394 (chunk
* (lt
->ecc_bytes
+ 2));
1396 data_len
= chunk
< lt
->full_chunk_cnt
? lt
->data_bytes
:
1397 lt
->last_data_bytes
;
1398 spare_len
= chunk
< lt
->full_chunk_cnt
? lt
->spare_bytes
:
1399 lt
->last_spare_bytes
;
1400 ecc_len
= chunk
< lt
->full_chunk_cnt
? lt
->ecc_bytes
:
1404 * Only re-read the ECC bytes, unless we are using the 2k/8b
1405 * layout which is buggy in the sense that the ECC engine will
1406 * try to correct data bytes anyway, creating bitflips. In this
1407 * case, re-read the entire page.
1409 if (lt
->writesize
== 2048 && lt
->strength
== 8) {
1410 nand_change_read_column_op(chip
, data_off_in_page
,
1411 buf
+ data_off
, data_len
,
1413 nand_change_read_column_op(chip
, spare_off_in_page
,
1414 chip
->oob_poi
+ spare_off
, spare_len
,
1418 nand_change_read_column_op(chip
, ecc_off_in_page
,
1419 chip
->oob_poi
+ ecc_off
, ecc_len
,
1422 /* Check the entire chunk (data + spare + ecc) for emptyness */
1423 marvell_nfc_check_empty_chunk(chip
, buf
+ data_off
, data_len
,
1424 chip
->oob_poi
+ spare_off
, spare_len
,
1425 chip
->oob_poi
+ ecc_off
, ecc_len
,
1429 return max_bitflips
;
1432 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip
*chip
, int page
)
1434 u8
*buf
= nand_get_data_buf(chip
);
1436 return chip
->ecc
.read_page_raw(chip
, buf
, true, page
);
1439 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip
*chip
, int page
)
1441 u8
*buf
= nand_get_data_buf(chip
);
1443 return chip
->ecc
.read_page(chip
, buf
, true, page
);
1446 /* BCH write helpers */
1447 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip
*chip
,
1449 int oob_required
, int page
)
1451 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1452 int full_chunk_size
= lt
->data_bytes
+ lt
->spare_bytes
+ lt
->ecc_bytes
;
1453 int data_len
= lt
->data_bytes
;
1454 int spare_len
= lt
->spare_bytes
;
1455 int ecc_len
= lt
->ecc_bytes
;
1456 int spare_offset
= 0;
1457 int ecc_offset
= (lt
->full_chunk_cnt
* lt
->spare_bytes
) +
1458 lt
->last_spare_bytes
;
1461 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1463 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1465 for (chunk
= 0; chunk
< lt
->nchunks
; chunk
++) {
1466 if (chunk
>= lt
->full_chunk_cnt
) {
1467 data_len
= lt
->last_data_bytes
;
1468 spare_len
= lt
->last_spare_bytes
;
1469 ecc_len
= lt
->last_ecc_bytes
;
1472 /* Point to the column of the next chunk */
1473 nand_change_write_column_op(chip
, chunk
* full_chunk_size
,
1476 /* Write the data */
1477 nand_write_data_op(chip
, buf
+ (chunk
* lt
->data_bytes
),
1483 /* Write the spare bytes */
1485 nand_write_data_op(chip
, chip
->oob_poi
+ spare_offset
,
1488 /* Write the ECC bytes */
1490 nand_write_data_op(chip
, chip
->oob_poi
+ ecc_offset
,
1493 spare_offset
+= spare_len
;
1494 ecc_offset
+= ALIGN(ecc_len
, 32);
1497 return nand_prog_page_end_op(chip
);
1501 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip
*chip
, int chunk
,
1502 const u8
*data
, unsigned int data_len
,
1503 const u8
*spare
, unsigned int spare_len
,
1506 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
1507 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1508 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1511 struct marvell_nfc_op nfc_op
= {
1512 .ndcb
[0] = NDCB0_CMD_TYPE(TYPE_WRITE
) | NDCB0_LEN_OVRD
,
1513 .ndcb
[3] = data_len
+ spare_len
,
1517 * First operation dispatches the CMD_SEQIN command, issue the address
1518 * cycles and asks for the first chunk of data.
1519 * All operations in the middle (if any) will issue a naked write and
1520 * also ask for data.
1521 * Last operation (if any) asks for the last chunk of data through a
1525 if (lt
->nchunks
== 1)
1526 xtype
= XTYPE_MONOLITHIC_RW
;
1528 xtype
= XTYPE_WRITE_DISPATCH
;
1530 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(xtype
) |
1531 NDCB0_ADDR_CYC(marvell_nand
->addr_cyc
) |
1532 NDCB0_CMD1(NAND_CMD_SEQIN
);
1533 nfc_op
.ndcb
[1] |= NDCB1_ADDRS_PAGE(page
);
1534 nfc_op
.ndcb
[2] |= NDCB2_ADDR5_PAGE(page
);
1535 } else if (chunk
< lt
->nchunks
- 1) {
1536 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW
);
1538 nfc_op
.ndcb
[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW
);
1541 /* Always dispatch the PAGEPROG command on the last chunk */
1542 if (chunk
== lt
->nchunks
- 1)
1543 nfc_op
.ndcb
[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG
) | NDCB0_DBC
;
1545 ret
= marvell_nfc_prepare_cmd(chip
);
1549 marvell_nfc_send_cmd(chip
, &nfc_op
);
1550 ret
= marvell_nfc_end_cmd(chip
, NDSR_WRDREQ
,
1551 "WRDREQ while loading FIFO (data)");
1555 /* Transfer the contents */
1556 iowrite32_rep(nfc
->regs
+ NDDB
, data
, FIFO_REP(data_len
));
1557 iowrite32_rep(nfc
->regs
+ NDDB
, spare
, FIFO_REP(spare_len
));
1562 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip
*chip
,
1564 int oob_required
, int page
)
1566 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1567 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
1568 const u8
*data
= buf
;
1569 const u8
*spare
= chip
->oob_poi
;
1570 int data_len
= lt
->data_bytes
;
1571 int spare_len
= lt
->spare_bytes
;
1574 marvell_nfc_select_target(chip
, chip
->cur_cs
);
1576 /* Spare data will be written anyway, so clear it to avoid garbage */
1578 memset(chip
->oob_poi
, 0xFF, mtd
->oobsize
);
1580 marvell_nfc_enable_hw_ecc(chip
);
1582 for (chunk
= 0; chunk
< lt
->nchunks
; chunk
++) {
1583 if (chunk
>= lt
->full_chunk_cnt
) {
1584 data_len
= lt
->last_data_bytes
;
1585 spare_len
= lt
->last_spare_bytes
;
1588 marvell_nfc_hw_ecc_bch_write_chunk(chip
, chunk
, data
, data_len
,
1589 spare
, spare_len
, page
);
1594 * Waiting only for CMDD or PAGED is not enough, ECC are
1595 * partially written. No flag is set once the operation is
1596 * really finished but the ND_RUN bit is cleared, so wait for it
1597 * before stepping into the next command.
1599 marvell_nfc_wait_ndrun(chip
);
1602 ret
= marvell_nfc_wait_op(chip
,
1603 PSEC_TO_MSEC(chip
->data_interface
.timings
.sdr
.tPROG_max
));
1605 marvell_nfc_disable_hw_ecc(chip
);
1613 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip
*chip
,
1616 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1617 u8
*buf
= nand_get_data_buf(chip
);
1619 memset(buf
, 0xFF, mtd
->writesize
);
1621 return chip
->ecc
.write_page_raw(chip
, buf
, true, page
);
1624 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip
*chip
, int page
)
1626 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1627 u8
*buf
= nand_get_data_buf(chip
);
1629 memset(buf
, 0xFF, mtd
->writesize
);
1631 return chip
->ecc
.write_page(chip
, buf
, true, page
);
1634 /* NAND framework ->exec_op() hooks and related helpers */
1635 static void marvell_nfc_parse_instructions(struct nand_chip
*chip
,
1636 const struct nand_subop
*subop
,
1637 struct marvell_nfc_op
*nfc_op
)
1639 const struct nand_op_instr
*instr
= NULL
;
1640 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1641 bool first_cmd
= true;
1645 /* Reset the input structure as most of its fields will be OR'ed */
1646 memset(nfc_op
, 0, sizeof(struct marvell_nfc_op
));
1648 for (op_id
= 0; op_id
< subop
->ninstrs
; op_id
++) {
1649 unsigned int offset
, naddrs
;
1653 instr
= &subop
->instrs
[op_id
];
1655 switch (instr
->type
) {
1656 case NAND_OP_CMD_INSTR
:
1659 NDCB0_CMD1(instr
->ctx
.cmd
.opcode
);
1662 NDCB0_CMD2(instr
->ctx
.cmd
.opcode
) |
1665 nfc_op
->cle_ale_delay_ns
= instr
->delay_ns
;
1669 case NAND_OP_ADDR_INSTR
:
1670 offset
= nand_subop_get_addr_start_off(subop
, op_id
);
1671 naddrs
= nand_subop_get_num_addr_cyc(subop
, op_id
);
1672 addrs
= &instr
->ctx
.addr
.addrs
[offset
];
1674 nfc_op
->ndcb
[0] |= NDCB0_ADDR_CYC(naddrs
);
1676 for (i
= 0; i
< min_t(unsigned int, 4, naddrs
); i
++)
1677 nfc_op
->ndcb
[1] |= addrs
[i
] << (8 * i
);
1680 nfc_op
->ndcb
[2] |= NDCB2_ADDR5_CYC(addrs
[4]);
1682 nfc_op
->ndcb
[3] |= NDCB3_ADDR6_CYC(addrs
[5]);
1684 nfc_op
->ndcb
[3] |= NDCB3_ADDR7_CYC(addrs
[6]);
1686 nfc_op
->cle_ale_delay_ns
= instr
->delay_ns
;
1689 case NAND_OP_DATA_IN_INSTR
:
1690 nfc_op
->data_instr
= instr
;
1691 nfc_op
->data_instr_idx
= op_id
;
1692 nfc_op
->ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_READ
);
1693 if (nfc
->caps
->is_nfcv2
) {
1695 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW
) |
1697 len
= nand_subop_get_data_len(subop
, op_id
);
1698 nfc_op
->ndcb
[3] |= round_up(len
, FIFO_DEPTH
);
1700 nfc_op
->data_delay_ns
= instr
->delay_ns
;
1703 case NAND_OP_DATA_OUT_INSTR
:
1704 nfc_op
->data_instr
= instr
;
1705 nfc_op
->data_instr_idx
= op_id
;
1706 nfc_op
->ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_WRITE
);
1707 if (nfc
->caps
->is_nfcv2
) {
1709 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW
) |
1711 len
= nand_subop_get_data_len(subop
, op_id
);
1712 nfc_op
->ndcb
[3] |= round_up(len
, FIFO_DEPTH
);
1714 nfc_op
->data_delay_ns
= instr
->delay_ns
;
1717 case NAND_OP_WAITRDY_INSTR
:
1718 nfc_op
->rdy_timeout_ms
= instr
->ctx
.waitrdy
.timeout_ms
;
1719 nfc_op
->rdy_delay_ns
= instr
->delay_ns
;
1725 static int marvell_nfc_xfer_data_pio(struct nand_chip
*chip
,
1726 const struct nand_subop
*subop
,
1727 struct marvell_nfc_op
*nfc_op
)
1729 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1730 const struct nand_op_instr
*instr
= nfc_op
->data_instr
;
1731 unsigned int op_id
= nfc_op
->data_instr_idx
;
1732 unsigned int len
= nand_subop_get_data_len(subop
, op_id
);
1733 unsigned int offset
= nand_subop_get_data_start_off(subop
, op_id
);
1734 bool reading
= (instr
->type
== NAND_OP_DATA_IN_INSTR
);
1737 if (instr
->ctx
.data
.force_8bit
)
1738 marvell_nfc_force_byte_access(chip
, true);
1741 u8
*in
= instr
->ctx
.data
.buf
.in
+ offset
;
1743 ret
= marvell_nfc_xfer_data_in_pio(nfc
, in
, len
);
1745 const u8
*out
= instr
->ctx
.data
.buf
.out
+ offset
;
1747 ret
= marvell_nfc_xfer_data_out_pio(nfc
, out
, len
);
1750 if (instr
->ctx
.data
.force_8bit
)
1751 marvell_nfc_force_byte_access(chip
, false);
1756 static int marvell_nfc_monolithic_access_exec(struct nand_chip
*chip
,
1757 const struct nand_subop
*subop
)
1759 struct marvell_nfc_op nfc_op
;
1763 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1764 reading
= (nfc_op
.data_instr
->type
== NAND_OP_DATA_IN_INSTR
);
1766 ret
= marvell_nfc_prepare_cmd(chip
);
1770 marvell_nfc_send_cmd(chip
, &nfc_op
);
1771 ret
= marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
| NDSR_WRDREQ
,
1772 "RDDREQ/WRDREQ while draining raw data");
1776 cond_delay(nfc_op
.cle_ale_delay_ns
);
1779 if (nfc_op
.rdy_timeout_ms
) {
1780 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
1785 cond_delay(nfc_op
.rdy_delay_ns
);
1788 marvell_nfc_xfer_data_pio(chip
, subop
, &nfc_op
);
1789 ret
= marvell_nfc_wait_cmdd(chip
);
1793 cond_delay(nfc_op
.data_delay_ns
);
1796 if (nfc_op
.rdy_timeout_ms
) {
1797 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
1802 cond_delay(nfc_op
.rdy_delay_ns
);
1806 * NDCR ND_RUN bit should be cleared automatically at the end of each
1807 * operation but experience shows that the behavior is buggy when it
1808 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1811 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1813 writel_relaxed(readl(nfc
->regs
+ NDCR
) & ~NDCR_ND_RUN
,
1820 static int marvell_nfc_naked_access_exec(struct nand_chip
*chip
,
1821 const struct nand_subop
*subop
)
1823 struct marvell_nfc_op nfc_op
;
1826 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1829 * Naked access are different in that they need to be flagged as naked
1830 * by the controller. Reset the controller registers fields that inform
1831 * on the type and refill them according to the ongoing operation.
1833 nfc_op
.ndcb
[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK
) |
1834 NDCB0_CMD_XTYPE(XTYPE_MASK
));
1835 switch (subop
->instrs
[0].type
) {
1836 case NAND_OP_CMD_INSTR
:
1837 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD
);
1839 case NAND_OP_ADDR_INSTR
:
1840 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR
);
1842 case NAND_OP_DATA_IN_INSTR
:
1843 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_READ
) |
1844 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW
);
1846 case NAND_OP_DATA_OUT_INSTR
:
1847 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_WRITE
) |
1848 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW
);
1851 /* This should never happen */
1855 ret
= marvell_nfc_prepare_cmd(chip
);
1859 marvell_nfc_send_cmd(chip
, &nfc_op
);
1861 if (!nfc_op
.data_instr
) {
1862 ret
= marvell_nfc_wait_cmdd(chip
);
1863 cond_delay(nfc_op
.cle_ale_delay_ns
);
1867 ret
= marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
| NDSR_WRDREQ
,
1868 "RDDREQ/WRDREQ while draining raw data");
1872 marvell_nfc_xfer_data_pio(chip
, subop
, &nfc_op
);
1873 ret
= marvell_nfc_wait_cmdd(chip
);
1878 * NDCR ND_RUN bit should be cleared automatically at the end of each
1879 * operation but experience shows that the behavior is buggy when it
1880 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1882 if (subop
->instrs
[0].type
== NAND_OP_DATA_OUT_INSTR
) {
1883 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
1885 writel_relaxed(readl(nfc
->regs
+ NDCR
) & ~NDCR_ND_RUN
,
1892 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip
*chip
,
1893 const struct nand_subop
*subop
)
1895 struct marvell_nfc_op nfc_op
;
1898 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1900 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
1901 cond_delay(nfc_op
.rdy_delay_ns
);
1906 static int marvell_nfc_read_id_type_exec(struct nand_chip
*chip
,
1907 const struct nand_subop
*subop
)
1909 struct marvell_nfc_op nfc_op
;
1912 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1913 nfc_op
.ndcb
[0] &= ~NDCB0_CMD_TYPE(TYPE_READ
);
1914 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID
);
1916 ret
= marvell_nfc_prepare_cmd(chip
);
1920 marvell_nfc_send_cmd(chip
, &nfc_op
);
1921 ret
= marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
,
1922 "RDDREQ while reading ID");
1926 cond_delay(nfc_op
.cle_ale_delay_ns
);
1928 if (nfc_op
.rdy_timeout_ms
) {
1929 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
1934 cond_delay(nfc_op
.rdy_delay_ns
);
1936 marvell_nfc_xfer_data_pio(chip
, subop
, &nfc_op
);
1937 ret
= marvell_nfc_wait_cmdd(chip
);
1941 cond_delay(nfc_op
.data_delay_ns
);
1946 static int marvell_nfc_read_status_exec(struct nand_chip
*chip
,
1947 const struct nand_subop
*subop
)
1949 struct marvell_nfc_op nfc_op
;
1952 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1953 nfc_op
.ndcb
[0] &= ~NDCB0_CMD_TYPE(TYPE_READ
);
1954 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_STATUS
);
1956 ret
= marvell_nfc_prepare_cmd(chip
);
1960 marvell_nfc_send_cmd(chip
, &nfc_op
);
1961 ret
= marvell_nfc_end_cmd(chip
, NDSR_RDDREQ
,
1962 "RDDREQ while reading status");
1966 cond_delay(nfc_op
.cle_ale_delay_ns
);
1968 if (nfc_op
.rdy_timeout_ms
) {
1969 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
1974 cond_delay(nfc_op
.rdy_delay_ns
);
1976 marvell_nfc_xfer_data_pio(chip
, subop
, &nfc_op
);
1977 ret
= marvell_nfc_wait_cmdd(chip
);
1981 cond_delay(nfc_op
.data_delay_ns
);
1986 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip
*chip
,
1987 const struct nand_subop
*subop
)
1989 struct marvell_nfc_op nfc_op
;
1992 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
1993 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_RESET
);
1995 ret
= marvell_nfc_prepare_cmd(chip
);
1999 marvell_nfc_send_cmd(chip
, &nfc_op
);
2000 ret
= marvell_nfc_wait_cmdd(chip
);
2004 cond_delay(nfc_op
.cle_ale_delay_ns
);
2006 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
2010 cond_delay(nfc_op
.rdy_delay_ns
);
2015 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip
*chip
,
2016 const struct nand_subop
*subop
)
2018 struct marvell_nfc_op nfc_op
;
2021 marvell_nfc_parse_instructions(chip
, subop
, &nfc_op
);
2022 nfc_op
.ndcb
[0] |= NDCB0_CMD_TYPE(TYPE_ERASE
);
2024 ret
= marvell_nfc_prepare_cmd(chip
);
2028 marvell_nfc_send_cmd(chip
, &nfc_op
);
2029 ret
= marvell_nfc_wait_cmdd(chip
);
2033 cond_delay(nfc_op
.cle_ale_delay_ns
);
2035 ret
= marvell_nfc_wait_op(chip
, nfc_op
.rdy_timeout_ms
);
2039 cond_delay(nfc_op
.rdy_delay_ns
);
2044 static const struct nand_op_parser marvell_nfcv2_op_parser
= NAND_OP_PARSER(
2045 /* Monolithic reads/writes */
2046 NAND_OP_PARSER_PATTERN(
2047 marvell_nfc_monolithic_access_exec
,
2048 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2049 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2
),
2050 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2051 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2052 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE
)),
2053 NAND_OP_PARSER_PATTERN(
2054 marvell_nfc_monolithic_access_exec
,
2055 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2056 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2
),
2057 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE
),
2058 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2059 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2060 /* Naked commands */
2061 NAND_OP_PARSER_PATTERN(
2062 marvell_nfc_naked_access_exec
,
2063 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2064 NAND_OP_PARSER_PATTERN(
2065 marvell_nfc_naked_access_exec
,
2066 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2
)),
2067 NAND_OP_PARSER_PATTERN(
2068 marvell_nfc_naked_access_exec
,
2069 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE
)),
2070 NAND_OP_PARSER_PATTERN(
2071 marvell_nfc_naked_access_exec
,
2072 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE
)),
2073 NAND_OP_PARSER_PATTERN(
2074 marvell_nfc_naked_waitrdy_exec
,
2075 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2078 static const struct nand_op_parser marvell_nfcv1_op_parser
= NAND_OP_PARSER(
2079 /* Naked commands not supported, use a function for each pattern */
2080 NAND_OP_PARSER_PATTERN(
2081 marvell_nfc_read_id_type_exec
,
2082 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2083 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1
),
2084 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2085 NAND_OP_PARSER_PATTERN(
2086 marvell_nfc_erase_cmd_type_exec
,
2087 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1
),
2089 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2090 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2091 NAND_OP_PARSER_PATTERN(
2092 marvell_nfc_read_status_exec
,
2093 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2094 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2095 NAND_OP_PARSER_PATTERN(
2096 marvell_nfc_reset_cmd_type_exec
,
2097 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2098 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2099 NAND_OP_PARSER_PATTERN(
2100 marvell_nfc_naked_waitrdy_exec
,
2101 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2104 static int marvell_nfc_exec_op(struct nand_chip
*chip
,
2105 const struct nand_operation
*op
,
2108 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
2110 marvell_nfc_select_target(chip
, op
->cs
);
2112 if (nfc
->caps
->is_nfcv2
)
2113 return nand_op_parser_exec_op(chip
, &marvell_nfcv2_op_parser
,
2116 return nand_op_parser_exec_op(chip
, &marvell_nfcv1_op_parser
,
2121 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2124 static int marvell_nand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
2125 struct mtd_oob_region
*oobregion
)
2127 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2128 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
2133 oobregion
->length
= (lt
->full_chunk_cnt
* lt
->ecc_bytes
) +
2135 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
2140 static int marvell_nand_ooblayout_free(struct mtd_info
*mtd
, int section
,
2141 struct mtd_oob_region
*oobregion
)
2143 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2144 const struct marvell_hw_ecc_layout
*lt
= to_marvell_nand(chip
)->layout
;
2150 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2151 * 4KB page / 4bit BCH combination.
2153 if (mtd
->writesize
== SZ_4K
&& lt
->data_bytes
== SZ_2K
)
2154 oobregion
->offset
= 6;
2156 oobregion
->offset
= 2;
2158 oobregion
->length
= (lt
->full_chunk_cnt
* lt
->spare_bytes
) +
2159 lt
->last_spare_bytes
- oobregion
->offset
;
2164 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops
= {
2165 .ecc
= marvell_nand_ooblayout_ecc
,
2166 .free
= marvell_nand_ooblayout_free
,
2169 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info
*mtd
,
2170 struct nand_ecc_ctrl
*ecc
)
2172 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2173 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
2174 const struct marvell_hw_ecc_layout
*l
;
2177 if (!nfc
->caps
->is_nfcv2
&&
2178 (mtd
->writesize
+ mtd
->oobsize
> MAX_CHUNK_SIZE
)) {
2180 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2181 mtd
->writesize
, MAX_CHUNK_SIZE
- mtd
->oobsize
);
2185 to_marvell_nand(chip
)->layout
= NULL
;
2186 for (i
= 0; i
< ARRAY_SIZE(marvell_nfc_layouts
); i
++) {
2187 l
= &marvell_nfc_layouts
[i
];
2188 if (mtd
->writesize
== l
->writesize
&&
2189 ecc
->size
== l
->chunk
&& ecc
->strength
== l
->strength
) {
2190 to_marvell_nand(chip
)->layout
= l
;
2195 if (!to_marvell_nand(chip
)->layout
||
2196 (!nfc
->caps
->is_nfcv2
&& ecc
->strength
> 1)) {
2198 "ECC strength %d at page size %d is not supported\n",
2199 ecc
->strength
, mtd
->writesize
);
2203 /* Special care for the layout 2k/8-bit/512B */
2204 if (l
->writesize
== 2048 && l
->strength
== 8) {
2205 if (mtd
->oobsize
< 128) {
2206 dev_err(nfc
->dev
, "Requested layout needs at least 128 OOB bytes\n");
2209 chip
->bbt_options
|= NAND_BBT_NO_OOB_BBM
;
2213 mtd_set_ooblayout(mtd
, &marvell_nand_ooblayout_ops
);
2214 ecc
->steps
= l
->nchunks
;
2215 ecc
->size
= l
->data_bytes
;
2217 if (ecc
->strength
== 1) {
2218 chip
->ecc
.algo
= NAND_ECC_HAMMING
;
2219 ecc
->read_page_raw
= marvell_nfc_hw_ecc_hmg_read_page_raw
;
2220 ecc
->read_page
= marvell_nfc_hw_ecc_hmg_read_page
;
2221 ecc
->read_oob_raw
= marvell_nfc_hw_ecc_hmg_read_oob_raw
;
2222 ecc
->read_oob
= ecc
->read_oob_raw
;
2223 ecc
->write_page_raw
= marvell_nfc_hw_ecc_hmg_write_page_raw
;
2224 ecc
->write_page
= marvell_nfc_hw_ecc_hmg_write_page
;
2225 ecc
->write_oob_raw
= marvell_nfc_hw_ecc_hmg_write_oob_raw
;
2226 ecc
->write_oob
= ecc
->write_oob_raw
;
2228 chip
->ecc
.algo
= NAND_ECC_BCH
;
2230 ecc
->read_page_raw
= marvell_nfc_hw_ecc_bch_read_page_raw
;
2231 ecc
->read_page
= marvell_nfc_hw_ecc_bch_read_page
;
2232 ecc
->read_oob_raw
= marvell_nfc_hw_ecc_bch_read_oob_raw
;
2233 ecc
->read_oob
= marvell_nfc_hw_ecc_bch_read_oob
;
2234 ecc
->write_page_raw
= marvell_nfc_hw_ecc_bch_write_page_raw
;
2235 ecc
->write_page
= marvell_nfc_hw_ecc_bch_write_page
;
2236 ecc
->write_oob_raw
= marvell_nfc_hw_ecc_bch_write_oob_raw
;
2237 ecc
->write_oob
= marvell_nfc_hw_ecc_bch_write_oob
;
2243 static int marvell_nand_ecc_init(struct mtd_info
*mtd
,
2244 struct nand_ecc_ctrl
*ecc
)
2246 struct nand_chip
*chip
= mtd_to_nand(mtd
);
2247 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
2250 if (ecc
->mode
!= NAND_ECC_NONE
&& (!ecc
->size
|| !ecc
->strength
)) {
2251 if (chip
->base
.eccreq
.step_size
&& chip
->base
.eccreq
.strength
) {
2252 ecc
->size
= chip
->base
.eccreq
.step_size
;
2253 ecc
->strength
= chip
->base
.eccreq
.strength
;
2256 "No minimum ECC strength, using 1b/512B\n");
2262 switch (ecc
->mode
) {
2264 ret
= marvell_nand_hw_ecc_ctrl_init(mtd
, ecc
);
2270 case NAND_ECC_ON_DIE
:
2271 if (!nfc
->caps
->is_nfcv2
&& mtd
->writesize
!= SZ_512
&&
2272 mtd
->writesize
!= SZ_2K
) {
2273 dev_err(nfc
->dev
, "NFCv1 cannot write %d bytes pages\n",
2285 static u8 bbt_pattern
[] = {'M', 'V', 'B', 'b', 't', '0' };
2286 static u8 bbt_mirror_pattern
[] = {'1', 't', 'b', 'B', 'V', 'M' };
2288 static struct nand_bbt_descr bbt_main_descr
= {
2289 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
2290 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
2294 .maxblocks
= 8, /* Last 8 blocks in each chip */
2295 .pattern
= bbt_pattern
2298 static struct nand_bbt_descr bbt_mirror_descr
= {
2299 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
2300 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
2304 .maxblocks
= 8, /* Last 8 blocks in each chip */
2305 .pattern
= bbt_mirror_pattern
2308 static int marvell_nfc_setup_data_interface(struct nand_chip
*chip
, int chipnr
,
2309 const struct nand_data_interface
2312 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
2313 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
2314 unsigned int period_ns
= 1000000000 / clk_get_rate(nfc
->core_clk
) * 2;
2315 const struct nand_sdr_timings
*sdr
;
2316 struct marvell_nfc_timings nfc_tmg
;
2319 sdr
= nand_get_sdr_timings(conf
);
2321 return PTR_ERR(sdr
);
2324 * SDR timings are given in pico-seconds while NFC timings must be
2325 * expressed in NAND controller clock cycles, which is half of the
2326 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2327 * This is not written anywhere in the datasheet but was observed
2328 * with an oscilloscope.
2330 * NFC datasheet gives equations from which thoses calculations
2331 * are derived, they tend to be slightly more restrictives than the
2332 * given core timings and may improve the overall speed.
2334 nfc_tmg
.tRP
= TO_CYCLES(DIV_ROUND_UP(sdr
->tRC_min
, 2), period_ns
) - 1;
2335 nfc_tmg
.tRH
= nfc_tmg
.tRP
;
2336 nfc_tmg
.tWP
= TO_CYCLES(DIV_ROUND_UP(sdr
->tWC_min
, 2), period_ns
) - 1;
2337 nfc_tmg
.tWH
= nfc_tmg
.tWP
;
2338 nfc_tmg
.tCS
= TO_CYCLES(sdr
->tCS_min
, period_ns
);
2339 nfc_tmg
.tCH
= TO_CYCLES(sdr
->tCH_min
, period_ns
) - 1;
2340 nfc_tmg
.tADL
= TO_CYCLES(sdr
->tADL_min
, period_ns
);
2342 * Read delay is the time of propagation from SoC pins to NFC internal
2343 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2344 * EDO mode, an additional delay of tRH must be taken into account so
2345 * the data is sampled on the falling edge instead of the rising edge.
2347 read_delay
= sdr
->tRC_min
>= 30000 ?
2348 MIN_RD_DEL_CNT
: MIN_RD_DEL_CNT
+ nfc_tmg
.tRH
;
2350 nfc_tmg
.tAR
= TO_CYCLES(sdr
->tAR_min
, period_ns
);
2352 * tWHR and tRHW are supposed to be read to write delays (and vice
2353 * versa) but in some cases, ie. when doing a change column, they must
2354 * be greater than that to be sure tCCS delay is respected.
2356 nfc_tmg
.tWHR
= TO_CYCLES(max_t(int, sdr
->tWHR_min
, sdr
->tCCS_min
),
2358 nfc_tmg
.tRHW
= TO_CYCLES(max_t(int, sdr
->tRHW_min
, sdr
->tCCS_min
),
2362 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2363 * NFCv1: No WAIT_MODE, tR must be maximal.
2365 if (nfc
->caps
->is_nfcv2
) {
2366 nfc_tmg
.tR
= TO_CYCLES(sdr
->tWB_max
, period_ns
);
2368 nfc_tmg
.tR
= TO_CYCLES64(sdr
->tWB_max
+ sdr
->tR_max
,
2370 if (nfc_tmg
.tR
+ 3 > nfc_tmg
.tCH
)
2371 nfc_tmg
.tR
= nfc_tmg
.tCH
- 3;
2379 marvell_nand
->ndtr0
=
2380 NDTR0_TRP(nfc_tmg
.tRP
) |
2381 NDTR0_TRH(nfc_tmg
.tRH
) |
2382 NDTR0_ETRP(nfc_tmg
.tRP
) |
2383 NDTR0_TWP(nfc_tmg
.tWP
) |
2384 NDTR0_TWH(nfc_tmg
.tWH
) |
2385 NDTR0_TCS(nfc_tmg
.tCS
) |
2386 NDTR0_TCH(nfc_tmg
.tCH
);
2388 marvell_nand
->ndtr1
=
2389 NDTR1_TAR(nfc_tmg
.tAR
) |
2390 NDTR1_TWHR(nfc_tmg
.tWHR
) |
2391 NDTR1_TR(nfc_tmg
.tR
);
2393 if (nfc
->caps
->is_nfcv2
) {
2394 marvell_nand
->ndtr0
|=
2395 NDTR0_RD_CNT_DEL(read_delay
) |
2397 NDTR0_TADL(nfc_tmg
.tADL
);
2399 marvell_nand
->ndtr1
|=
2400 NDTR1_TRHW(nfc_tmg
.tRHW
) |
2407 static int marvell_nand_attach_chip(struct nand_chip
*chip
)
2409 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2410 struct marvell_nand_chip
*marvell_nand
= to_marvell_nand(chip
);
2411 struct marvell_nfc
*nfc
= to_marvell_nfc(chip
->controller
);
2412 struct pxa3xx_nand_platform_data
*pdata
= dev_get_platdata(nfc
->dev
);
2415 if (pdata
&& pdata
->flash_bbt
)
2416 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2418 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
) {
2420 * We'll use a bad block table stored in-flash and don't
2421 * allow writing the bad block marker to the flash.
2423 chip
->bbt_options
|= NAND_BBT_NO_OOB_BBM
;
2424 chip
->bbt_td
= &bbt_main_descr
;
2425 chip
->bbt_md
= &bbt_mirror_descr
;
2428 /* Save the chip-specific fields of NDCR */
2429 marvell_nand
->ndcr
= NDCR_PAGE_SZ(mtd
->writesize
);
2430 if (chip
->options
& NAND_BUSWIDTH_16
)
2431 marvell_nand
->ndcr
|= NDCR_DWIDTH_M
| NDCR_DWIDTH_C
;
2434 * On small page NANDs, only one cycle is needed to pass the
2437 if (mtd
->writesize
<= 512) {
2438 marvell_nand
->addr_cyc
= 1;
2440 marvell_nand
->addr_cyc
= 2;
2441 marvell_nand
->ndcr
|= NDCR_RA_START
;
2445 * Now add the number of cycles needed to pass the row
2448 * Addressing a chip using CS 2 or 3 should also need the third row
2449 * cycle but due to inconsistance in the documentation and lack of
2450 * hardware to test this situation, this case is not supported.
2452 if (chip
->options
& NAND_ROW_ADDR_3
)
2453 marvell_nand
->addr_cyc
+= 3;
2455 marvell_nand
->addr_cyc
+= 2;
2458 chip
->ecc
.size
= pdata
->ecc_step_size
;
2459 chip
->ecc
.strength
= pdata
->ecc_strength
;
2462 ret
= marvell_nand_ecc_init(mtd
, &chip
->ecc
);
2464 dev_err(nfc
->dev
, "ECC init failed: %d\n", ret
);
2468 if (chip
->ecc
.mode
== NAND_ECC_HW
) {
2470 * Subpage write not available with hardware ECC, prohibit also
2471 * subpage read as in userspace subpage access would still be
2472 * allowed and subpage write, if used, would lead to numerous
2473 * uncorrectable ECC errors.
2475 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
2478 if (pdata
|| nfc
->caps
->legacy_of_bindings
) {
2480 * We keep the MTD name unchanged to avoid breaking platforms
2481 * where the MTD cmdline parser is used and the bootloader
2482 * has not been updated to use the new naming scheme.
2484 mtd
->name
= "pxa3xx_nand-0";
2485 } else if (!mtd
->name
) {
2487 * If the new bindings are used and the bootloader has not been
2488 * updated to pass a new mtdparts parameter on the cmdline, you
2489 * should define the following property in your NAND node, ie:
2491 * label = "main-storage";
2493 * This way, mtd->name will be set by the core when
2494 * nand_set_flash_node() is called.
2496 mtd
->name
= devm_kasprintf(nfc
->dev
, GFP_KERNEL
,
2497 "%s:nand.%d", dev_name(nfc
->dev
),
2498 marvell_nand
->sels
[0].cs
);
2500 dev_err(nfc
->dev
, "Failed to allocate mtd->name\n");
2508 static const struct nand_controller_ops marvell_nand_controller_ops
= {
2509 .attach_chip
= marvell_nand_attach_chip
,
2510 .exec_op
= marvell_nfc_exec_op
,
2511 .setup_data_interface
= marvell_nfc_setup_data_interface
,
2514 static int marvell_nand_chip_init(struct device
*dev
, struct marvell_nfc
*nfc
,
2515 struct device_node
*np
)
2517 struct pxa3xx_nand_platform_data
*pdata
= dev_get_platdata(dev
);
2518 struct marvell_nand_chip
*marvell_nand
;
2519 struct mtd_info
*mtd
;
2520 struct nand_chip
*chip
;
2525 * The legacy "num-cs" property indicates the number of CS on the only
2526 * chip connected to the controller (legacy bindings does not support
2527 * more than one chip). The CS and RB pins are always the #0.
2529 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2530 * properties must be filled. For each chip, expressed as a subnode,
2531 * "reg" points to the CS lines and "nand-rb" to the RB line.
2533 if (pdata
|| nfc
->caps
->legacy_of_bindings
) {
2536 nsels
= of_property_count_elems_of_size(np
, "reg", sizeof(u32
));
2538 dev_err(dev
, "missing/invalid reg property\n");
2543 /* Alloc the nand chip structure */
2544 marvell_nand
= devm_kzalloc(dev
,
2545 struct_size(marvell_nand
, sels
, nsels
),
2547 if (!marvell_nand
) {
2548 dev_err(dev
, "could not allocate chip structure\n");
2552 marvell_nand
->nsels
= nsels
;
2553 marvell_nand
->selected_die
= -1;
2555 for (i
= 0; i
< nsels
; i
++) {
2556 if (pdata
|| nfc
->caps
->legacy_of_bindings
) {
2558 * Legacy bindings use the CS lines in natural
2563 /* Retrieve CS id */
2564 ret
= of_property_read_u32_index(np
, "reg", i
, &cs
);
2566 dev_err(dev
, "could not retrieve reg property: %d\n",
2572 if (cs
>= nfc
->caps
->max_cs_nb
) {
2573 dev_err(dev
, "invalid reg value: %u (max CS = %d)\n",
2574 cs
, nfc
->caps
->max_cs_nb
);
2578 if (test_and_set_bit(cs
, &nfc
->assigned_cs
)) {
2579 dev_err(dev
, "CS %d already assigned\n", cs
);
2584 * The cs variable represents the chip select id, which must be
2585 * converted in bit fields for NDCB0 and NDCB2 to select the
2586 * right chip. Unfortunately, due to a lack of information on
2587 * the subject and incoherent documentation, the user should not
2588 * use CS1 and CS3 at all as asserting them is not supported in
2589 * a reliable way (due to multiplexing inside ADDR5 field).
2591 marvell_nand
->sels
[i
].cs
= cs
;
2595 marvell_nand
->sels
[i
].ndcb0_csel
= 0;
2599 marvell_nand
->sels
[i
].ndcb0_csel
= NDCB0_CSEL
;
2605 /* Retrieve RB id */
2606 if (pdata
|| nfc
->caps
->legacy_of_bindings
) {
2607 /* Legacy bindings always use RB #0 */
2610 ret
= of_property_read_u32_index(np
, "nand-rb", i
,
2614 "could not retrieve RB property: %d\n",
2620 if (rb
>= nfc
->caps
->max_rb_nb
) {
2621 dev_err(dev
, "invalid reg value: %u (max RB = %d)\n",
2622 rb
, nfc
->caps
->max_rb_nb
);
2626 marvell_nand
->sels
[i
].rb
= rb
;
2629 chip
= &marvell_nand
->chip
;
2630 chip
->controller
= &nfc
->controller
;
2631 nand_set_flash_node(chip
, np
);
2633 if (!of_property_read_bool(np
, "marvell,nand-keep-config"))
2634 chip
->options
|= NAND_KEEP_TIMINGS
;
2636 mtd
= nand_to_mtd(chip
);
2637 mtd
->dev
.parent
= dev
;
2640 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2641 * in the DT node, this entry will be overwritten in nand_scan_ident().
2643 chip
->ecc
.mode
= NAND_ECC_HW
;
2646 * Save a reference value for timing registers before
2647 * ->setup_data_interface() is called.
2649 marvell_nand
->ndtr0
= readl_relaxed(nfc
->regs
+ NDTR0
);
2650 marvell_nand
->ndtr1
= readl_relaxed(nfc
->regs
+ NDTR1
);
2652 chip
->options
|= NAND_BUSWIDTH_AUTO
;
2654 ret
= nand_scan(chip
, marvell_nand
->nsels
);
2656 dev_err(dev
, "could not scan the nand chip\n");
2661 /* Legacy bindings support only one chip */
2662 ret
= mtd_device_register(mtd
, pdata
->parts
, pdata
->nr_parts
);
2664 ret
= mtd_device_register(mtd
, NULL
, 0);
2666 dev_err(dev
, "failed to register mtd device: %d\n", ret
);
2671 list_add_tail(&marvell_nand
->node
, &nfc
->chips
);
2676 static int marvell_nand_chips_init(struct device
*dev
, struct marvell_nfc
*nfc
)
2678 struct device_node
*np
= dev
->of_node
;
2679 struct device_node
*nand_np
;
2680 int max_cs
= nfc
->caps
->max_cs_nb
;
2687 nchips
= of_get_child_count(np
);
2689 if (nchips
> max_cs
) {
2690 dev_err(dev
, "too many NAND chips: %d (max = %d CS)\n", nchips
,
2696 * Legacy bindings do not use child nodes to exhibit NAND chip
2697 * properties and layout. Instead, NAND properties are mixed with the
2698 * controller ones, and partitions are defined as direct subnodes of the
2699 * NAND controller node.
2701 if (nfc
->caps
->legacy_of_bindings
) {
2702 ret
= marvell_nand_chip_init(dev
, nfc
, np
);
2706 for_each_child_of_node(np
, nand_np
) {
2707 ret
= marvell_nand_chip_init(dev
, nfc
, nand_np
);
2709 of_node_put(nand_np
);
2717 static void marvell_nand_chips_cleanup(struct marvell_nfc
*nfc
)
2719 struct marvell_nand_chip
*entry
, *temp
;
2721 list_for_each_entry_safe(entry
, temp
, &nfc
->chips
, node
) {
2722 nand_release(&entry
->chip
);
2723 list_del(&entry
->node
);
2727 static int marvell_nfc_init_dma(struct marvell_nfc
*nfc
)
2729 struct platform_device
*pdev
= container_of(nfc
->dev
,
2730 struct platform_device
,
2732 struct dma_slave_config config
= {};
2736 if (!IS_ENABLED(CONFIG_PXA_DMA
)) {
2738 "DMA not enabled in configuration\n");
2742 ret
= dma_set_mask_and_coherent(nfc
->dev
, DMA_BIT_MASK(32));
2746 nfc
->dma_chan
= dma_request_slave_channel(nfc
->dev
, "data");
2747 if (!nfc
->dma_chan
) {
2749 "Unable to request data DMA channel\n");
2753 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2757 config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2758 config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2759 config
.src_addr
= r
->start
+ NDDB
;
2760 config
.dst_addr
= r
->start
+ NDDB
;
2761 config
.src_maxburst
= 32;
2762 config
.dst_maxburst
= 32;
2763 ret
= dmaengine_slave_config(nfc
->dma_chan
, &config
);
2765 dev_err(nfc
->dev
, "Failed to configure DMA channel\n");
2770 * DMA must act on length multiple of 32 and this length may be
2771 * bigger than the destination buffer. Use this buffer instead
2772 * for DMA transfers and then copy the desired amount of data to
2773 * the provided buffer.
2775 nfc
->dma_buf
= kmalloc(MAX_CHUNK_SIZE
, GFP_KERNEL
| GFP_DMA
);
2779 nfc
->use_dma
= true;
2784 static void marvell_nfc_reset(struct marvell_nfc
*nfc
)
2787 * ECC operations and interruptions are only enabled when specifically
2788 * needed. ECC shall not be activated in the early stages (fails probe).
2789 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2790 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2791 * offset in the read page and this will fail the protection.
2793 writel_relaxed(NDCR_ALL_INT
| NDCR_ND_ARB_EN
| NDCR_SPARE_EN
|
2794 NDCR_RD_ID_CNT(NFCV1_READID_LEN
), nfc
->regs
+ NDCR
);
2795 writel_relaxed(0xFFFFFFFF, nfc
->regs
+ NDSR
);
2796 writel_relaxed(0, nfc
->regs
+ NDECCCTRL
);
2799 static int marvell_nfc_init(struct marvell_nfc
*nfc
)
2801 struct device_node
*np
= nfc
->dev
->of_node
;
2804 * Some SoCs like A7k/A8k need to enable manually the NAND
2805 * controller, gated clocks and reset bits to avoid being bootloader
2806 * dependent. This is done through the use of the System Functions
2809 if (nfc
->caps
->need_system_controller
) {
2810 struct regmap
*sysctrl_base
=
2811 syscon_regmap_lookup_by_phandle(np
,
2812 "marvell,system-controller");
2814 if (IS_ERR(sysctrl_base
))
2815 return PTR_ERR(sysctrl_base
);
2817 regmap_write(sysctrl_base
, GENCONF_SOC_DEVICE_MUX
,
2818 GENCONF_SOC_DEVICE_MUX_NFC_EN
|
2819 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST
|
2820 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST
|
2821 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN
);
2823 regmap_update_bits(sysctrl_base
, GENCONF_CLK_GATING_CTRL
,
2824 GENCONF_CLK_GATING_CTRL_ND_GATE
,
2825 GENCONF_CLK_GATING_CTRL_ND_GATE
);
2827 regmap_update_bits(sysctrl_base
, GENCONF_ND_CLK_CTRL
,
2828 GENCONF_ND_CLK_CTRL_EN
,
2829 GENCONF_ND_CLK_CTRL_EN
);
2832 /* Configure the DMA if appropriate */
2833 if (!nfc
->caps
->is_nfcv2
)
2834 marvell_nfc_init_dma(nfc
);
2836 marvell_nfc_reset(nfc
);
2841 static int marvell_nfc_probe(struct platform_device
*pdev
)
2843 struct device
*dev
= &pdev
->dev
;
2845 struct marvell_nfc
*nfc
;
2849 nfc
= devm_kzalloc(&pdev
->dev
, sizeof(struct marvell_nfc
),
2855 nand_controller_init(&nfc
->controller
);
2856 nfc
->controller
.ops
= &marvell_nand_controller_ops
;
2857 INIT_LIST_HEAD(&nfc
->chips
);
2859 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2860 nfc
->regs
= devm_ioremap_resource(dev
, r
);
2861 if (IS_ERR(nfc
->regs
))
2862 return PTR_ERR(nfc
->regs
);
2864 irq
= platform_get_irq(pdev
, 0);
2866 dev_err(dev
, "failed to retrieve irq\n");
2870 nfc
->core_clk
= devm_clk_get(&pdev
->dev
, "core");
2872 /* Managed the legacy case (when the first clock was not named) */
2873 if (nfc
->core_clk
== ERR_PTR(-ENOENT
))
2874 nfc
->core_clk
= devm_clk_get(&pdev
->dev
, NULL
);
2876 if (IS_ERR(nfc
->core_clk
))
2877 return PTR_ERR(nfc
->core_clk
);
2879 ret
= clk_prepare_enable(nfc
->core_clk
);
2883 nfc
->reg_clk
= devm_clk_get(&pdev
->dev
, "reg");
2884 if (IS_ERR(nfc
->reg_clk
)) {
2885 if (PTR_ERR(nfc
->reg_clk
) != -ENOENT
) {
2886 ret
= PTR_ERR(nfc
->reg_clk
);
2887 goto unprepare_core_clk
;
2890 nfc
->reg_clk
= NULL
;
2893 ret
= clk_prepare_enable(nfc
->reg_clk
);
2895 goto unprepare_core_clk
;
2897 marvell_nfc_disable_int(nfc
, NDCR_ALL_INT
);
2898 marvell_nfc_clear_int(nfc
, NDCR_ALL_INT
);
2899 ret
= devm_request_irq(dev
, irq
, marvell_nfc_isr
,
2900 0, "marvell-nfc", nfc
);
2902 goto unprepare_reg_clk
;
2904 /* Get NAND controller capabilities */
2906 nfc
->caps
= (void *)pdev
->id_entry
->driver_data
;
2908 nfc
->caps
= of_device_get_match_data(&pdev
->dev
);
2911 dev_err(dev
, "Could not retrieve NFC caps\n");
2913 goto unprepare_reg_clk
;
2916 /* Init the controller and then probe the chips */
2917 ret
= marvell_nfc_init(nfc
);
2919 goto unprepare_reg_clk
;
2921 platform_set_drvdata(pdev
, nfc
);
2923 ret
= marvell_nand_chips_init(dev
, nfc
);
2925 goto unprepare_reg_clk
;
2930 clk_disable_unprepare(nfc
->reg_clk
);
2932 clk_disable_unprepare(nfc
->core_clk
);
2937 static int marvell_nfc_remove(struct platform_device
*pdev
)
2939 struct marvell_nfc
*nfc
= platform_get_drvdata(pdev
);
2941 marvell_nand_chips_cleanup(nfc
);
2944 dmaengine_terminate_all(nfc
->dma_chan
);
2945 dma_release_channel(nfc
->dma_chan
);
2948 clk_disable_unprepare(nfc
->reg_clk
);
2949 clk_disable_unprepare(nfc
->core_clk
);
2954 static int __maybe_unused
marvell_nfc_suspend(struct device
*dev
)
2956 struct marvell_nfc
*nfc
= dev_get_drvdata(dev
);
2957 struct marvell_nand_chip
*chip
;
2959 list_for_each_entry(chip
, &nfc
->chips
, node
)
2960 marvell_nfc_wait_ndrun(&chip
->chip
);
2962 clk_disable_unprepare(nfc
->reg_clk
);
2963 clk_disable_unprepare(nfc
->core_clk
);
2968 static int __maybe_unused
marvell_nfc_resume(struct device
*dev
)
2970 struct marvell_nfc
*nfc
= dev_get_drvdata(dev
);
2973 ret
= clk_prepare_enable(nfc
->core_clk
);
2977 ret
= clk_prepare_enable(nfc
->reg_clk
);
2982 * Reset nfc->selected_chip so the next command will cause the timing
2983 * registers to be restored in marvell_nfc_select_chip().
2985 nfc
->selected_chip
= NULL
;
2987 /* Reset registers that have lost their contents */
2988 marvell_nfc_reset(nfc
);
2993 static const struct dev_pm_ops marvell_nfc_pm_ops
= {
2994 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend
, marvell_nfc_resume
)
2997 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps
= {
3000 .need_system_controller
= true,
3004 static const struct marvell_nfc_caps marvell_armada370_nfc_caps
= {
3010 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps
= {
3016 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps
= {
3019 .need_system_controller
= true,
3020 .legacy_of_bindings
= true,
3024 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps
= {
3027 .legacy_of_bindings
= true,
3031 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps
= {
3034 .legacy_of_bindings
= true,
3038 static const struct platform_device_id marvell_nfc_platform_ids
[] = {
3040 .name
= "pxa3xx-nand",
3041 .driver_data
= (kernel_ulong_t
)&marvell_pxa3xx_nfc_legacy_caps
,
3045 MODULE_DEVICE_TABLE(platform
, marvell_nfc_platform_ids
);
3047 static const struct of_device_id marvell_nfc_of_ids
[] = {
3049 .compatible
= "marvell,armada-8k-nand-controller",
3050 .data
= &marvell_armada_8k_nfc_caps
,
3053 .compatible
= "marvell,armada370-nand-controller",
3054 .data
= &marvell_armada370_nfc_caps
,
3057 .compatible
= "marvell,pxa3xx-nand-controller",
3058 .data
= &marvell_pxa3xx_nfc_caps
,
3060 /* Support for old/deprecated bindings: */
3062 .compatible
= "marvell,armada-8k-nand",
3063 .data
= &marvell_armada_8k_nfc_legacy_caps
,
3066 .compatible
= "marvell,armada370-nand",
3067 .data
= &marvell_armada370_nfc_legacy_caps
,
3070 .compatible
= "marvell,pxa3xx-nand",
3071 .data
= &marvell_pxa3xx_nfc_legacy_caps
,
3075 MODULE_DEVICE_TABLE(of
, marvell_nfc_of_ids
);
3077 static struct platform_driver marvell_nfc_driver
= {
3079 .name
= "marvell-nfc",
3080 .of_match_table
= marvell_nfc_of_ids
,
3081 .pm
= &marvell_nfc_pm_ops
,
3083 .id_table
= marvell_nfc_platform_ids
,
3084 .probe
= marvell_nfc_probe
,
3085 .remove
= marvell_nfc_remove
,
3087 module_platform_driver(marvell_nfc_driver
);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Marvell NAND controller driver");