Linux 4.9.243
[linux/fpc-iii.git] / kernel / sched / rt.c
blob5034c41a5313070635f61a9601cceece3a18ca3e
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #include "sched.h"
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 struct rt_bandwidth def_rt_bandwidth;
18 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 struct rt_bandwidth *rt_b =
21 container_of(timer, struct rt_bandwidth, rt_period_timer);
22 int idle = 0;
23 int overrun;
25 raw_spin_lock(&rt_b->rt_runtime_lock);
26 for (;;) {
27 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
28 if (!overrun)
29 break;
31 raw_spin_unlock(&rt_b->rt_runtime_lock);
32 idle = do_sched_rt_period_timer(rt_b, overrun);
33 raw_spin_lock(&rt_b->rt_runtime_lock);
35 if (idle)
36 rt_b->rt_period_active = 0;
37 raw_spin_unlock(&rt_b->rt_runtime_lock);
39 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
42 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 rt_b->rt_period = ns_to_ktime(period);
45 rt_b->rt_runtime = runtime;
47 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 hrtimer_init(&rt_b->rt_period_timer,
50 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
51 rt_b->rt_period_timer.function = sched_rt_period_timer;
54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
57 return;
59 raw_spin_lock(&rt_b->rt_runtime_lock);
60 if (!rt_b->rt_period_active) {
61 rt_b->rt_period_active = 1;
63 * SCHED_DEADLINE updates the bandwidth, as a run away
64 * RT task with a DL task could hog a CPU. But DL does
65 * not reset the period. If a deadline task was running
66 * without an RT task running, it can cause RT tasks to
67 * throttle when they start up. Kick the timer right away
68 * to update the period.
70 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
76 void init_rt_rq(struct rt_rq *rt_rq)
78 struct rt_prio_array *array;
79 int i;
81 array = &rt_rq->active;
82 for (i = 0; i < MAX_RT_PRIO; i++) {
83 INIT_LIST_HEAD(array->queue + i);
84 __clear_bit(i, array->bitmap);
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO, array->bitmap);
89 #if defined CONFIG_SMP
90 rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 rt_rq->highest_prio.next = MAX_RT_PRIO;
92 rt_rq->rt_nr_migratory = 0;
93 rt_rq->overloaded = 0;
94 plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq->rt_queued = 0;
99 rt_rq->rt_time = 0;
100 rt_rq->rt_throttled = 0;
101 rt_rq->rt_runtime = 0;
102 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108 hrtimer_cancel(&rt_b->rt_period_timer);
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115 #ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 return container_of(rt_se, struct task_struct, rt);
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123 return rt_rq->rq;
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128 return rt_se->rt_rq;
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133 struct rt_rq *rt_rq = rt_se->rt_rq;
135 return rt_rq->rq;
138 void free_rt_sched_group(struct task_group *tg)
140 int i;
142 if (tg->rt_se)
143 destroy_rt_bandwidth(&tg->rt_bandwidth);
145 for_each_possible_cpu(i) {
146 if (tg->rt_rq)
147 kfree(tg->rt_rq[i]);
148 if (tg->rt_se)
149 kfree(tg->rt_se[i]);
152 kfree(tg->rt_rq);
153 kfree(tg->rt_se);
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 struct sched_rt_entity *rt_se, int cpu,
158 struct sched_rt_entity *parent)
160 struct rq *rq = cpu_rq(cpu);
162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 rt_rq->rt_nr_boosted = 0;
164 rt_rq->rq = rq;
165 rt_rq->tg = tg;
167 tg->rt_rq[cpu] = rt_rq;
168 tg->rt_se[cpu] = rt_se;
170 if (!rt_se)
171 return;
173 if (!parent)
174 rt_se->rt_rq = &rq->rt;
175 else
176 rt_se->rt_rq = parent->my_q;
178 rt_se->my_q = rt_rq;
179 rt_se->parent = parent;
180 INIT_LIST_HEAD(&rt_se->run_list);
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185 struct rt_rq *rt_rq;
186 struct sched_rt_entity *rt_se;
187 int i;
189 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
190 if (!tg->rt_rq)
191 goto err;
192 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
193 if (!tg->rt_se)
194 goto err;
196 init_rt_bandwidth(&tg->rt_bandwidth,
197 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199 for_each_possible_cpu(i) {
200 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 GFP_KERNEL, cpu_to_node(i));
202 if (!rt_rq)
203 goto err;
205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 GFP_KERNEL, cpu_to_node(i));
207 if (!rt_se)
208 goto err_free_rq;
210 init_rt_rq(rt_rq);
211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 return 1;
217 err_free_rq:
218 kfree(rt_rq);
219 err:
220 return 0;
223 #else /* CONFIG_RT_GROUP_SCHED */
225 #define rt_entity_is_task(rt_se) (1)
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229 return container_of(rt_se, struct task_struct, rt);
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234 return container_of(rt_rq, struct rq, rt);
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
239 struct task_struct *p = rt_task_of(rt_se);
241 return task_rq(p);
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246 struct rq *rq = rq_of_rt_se(rt_se);
248 return &rq->rt;
251 void free_rt_sched_group(struct task_group *tg) { }
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255 return 1;
257 #endif /* CONFIG_RT_GROUP_SCHED */
259 #ifdef CONFIG_SMP
261 static void pull_rt_task(struct rq *this_rq);
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq->rt.highest_prio.curr > prev->prio;
269 static inline int rt_overloaded(struct rq *rq)
271 return atomic_read(&rq->rd->rto_count);
274 static inline void rt_set_overload(struct rq *rq)
276 if (!rq->online)
277 return;
279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
285 * updated yet.
287 * Matched by the barrier in pull_rt_task().
289 smp_wmb();
290 atomic_inc(&rq->rd->rto_count);
293 static inline void rt_clear_overload(struct rq *rq)
295 if (!rq->online)
296 return;
298 /* the order here really doesn't matter */
299 atomic_dec(&rq->rd->rto_count);
300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 static void update_rt_migration(struct rt_rq *rt_rq)
305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 if (!rt_rq->overloaded) {
307 rt_set_overload(rq_of_rt_rq(rt_rq));
308 rt_rq->overloaded = 1;
310 } else if (rt_rq->overloaded) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq));
312 rt_rq->overloaded = 0;
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318 struct task_struct *p;
320 if (!rt_entity_is_task(rt_se))
321 return;
323 p = rt_task_of(rt_se);
324 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326 rt_rq->rt_nr_total++;
327 if (tsk_nr_cpus_allowed(p) > 1)
328 rt_rq->rt_nr_migratory++;
330 update_rt_migration(rt_rq);
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335 struct task_struct *p;
337 if (!rt_entity_is_task(rt_se))
338 return;
340 p = rt_task_of(rt_se);
341 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343 rt_rq->rt_nr_total--;
344 if (tsk_nr_cpus_allowed(p) > 1)
345 rt_rq->rt_nr_migratory--;
347 update_rt_migration(rt_rq);
350 static inline int has_pushable_tasks(struct rq *rq)
352 return !plist_head_empty(&rq->rt.pushable_tasks);
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
361 static inline void queue_push_tasks(struct rq *rq)
363 if (!has_pushable_tasks(rq))
364 return;
366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 static inline void queue_pull_task(struct rq *rq)
371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 plist_node_init(&p->pushable_tasks, p->prio);
378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
380 /* Update the highest prio pushable task */
381 if (p->prio < rq->rt.highest_prio.next)
382 rq->rt.highest_prio.next = p->prio;
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq)) {
391 p = plist_first_entry(&rq->rt.pushable_tasks,
392 struct task_struct, pushable_tasks);
393 rq->rt.highest_prio.next = p->prio;
394 } else
395 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 #else
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420 return false;
423 static inline void pull_rt_task(struct rq *this_rq)
427 static inline void queue_push_tasks(struct rq *rq)
430 #endif /* CONFIG_SMP */
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437 return rt_se->on_rq;
440 #ifdef CONFIG_RT_GROUP_SCHED
442 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
444 if (!rt_rq->tg)
445 return RUNTIME_INF;
447 return rt_rq->rt_runtime;
450 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455 typedef struct task_group *rt_rq_iter_t;
457 static inline struct task_group *next_task_group(struct task_group *tg)
459 do {
460 tg = list_entry_rcu(tg->list.next,
461 typeof(struct task_group), list);
462 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464 if (&tg->list == &task_groups)
465 tg = NULL;
467 return tg;
470 #define for_each_rt_rq(rt_rq, iter, rq) \
471 for (iter = container_of(&task_groups, typeof(*iter), list); \
472 (iter = next_task_group(iter)) && \
473 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
475 #define for_each_sched_rt_entity(rt_se) \
476 for (; rt_se; rt_se = rt_se->parent)
478 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480 return rt_se->my_q;
483 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
484 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
486 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
488 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
489 struct rq *rq = rq_of_rt_rq(rt_rq);
490 struct sched_rt_entity *rt_se;
492 int cpu = cpu_of(rq);
494 rt_se = rt_rq->tg->rt_se[cpu];
496 if (rt_rq->rt_nr_running) {
497 if (!rt_se)
498 enqueue_top_rt_rq(rt_rq);
499 else if (!on_rt_rq(rt_se))
500 enqueue_rt_entity(rt_se, 0);
502 if (rt_rq->highest_prio.curr < curr->prio)
503 resched_curr(rq);
507 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
509 struct sched_rt_entity *rt_se;
510 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
512 rt_se = rt_rq->tg->rt_se[cpu];
514 if (!rt_se)
515 dequeue_top_rt_rq(rt_rq);
516 else if (on_rt_rq(rt_se))
517 dequeue_rt_entity(rt_se, 0);
520 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 static int rt_se_boosted(struct sched_rt_entity *rt_se)
527 struct rt_rq *rt_rq = group_rt_rq(rt_se);
528 struct task_struct *p;
530 if (rt_rq)
531 return !!rt_rq->rt_nr_boosted;
533 p = rt_task_of(rt_se);
534 return p->prio != p->normal_prio;
537 #ifdef CONFIG_SMP
538 static inline const struct cpumask *sched_rt_period_mask(void)
540 return this_rq()->rd->span;
542 #else
543 static inline const struct cpumask *sched_rt_period_mask(void)
545 return cpu_online_mask;
547 #endif
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
552 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557 return &rt_rq->tg->rt_bandwidth;
560 #else /* !CONFIG_RT_GROUP_SCHED */
562 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564 return rt_rq->rt_runtime;
567 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569 return ktime_to_ns(def_rt_bandwidth.rt_period);
572 typedef struct rt_rq *rt_rq_iter_t;
574 #define for_each_rt_rq(rt_rq, iter, rq) \
575 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577 #define for_each_sched_rt_entity(rt_se) \
578 for (; rt_se; rt_se = NULL)
580 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582 return NULL;
585 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
587 struct rq *rq = rq_of_rt_rq(rt_rq);
589 if (!rt_rq->rt_nr_running)
590 return;
592 enqueue_top_rt_rq(rt_rq);
593 resched_curr(rq);
596 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
598 dequeue_top_rt_rq(rt_rq);
601 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603 return rt_rq->rt_throttled;
606 static inline const struct cpumask *sched_rt_period_mask(void)
608 return cpu_online_mask;
611 static inline
612 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614 return &cpu_rq(cpu)->rt;
617 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619 return &def_rt_bandwidth;
622 #endif /* CONFIG_RT_GROUP_SCHED */
624 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628 return (hrtimer_active(&rt_b->rt_period_timer) ||
629 rt_rq->rt_time < rt_b->rt_runtime);
632 #ifdef CONFIG_SMP
634 * We ran out of runtime, see if we can borrow some from our neighbours.
636 static void do_balance_runtime(struct rt_rq *rt_rq)
638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
640 int i, weight;
641 u64 rt_period;
643 weight = cpumask_weight(rd->span);
645 raw_spin_lock(&rt_b->rt_runtime_lock);
646 rt_period = ktime_to_ns(rt_b->rt_period);
647 for_each_cpu(i, rd->span) {
648 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
649 s64 diff;
651 if (iter == rt_rq)
652 continue;
654 raw_spin_lock(&iter->rt_runtime_lock);
656 * Either all rqs have inf runtime and there's nothing to steal
657 * or __disable_runtime() below sets a specific rq to inf to
658 * indicate its been disabled and disalow stealing.
660 if (iter->rt_runtime == RUNTIME_INF)
661 goto next;
664 * From runqueues with spare time, take 1/n part of their
665 * spare time, but no more than our period.
667 diff = iter->rt_runtime - iter->rt_time;
668 if (diff > 0) {
669 diff = div_u64((u64)diff, weight);
670 if (rt_rq->rt_runtime + diff > rt_period)
671 diff = rt_period - rt_rq->rt_runtime;
672 iter->rt_runtime -= diff;
673 rt_rq->rt_runtime += diff;
674 if (rt_rq->rt_runtime == rt_period) {
675 raw_spin_unlock(&iter->rt_runtime_lock);
676 break;
679 next:
680 raw_spin_unlock(&iter->rt_runtime_lock);
682 raw_spin_unlock(&rt_b->rt_runtime_lock);
686 * Ensure this RQ takes back all the runtime it lend to its neighbours.
688 static void __disable_runtime(struct rq *rq)
690 struct root_domain *rd = rq->rd;
691 rt_rq_iter_t iter;
692 struct rt_rq *rt_rq;
694 if (unlikely(!scheduler_running))
695 return;
697 for_each_rt_rq(rt_rq, iter, rq) {
698 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
699 s64 want;
700 int i;
702 raw_spin_lock(&rt_b->rt_runtime_lock);
703 raw_spin_lock(&rt_rq->rt_runtime_lock);
705 * Either we're all inf and nobody needs to borrow, or we're
706 * already disabled and thus have nothing to do, or we have
707 * exactly the right amount of runtime to take out.
709 if (rt_rq->rt_runtime == RUNTIME_INF ||
710 rt_rq->rt_runtime == rt_b->rt_runtime)
711 goto balanced;
712 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715 * Calculate the difference between what we started out with
716 * and what we current have, that's the amount of runtime
717 * we lend and now have to reclaim.
719 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722 * Greedy reclaim, take back as much as we can.
724 for_each_cpu(i, rd->span) {
725 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
726 s64 diff;
729 * Can't reclaim from ourselves or disabled runqueues.
731 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
732 continue;
734 raw_spin_lock(&iter->rt_runtime_lock);
735 if (want > 0) {
736 diff = min_t(s64, iter->rt_runtime, want);
737 iter->rt_runtime -= diff;
738 want -= diff;
739 } else {
740 iter->rt_runtime -= want;
741 want -= want;
743 raw_spin_unlock(&iter->rt_runtime_lock);
745 if (!want)
746 break;
749 raw_spin_lock(&rt_rq->rt_runtime_lock);
751 * We cannot be left wanting - that would mean some runtime
752 * leaked out of the system.
754 BUG_ON(want);
755 balanced:
757 * Disable all the borrow logic by pretending we have inf
758 * runtime - in which case borrowing doesn't make sense.
760 rt_rq->rt_runtime = RUNTIME_INF;
761 rt_rq->rt_throttled = 0;
762 raw_spin_unlock(&rt_rq->rt_runtime_lock);
763 raw_spin_unlock(&rt_b->rt_runtime_lock);
765 /* Make rt_rq available for pick_next_task() */
766 sched_rt_rq_enqueue(rt_rq);
770 static void __enable_runtime(struct rq *rq)
772 rt_rq_iter_t iter;
773 struct rt_rq *rt_rq;
775 if (unlikely(!scheduler_running))
776 return;
779 * Reset each runqueue's bandwidth settings
781 for_each_rt_rq(rt_rq, iter, rq) {
782 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784 raw_spin_lock(&rt_b->rt_runtime_lock);
785 raw_spin_lock(&rt_rq->rt_runtime_lock);
786 rt_rq->rt_runtime = rt_b->rt_runtime;
787 rt_rq->rt_time = 0;
788 rt_rq->rt_throttled = 0;
789 raw_spin_unlock(&rt_rq->rt_runtime_lock);
790 raw_spin_unlock(&rt_b->rt_runtime_lock);
794 static void balance_runtime(struct rt_rq *rt_rq)
796 if (!sched_feat(RT_RUNTIME_SHARE))
797 return;
799 if (rt_rq->rt_time > rt_rq->rt_runtime) {
800 raw_spin_unlock(&rt_rq->rt_runtime_lock);
801 do_balance_runtime(rt_rq);
802 raw_spin_lock(&rt_rq->rt_runtime_lock);
805 #else /* !CONFIG_SMP */
806 static inline void balance_runtime(struct rt_rq *rt_rq) {}
807 #endif /* CONFIG_SMP */
809 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811 int i, idle = 1, throttled = 0;
812 const struct cpumask *span;
814 span = sched_rt_period_mask();
815 #ifdef CONFIG_RT_GROUP_SCHED
817 * FIXME: isolated CPUs should really leave the root task group,
818 * whether they are isolcpus or were isolated via cpusets, lest
819 * the timer run on a CPU which does not service all runqueues,
820 * potentially leaving other CPUs indefinitely throttled. If
821 * isolation is really required, the user will turn the throttle
822 * off to kill the perturbations it causes anyway. Meanwhile,
823 * this maintains functionality for boot and/or troubleshooting.
825 if (rt_b == &root_task_group.rt_bandwidth)
826 span = cpu_online_mask;
827 #endif
828 for_each_cpu(i, span) {
829 int enqueue = 0;
830 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
831 struct rq *rq = rq_of_rt_rq(rt_rq);
833 raw_spin_lock(&rq->lock);
834 update_rq_clock(rq);
836 if (rt_rq->rt_time) {
837 u64 runtime;
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 if (rt_rq->rt_throttled)
841 balance_runtime(rt_rq);
842 runtime = rt_rq->rt_runtime;
843 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845 rt_rq->rt_throttled = 0;
846 enqueue = 1;
849 * When we're idle and a woken (rt) task is
850 * throttled check_preempt_curr() will set
851 * skip_update and the time between the wakeup
852 * and this unthrottle will get accounted as
853 * 'runtime'.
855 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856 rq_clock_skip_update(rq, false);
858 if (rt_rq->rt_time || rt_rq->rt_nr_running)
859 idle = 0;
860 raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 } else if (rt_rq->rt_nr_running) {
862 idle = 0;
863 if (!rt_rq_throttled(rt_rq))
864 enqueue = 1;
866 if (rt_rq->rt_throttled)
867 throttled = 1;
869 if (enqueue)
870 sched_rt_rq_enqueue(rt_rq);
871 raw_spin_unlock(&rq->lock);
874 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875 return 1;
877 return idle;
880 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
882 #ifdef CONFIG_RT_GROUP_SCHED
883 struct rt_rq *rt_rq = group_rt_rq(rt_se);
885 if (rt_rq)
886 return rt_rq->highest_prio.curr;
887 #endif
889 return rt_task_of(rt_se)->prio;
892 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
894 u64 runtime = sched_rt_runtime(rt_rq);
896 if (rt_rq->rt_throttled)
897 return rt_rq_throttled(rt_rq);
899 if (runtime >= sched_rt_period(rt_rq))
900 return 0;
902 balance_runtime(rt_rq);
903 runtime = sched_rt_runtime(rt_rq);
904 if (runtime == RUNTIME_INF)
905 return 0;
907 if (rt_rq->rt_time > runtime) {
908 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
911 * Don't actually throttle groups that have no runtime assigned
912 * but accrue some time due to boosting.
914 if (likely(rt_b->rt_runtime)) {
915 rt_rq->rt_throttled = 1;
916 printk_deferred_once("sched: RT throttling activated\n");
917 } else {
919 * In case we did anyway, make it go away,
920 * replenishment is a joke, since it will replenish us
921 * with exactly 0 ns.
923 rt_rq->rt_time = 0;
926 if (rt_rq_throttled(rt_rq)) {
927 sched_rt_rq_dequeue(rt_rq);
928 return 1;
932 return 0;
936 * Update the current task's runtime statistics. Skip current tasks that
937 * are not in our scheduling class.
939 static void update_curr_rt(struct rq *rq)
941 struct task_struct *curr = rq->curr;
942 struct sched_rt_entity *rt_se = &curr->rt;
943 u64 delta_exec;
945 if (curr->sched_class != &rt_sched_class)
946 return;
948 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
949 if (unlikely((s64)delta_exec <= 0))
950 return;
952 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
953 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
955 schedstat_set(curr->se.statistics.exec_max,
956 max(curr->se.statistics.exec_max, delta_exec));
958 curr->se.sum_exec_runtime += delta_exec;
959 account_group_exec_runtime(curr, delta_exec);
961 curr->se.exec_start = rq_clock_task(rq);
962 cpuacct_charge(curr, delta_exec);
964 sched_rt_avg_update(rq, delta_exec);
966 if (!rt_bandwidth_enabled())
967 return;
969 for_each_sched_rt_entity(rt_se) {
970 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
972 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
973 raw_spin_lock(&rt_rq->rt_runtime_lock);
974 rt_rq->rt_time += delta_exec;
975 if (sched_rt_runtime_exceeded(rt_rq))
976 resched_curr(rq);
977 raw_spin_unlock(&rt_rq->rt_runtime_lock);
982 static void
983 dequeue_top_rt_rq(struct rt_rq *rt_rq)
985 struct rq *rq = rq_of_rt_rq(rt_rq);
987 BUG_ON(&rq->rt != rt_rq);
989 if (!rt_rq->rt_queued)
990 return;
992 BUG_ON(!rq->nr_running);
994 sub_nr_running(rq, rt_rq->rt_nr_running);
995 rt_rq->rt_queued = 0;
998 static void
999 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1001 struct rq *rq = rq_of_rt_rq(rt_rq);
1003 BUG_ON(&rq->rt != rt_rq);
1005 if (rt_rq->rt_queued)
1006 return;
1007 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1008 return;
1010 add_nr_running(rq, rt_rq->rt_nr_running);
1011 rt_rq->rt_queued = 1;
1014 #if defined CONFIG_SMP
1016 static void
1017 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1019 struct rq *rq = rq_of_rt_rq(rt_rq);
1021 #ifdef CONFIG_RT_GROUP_SCHED
1023 * Change rq's cpupri only if rt_rq is the top queue.
1025 if (&rq->rt != rt_rq)
1026 return;
1027 #endif
1028 if (rq->online && prio < prev_prio)
1029 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1032 static void
1033 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1035 struct rq *rq = rq_of_rt_rq(rt_rq);
1037 #ifdef CONFIG_RT_GROUP_SCHED
1039 * Change rq's cpupri only if rt_rq is the top queue.
1041 if (&rq->rt != rt_rq)
1042 return;
1043 #endif
1044 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1045 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1048 #else /* CONFIG_SMP */
1050 static inline
1051 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1052 static inline
1053 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1055 #endif /* CONFIG_SMP */
1057 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1058 static void
1059 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1061 int prev_prio = rt_rq->highest_prio.curr;
1063 if (prio < prev_prio)
1064 rt_rq->highest_prio.curr = prio;
1066 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1069 static void
1070 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1072 int prev_prio = rt_rq->highest_prio.curr;
1074 if (rt_rq->rt_nr_running) {
1076 WARN_ON(prio < prev_prio);
1079 * This may have been our highest task, and therefore
1080 * we may have some recomputation to do
1082 if (prio == prev_prio) {
1083 struct rt_prio_array *array = &rt_rq->active;
1085 rt_rq->highest_prio.curr =
1086 sched_find_first_bit(array->bitmap);
1089 } else
1090 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1092 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1095 #else
1097 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1098 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1100 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1102 #ifdef CONFIG_RT_GROUP_SCHED
1104 static void
1105 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1107 if (rt_se_boosted(rt_se))
1108 rt_rq->rt_nr_boosted++;
1110 if (rt_rq->tg)
1111 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1114 static void
1115 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1117 if (rt_se_boosted(rt_se))
1118 rt_rq->rt_nr_boosted--;
1120 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1123 #else /* CONFIG_RT_GROUP_SCHED */
1125 static void
1126 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128 start_rt_bandwidth(&def_rt_bandwidth);
1131 static inline
1132 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1134 #endif /* CONFIG_RT_GROUP_SCHED */
1136 static inline
1137 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1139 struct rt_rq *group_rq = group_rt_rq(rt_se);
1141 if (group_rq)
1142 return group_rq->rt_nr_running;
1143 else
1144 return 1;
1147 static inline
1148 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1150 struct rt_rq *group_rq = group_rt_rq(rt_se);
1151 struct task_struct *tsk;
1153 if (group_rq)
1154 return group_rq->rr_nr_running;
1156 tsk = rt_task_of(rt_se);
1158 return (tsk->policy == SCHED_RR) ? 1 : 0;
1161 static inline
1162 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1164 int prio = rt_se_prio(rt_se);
1166 WARN_ON(!rt_prio(prio));
1167 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1168 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1170 inc_rt_prio(rt_rq, prio);
1171 inc_rt_migration(rt_se, rt_rq);
1172 inc_rt_group(rt_se, rt_rq);
1175 static inline
1176 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1179 WARN_ON(!rt_rq->rt_nr_running);
1180 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1181 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1183 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1184 dec_rt_migration(rt_se, rt_rq);
1185 dec_rt_group(rt_se, rt_rq);
1189 * Change rt_se->run_list location unless SAVE && !MOVE
1191 * assumes ENQUEUE/DEQUEUE flags match
1193 static inline bool move_entity(unsigned int flags)
1195 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1196 return false;
1198 return true;
1201 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1203 list_del_init(&rt_se->run_list);
1205 if (list_empty(array->queue + rt_se_prio(rt_se)))
1206 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1208 rt_se->on_list = 0;
1211 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1213 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1214 struct rt_prio_array *array = &rt_rq->active;
1215 struct rt_rq *group_rq = group_rt_rq(rt_se);
1216 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1219 * Don't enqueue the group if its throttled, or when empty.
1220 * The latter is a consequence of the former when a child group
1221 * get throttled and the current group doesn't have any other
1222 * active members.
1224 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1225 if (rt_se->on_list)
1226 __delist_rt_entity(rt_se, array);
1227 return;
1230 if (move_entity(flags)) {
1231 WARN_ON_ONCE(rt_se->on_list);
1232 if (flags & ENQUEUE_HEAD)
1233 list_add(&rt_se->run_list, queue);
1234 else
1235 list_add_tail(&rt_se->run_list, queue);
1237 __set_bit(rt_se_prio(rt_se), array->bitmap);
1238 rt_se->on_list = 1;
1240 rt_se->on_rq = 1;
1242 inc_rt_tasks(rt_se, rt_rq);
1245 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1247 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1248 struct rt_prio_array *array = &rt_rq->active;
1250 if (move_entity(flags)) {
1251 WARN_ON_ONCE(!rt_se->on_list);
1252 __delist_rt_entity(rt_se, array);
1254 rt_se->on_rq = 0;
1256 dec_rt_tasks(rt_se, rt_rq);
1260 * Because the prio of an upper entry depends on the lower
1261 * entries, we must remove entries top - down.
1263 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1265 struct sched_rt_entity *back = NULL;
1267 for_each_sched_rt_entity(rt_se) {
1268 rt_se->back = back;
1269 back = rt_se;
1272 dequeue_top_rt_rq(rt_rq_of_se(back));
1274 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1275 if (on_rt_rq(rt_se))
1276 __dequeue_rt_entity(rt_se, flags);
1280 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1282 struct rq *rq = rq_of_rt_se(rt_se);
1284 dequeue_rt_stack(rt_se, flags);
1285 for_each_sched_rt_entity(rt_se)
1286 __enqueue_rt_entity(rt_se, flags);
1287 enqueue_top_rt_rq(&rq->rt);
1290 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1292 struct rq *rq = rq_of_rt_se(rt_se);
1294 dequeue_rt_stack(rt_se, flags);
1296 for_each_sched_rt_entity(rt_se) {
1297 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1299 if (rt_rq && rt_rq->rt_nr_running)
1300 __enqueue_rt_entity(rt_se, flags);
1302 enqueue_top_rt_rq(&rq->rt);
1306 * Adding/removing a task to/from a priority array:
1308 static void
1309 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1311 struct sched_rt_entity *rt_se = &p->rt;
1313 if (flags & ENQUEUE_WAKEUP)
1314 rt_se->timeout = 0;
1316 enqueue_rt_entity(rt_se, flags);
1318 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1319 enqueue_pushable_task(rq, p);
1322 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1324 struct sched_rt_entity *rt_se = &p->rt;
1326 update_curr_rt(rq);
1327 dequeue_rt_entity(rt_se, flags);
1329 dequeue_pushable_task(rq, p);
1333 * Put task to the head or the end of the run list without the overhead of
1334 * dequeue followed by enqueue.
1336 static void
1337 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1339 if (on_rt_rq(rt_se)) {
1340 struct rt_prio_array *array = &rt_rq->active;
1341 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1343 if (head)
1344 list_move(&rt_se->run_list, queue);
1345 else
1346 list_move_tail(&rt_se->run_list, queue);
1350 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1352 struct sched_rt_entity *rt_se = &p->rt;
1353 struct rt_rq *rt_rq;
1355 for_each_sched_rt_entity(rt_se) {
1356 rt_rq = rt_rq_of_se(rt_se);
1357 requeue_rt_entity(rt_rq, rt_se, head);
1361 static void yield_task_rt(struct rq *rq)
1363 requeue_task_rt(rq, rq->curr, 0);
1366 #ifdef CONFIG_SMP
1367 static int find_lowest_rq(struct task_struct *task);
1369 static int
1370 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1372 struct task_struct *curr;
1373 struct rq *rq;
1375 /* For anything but wake ups, just return the task_cpu */
1376 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1377 goto out;
1379 rq = cpu_rq(cpu);
1381 rcu_read_lock();
1382 curr = READ_ONCE(rq->curr); /* unlocked access */
1385 * If the current task on @p's runqueue is an RT task, then
1386 * try to see if we can wake this RT task up on another
1387 * runqueue. Otherwise simply start this RT task
1388 * on its current runqueue.
1390 * We want to avoid overloading runqueues. If the woken
1391 * task is a higher priority, then it will stay on this CPU
1392 * and the lower prio task should be moved to another CPU.
1393 * Even though this will probably make the lower prio task
1394 * lose its cache, we do not want to bounce a higher task
1395 * around just because it gave up its CPU, perhaps for a
1396 * lock?
1398 * For equal prio tasks, we just let the scheduler sort it out.
1400 * Otherwise, just let it ride on the affined RQ and the
1401 * post-schedule router will push the preempted task away
1403 * This test is optimistic, if we get it wrong the load-balancer
1404 * will have to sort it out.
1406 if (curr && unlikely(rt_task(curr)) &&
1407 (tsk_nr_cpus_allowed(curr) < 2 ||
1408 curr->prio <= p->prio)) {
1409 int target = find_lowest_rq(p);
1412 * Don't bother moving it if the destination CPU is
1413 * not running a lower priority task.
1415 if (target != -1 &&
1416 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1417 cpu = target;
1419 rcu_read_unlock();
1421 out:
1422 return cpu;
1425 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1428 * Current can't be migrated, useless to reschedule,
1429 * let's hope p can move out.
1431 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1432 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1433 return;
1436 * p is migratable, so let's not schedule it and
1437 * see if it is pushed or pulled somewhere else.
1439 if (tsk_nr_cpus_allowed(p) != 1
1440 && cpupri_find(&rq->rd->cpupri, p, NULL))
1441 return;
1444 * There appears to be other cpus that can accept
1445 * current and none to run 'p', so lets reschedule
1446 * to try and push current away:
1448 requeue_task_rt(rq, p, 1);
1449 resched_curr(rq);
1452 #endif /* CONFIG_SMP */
1455 * Preempt the current task with a newly woken task if needed:
1457 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1459 if (p->prio < rq->curr->prio) {
1460 resched_curr(rq);
1461 return;
1464 #ifdef CONFIG_SMP
1466 * If:
1468 * - the newly woken task is of equal priority to the current task
1469 * - the newly woken task is non-migratable while current is migratable
1470 * - current will be preempted on the next reschedule
1472 * we should check to see if current can readily move to a different
1473 * cpu. If so, we will reschedule to allow the push logic to try
1474 * to move current somewhere else, making room for our non-migratable
1475 * task.
1477 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1478 check_preempt_equal_prio(rq, p);
1479 #endif
1482 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1483 struct rt_rq *rt_rq)
1485 struct rt_prio_array *array = &rt_rq->active;
1486 struct sched_rt_entity *next = NULL;
1487 struct list_head *queue;
1488 int idx;
1490 idx = sched_find_first_bit(array->bitmap);
1491 BUG_ON(idx >= MAX_RT_PRIO);
1493 queue = array->queue + idx;
1494 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1496 return next;
1499 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1501 struct sched_rt_entity *rt_se;
1502 struct task_struct *p;
1503 struct rt_rq *rt_rq = &rq->rt;
1505 do {
1506 rt_se = pick_next_rt_entity(rq, rt_rq);
1507 BUG_ON(!rt_se);
1508 rt_rq = group_rt_rq(rt_se);
1509 } while (rt_rq);
1511 p = rt_task_of(rt_se);
1512 p->se.exec_start = rq_clock_task(rq);
1514 return p;
1517 static struct task_struct *
1518 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1520 struct task_struct *p;
1521 struct rt_rq *rt_rq = &rq->rt;
1523 if (need_pull_rt_task(rq, prev)) {
1525 * This is OK, because current is on_cpu, which avoids it being
1526 * picked for load-balance and preemption/IRQs are still
1527 * disabled avoiding further scheduler activity on it and we're
1528 * being very careful to re-start the picking loop.
1530 lockdep_unpin_lock(&rq->lock, cookie);
1531 pull_rt_task(rq);
1532 lockdep_repin_lock(&rq->lock, cookie);
1534 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1535 * means a dl or stop task can slip in, in which case we need
1536 * to re-start task selection.
1538 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1539 rq->dl.dl_nr_running))
1540 return RETRY_TASK;
1544 * We may dequeue prev's rt_rq in put_prev_task().
1545 * So, we update time before rt_nr_running check.
1547 if (prev->sched_class == &rt_sched_class)
1548 update_curr_rt(rq);
1550 if (!rt_rq->rt_queued)
1551 return NULL;
1553 put_prev_task(rq, prev);
1555 p = _pick_next_task_rt(rq);
1557 /* The running task is never eligible for pushing */
1558 dequeue_pushable_task(rq, p);
1560 queue_push_tasks(rq);
1562 return p;
1565 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1567 update_curr_rt(rq);
1570 * The previous task needs to be made eligible for pushing
1571 * if it is still active
1573 if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1574 enqueue_pushable_task(rq, p);
1577 #ifdef CONFIG_SMP
1579 /* Only try algorithms three times */
1580 #define RT_MAX_TRIES 3
1582 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1584 if (!task_running(rq, p) &&
1585 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1586 return 1;
1587 return 0;
1591 * Return the highest pushable rq's task, which is suitable to be executed
1592 * on the cpu, NULL otherwise
1594 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1596 struct plist_head *head = &rq->rt.pushable_tasks;
1597 struct task_struct *p;
1599 if (!has_pushable_tasks(rq))
1600 return NULL;
1602 plist_for_each_entry(p, head, pushable_tasks) {
1603 if (pick_rt_task(rq, p, cpu))
1604 return p;
1607 return NULL;
1610 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1612 static int find_lowest_rq(struct task_struct *task)
1614 struct sched_domain *sd;
1615 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1616 int this_cpu = smp_processor_id();
1617 int cpu = task_cpu(task);
1619 /* Make sure the mask is initialized first */
1620 if (unlikely(!lowest_mask))
1621 return -1;
1623 if (tsk_nr_cpus_allowed(task) == 1)
1624 return -1; /* No other targets possible */
1626 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1627 return -1; /* No targets found */
1630 * At this point we have built a mask of cpus representing the
1631 * lowest priority tasks in the system. Now we want to elect
1632 * the best one based on our affinity and topology.
1634 * We prioritize the last cpu that the task executed on since
1635 * it is most likely cache-hot in that location.
1637 if (cpumask_test_cpu(cpu, lowest_mask))
1638 return cpu;
1641 * Otherwise, we consult the sched_domains span maps to figure
1642 * out which cpu is logically closest to our hot cache data.
1644 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1645 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1647 rcu_read_lock();
1648 for_each_domain(cpu, sd) {
1649 if (sd->flags & SD_WAKE_AFFINE) {
1650 int best_cpu;
1653 * "this_cpu" is cheaper to preempt than a
1654 * remote processor.
1656 if (this_cpu != -1 &&
1657 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1658 rcu_read_unlock();
1659 return this_cpu;
1662 best_cpu = cpumask_first_and(lowest_mask,
1663 sched_domain_span(sd));
1664 if (best_cpu < nr_cpu_ids) {
1665 rcu_read_unlock();
1666 return best_cpu;
1670 rcu_read_unlock();
1673 * And finally, if there were no matches within the domains
1674 * just give the caller *something* to work with from the compatible
1675 * locations.
1677 if (this_cpu != -1)
1678 return this_cpu;
1680 cpu = cpumask_any(lowest_mask);
1681 if (cpu < nr_cpu_ids)
1682 return cpu;
1683 return -1;
1686 /* Will lock the rq it finds */
1687 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1689 struct rq *lowest_rq = NULL;
1690 int tries;
1691 int cpu;
1693 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1694 cpu = find_lowest_rq(task);
1696 if ((cpu == -1) || (cpu == rq->cpu))
1697 break;
1699 lowest_rq = cpu_rq(cpu);
1701 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1703 * Target rq has tasks of equal or higher priority,
1704 * retrying does not release any lock and is unlikely
1705 * to yield a different result.
1707 lowest_rq = NULL;
1708 break;
1711 /* if the prio of this runqueue changed, try again */
1712 if (double_lock_balance(rq, lowest_rq)) {
1714 * We had to unlock the run queue. In
1715 * the mean time, task could have
1716 * migrated already or had its affinity changed.
1717 * Also make sure that it wasn't scheduled on its rq.
1719 if (unlikely(task_rq(task) != rq ||
1720 !cpumask_test_cpu(lowest_rq->cpu,
1721 tsk_cpus_allowed(task)) ||
1722 task_running(rq, task) ||
1723 !rt_task(task) ||
1724 !task_on_rq_queued(task))) {
1726 double_unlock_balance(rq, lowest_rq);
1727 lowest_rq = NULL;
1728 break;
1732 /* If this rq is still suitable use it. */
1733 if (lowest_rq->rt.highest_prio.curr > task->prio)
1734 break;
1736 /* try again */
1737 double_unlock_balance(rq, lowest_rq);
1738 lowest_rq = NULL;
1741 return lowest_rq;
1744 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1746 struct task_struct *p;
1748 if (!has_pushable_tasks(rq))
1749 return NULL;
1751 p = plist_first_entry(&rq->rt.pushable_tasks,
1752 struct task_struct, pushable_tasks);
1754 BUG_ON(rq->cpu != task_cpu(p));
1755 BUG_ON(task_current(rq, p));
1756 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1758 BUG_ON(!task_on_rq_queued(p));
1759 BUG_ON(!rt_task(p));
1761 return p;
1765 * If the current CPU has more than one RT task, see if the non
1766 * running task can migrate over to a CPU that is running a task
1767 * of lesser priority.
1769 static int push_rt_task(struct rq *rq)
1771 struct task_struct *next_task;
1772 struct rq *lowest_rq;
1773 int ret = 0;
1775 if (!rq->rt.overloaded)
1776 return 0;
1778 next_task = pick_next_pushable_task(rq);
1779 if (!next_task)
1780 return 0;
1782 retry:
1783 if (unlikely(next_task == rq->curr)) {
1784 WARN_ON(1);
1785 return 0;
1789 * It's possible that the next_task slipped in of
1790 * higher priority than current. If that's the case
1791 * just reschedule current.
1793 if (unlikely(next_task->prio < rq->curr->prio)) {
1794 resched_curr(rq);
1795 return 0;
1798 /* We might release rq lock */
1799 get_task_struct(next_task);
1801 /* find_lock_lowest_rq locks the rq if found */
1802 lowest_rq = find_lock_lowest_rq(next_task, rq);
1803 if (!lowest_rq) {
1804 struct task_struct *task;
1806 * find_lock_lowest_rq releases rq->lock
1807 * so it is possible that next_task has migrated.
1809 * We need to make sure that the task is still on the same
1810 * run-queue and is also still the next task eligible for
1811 * pushing.
1813 task = pick_next_pushable_task(rq);
1814 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1816 * The task hasn't migrated, and is still the next
1817 * eligible task, but we failed to find a run-queue
1818 * to push it to. Do not retry in this case, since
1819 * other cpus will pull from us when ready.
1821 goto out;
1824 if (!task)
1825 /* No more tasks, just exit */
1826 goto out;
1829 * Something has shifted, try again.
1831 put_task_struct(next_task);
1832 next_task = task;
1833 goto retry;
1836 deactivate_task(rq, next_task, 0);
1837 set_task_cpu(next_task, lowest_rq->cpu);
1838 activate_task(lowest_rq, next_task, 0);
1839 ret = 1;
1841 resched_curr(lowest_rq);
1843 double_unlock_balance(rq, lowest_rq);
1845 out:
1846 put_task_struct(next_task);
1848 return ret;
1851 static void push_rt_tasks(struct rq *rq)
1853 /* push_rt_task will return true if it moved an RT */
1854 while (push_rt_task(rq))
1858 #ifdef HAVE_RT_PUSH_IPI
1861 * When a high priority task schedules out from a CPU and a lower priority
1862 * task is scheduled in, a check is made to see if there's any RT tasks
1863 * on other CPUs that are waiting to run because a higher priority RT task
1864 * is currently running on its CPU. In this case, the CPU with multiple RT
1865 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1866 * up that may be able to run one of its non-running queued RT tasks.
1868 * All CPUs with overloaded RT tasks need to be notified as there is currently
1869 * no way to know which of these CPUs have the highest priority task waiting
1870 * to run. Instead of trying to take a spinlock on each of these CPUs,
1871 * which has shown to cause large latency when done on machines with many
1872 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1873 * RT tasks waiting to run.
1875 * Just sending an IPI to each of the CPUs is also an issue, as on large
1876 * count CPU machines, this can cause an IPI storm on a CPU, especially
1877 * if its the only CPU with multiple RT tasks queued, and a large number
1878 * of CPUs scheduling a lower priority task at the same time.
1880 * Each root domain has its own irq work function that can iterate over
1881 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1882 * tassk must be checked if there's one or many CPUs that are lowering
1883 * their priority, there's a single irq work iterator that will try to
1884 * push off RT tasks that are waiting to run.
1886 * When a CPU schedules a lower priority task, it will kick off the
1887 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1888 * As it only takes the first CPU that schedules a lower priority task
1889 * to start the process, the rto_start variable is incremented and if
1890 * the atomic result is one, then that CPU will try to take the rto_lock.
1891 * This prevents high contention on the lock as the process handles all
1892 * CPUs scheduling lower priority tasks.
1894 * All CPUs that are scheduling a lower priority task will increment the
1895 * rt_loop_next variable. This will make sure that the irq work iterator
1896 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1897 * priority task, even if the iterator is in the middle of a scan. Incrementing
1898 * the rt_loop_next will cause the iterator to perform another scan.
1901 static int rto_next_cpu(struct root_domain *rd)
1903 int next;
1904 int cpu;
1907 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1908 * rt_next_cpu() will simply return the first CPU found in
1909 * the rto_mask.
1911 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1912 * will return the next CPU found in the rto_mask.
1914 * If there are no more CPUs left in the rto_mask, then a check is made
1915 * against rto_loop and rto_loop_next. rto_loop is only updated with
1916 * the rto_lock held, but any CPU may increment the rto_loop_next
1917 * without any locking.
1919 for (;;) {
1921 /* When rto_cpu is -1 this acts like cpumask_first() */
1922 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1924 rd->rto_cpu = cpu;
1926 if (cpu < nr_cpu_ids)
1927 return cpu;
1929 rd->rto_cpu = -1;
1932 * ACQUIRE ensures we see the @rto_mask changes
1933 * made prior to the @next value observed.
1935 * Matches WMB in rt_set_overload().
1937 next = atomic_read_acquire(&rd->rto_loop_next);
1939 if (rd->rto_loop == next)
1940 break;
1942 rd->rto_loop = next;
1945 return -1;
1948 static inline bool rto_start_trylock(atomic_t *v)
1950 return !atomic_cmpxchg_acquire(v, 0, 1);
1953 static inline void rto_start_unlock(atomic_t *v)
1955 atomic_set_release(v, 0);
1958 static void tell_cpu_to_push(struct rq *rq)
1960 int cpu = -1;
1962 /* Keep the loop going if the IPI is currently active */
1963 atomic_inc(&rq->rd->rto_loop_next);
1965 /* Only one CPU can initiate a loop at a time */
1966 if (!rto_start_trylock(&rq->rd->rto_loop_start))
1967 return;
1969 raw_spin_lock(&rq->rd->rto_lock);
1972 * The rto_cpu is updated under the lock, if it has a valid cpu
1973 * then the IPI is still running and will continue due to the
1974 * update to loop_next, and nothing needs to be done here.
1975 * Otherwise it is finishing up and an ipi needs to be sent.
1977 if (rq->rd->rto_cpu < 0)
1978 cpu = rto_next_cpu(rq->rd);
1980 raw_spin_unlock(&rq->rd->rto_lock);
1982 rto_start_unlock(&rq->rd->rto_loop_start);
1984 if (cpu >= 0) {
1985 /* Make sure the rd does not get freed while pushing */
1986 sched_get_rd(rq->rd);
1987 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
1991 /* Called from hardirq context */
1992 void rto_push_irq_work_func(struct irq_work *work)
1994 struct root_domain *rd =
1995 container_of(work, struct root_domain, rto_push_work);
1996 struct rq *rq;
1997 int cpu;
1999 rq = this_rq();
2002 * We do not need to grab the lock to check for has_pushable_tasks.
2003 * When it gets updated, a check is made if a push is possible.
2005 if (has_pushable_tasks(rq)) {
2006 raw_spin_lock(&rq->lock);
2007 push_rt_tasks(rq);
2008 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&rd->rto_lock);
2013 /* Pass the IPI to the next rt overloaded queue */
2014 cpu = rto_next_cpu(rd);
2016 raw_spin_unlock(&rd->rto_lock);
2018 if (cpu < 0) {
2019 sched_put_rd(rd);
2020 return;
2023 /* Try the next RT overloaded CPU */
2024 irq_work_queue_on(&rd->rto_push_work, cpu);
2026 #endif /* HAVE_RT_PUSH_IPI */
2028 static void pull_rt_task(struct rq *this_rq)
2030 int this_cpu = this_rq->cpu, cpu;
2031 bool resched = false;
2032 struct task_struct *p;
2033 struct rq *src_rq;
2034 int rt_overload_count = rt_overloaded(this_rq);
2036 if (likely(!rt_overload_count))
2037 return;
2040 * Match the barrier from rt_set_overloaded; this guarantees that if we
2041 * see overloaded we must also see the rto_mask bit.
2043 smp_rmb();
2045 /* If we are the only overloaded CPU do nothing */
2046 if (rt_overload_count == 1 &&
2047 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2048 return;
2050 #ifdef HAVE_RT_PUSH_IPI
2051 if (sched_feat(RT_PUSH_IPI)) {
2052 tell_cpu_to_push(this_rq);
2053 return;
2055 #endif
2057 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2058 if (this_cpu == cpu)
2059 continue;
2061 src_rq = cpu_rq(cpu);
2064 * Don't bother taking the src_rq->lock if the next highest
2065 * task is known to be lower-priority than our current task.
2066 * This may look racy, but if this value is about to go
2067 * logically higher, the src_rq will push this task away.
2068 * And if its going logically lower, we do not care
2070 if (src_rq->rt.highest_prio.next >=
2071 this_rq->rt.highest_prio.curr)
2072 continue;
2075 * We can potentially drop this_rq's lock in
2076 * double_lock_balance, and another CPU could
2077 * alter this_rq
2079 double_lock_balance(this_rq, src_rq);
2082 * We can pull only a task, which is pushable
2083 * on its rq, and no others.
2085 p = pick_highest_pushable_task(src_rq, this_cpu);
2088 * Do we have an RT task that preempts
2089 * the to-be-scheduled task?
2091 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2092 WARN_ON(p == src_rq->curr);
2093 WARN_ON(!task_on_rq_queued(p));
2096 * There's a chance that p is higher in priority
2097 * than what's currently running on its cpu.
2098 * This is just that p is wakeing up and hasn't
2099 * had a chance to schedule. We only pull
2100 * p if it is lower in priority than the
2101 * current task on the run queue
2103 if (p->prio < src_rq->curr->prio)
2104 goto skip;
2106 resched = true;
2108 deactivate_task(src_rq, p, 0);
2109 set_task_cpu(p, this_cpu);
2110 activate_task(this_rq, p, 0);
2112 * We continue with the search, just in
2113 * case there's an even higher prio task
2114 * in another runqueue. (low likelihood
2115 * but possible)
2118 skip:
2119 double_unlock_balance(this_rq, src_rq);
2122 if (resched)
2123 resched_curr(this_rq);
2127 * If we are not running and we are not going to reschedule soon, we should
2128 * try to push tasks away now
2130 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2132 if (!task_running(rq, p) &&
2133 !test_tsk_need_resched(rq->curr) &&
2134 tsk_nr_cpus_allowed(p) > 1 &&
2135 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2136 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2137 rq->curr->prio <= p->prio))
2138 push_rt_tasks(rq);
2141 /* Assumes rq->lock is held */
2142 static void rq_online_rt(struct rq *rq)
2144 if (rq->rt.overloaded)
2145 rt_set_overload(rq);
2147 __enable_runtime(rq);
2149 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2152 /* Assumes rq->lock is held */
2153 static void rq_offline_rt(struct rq *rq)
2155 if (rq->rt.overloaded)
2156 rt_clear_overload(rq);
2158 __disable_runtime(rq);
2160 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2164 * When switch from the rt queue, we bring ourselves to a position
2165 * that we might want to pull RT tasks from other runqueues.
2167 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2170 * If there are other RT tasks then we will reschedule
2171 * and the scheduling of the other RT tasks will handle
2172 * the balancing. But if we are the last RT task
2173 * we may need to handle the pulling of RT tasks
2174 * now.
2176 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2177 return;
2179 queue_pull_task(rq);
2182 void __init init_sched_rt_class(void)
2184 unsigned int i;
2186 for_each_possible_cpu(i) {
2187 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2188 GFP_KERNEL, cpu_to_node(i));
2191 #endif /* CONFIG_SMP */
2194 * When switching a task to RT, we may overload the runqueue
2195 * with RT tasks. In this case we try to push them off to
2196 * other runqueues.
2198 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2201 * If we are already running, then there's nothing
2202 * that needs to be done. But if we are not running
2203 * we may need to preempt the current running task.
2204 * If that current running task is also an RT task
2205 * then see if we can move to another run queue.
2207 if (task_on_rq_queued(p) && rq->curr != p) {
2208 #ifdef CONFIG_SMP
2209 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2210 queue_push_tasks(rq);
2211 #endif /* CONFIG_SMP */
2212 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2213 resched_curr(rq);
2218 * Priority of the task has changed. This may cause
2219 * us to initiate a push or pull.
2221 static void
2222 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2224 if (!task_on_rq_queued(p))
2225 return;
2227 if (rq->curr == p) {
2228 #ifdef CONFIG_SMP
2230 * If our priority decreases while running, we
2231 * may need to pull tasks to this runqueue.
2233 if (oldprio < p->prio)
2234 queue_pull_task(rq);
2237 * If there's a higher priority task waiting to run
2238 * then reschedule.
2240 if (p->prio > rq->rt.highest_prio.curr)
2241 resched_curr(rq);
2242 #else
2243 /* For UP simply resched on drop of prio */
2244 if (oldprio < p->prio)
2245 resched_curr(rq);
2246 #endif /* CONFIG_SMP */
2247 } else {
2249 * This task is not running, but if it is
2250 * greater than the current running task
2251 * then reschedule.
2253 if (p->prio < rq->curr->prio)
2254 resched_curr(rq);
2258 static void watchdog(struct rq *rq, struct task_struct *p)
2260 unsigned long soft, hard;
2262 /* max may change after cur was read, this will be fixed next tick */
2263 soft = task_rlimit(p, RLIMIT_RTTIME);
2264 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2266 if (soft != RLIM_INFINITY) {
2267 unsigned long next;
2269 if (p->rt.watchdog_stamp != jiffies) {
2270 p->rt.timeout++;
2271 p->rt.watchdog_stamp = jiffies;
2274 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2275 if (p->rt.timeout > next)
2276 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2280 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2282 struct sched_rt_entity *rt_se = &p->rt;
2284 update_curr_rt(rq);
2286 watchdog(rq, p);
2289 * RR tasks need a special form of timeslice management.
2290 * FIFO tasks have no timeslices.
2292 if (p->policy != SCHED_RR)
2293 return;
2295 if (--p->rt.time_slice)
2296 return;
2298 p->rt.time_slice = sched_rr_timeslice;
2301 * Requeue to the end of queue if we (and all of our ancestors) are not
2302 * the only element on the queue
2304 for_each_sched_rt_entity(rt_se) {
2305 if (rt_se->run_list.prev != rt_se->run_list.next) {
2306 requeue_task_rt(rq, p, 0);
2307 resched_curr(rq);
2308 return;
2313 static void set_curr_task_rt(struct rq *rq)
2315 struct task_struct *p = rq->curr;
2317 p->se.exec_start = rq_clock_task(rq);
2319 /* The running task is never eligible for pushing */
2320 dequeue_pushable_task(rq, p);
2323 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2326 * Time slice is 0 for SCHED_FIFO tasks
2328 if (task->policy == SCHED_RR)
2329 return sched_rr_timeslice;
2330 else
2331 return 0;
2334 const struct sched_class rt_sched_class = {
2335 .next = &fair_sched_class,
2336 .enqueue_task = enqueue_task_rt,
2337 .dequeue_task = dequeue_task_rt,
2338 .yield_task = yield_task_rt,
2340 .check_preempt_curr = check_preempt_curr_rt,
2342 .pick_next_task = pick_next_task_rt,
2343 .put_prev_task = put_prev_task_rt,
2345 #ifdef CONFIG_SMP
2346 .select_task_rq = select_task_rq_rt,
2348 .set_cpus_allowed = set_cpus_allowed_common,
2349 .rq_online = rq_online_rt,
2350 .rq_offline = rq_offline_rt,
2351 .task_woken = task_woken_rt,
2352 .switched_from = switched_from_rt,
2353 #endif
2355 .set_curr_task = set_curr_task_rt,
2356 .task_tick = task_tick_rt,
2358 .get_rr_interval = get_rr_interval_rt,
2360 .prio_changed = prio_changed_rt,
2361 .switched_to = switched_to_rt,
2363 .update_curr = update_curr_rt,
2366 #ifdef CONFIG_SCHED_DEBUG
2367 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2369 void print_rt_stats(struct seq_file *m, int cpu)
2371 rt_rq_iter_t iter;
2372 struct rt_rq *rt_rq;
2374 rcu_read_lock();
2375 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2376 print_rt_rq(m, cpu, rt_rq);
2377 rcu_read_unlock();
2379 #endif /* CONFIG_SCHED_DEBUG */