hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / spi / spi-sh-msiof.c
blob1de3a772eb7d23a8a90b9b77704033ac4945e364
1 /*
2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
34 #include <asm/unaligned.h>
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 unsigned int tx_fifo_size;
51 unsigned int rx_fifo_size;
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
58 #define TMDR1 0x00 /* Transmit Mode Register 1 */
59 #define TMDR2 0x04 /* Transmit Mode Register 2 */
60 #define TMDR3 0x08 /* Transmit Mode Register 3 */
61 #define RMDR1 0x10 /* Receive Mode Register 1 */
62 #define RMDR2 0x14 /* Receive Mode Register 2 */
63 #define RMDR3 0x18 /* Receive Mode Register 3 */
64 #define TSCR 0x20 /* Transmit Clock Select Register */
65 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
66 #define CTR 0x28 /* Control Register */
67 #define FCTR 0x30 /* FIFO Control Register */
68 #define STR 0x40 /* Status Register */
69 #define IER 0x44 /* Interrupt Enable Register */
70 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
71 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
72 #define TFDR 0x50 /* Transmit FIFO Data Register */
73 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
74 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
75 #define RFDR 0x60 /* Receive FIFO Data Register */
77 /* TMDR1 and RMDR1 */
78 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
79 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
80 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
81 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
82 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
83 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
84 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
85 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
86 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
87 #define MDR1_FLD_SHIFT 2
88 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
89 /* TMDR1 */
90 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92 /* TMDR2 and RMDR2 */
93 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
94 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
95 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97 /* TSCR and RSCR */
98 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
99 #define SCR_BRPS(i) (((i) - 1) << 8)
100 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
101 #define SCR_BRDV_DIV_2 0x0000
102 #define SCR_BRDV_DIV_4 0x0001
103 #define SCR_BRDV_DIV_8 0x0002
104 #define SCR_BRDV_DIV_16 0x0003
105 #define SCR_BRDV_DIV_32 0x0004
106 #define SCR_BRDV_DIV_1 0x0007
108 /* CTR */
109 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
110 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
111 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
112 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
113 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
114 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
115 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
116 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
117 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
118 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
119 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
120 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
121 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
122 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
123 #define CTR_TXE 0x00000200 /* Transmit Enable */
124 #define CTR_RXE 0x00000100 /* Receive Enable */
126 /* FCTR */
127 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
128 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
129 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
130 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
131 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
132 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
133 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
134 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
135 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
136 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
137 #define FCTR_TFUA_SHIFT 20
138 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
139 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
140 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
141 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
142 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
143 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
144 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
145 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
146 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
147 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
148 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
149 #define FCTR_RFUA_SHIFT 4
150 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
152 /* STR */
153 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
154 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
155 #define STR_TEOF 0x00800000 /* Frame Transmission End */
156 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
157 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
158 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
159 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
160 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
161 #define STR_REOF 0x00000080 /* Frame Reception End */
162 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
163 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
164 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
166 /* IER */
167 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
168 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
169 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
170 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
171 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
172 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
173 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
174 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
175 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
176 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
177 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
178 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
179 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
180 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
183 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 switch (reg_offs) {
186 case TSCR:
187 case RSCR:
188 return ioread16(p->mapbase + reg_offs);
189 default:
190 return ioread32(p->mapbase + reg_offs);
194 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
195 u32 value)
197 switch (reg_offs) {
198 case TSCR:
199 case RSCR:
200 iowrite16(value, p->mapbase + reg_offs);
201 break;
202 default:
203 iowrite32(value, p->mapbase + reg_offs);
204 break;
208 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
209 u32 clr, u32 set)
211 u32 mask = clr | set;
212 u32 data;
213 int k;
215 data = sh_msiof_read(p, CTR);
216 data &= ~clr;
217 data |= set;
218 sh_msiof_write(p, CTR, data);
220 for (k = 100; k > 0; k--) {
221 if ((sh_msiof_read(p, CTR) & mask) == set)
222 break;
224 udelay(10);
227 return k > 0 ? 0 : -ETIMEDOUT;
230 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 struct sh_msiof_spi_priv *p = data;
234 /* just disable the interrupt and wake up */
235 sh_msiof_write(p, IER, 0);
236 complete(&p->done);
238 return IRQ_HANDLED;
241 static struct {
242 unsigned short div;
243 unsigned short brdv;
244 } const sh_msiof_spi_div_table[] = {
245 { 1, SCR_BRDV_DIV_1 },
246 { 2, SCR_BRDV_DIV_2 },
247 { 4, SCR_BRDV_DIV_4 },
248 { 8, SCR_BRDV_DIV_8 },
249 { 16, SCR_BRDV_DIV_16 },
250 { 32, SCR_BRDV_DIV_32 },
253 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
254 unsigned long parent_rate, u32 spi_hz)
256 unsigned long div = 1024;
257 u32 brps, scr;
258 size_t k;
260 if (!WARN_ON(!spi_hz || !parent_rate))
261 div = DIV_ROUND_UP(parent_rate, spi_hz);
263 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
264 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
265 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
266 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
267 continue;
268 if (brps <= 32) /* max of brdv is 32 */
269 break;
272 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
274 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
275 sh_msiof_write(p, TSCR, scr);
276 if (!(p->master->flags & SPI_MASTER_MUST_TX))
277 sh_msiof_write(p, RSCR, scr);
280 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
283 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
284 * b'000 : 0
285 * b'001 : 100
286 * b'010 : 200
287 * b'011 (SYNCDL only) : 300
288 * b'101 : 50
289 * b'110 : 150
291 if (dtdl_or_syncdl % 100)
292 return dtdl_or_syncdl / 100 + 5;
293 else
294 return dtdl_or_syncdl / 100;
297 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
299 u32 val;
301 if (!p->info)
302 return 0;
304 /* check if DTDL and SYNCDL is allowed value */
305 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
306 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
307 return 0;
310 /* check if the sum of DTDL and SYNCDL becomes an integer value */
311 if ((p->info->dtdl + p->info->syncdl) % 100) {
312 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
313 return 0;
316 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
317 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
319 return val;
322 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
323 u32 cpol, u32 cpha,
324 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
326 u32 tmp;
327 int edge;
330 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
331 * 0 0 10 10 1 1
332 * 0 1 10 10 0 0
333 * 1 0 11 11 0 0
334 * 1 1 11 11 1 1
336 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
337 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
338 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
339 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
340 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
341 if (p->master->flags & SPI_MASTER_MUST_TX) {
342 /* These bits are reserved if RX needs TX */
343 tmp &= ~0x0000ffff;
345 sh_msiof_write(p, RMDR1, tmp);
347 tmp = 0;
348 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
349 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
351 edge = cpol ^ !cpha;
353 tmp |= edge << CTR_TEDG_SHIFT;
354 tmp |= edge << CTR_REDG_SHIFT;
355 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
356 sh_msiof_write(p, CTR, tmp);
359 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
360 const void *tx_buf, void *rx_buf,
361 u32 bits, u32 words)
363 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
365 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
366 sh_msiof_write(p, TMDR2, dr2);
367 else
368 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
370 if (rx_buf)
371 sh_msiof_write(p, RMDR2, dr2);
374 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
376 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
379 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, int words, int fs)
382 const u8 *buf_8 = tx_buf;
383 int k;
385 for (k = 0; k < words; k++)
386 sh_msiof_write(p, TFDR, buf_8[k] << fs);
389 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
390 const void *tx_buf, int words, int fs)
392 const u16 *buf_16 = tx_buf;
393 int k;
395 for (k = 0; k < words; k++)
396 sh_msiof_write(p, TFDR, buf_16[k] << fs);
399 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
402 const u16 *buf_16 = tx_buf;
403 int k;
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
409 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
412 const u32 *buf_32 = tx_buf;
413 int k;
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_32[k] << fs);
419 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
422 const u32 *buf_32 = tx_buf;
423 int k;
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
429 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
432 const u32 *buf_32 = tx_buf;
433 int k;
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
439 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
442 const u32 *buf_32 = tx_buf;
443 int k;
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
449 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
450 void *rx_buf, int words, int fs)
452 u8 *buf_8 = rx_buf;
453 int k;
455 for (k = 0; k < words; k++)
456 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
459 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
460 void *rx_buf, int words, int fs)
462 u16 *buf_16 = rx_buf;
463 int k;
465 for (k = 0; k < words; k++)
466 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
469 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
472 u16 *buf_16 = rx_buf;
473 int k;
475 for (k = 0; k < words; k++)
476 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
479 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
482 u32 *buf_32 = rx_buf;
483 int k;
485 for (k = 0; k < words; k++)
486 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
489 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
492 u32 *buf_32 = rx_buf;
493 int k;
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
499 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
502 u32 *buf_32 = rx_buf;
503 int k;
505 for (k = 0; k < words; k++)
506 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
509 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
512 u32 *buf_32 = rx_buf;
513 int k;
515 for (k = 0; k < words; k++)
516 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
519 static int sh_msiof_spi_setup(struct spi_device *spi)
521 struct device_node *np = spi->master->dev.of_node;
522 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
524 pm_runtime_get_sync(&p->pdev->dev);
526 if (!np) {
528 * Use spi->controller_data for CS (same strategy as spi_gpio),
529 * if any. otherwise let HW control CS
531 spi->cs_gpio = (uintptr_t)spi->controller_data;
534 /* Configure pins before deasserting CS */
535 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
536 !!(spi->mode & SPI_CPHA),
537 !!(spi->mode & SPI_3WIRE),
538 !!(spi->mode & SPI_LSB_FIRST),
539 !!(spi->mode & SPI_CS_HIGH));
541 if (spi->cs_gpio >= 0)
542 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
545 pm_runtime_put(&p->pdev->dev);
547 return 0;
550 static int sh_msiof_prepare_message(struct spi_master *master,
551 struct spi_message *msg)
553 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
554 const struct spi_device *spi = msg->spi;
556 /* Configure pins before asserting CS */
557 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
558 !!(spi->mode & SPI_CPHA),
559 !!(spi->mode & SPI_3WIRE),
560 !!(spi->mode & SPI_LSB_FIRST),
561 !!(spi->mode & SPI_CS_HIGH));
562 return 0;
565 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
567 int ret;
569 /* setup clock and rx/tx signals */
570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
571 if (rx_buf && !ret)
572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
573 if (!ret)
574 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
576 /* start by setting frame bit */
577 if (!ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
580 return ret;
583 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
585 int ret;
587 /* shut down frame, rx/tx and clock signals */
588 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
589 if (!ret)
590 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
591 if (rx_buf && !ret)
592 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
593 if (!ret)
594 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
596 return ret;
599 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
600 void (*tx_fifo)(struct sh_msiof_spi_priv *,
601 const void *, int, int),
602 void (*rx_fifo)(struct sh_msiof_spi_priv *,
603 void *, int, int),
604 const void *tx_buf, void *rx_buf,
605 int words, int bits)
607 int fifo_shift;
608 int ret;
610 /* limit maximum word transfer to rx/tx fifo size */
611 if (tx_buf)
612 words = min_t(int, words, p->tx_fifo_size);
613 if (rx_buf)
614 words = min_t(int, words, p->rx_fifo_size);
616 /* the fifo contents need shifting */
617 fifo_shift = 32 - bits;
619 /* default FIFO watermarks for PIO */
620 sh_msiof_write(p, FCTR, 0);
622 /* setup msiof transfer mode registers */
623 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
624 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
626 /* write tx fifo */
627 if (tx_buf)
628 tx_fifo(p, tx_buf, words, fifo_shift);
630 reinit_completion(&p->done);
632 ret = sh_msiof_spi_start(p, rx_buf);
633 if (ret) {
634 dev_err(&p->pdev->dev, "failed to start hardware\n");
635 goto stop_ier;
638 /* wait for tx fifo to be emptied / rx fifo to be filled */
639 if (!wait_for_completion_timeout(&p->done, HZ)) {
640 dev_err(&p->pdev->dev, "PIO timeout\n");
641 ret = -ETIMEDOUT;
642 goto stop_reset;
645 /* read rx fifo */
646 if (rx_buf)
647 rx_fifo(p, rx_buf, words, fifo_shift);
649 /* clear status bits */
650 sh_msiof_reset_str(p);
652 ret = sh_msiof_spi_stop(p, rx_buf);
653 if (ret) {
654 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
655 return ret;
658 return words;
660 stop_reset:
661 sh_msiof_reset_str(p);
662 sh_msiof_spi_stop(p, rx_buf);
663 stop_ier:
664 sh_msiof_write(p, IER, 0);
665 return ret;
668 static void sh_msiof_dma_complete(void *arg)
670 struct sh_msiof_spi_priv *p = arg;
672 sh_msiof_write(p, IER, 0);
673 complete(&p->done);
676 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
677 void *rx, unsigned int len)
679 u32 ier_bits = 0;
680 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
681 dma_cookie_t cookie;
682 int ret;
684 /* First prepare and submit the DMA request(s), as this may fail */
685 if (rx) {
686 ier_bits |= IER_RDREQE | IER_RDMAE;
687 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
688 p->rx_dma_addr, len, DMA_FROM_DEVICE,
689 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
690 if (!desc_rx)
691 return -EAGAIN;
693 desc_rx->callback = sh_msiof_dma_complete;
694 desc_rx->callback_param = p;
695 cookie = dmaengine_submit(desc_rx);
696 if (dma_submit_error(cookie))
697 return cookie;
700 if (tx) {
701 ier_bits |= IER_TDREQE | IER_TDMAE;
702 dma_sync_single_for_device(p->master->dma_tx->device->dev,
703 p->tx_dma_addr, len, DMA_TO_DEVICE);
704 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
705 p->tx_dma_addr, len, DMA_TO_DEVICE,
706 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
707 if (!desc_tx) {
708 ret = -EAGAIN;
709 goto no_dma_tx;
712 if (rx) {
713 /* No callback */
714 desc_tx->callback = NULL;
715 } else {
716 desc_tx->callback = sh_msiof_dma_complete;
717 desc_tx->callback_param = p;
719 cookie = dmaengine_submit(desc_tx);
720 if (dma_submit_error(cookie)) {
721 ret = cookie;
722 goto no_dma_tx;
726 /* 1 stage FIFO watermarks for DMA */
727 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
729 /* setup msiof transfer mode registers (32-bit words) */
730 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
732 sh_msiof_write(p, IER, ier_bits);
734 reinit_completion(&p->done);
736 /* Now start DMA */
737 if (rx)
738 dma_async_issue_pending(p->master->dma_rx);
739 if (tx)
740 dma_async_issue_pending(p->master->dma_tx);
742 ret = sh_msiof_spi_start(p, rx);
743 if (ret) {
744 dev_err(&p->pdev->dev, "failed to start hardware\n");
745 goto stop_dma;
748 /* wait for tx fifo to be emptied / rx fifo to be filled */
749 if (!wait_for_completion_timeout(&p->done, HZ)) {
750 dev_err(&p->pdev->dev, "DMA timeout\n");
751 ret = -ETIMEDOUT;
752 goto stop_reset;
755 /* clear status bits */
756 sh_msiof_reset_str(p);
758 ret = sh_msiof_spi_stop(p, rx);
759 if (ret) {
760 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
761 return ret;
764 if (rx)
765 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
766 p->rx_dma_addr, len,
767 DMA_FROM_DEVICE);
769 return 0;
771 stop_reset:
772 sh_msiof_reset_str(p);
773 sh_msiof_spi_stop(p, rx);
774 stop_dma:
775 if (tx)
776 dmaengine_terminate_all(p->master->dma_tx);
777 no_dma_tx:
778 if (rx)
779 dmaengine_terminate_all(p->master->dma_rx);
780 sh_msiof_write(p, IER, 0);
781 return ret;
784 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
786 /* src or dst can be unaligned, but not both */
787 if ((unsigned long)src & 3) {
788 while (words--) {
789 *dst++ = swab32(get_unaligned(src));
790 src++;
792 } else if ((unsigned long)dst & 3) {
793 while (words--) {
794 put_unaligned(swab32(*src++), dst);
795 dst++;
797 } else {
798 while (words--)
799 *dst++ = swab32(*src++);
803 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
805 /* src or dst can be unaligned, but not both */
806 if ((unsigned long)src & 3) {
807 while (words--) {
808 *dst++ = swahw32(get_unaligned(src));
809 src++;
811 } else if ((unsigned long)dst & 3) {
812 while (words--) {
813 put_unaligned(swahw32(*src++), dst);
814 dst++;
816 } else {
817 while (words--)
818 *dst++ = swahw32(*src++);
822 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
824 memcpy(dst, src, words * 4);
827 static int sh_msiof_transfer_one(struct spi_master *master,
828 struct spi_device *spi,
829 struct spi_transfer *t)
831 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
832 void (*copy32)(u32 *, const u32 *, unsigned int);
833 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
834 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
835 const void *tx_buf = t->tx_buf;
836 void *rx_buf = t->rx_buf;
837 unsigned int len = t->len;
838 unsigned int bits = t->bits_per_word;
839 unsigned int bytes_per_word;
840 unsigned int words;
841 int n;
842 bool swab;
843 int ret;
845 /* setup clocks (clock already enabled in chipselect()) */
846 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
848 while (master->dma_tx && len > 15) {
850 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
851 * words, with byte resp. word swapping.
853 unsigned int l = 0;
855 if (tx_buf)
856 l = min(len, p->tx_fifo_size * 4);
857 if (rx_buf)
858 l = min(len, p->rx_fifo_size * 4);
860 if (bits <= 8) {
861 if (l & 3)
862 break;
863 copy32 = copy_bswap32;
864 } else if (bits <= 16) {
865 if (l & 1)
866 break;
867 copy32 = copy_wswap32;
868 } else {
869 copy32 = copy_plain32;
872 if (tx_buf)
873 copy32(p->tx_dma_page, tx_buf, l / 4);
875 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
876 if (ret == -EAGAIN) {
877 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
878 dev_driver_string(&p->pdev->dev),
879 dev_name(&p->pdev->dev));
880 break;
882 if (ret)
883 return ret;
885 if (rx_buf) {
886 copy32(rx_buf, p->rx_dma_page, l / 4);
887 rx_buf += l;
889 if (tx_buf)
890 tx_buf += l;
892 len -= l;
893 if (!len)
894 return 0;
897 if (bits <= 8 && len > 15 && !(len & 3)) {
898 bits = 32;
899 swab = true;
900 } else {
901 swab = false;
904 /* setup bytes per word and fifo read/write functions */
905 if (bits <= 8) {
906 bytes_per_word = 1;
907 tx_fifo = sh_msiof_spi_write_fifo_8;
908 rx_fifo = sh_msiof_spi_read_fifo_8;
909 } else if (bits <= 16) {
910 bytes_per_word = 2;
911 if ((unsigned long)tx_buf & 0x01)
912 tx_fifo = sh_msiof_spi_write_fifo_16u;
913 else
914 tx_fifo = sh_msiof_spi_write_fifo_16;
916 if ((unsigned long)rx_buf & 0x01)
917 rx_fifo = sh_msiof_spi_read_fifo_16u;
918 else
919 rx_fifo = sh_msiof_spi_read_fifo_16;
920 } else if (swab) {
921 bytes_per_word = 4;
922 if ((unsigned long)tx_buf & 0x03)
923 tx_fifo = sh_msiof_spi_write_fifo_s32u;
924 else
925 tx_fifo = sh_msiof_spi_write_fifo_s32;
927 if ((unsigned long)rx_buf & 0x03)
928 rx_fifo = sh_msiof_spi_read_fifo_s32u;
929 else
930 rx_fifo = sh_msiof_spi_read_fifo_s32;
931 } else {
932 bytes_per_word = 4;
933 if ((unsigned long)tx_buf & 0x03)
934 tx_fifo = sh_msiof_spi_write_fifo_32u;
935 else
936 tx_fifo = sh_msiof_spi_write_fifo_32;
938 if ((unsigned long)rx_buf & 0x03)
939 rx_fifo = sh_msiof_spi_read_fifo_32u;
940 else
941 rx_fifo = sh_msiof_spi_read_fifo_32;
944 /* transfer in fifo sized chunks */
945 words = len / bytes_per_word;
947 while (words > 0) {
948 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
949 words, bits);
950 if (n < 0)
951 return n;
953 if (tx_buf)
954 tx_buf += n * bytes_per_word;
955 if (rx_buf)
956 rx_buf += n * bytes_per_word;
957 words -= n;
960 return 0;
963 static const struct sh_msiof_chipdata sh_data = {
964 .tx_fifo_size = 64,
965 .rx_fifo_size = 64,
966 .master_flags = 0,
969 static const struct sh_msiof_chipdata r8a779x_data = {
970 .tx_fifo_size = 64,
971 .rx_fifo_size = 64,
972 .master_flags = SPI_MASTER_MUST_TX,
975 static const struct of_device_id sh_msiof_match[] = {
976 { .compatible = "renesas,sh-msiof", .data = &sh_data },
977 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
978 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
979 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
980 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
981 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
982 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
985 MODULE_DEVICE_TABLE(of, sh_msiof_match);
987 #ifdef CONFIG_OF
988 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
990 struct sh_msiof_spi_info *info;
991 struct device_node *np = dev->of_node;
992 u32 num_cs = 1;
994 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
995 if (!info)
996 return NULL;
998 /* Parse the MSIOF properties */
999 of_property_read_u32(np, "num-cs", &num_cs);
1000 of_property_read_u32(np, "renesas,tx-fifo-size",
1001 &info->tx_fifo_override);
1002 of_property_read_u32(np, "renesas,rx-fifo-size",
1003 &info->rx_fifo_override);
1004 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1005 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1007 info->num_chipselect = num_cs;
1009 return info;
1011 #else
1012 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1014 return NULL;
1016 #endif
1018 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1019 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1021 dma_cap_mask_t mask;
1022 struct dma_chan *chan;
1023 struct dma_slave_config cfg;
1024 int ret;
1026 dma_cap_zero(mask);
1027 dma_cap_set(DMA_SLAVE, mask);
1029 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1030 (void *)(unsigned long)id, dev,
1031 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1032 if (!chan) {
1033 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1034 return NULL;
1037 memset(&cfg, 0, sizeof(cfg));
1038 cfg.direction = dir;
1039 if (dir == DMA_MEM_TO_DEV) {
1040 cfg.dst_addr = port_addr;
1041 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1042 } else {
1043 cfg.src_addr = port_addr;
1044 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1047 ret = dmaengine_slave_config(chan, &cfg);
1048 if (ret) {
1049 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1050 dma_release_channel(chan);
1051 return NULL;
1054 return chan;
1057 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1059 struct platform_device *pdev = p->pdev;
1060 struct device *dev = &pdev->dev;
1061 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1062 unsigned int dma_tx_id, dma_rx_id;
1063 const struct resource *res;
1064 struct spi_master *master;
1065 struct device *tx_dev, *rx_dev;
1067 if (dev->of_node) {
1068 /* In the OF case we will get the slave IDs from the DT */
1069 dma_tx_id = 0;
1070 dma_rx_id = 0;
1071 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1072 dma_tx_id = info->dma_tx_id;
1073 dma_rx_id = info->dma_rx_id;
1074 } else {
1075 /* The driver assumes no error */
1076 return 0;
1079 /* The DMA engine uses the second register set, if present */
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1081 if (!res)
1082 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1084 master = p->master;
1085 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1086 dma_tx_id,
1087 res->start + TFDR);
1088 if (!master->dma_tx)
1089 return -ENODEV;
1091 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1092 dma_rx_id,
1093 res->start + RFDR);
1094 if (!master->dma_rx)
1095 goto free_tx_chan;
1097 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1098 if (!p->tx_dma_page)
1099 goto free_rx_chan;
1101 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1102 if (!p->rx_dma_page)
1103 goto free_tx_page;
1105 tx_dev = master->dma_tx->device->dev;
1106 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1107 DMA_TO_DEVICE);
1108 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1109 goto free_rx_page;
1111 rx_dev = master->dma_rx->device->dev;
1112 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1113 DMA_FROM_DEVICE);
1114 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1115 goto unmap_tx_page;
1117 dev_info(dev, "DMA available");
1118 return 0;
1120 unmap_tx_page:
1121 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1122 free_rx_page:
1123 free_page((unsigned long)p->rx_dma_page);
1124 free_tx_page:
1125 free_page((unsigned long)p->tx_dma_page);
1126 free_rx_chan:
1127 dma_release_channel(master->dma_rx);
1128 free_tx_chan:
1129 dma_release_channel(master->dma_tx);
1130 master->dma_tx = NULL;
1131 return -ENODEV;
1134 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1136 struct spi_master *master = p->master;
1137 struct device *dev;
1139 if (!master->dma_tx)
1140 return;
1142 dev = &p->pdev->dev;
1143 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1144 PAGE_SIZE, DMA_FROM_DEVICE);
1145 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1146 PAGE_SIZE, DMA_TO_DEVICE);
1147 free_page((unsigned long)p->rx_dma_page);
1148 free_page((unsigned long)p->tx_dma_page);
1149 dma_release_channel(master->dma_rx);
1150 dma_release_channel(master->dma_tx);
1153 static int sh_msiof_spi_probe(struct platform_device *pdev)
1155 struct resource *r;
1156 struct spi_master *master;
1157 const struct sh_msiof_chipdata *chipdata;
1158 const struct of_device_id *of_id;
1159 struct sh_msiof_spi_priv *p;
1160 int i;
1161 int ret;
1163 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1164 if (master == NULL) {
1165 dev_err(&pdev->dev, "failed to allocate spi master\n");
1166 return -ENOMEM;
1169 p = spi_master_get_devdata(master);
1171 platform_set_drvdata(pdev, p);
1172 p->master = master;
1174 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1175 if (of_id) {
1176 chipdata = of_id->data;
1177 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1178 } else {
1179 chipdata = (const void *)pdev->id_entry->driver_data;
1180 p->info = dev_get_platdata(&pdev->dev);
1183 if (!p->info) {
1184 dev_err(&pdev->dev, "failed to obtain device info\n");
1185 ret = -ENXIO;
1186 goto err1;
1189 init_completion(&p->done);
1191 p->clk = devm_clk_get(&pdev->dev, NULL);
1192 if (IS_ERR(p->clk)) {
1193 dev_err(&pdev->dev, "cannot get clock\n");
1194 ret = PTR_ERR(p->clk);
1195 goto err1;
1198 i = platform_get_irq(pdev, 0);
1199 if (i < 0) {
1200 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1201 ret = -ENOENT;
1202 goto err1;
1205 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1206 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1207 if (IS_ERR(p->mapbase)) {
1208 ret = PTR_ERR(p->mapbase);
1209 goto err1;
1212 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1213 dev_name(&pdev->dev), p);
1214 if (ret) {
1215 dev_err(&pdev->dev, "unable to request irq\n");
1216 goto err1;
1219 p->pdev = pdev;
1220 pm_runtime_enable(&pdev->dev);
1222 /* Platform data may override FIFO sizes */
1223 p->tx_fifo_size = chipdata->tx_fifo_size;
1224 p->rx_fifo_size = chipdata->rx_fifo_size;
1225 if (p->info->tx_fifo_override)
1226 p->tx_fifo_size = p->info->tx_fifo_override;
1227 if (p->info->rx_fifo_override)
1228 p->rx_fifo_size = p->info->rx_fifo_override;
1230 /* init master code */
1231 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1232 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1233 master->flags = chipdata->master_flags;
1234 master->bus_num = pdev->id;
1235 master->dev.of_node = pdev->dev.of_node;
1236 master->num_chipselect = p->info->num_chipselect;
1237 master->setup = sh_msiof_spi_setup;
1238 master->prepare_message = sh_msiof_prepare_message;
1239 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1240 master->auto_runtime_pm = true;
1241 master->transfer_one = sh_msiof_transfer_one;
1243 ret = sh_msiof_request_dma(p);
1244 if (ret < 0)
1245 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1247 ret = devm_spi_register_master(&pdev->dev, master);
1248 if (ret < 0) {
1249 dev_err(&pdev->dev, "spi_register_master error.\n");
1250 goto err2;
1253 return 0;
1255 err2:
1256 sh_msiof_release_dma(p);
1257 pm_runtime_disable(&pdev->dev);
1258 err1:
1259 spi_master_put(master);
1260 return ret;
1263 static int sh_msiof_spi_remove(struct platform_device *pdev)
1265 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1267 sh_msiof_release_dma(p);
1268 pm_runtime_disable(&pdev->dev);
1269 return 0;
1272 static const struct platform_device_id spi_driver_ids[] = {
1273 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1276 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1278 static struct platform_driver sh_msiof_spi_drv = {
1279 .probe = sh_msiof_spi_probe,
1280 .remove = sh_msiof_spi_remove,
1281 .id_table = spi_driver_ids,
1282 .driver = {
1283 .name = "spi_sh_msiof",
1284 .of_match_table = of_match_ptr(sh_msiof_match),
1287 module_platform_driver(sh_msiof_spi_drv);
1289 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1290 MODULE_AUTHOR("Magnus Damm");
1291 MODULE_LICENSE("GPL v2");
1292 MODULE_ALIAS("platform:spi_sh_msiof");