Linux 3.4.55
[linux/fpc-iii.git] / mm / page_alloc.c
blob533ea80f856a4f8a0bed9283c595ee6a2afa295d
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
96 EXPORT_SYMBOL(node_states);
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
106 unsigned long dirty_balance_reserve __read_mostly;
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111 #ifdef CONFIG_PM_SLEEP
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
121 static gfp_t saved_gfp_mask;
123 void pm_restore_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
132 void pm_restrict_gfp_mask(void)
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
140 bool pm_suspended_storage(void)
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
146 #endif /* CONFIG_PM_SLEEP */
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
152 static void __free_pages_ok(struct page *page, unsigned int order);
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
174 #endif
178 EXPORT_SYMBOL(totalram_pages);
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
194 int min_free_kbytes = 1024;
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
219 int page_group_by_mobility_disabled __read_mostly;
221 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
231 bool oom_killer_disabled __read_mostly;
233 #ifdef CONFIG_DEBUG_VM
234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
248 return ret;
251 static int page_is_consistent(struct zone *zone, struct page *page)
253 if (!pfn_valid_within(page_to_pfn(page)))
254 return 0;
255 if (zone != page_zone(page))
256 return 0;
258 return 1;
261 * Temporary debugging check for pages not lying within a given zone.
263 static int bad_range(struct zone *zone, struct page *page)
265 if (page_outside_zone_boundaries(zone, page))
266 return 1;
267 if (!page_is_consistent(zone, page))
268 return 1;
270 return 0;
272 #else
273 static inline int bad_range(struct zone *zone, struct page *page)
275 return 0;
277 #endif
279 static void bad_page(struct page *page)
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
287 reset_page_mapcount(page); /* remove PageBuddy */
288 return;
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
300 if (nr_unshown) {
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
303 nr_unshown);
304 nr_unshown = 0;
306 nr_shown = 0;
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
312 current->comm, page_to_pfn(page));
313 dump_page(page);
315 print_modules();
316 dump_stack();
317 out:
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 reset_page_mapcount(page); /* remove PageBuddy */
320 add_taint(TAINT_BAD_PAGE);
324 * Higher-order pages are called "compound pages". They are structured thusly:
326 * The first PAGE_SIZE page is called the "head page".
328 * The remaining PAGE_SIZE pages are called "tail pages".
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
338 static void free_compound_page(struct page *page)
340 __free_pages_ok(page, compound_order(page));
343 void prep_compound_page(struct page *page, unsigned long order)
345 int i;
346 int nr_pages = 1 << order;
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
353 __SetPageTail(p);
354 set_page_count(p, 0);
355 p->first_page = page;
359 /* update __split_huge_page_refcount if you change this function */
360 static int destroy_compound_page(struct page *page, unsigned long order)
362 int i;
363 int nr_pages = 1 << order;
364 int bad = 0;
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
368 bad_page(page);
369 bad++;
372 __ClearPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 bad_page(page);
379 bad++;
381 __ClearPageTail(p);
384 return bad;
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 int i;
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder;
403 static int __init debug_guardpage_minorder_setup(char *buf)
405 unsigned long res;
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417 static inline void set_page_guard_flag(struct page *page)
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422 static inline void clear_page_guard_flag(struct page *page)
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426 #else
427 static inline void set_page_guard_flag(struct page *page) { }
428 static inline void clear_page_guard_flag(struct page *page) { }
429 #endif
431 static inline void set_page_order(struct page *page, int order)
433 set_page_private(page, order);
434 __SetPageBuddy(page);
437 static inline void rmv_page_order(struct page *page)
439 __ClearPageBuddy(page);
440 set_page_private(page, 0);
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
460 static inline unsigned long
461 __find_buddy_index(unsigned long page_idx, unsigned int order)
463 return page_idx ^ (1 << order);
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
469 * (a) the buddy is not in a hole &&
470 * (b) the buddy is in the buddy system &&
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
477 * For recording page's order, we use page_private(page).
479 static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
482 if (!pfn_valid_within(page_to_pfn(buddy)))
483 return 0;
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
493 if (PageBuddy(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
497 return 0;
501 * Freeing function for a buddy system allocator.
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514 * order is recorded in page_private(page) field.
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
521 * -- wli
524 static inline void __free_one_page(struct page *page,
525 struct zone *zone, unsigned int order,
526 int migratetype)
528 unsigned long page_idx;
529 unsigned long combined_idx;
530 unsigned long uninitialized_var(buddy_idx);
531 struct page *buddy;
533 if (unlikely(PageCompound(page)))
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
537 VM_BUG_ON(migratetype == -1);
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541 VM_BUG_ON(page_idx & ((1 << order) - 1));
542 VM_BUG_ON(bad_range(zone, page));
544 while (order < MAX_ORDER-1) {
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
547 if (!page_is_buddy(page, buddy, order))
548 break;
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
562 combined_idx = buddy_idx & page_idx;
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
567 set_page_order(page, order);
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578 struct page *higher_page, *higher_buddy;
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = higher_page + (buddy_idx - combined_idx);
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591 out:
592 zone->free_area[order].nr_free++;
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
600 static inline void free_page_mlock(struct page *page)
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
606 static inline int free_pages_check(struct page *page)
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
622 * Frees a number of pages from the PCP lists
623 * Assumes all pages on list are in same zone, and of same order.
624 * count is the number of pages to free.
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
632 static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
635 int migratetype = 0;
636 int batch_free = 0;
637 int to_free = count;
639 spin_lock(&zone->lock);
640 zone->all_unreclaimable = 0;
641 zone->pages_scanned = 0;
643 while (to_free) {
644 struct page *page;
645 struct list_head *list;
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
654 do {
655 batch_free++;
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
672 } while (--to_free && --batch_free && !list_empty(list));
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
685 __free_one_page(page, zone, order, migratetype);
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687 spin_unlock(&zone->lock);
690 static bool free_pages_prepare(struct page *page, unsigned int order)
692 int i;
693 int bad = 0;
695 trace_mm_page_free(page, order);
696 kmemcheck_free_shadow(page, order);
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
702 if (bad)
703 return false;
705 if (!PageHighMem(page)) {
706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
710 arch_free_page(page, order);
711 kernel_map_pages(page, 1 << order, 0);
713 return true;
716 static void __free_pages_ok(struct page *page, unsigned int order)
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
721 if (!free_pages_prepare(page, order))
722 return;
724 local_irq_save(flags);
725 if (unlikely(wasMlocked))
726 free_page_mlock(page);
727 __count_vm_events(PGFREE, 1 << order);
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
730 local_irq_restore(flags);
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
748 set_page_refcounted(page);
749 __free_pages(page, order);
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
765 * -- wli
767 static inline void expand(struct zone *zone, struct page *page,
768 int low, int high, struct free_area *area,
769 int migratetype)
771 unsigned long size = 1 << high;
773 while (high > low) {
774 area--;
775 high--;
776 size >>= 1;
777 VM_BUG_ON(bad_range(zone, &page[size]));
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 if (high < debug_guardpage_minorder()) {
782 * Mark as guard pages (or page), that will allow to
783 * merge back to allocator when buddy will be freed.
784 * Corresponding page table entries will not be touched,
785 * pages will stay not present in virtual address space
787 INIT_LIST_HEAD(&page[size].lru);
788 set_page_guard_flag(&page[size]);
789 set_page_private(&page[size], high);
790 /* Guard pages are not available for any usage */
791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 continue;
794 #endif
795 list_add(&page[size].lru, &area->free_list[migratetype]);
796 area->nr_free++;
797 set_page_order(&page[size], high);
802 * This page is about to be returned from the page allocator
804 static inline int check_new_page(struct page *page)
806 if (unlikely(page_mapcount(page) |
807 (page->mapping != NULL) |
808 (atomic_read(&page->_count) != 0) |
809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 (mem_cgroup_bad_page_check(page)))) {
811 bad_page(page);
812 return 1;
814 return 0;
817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
819 int i;
821 for (i = 0; i < (1 << order); i++) {
822 struct page *p = page + i;
823 if (unlikely(check_new_page(p)))
824 return 1;
827 set_page_private(page, 0);
828 set_page_refcounted(page);
830 arch_alloc_page(page, order);
831 kernel_map_pages(page, 1 << order, 1);
833 if (gfp_flags & __GFP_ZERO)
834 prep_zero_page(page, order, gfp_flags);
836 if (order && (gfp_flags & __GFP_COMP))
837 prep_compound_page(page, order);
839 return 0;
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
846 static inline
847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848 int migratetype)
850 unsigned int current_order;
851 struct free_area * area;
852 struct page *page;
854 /* Find a page of the appropriate size in the preferred list */
855 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 list_del(&page->lru);
863 rmv_page_order(page);
864 area->nr_free--;
865 expand(zone, page, order, current_order, area, migratetype);
866 return page;
869 return NULL;
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
885 * Move the free pages in a range to the free lists of the requested type.
886 * Note that start_page and end_pages are not aligned on a pageblock
887 * boundary. If alignment is required, use move_freepages_block()
889 static int move_freepages(struct zone *zone,
890 struct page *start_page, struct page *end_page,
891 int migratetype)
893 struct page *page;
894 unsigned long order;
895 int pages_moved = 0;
897 #ifndef CONFIG_HOLES_IN_ZONE
899 * page_zone is not safe to call in this context when
900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 * anyway as we check zone boundaries in move_freepages_block().
902 * Remove at a later date when no bug reports exist related to
903 * grouping pages by mobility
905 BUG_ON(page_zone(start_page) != page_zone(end_page));
906 #endif
908 for (page = start_page; page <= end_page;) {
909 /* Make sure we are not inadvertently changing nodes */
910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
912 if (!pfn_valid_within(page_to_pfn(page))) {
913 page++;
914 continue;
917 if (!PageBuddy(page)) {
918 page++;
919 continue;
922 order = page_order(page);
923 list_move(&page->lru,
924 &zone->free_area[order].free_list[migratetype]);
925 page += 1 << order;
926 pages_moved += 1 << order;
929 return pages_moved;
932 static int move_freepages_block(struct zone *zone, struct page *page,
933 int migratetype)
935 unsigned long start_pfn, end_pfn;
936 struct page *start_page, *end_page;
938 start_pfn = page_to_pfn(page);
939 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940 start_page = pfn_to_page(start_pfn);
941 end_page = start_page + pageblock_nr_pages - 1;
942 end_pfn = start_pfn + pageblock_nr_pages - 1;
944 /* Do not cross zone boundaries */
945 if (start_pfn < zone->zone_start_pfn)
946 start_page = page;
947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 return 0;
950 return move_freepages(zone, start_page, end_page, migratetype);
953 static void change_pageblock_range(struct page *pageblock_page,
954 int start_order, int migratetype)
956 int nr_pageblocks = 1 << (start_order - pageblock_order);
958 while (nr_pageblocks--) {
959 set_pageblock_migratetype(pageblock_page, migratetype);
960 pageblock_page += pageblock_nr_pages;
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page *
966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
968 struct free_area * area;
969 int current_order;
970 struct page *page;
971 int migratetype, i;
973 /* Find the largest possible block of pages in the other list */
974 for (current_order = MAX_ORDER-1; current_order >= order;
975 --current_order) {
976 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 migratetype = fallbacks[start_migratetype][i];
979 /* MIGRATE_RESERVE handled later if necessary */
980 if (migratetype == MIGRATE_RESERVE)
981 continue;
983 area = &(zone->free_area[current_order]);
984 if (list_empty(&area->free_list[migratetype]))
985 continue;
987 page = list_entry(area->free_list[migratetype].next,
988 struct page, lru);
989 area->nr_free--;
992 * If breaking a large block of pages, move all free
993 * pages to the preferred allocation list. If falling
994 * back for a reclaimable kernel allocation, be more
995 * aggressive about taking ownership of free pages
997 if (unlikely(current_order >= (pageblock_order >> 1)) ||
998 start_migratetype == MIGRATE_RECLAIMABLE ||
999 page_group_by_mobility_disabled) {
1000 unsigned long pages;
1001 pages = move_freepages_block(zone, page,
1002 start_migratetype);
1004 /* Claim the whole block if over half of it is free */
1005 if (pages >= (1 << (pageblock_order-1)) ||
1006 page_group_by_mobility_disabled)
1007 set_pageblock_migratetype(page,
1008 start_migratetype);
1010 migratetype = start_migratetype;
1013 /* Remove the page from the freelists */
1014 list_del(&page->lru);
1015 rmv_page_order(page);
1017 /* Take ownership for orders >= pageblock_order */
1018 if (current_order >= pageblock_order)
1019 change_pageblock_range(page, current_order,
1020 start_migratetype);
1022 expand(zone, page, order, current_order, area, migratetype);
1024 trace_mm_page_alloc_extfrag(page, order, current_order,
1025 start_migratetype, migratetype);
1027 return page;
1031 return NULL;
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1038 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 int migratetype)
1041 struct page *page;
1043 retry_reserve:
1044 page = __rmqueue_smallest(zone, order, migratetype);
1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047 page = __rmqueue_fallback(zone, order, migratetype);
1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 * is used because __rmqueue_smallest is an inline function
1052 * and we want just one call site
1054 if (!page) {
1055 migratetype = MIGRATE_RESERVE;
1056 goto retry_reserve;
1060 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061 return page;
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency. Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1069 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070 unsigned long count, struct list_head *list,
1071 int migratetype, int cold)
1073 int i;
1075 spin_lock(&zone->lock);
1076 for (i = 0; i < count; ++i) {
1077 struct page *page = __rmqueue(zone, order, migratetype);
1078 if (unlikely(page == NULL))
1079 break;
1082 * Split buddy pages returned by expand() are received here
1083 * in physical page order. The page is added to the callers and
1084 * list and the list head then moves forward. From the callers
1085 * perspective, the linked list is ordered by page number in
1086 * some conditions. This is useful for IO devices that can
1087 * merge IO requests if the physical pages are ordered
1088 * properly.
1090 if (likely(cold == 0))
1091 list_add(&page->lru, list);
1092 else
1093 list_add_tail(&page->lru, list);
1094 set_page_private(page, migratetype);
1095 list = &page->lru;
1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098 spin_unlock(&zone->lock);
1099 return i;
1102 #ifdef CONFIG_NUMA
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1106 * expired.
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1113 unsigned long flags;
1114 int to_drain;
1116 local_irq_save(flags);
1117 if (pcp->count >= pcp->batch)
1118 to_drain = pcp->batch;
1119 else
1120 to_drain = pcp->count;
1121 free_pcppages_bulk(zone, to_drain, pcp);
1122 pcp->count -= to_drain;
1123 local_irq_restore(flags);
1125 #endif
1128 * Drain pages of the indicated processor.
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1132 * is not online.
1134 static void drain_pages(unsigned int cpu)
1136 unsigned long flags;
1137 struct zone *zone;
1139 for_each_populated_zone(zone) {
1140 struct per_cpu_pageset *pset;
1141 struct per_cpu_pages *pcp;
1143 local_irq_save(flags);
1144 pset = per_cpu_ptr(zone->pageset, cpu);
1146 pcp = &pset->pcp;
1147 if (pcp->count) {
1148 free_pcppages_bulk(zone, pcp->count, pcp);
1149 pcp->count = 0;
1151 local_irq_restore(flags);
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1158 void drain_local_pages(void *arg)
1160 drain_pages(smp_processor_id());
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1166 * Note that this code is protected against sending an IPI to an offline
1167 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1168 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1169 * nothing keeps CPUs from showing up after we populated the cpumask and
1170 * before the call to on_each_cpu_mask().
1172 void drain_all_pages(void)
1174 int cpu;
1175 struct per_cpu_pageset *pcp;
1176 struct zone *zone;
1179 * Allocate in the BSS so we wont require allocation in
1180 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1182 static cpumask_t cpus_with_pcps;
1185 * We don't care about racing with CPU hotplug event
1186 * as offline notification will cause the notified
1187 * cpu to drain that CPU pcps and on_each_cpu_mask
1188 * disables preemption as part of its processing
1190 for_each_online_cpu(cpu) {
1191 bool has_pcps = false;
1192 for_each_populated_zone(zone) {
1193 pcp = per_cpu_ptr(zone->pageset, cpu);
1194 if (pcp->pcp.count) {
1195 has_pcps = true;
1196 break;
1199 if (has_pcps)
1200 cpumask_set_cpu(cpu, &cpus_with_pcps);
1201 else
1202 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1204 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1207 #ifdef CONFIG_HIBERNATION
1209 void mark_free_pages(struct zone *zone)
1211 unsigned long pfn, max_zone_pfn;
1212 unsigned long flags;
1213 int order, t;
1214 struct list_head *curr;
1216 if (!zone->spanned_pages)
1217 return;
1219 spin_lock_irqsave(&zone->lock, flags);
1221 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1222 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1223 if (pfn_valid(pfn)) {
1224 struct page *page = pfn_to_page(pfn);
1226 if (!swsusp_page_is_forbidden(page))
1227 swsusp_unset_page_free(page);
1230 for_each_migratetype_order(order, t) {
1231 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1232 unsigned long i;
1234 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1235 for (i = 0; i < (1UL << order); i++)
1236 swsusp_set_page_free(pfn_to_page(pfn + i));
1239 spin_unlock_irqrestore(&zone->lock, flags);
1241 #endif /* CONFIG_PM */
1244 * Free a 0-order page
1245 * cold == 1 ? free a cold page : free a hot page
1247 void free_hot_cold_page(struct page *page, int cold)
1249 struct zone *zone = page_zone(page);
1250 struct per_cpu_pages *pcp;
1251 unsigned long flags;
1252 int migratetype;
1253 int wasMlocked = __TestClearPageMlocked(page);
1255 if (!free_pages_prepare(page, 0))
1256 return;
1258 migratetype = get_pageblock_migratetype(page);
1259 set_page_private(page, migratetype);
1260 local_irq_save(flags);
1261 if (unlikely(wasMlocked))
1262 free_page_mlock(page);
1263 __count_vm_event(PGFREE);
1266 * We only track unmovable, reclaimable and movable on pcp lists.
1267 * Free ISOLATE pages back to the allocator because they are being
1268 * offlined but treat RESERVE as movable pages so we can get those
1269 * areas back if necessary. Otherwise, we may have to free
1270 * excessively into the page allocator
1272 if (migratetype >= MIGRATE_PCPTYPES) {
1273 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1274 free_one_page(zone, page, 0, migratetype);
1275 goto out;
1277 migratetype = MIGRATE_MOVABLE;
1280 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1281 if (cold)
1282 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1283 else
1284 list_add(&page->lru, &pcp->lists[migratetype]);
1285 pcp->count++;
1286 if (pcp->count >= pcp->high) {
1287 free_pcppages_bulk(zone, pcp->batch, pcp);
1288 pcp->count -= pcp->batch;
1291 out:
1292 local_irq_restore(flags);
1296 * Free a list of 0-order pages
1298 void free_hot_cold_page_list(struct list_head *list, int cold)
1300 struct page *page, *next;
1302 list_for_each_entry_safe(page, next, list, lru) {
1303 trace_mm_page_free_batched(page, cold);
1304 free_hot_cold_page(page, cold);
1309 * split_page takes a non-compound higher-order page, and splits it into
1310 * n (1<<order) sub-pages: page[0..n]
1311 * Each sub-page must be freed individually.
1313 * Note: this is probably too low level an operation for use in drivers.
1314 * Please consult with lkml before using this in your driver.
1316 void split_page(struct page *page, unsigned int order)
1318 int i;
1320 VM_BUG_ON(PageCompound(page));
1321 VM_BUG_ON(!page_count(page));
1323 #ifdef CONFIG_KMEMCHECK
1325 * Split shadow pages too, because free(page[0]) would
1326 * otherwise free the whole shadow.
1328 if (kmemcheck_page_is_tracked(page))
1329 split_page(virt_to_page(page[0].shadow), order);
1330 #endif
1332 for (i = 1; i < (1 << order); i++)
1333 set_page_refcounted(page + i);
1337 * Similar to split_page except the page is already free. As this is only
1338 * being used for migration, the migratetype of the block also changes.
1339 * As this is called with interrupts disabled, the caller is responsible
1340 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1341 * are enabled.
1343 * Note: this is probably too low level an operation for use in drivers.
1344 * Please consult with lkml before using this in your driver.
1346 int split_free_page(struct page *page)
1348 unsigned int order;
1349 unsigned long watermark;
1350 struct zone *zone;
1352 BUG_ON(!PageBuddy(page));
1354 zone = page_zone(page);
1355 order = page_order(page);
1357 /* Obey watermarks as if the page was being allocated */
1358 watermark = low_wmark_pages(zone) + (1 << order);
1359 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1360 return 0;
1362 /* Remove page from free list */
1363 list_del(&page->lru);
1364 zone->free_area[order].nr_free--;
1365 rmv_page_order(page);
1366 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1368 /* Split into individual pages */
1369 set_page_refcounted(page);
1370 split_page(page, order);
1372 if (order >= pageblock_order - 1) {
1373 struct page *endpage = page + (1 << order) - 1;
1374 for (; page < endpage; page += pageblock_nr_pages)
1375 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1378 return 1 << order;
1382 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1383 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1384 * or two.
1386 static inline
1387 struct page *buffered_rmqueue(struct zone *preferred_zone,
1388 struct zone *zone, int order, gfp_t gfp_flags,
1389 int migratetype)
1391 unsigned long flags;
1392 struct page *page;
1393 int cold = !!(gfp_flags & __GFP_COLD);
1395 again:
1396 if (likely(order == 0)) {
1397 struct per_cpu_pages *pcp;
1398 struct list_head *list;
1400 local_irq_save(flags);
1401 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1402 list = &pcp->lists[migratetype];
1403 if (list_empty(list)) {
1404 pcp->count += rmqueue_bulk(zone, 0,
1405 pcp->batch, list,
1406 migratetype, cold);
1407 if (unlikely(list_empty(list)))
1408 goto failed;
1411 if (cold)
1412 page = list_entry(list->prev, struct page, lru);
1413 else
1414 page = list_entry(list->next, struct page, lru);
1416 list_del(&page->lru);
1417 pcp->count--;
1418 } else {
1419 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1421 * __GFP_NOFAIL is not to be used in new code.
1423 * All __GFP_NOFAIL callers should be fixed so that they
1424 * properly detect and handle allocation failures.
1426 * We most definitely don't want callers attempting to
1427 * allocate greater than order-1 page units with
1428 * __GFP_NOFAIL.
1430 WARN_ON_ONCE(order > 1);
1432 spin_lock_irqsave(&zone->lock, flags);
1433 page = __rmqueue(zone, order, migratetype);
1434 spin_unlock(&zone->lock);
1435 if (!page)
1436 goto failed;
1437 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1440 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1441 zone_statistics(preferred_zone, zone, gfp_flags);
1442 local_irq_restore(flags);
1444 VM_BUG_ON(bad_range(zone, page));
1445 if (prep_new_page(page, order, gfp_flags))
1446 goto again;
1447 return page;
1449 failed:
1450 local_irq_restore(flags);
1451 return NULL;
1454 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1455 #define ALLOC_WMARK_MIN WMARK_MIN
1456 #define ALLOC_WMARK_LOW WMARK_LOW
1457 #define ALLOC_WMARK_HIGH WMARK_HIGH
1458 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1460 /* Mask to get the watermark bits */
1461 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1463 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1464 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1465 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1467 #ifdef CONFIG_FAIL_PAGE_ALLOC
1469 static struct {
1470 struct fault_attr attr;
1472 u32 ignore_gfp_highmem;
1473 u32 ignore_gfp_wait;
1474 u32 min_order;
1475 } fail_page_alloc = {
1476 .attr = FAULT_ATTR_INITIALIZER,
1477 .ignore_gfp_wait = 1,
1478 .ignore_gfp_highmem = 1,
1479 .min_order = 1,
1482 static int __init setup_fail_page_alloc(char *str)
1484 return setup_fault_attr(&fail_page_alloc.attr, str);
1486 __setup("fail_page_alloc=", setup_fail_page_alloc);
1488 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1490 if (order < fail_page_alloc.min_order)
1491 return 0;
1492 if (gfp_mask & __GFP_NOFAIL)
1493 return 0;
1494 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1495 return 0;
1496 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1497 return 0;
1499 return should_fail(&fail_page_alloc.attr, 1 << order);
1502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1504 static int __init fail_page_alloc_debugfs(void)
1506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1507 struct dentry *dir;
1509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1510 &fail_page_alloc.attr);
1511 if (IS_ERR(dir))
1512 return PTR_ERR(dir);
1514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1515 &fail_page_alloc.ignore_gfp_wait))
1516 goto fail;
1517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1518 &fail_page_alloc.ignore_gfp_highmem))
1519 goto fail;
1520 if (!debugfs_create_u32("min-order", mode, dir,
1521 &fail_page_alloc.min_order))
1522 goto fail;
1524 return 0;
1525 fail:
1526 debugfs_remove_recursive(dir);
1528 return -ENOMEM;
1531 late_initcall(fail_page_alloc_debugfs);
1533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1535 #else /* CONFIG_FAIL_PAGE_ALLOC */
1537 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 return 0;
1542 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1545 * Return true if free pages are above 'mark'. This takes into account the order
1546 * of the allocation.
1548 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1549 int classzone_idx, int alloc_flags, long free_pages)
1551 /* free_pages my go negative - that's OK */
1552 long min = mark;
1553 int o;
1555 free_pages -= (1 << order) - 1;
1556 if (alloc_flags & ALLOC_HIGH)
1557 min -= min / 2;
1558 if (alloc_flags & ALLOC_HARDER)
1559 min -= min / 4;
1561 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1562 return false;
1563 for (o = 0; o < order; o++) {
1564 /* At the next order, this order's pages become unavailable */
1565 free_pages -= z->free_area[o].nr_free << o;
1567 /* Require fewer higher order pages to be free */
1568 min >>= 1;
1570 if (free_pages <= min)
1571 return false;
1573 return true;
1576 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1577 int classzone_idx, int alloc_flags)
1579 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1580 zone_page_state(z, NR_FREE_PAGES));
1583 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1584 int classzone_idx, int alloc_flags)
1586 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1588 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1589 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1591 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1592 free_pages);
1595 #ifdef CONFIG_NUMA
1597 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1598 * skip over zones that are not allowed by the cpuset, or that have
1599 * been recently (in last second) found to be nearly full. See further
1600 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1601 * that have to skip over a lot of full or unallowed zones.
1603 * If the zonelist cache is present in the passed in zonelist, then
1604 * returns a pointer to the allowed node mask (either the current
1605 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1607 * If the zonelist cache is not available for this zonelist, does
1608 * nothing and returns NULL.
1610 * If the fullzones BITMAP in the zonelist cache is stale (more than
1611 * a second since last zap'd) then we zap it out (clear its bits.)
1613 * We hold off even calling zlc_setup, until after we've checked the
1614 * first zone in the zonelist, on the theory that most allocations will
1615 * be satisfied from that first zone, so best to examine that zone as
1616 * quickly as we can.
1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1621 nodemask_t *allowednodes; /* zonelist_cache approximation */
1623 zlc = zonelist->zlcache_ptr;
1624 if (!zlc)
1625 return NULL;
1627 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1628 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1629 zlc->last_full_zap = jiffies;
1632 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1633 &cpuset_current_mems_allowed :
1634 &node_states[N_HIGH_MEMORY];
1635 return allowednodes;
1639 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1640 * if it is worth looking at further for free memory:
1641 * 1) Check that the zone isn't thought to be full (doesn't have its
1642 * bit set in the zonelist_cache fullzones BITMAP).
1643 * 2) Check that the zones node (obtained from the zonelist_cache
1644 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1645 * Return true (non-zero) if zone is worth looking at further, or
1646 * else return false (zero) if it is not.
1648 * This check -ignores- the distinction between various watermarks,
1649 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1650 * found to be full for any variation of these watermarks, it will
1651 * be considered full for up to one second by all requests, unless
1652 * we are so low on memory on all allowed nodes that we are forced
1653 * into the second scan of the zonelist.
1655 * In the second scan we ignore this zonelist cache and exactly
1656 * apply the watermarks to all zones, even it is slower to do so.
1657 * We are low on memory in the second scan, and should leave no stone
1658 * unturned looking for a free page.
1660 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1661 nodemask_t *allowednodes)
1663 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1664 int i; /* index of *z in zonelist zones */
1665 int n; /* node that zone *z is on */
1667 zlc = zonelist->zlcache_ptr;
1668 if (!zlc)
1669 return 1;
1671 i = z - zonelist->_zonerefs;
1672 n = zlc->z_to_n[i];
1674 /* This zone is worth trying if it is allowed but not full */
1675 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1679 * Given 'z' scanning a zonelist, set the corresponding bit in
1680 * zlc->fullzones, so that subsequent attempts to allocate a page
1681 * from that zone don't waste time re-examining it.
1683 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1686 int i; /* index of *z in zonelist zones */
1688 zlc = zonelist->zlcache_ptr;
1689 if (!zlc)
1690 return;
1692 i = z - zonelist->_zonerefs;
1694 set_bit(i, zlc->fullzones);
1698 * clear all zones full, called after direct reclaim makes progress so that
1699 * a zone that was recently full is not skipped over for up to a second
1701 static void zlc_clear_zones_full(struct zonelist *zonelist)
1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1705 zlc = zonelist->zlcache_ptr;
1706 if (!zlc)
1707 return;
1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 #else /* CONFIG_NUMA */
1714 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1716 return NULL;
1719 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1720 nodemask_t *allowednodes)
1722 return 1;
1725 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1729 static void zlc_clear_zones_full(struct zonelist *zonelist)
1732 #endif /* CONFIG_NUMA */
1735 * get_page_from_freelist goes through the zonelist trying to allocate
1736 * a page.
1738 static struct page *
1739 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1740 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1741 struct zone *preferred_zone, int migratetype)
1743 struct zoneref *z;
1744 struct page *page = NULL;
1745 int classzone_idx;
1746 struct zone *zone;
1747 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1748 int zlc_active = 0; /* set if using zonelist_cache */
1749 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1751 classzone_idx = zone_idx(preferred_zone);
1752 zonelist_scan:
1754 * Scan zonelist, looking for a zone with enough free.
1755 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1757 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1758 high_zoneidx, nodemask) {
1759 if (NUMA_BUILD && zlc_active &&
1760 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1761 continue;
1762 if ((alloc_flags & ALLOC_CPUSET) &&
1763 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1764 continue;
1766 * When allocating a page cache page for writing, we
1767 * want to get it from a zone that is within its dirty
1768 * limit, such that no single zone holds more than its
1769 * proportional share of globally allowed dirty pages.
1770 * The dirty limits take into account the zone's
1771 * lowmem reserves and high watermark so that kswapd
1772 * should be able to balance it without having to
1773 * write pages from its LRU list.
1775 * This may look like it could increase pressure on
1776 * lower zones by failing allocations in higher zones
1777 * before they are full. But the pages that do spill
1778 * over are limited as the lower zones are protected
1779 * by this very same mechanism. It should not become
1780 * a practical burden to them.
1782 * XXX: For now, allow allocations to potentially
1783 * exceed the per-zone dirty limit in the slowpath
1784 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1785 * which is important when on a NUMA setup the allowed
1786 * zones are together not big enough to reach the
1787 * global limit. The proper fix for these situations
1788 * will require awareness of zones in the
1789 * dirty-throttling and the flusher threads.
1791 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1792 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1793 goto this_zone_full;
1795 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1796 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1797 unsigned long mark;
1798 int ret;
1800 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1801 if (zone_watermark_ok(zone, order, mark,
1802 classzone_idx, alloc_flags))
1803 goto try_this_zone;
1805 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1807 * we do zlc_setup if there are multiple nodes
1808 * and before considering the first zone allowed
1809 * by the cpuset.
1811 allowednodes = zlc_setup(zonelist, alloc_flags);
1812 zlc_active = 1;
1813 did_zlc_setup = 1;
1816 if (zone_reclaim_mode == 0)
1817 goto this_zone_full;
1820 * As we may have just activated ZLC, check if the first
1821 * eligible zone has failed zone_reclaim recently.
1823 if (NUMA_BUILD && zlc_active &&
1824 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1825 continue;
1827 ret = zone_reclaim(zone, gfp_mask, order);
1828 switch (ret) {
1829 case ZONE_RECLAIM_NOSCAN:
1830 /* did not scan */
1831 continue;
1832 case ZONE_RECLAIM_FULL:
1833 /* scanned but unreclaimable */
1834 continue;
1835 default:
1836 /* did we reclaim enough */
1837 if (!zone_watermark_ok(zone, order, mark,
1838 classzone_idx, alloc_flags))
1839 goto this_zone_full;
1843 try_this_zone:
1844 page = buffered_rmqueue(preferred_zone, zone, order,
1845 gfp_mask, migratetype);
1846 if (page)
1847 break;
1848 this_zone_full:
1849 if (NUMA_BUILD)
1850 zlc_mark_zone_full(zonelist, z);
1853 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1854 /* Disable zlc cache for second zonelist scan */
1855 zlc_active = 0;
1856 goto zonelist_scan;
1858 return page;
1862 * Large machines with many possible nodes should not always dump per-node
1863 * meminfo in irq context.
1865 static inline bool should_suppress_show_mem(void)
1867 bool ret = false;
1869 #if NODES_SHIFT > 8
1870 ret = in_interrupt();
1871 #endif
1872 return ret;
1875 static DEFINE_RATELIMIT_STATE(nopage_rs,
1876 DEFAULT_RATELIMIT_INTERVAL,
1877 DEFAULT_RATELIMIT_BURST);
1879 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1881 unsigned int filter = SHOW_MEM_FILTER_NODES;
1883 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1884 debug_guardpage_minorder() > 0)
1885 return;
1888 * This documents exceptions given to allocations in certain
1889 * contexts that are allowed to allocate outside current's set
1890 * of allowed nodes.
1892 if (!(gfp_mask & __GFP_NOMEMALLOC))
1893 if (test_thread_flag(TIF_MEMDIE) ||
1894 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1895 filter &= ~SHOW_MEM_FILTER_NODES;
1896 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1897 filter &= ~SHOW_MEM_FILTER_NODES;
1899 if (fmt) {
1900 struct va_format vaf;
1901 va_list args;
1903 va_start(args, fmt);
1905 vaf.fmt = fmt;
1906 vaf.va = &args;
1908 pr_warn("%pV", &vaf);
1910 va_end(args);
1913 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1914 current->comm, order, gfp_mask);
1916 dump_stack();
1917 if (!should_suppress_show_mem())
1918 show_mem(filter);
1921 static inline int
1922 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1923 unsigned long did_some_progress,
1924 unsigned long pages_reclaimed)
1926 /* Do not loop if specifically requested */
1927 if (gfp_mask & __GFP_NORETRY)
1928 return 0;
1930 /* Always retry if specifically requested */
1931 if (gfp_mask & __GFP_NOFAIL)
1932 return 1;
1935 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1936 * making forward progress without invoking OOM. Suspend also disables
1937 * storage devices so kswapd will not help. Bail if we are suspending.
1939 if (!did_some_progress && pm_suspended_storage())
1940 return 0;
1943 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1944 * means __GFP_NOFAIL, but that may not be true in other
1945 * implementations.
1947 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1948 return 1;
1951 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1952 * specified, then we retry until we no longer reclaim any pages
1953 * (above), or we've reclaimed an order of pages at least as
1954 * large as the allocation's order. In both cases, if the
1955 * allocation still fails, we stop retrying.
1957 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1958 return 1;
1960 return 0;
1963 static inline struct page *
1964 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1965 struct zonelist *zonelist, enum zone_type high_zoneidx,
1966 nodemask_t *nodemask, struct zone *preferred_zone,
1967 int migratetype)
1969 struct page *page;
1971 /* Acquire the OOM killer lock for the zones in zonelist */
1972 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1973 schedule_timeout_uninterruptible(1);
1974 return NULL;
1978 * Go through the zonelist yet one more time, keep very high watermark
1979 * here, this is only to catch a parallel oom killing, we must fail if
1980 * we're still under heavy pressure.
1982 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1983 order, zonelist, high_zoneidx,
1984 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1985 preferred_zone, migratetype);
1986 if (page)
1987 goto out;
1989 if (!(gfp_mask & __GFP_NOFAIL)) {
1990 /* The OOM killer will not help higher order allocs */
1991 if (order > PAGE_ALLOC_COSTLY_ORDER)
1992 goto out;
1993 /* The OOM killer does not needlessly kill tasks for lowmem */
1994 if (high_zoneidx < ZONE_NORMAL)
1995 goto out;
1997 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1998 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1999 * The caller should handle page allocation failure by itself if
2000 * it specifies __GFP_THISNODE.
2001 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2003 if (gfp_mask & __GFP_THISNODE)
2004 goto out;
2006 /* Exhausted what can be done so it's blamo time */
2007 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2009 out:
2010 clear_zonelist_oom(zonelist, gfp_mask);
2011 return page;
2014 #ifdef CONFIG_COMPACTION
2015 /* Try memory compaction for high-order allocations before reclaim */
2016 static struct page *
2017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2018 struct zonelist *zonelist, enum zone_type high_zoneidx,
2019 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2020 int migratetype, bool sync_migration,
2021 bool *deferred_compaction,
2022 unsigned long *did_some_progress)
2024 struct page *page;
2026 if (!order)
2027 return NULL;
2029 if (compaction_deferred(preferred_zone, order)) {
2030 *deferred_compaction = true;
2031 return NULL;
2034 current->flags |= PF_MEMALLOC;
2035 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2036 nodemask, sync_migration);
2037 current->flags &= ~PF_MEMALLOC;
2038 if (*did_some_progress != COMPACT_SKIPPED) {
2040 /* Page migration frees to the PCP lists but we want merging */
2041 drain_pages(get_cpu());
2042 put_cpu();
2044 page = get_page_from_freelist(gfp_mask, nodemask,
2045 order, zonelist, high_zoneidx,
2046 alloc_flags, preferred_zone,
2047 migratetype);
2048 if (page) {
2049 preferred_zone->compact_considered = 0;
2050 preferred_zone->compact_defer_shift = 0;
2051 if (order >= preferred_zone->compact_order_failed)
2052 preferred_zone->compact_order_failed = order + 1;
2053 count_vm_event(COMPACTSUCCESS);
2054 return page;
2058 * It's bad if compaction run occurs and fails.
2059 * The most likely reason is that pages exist,
2060 * but not enough to satisfy watermarks.
2062 count_vm_event(COMPACTFAIL);
2065 * As async compaction considers a subset of pageblocks, only
2066 * defer if the failure was a sync compaction failure.
2068 if (sync_migration)
2069 defer_compaction(preferred_zone, order);
2071 cond_resched();
2074 return NULL;
2076 #else
2077 static inline struct page *
2078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2079 struct zonelist *zonelist, enum zone_type high_zoneidx,
2080 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2081 int migratetype, bool sync_migration,
2082 bool *deferred_compaction,
2083 unsigned long *did_some_progress)
2085 return NULL;
2087 #endif /* CONFIG_COMPACTION */
2089 /* The really slow allocator path where we enter direct reclaim */
2090 static inline struct page *
2091 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2094 int migratetype, unsigned long *did_some_progress)
2096 struct page *page = NULL;
2097 struct reclaim_state reclaim_state;
2098 bool drained = false;
2100 cond_resched();
2102 /* We now go into synchronous reclaim */
2103 cpuset_memory_pressure_bump();
2104 current->flags |= PF_MEMALLOC;
2105 lockdep_set_current_reclaim_state(gfp_mask);
2106 reclaim_state.reclaimed_slab = 0;
2107 current->reclaim_state = &reclaim_state;
2109 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2111 current->reclaim_state = NULL;
2112 lockdep_clear_current_reclaim_state();
2113 current->flags &= ~PF_MEMALLOC;
2115 cond_resched();
2117 if (unlikely(!(*did_some_progress)))
2118 return NULL;
2120 /* After successful reclaim, reconsider all zones for allocation */
2121 if (NUMA_BUILD)
2122 zlc_clear_zones_full(zonelist);
2124 retry:
2125 page = get_page_from_freelist(gfp_mask, nodemask, order,
2126 zonelist, high_zoneidx,
2127 alloc_flags, preferred_zone,
2128 migratetype);
2131 * If an allocation failed after direct reclaim, it could be because
2132 * pages are pinned on the per-cpu lists. Drain them and try again
2134 if (!page && !drained) {
2135 drain_all_pages();
2136 drained = true;
2137 goto retry;
2140 return page;
2144 * This is called in the allocator slow-path if the allocation request is of
2145 * sufficient urgency to ignore watermarks and take other desperate measures
2147 static inline struct page *
2148 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2149 struct zonelist *zonelist, enum zone_type high_zoneidx,
2150 nodemask_t *nodemask, struct zone *preferred_zone,
2151 int migratetype)
2153 struct page *page;
2155 do {
2156 page = get_page_from_freelist(gfp_mask, nodemask, order,
2157 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2158 preferred_zone, migratetype);
2160 if (!page && gfp_mask & __GFP_NOFAIL)
2161 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2162 } while (!page && (gfp_mask & __GFP_NOFAIL));
2164 return page;
2167 static inline
2168 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2169 enum zone_type high_zoneidx,
2170 enum zone_type classzone_idx)
2172 struct zoneref *z;
2173 struct zone *zone;
2175 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2176 wakeup_kswapd(zone, order, classzone_idx);
2179 static inline int
2180 gfp_to_alloc_flags(gfp_t gfp_mask)
2182 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2183 const gfp_t wait = gfp_mask & __GFP_WAIT;
2185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2189 * The caller may dip into page reserves a bit more if the caller
2190 * cannot run direct reclaim, or if the caller has realtime scheduling
2191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2192 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2196 if (!wait) {
2198 * Not worth trying to allocate harder for
2199 * __GFP_NOMEMALLOC even if it can't schedule.
2201 if (!(gfp_mask & __GFP_NOMEMALLOC))
2202 alloc_flags |= ALLOC_HARDER;
2204 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2205 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2207 alloc_flags &= ~ALLOC_CPUSET;
2208 } else if (unlikely(rt_task(current)) && !in_interrupt())
2209 alloc_flags |= ALLOC_HARDER;
2211 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2212 if (!in_interrupt() &&
2213 ((current->flags & PF_MEMALLOC) ||
2214 unlikely(test_thread_flag(TIF_MEMDIE))))
2215 alloc_flags |= ALLOC_NO_WATERMARKS;
2218 return alloc_flags;
2221 static inline struct page *
2222 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2223 struct zonelist *zonelist, enum zone_type high_zoneidx,
2224 nodemask_t *nodemask, struct zone *preferred_zone,
2225 int migratetype)
2227 const gfp_t wait = gfp_mask & __GFP_WAIT;
2228 struct page *page = NULL;
2229 int alloc_flags;
2230 unsigned long pages_reclaimed = 0;
2231 unsigned long did_some_progress;
2232 bool sync_migration = false;
2233 bool deferred_compaction = false;
2236 * In the slowpath, we sanity check order to avoid ever trying to
2237 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2238 * be using allocators in order of preference for an area that is
2239 * too large.
2241 if (order >= MAX_ORDER) {
2242 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2243 return NULL;
2247 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2248 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2249 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2250 * using a larger set of nodes after it has established that the
2251 * allowed per node queues are empty and that nodes are
2252 * over allocated.
2254 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2255 goto nopage;
2257 restart:
2258 if (!(gfp_mask & __GFP_NO_KSWAPD))
2259 wake_all_kswapd(order, zonelist, high_zoneidx,
2260 zone_idx(preferred_zone));
2263 * OK, we're below the kswapd watermark and have kicked background
2264 * reclaim. Now things get more complex, so set up alloc_flags according
2265 * to how we want to proceed.
2267 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2270 * Find the true preferred zone if the allocation is unconstrained by
2271 * cpusets.
2273 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2274 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2275 &preferred_zone);
2277 rebalance:
2278 /* This is the last chance, in general, before the goto nopage. */
2279 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2280 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 preferred_zone, migratetype);
2282 if (page)
2283 goto got_pg;
2285 /* Allocate without watermarks if the context allows */
2286 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2287 page = __alloc_pages_high_priority(gfp_mask, order,
2288 zonelist, high_zoneidx, nodemask,
2289 preferred_zone, migratetype);
2290 if (page)
2291 goto got_pg;
2294 /* Atomic allocations - we can't balance anything */
2295 if (!wait)
2296 goto nopage;
2298 /* Avoid recursion of direct reclaim */
2299 if (current->flags & PF_MEMALLOC)
2300 goto nopage;
2302 /* Avoid allocations with no watermarks from looping endlessly */
2303 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2304 goto nopage;
2307 * Try direct compaction. The first pass is asynchronous. Subsequent
2308 * attempts after direct reclaim are synchronous
2310 page = __alloc_pages_direct_compact(gfp_mask, order,
2311 zonelist, high_zoneidx,
2312 nodemask,
2313 alloc_flags, preferred_zone,
2314 migratetype, sync_migration,
2315 &deferred_compaction,
2316 &did_some_progress);
2317 if (page)
2318 goto got_pg;
2319 sync_migration = true;
2322 * If compaction is deferred for high-order allocations, it is because
2323 * sync compaction recently failed. In this is the case and the caller
2324 * has requested the system not be heavily disrupted, fail the
2325 * allocation now instead of entering direct reclaim
2327 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2328 goto nopage;
2330 /* Try direct reclaim and then allocating */
2331 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2332 zonelist, high_zoneidx,
2333 nodemask,
2334 alloc_flags, preferred_zone,
2335 migratetype, &did_some_progress);
2336 if (page)
2337 goto got_pg;
2340 * If we failed to make any progress reclaiming, then we are
2341 * running out of options and have to consider going OOM
2343 if (!did_some_progress) {
2344 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2345 if (oom_killer_disabled)
2346 goto nopage;
2347 /* Coredumps can quickly deplete all memory reserves */
2348 if ((current->flags & PF_DUMPCORE) &&
2349 !(gfp_mask & __GFP_NOFAIL))
2350 goto nopage;
2351 page = __alloc_pages_may_oom(gfp_mask, order,
2352 zonelist, high_zoneidx,
2353 nodemask, preferred_zone,
2354 migratetype);
2355 if (page)
2356 goto got_pg;
2358 if (!(gfp_mask & __GFP_NOFAIL)) {
2360 * The oom killer is not called for high-order
2361 * allocations that may fail, so if no progress
2362 * is being made, there are no other options and
2363 * retrying is unlikely to help.
2365 if (order > PAGE_ALLOC_COSTLY_ORDER)
2366 goto nopage;
2368 * The oom killer is not called for lowmem
2369 * allocations to prevent needlessly killing
2370 * innocent tasks.
2372 if (high_zoneidx < ZONE_NORMAL)
2373 goto nopage;
2376 goto restart;
2380 /* Check if we should retry the allocation */
2381 pages_reclaimed += did_some_progress;
2382 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2383 pages_reclaimed)) {
2384 /* Wait for some write requests to complete then retry */
2385 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2386 goto rebalance;
2387 } else {
2389 * High-order allocations do not necessarily loop after
2390 * direct reclaim and reclaim/compaction depends on compaction
2391 * being called after reclaim so call directly if necessary
2393 page = __alloc_pages_direct_compact(gfp_mask, order,
2394 zonelist, high_zoneidx,
2395 nodemask,
2396 alloc_flags, preferred_zone,
2397 migratetype, sync_migration,
2398 &deferred_compaction,
2399 &did_some_progress);
2400 if (page)
2401 goto got_pg;
2404 nopage:
2405 warn_alloc_failed(gfp_mask, order, NULL);
2406 return page;
2407 got_pg:
2408 if (kmemcheck_enabled)
2409 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2410 return page;
2415 * This is the 'heart' of the zoned buddy allocator.
2417 struct page *
2418 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2419 struct zonelist *zonelist, nodemask_t *nodemask)
2421 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2422 struct zone *preferred_zone;
2423 struct page *page = NULL;
2424 int migratetype = allocflags_to_migratetype(gfp_mask);
2425 unsigned int cpuset_mems_cookie;
2427 gfp_mask &= gfp_allowed_mask;
2429 lockdep_trace_alloc(gfp_mask);
2431 might_sleep_if(gfp_mask & __GFP_WAIT);
2433 if (should_fail_alloc_page(gfp_mask, order))
2434 return NULL;
2437 * Check the zones suitable for the gfp_mask contain at least one
2438 * valid zone. It's possible to have an empty zonelist as a result
2439 * of GFP_THISNODE and a memoryless node
2441 if (unlikely(!zonelist->_zonerefs->zone))
2442 return NULL;
2444 retry_cpuset:
2445 cpuset_mems_cookie = get_mems_allowed();
2447 /* The preferred zone is used for statistics later */
2448 first_zones_zonelist(zonelist, high_zoneidx,
2449 nodemask ? : &cpuset_current_mems_allowed,
2450 &preferred_zone);
2451 if (!preferred_zone)
2452 goto out;
2454 /* First allocation attempt */
2455 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2456 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2457 preferred_zone, migratetype);
2458 if (unlikely(!page))
2459 page = __alloc_pages_slowpath(gfp_mask, order,
2460 zonelist, high_zoneidx, nodemask,
2461 preferred_zone, migratetype);
2463 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2465 out:
2467 * When updating a task's mems_allowed, it is possible to race with
2468 * parallel threads in such a way that an allocation can fail while
2469 * the mask is being updated. If a page allocation is about to fail,
2470 * check if the cpuset changed during allocation and if so, retry.
2472 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2473 goto retry_cpuset;
2475 return page;
2477 EXPORT_SYMBOL(__alloc_pages_nodemask);
2480 * Common helper functions.
2482 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2484 struct page *page;
2487 * __get_free_pages() returns a 32-bit address, which cannot represent
2488 * a highmem page
2490 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2492 page = alloc_pages(gfp_mask, order);
2493 if (!page)
2494 return 0;
2495 return (unsigned long) page_address(page);
2497 EXPORT_SYMBOL(__get_free_pages);
2499 unsigned long get_zeroed_page(gfp_t gfp_mask)
2501 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2503 EXPORT_SYMBOL(get_zeroed_page);
2505 void __free_pages(struct page *page, unsigned int order)
2507 if (put_page_testzero(page)) {
2508 if (order == 0)
2509 free_hot_cold_page(page, 0);
2510 else
2511 __free_pages_ok(page, order);
2515 EXPORT_SYMBOL(__free_pages);
2517 void free_pages(unsigned long addr, unsigned int order)
2519 if (addr != 0) {
2520 VM_BUG_ON(!virt_addr_valid((void *)addr));
2521 __free_pages(virt_to_page((void *)addr), order);
2525 EXPORT_SYMBOL(free_pages);
2527 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2529 if (addr) {
2530 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2531 unsigned long used = addr + PAGE_ALIGN(size);
2533 split_page(virt_to_page((void *)addr), order);
2534 while (used < alloc_end) {
2535 free_page(used);
2536 used += PAGE_SIZE;
2539 return (void *)addr;
2543 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2544 * @size: the number of bytes to allocate
2545 * @gfp_mask: GFP flags for the allocation
2547 * This function is similar to alloc_pages(), except that it allocates the
2548 * minimum number of pages to satisfy the request. alloc_pages() can only
2549 * allocate memory in power-of-two pages.
2551 * This function is also limited by MAX_ORDER.
2553 * Memory allocated by this function must be released by free_pages_exact().
2555 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2557 unsigned int order = get_order(size);
2558 unsigned long addr;
2560 addr = __get_free_pages(gfp_mask, order);
2561 return make_alloc_exact(addr, order, size);
2563 EXPORT_SYMBOL(alloc_pages_exact);
2566 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2567 * pages on a node.
2568 * @nid: the preferred node ID where memory should be allocated
2569 * @size: the number of bytes to allocate
2570 * @gfp_mask: GFP flags for the allocation
2572 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2573 * back.
2574 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2575 * but is not exact.
2577 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2579 unsigned order = get_order(size);
2580 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2581 if (!p)
2582 return NULL;
2583 return make_alloc_exact((unsigned long)page_address(p), order, size);
2585 EXPORT_SYMBOL(alloc_pages_exact_nid);
2588 * free_pages_exact - release memory allocated via alloc_pages_exact()
2589 * @virt: the value returned by alloc_pages_exact.
2590 * @size: size of allocation, same value as passed to alloc_pages_exact().
2592 * Release the memory allocated by a previous call to alloc_pages_exact.
2594 void free_pages_exact(void *virt, size_t size)
2596 unsigned long addr = (unsigned long)virt;
2597 unsigned long end = addr + PAGE_ALIGN(size);
2599 while (addr < end) {
2600 free_page(addr);
2601 addr += PAGE_SIZE;
2604 EXPORT_SYMBOL(free_pages_exact);
2606 static unsigned int nr_free_zone_pages(int offset)
2608 struct zoneref *z;
2609 struct zone *zone;
2611 /* Just pick one node, since fallback list is circular */
2612 unsigned int sum = 0;
2614 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2616 for_each_zone_zonelist(zone, z, zonelist, offset) {
2617 unsigned long size = zone->present_pages;
2618 unsigned long high = high_wmark_pages(zone);
2619 if (size > high)
2620 sum += size - high;
2623 return sum;
2627 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2629 unsigned int nr_free_buffer_pages(void)
2631 return nr_free_zone_pages(gfp_zone(GFP_USER));
2633 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2636 * Amount of free RAM allocatable within all zones
2638 unsigned int nr_free_pagecache_pages(void)
2640 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2643 static inline void show_node(struct zone *zone)
2645 if (NUMA_BUILD)
2646 printk("Node %d ", zone_to_nid(zone));
2649 void si_meminfo(struct sysinfo *val)
2651 val->totalram = totalram_pages;
2652 val->sharedram = 0;
2653 val->freeram = global_page_state(NR_FREE_PAGES);
2654 val->bufferram = nr_blockdev_pages();
2655 val->totalhigh = totalhigh_pages;
2656 val->freehigh = nr_free_highpages();
2657 val->mem_unit = PAGE_SIZE;
2660 EXPORT_SYMBOL(si_meminfo);
2662 #ifdef CONFIG_NUMA
2663 void si_meminfo_node(struct sysinfo *val, int nid)
2665 pg_data_t *pgdat = NODE_DATA(nid);
2667 val->totalram = pgdat->node_present_pages;
2668 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2669 #ifdef CONFIG_HIGHMEM
2670 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2671 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2672 NR_FREE_PAGES);
2673 #else
2674 val->totalhigh = 0;
2675 val->freehigh = 0;
2676 #endif
2677 val->mem_unit = PAGE_SIZE;
2679 #endif
2682 * Determine whether the node should be displayed or not, depending on whether
2683 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2685 bool skip_free_areas_node(unsigned int flags, int nid)
2687 bool ret = false;
2688 unsigned int cpuset_mems_cookie;
2690 if (!(flags & SHOW_MEM_FILTER_NODES))
2691 goto out;
2693 do {
2694 cpuset_mems_cookie = get_mems_allowed();
2695 ret = !node_isset(nid, cpuset_current_mems_allowed);
2696 } while (!put_mems_allowed(cpuset_mems_cookie));
2697 out:
2698 return ret;
2701 #define K(x) ((x) << (PAGE_SHIFT-10))
2704 * Show free area list (used inside shift_scroll-lock stuff)
2705 * We also calculate the percentage fragmentation. We do this by counting the
2706 * memory on each free list with the exception of the first item on the list.
2707 * Suppresses nodes that are not allowed by current's cpuset if
2708 * SHOW_MEM_FILTER_NODES is passed.
2710 void show_free_areas(unsigned int filter)
2712 int cpu;
2713 struct zone *zone;
2715 for_each_populated_zone(zone) {
2716 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2717 continue;
2718 show_node(zone);
2719 printk("%s per-cpu:\n", zone->name);
2721 for_each_online_cpu(cpu) {
2722 struct per_cpu_pageset *pageset;
2724 pageset = per_cpu_ptr(zone->pageset, cpu);
2726 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2727 cpu, pageset->pcp.high,
2728 pageset->pcp.batch, pageset->pcp.count);
2732 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2733 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2734 " unevictable:%lu"
2735 " dirty:%lu writeback:%lu unstable:%lu\n"
2736 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2737 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2738 global_page_state(NR_ACTIVE_ANON),
2739 global_page_state(NR_INACTIVE_ANON),
2740 global_page_state(NR_ISOLATED_ANON),
2741 global_page_state(NR_ACTIVE_FILE),
2742 global_page_state(NR_INACTIVE_FILE),
2743 global_page_state(NR_ISOLATED_FILE),
2744 global_page_state(NR_UNEVICTABLE),
2745 global_page_state(NR_FILE_DIRTY),
2746 global_page_state(NR_WRITEBACK),
2747 global_page_state(NR_UNSTABLE_NFS),
2748 global_page_state(NR_FREE_PAGES),
2749 global_page_state(NR_SLAB_RECLAIMABLE),
2750 global_page_state(NR_SLAB_UNRECLAIMABLE),
2751 global_page_state(NR_FILE_MAPPED),
2752 global_page_state(NR_SHMEM),
2753 global_page_state(NR_PAGETABLE),
2754 global_page_state(NR_BOUNCE));
2756 for_each_populated_zone(zone) {
2757 int i;
2759 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2760 continue;
2761 show_node(zone);
2762 printk("%s"
2763 " free:%lukB"
2764 " min:%lukB"
2765 " low:%lukB"
2766 " high:%lukB"
2767 " active_anon:%lukB"
2768 " inactive_anon:%lukB"
2769 " active_file:%lukB"
2770 " inactive_file:%lukB"
2771 " unevictable:%lukB"
2772 " isolated(anon):%lukB"
2773 " isolated(file):%lukB"
2774 " present:%lukB"
2775 " mlocked:%lukB"
2776 " dirty:%lukB"
2777 " writeback:%lukB"
2778 " mapped:%lukB"
2779 " shmem:%lukB"
2780 " slab_reclaimable:%lukB"
2781 " slab_unreclaimable:%lukB"
2782 " kernel_stack:%lukB"
2783 " pagetables:%lukB"
2784 " unstable:%lukB"
2785 " bounce:%lukB"
2786 " writeback_tmp:%lukB"
2787 " pages_scanned:%lu"
2788 " all_unreclaimable? %s"
2789 "\n",
2790 zone->name,
2791 K(zone_page_state(zone, NR_FREE_PAGES)),
2792 K(min_wmark_pages(zone)),
2793 K(low_wmark_pages(zone)),
2794 K(high_wmark_pages(zone)),
2795 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2796 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2797 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2798 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2799 K(zone_page_state(zone, NR_UNEVICTABLE)),
2800 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2801 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2802 K(zone->present_pages),
2803 K(zone_page_state(zone, NR_MLOCK)),
2804 K(zone_page_state(zone, NR_FILE_DIRTY)),
2805 K(zone_page_state(zone, NR_WRITEBACK)),
2806 K(zone_page_state(zone, NR_FILE_MAPPED)),
2807 K(zone_page_state(zone, NR_SHMEM)),
2808 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2809 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2810 zone_page_state(zone, NR_KERNEL_STACK) *
2811 THREAD_SIZE / 1024,
2812 K(zone_page_state(zone, NR_PAGETABLE)),
2813 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2814 K(zone_page_state(zone, NR_BOUNCE)),
2815 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2816 zone->pages_scanned,
2817 (zone->all_unreclaimable ? "yes" : "no")
2819 printk("lowmem_reserve[]:");
2820 for (i = 0; i < MAX_NR_ZONES; i++)
2821 printk(" %lu", zone->lowmem_reserve[i]);
2822 printk("\n");
2825 for_each_populated_zone(zone) {
2826 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2828 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2829 continue;
2830 show_node(zone);
2831 printk("%s: ", zone->name);
2833 spin_lock_irqsave(&zone->lock, flags);
2834 for (order = 0; order < MAX_ORDER; order++) {
2835 nr[order] = zone->free_area[order].nr_free;
2836 total += nr[order] << order;
2838 spin_unlock_irqrestore(&zone->lock, flags);
2839 for (order = 0; order < MAX_ORDER; order++)
2840 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2841 printk("= %lukB\n", K(total));
2844 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2846 show_swap_cache_info();
2849 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2851 zoneref->zone = zone;
2852 zoneref->zone_idx = zone_idx(zone);
2856 * Builds allocation fallback zone lists.
2858 * Add all populated zones of a node to the zonelist.
2860 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2861 int nr_zones, enum zone_type zone_type)
2863 struct zone *zone;
2865 BUG_ON(zone_type >= MAX_NR_ZONES);
2866 zone_type++;
2868 do {
2869 zone_type--;
2870 zone = pgdat->node_zones + zone_type;
2871 if (populated_zone(zone)) {
2872 zoneref_set_zone(zone,
2873 &zonelist->_zonerefs[nr_zones++]);
2874 check_highest_zone(zone_type);
2877 } while (zone_type);
2878 return nr_zones;
2883 * zonelist_order:
2884 * 0 = automatic detection of better ordering.
2885 * 1 = order by ([node] distance, -zonetype)
2886 * 2 = order by (-zonetype, [node] distance)
2888 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2889 * the same zonelist. So only NUMA can configure this param.
2891 #define ZONELIST_ORDER_DEFAULT 0
2892 #define ZONELIST_ORDER_NODE 1
2893 #define ZONELIST_ORDER_ZONE 2
2895 /* zonelist order in the kernel.
2896 * set_zonelist_order() will set this to NODE or ZONE.
2898 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2899 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2902 #ifdef CONFIG_NUMA
2903 /* The value user specified ....changed by config */
2904 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2905 /* string for sysctl */
2906 #define NUMA_ZONELIST_ORDER_LEN 16
2907 char numa_zonelist_order[16] = "default";
2910 * interface for configure zonelist ordering.
2911 * command line option "numa_zonelist_order"
2912 * = "[dD]efault - default, automatic configuration.
2913 * = "[nN]ode - order by node locality, then by zone within node
2914 * = "[zZ]one - order by zone, then by locality within zone
2917 static int __parse_numa_zonelist_order(char *s)
2919 if (*s == 'd' || *s == 'D') {
2920 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2921 } else if (*s == 'n' || *s == 'N') {
2922 user_zonelist_order = ZONELIST_ORDER_NODE;
2923 } else if (*s == 'z' || *s == 'Z') {
2924 user_zonelist_order = ZONELIST_ORDER_ZONE;
2925 } else {
2926 printk(KERN_WARNING
2927 "Ignoring invalid numa_zonelist_order value: "
2928 "%s\n", s);
2929 return -EINVAL;
2931 return 0;
2934 static __init int setup_numa_zonelist_order(char *s)
2936 int ret;
2938 if (!s)
2939 return 0;
2941 ret = __parse_numa_zonelist_order(s);
2942 if (ret == 0)
2943 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2945 return ret;
2947 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2950 * sysctl handler for numa_zonelist_order
2952 int numa_zonelist_order_handler(ctl_table *table, int write,
2953 void __user *buffer, size_t *length,
2954 loff_t *ppos)
2956 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2957 int ret;
2958 static DEFINE_MUTEX(zl_order_mutex);
2960 mutex_lock(&zl_order_mutex);
2961 if (write)
2962 strcpy(saved_string, (char*)table->data);
2963 ret = proc_dostring(table, write, buffer, length, ppos);
2964 if (ret)
2965 goto out;
2966 if (write) {
2967 int oldval = user_zonelist_order;
2968 if (__parse_numa_zonelist_order((char*)table->data)) {
2970 * bogus value. restore saved string
2972 strncpy((char*)table->data, saved_string,
2973 NUMA_ZONELIST_ORDER_LEN);
2974 user_zonelist_order = oldval;
2975 } else if (oldval != user_zonelist_order) {
2976 mutex_lock(&zonelists_mutex);
2977 build_all_zonelists(NULL);
2978 mutex_unlock(&zonelists_mutex);
2981 out:
2982 mutex_unlock(&zl_order_mutex);
2983 return ret;
2987 #define MAX_NODE_LOAD (nr_online_nodes)
2988 static int node_load[MAX_NUMNODES];
2991 * find_next_best_node - find the next node that should appear in a given node's fallback list
2992 * @node: node whose fallback list we're appending
2993 * @used_node_mask: nodemask_t of already used nodes
2995 * We use a number of factors to determine which is the next node that should
2996 * appear on a given node's fallback list. The node should not have appeared
2997 * already in @node's fallback list, and it should be the next closest node
2998 * according to the distance array (which contains arbitrary distance values
2999 * from each node to each node in the system), and should also prefer nodes
3000 * with no CPUs, since presumably they'll have very little allocation pressure
3001 * on them otherwise.
3002 * It returns -1 if no node is found.
3004 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3006 int n, val;
3007 int min_val = INT_MAX;
3008 int best_node = -1;
3009 const struct cpumask *tmp = cpumask_of_node(0);
3011 /* Use the local node if we haven't already */
3012 if (!node_isset(node, *used_node_mask)) {
3013 node_set(node, *used_node_mask);
3014 return node;
3017 for_each_node_state(n, N_HIGH_MEMORY) {
3019 /* Don't want a node to appear more than once */
3020 if (node_isset(n, *used_node_mask))
3021 continue;
3023 /* Use the distance array to find the distance */
3024 val = node_distance(node, n);
3026 /* Penalize nodes under us ("prefer the next node") */
3027 val += (n < node);
3029 /* Give preference to headless and unused nodes */
3030 tmp = cpumask_of_node(n);
3031 if (!cpumask_empty(tmp))
3032 val += PENALTY_FOR_NODE_WITH_CPUS;
3034 /* Slight preference for less loaded node */
3035 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3036 val += node_load[n];
3038 if (val < min_val) {
3039 min_val = val;
3040 best_node = n;
3044 if (best_node >= 0)
3045 node_set(best_node, *used_node_mask);
3047 return best_node;
3052 * Build zonelists ordered by node and zones within node.
3053 * This results in maximum locality--normal zone overflows into local
3054 * DMA zone, if any--but risks exhausting DMA zone.
3056 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3058 int j;
3059 struct zonelist *zonelist;
3061 zonelist = &pgdat->node_zonelists[0];
3062 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3064 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3065 MAX_NR_ZONES - 1);
3066 zonelist->_zonerefs[j].zone = NULL;
3067 zonelist->_zonerefs[j].zone_idx = 0;
3071 * Build gfp_thisnode zonelists
3073 static void build_thisnode_zonelists(pg_data_t *pgdat)
3075 int j;
3076 struct zonelist *zonelist;
3078 zonelist = &pgdat->node_zonelists[1];
3079 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3080 zonelist->_zonerefs[j].zone = NULL;
3081 zonelist->_zonerefs[j].zone_idx = 0;
3085 * Build zonelists ordered by zone and nodes within zones.
3086 * This results in conserving DMA zone[s] until all Normal memory is
3087 * exhausted, but results in overflowing to remote node while memory
3088 * may still exist in local DMA zone.
3090 static int node_order[MAX_NUMNODES];
3092 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3094 int pos, j, node;
3095 int zone_type; /* needs to be signed */
3096 struct zone *z;
3097 struct zonelist *zonelist;
3099 zonelist = &pgdat->node_zonelists[0];
3100 pos = 0;
3101 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3102 for (j = 0; j < nr_nodes; j++) {
3103 node = node_order[j];
3104 z = &NODE_DATA(node)->node_zones[zone_type];
3105 if (populated_zone(z)) {
3106 zoneref_set_zone(z,
3107 &zonelist->_zonerefs[pos++]);
3108 check_highest_zone(zone_type);
3112 zonelist->_zonerefs[pos].zone = NULL;
3113 zonelist->_zonerefs[pos].zone_idx = 0;
3116 static int default_zonelist_order(void)
3118 int nid, zone_type;
3119 unsigned long low_kmem_size,total_size;
3120 struct zone *z;
3121 int average_size;
3123 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3124 * If they are really small and used heavily, the system can fall
3125 * into OOM very easily.
3126 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3128 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3129 low_kmem_size = 0;
3130 total_size = 0;
3131 for_each_online_node(nid) {
3132 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3133 z = &NODE_DATA(nid)->node_zones[zone_type];
3134 if (populated_zone(z)) {
3135 if (zone_type < ZONE_NORMAL)
3136 low_kmem_size += z->present_pages;
3137 total_size += z->present_pages;
3138 } else if (zone_type == ZONE_NORMAL) {
3140 * If any node has only lowmem, then node order
3141 * is preferred to allow kernel allocations
3142 * locally; otherwise, they can easily infringe
3143 * on other nodes when there is an abundance of
3144 * lowmem available to allocate from.
3146 return ZONELIST_ORDER_NODE;
3150 if (!low_kmem_size || /* there are no DMA area. */
3151 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3152 return ZONELIST_ORDER_NODE;
3154 * look into each node's config.
3155 * If there is a node whose DMA/DMA32 memory is very big area on
3156 * local memory, NODE_ORDER may be suitable.
3158 average_size = total_size /
3159 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3160 for_each_online_node(nid) {
3161 low_kmem_size = 0;
3162 total_size = 0;
3163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3164 z = &NODE_DATA(nid)->node_zones[zone_type];
3165 if (populated_zone(z)) {
3166 if (zone_type < ZONE_NORMAL)
3167 low_kmem_size += z->present_pages;
3168 total_size += z->present_pages;
3171 if (low_kmem_size &&
3172 total_size > average_size && /* ignore small node */
3173 low_kmem_size > total_size * 70/100)
3174 return ZONELIST_ORDER_NODE;
3176 return ZONELIST_ORDER_ZONE;
3179 static void set_zonelist_order(void)
3181 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3182 current_zonelist_order = default_zonelist_order();
3183 else
3184 current_zonelist_order = user_zonelist_order;
3187 static void build_zonelists(pg_data_t *pgdat)
3189 int j, node, load;
3190 enum zone_type i;
3191 nodemask_t used_mask;
3192 int local_node, prev_node;
3193 struct zonelist *zonelist;
3194 int order = current_zonelist_order;
3196 /* initialize zonelists */
3197 for (i = 0; i < MAX_ZONELISTS; i++) {
3198 zonelist = pgdat->node_zonelists + i;
3199 zonelist->_zonerefs[0].zone = NULL;
3200 zonelist->_zonerefs[0].zone_idx = 0;
3203 /* NUMA-aware ordering of nodes */
3204 local_node = pgdat->node_id;
3205 load = nr_online_nodes;
3206 prev_node = local_node;
3207 nodes_clear(used_mask);
3209 memset(node_order, 0, sizeof(node_order));
3210 j = 0;
3212 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3213 int distance = node_distance(local_node, node);
3216 * If another node is sufficiently far away then it is better
3217 * to reclaim pages in a zone before going off node.
3219 if (distance > RECLAIM_DISTANCE)
3220 zone_reclaim_mode = 1;
3223 * We don't want to pressure a particular node.
3224 * So adding penalty to the first node in same
3225 * distance group to make it round-robin.
3227 if (distance != node_distance(local_node, prev_node))
3228 node_load[node] = load;
3230 prev_node = node;
3231 load--;
3232 if (order == ZONELIST_ORDER_NODE)
3233 build_zonelists_in_node_order(pgdat, node);
3234 else
3235 node_order[j++] = node; /* remember order */
3238 if (order == ZONELIST_ORDER_ZONE) {
3239 /* calculate node order -- i.e., DMA last! */
3240 build_zonelists_in_zone_order(pgdat, j);
3243 build_thisnode_zonelists(pgdat);
3246 /* Construct the zonelist performance cache - see further mmzone.h */
3247 static void build_zonelist_cache(pg_data_t *pgdat)
3249 struct zonelist *zonelist;
3250 struct zonelist_cache *zlc;
3251 struct zoneref *z;
3253 zonelist = &pgdat->node_zonelists[0];
3254 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3255 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3256 for (z = zonelist->_zonerefs; z->zone; z++)
3257 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3260 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3262 * Return node id of node used for "local" allocations.
3263 * I.e., first node id of first zone in arg node's generic zonelist.
3264 * Used for initializing percpu 'numa_mem', which is used primarily
3265 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3267 int local_memory_node(int node)
3269 struct zone *zone;
3271 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3272 gfp_zone(GFP_KERNEL),
3273 NULL,
3274 &zone);
3275 return zone->node;
3277 #endif
3279 #else /* CONFIG_NUMA */
3281 static void set_zonelist_order(void)
3283 current_zonelist_order = ZONELIST_ORDER_ZONE;
3286 static void build_zonelists(pg_data_t *pgdat)
3288 int node, local_node;
3289 enum zone_type j;
3290 struct zonelist *zonelist;
3292 local_node = pgdat->node_id;
3294 zonelist = &pgdat->node_zonelists[0];
3295 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3298 * Now we build the zonelist so that it contains the zones
3299 * of all the other nodes.
3300 * We don't want to pressure a particular node, so when
3301 * building the zones for node N, we make sure that the
3302 * zones coming right after the local ones are those from
3303 * node N+1 (modulo N)
3305 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3306 if (!node_online(node))
3307 continue;
3308 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3309 MAX_NR_ZONES - 1);
3311 for (node = 0; node < local_node; node++) {
3312 if (!node_online(node))
3313 continue;
3314 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3315 MAX_NR_ZONES - 1);
3318 zonelist->_zonerefs[j].zone = NULL;
3319 zonelist->_zonerefs[j].zone_idx = 0;
3322 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3323 static void build_zonelist_cache(pg_data_t *pgdat)
3325 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3328 #endif /* CONFIG_NUMA */
3331 * Boot pageset table. One per cpu which is going to be used for all
3332 * zones and all nodes. The parameters will be set in such a way
3333 * that an item put on a list will immediately be handed over to
3334 * the buddy list. This is safe since pageset manipulation is done
3335 * with interrupts disabled.
3337 * The boot_pagesets must be kept even after bootup is complete for
3338 * unused processors and/or zones. They do play a role for bootstrapping
3339 * hotplugged processors.
3341 * zoneinfo_show() and maybe other functions do
3342 * not check if the processor is online before following the pageset pointer.
3343 * Other parts of the kernel may not check if the zone is available.
3345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3346 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3347 static void setup_zone_pageset(struct zone *zone);
3350 * Global mutex to protect against size modification of zonelists
3351 * as well as to serialize pageset setup for the new populated zone.
3353 DEFINE_MUTEX(zonelists_mutex);
3355 /* return values int ....just for stop_machine() */
3356 static __init_refok int __build_all_zonelists(void *data)
3358 int nid;
3359 int cpu;
3361 #ifdef CONFIG_NUMA
3362 memset(node_load, 0, sizeof(node_load));
3363 #endif
3364 for_each_online_node(nid) {
3365 pg_data_t *pgdat = NODE_DATA(nid);
3367 build_zonelists(pgdat);
3368 build_zonelist_cache(pgdat);
3372 * Initialize the boot_pagesets that are going to be used
3373 * for bootstrapping processors. The real pagesets for
3374 * each zone will be allocated later when the per cpu
3375 * allocator is available.
3377 * boot_pagesets are used also for bootstrapping offline
3378 * cpus if the system is already booted because the pagesets
3379 * are needed to initialize allocators on a specific cpu too.
3380 * F.e. the percpu allocator needs the page allocator which
3381 * needs the percpu allocator in order to allocate its pagesets
3382 * (a chicken-egg dilemma).
3384 for_each_possible_cpu(cpu) {
3385 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3389 * We now know the "local memory node" for each node--
3390 * i.e., the node of the first zone in the generic zonelist.
3391 * Set up numa_mem percpu variable for on-line cpus. During
3392 * boot, only the boot cpu should be on-line; we'll init the
3393 * secondary cpus' numa_mem as they come on-line. During
3394 * node/memory hotplug, we'll fixup all on-line cpus.
3396 if (cpu_online(cpu))
3397 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3398 #endif
3401 return 0;
3405 * Called with zonelists_mutex held always
3406 * unless system_state == SYSTEM_BOOTING.
3408 void __ref build_all_zonelists(void *data)
3410 set_zonelist_order();
3412 if (system_state == SYSTEM_BOOTING) {
3413 __build_all_zonelists(NULL);
3414 mminit_verify_zonelist();
3415 cpuset_init_current_mems_allowed();
3416 } else {
3417 /* we have to stop all cpus to guarantee there is no user
3418 of zonelist */
3419 #ifdef CONFIG_MEMORY_HOTPLUG
3420 if (data)
3421 setup_zone_pageset((struct zone *)data);
3422 #endif
3423 stop_machine(__build_all_zonelists, NULL, NULL);
3424 /* cpuset refresh routine should be here */
3426 vm_total_pages = nr_free_pagecache_pages();
3428 * Disable grouping by mobility if the number of pages in the
3429 * system is too low to allow the mechanism to work. It would be
3430 * more accurate, but expensive to check per-zone. This check is
3431 * made on memory-hotadd so a system can start with mobility
3432 * disabled and enable it later
3434 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3435 page_group_by_mobility_disabled = 1;
3436 else
3437 page_group_by_mobility_disabled = 0;
3439 printk("Built %i zonelists in %s order, mobility grouping %s. "
3440 "Total pages: %ld\n",
3441 nr_online_nodes,
3442 zonelist_order_name[current_zonelist_order],
3443 page_group_by_mobility_disabled ? "off" : "on",
3444 vm_total_pages);
3445 #ifdef CONFIG_NUMA
3446 printk("Policy zone: %s\n", zone_names[policy_zone]);
3447 #endif
3451 * Helper functions to size the waitqueue hash table.
3452 * Essentially these want to choose hash table sizes sufficiently
3453 * large so that collisions trying to wait on pages are rare.
3454 * But in fact, the number of active page waitqueues on typical
3455 * systems is ridiculously low, less than 200. So this is even
3456 * conservative, even though it seems large.
3458 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3459 * waitqueues, i.e. the size of the waitq table given the number of pages.
3461 #define PAGES_PER_WAITQUEUE 256
3463 #ifndef CONFIG_MEMORY_HOTPLUG
3464 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3466 unsigned long size = 1;
3468 pages /= PAGES_PER_WAITQUEUE;
3470 while (size < pages)
3471 size <<= 1;
3474 * Once we have dozens or even hundreds of threads sleeping
3475 * on IO we've got bigger problems than wait queue collision.
3476 * Limit the size of the wait table to a reasonable size.
3478 size = min(size, 4096UL);
3480 return max(size, 4UL);
3482 #else
3484 * A zone's size might be changed by hot-add, so it is not possible to determine
3485 * a suitable size for its wait_table. So we use the maximum size now.
3487 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3489 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3490 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3491 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3493 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3494 * or more by the traditional way. (See above). It equals:
3496 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3497 * ia64(16K page size) : = ( 8G + 4M)byte.
3498 * powerpc (64K page size) : = (32G +16M)byte.
3500 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3502 return 4096UL;
3504 #endif
3507 * This is an integer logarithm so that shifts can be used later
3508 * to extract the more random high bits from the multiplicative
3509 * hash function before the remainder is taken.
3511 static inline unsigned long wait_table_bits(unsigned long size)
3513 return ffz(~size);
3516 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3519 * Check if a pageblock contains reserved pages
3521 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3523 unsigned long pfn;
3525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3526 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3527 return 1;
3529 return 0;
3533 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3534 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3535 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3536 * higher will lead to a bigger reserve which will get freed as contiguous
3537 * blocks as reclaim kicks in
3539 static void setup_zone_migrate_reserve(struct zone *zone)
3541 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3542 struct page *page;
3543 unsigned long block_migratetype;
3544 int reserve;
3547 * Get the start pfn, end pfn and the number of blocks to reserve
3548 * We have to be careful to be aligned to pageblock_nr_pages to
3549 * make sure that we always check pfn_valid for the first page in
3550 * the block.
3552 start_pfn = zone->zone_start_pfn;
3553 end_pfn = start_pfn + zone->spanned_pages;
3554 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3555 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3556 pageblock_order;
3559 * Reserve blocks are generally in place to help high-order atomic
3560 * allocations that are short-lived. A min_free_kbytes value that
3561 * would result in more than 2 reserve blocks for atomic allocations
3562 * is assumed to be in place to help anti-fragmentation for the
3563 * future allocation of hugepages at runtime.
3565 reserve = min(2, reserve);
3567 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3568 if (!pfn_valid(pfn))
3569 continue;
3570 page = pfn_to_page(pfn);
3572 /* Watch out for overlapping nodes */
3573 if (page_to_nid(page) != zone_to_nid(zone))
3574 continue;
3576 block_migratetype = get_pageblock_migratetype(page);
3578 /* Only test what is necessary when the reserves are not met */
3579 if (reserve > 0) {
3581 * Blocks with reserved pages will never free, skip
3582 * them.
3584 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3585 if (pageblock_is_reserved(pfn, block_end_pfn))
3586 continue;
3588 /* If this block is reserved, account for it */
3589 if (block_migratetype == MIGRATE_RESERVE) {
3590 reserve--;
3591 continue;
3594 /* Suitable for reserving if this block is movable */
3595 if (block_migratetype == MIGRATE_MOVABLE) {
3596 set_pageblock_migratetype(page,
3597 MIGRATE_RESERVE);
3598 move_freepages_block(zone, page,
3599 MIGRATE_RESERVE);
3600 reserve--;
3601 continue;
3606 * If the reserve is met and this is a previous reserved block,
3607 * take it back
3609 if (block_migratetype == MIGRATE_RESERVE) {
3610 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3611 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3617 * Initially all pages are reserved - free ones are freed
3618 * up by free_all_bootmem() once the early boot process is
3619 * done. Non-atomic initialization, single-pass.
3621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3622 unsigned long start_pfn, enum memmap_context context)
3624 struct page *page;
3625 unsigned long end_pfn = start_pfn + size;
3626 unsigned long pfn;
3627 struct zone *z;
3629 if (highest_memmap_pfn < end_pfn - 1)
3630 highest_memmap_pfn = end_pfn - 1;
3632 z = &NODE_DATA(nid)->node_zones[zone];
3633 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3635 * There can be holes in boot-time mem_map[]s
3636 * handed to this function. They do not
3637 * exist on hotplugged memory.
3639 if (context == MEMMAP_EARLY) {
3640 if (!early_pfn_valid(pfn))
3641 continue;
3642 if (!early_pfn_in_nid(pfn, nid))
3643 continue;
3645 page = pfn_to_page(pfn);
3646 set_page_links(page, zone, nid, pfn);
3647 mminit_verify_page_links(page, zone, nid, pfn);
3648 init_page_count(page);
3649 reset_page_mapcount(page);
3650 SetPageReserved(page);
3652 * Mark the block movable so that blocks are reserved for
3653 * movable at startup. This will force kernel allocations
3654 * to reserve their blocks rather than leaking throughout
3655 * the address space during boot when many long-lived
3656 * kernel allocations are made. Later some blocks near
3657 * the start are marked MIGRATE_RESERVE by
3658 * setup_zone_migrate_reserve()
3660 * bitmap is created for zone's valid pfn range. but memmap
3661 * can be created for invalid pages (for alignment)
3662 * check here not to call set_pageblock_migratetype() against
3663 * pfn out of zone.
3665 if ((z->zone_start_pfn <= pfn)
3666 && (pfn < z->zone_start_pfn + z->spanned_pages)
3667 && !(pfn & (pageblock_nr_pages - 1)))
3668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3670 INIT_LIST_HEAD(&page->lru);
3671 #ifdef WANT_PAGE_VIRTUAL
3672 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3673 if (!is_highmem_idx(zone))
3674 set_page_address(page, __va(pfn << PAGE_SHIFT));
3675 #endif
3679 static void __meminit zone_init_free_lists(struct zone *zone)
3681 int order, t;
3682 for_each_migratetype_order(order, t) {
3683 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3684 zone->free_area[order].nr_free = 0;
3688 #ifndef __HAVE_ARCH_MEMMAP_INIT
3689 #define memmap_init(size, nid, zone, start_pfn) \
3690 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3691 #endif
3693 static int zone_batchsize(struct zone *zone)
3695 #ifdef CONFIG_MMU
3696 int batch;
3699 * The per-cpu-pages pools are set to around 1000th of the
3700 * size of the zone. But no more than 1/2 of a meg.
3702 * OK, so we don't know how big the cache is. So guess.
3704 batch = zone->present_pages / 1024;
3705 if (batch * PAGE_SIZE > 512 * 1024)
3706 batch = (512 * 1024) / PAGE_SIZE;
3707 batch /= 4; /* We effectively *= 4 below */
3708 if (batch < 1)
3709 batch = 1;
3712 * Clamp the batch to a 2^n - 1 value. Having a power
3713 * of 2 value was found to be more likely to have
3714 * suboptimal cache aliasing properties in some cases.
3716 * For example if 2 tasks are alternately allocating
3717 * batches of pages, one task can end up with a lot
3718 * of pages of one half of the possible page colors
3719 * and the other with pages of the other colors.
3721 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3723 return batch;
3725 #else
3726 /* The deferral and batching of frees should be suppressed under NOMMU
3727 * conditions.
3729 * The problem is that NOMMU needs to be able to allocate large chunks
3730 * of contiguous memory as there's no hardware page translation to
3731 * assemble apparent contiguous memory from discontiguous pages.
3733 * Queueing large contiguous runs of pages for batching, however,
3734 * causes the pages to actually be freed in smaller chunks. As there
3735 * can be a significant delay between the individual batches being
3736 * recycled, this leads to the once large chunks of space being
3737 * fragmented and becoming unavailable for high-order allocations.
3739 return 0;
3740 #endif
3743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3745 struct per_cpu_pages *pcp;
3746 int migratetype;
3748 memset(p, 0, sizeof(*p));
3750 pcp = &p->pcp;
3751 pcp->count = 0;
3752 pcp->high = 6 * batch;
3753 pcp->batch = max(1UL, 1 * batch);
3754 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3755 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3759 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3760 * to the value high for the pageset p.
3763 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3764 unsigned long high)
3766 struct per_cpu_pages *pcp;
3768 pcp = &p->pcp;
3769 pcp->high = high;
3770 pcp->batch = max(1UL, high/4);
3771 if ((high/4) > (PAGE_SHIFT * 8))
3772 pcp->batch = PAGE_SHIFT * 8;
3775 static void setup_zone_pageset(struct zone *zone)
3777 int cpu;
3779 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3781 for_each_possible_cpu(cpu) {
3782 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3784 setup_pageset(pcp, zone_batchsize(zone));
3786 if (percpu_pagelist_fraction)
3787 setup_pagelist_highmark(pcp,
3788 (zone->present_pages /
3789 percpu_pagelist_fraction));
3794 * Allocate per cpu pagesets and initialize them.
3795 * Before this call only boot pagesets were available.
3797 void __init setup_per_cpu_pageset(void)
3799 struct zone *zone;
3801 for_each_populated_zone(zone)
3802 setup_zone_pageset(zone);
3805 static noinline __init_refok
3806 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3808 int i;
3809 struct pglist_data *pgdat = zone->zone_pgdat;
3810 size_t alloc_size;
3813 * The per-page waitqueue mechanism uses hashed waitqueues
3814 * per zone.
3816 zone->wait_table_hash_nr_entries =
3817 wait_table_hash_nr_entries(zone_size_pages);
3818 zone->wait_table_bits =
3819 wait_table_bits(zone->wait_table_hash_nr_entries);
3820 alloc_size = zone->wait_table_hash_nr_entries
3821 * sizeof(wait_queue_head_t);
3823 if (!slab_is_available()) {
3824 zone->wait_table = (wait_queue_head_t *)
3825 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3826 } else {
3828 * This case means that a zone whose size was 0 gets new memory
3829 * via memory hot-add.
3830 * But it may be the case that a new node was hot-added. In
3831 * this case vmalloc() will not be able to use this new node's
3832 * memory - this wait_table must be initialized to use this new
3833 * node itself as well.
3834 * To use this new node's memory, further consideration will be
3835 * necessary.
3837 zone->wait_table = vmalloc(alloc_size);
3839 if (!zone->wait_table)
3840 return -ENOMEM;
3842 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3843 init_waitqueue_head(zone->wait_table + i);
3845 return 0;
3848 static int __zone_pcp_update(void *data)
3850 struct zone *zone = data;
3851 int cpu;
3852 unsigned long batch = zone_batchsize(zone), flags;
3854 for_each_possible_cpu(cpu) {
3855 struct per_cpu_pageset *pset;
3856 struct per_cpu_pages *pcp;
3858 pset = per_cpu_ptr(zone->pageset, cpu);
3859 pcp = &pset->pcp;
3861 local_irq_save(flags);
3862 free_pcppages_bulk(zone, pcp->count, pcp);
3863 setup_pageset(pset, batch);
3864 local_irq_restore(flags);
3866 return 0;
3869 void zone_pcp_update(struct zone *zone)
3871 stop_machine(__zone_pcp_update, zone, NULL);
3874 static __meminit void zone_pcp_init(struct zone *zone)
3877 * per cpu subsystem is not up at this point. The following code
3878 * relies on the ability of the linker to provide the
3879 * offset of a (static) per cpu variable into the per cpu area.
3881 zone->pageset = &boot_pageset;
3883 if (zone->present_pages)
3884 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3885 zone->name, zone->present_pages,
3886 zone_batchsize(zone));
3889 __meminit int init_currently_empty_zone(struct zone *zone,
3890 unsigned long zone_start_pfn,
3891 unsigned long size,
3892 enum memmap_context context)
3894 struct pglist_data *pgdat = zone->zone_pgdat;
3895 int ret;
3896 ret = zone_wait_table_init(zone, size);
3897 if (ret)
3898 return ret;
3899 pgdat->nr_zones = zone_idx(zone) + 1;
3901 zone->zone_start_pfn = zone_start_pfn;
3903 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3904 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3905 pgdat->node_id,
3906 (unsigned long)zone_idx(zone),
3907 zone_start_pfn, (zone_start_pfn + size));
3909 zone_init_free_lists(zone);
3911 return 0;
3914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3915 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3917 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3918 * Architectures may implement their own version but if add_active_range()
3919 * was used and there are no special requirements, this is a convenient
3920 * alternative
3922 int __meminit __early_pfn_to_nid(unsigned long pfn)
3924 unsigned long start_pfn, end_pfn;
3925 int i, nid;
3927 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3928 if (start_pfn <= pfn && pfn < end_pfn)
3929 return nid;
3930 /* This is a memory hole */
3931 return -1;
3933 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3935 int __meminit early_pfn_to_nid(unsigned long pfn)
3937 int nid;
3939 nid = __early_pfn_to_nid(pfn);
3940 if (nid >= 0)
3941 return nid;
3942 /* just returns 0 */
3943 return 0;
3946 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3947 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3949 int nid;
3951 nid = __early_pfn_to_nid(pfn);
3952 if (nid >= 0 && nid != node)
3953 return false;
3954 return true;
3956 #endif
3959 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3960 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3961 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3963 * If an architecture guarantees that all ranges registered with
3964 * add_active_ranges() contain no holes and may be freed, this
3965 * this function may be used instead of calling free_bootmem() manually.
3967 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3969 unsigned long start_pfn, end_pfn;
3970 int i, this_nid;
3972 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3973 start_pfn = min(start_pfn, max_low_pfn);
3974 end_pfn = min(end_pfn, max_low_pfn);
3976 if (start_pfn < end_pfn)
3977 free_bootmem_node(NODE_DATA(this_nid),
3978 PFN_PHYS(start_pfn),
3979 (end_pfn - start_pfn) << PAGE_SHIFT);
3984 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3985 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3987 * If an architecture guarantees that all ranges registered with
3988 * add_active_ranges() contain no holes and may be freed, this
3989 * function may be used instead of calling memory_present() manually.
3991 void __init sparse_memory_present_with_active_regions(int nid)
3993 unsigned long start_pfn, end_pfn;
3994 int i, this_nid;
3996 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3997 memory_present(this_nid, start_pfn, end_pfn);
4001 * get_pfn_range_for_nid - Return the start and end page frames for a node
4002 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4003 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4004 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4006 * It returns the start and end page frame of a node based on information
4007 * provided by an arch calling add_active_range(). If called for a node
4008 * with no available memory, a warning is printed and the start and end
4009 * PFNs will be 0.
4011 void __meminit get_pfn_range_for_nid(unsigned int nid,
4012 unsigned long *start_pfn, unsigned long *end_pfn)
4014 unsigned long this_start_pfn, this_end_pfn;
4015 int i;
4017 *start_pfn = -1UL;
4018 *end_pfn = 0;
4020 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4021 *start_pfn = min(*start_pfn, this_start_pfn);
4022 *end_pfn = max(*end_pfn, this_end_pfn);
4025 if (*start_pfn == -1UL)
4026 *start_pfn = 0;
4030 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4031 * assumption is made that zones within a node are ordered in monotonic
4032 * increasing memory addresses so that the "highest" populated zone is used
4034 static void __init find_usable_zone_for_movable(void)
4036 int zone_index;
4037 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4038 if (zone_index == ZONE_MOVABLE)
4039 continue;
4041 if (arch_zone_highest_possible_pfn[zone_index] >
4042 arch_zone_lowest_possible_pfn[zone_index])
4043 break;
4046 VM_BUG_ON(zone_index == -1);
4047 movable_zone = zone_index;
4051 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4052 * because it is sized independent of architecture. Unlike the other zones,
4053 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4054 * in each node depending on the size of each node and how evenly kernelcore
4055 * is distributed. This helper function adjusts the zone ranges
4056 * provided by the architecture for a given node by using the end of the
4057 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4058 * zones within a node are in order of monotonic increases memory addresses
4060 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4061 unsigned long zone_type,
4062 unsigned long node_start_pfn,
4063 unsigned long node_end_pfn,
4064 unsigned long *zone_start_pfn,
4065 unsigned long *zone_end_pfn)
4067 /* Only adjust if ZONE_MOVABLE is on this node */
4068 if (zone_movable_pfn[nid]) {
4069 /* Size ZONE_MOVABLE */
4070 if (zone_type == ZONE_MOVABLE) {
4071 *zone_start_pfn = zone_movable_pfn[nid];
4072 *zone_end_pfn = min(node_end_pfn,
4073 arch_zone_highest_possible_pfn[movable_zone]);
4075 /* Adjust for ZONE_MOVABLE starting within this range */
4076 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4077 *zone_end_pfn > zone_movable_pfn[nid]) {
4078 *zone_end_pfn = zone_movable_pfn[nid];
4080 /* Check if this whole range is within ZONE_MOVABLE */
4081 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4082 *zone_start_pfn = *zone_end_pfn;
4087 * Return the number of pages a zone spans in a node, including holes
4088 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4090 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4091 unsigned long zone_type,
4092 unsigned long *ignored)
4094 unsigned long node_start_pfn, node_end_pfn;
4095 unsigned long zone_start_pfn, zone_end_pfn;
4097 /* Get the start and end of the node and zone */
4098 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4099 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4100 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4101 adjust_zone_range_for_zone_movable(nid, zone_type,
4102 node_start_pfn, node_end_pfn,
4103 &zone_start_pfn, &zone_end_pfn);
4105 /* Check that this node has pages within the zone's required range */
4106 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4107 return 0;
4109 /* Move the zone boundaries inside the node if necessary */
4110 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4111 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4113 /* Return the spanned pages */
4114 return zone_end_pfn - zone_start_pfn;
4118 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4119 * then all holes in the requested range will be accounted for.
4121 unsigned long __meminit __absent_pages_in_range(int nid,
4122 unsigned long range_start_pfn,
4123 unsigned long range_end_pfn)
4125 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4126 unsigned long start_pfn, end_pfn;
4127 int i;
4129 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4130 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4131 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4132 nr_absent -= end_pfn - start_pfn;
4134 return nr_absent;
4138 * absent_pages_in_range - Return number of page frames in holes within a range
4139 * @start_pfn: The start PFN to start searching for holes
4140 * @end_pfn: The end PFN to stop searching for holes
4142 * It returns the number of pages frames in memory holes within a range.
4144 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4145 unsigned long end_pfn)
4147 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4150 /* Return the number of page frames in holes in a zone on a node */
4151 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4152 unsigned long zone_type,
4153 unsigned long *ignored)
4155 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4156 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4157 unsigned long node_start_pfn, node_end_pfn;
4158 unsigned long zone_start_pfn, zone_end_pfn;
4160 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4161 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4162 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4164 adjust_zone_range_for_zone_movable(nid, zone_type,
4165 node_start_pfn, node_end_pfn,
4166 &zone_start_pfn, &zone_end_pfn);
4167 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4170 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4171 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4172 unsigned long zone_type,
4173 unsigned long *zones_size)
4175 return zones_size[zone_type];
4178 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4179 unsigned long zone_type,
4180 unsigned long *zholes_size)
4182 if (!zholes_size)
4183 return 0;
4185 return zholes_size[zone_type];
4188 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4190 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4191 unsigned long *zones_size, unsigned long *zholes_size)
4193 unsigned long realtotalpages, totalpages = 0;
4194 enum zone_type i;
4196 for (i = 0; i < MAX_NR_ZONES; i++)
4197 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4198 zones_size);
4199 pgdat->node_spanned_pages = totalpages;
4201 realtotalpages = totalpages;
4202 for (i = 0; i < MAX_NR_ZONES; i++)
4203 realtotalpages -=
4204 zone_absent_pages_in_node(pgdat->node_id, i,
4205 zholes_size);
4206 pgdat->node_present_pages = realtotalpages;
4207 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4208 realtotalpages);
4211 #ifndef CONFIG_SPARSEMEM
4213 * Calculate the size of the zone->blockflags rounded to an unsigned long
4214 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4215 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4216 * round what is now in bits to nearest long in bits, then return it in
4217 * bytes.
4219 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4221 unsigned long usemapsize;
4223 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4224 usemapsize = roundup(zonesize, pageblock_nr_pages);
4225 usemapsize = usemapsize >> pageblock_order;
4226 usemapsize *= NR_PAGEBLOCK_BITS;
4227 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4229 return usemapsize / 8;
4232 static void __init setup_usemap(struct pglist_data *pgdat,
4233 struct zone *zone,
4234 unsigned long zone_start_pfn,
4235 unsigned long zonesize)
4237 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4238 zone->pageblock_flags = NULL;
4239 if (usemapsize)
4240 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4241 usemapsize);
4243 #else
4244 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4245 unsigned long zone_start_pfn, unsigned long zonesize) {}
4246 #endif /* CONFIG_SPARSEMEM */
4248 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4250 /* Return a sensible default order for the pageblock size. */
4251 static inline int pageblock_default_order(void)
4253 if (HPAGE_SHIFT > PAGE_SHIFT)
4254 return HUGETLB_PAGE_ORDER;
4256 return MAX_ORDER-1;
4259 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4260 static inline void __init set_pageblock_order(unsigned int order)
4262 /* Check that pageblock_nr_pages has not already been setup */
4263 if (pageblock_order)
4264 return;
4267 * Assume the largest contiguous order of interest is a huge page.
4268 * This value may be variable depending on boot parameters on IA64
4270 pageblock_order = order;
4272 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4275 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4276 * and pageblock_default_order() are unused as pageblock_order is set
4277 * at compile-time. See include/linux/pageblock-flags.h for the values of
4278 * pageblock_order based on the kernel config
4280 static inline int pageblock_default_order(unsigned int order)
4282 return MAX_ORDER-1;
4284 #define set_pageblock_order(x) do {} while (0)
4286 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4289 * Set up the zone data structures:
4290 * - mark all pages reserved
4291 * - mark all memory queues empty
4292 * - clear the memory bitmaps
4294 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4295 unsigned long *zones_size, unsigned long *zholes_size)
4297 enum zone_type j;
4298 int nid = pgdat->node_id;
4299 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4300 int ret;
4302 pgdat_resize_init(pgdat);
4303 pgdat->nr_zones = 0;
4304 init_waitqueue_head(&pgdat->kswapd_wait);
4305 pgdat->kswapd_max_order = 0;
4306 pgdat_page_cgroup_init(pgdat);
4308 for (j = 0; j < MAX_NR_ZONES; j++) {
4309 struct zone *zone = pgdat->node_zones + j;
4310 unsigned long size, realsize, memmap_pages;
4311 enum lru_list lru;
4313 size = zone_spanned_pages_in_node(nid, j, zones_size);
4314 realsize = size - zone_absent_pages_in_node(nid, j,
4315 zholes_size);
4318 * Adjust realsize so that it accounts for how much memory
4319 * is used by this zone for memmap. This affects the watermark
4320 * and per-cpu initialisations
4322 memmap_pages =
4323 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4324 if (realsize >= memmap_pages) {
4325 realsize -= memmap_pages;
4326 if (memmap_pages)
4327 printk(KERN_DEBUG
4328 " %s zone: %lu pages used for memmap\n",
4329 zone_names[j], memmap_pages);
4330 } else
4331 printk(KERN_WARNING
4332 " %s zone: %lu pages exceeds realsize %lu\n",
4333 zone_names[j], memmap_pages, realsize);
4335 /* Account for reserved pages */
4336 if (j == 0 && realsize > dma_reserve) {
4337 realsize -= dma_reserve;
4338 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4339 zone_names[0], dma_reserve);
4342 if (!is_highmem_idx(j))
4343 nr_kernel_pages += realsize;
4344 nr_all_pages += realsize;
4346 zone->spanned_pages = size;
4347 zone->present_pages = realsize;
4348 #ifdef CONFIG_NUMA
4349 zone->node = nid;
4350 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4351 / 100;
4352 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4353 #endif
4354 zone->name = zone_names[j];
4355 spin_lock_init(&zone->lock);
4356 spin_lock_init(&zone->lru_lock);
4357 zone_seqlock_init(zone);
4358 zone->zone_pgdat = pgdat;
4360 zone_pcp_init(zone);
4361 for_each_lru(lru)
4362 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4363 zone->reclaim_stat.recent_rotated[0] = 0;
4364 zone->reclaim_stat.recent_rotated[1] = 0;
4365 zone->reclaim_stat.recent_scanned[0] = 0;
4366 zone->reclaim_stat.recent_scanned[1] = 0;
4367 zap_zone_vm_stats(zone);
4368 zone->flags = 0;
4369 if (!size)
4370 continue;
4372 set_pageblock_order(pageblock_default_order());
4373 setup_usemap(pgdat, zone, zone_start_pfn, size);
4374 ret = init_currently_empty_zone(zone, zone_start_pfn,
4375 size, MEMMAP_EARLY);
4376 BUG_ON(ret);
4377 memmap_init(size, nid, j, zone_start_pfn);
4378 zone_start_pfn += size;
4382 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4384 /* Skip empty nodes */
4385 if (!pgdat->node_spanned_pages)
4386 return;
4388 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4389 /* ia64 gets its own node_mem_map, before this, without bootmem */
4390 if (!pgdat->node_mem_map) {
4391 unsigned long size, start, end;
4392 struct page *map;
4395 * The zone's endpoints aren't required to be MAX_ORDER
4396 * aligned but the node_mem_map endpoints must be in order
4397 * for the buddy allocator to function correctly.
4399 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4400 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4401 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4402 size = (end - start) * sizeof(struct page);
4403 map = alloc_remap(pgdat->node_id, size);
4404 if (!map)
4405 map = alloc_bootmem_node_nopanic(pgdat, size);
4406 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4408 #ifndef CONFIG_NEED_MULTIPLE_NODES
4410 * With no DISCONTIG, the global mem_map is just set as node 0's
4412 if (pgdat == NODE_DATA(0)) {
4413 mem_map = NODE_DATA(0)->node_mem_map;
4414 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4415 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4416 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4417 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4419 #endif
4420 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4423 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4424 unsigned long node_start_pfn, unsigned long *zholes_size)
4426 pg_data_t *pgdat = NODE_DATA(nid);
4428 pgdat->node_id = nid;
4429 pgdat->node_start_pfn = node_start_pfn;
4430 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4432 alloc_node_mem_map(pgdat);
4433 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4434 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4435 nid, (unsigned long)pgdat,
4436 (unsigned long)pgdat->node_mem_map);
4437 #endif
4439 free_area_init_core(pgdat, zones_size, zholes_size);
4442 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4444 #if MAX_NUMNODES > 1
4446 * Figure out the number of possible node ids.
4448 static void __init setup_nr_node_ids(void)
4450 unsigned int node;
4451 unsigned int highest = 0;
4453 for_each_node_mask(node, node_possible_map)
4454 highest = node;
4455 nr_node_ids = highest + 1;
4457 #else
4458 static inline void setup_nr_node_ids(void)
4461 #endif
4464 * node_map_pfn_alignment - determine the maximum internode alignment
4466 * This function should be called after node map is populated and sorted.
4467 * It calculates the maximum power of two alignment which can distinguish
4468 * all the nodes.
4470 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4471 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4472 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4473 * shifted, 1GiB is enough and this function will indicate so.
4475 * This is used to test whether pfn -> nid mapping of the chosen memory
4476 * model has fine enough granularity to avoid incorrect mapping for the
4477 * populated node map.
4479 * Returns the determined alignment in pfn's. 0 if there is no alignment
4480 * requirement (single node).
4482 unsigned long __init node_map_pfn_alignment(void)
4484 unsigned long accl_mask = 0, last_end = 0;
4485 unsigned long start, end, mask;
4486 int last_nid = -1;
4487 int i, nid;
4489 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4490 if (!start || last_nid < 0 || last_nid == nid) {
4491 last_nid = nid;
4492 last_end = end;
4493 continue;
4497 * Start with a mask granular enough to pin-point to the
4498 * start pfn and tick off bits one-by-one until it becomes
4499 * too coarse to separate the current node from the last.
4501 mask = ~((1 << __ffs(start)) - 1);
4502 while (mask && last_end <= (start & (mask << 1)))
4503 mask <<= 1;
4505 /* accumulate all internode masks */
4506 accl_mask |= mask;
4509 /* convert mask to number of pages */
4510 return ~accl_mask + 1;
4513 /* Find the lowest pfn for a node */
4514 static unsigned long __init find_min_pfn_for_node(int nid)
4516 unsigned long min_pfn = ULONG_MAX;
4517 unsigned long start_pfn;
4518 int i;
4520 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4521 min_pfn = min(min_pfn, start_pfn);
4523 if (min_pfn == ULONG_MAX) {
4524 printk(KERN_WARNING
4525 "Could not find start_pfn for node %d\n", nid);
4526 return 0;
4529 return min_pfn;
4533 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4535 * It returns the minimum PFN based on information provided via
4536 * add_active_range().
4538 unsigned long __init find_min_pfn_with_active_regions(void)
4540 return find_min_pfn_for_node(MAX_NUMNODES);
4544 * early_calculate_totalpages()
4545 * Sum pages in active regions for movable zone.
4546 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4548 static unsigned long __init early_calculate_totalpages(void)
4550 unsigned long totalpages = 0;
4551 unsigned long start_pfn, end_pfn;
4552 int i, nid;
4554 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4555 unsigned long pages = end_pfn - start_pfn;
4557 totalpages += pages;
4558 if (pages)
4559 node_set_state(nid, N_HIGH_MEMORY);
4561 return totalpages;
4565 * Find the PFN the Movable zone begins in each node. Kernel memory
4566 * is spread evenly between nodes as long as the nodes have enough
4567 * memory. When they don't, some nodes will have more kernelcore than
4568 * others
4570 static void __init find_zone_movable_pfns_for_nodes(void)
4572 int i, nid;
4573 unsigned long usable_startpfn;
4574 unsigned long kernelcore_node, kernelcore_remaining;
4575 /* save the state before borrow the nodemask */
4576 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4577 unsigned long totalpages = early_calculate_totalpages();
4578 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4581 * If movablecore was specified, calculate what size of
4582 * kernelcore that corresponds so that memory usable for
4583 * any allocation type is evenly spread. If both kernelcore
4584 * and movablecore are specified, then the value of kernelcore
4585 * will be used for required_kernelcore if it's greater than
4586 * what movablecore would have allowed.
4588 if (required_movablecore) {
4589 unsigned long corepages;
4592 * Round-up so that ZONE_MOVABLE is at least as large as what
4593 * was requested by the user
4595 required_movablecore =
4596 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4597 corepages = totalpages - required_movablecore;
4599 required_kernelcore = max(required_kernelcore, corepages);
4602 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4603 if (!required_kernelcore)
4604 goto out;
4606 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4607 find_usable_zone_for_movable();
4608 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4610 restart:
4611 /* Spread kernelcore memory as evenly as possible throughout nodes */
4612 kernelcore_node = required_kernelcore / usable_nodes;
4613 for_each_node_state(nid, N_HIGH_MEMORY) {
4614 unsigned long start_pfn, end_pfn;
4617 * Recalculate kernelcore_node if the division per node
4618 * now exceeds what is necessary to satisfy the requested
4619 * amount of memory for the kernel
4621 if (required_kernelcore < kernelcore_node)
4622 kernelcore_node = required_kernelcore / usable_nodes;
4625 * As the map is walked, we track how much memory is usable
4626 * by the kernel using kernelcore_remaining. When it is
4627 * 0, the rest of the node is usable by ZONE_MOVABLE
4629 kernelcore_remaining = kernelcore_node;
4631 /* Go through each range of PFNs within this node */
4632 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4633 unsigned long size_pages;
4635 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4636 if (start_pfn >= end_pfn)
4637 continue;
4639 /* Account for what is only usable for kernelcore */
4640 if (start_pfn < usable_startpfn) {
4641 unsigned long kernel_pages;
4642 kernel_pages = min(end_pfn, usable_startpfn)
4643 - start_pfn;
4645 kernelcore_remaining -= min(kernel_pages,
4646 kernelcore_remaining);
4647 required_kernelcore -= min(kernel_pages,
4648 required_kernelcore);
4650 /* Continue if range is now fully accounted */
4651 if (end_pfn <= usable_startpfn) {
4654 * Push zone_movable_pfn to the end so
4655 * that if we have to rebalance
4656 * kernelcore across nodes, we will
4657 * not double account here
4659 zone_movable_pfn[nid] = end_pfn;
4660 continue;
4662 start_pfn = usable_startpfn;
4666 * The usable PFN range for ZONE_MOVABLE is from
4667 * start_pfn->end_pfn. Calculate size_pages as the
4668 * number of pages used as kernelcore
4670 size_pages = end_pfn - start_pfn;
4671 if (size_pages > kernelcore_remaining)
4672 size_pages = kernelcore_remaining;
4673 zone_movable_pfn[nid] = start_pfn + size_pages;
4676 * Some kernelcore has been met, update counts and
4677 * break if the kernelcore for this node has been
4678 * satisified
4680 required_kernelcore -= min(required_kernelcore,
4681 size_pages);
4682 kernelcore_remaining -= size_pages;
4683 if (!kernelcore_remaining)
4684 break;
4689 * If there is still required_kernelcore, we do another pass with one
4690 * less node in the count. This will push zone_movable_pfn[nid] further
4691 * along on the nodes that still have memory until kernelcore is
4692 * satisified
4694 usable_nodes--;
4695 if (usable_nodes && required_kernelcore > usable_nodes)
4696 goto restart;
4698 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4699 for (nid = 0; nid < MAX_NUMNODES; nid++)
4700 zone_movable_pfn[nid] =
4701 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4703 out:
4704 /* restore the node_state */
4705 node_states[N_HIGH_MEMORY] = saved_node_state;
4708 /* Any regular memory on that node ? */
4709 static void check_for_regular_memory(pg_data_t *pgdat)
4711 #ifdef CONFIG_HIGHMEM
4712 enum zone_type zone_type;
4714 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4715 struct zone *zone = &pgdat->node_zones[zone_type];
4716 if (zone->present_pages) {
4717 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4718 break;
4721 #endif
4725 * free_area_init_nodes - Initialise all pg_data_t and zone data
4726 * @max_zone_pfn: an array of max PFNs for each zone
4728 * This will call free_area_init_node() for each active node in the system.
4729 * Using the page ranges provided by add_active_range(), the size of each
4730 * zone in each node and their holes is calculated. If the maximum PFN
4731 * between two adjacent zones match, it is assumed that the zone is empty.
4732 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4733 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4734 * starts where the previous one ended. For example, ZONE_DMA32 starts
4735 * at arch_max_dma_pfn.
4737 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4739 unsigned long start_pfn, end_pfn;
4740 int i, nid;
4742 /* Record where the zone boundaries are */
4743 memset(arch_zone_lowest_possible_pfn, 0,
4744 sizeof(arch_zone_lowest_possible_pfn));
4745 memset(arch_zone_highest_possible_pfn, 0,
4746 sizeof(arch_zone_highest_possible_pfn));
4747 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4748 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4749 for (i = 1; i < MAX_NR_ZONES; i++) {
4750 if (i == ZONE_MOVABLE)
4751 continue;
4752 arch_zone_lowest_possible_pfn[i] =
4753 arch_zone_highest_possible_pfn[i-1];
4754 arch_zone_highest_possible_pfn[i] =
4755 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4757 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4758 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4760 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4761 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4762 find_zone_movable_pfns_for_nodes();
4764 /* Print out the zone ranges */
4765 printk("Zone PFN ranges:\n");
4766 for (i = 0; i < MAX_NR_ZONES; i++) {
4767 if (i == ZONE_MOVABLE)
4768 continue;
4769 printk(" %-8s ", zone_names[i]);
4770 if (arch_zone_lowest_possible_pfn[i] ==
4771 arch_zone_highest_possible_pfn[i])
4772 printk("empty\n");
4773 else
4774 printk("%0#10lx -> %0#10lx\n",
4775 arch_zone_lowest_possible_pfn[i],
4776 arch_zone_highest_possible_pfn[i]);
4779 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4780 printk("Movable zone start PFN for each node\n");
4781 for (i = 0; i < MAX_NUMNODES; i++) {
4782 if (zone_movable_pfn[i])
4783 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4786 /* Print out the early_node_map[] */
4787 printk("Early memory PFN ranges\n");
4788 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4789 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4791 /* Initialise every node */
4792 mminit_verify_pageflags_layout();
4793 setup_nr_node_ids();
4794 for_each_online_node(nid) {
4795 pg_data_t *pgdat = NODE_DATA(nid);
4796 free_area_init_node(nid, NULL,
4797 find_min_pfn_for_node(nid), NULL);
4799 /* Any memory on that node */
4800 if (pgdat->node_present_pages)
4801 node_set_state(nid, N_HIGH_MEMORY);
4802 check_for_regular_memory(pgdat);
4806 static int __init cmdline_parse_core(char *p, unsigned long *core)
4808 unsigned long long coremem;
4809 if (!p)
4810 return -EINVAL;
4812 coremem = memparse(p, &p);
4813 *core = coremem >> PAGE_SHIFT;
4815 /* Paranoid check that UL is enough for the coremem value */
4816 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4818 return 0;
4822 * kernelcore=size sets the amount of memory for use for allocations that
4823 * cannot be reclaimed or migrated.
4825 static int __init cmdline_parse_kernelcore(char *p)
4827 return cmdline_parse_core(p, &required_kernelcore);
4831 * movablecore=size sets the amount of memory for use for allocations that
4832 * can be reclaimed or migrated.
4834 static int __init cmdline_parse_movablecore(char *p)
4836 return cmdline_parse_core(p, &required_movablecore);
4839 early_param("kernelcore", cmdline_parse_kernelcore);
4840 early_param("movablecore", cmdline_parse_movablecore);
4842 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4845 * set_dma_reserve - set the specified number of pages reserved in the first zone
4846 * @new_dma_reserve: The number of pages to mark reserved
4848 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4849 * In the DMA zone, a significant percentage may be consumed by kernel image
4850 * and other unfreeable allocations which can skew the watermarks badly. This
4851 * function may optionally be used to account for unfreeable pages in the
4852 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4853 * smaller per-cpu batchsize.
4855 void __init set_dma_reserve(unsigned long new_dma_reserve)
4857 dma_reserve = new_dma_reserve;
4860 void __init free_area_init(unsigned long *zones_size)
4862 free_area_init_node(0, zones_size,
4863 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4866 static int page_alloc_cpu_notify(struct notifier_block *self,
4867 unsigned long action, void *hcpu)
4869 int cpu = (unsigned long)hcpu;
4871 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4872 lru_add_drain_cpu(cpu);
4873 drain_pages(cpu);
4876 * Spill the event counters of the dead processor
4877 * into the current processors event counters.
4878 * This artificially elevates the count of the current
4879 * processor.
4881 vm_events_fold_cpu(cpu);
4884 * Zero the differential counters of the dead processor
4885 * so that the vm statistics are consistent.
4887 * This is only okay since the processor is dead and cannot
4888 * race with what we are doing.
4890 refresh_cpu_vm_stats(cpu);
4892 return NOTIFY_OK;
4895 void __init page_alloc_init(void)
4897 hotcpu_notifier(page_alloc_cpu_notify, 0);
4901 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4902 * or min_free_kbytes changes.
4904 static void calculate_totalreserve_pages(void)
4906 struct pglist_data *pgdat;
4907 unsigned long reserve_pages = 0;
4908 enum zone_type i, j;
4910 for_each_online_pgdat(pgdat) {
4911 for (i = 0; i < MAX_NR_ZONES; i++) {
4912 struct zone *zone = pgdat->node_zones + i;
4913 unsigned long max = 0;
4915 /* Find valid and maximum lowmem_reserve in the zone */
4916 for (j = i; j < MAX_NR_ZONES; j++) {
4917 if (zone->lowmem_reserve[j] > max)
4918 max = zone->lowmem_reserve[j];
4921 /* we treat the high watermark as reserved pages. */
4922 max += high_wmark_pages(zone);
4924 if (max > zone->present_pages)
4925 max = zone->present_pages;
4926 reserve_pages += max;
4928 * Lowmem reserves are not available to
4929 * GFP_HIGHUSER page cache allocations and
4930 * kswapd tries to balance zones to their high
4931 * watermark. As a result, neither should be
4932 * regarded as dirtyable memory, to prevent a
4933 * situation where reclaim has to clean pages
4934 * in order to balance the zones.
4936 zone->dirty_balance_reserve = max;
4939 dirty_balance_reserve = reserve_pages;
4940 totalreserve_pages = reserve_pages;
4944 * setup_per_zone_lowmem_reserve - called whenever
4945 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4946 * has a correct pages reserved value, so an adequate number of
4947 * pages are left in the zone after a successful __alloc_pages().
4949 static void setup_per_zone_lowmem_reserve(void)
4951 struct pglist_data *pgdat;
4952 enum zone_type j, idx;
4954 for_each_online_pgdat(pgdat) {
4955 for (j = 0; j < MAX_NR_ZONES; j++) {
4956 struct zone *zone = pgdat->node_zones + j;
4957 unsigned long present_pages = zone->present_pages;
4959 zone->lowmem_reserve[j] = 0;
4961 idx = j;
4962 while (idx) {
4963 struct zone *lower_zone;
4965 idx--;
4967 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4968 sysctl_lowmem_reserve_ratio[idx] = 1;
4970 lower_zone = pgdat->node_zones + idx;
4971 lower_zone->lowmem_reserve[j] = present_pages /
4972 sysctl_lowmem_reserve_ratio[idx];
4973 present_pages += lower_zone->present_pages;
4978 /* update totalreserve_pages */
4979 calculate_totalreserve_pages();
4983 * setup_per_zone_wmarks - called when min_free_kbytes changes
4984 * or when memory is hot-{added|removed}
4986 * Ensures that the watermark[min,low,high] values for each zone are set
4987 * correctly with respect to min_free_kbytes.
4989 void setup_per_zone_wmarks(void)
4991 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4992 unsigned long lowmem_pages = 0;
4993 struct zone *zone;
4994 unsigned long flags;
4996 /* Calculate total number of !ZONE_HIGHMEM pages */
4997 for_each_zone(zone) {
4998 if (!is_highmem(zone))
4999 lowmem_pages += zone->present_pages;
5002 for_each_zone(zone) {
5003 u64 tmp;
5005 spin_lock_irqsave(&zone->lock, flags);
5006 tmp = (u64)pages_min * zone->present_pages;
5007 do_div(tmp, lowmem_pages);
5008 if (is_highmem(zone)) {
5010 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5011 * need highmem pages, so cap pages_min to a small
5012 * value here.
5014 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5015 * deltas controls asynch page reclaim, and so should
5016 * not be capped for highmem.
5018 int min_pages;
5020 min_pages = zone->present_pages / 1024;
5021 if (min_pages < SWAP_CLUSTER_MAX)
5022 min_pages = SWAP_CLUSTER_MAX;
5023 if (min_pages > 128)
5024 min_pages = 128;
5025 zone->watermark[WMARK_MIN] = min_pages;
5026 } else {
5028 * If it's a lowmem zone, reserve a number of pages
5029 * proportionate to the zone's size.
5031 zone->watermark[WMARK_MIN] = tmp;
5034 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5035 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5036 setup_zone_migrate_reserve(zone);
5037 spin_unlock_irqrestore(&zone->lock, flags);
5040 /* update totalreserve_pages */
5041 calculate_totalreserve_pages();
5045 * The inactive anon list should be small enough that the VM never has to
5046 * do too much work, but large enough that each inactive page has a chance
5047 * to be referenced again before it is swapped out.
5049 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5050 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5051 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5052 * the anonymous pages are kept on the inactive list.
5054 * total target max
5055 * memory ratio inactive anon
5056 * -------------------------------------
5057 * 10MB 1 5MB
5058 * 100MB 1 50MB
5059 * 1GB 3 250MB
5060 * 10GB 10 0.9GB
5061 * 100GB 31 3GB
5062 * 1TB 101 10GB
5063 * 10TB 320 32GB
5065 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5067 unsigned int gb, ratio;
5069 /* Zone size in gigabytes */
5070 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5071 if (gb)
5072 ratio = int_sqrt(10 * gb);
5073 else
5074 ratio = 1;
5076 zone->inactive_ratio = ratio;
5079 static void __meminit setup_per_zone_inactive_ratio(void)
5081 struct zone *zone;
5083 for_each_zone(zone)
5084 calculate_zone_inactive_ratio(zone);
5088 * Initialise min_free_kbytes.
5090 * For small machines we want it small (128k min). For large machines
5091 * we want it large (64MB max). But it is not linear, because network
5092 * bandwidth does not increase linearly with machine size. We use
5094 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5095 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5097 * which yields
5099 * 16MB: 512k
5100 * 32MB: 724k
5101 * 64MB: 1024k
5102 * 128MB: 1448k
5103 * 256MB: 2048k
5104 * 512MB: 2896k
5105 * 1024MB: 4096k
5106 * 2048MB: 5792k
5107 * 4096MB: 8192k
5108 * 8192MB: 11584k
5109 * 16384MB: 16384k
5111 int __meminit init_per_zone_wmark_min(void)
5113 unsigned long lowmem_kbytes;
5115 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5117 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5118 if (min_free_kbytes < 128)
5119 min_free_kbytes = 128;
5120 if (min_free_kbytes > 65536)
5121 min_free_kbytes = 65536;
5122 setup_per_zone_wmarks();
5123 refresh_zone_stat_thresholds();
5124 setup_per_zone_lowmem_reserve();
5125 setup_per_zone_inactive_ratio();
5126 return 0;
5128 module_init(init_per_zone_wmark_min)
5131 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5132 * that we can call two helper functions whenever min_free_kbytes
5133 * changes.
5135 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5136 void __user *buffer, size_t *length, loff_t *ppos)
5138 proc_dointvec(table, write, buffer, length, ppos);
5139 if (write)
5140 setup_per_zone_wmarks();
5141 return 0;
5144 #ifdef CONFIG_NUMA
5145 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5146 void __user *buffer, size_t *length, loff_t *ppos)
5148 struct zone *zone;
5149 int rc;
5151 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5152 if (rc)
5153 return rc;
5155 for_each_zone(zone)
5156 zone->min_unmapped_pages = (zone->present_pages *
5157 sysctl_min_unmapped_ratio) / 100;
5158 return 0;
5161 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5162 void __user *buffer, size_t *length, loff_t *ppos)
5164 struct zone *zone;
5165 int rc;
5167 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5168 if (rc)
5169 return rc;
5171 for_each_zone(zone)
5172 zone->min_slab_pages = (zone->present_pages *
5173 sysctl_min_slab_ratio) / 100;
5174 return 0;
5176 #endif
5179 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5180 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5181 * whenever sysctl_lowmem_reserve_ratio changes.
5183 * The reserve ratio obviously has absolutely no relation with the
5184 * minimum watermarks. The lowmem reserve ratio can only make sense
5185 * if in function of the boot time zone sizes.
5187 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5188 void __user *buffer, size_t *length, loff_t *ppos)
5190 proc_dointvec_minmax(table, write, buffer, length, ppos);
5191 setup_per_zone_lowmem_reserve();
5192 return 0;
5196 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5197 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5198 * can have before it gets flushed back to buddy allocator.
5201 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5202 void __user *buffer, size_t *length, loff_t *ppos)
5204 struct zone *zone;
5205 unsigned int cpu;
5206 int ret;
5208 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5209 if (!write || (ret < 0))
5210 return ret;
5211 for_each_populated_zone(zone) {
5212 for_each_possible_cpu(cpu) {
5213 unsigned long high;
5214 high = zone->present_pages / percpu_pagelist_fraction;
5215 setup_pagelist_highmark(
5216 per_cpu_ptr(zone->pageset, cpu), high);
5219 return 0;
5222 int hashdist = HASHDIST_DEFAULT;
5224 #ifdef CONFIG_NUMA
5225 static int __init set_hashdist(char *str)
5227 if (!str)
5228 return 0;
5229 hashdist = simple_strtoul(str, &str, 0);
5230 return 1;
5232 __setup("hashdist=", set_hashdist);
5233 #endif
5236 * allocate a large system hash table from bootmem
5237 * - it is assumed that the hash table must contain an exact power-of-2
5238 * quantity of entries
5239 * - limit is the number of hash buckets, not the total allocation size
5241 void *__init alloc_large_system_hash(const char *tablename,
5242 unsigned long bucketsize,
5243 unsigned long numentries,
5244 int scale,
5245 int flags,
5246 unsigned int *_hash_shift,
5247 unsigned int *_hash_mask,
5248 unsigned long limit)
5250 unsigned long long max = limit;
5251 unsigned long log2qty, size;
5252 void *table = NULL;
5254 /* allow the kernel cmdline to have a say */
5255 if (!numentries) {
5256 /* round applicable memory size up to nearest megabyte */
5257 numentries = nr_kernel_pages;
5258 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5259 numentries >>= 20 - PAGE_SHIFT;
5260 numentries <<= 20 - PAGE_SHIFT;
5262 /* limit to 1 bucket per 2^scale bytes of low memory */
5263 if (scale > PAGE_SHIFT)
5264 numentries >>= (scale - PAGE_SHIFT);
5265 else
5266 numentries <<= (PAGE_SHIFT - scale);
5268 /* Make sure we've got at least a 0-order allocation.. */
5269 if (unlikely(flags & HASH_SMALL)) {
5270 /* Makes no sense without HASH_EARLY */
5271 WARN_ON(!(flags & HASH_EARLY));
5272 if (!(numentries >> *_hash_shift)) {
5273 numentries = 1UL << *_hash_shift;
5274 BUG_ON(!numentries);
5276 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5277 numentries = PAGE_SIZE / bucketsize;
5279 numentries = roundup_pow_of_two(numentries);
5281 /* limit allocation size to 1/16 total memory by default */
5282 if (max == 0) {
5283 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5284 do_div(max, bucketsize);
5286 max = min(max, 0x80000000ULL);
5288 if (numentries > max)
5289 numentries = max;
5291 log2qty = ilog2(numentries);
5293 do {
5294 size = bucketsize << log2qty;
5295 if (flags & HASH_EARLY)
5296 table = alloc_bootmem_nopanic(size);
5297 else if (hashdist)
5298 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5299 else {
5301 * If bucketsize is not a power-of-two, we may free
5302 * some pages at the end of hash table which
5303 * alloc_pages_exact() automatically does
5305 if (get_order(size) < MAX_ORDER) {
5306 table = alloc_pages_exact(size, GFP_ATOMIC);
5307 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5310 } while (!table && size > PAGE_SIZE && --log2qty);
5312 if (!table)
5313 panic("Failed to allocate %s hash table\n", tablename);
5315 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5316 tablename,
5317 (1UL << log2qty),
5318 ilog2(size) - PAGE_SHIFT,
5319 size);
5321 if (_hash_shift)
5322 *_hash_shift = log2qty;
5323 if (_hash_mask)
5324 *_hash_mask = (1 << log2qty) - 1;
5326 return table;
5329 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5330 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5331 unsigned long pfn)
5333 #ifdef CONFIG_SPARSEMEM
5334 return __pfn_to_section(pfn)->pageblock_flags;
5335 #else
5336 return zone->pageblock_flags;
5337 #endif /* CONFIG_SPARSEMEM */
5340 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5342 #ifdef CONFIG_SPARSEMEM
5343 pfn &= (PAGES_PER_SECTION-1);
5344 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5345 #else
5346 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5347 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5348 #endif /* CONFIG_SPARSEMEM */
5352 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5353 * @page: The page within the block of interest
5354 * @start_bitidx: The first bit of interest to retrieve
5355 * @end_bitidx: The last bit of interest
5356 * returns pageblock_bits flags
5358 unsigned long get_pageblock_flags_group(struct page *page,
5359 int start_bitidx, int end_bitidx)
5361 struct zone *zone;
5362 unsigned long *bitmap;
5363 unsigned long pfn, bitidx;
5364 unsigned long flags = 0;
5365 unsigned long value = 1;
5367 zone = page_zone(page);
5368 pfn = page_to_pfn(page);
5369 bitmap = get_pageblock_bitmap(zone, pfn);
5370 bitidx = pfn_to_bitidx(zone, pfn);
5372 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5373 if (test_bit(bitidx + start_bitidx, bitmap))
5374 flags |= value;
5376 return flags;
5380 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5381 * @page: The page within the block of interest
5382 * @start_bitidx: The first bit of interest
5383 * @end_bitidx: The last bit of interest
5384 * @flags: The flags to set
5386 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5387 int start_bitidx, int end_bitidx)
5389 struct zone *zone;
5390 unsigned long *bitmap;
5391 unsigned long pfn, bitidx;
5392 unsigned long value = 1;
5394 zone = page_zone(page);
5395 pfn = page_to_pfn(page);
5396 bitmap = get_pageblock_bitmap(zone, pfn);
5397 bitidx = pfn_to_bitidx(zone, pfn);
5398 VM_BUG_ON(pfn < zone->zone_start_pfn);
5399 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5401 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5402 if (flags & value)
5403 __set_bit(bitidx + start_bitidx, bitmap);
5404 else
5405 __clear_bit(bitidx + start_bitidx, bitmap);
5409 * This is designed as sub function...plz see page_isolation.c also.
5410 * set/clear page block's type to be ISOLATE.
5411 * page allocater never alloc memory from ISOLATE block.
5414 static int
5415 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5417 unsigned long pfn, iter, found;
5419 * For avoiding noise data, lru_add_drain_all() should be called
5420 * If ZONE_MOVABLE, the zone never contains immobile pages
5422 if (zone_idx(zone) == ZONE_MOVABLE)
5423 return true;
5425 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5426 return true;
5428 pfn = page_to_pfn(page);
5429 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5430 unsigned long check = pfn + iter;
5432 if (!pfn_valid_within(check))
5433 continue;
5435 page = pfn_to_page(check);
5436 if (!page_count(page)) {
5437 if (PageBuddy(page))
5438 iter += (1 << page_order(page)) - 1;
5439 continue;
5441 if (!PageLRU(page))
5442 found++;
5444 * If there are RECLAIMABLE pages, we need to check it.
5445 * But now, memory offline itself doesn't call shrink_slab()
5446 * and it still to be fixed.
5449 * If the page is not RAM, page_count()should be 0.
5450 * we don't need more check. This is an _used_ not-movable page.
5452 * The problematic thing here is PG_reserved pages. PG_reserved
5453 * is set to both of a memory hole page and a _used_ kernel
5454 * page at boot.
5456 if (found > count)
5457 return false;
5459 return true;
5462 bool is_pageblock_removable_nolock(struct page *page)
5464 struct zone *zone;
5465 unsigned long pfn;
5468 * We have to be careful here because we are iterating over memory
5469 * sections which are not zone aware so we might end up outside of
5470 * the zone but still within the section.
5471 * We have to take care about the node as well. If the node is offline
5472 * its NODE_DATA will be NULL - see page_zone.
5474 if (!node_online(page_to_nid(page)))
5475 return false;
5477 zone = page_zone(page);
5478 pfn = page_to_pfn(page);
5479 if (zone->zone_start_pfn > pfn ||
5480 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5481 return false;
5483 return __count_immobile_pages(zone, page, 0);
5486 int set_migratetype_isolate(struct page *page)
5488 struct zone *zone;
5489 unsigned long flags, pfn;
5490 struct memory_isolate_notify arg;
5491 int notifier_ret;
5492 int ret = -EBUSY;
5494 zone = page_zone(page);
5496 spin_lock_irqsave(&zone->lock, flags);
5498 pfn = page_to_pfn(page);
5499 arg.start_pfn = pfn;
5500 arg.nr_pages = pageblock_nr_pages;
5501 arg.pages_found = 0;
5504 * It may be possible to isolate a pageblock even if the
5505 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5506 * notifier chain is used by balloon drivers to return the
5507 * number of pages in a range that are held by the balloon
5508 * driver to shrink memory. If all the pages are accounted for
5509 * by balloons, are free, or on the LRU, isolation can continue.
5510 * Later, for example, when memory hotplug notifier runs, these
5511 * pages reported as "can be isolated" should be isolated(freed)
5512 * by the balloon driver through the memory notifier chain.
5514 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5515 notifier_ret = notifier_to_errno(notifier_ret);
5516 if (notifier_ret)
5517 goto out;
5519 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5520 * We just check MOVABLE pages.
5522 if (__count_immobile_pages(zone, page, arg.pages_found))
5523 ret = 0;
5526 * immobile means "not-on-lru" paes. If immobile is larger than
5527 * removable-by-driver pages reported by notifier, we'll fail.
5530 out:
5531 if (!ret) {
5532 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5533 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5536 spin_unlock_irqrestore(&zone->lock, flags);
5537 if (!ret)
5538 drain_all_pages();
5539 return ret;
5542 void unset_migratetype_isolate(struct page *page)
5544 struct zone *zone;
5545 unsigned long flags;
5546 zone = page_zone(page);
5547 spin_lock_irqsave(&zone->lock, flags);
5548 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5549 goto out;
5550 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5551 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5552 out:
5553 spin_unlock_irqrestore(&zone->lock, flags);
5556 #ifdef CONFIG_MEMORY_HOTREMOVE
5558 * All pages in the range must be isolated before calling this.
5560 void
5561 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5563 struct page *page;
5564 struct zone *zone;
5565 int order, i;
5566 unsigned long pfn;
5567 unsigned long flags;
5568 /* find the first valid pfn */
5569 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5570 if (pfn_valid(pfn))
5571 break;
5572 if (pfn == end_pfn)
5573 return;
5574 zone = page_zone(pfn_to_page(pfn));
5575 spin_lock_irqsave(&zone->lock, flags);
5576 pfn = start_pfn;
5577 while (pfn < end_pfn) {
5578 if (!pfn_valid(pfn)) {
5579 pfn++;
5580 continue;
5582 page = pfn_to_page(pfn);
5583 BUG_ON(page_count(page));
5584 BUG_ON(!PageBuddy(page));
5585 order = page_order(page);
5586 #ifdef CONFIG_DEBUG_VM
5587 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5588 pfn, 1 << order, end_pfn);
5589 #endif
5590 list_del(&page->lru);
5591 rmv_page_order(page);
5592 zone->free_area[order].nr_free--;
5593 __mod_zone_page_state(zone, NR_FREE_PAGES,
5594 - (1UL << order));
5595 for (i = 0; i < (1 << order); i++)
5596 SetPageReserved((page+i));
5597 pfn += (1 << order);
5599 spin_unlock_irqrestore(&zone->lock, flags);
5601 #endif
5603 #ifdef CONFIG_MEMORY_FAILURE
5604 bool is_free_buddy_page(struct page *page)
5606 struct zone *zone = page_zone(page);
5607 unsigned long pfn = page_to_pfn(page);
5608 unsigned long flags;
5609 int order;
5611 spin_lock_irqsave(&zone->lock, flags);
5612 for (order = 0; order < MAX_ORDER; order++) {
5613 struct page *page_head = page - (pfn & ((1 << order) - 1));
5615 if (PageBuddy(page_head) && page_order(page_head) >= order)
5616 break;
5618 spin_unlock_irqrestore(&zone->lock, flags);
5620 return order < MAX_ORDER;
5622 #endif
5624 static struct trace_print_flags pageflag_names[] = {
5625 {1UL << PG_locked, "locked" },
5626 {1UL << PG_error, "error" },
5627 {1UL << PG_referenced, "referenced" },
5628 {1UL << PG_uptodate, "uptodate" },
5629 {1UL << PG_dirty, "dirty" },
5630 {1UL << PG_lru, "lru" },
5631 {1UL << PG_active, "active" },
5632 {1UL << PG_slab, "slab" },
5633 {1UL << PG_owner_priv_1, "owner_priv_1" },
5634 {1UL << PG_arch_1, "arch_1" },
5635 {1UL << PG_reserved, "reserved" },
5636 {1UL << PG_private, "private" },
5637 {1UL << PG_private_2, "private_2" },
5638 {1UL << PG_writeback, "writeback" },
5639 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5640 {1UL << PG_head, "head" },
5641 {1UL << PG_tail, "tail" },
5642 #else
5643 {1UL << PG_compound, "compound" },
5644 #endif
5645 {1UL << PG_swapcache, "swapcache" },
5646 {1UL << PG_mappedtodisk, "mappedtodisk" },
5647 {1UL << PG_reclaim, "reclaim" },
5648 {1UL << PG_swapbacked, "swapbacked" },
5649 {1UL << PG_unevictable, "unevictable" },
5650 #ifdef CONFIG_MMU
5651 {1UL << PG_mlocked, "mlocked" },
5652 #endif
5653 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5654 {1UL << PG_uncached, "uncached" },
5655 #endif
5656 #ifdef CONFIG_MEMORY_FAILURE
5657 {1UL << PG_hwpoison, "hwpoison" },
5658 #endif
5659 {-1UL, NULL },
5662 static void dump_page_flags(unsigned long flags)
5664 const char *delim = "";
5665 unsigned long mask;
5666 int i;
5668 printk(KERN_ALERT "page flags: %#lx(", flags);
5670 /* remove zone id */
5671 flags &= (1UL << NR_PAGEFLAGS) - 1;
5673 for (i = 0; pageflag_names[i].name && flags; i++) {
5675 mask = pageflag_names[i].mask;
5676 if ((flags & mask) != mask)
5677 continue;
5679 flags &= ~mask;
5680 printk("%s%s", delim, pageflag_names[i].name);
5681 delim = "|";
5684 /* check for left over flags */
5685 if (flags)
5686 printk("%s%#lx", delim, flags);
5688 printk(")\n");
5691 void dump_page(struct page *page)
5693 printk(KERN_ALERT
5694 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5695 page, atomic_read(&page->_count), page_mapcount(page),
5696 page->mapping, page->index);
5697 dump_page_flags(page->flags);
5698 mem_cgroup_print_bad_page(page);