2 * linux/drivers/misc/xillybus_core.c
4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
6 * Driver for the Xillybus FPGA/host framework.
8 * This driver interfaces with a special IP core in an FPGA, setting up
9 * a pipe between a hardware FIFO in the programmable logic and a device
10 * file in the host. The number of such pipes and their attributes are
11 * set up on the logic. This driver detects these automatically and
12 * creates the device files accordingly.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the smems of the GNU General Public License as published by
16 * the Free Software Foundation; version 2 of the License.
19 #include <linux/list.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
27 #include <linux/cdev.h>
28 #include <linux/spinlock.h>
29 #include <linux/mutex.h>
30 #include <linux/crc32.h>
31 #include <linux/poll.h>
32 #include <linux/delay.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
37 MODULE_DESCRIPTION("Xillybus core functions");
38 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
39 MODULE_VERSION("1.07");
40 MODULE_ALIAS("xillybus_core");
41 MODULE_LICENSE("GPL v2");
43 /* General timeout is 100 ms, rx timeout is 10 ms */
44 #define XILLY_RX_TIMEOUT (10*HZ/1000)
45 #define XILLY_TIMEOUT (100*HZ/1000)
47 #define fpga_msg_ctrl_reg 0x0008
48 #define fpga_dma_control_reg 0x0020
49 #define fpga_dma_bufno_reg 0x0024
50 #define fpga_dma_bufaddr_lowaddr_reg 0x0028
51 #define fpga_dma_bufaddr_highaddr_reg 0x002c
52 #define fpga_buf_ctrl_reg 0x0030
53 #define fpga_buf_offset_reg 0x0034
54 #define fpga_endian_reg 0x0040
56 #define XILLYMSG_OPCODE_RELEASEBUF 1
57 #define XILLYMSG_OPCODE_QUIESCEACK 2
58 #define XILLYMSG_OPCODE_FIFOEOF 3
59 #define XILLYMSG_OPCODE_FATAL_ERROR 4
60 #define XILLYMSG_OPCODE_NONEMPTY 5
62 static const char xillyname
[] = "xillybus";
64 static struct class *xillybus_class
;
67 * ep_list_lock is the last lock to be taken; No other lock requests are
68 * allowed while holding it. It merely protects list_of_endpoints, and not
69 * the endpoints listed in it.
72 static LIST_HEAD(list_of_endpoints
);
73 static struct mutex ep_list_lock
;
74 static struct workqueue_struct
*xillybus_wq
;
77 * Locking scheme: Mutexes protect invocations of character device methods.
78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
81 * buffers' end_offset fields against changes made by IRQ handler (and in
82 * theory, other file request handlers, but the mutex handles that). Nothing
84 * They are held for short direct memory manipulations. Needless to say,
85 * no mutex locking is allowed when a spinlock is held.
87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
89 * register_mutex is endpoint-specific, and is held when non-atomic
90 * register operations are performed. wr_mutex and rd_mutex may be
91 * held when register_mutex is taken, but none of the spinlocks. Note that
92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
93 * which are unrelated to buf_offset_reg, since they are harmless.
95 * Blocking on the wait queues is allowed with mutexes held, but not with
98 * Only interruptible blocking is allowed on mutexes and wait queues.
100 * All in all, the locking order goes (with skips allowed, of course):
101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
104 static void malformed_message(struct xilly_endpoint
*endpoint
, u32
*buf
)
107 int msg_channel
, msg_bufno
, msg_data
, msg_dir
;
109 opcode
= (buf
[0] >> 24) & 0xff;
110 msg_dir
= buf
[0] & 1;
111 msg_channel
= (buf
[0] >> 1) & 0x7ff;
112 msg_bufno
= (buf
[0] >> 12) & 0x3ff;
113 msg_data
= buf
[1] & 0xfffffff;
115 dev_warn(endpoint
->dev
,
116 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
117 opcode
, msg_channel
, msg_dir
, msg_bufno
, msg_data
);
121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
122 * which is the natural case MSI and several other hardware-oriented
123 * interrupts. Sharing is not allowed.
126 irqreturn_t
xillybus_isr(int irq
, void *data
)
128 struct xilly_endpoint
*ep
= data
;
130 unsigned int buf_size
;
133 unsigned int msg_channel
, msg_bufno
, msg_data
, msg_dir
;
134 struct xilly_channel
*channel
;
136 buf
= ep
->msgbuf_addr
;
137 buf_size
= ep
->msg_buf_size
/sizeof(u32
);
139 ep
->ephw
->hw_sync_sgl_for_cpu(ep
,
144 for (i
= 0; i
< buf_size
; i
+= 2) {
145 if (((buf
[i
+1] >> 28) & 0xf) != ep
->msg_counter
) {
146 malformed_message(ep
, &buf
[i
]);
148 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
149 ((buf
[i
+1] >> 28) & 0xf),
153 if (++ep
->failed_messages
> 10) {
155 "Lost sync with interrupt messages. Stopping.\n");
157 ep
->ephw
->hw_sync_sgl_for_device(
163 iowrite32(0x01, /* Message NACK */
164 ep
->registers
+ fpga_msg_ctrl_reg
);
167 } else if (buf
[i
] & (1 << 22)) /* Last message */
172 dev_err(ep
->dev
, "Bad interrupt message. Stopping.\n");
178 for (i
= 0; i
< buf_size
; i
+= 2) { /* Scan through messages */
179 opcode
= (buf
[i
] >> 24) & 0xff;
181 msg_dir
= buf
[i
] & 1;
182 msg_channel
= (buf
[i
] >> 1) & 0x7ff;
183 msg_bufno
= (buf
[i
] >> 12) & 0x3ff;
184 msg_data
= buf
[i
+1] & 0xfffffff;
187 case XILLYMSG_OPCODE_RELEASEBUF
:
188 if ((msg_channel
> ep
->num_channels
) ||
189 (msg_channel
== 0)) {
190 malformed_message(ep
, &buf
[i
]);
194 channel
= ep
->channels
[msg_channel
];
196 if (msg_dir
) { /* Write channel */
197 if (msg_bufno
>= channel
->num_wr_buffers
) {
198 malformed_message(ep
, &buf
[i
]);
201 spin_lock(&channel
->wr_spinlock
);
202 channel
->wr_buffers
[msg_bufno
]->end_offset
=
204 channel
->wr_fpga_buf_idx
= msg_bufno
;
205 channel
->wr_empty
= 0;
206 channel
->wr_sleepy
= 0;
207 spin_unlock(&channel
->wr_spinlock
);
209 wake_up_interruptible(&channel
->wr_wait
);
214 if (msg_bufno
>= channel
->num_rd_buffers
) {
215 malformed_message(ep
, &buf
[i
]);
219 spin_lock(&channel
->rd_spinlock
);
220 channel
->rd_fpga_buf_idx
= msg_bufno
;
221 channel
->rd_full
= 0;
222 spin_unlock(&channel
->rd_spinlock
);
224 wake_up_interruptible(&channel
->rd_wait
);
225 if (!channel
->rd_synchronous
)
228 &channel
->rd_workitem
,
233 case XILLYMSG_OPCODE_NONEMPTY
:
234 if ((msg_channel
> ep
->num_channels
) ||
235 (msg_channel
== 0) || (!msg_dir
) ||
236 !ep
->channels
[msg_channel
]->wr_supports_nonempty
) {
237 malformed_message(ep
, &buf
[i
]);
241 channel
= ep
->channels
[msg_channel
];
243 if (msg_bufno
>= channel
->num_wr_buffers
) {
244 malformed_message(ep
, &buf
[i
]);
247 spin_lock(&channel
->wr_spinlock
);
248 if (msg_bufno
== channel
->wr_host_buf_idx
)
249 channel
->wr_ready
= 1;
250 spin_unlock(&channel
->wr_spinlock
);
252 wake_up_interruptible(&channel
->wr_ready_wait
);
255 case XILLYMSG_OPCODE_QUIESCEACK
:
256 ep
->idtlen
= msg_data
;
257 wake_up_interruptible(&ep
->ep_wait
);
260 case XILLYMSG_OPCODE_FIFOEOF
:
261 if ((msg_channel
> ep
->num_channels
) ||
262 (msg_channel
== 0) || (!msg_dir
) ||
263 !ep
->channels
[msg_channel
]->num_wr_buffers
) {
264 malformed_message(ep
, &buf
[i
]);
267 channel
= ep
->channels
[msg_channel
];
268 spin_lock(&channel
->wr_spinlock
);
269 channel
->wr_eof
= msg_bufno
;
270 channel
->wr_sleepy
= 0;
272 channel
->wr_hangup
= channel
->wr_empty
&&
273 (channel
->wr_host_buf_idx
== msg_bufno
);
275 spin_unlock(&channel
->wr_spinlock
);
277 wake_up_interruptible(&channel
->wr_wait
);
280 case XILLYMSG_OPCODE_FATAL_ERROR
:
282 wake_up_interruptible(&ep
->ep_wait
); /* For select() */
284 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
287 malformed_message(ep
, &buf
[i
]);
292 ep
->ephw
->hw_sync_sgl_for_device(ep
,
297 ep
->msg_counter
= (ep
->msg_counter
+ 1) & 0xf;
298 ep
->failed_messages
= 0;
299 iowrite32(0x03, ep
->registers
+ fpga_msg_ctrl_reg
); /* Message ACK */
303 EXPORT_SYMBOL(xillybus_isr
);
306 * A few trivial memory management functions.
307 * NOTE: These functions are used only on probe and remove, and therefore
308 * no locks are applied!
311 static void xillybus_autoflush(struct work_struct
*work
);
313 struct xilly_alloc_state
{
317 enum dma_data_direction direction
;
321 static int xilly_get_dma_buffers(struct xilly_endpoint
*ep
,
322 struct xilly_alloc_state
*s
,
323 struct xilly_buffer
**buffers
,
324 int bufnum
, int bytebufsize
)
328 struct device
*dev
= ep
->dev
;
329 struct xilly_buffer
*this_buffer
= NULL
; /* Init to silence warning */
331 if (buffers
) { /* Not the message buffer */
332 this_buffer
= devm_kcalloc(dev
, bufnum
,
333 sizeof(struct xilly_buffer
),
339 for (i
= 0; i
< bufnum
; i
++) {
341 * Buffers are expected in descending size order, so there
342 * is either enough space for this buffer or none at all.
345 if ((s
->left_of_salami
< bytebufsize
) &&
346 (s
->left_of_salami
> 0)) {
348 "Corrupt buffer allocation in IDT. Aborting.\n");
352 if (s
->left_of_salami
== 0) {
353 int allocorder
, allocsize
;
355 allocsize
= PAGE_SIZE
;
357 while (bytebufsize
> allocsize
) {
362 s
->salami
= (void *) devm_get_free_pages(
364 GFP_KERNEL
| __GFP_DMA32
| __GFP_ZERO
,
369 s
->left_of_salami
= allocsize
;
372 rc
= ep
->ephw
->map_single(ep
, s
->salami
,
373 bytebufsize
, s
->direction
,
378 iowrite32((u32
) (dma_addr
& 0xffffffff),
379 ep
->registers
+ fpga_dma_bufaddr_lowaddr_reg
);
380 iowrite32(((u32
) ((((u64
) dma_addr
) >> 32) & 0xffffffff)),
381 ep
->registers
+ fpga_dma_bufaddr_highaddr_reg
);
383 if (buffers
) { /* Not the message buffer */
384 this_buffer
->addr
= s
->salami
;
385 this_buffer
->dma_addr
= dma_addr
;
386 buffers
[i
] = this_buffer
++;
388 iowrite32(s
->regdirection
| s
->nbuffer
++,
389 ep
->registers
+ fpga_dma_bufno_reg
);
391 ep
->msgbuf_addr
= s
->salami
;
392 ep
->msgbuf_dma_addr
= dma_addr
;
393 ep
->msg_buf_size
= bytebufsize
;
395 iowrite32(s
->regdirection
,
396 ep
->registers
+ fpga_dma_bufno_reg
);
399 s
->left_of_salami
-= bytebufsize
;
400 s
->salami
+= bytebufsize
;
405 static int xilly_setupchannels(struct xilly_endpoint
*ep
,
406 unsigned char *chandesc
,
409 struct device
*dev
= ep
->dev
;
411 struct xilly_channel
*channel
;
412 int channelnum
, bufnum
, bufsize
, format
, is_writebuf
;
414 int synchronous
, allowpartial
, exclusive_open
, seekable
;
415 int supports_nonempty
;
416 int msg_buf_done
= 0;
418 struct xilly_alloc_state rd_alloc
= {
422 .direction
= DMA_TO_DEVICE
,
426 struct xilly_alloc_state wr_alloc
= {
430 .direction
= DMA_FROM_DEVICE
,
431 .regdirection
= 0x80000000,
434 channel
= devm_kcalloc(dev
, ep
->num_channels
,
435 sizeof(struct xilly_channel
), GFP_KERNEL
);
439 ep
->channels
= devm_kcalloc(dev
, ep
->num_channels
+ 1,
440 sizeof(struct xilly_channel
*),
445 ep
->channels
[0] = NULL
; /* Channel 0 is message buf. */
447 /* Initialize all channels with defaults */
449 for (i
= 1; i
<= ep
->num_channels
; i
++) {
450 channel
->wr_buffers
= NULL
;
451 channel
->rd_buffers
= NULL
;
452 channel
->num_wr_buffers
= 0;
453 channel
->num_rd_buffers
= 0;
454 channel
->wr_fpga_buf_idx
= -1;
455 channel
->wr_host_buf_idx
= 0;
456 channel
->wr_host_buf_pos
= 0;
457 channel
->wr_empty
= 1;
458 channel
->wr_ready
= 0;
459 channel
->wr_sleepy
= 1;
460 channel
->rd_fpga_buf_idx
= 0;
461 channel
->rd_host_buf_idx
= 0;
462 channel
->rd_host_buf_pos
= 0;
463 channel
->rd_full
= 0;
464 channel
->wr_ref_count
= 0;
465 channel
->rd_ref_count
= 0;
467 spin_lock_init(&channel
->wr_spinlock
);
468 spin_lock_init(&channel
->rd_spinlock
);
469 mutex_init(&channel
->wr_mutex
);
470 mutex_init(&channel
->rd_mutex
);
471 init_waitqueue_head(&channel
->rd_wait
);
472 init_waitqueue_head(&channel
->wr_wait
);
473 init_waitqueue_head(&channel
->wr_ready_wait
);
475 INIT_DELAYED_WORK(&channel
->rd_workitem
, xillybus_autoflush
);
477 channel
->endpoint
= ep
;
478 channel
->chan_num
= i
;
480 channel
->log2_element_size
= 0;
482 ep
->channels
[i
] = channel
++;
485 for (entry
= 0; entry
< entries
; entry
++, chandesc
+= 4) {
486 struct xilly_buffer
**buffers
= NULL
;
488 is_writebuf
= chandesc
[0] & 0x01;
489 channelnum
= (chandesc
[0] >> 1) | ((chandesc
[1] & 0x0f) << 7);
490 format
= (chandesc
[1] >> 4) & 0x03;
491 allowpartial
= (chandesc
[1] >> 6) & 0x01;
492 synchronous
= (chandesc
[1] >> 7) & 0x01;
493 bufsize
= 1 << (chandesc
[2] & 0x1f);
494 bufnum
= 1 << (chandesc
[3] & 0x0f);
495 exclusive_open
= (chandesc
[2] >> 7) & 0x01;
496 seekable
= (chandesc
[2] >> 6) & 0x01;
497 supports_nonempty
= (chandesc
[2] >> 5) & 0x01;
499 if ((channelnum
> ep
->num_channels
) ||
500 ((channelnum
== 0) && !is_writebuf
)) {
502 "IDT requests channel out of range. Aborting.\n");
506 channel
= ep
->channels
[channelnum
]; /* NULL for msg channel */
508 if (!is_writebuf
|| channelnum
> 0) {
509 channel
->log2_element_size
= ((format
> 2) ?
512 bytebufsize
= bufsize
*
513 (1 << channel
->log2_element_size
);
515 buffers
= devm_kcalloc(dev
, bufnum
,
516 sizeof(struct xilly_buffer
*),
521 bytebufsize
= bufsize
<< 2;
525 channel
->num_rd_buffers
= bufnum
;
526 channel
->rd_buf_size
= bytebufsize
;
527 channel
->rd_allow_partial
= allowpartial
;
528 channel
->rd_synchronous
= synchronous
;
529 channel
->rd_exclusive_open
= exclusive_open
;
530 channel
->seekable
= seekable
;
532 channel
->rd_buffers
= buffers
;
533 rc
= xilly_get_dma_buffers(ep
, &rd_alloc
, buffers
,
534 bufnum
, bytebufsize
);
535 } else if (channelnum
> 0) {
536 channel
->num_wr_buffers
= bufnum
;
537 channel
->wr_buf_size
= bytebufsize
;
539 channel
->seekable
= seekable
;
540 channel
->wr_supports_nonempty
= supports_nonempty
;
542 channel
->wr_allow_partial
= allowpartial
;
543 channel
->wr_synchronous
= synchronous
;
544 channel
->wr_exclusive_open
= exclusive_open
;
546 channel
->wr_buffers
= buffers
;
547 rc
= xilly_get_dma_buffers(ep
, &wr_alloc
, buffers
,
548 bufnum
, bytebufsize
);
550 rc
= xilly_get_dma_buffers(ep
, &wr_alloc
, NULL
,
551 bufnum
, bytebufsize
);
561 "Corrupt IDT: No message buffer. Aborting.\n");
567 static int xilly_scan_idt(struct xilly_endpoint
*endpoint
,
568 struct xilly_idt_handle
*idt_handle
)
571 unsigned char *idt
= endpoint
->channels
[1]->wr_buffers
[0]->addr
;
572 unsigned char *end_of_idt
= idt
+ endpoint
->idtlen
- 4;
577 idt_handle
->idt
= idt
;
579 scan
++; /* Skip version number */
581 while ((scan
<= end_of_idt
) && *scan
) {
582 while ((scan
<= end_of_idt
) && *scan
++)
583 /* Do nothing, just scan thru string */;
589 if (scan
> end_of_idt
) {
590 dev_err(endpoint
->dev
,
591 "IDT device name list overflow. Aborting.\n");
594 idt_handle
->chandesc
= scan
;
596 len
= endpoint
->idtlen
- (3 + ((int) (scan
- idt
)));
599 dev_err(endpoint
->dev
,
600 "Corrupt IDT device name list. Aborting.\n");
604 idt_handle
->entries
= len
>> 2;
605 endpoint
->num_channels
= count
;
610 static int xilly_obtain_idt(struct xilly_endpoint
*endpoint
)
612 struct xilly_channel
*channel
;
613 unsigned char *version
;
616 channel
= endpoint
->channels
[1]; /* This should be generated ad-hoc */
618 channel
->wr_sleepy
= 1;
621 (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
622 endpoint
->registers
+ fpga_buf_ctrl_reg
);
624 t
= wait_event_interruptible_timeout(channel
->wr_wait
,
625 (!channel
->wr_sleepy
),
629 dev_err(endpoint
->dev
, "Failed to obtain IDT. Aborting.\n");
631 if (endpoint
->fatal_error
)
637 endpoint
->ephw
->hw_sync_sgl_for_cpu(
639 channel
->wr_buffers
[0]->dma_addr
,
640 channel
->wr_buf_size
,
643 if (channel
->wr_buffers
[0]->end_offset
!= endpoint
->idtlen
) {
644 dev_err(endpoint
->dev
,
645 "IDT length mismatch (%d != %d). Aborting.\n",
646 channel
->wr_buffers
[0]->end_offset
, endpoint
->idtlen
);
650 if (crc32_le(~0, channel
->wr_buffers
[0]->addr
,
651 endpoint
->idtlen
+1) != 0) {
652 dev_err(endpoint
->dev
, "IDT failed CRC check. Aborting.\n");
656 version
= channel
->wr_buffers
[0]->addr
;
658 /* Check version number. Accept anything below 0x82 for now. */
659 if (*version
> 0x82) {
660 dev_err(endpoint
->dev
,
661 "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
669 static ssize_t
xillybus_read(struct file
*filp
, char __user
*userbuf
,
670 size_t count
, loff_t
*f_pos
)
675 int no_time_left
= 0;
676 long deadline
, left_to_sleep
;
677 struct xilly_channel
*channel
= filp
->private_data
;
679 int empty
, reached_eof
, exhausted
, ready
;
680 /* Initializations are there only to silence warnings */
682 int howmany
= 0, bufpos
= 0, bufidx
= 0, bufferdone
= 0;
685 if (channel
->endpoint
->fatal_error
)
688 deadline
= jiffies
+ 1 + XILLY_RX_TIMEOUT
;
690 rc
= mutex_lock_interruptible(&channel
->wr_mutex
);
694 while (1) { /* Note that we may drop mutex within this loop */
695 int bytes_to_do
= count
- bytes_done
;
697 spin_lock_irqsave(&channel
->wr_spinlock
, flags
);
699 empty
= channel
->wr_empty
;
700 ready
= !empty
|| channel
->wr_ready
;
703 bufidx
= channel
->wr_host_buf_idx
;
704 bufpos
= channel
->wr_host_buf_pos
;
705 howmany
= ((channel
->wr_buffers
[bufidx
]->end_offset
706 + 1) << channel
->log2_element_size
)
709 /* Update wr_host_* to its post-operation state */
710 if (howmany
> bytes_to_do
) {
713 howmany
= bytes_to_do
;
714 channel
->wr_host_buf_pos
+= howmany
;
718 channel
->wr_host_buf_pos
= 0;
720 if (bufidx
== channel
->wr_fpga_buf_idx
) {
721 channel
->wr_empty
= 1;
722 channel
->wr_sleepy
= 1;
723 channel
->wr_ready
= 0;
726 if (bufidx
>= (channel
->num_wr_buffers
- 1))
727 channel
->wr_host_buf_idx
= 0;
729 channel
->wr_host_buf_idx
++;
734 * Marking our situation after the possible changes above,
735 * for use after releasing the spinlock.
737 * empty = empty before change
738 * exhasted = empty after possible change
741 reached_eof
= channel
->wr_empty
&&
742 (channel
->wr_host_buf_idx
== channel
->wr_eof
);
743 channel
->wr_hangup
= reached_eof
;
744 exhausted
= channel
->wr_empty
;
745 waiting_bufidx
= channel
->wr_host_buf_idx
;
747 spin_unlock_irqrestore(&channel
->wr_spinlock
, flags
);
749 if (!empty
) { /* Go on, now without the spinlock */
751 if (bufpos
== 0) /* Position zero means it's virgin */
752 channel
->endpoint
->ephw
->hw_sync_sgl_for_cpu(
754 channel
->wr_buffers
[bufidx
]->dma_addr
,
755 channel
->wr_buf_size
,
760 channel
->wr_buffers
[bufidx
]->addr
765 bytes_done
+= howmany
;
768 channel
->endpoint
->ephw
->hw_sync_sgl_for_device(
770 channel
->wr_buffers
[bufidx
]->dma_addr
,
771 channel
->wr_buf_size
,
775 * Tell FPGA the buffer is done with. It's an
776 * atomic operation to the FPGA, so what
777 * happens with other channels doesn't matter,
778 * and the certain channel is protected with
779 * the channel-specific mutex.
782 iowrite32(1 | (channel
->chan_num
<< 1) |
784 channel
->endpoint
->registers
+
789 mutex_unlock(&channel
->wr_mutex
);
794 /* This includes a zero-count return = EOF */
795 if ((bytes_done
>= count
) || reached_eof
)
799 continue; /* More in RAM buffer(s)? Just go on. */
801 if ((bytes_done
> 0) &&
803 (channel
->wr_synchronous
&& channel
->wr_allow_partial
)))
807 * Nonblocking read: The "ready" flag tells us that the FPGA
808 * has data to send. In non-blocking mode, if it isn't on,
809 * just return. But if there is, we jump directly to the point
810 * where we ask for the FPGA to send all it has, and wait
811 * until that data arrives. So in a sense, we *do* block in
812 * nonblocking mode, but only for a very short time.
815 if (!no_time_left
&& (filp
->f_flags
& O_NONBLOCK
)) {
826 if (!no_time_left
|| (bytes_done
> 0)) {
828 * Note that in case of an element-misaligned read
829 * request, offsetlimit will include the last element,
830 * which will be partially read from.
832 int offsetlimit
= ((count
- bytes_done
) - 1) >>
833 channel
->log2_element_size
;
834 int buf_elements
= channel
->wr_buf_size
>>
835 channel
->log2_element_size
;
838 * In synchronous mode, always send an offset limit.
839 * Just don't send a value too big.
842 if (channel
->wr_synchronous
) {
843 /* Don't request more than one buffer */
844 if (channel
->wr_allow_partial
&&
845 (offsetlimit
>= buf_elements
))
846 offsetlimit
= buf_elements
- 1;
848 /* Don't request more than all buffers */
849 if (!channel
->wr_allow_partial
&&
851 (buf_elements
* channel
->num_wr_buffers
)))
852 offsetlimit
= buf_elements
*
853 channel
->num_wr_buffers
- 1;
857 * In asynchronous mode, force early flush of a buffer
858 * only if that will allow returning a full count. The
859 * "offsetlimit < ( ... )" rather than "<=" excludes
860 * requesting a full buffer, which would obviously
861 * cause a buffer transmission anyhow
864 if (channel
->wr_synchronous
||
865 (offsetlimit
< (buf_elements
- 1))) {
866 mutex_lock(&channel
->endpoint
->register_mutex
);
868 iowrite32(offsetlimit
,
869 channel
->endpoint
->registers
+
870 fpga_buf_offset_reg
);
872 iowrite32(1 | (channel
->chan_num
<< 1) |
873 (2 << 24) | /* 2 = offset limit */
874 (waiting_bufidx
<< 12),
875 channel
->endpoint
->registers
+
878 mutex_unlock(&channel
->endpoint
->
884 * If partial completion is disallowed, there is no point in
885 * timeout sleeping. Neither if no_time_left is set and
889 if (!channel
->wr_allow_partial
||
890 (no_time_left
&& (bytes_done
== 0))) {
892 * This do-loop will run more than once if another
893 * thread reasserted wr_sleepy before we got the mutex
894 * back, so we try again.
898 mutex_unlock(&channel
->wr_mutex
);
900 if (wait_event_interruptible(
902 (!channel
->wr_sleepy
)))
905 if (mutex_lock_interruptible(
908 } while (channel
->wr_sleepy
);
912 interrupted
: /* Mutex is not held if got here */
913 if (channel
->endpoint
->fatal_error
)
917 if (filp
->f_flags
& O_NONBLOCK
)
918 return -EAGAIN
; /* Don't admit snoozing */
922 left_to_sleep
= deadline
- ((long) jiffies
);
925 * If our time is out, skip the waiting. We may miss wr_sleepy
926 * being deasserted but hey, almost missing the train is like
930 if (left_to_sleep
> 0) {
932 wait_event_interruptible_timeout(
934 (!channel
->wr_sleepy
),
937 if (left_to_sleep
> 0) /* wr_sleepy deasserted */
940 if (left_to_sleep
< 0) { /* Interrupt */
941 mutex_unlock(&channel
->wr_mutex
);
942 if (channel
->endpoint
->fatal_error
)
951 no_time_left
= 1; /* We're out of sleeping time. Desperate! */
953 if (bytes_done
== 0) {
955 * Reaching here means that we allow partial return,
956 * that we've run out of time, and that we have
958 * So tell the FPGA to send anything it has or gets.
961 iowrite32(1 | (channel
->chan_num
<< 1) |
962 (3 << 24) | /* Opcode 3, flush it all! */
963 (waiting_bufidx
<< 12),
964 channel
->endpoint
->registers
+
969 * Reaching here means that we *do* have data in the buffer,
970 * but the "partial" flag disallows returning less than
971 * required. And we don't have as much. So loop again,
972 * which is likely to end up blocking indefinitely until
973 * enough data has arrived.
977 mutex_unlock(&channel
->wr_mutex
);
979 if (channel
->endpoint
->fatal_error
)
989 * The timeout argument takes values as follows:
990 * >0 : Flush with timeout
991 * ==0 : Flush, and wait idefinitely for the flush to complete
992 * <0 : Autoflush: Flush only if there's a single buffer occupied
995 static int xillybus_myflush(struct xilly_channel
*channel
, long timeout
)
1000 int end_offset_plus1
;
1001 int bufidx
, bufidx_minus1
;
1004 int new_rd_host_buf_pos
;
1006 if (channel
->endpoint
->fatal_error
)
1008 rc
= mutex_lock_interruptible(&channel
->rd_mutex
);
1013 * Don't flush a closed channel. This can happen when the work queued
1014 * autoflush thread fires off after the file has closed. This is not
1015 * an error, just something to dismiss.
1018 if (!channel
->rd_ref_count
)
1021 bufidx
= channel
->rd_host_buf_idx
;
1023 bufidx_minus1
= (bufidx
== 0) ?
1024 channel
->num_rd_buffers
- 1 :
1027 end_offset_plus1
= channel
->rd_host_buf_pos
>>
1028 channel
->log2_element_size
;
1030 new_rd_host_buf_pos
= channel
->rd_host_buf_pos
-
1031 (end_offset_plus1
<< channel
->log2_element_size
);
1033 /* Submit the current buffer if it's nonempty */
1034 if (end_offset_plus1
) {
1035 unsigned char *tail
= channel
->rd_buffers
[bufidx
]->addr
+
1036 (end_offset_plus1
<< channel
->log2_element_size
);
1038 /* Copy unflushed data, so we can put it in next buffer */
1039 for (i
= 0; i
< new_rd_host_buf_pos
; i
++)
1040 channel
->rd_leftovers
[i
] = *tail
++;
1042 spin_lock_irqsave(&channel
->rd_spinlock
, flags
);
1044 /* Autoflush only if a single buffer is occupied */
1046 if ((timeout
< 0) &&
1047 (channel
->rd_full
||
1048 (bufidx_minus1
!= channel
->rd_fpga_buf_idx
))) {
1049 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1051 * A new work item may be queued by the ISR exactly
1052 * now, since the execution of a work item allows the
1053 * queuing of a new one while it's running.
1058 /* The 4th element is never needed for data, so it's a flag */
1059 channel
->rd_leftovers
[3] = (new_rd_host_buf_pos
!= 0);
1061 /* Set up rd_full to reflect a certain moment's state */
1063 if (bufidx
== channel
->rd_fpga_buf_idx
)
1064 channel
->rd_full
= 1;
1065 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1067 if (bufidx
>= (channel
->num_rd_buffers
- 1))
1068 channel
->rd_host_buf_idx
= 0;
1070 channel
->rd_host_buf_idx
++;
1072 channel
->endpoint
->ephw
->hw_sync_sgl_for_device(
1074 channel
->rd_buffers
[bufidx
]->dma_addr
,
1075 channel
->rd_buf_size
,
1078 mutex_lock(&channel
->endpoint
->register_mutex
);
1080 iowrite32(end_offset_plus1
- 1,
1081 channel
->endpoint
->registers
+ fpga_buf_offset_reg
);
1083 iowrite32((channel
->chan_num
<< 1) | /* Channel ID */
1084 (2 << 24) | /* Opcode 2, submit buffer */
1086 channel
->endpoint
->registers
+ fpga_buf_ctrl_reg
);
1088 mutex_unlock(&channel
->endpoint
->register_mutex
);
1089 } else if (bufidx
== 0) {
1090 bufidx
= channel
->num_rd_buffers
- 1;
1095 channel
->rd_host_buf_pos
= new_rd_host_buf_pos
;
1098 goto done
; /* Autoflush */
1101 * bufidx is now the last buffer written to (or equal to
1102 * rd_fpga_buf_idx if buffer was never written to), and
1103 * channel->rd_host_buf_idx the one after it.
1105 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1108 while (1) { /* Loop waiting for draining of buffers */
1109 spin_lock_irqsave(&channel
->rd_spinlock
, flags
);
1111 if (bufidx
!= channel
->rd_fpga_buf_idx
)
1112 channel
->rd_full
= 1; /*
1114 * but needs waiting.
1117 empty
= !channel
->rd_full
;
1119 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1125 * Indefinite sleep with mutex taken. With data waiting for
1126 * flushing user should not be surprised if open() for write
1130 wait_event_interruptible(channel
->rd_wait
,
1131 (!channel
->rd_full
));
1133 else if (wait_event_interruptible_timeout(
1135 (!channel
->rd_full
),
1137 dev_warn(channel
->endpoint
->dev
,
1138 "Timed out while flushing. Output data may be lost.\n");
1144 if (channel
->rd_full
) {
1151 mutex_unlock(&channel
->rd_mutex
);
1153 if (channel
->endpoint
->fatal_error
)
1159 static int xillybus_flush(struct file
*filp
, fl_owner_t id
)
1161 if (!(filp
->f_mode
& FMODE_WRITE
))
1164 return xillybus_myflush(filp
->private_data
, HZ
); /* 1 second timeout */
1167 static void xillybus_autoflush(struct work_struct
*work
)
1169 struct delayed_work
*workitem
= container_of(
1170 work
, struct delayed_work
, work
);
1171 struct xilly_channel
*channel
= container_of(
1172 workitem
, struct xilly_channel
, rd_workitem
);
1175 rc
= xillybus_myflush(channel
, -1);
1177 dev_warn(channel
->endpoint
->dev
,
1178 "Autoflush failed because work queue thread got a signal.\n");
1180 dev_err(channel
->endpoint
->dev
,
1181 "Autoflush failed under weird circumstances.\n");
1184 static ssize_t
xillybus_write(struct file
*filp
, const char __user
*userbuf
,
1185 size_t count
, loff_t
*f_pos
)
1188 unsigned long flags
;
1190 struct xilly_channel
*channel
= filp
->private_data
;
1192 int full
, exhausted
;
1193 /* Initializations are there only to silence warnings */
1195 int howmany
= 0, bufpos
= 0, bufidx
= 0, bufferdone
= 0;
1196 int end_offset_plus1
= 0;
1198 if (channel
->endpoint
->fatal_error
)
1201 rc
= mutex_lock_interruptible(&channel
->rd_mutex
);
1206 int bytes_to_do
= count
- bytes_done
;
1208 spin_lock_irqsave(&channel
->rd_spinlock
, flags
);
1210 full
= channel
->rd_full
;
1213 bufidx
= channel
->rd_host_buf_idx
;
1214 bufpos
= channel
->rd_host_buf_pos
;
1215 howmany
= channel
->rd_buf_size
- bufpos
;
1218 * Update rd_host_* to its state after this operation.
1219 * count=0 means committing the buffer immediately,
1220 * which is like flushing, but not necessarily block.
1223 if ((howmany
> bytes_to_do
) &&
1225 ((bufpos
>> channel
->log2_element_size
) == 0))) {
1228 howmany
= bytes_to_do
;
1229 channel
->rd_host_buf_pos
+= howmany
;
1235 channel
->rd_buf_size
>>
1236 channel
->log2_element_size
;
1237 channel
->rd_host_buf_pos
= 0;
1239 unsigned char *tail
;
1244 end_offset_plus1
= bufpos
>>
1245 channel
->log2_element_size
;
1247 channel
->rd_host_buf_pos
-=
1249 channel
->log2_element_size
;
1252 rd_buffers
[bufidx
]->addr
+
1253 (end_offset_plus1
<<
1254 channel
->log2_element_size
);
1257 i
< channel
->rd_host_buf_pos
;
1259 channel
->rd_leftovers
[i
] =
1263 if (bufidx
== channel
->rd_fpga_buf_idx
)
1264 channel
->rd_full
= 1;
1266 if (bufidx
>= (channel
->num_rd_buffers
- 1))
1267 channel
->rd_host_buf_idx
= 0;
1269 channel
->rd_host_buf_idx
++;
1274 * Marking our situation after the possible changes above,
1275 * for use after releasing the spinlock.
1277 * full = full before change
1278 * exhasted = full after possible change
1281 exhausted
= channel
->rd_full
;
1283 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1285 if (!full
) { /* Go on, now without the spinlock */
1286 unsigned char *head
=
1287 channel
->rd_buffers
[bufidx
]->addr
;
1290 if ((bufpos
== 0) || /* Zero means it's virgin */
1291 (channel
->rd_leftovers
[3] != 0)) {
1292 channel
->endpoint
->ephw
->hw_sync_sgl_for_cpu(
1294 channel
->rd_buffers
[bufidx
]->dma_addr
,
1295 channel
->rd_buf_size
,
1298 /* Virgin, but leftovers are due */
1299 for (i
= 0; i
< bufpos
; i
++)
1300 *head
++ = channel
->rd_leftovers
[i
];
1302 channel
->rd_leftovers
[3] = 0; /* Clear flag */
1306 channel
->rd_buffers
[bufidx
]->addr
+ bufpos
,
1311 bytes_done
+= howmany
;
1314 channel
->endpoint
->ephw
->hw_sync_sgl_for_device(
1316 channel
->rd_buffers
[bufidx
]->dma_addr
,
1317 channel
->rd_buf_size
,
1320 mutex_lock(&channel
->endpoint
->register_mutex
);
1322 iowrite32(end_offset_plus1
- 1,
1323 channel
->endpoint
->registers
+
1324 fpga_buf_offset_reg
);
1326 iowrite32((channel
->chan_num
<< 1) |
1327 (2 << 24) | /* 2 = submit buffer */
1329 channel
->endpoint
->registers
+
1332 mutex_unlock(&channel
->endpoint
->
1335 channel
->rd_leftovers
[3] =
1336 (channel
->rd_host_buf_pos
!= 0);
1340 mutex_unlock(&channel
->rd_mutex
);
1342 if (channel
->endpoint
->fatal_error
)
1345 if (!channel
->rd_synchronous
)
1348 &channel
->rd_workitem
,
1355 if (bytes_done
>= count
)
1359 continue; /* If there's more space, just go on */
1361 if ((bytes_done
> 0) && channel
->rd_allow_partial
)
1365 * Indefinite sleep with mutex taken. With data waiting for
1366 * flushing, user should not be surprised if open() for write
1370 if (filp
->f_flags
& O_NONBLOCK
) {
1375 if (wait_event_interruptible(channel
->rd_wait
,
1376 (!channel
->rd_full
))) {
1377 mutex_unlock(&channel
->rd_mutex
);
1379 if (channel
->endpoint
->fatal_error
)
1388 mutex_unlock(&channel
->rd_mutex
);
1390 if (!channel
->rd_synchronous
)
1391 queue_delayed_work(xillybus_wq
,
1392 &channel
->rd_workitem
,
1395 if (channel
->endpoint
->fatal_error
)
1401 if ((channel
->rd_synchronous
) && (bytes_done
> 0)) {
1402 rc
= xillybus_myflush(filp
->private_data
, 0); /* No timeout */
1404 if (rc
&& (rc
!= -EINTR
))
1411 static int xillybus_open(struct inode
*inode
, struct file
*filp
)
1414 unsigned long flags
;
1415 int minor
= iminor(inode
);
1416 int major
= imajor(inode
);
1417 struct xilly_endpoint
*ep_iter
, *endpoint
= NULL
;
1418 struct xilly_channel
*channel
;
1420 mutex_lock(&ep_list_lock
);
1422 list_for_each_entry(ep_iter
, &list_of_endpoints
, ep_list
) {
1423 if ((ep_iter
->major
== major
) &&
1424 (minor
>= ep_iter
->lowest_minor
) &&
1425 (minor
< (ep_iter
->lowest_minor
+
1426 ep_iter
->num_channels
))) {
1431 mutex_unlock(&ep_list_lock
);
1434 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1439 if (endpoint
->fatal_error
)
1442 channel
= endpoint
->channels
[1 + minor
- endpoint
->lowest_minor
];
1443 filp
->private_data
= channel
;
1446 * It gets complicated because:
1447 * 1. We don't want to take a mutex we don't have to
1448 * 2. We don't want to open one direction if the other will fail.
1451 if ((filp
->f_mode
& FMODE_READ
) && (!channel
->num_wr_buffers
))
1454 if ((filp
->f_mode
& FMODE_WRITE
) && (!channel
->num_rd_buffers
))
1457 if ((filp
->f_mode
& FMODE_READ
) && (filp
->f_flags
& O_NONBLOCK
) &&
1458 (channel
->wr_synchronous
|| !channel
->wr_allow_partial
||
1459 !channel
->wr_supports_nonempty
)) {
1460 dev_err(endpoint
->dev
,
1461 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1465 if ((filp
->f_mode
& FMODE_WRITE
) && (filp
->f_flags
& O_NONBLOCK
) &&
1466 (channel
->rd_synchronous
|| !channel
->rd_allow_partial
)) {
1467 dev_err(endpoint
->dev
,
1468 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1473 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1474 * This shouldn't occur normally, since multiple open of the same
1475 * file descriptor is almost always prohibited anyhow
1476 * (*_exclusive_open is normally set in real-life systems).
1479 if (filp
->f_mode
& FMODE_READ
) {
1480 rc
= mutex_lock_interruptible(&channel
->wr_mutex
);
1485 if (filp
->f_mode
& FMODE_WRITE
) {
1486 rc
= mutex_lock_interruptible(&channel
->rd_mutex
);
1491 if ((filp
->f_mode
& FMODE_READ
) &&
1492 (channel
->wr_ref_count
!= 0) &&
1493 (channel
->wr_exclusive_open
)) {
1498 if ((filp
->f_mode
& FMODE_WRITE
) &&
1499 (channel
->rd_ref_count
!= 0) &&
1500 (channel
->rd_exclusive_open
)) {
1505 if (filp
->f_mode
& FMODE_READ
) {
1506 if (channel
->wr_ref_count
== 0) { /* First open of file */
1507 /* Move the host to first buffer */
1508 spin_lock_irqsave(&channel
->wr_spinlock
, flags
);
1509 channel
->wr_host_buf_idx
= 0;
1510 channel
->wr_host_buf_pos
= 0;
1511 channel
->wr_fpga_buf_idx
= -1;
1512 channel
->wr_empty
= 1;
1513 channel
->wr_ready
= 0;
1514 channel
->wr_sleepy
= 1;
1515 channel
->wr_eof
= -1;
1516 channel
->wr_hangup
= 0;
1518 spin_unlock_irqrestore(&channel
->wr_spinlock
, flags
);
1520 iowrite32(1 | (channel
->chan_num
<< 1) |
1521 (4 << 24) | /* Opcode 4, open channel */
1522 ((channel
->wr_synchronous
& 1) << 23),
1523 channel
->endpoint
->registers
+
1527 channel
->wr_ref_count
++;
1530 if (filp
->f_mode
& FMODE_WRITE
) {
1531 if (channel
->rd_ref_count
== 0) { /* First open of file */
1532 /* Move the host to first buffer */
1533 spin_lock_irqsave(&channel
->rd_spinlock
, flags
);
1534 channel
->rd_host_buf_idx
= 0;
1535 channel
->rd_host_buf_pos
= 0;
1536 channel
->rd_leftovers
[3] = 0; /* No leftovers. */
1537 channel
->rd_fpga_buf_idx
= channel
->num_rd_buffers
- 1;
1538 channel
->rd_full
= 0;
1540 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1542 iowrite32((channel
->chan_num
<< 1) |
1543 (4 << 24), /* Opcode 4, open channel */
1544 channel
->endpoint
->registers
+
1548 channel
->rd_ref_count
++;
1552 if (filp
->f_mode
& FMODE_WRITE
)
1553 mutex_unlock(&channel
->rd_mutex
);
1555 if (filp
->f_mode
& FMODE_READ
)
1556 mutex_unlock(&channel
->wr_mutex
);
1558 if (!rc
&& (!channel
->seekable
))
1559 return nonseekable_open(inode
, filp
);
1564 static int xillybus_release(struct inode
*inode
, struct file
*filp
)
1566 unsigned long flags
;
1567 struct xilly_channel
*channel
= filp
->private_data
;
1572 if (channel
->endpoint
->fatal_error
)
1575 if (filp
->f_mode
& FMODE_WRITE
) {
1576 mutex_lock(&channel
->rd_mutex
);
1578 channel
->rd_ref_count
--;
1580 if (channel
->rd_ref_count
== 0) {
1582 * We rely on the kernel calling flush()
1583 * before we get here.
1586 iowrite32((channel
->chan_num
<< 1) | /* Channel ID */
1587 (5 << 24), /* Opcode 5, close channel */
1588 channel
->endpoint
->registers
+
1591 mutex_unlock(&channel
->rd_mutex
);
1594 if (filp
->f_mode
& FMODE_READ
) {
1595 mutex_lock(&channel
->wr_mutex
);
1597 channel
->wr_ref_count
--;
1599 if (channel
->wr_ref_count
== 0) {
1600 iowrite32(1 | (channel
->chan_num
<< 1) |
1601 (5 << 24), /* Opcode 5, close channel */
1602 channel
->endpoint
->registers
+
1606 * This is crazily cautious: We make sure that not
1607 * only that we got an EOF (be it because we closed
1608 * the channel or because of a user's EOF), but verify
1609 * that it's one beyond the last buffer arrived, so
1610 * we have no leftover buffers pending before wrapping
1611 * up (which can only happen in asynchronous channels,
1616 spin_lock_irqsave(&channel
->wr_spinlock
,
1618 buf_idx
= channel
->wr_fpga_buf_idx
;
1619 eof
= channel
->wr_eof
;
1620 channel
->wr_sleepy
= 1;
1621 spin_unlock_irqrestore(&channel
->wr_spinlock
,
1625 * Check if eof points at the buffer after
1626 * the last one the FPGA submitted. Note that
1627 * no EOF is marked by negative eof.
1631 if (buf_idx
== channel
->num_wr_buffers
)
1638 * Steal extra 100 ms if awaken by interrupt.
1639 * This is a simple workaround for an
1640 * interrupt pending when entering, which would
1641 * otherwise result in declaring the hardware
1645 if (wait_event_interruptible(
1647 (!channel
->wr_sleepy
)))
1650 if (channel
->wr_sleepy
) {
1651 mutex_unlock(&channel
->wr_mutex
);
1652 dev_warn(channel
->endpoint
->dev
,
1653 "Hardware failed to respond to close command, therefore left in messy state.\n");
1659 mutex_unlock(&channel
->wr_mutex
);
1665 static loff_t
xillybus_llseek(struct file
*filp
, loff_t offset
, int whence
)
1667 struct xilly_channel
*channel
= filp
->private_data
;
1668 loff_t pos
= filp
->f_pos
;
1672 * Take both mutexes not allowing interrupts, since it seems like
1673 * common applications don't expect an -EINTR here. Besides, multiple
1674 * access to a single file descriptor on seekable devices is a mess
1678 if (channel
->endpoint
->fatal_error
)
1681 mutex_lock(&channel
->wr_mutex
);
1682 mutex_lock(&channel
->rd_mutex
);
1692 pos
= offset
; /* Going to the end => to the beginning */
1699 /* In any case, we must finish on an element boundary */
1700 if (pos
& ((1 << channel
->log2_element_size
) - 1)) {
1705 mutex_lock(&channel
->endpoint
->register_mutex
);
1707 iowrite32(pos
>> channel
->log2_element_size
,
1708 channel
->endpoint
->registers
+ fpga_buf_offset_reg
);
1710 iowrite32((channel
->chan_num
<< 1) |
1711 (6 << 24), /* Opcode 6, set address */
1712 channel
->endpoint
->registers
+ fpga_buf_ctrl_reg
);
1714 mutex_unlock(&channel
->endpoint
->register_mutex
);
1717 mutex_unlock(&channel
->rd_mutex
);
1718 mutex_unlock(&channel
->wr_mutex
);
1720 if (rc
) /* Return error after releasing mutexes */
1726 * Since seekable devices are allowed only when the channel is
1727 * synchronous, we assume that there is no data pending in either
1728 * direction (which holds true as long as no concurrent access on the
1729 * file descriptor takes place).
1730 * The only thing we may need to throw away is leftovers from partial
1734 channel
->rd_leftovers
[3] = 0;
1739 static unsigned int xillybus_poll(struct file
*filp
, poll_table
*wait
)
1741 struct xilly_channel
*channel
= filp
->private_data
;
1742 unsigned int mask
= 0;
1743 unsigned long flags
;
1745 poll_wait(filp
, &channel
->endpoint
->ep_wait
, wait
);
1748 * poll() won't play ball regarding read() channels which
1749 * aren't asynchronous and support the nonempty message. Allowing
1750 * that will create situations where data has been delivered at
1751 * the FPGA, and users expecting select() to wake up, which it may
1755 if (!channel
->wr_synchronous
&& channel
->wr_supports_nonempty
) {
1756 poll_wait(filp
, &channel
->wr_wait
, wait
);
1757 poll_wait(filp
, &channel
->wr_ready_wait
, wait
);
1759 spin_lock_irqsave(&channel
->wr_spinlock
, flags
);
1760 if (!channel
->wr_empty
|| channel
->wr_ready
)
1761 mask
|= POLLIN
| POLLRDNORM
;
1763 if (channel
->wr_hangup
)
1765 * Not POLLHUP, because its behavior is in the
1766 * mist, and POLLIN does what we want: Wake up
1767 * the read file descriptor so it sees EOF.
1769 mask
|= POLLIN
| POLLRDNORM
;
1770 spin_unlock_irqrestore(&channel
->wr_spinlock
, flags
);
1774 * If partial data write is disallowed on a write() channel,
1775 * it's pointless to ever signal OK to write, because is could
1776 * block despite some space being available.
1779 if (channel
->rd_allow_partial
) {
1780 poll_wait(filp
, &channel
->rd_wait
, wait
);
1782 spin_lock_irqsave(&channel
->rd_spinlock
, flags
);
1783 if (!channel
->rd_full
)
1784 mask
|= POLLOUT
| POLLWRNORM
;
1785 spin_unlock_irqrestore(&channel
->rd_spinlock
, flags
);
1788 if (channel
->endpoint
->fatal_error
)
1794 static const struct file_operations xillybus_fops
= {
1795 .owner
= THIS_MODULE
,
1796 .read
= xillybus_read
,
1797 .write
= xillybus_write
,
1798 .open
= xillybus_open
,
1799 .flush
= xillybus_flush
,
1800 .release
= xillybus_release
,
1801 .llseek
= xillybus_llseek
,
1802 .poll
= xillybus_poll
,
1805 static int xillybus_init_chrdev(struct xilly_endpoint
*endpoint
,
1806 const unsigned char *idt
)
1810 int devnum
, i
, minor
, major
;
1812 struct device
*device
;
1814 rc
= alloc_chrdev_region(&dev
, 0, /* minor start */
1815 endpoint
->num_channels
,
1818 dev_warn(endpoint
->dev
, "Failed to obtain major/minors");
1822 endpoint
->major
= major
= MAJOR(dev
);
1823 endpoint
->lowest_minor
= minor
= MINOR(dev
);
1825 cdev_init(&endpoint
->cdev
, &xillybus_fops
);
1826 endpoint
->cdev
.owner
= endpoint
->ephw
->owner
;
1827 rc
= cdev_add(&endpoint
->cdev
, MKDEV(major
, minor
),
1828 endpoint
->num_channels
);
1830 dev_warn(endpoint
->dev
, "Failed to add cdev. Aborting.\n");
1831 goto unregister_chrdev
;
1836 for (i
= minor
, devnum
= 0;
1837 devnum
< endpoint
->num_channels
;
1839 snprintf(devname
, sizeof(devname
)-1, "xillybus_%s", idt
);
1841 devname
[sizeof(devname
)-1] = 0; /* Should never matter */
1846 device
= device_create(xillybus_class
,
1852 if (IS_ERR(device
)) {
1853 dev_warn(endpoint
->dev
,
1854 "Failed to create %s device. Aborting.\n",
1857 goto unroll_device_create
;
1861 dev_info(endpoint
->dev
, "Created %d device files.\n",
1862 endpoint
->num_channels
);
1863 return 0; /* succeed */
1865 unroll_device_create
:
1867 for (; devnum
>= 0; devnum
--, i
--)
1868 device_destroy(xillybus_class
, MKDEV(major
, i
));
1870 cdev_del(&endpoint
->cdev
);
1872 unregister_chrdev_region(MKDEV(major
, minor
), endpoint
->num_channels
);
1877 static void xillybus_cleanup_chrdev(struct xilly_endpoint
*endpoint
)
1881 for (minor
= endpoint
->lowest_minor
;
1882 minor
< (endpoint
->lowest_minor
+ endpoint
->num_channels
);
1884 device_destroy(xillybus_class
, MKDEV(endpoint
->major
, minor
));
1885 cdev_del(&endpoint
->cdev
);
1886 unregister_chrdev_region(MKDEV(endpoint
->major
,
1887 endpoint
->lowest_minor
),
1888 endpoint
->num_channels
);
1890 dev_info(endpoint
->dev
, "Removed %d device files.\n",
1891 endpoint
->num_channels
);
1894 struct xilly_endpoint
*xillybus_init_endpoint(struct pci_dev
*pdev
,
1896 struct xilly_endpoint_hardware
1899 struct xilly_endpoint
*endpoint
;
1901 endpoint
= devm_kzalloc(dev
, sizeof(*endpoint
), GFP_KERNEL
);
1905 endpoint
->pdev
= pdev
;
1906 endpoint
->dev
= dev
;
1907 endpoint
->ephw
= ephw
;
1908 endpoint
->msg_counter
= 0x0b;
1909 endpoint
->failed_messages
= 0;
1910 endpoint
->fatal_error
= 0;
1912 init_waitqueue_head(&endpoint
->ep_wait
);
1913 mutex_init(&endpoint
->register_mutex
);
1917 EXPORT_SYMBOL(xillybus_init_endpoint
);
1919 static int xilly_quiesce(struct xilly_endpoint
*endpoint
)
1923 endpoint
->idtlen
= -1;
1925 iowrite32((u32
) (endpoint
->dma_using_dac
& 0x0001),
1926 endpoint
->registers
+ fpga_dma_control_reg
);
1928 t
= wait_event_interruptible_timeout(endpoint
->ep_wait
,
1929 (endpoint
->idtlen
>= 0),
1932 dev_err(endpoint
->dev
,
1933 "Failed to quiesce the device on exit.\n");
1939 int xillybus_endpoint_discovery(struct xilly_endpoint
*endpoint
)
1944 void *bootstrap_resources
;
1945 int idtbuffersize
= (1 << PAGE_SHIFT
);
1946 struct device
*dev
= endpoint
->dev
;
1949 * The bogus IDT is used during bootstrap for allocating the initial
1950 * message buffer, and then the message buffer and space for the IDT
1951 * itself. The initial message buffer is of a single page's size, but
1952 * it's soon replaced with a more modest one (and memory is freed).
1955 unsigned char bogus_idt
[8] = { 1, 224, (PAGE_SHIFT
)-2, 0,
1956 3, 192, PAGE_SHIFT
, 0 };
1957 struct xilly_idt_handle idt_handle
;
1960 * Writing the value 0x00000001 to Endianness register signals which
1961 * endianness this processor is using, so the FPGA can swap words as
1965 iowrite32(1, endpoint
->registers
+ fpga_endian_reg
);
1967 /* Bootstrap phase I: Allocate temporary message buffer */
1969 bootstrap_resources
= devres_open_group(dev
, NULL
, GFP_KERNEL
);
1970 if (!bootstrap_resources
)
1973 endpoint
->num_channels
= 0;
1975 rc
= xilly_setupchannels(endpoint
, bogus_idt
, 1);
1979 /* Clear the message subsystem (and counter in particular) */
1980 iowrite32(0x04, endpoint
->registers
+ fpga_msg_ctrl_reg
);
1982 endpoint
->idtlen
= -1;
1985 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1988 iowrite32((u32
) (endpoint
->dma_using_dac
& 0x0001),
1989 endpoint
->registers
+ fpga_dma_control_reg
);
1991 t
= wait_event_interruptible_timeout(endpoint
->ep_wait
,
1992 (endpoint
->idtlen
>= 0),
1995 dev_err(endpoint
->dev
, "No response from FPGA. Aborting.\n");
2000 iowrite32((u32
) (0x0002 | (endpoint
->dma_using_dac
& 0x0001)),
2001 endpoint
->registers
+ fpga_dma_control_reg
);
2003 /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2004 while (endpoint
->idtlen
>= idtbuffersize
) {
2009 endpoint
->num_channels
= 1;
2011 rc
= xilly_setupchannels(endpoint
, bogus_idt
, 2);
2015 rc
= xilly_obtain_idt(endpoint
);
2019 rc
= xilly_scan_idt(endpoint
, &idt_handle
);
2023 devres_close_group(dev
, bootstrap_resources
);
2025 /* Bootstrap phase III: Allocate buffers according to IDT */
2027 rc
= xilly_setupchannels(endpoint
,
2028 idt_handle
.chandesc
,
2029 idt_handle
.entries
);
2034 * endpoint is now completely configured. We put it on the list
2035 * available to open() before registering the char device(s)
2038 mutex_lock(&ep_list_lock
);
2039 list_add_tail(&endpoint
->ep_list
, &list_of_endpoints
);
2040 mutex_unlock(&ep_list_lock
);
2042 rc
= xillybus_init_chrdev(endpoint
, idt_handle
.idt
);
2044 goto failed_chrdevs
;
2046 devres_release_group(dev
, bootstrap_resources
);
2051 mutex_lock(&ep_list_lock
);
2052 list_del(&endpoint
->ep_list
);
2053 mutex_unlock(&ep_list_lock
);
2056 xilly_quiesce(endpoint
);
2057 flush_workqueue(xillybus_wq
);
2061 EXPORT_SYMBOL(xillybus_endpoint_discovery
);
2063 void xillybus_endpoint_remove(struct xilly_endpoint
*endpoint
)
2065 xillybus_cleanup_chrdev(endpoint
);
2067 mutex_lock(&ep_list_lock
);
2068 list_del(&endpoint
->ep_list
);
2069 mutex_unlock(&ep_list_lock
);
2071 xilly_quiesce(endpoint
);
2074 * Flushing is done upon endpoint release to prevent access to memory
2075 * just about to be released. This makes the quiesce complete.
2077 flush_workqueue(xillybus_wq
);
2079 EXPORT_SYMBOL(xillybus_endpoint_remove
);
2081 static int __init
xillybus_init(void)
2083 mutex_init(&ep_list_lock
);
2085 xillybus_class
= class_create(THIS_MODULE
, xillyname
);
2086 if (IS_ERR(xillybus_class
))
2087 return PTR_ERR(xillybus_class
);
2089 xillybus_wq
= alloc_workqueue(xillyname
, 0, 0);
2091 class_destroy(xillybus_class
);
2098 static void __exit
xillybus_exit(void)
2100 /* flush_workqueue() was called for each endpoint released */
2101 destroy_workqueue(xillybus_wq
);
2103 class_destroy(xillybus_class
);
2106 module_init(xillybus_init
);
2107 module_exit(xillybus_exit
);