1 // SPDX-License-Identifier: GPL-2.0
3 * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
5 * Author: Wang YanQing (udknight@gmail.com)
6 * The code based on code and ideas from:
7 * Eric Dumazet (eric.dumazet@gmail.com)
9 * Shubham Bansal <illusionist.neo@gmail.com>
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
21 * eBPF prog stack layout:
24 * original ESP => +-----+
25 * | | callee saved registers
27 * | ... | eBPF JIT scratch space
28 * BPF_FP,IA32_EBP => +-----+
29 * | ... | eBPF prog stack
31 * |RSVD | JIT scratchpad
32 * current ESP => +-----+
34 * | ... | Function call stack
39 * The callee saved registers:
42 * original ESP => +------------------+ \
44 * current EBP => +------------------+ } callee saved registers
46 * +------------------+ /
50 static u8
*emit_code(u8
*ptr
, u32 bytes
, unsigned int len
)
63 #define EMIT(bytes, len) \
64 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
66 #define EMIT1(b1) EMIT(b1, 1)
67 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4) \
70 EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
72 #define EMIT1_off32(b1, off) \
73 do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
83 static bool is_imm8(int value
)
85 return value
<= 127 && value
>= -128;
88 static bool is_simm32(s64 value
)
90 return value
== (s64
) (s32
) value
;
93 #define STACK_OFFSET(k) (k)
94 #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
96 #define IA32_EAX (0x0)
97 #define IA32_EBX (0x3)
98 #define IA32_ECX (0x1)
99 #define IA32_EDX (0x2)
100 #define IA32_ESI (0x6)
101 #define IA32_EDI (0x7)
102 #define IA32_EBP (0x5)
103 #define IA32_ESP (0x4)
106 * List of x86 cond jumps opcodes (. + s8)
107 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
110 #define IA32_JAE 0x73
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
120 #define COND_JMP_OPCODE_INVALID (0xFF)
123 * Map eBPF registers to IA32 32bit registers or stack scratch space.
125 * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126 * 2. We need two 64 bit temp registers to do complex operations on eBPF
128 * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129 * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
131 * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132 * registers, we have to map each eBPF registers with two IA32 32 bit regs
133 * or scratch memory space and we have to build eBPF 64 bit register from those.
135 * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
137 static const u8 bpf2ia32
[][2] = {
138 /* Return value from in-kernel function, and exit value from eBPF */
139 [BPF_REG_0
] = {STACK_OFFSET(0), STACK_OFFSET(4)},
141 /* The arguments from eBPF program to in-kernel function */
142 /* Stored on stack scratch space */
143 [BPF_REG_1
] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 [BPF_REG_2
] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 [BPF_REG_3
] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 [BPF_REG_4
] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 [BPF_REG_5
] = {STACK_OFFSET(40), STACK_OFFSET(44)},
149 /* Callee saved registers that in-kernel function will preserve */
150 /* Stored on stack scratch space */
151 [BPF_REG_6
] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 [BPF_REG_7
] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 [BPF_REG_8
] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 [BPF_REG_9
] = {STACK_OFFSET(72), STACK_OFFSET(76)},
156 /* Read only Frame Pointer to access Stack */
157 [BPF_REG_FP
] = {STACK_OFFSET(80), STACK_OFFSET(84)},
159 /* Temporary register for blinding constants. */
160 [BPF_REG_AX
] = {IA32_ESI
, IA32_EDI
},
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT
] = {STACK_OFFSET(88), STACK_OFFSET(92)},
166 #define dst_lo dst[0]
167 #define dst_hi dst[1]
168 #define src_lo src[0]
169 #define src_hi src[1]
171 #define STACK_ALIGNMENT 8
173 * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174 * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175 * BPF_REG_FP, BPF_REG_AX and Tail call counts.
177 #define SCRATCH_SIZE 96
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
188 static u8
add_1reg(u8 byte
, u32 dst_reg
)
190 return byte
+ dst_reg
;
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
194 static u8
add_2reg(u8 byte
, u32 dst_reg
, u32 src_reg
)
196 return byte
+ dst_reg
+ (src_reg
<< 3);
199 static void jit_fill_hole(void *area
, unsigned int size
)
201 /* Fill whole space with int3 instructions */
202 memset(area
, 0xcc, size
);
205 static inline void emit_ia32_mov_i(const u8 dst
, const u32 val
, bool dstk
,
214 EMIT2(0x33, add_2reg(0xC0, IA32_EAX
, IA32_EAX
));
215 /* mov dword ptr [ebp+off],eax */
216 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
219 EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP
),
220 STACK_VAR(dst
), val
);
224 EMIT2(0x33, add_2reg(0xC0, dst
, dst
));
226 EMIT2_off32(0xC7, add_1reg(0xC0, dst
),
232 /* dst = imm (4 bytes)*/
233 static inline void emit_ia32_mov_r(const u8 dst
, const u8 src
, bool dstk
,
234 bool sstk
, u8
**pprog
)
238 u8 sreg
= sstk
? IA32_EAX
: src
;
241 /* mov eax,dword ptr [ebp+off] */
242 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(src
));
244 /* mov dword ptr [ebp+off],eax */
245 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, sreg
), STACK_VAR(dst
));
248 EMIT2(0x89, add_2reg(0xC0, dst
, sreg
));
254 static inline void emit_ia32_mov_r64(const bool is64
, const u8 dst
[],
255 const u8 src
[], bool dstk
,
256 bool sstk
, u8
**pprog
,
257 const struct bpf_prog_aux
*aux
)
259 emit_ia32_mov_r(dst_lo
, src_lo
, dstk
, sstk
, pprog
);
261 /* complete 8 byte move */
262 emit_ia32_mov_r(dst_hi
, src_hi
, dstk
, sstk
, pprog
);
263 else if (!aux
->verifier_zext
)
264 /* zero out high 4 bytes */
265 emit_ia32_mov_i(dst_hi
, 0, dstk
, pprog
);
268 /* Sign extended move */
269 static inline void emit_ia32_mov_i64(const bool is64
, const u8 dst
[],
270 const u32 val
, bool dstk
, u8
**pprog
)
274 if (is64
&& (val
& (1<<31)))
276 emit_ia32_mov_i(dst_lo
, val
, dstk
, pprog
);
277 emit_ia32_mov_i(dst_hi
, hi
, dstk
, pprog
);
281 * ALU operation (32 bit)
284 static inline void emit_ia32_mul_r(const u8 dst
, const u8 src
, bool dstk
,
285 bool sstk
, u8
**pprog
)
289 u8 sreg
= sstk
? IA32_ECX
: src
;
292 /* mov ecx,dword ptr [ebp+off] */
293 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(src
));
296 /* mov eax,dword ptr [ebp+off] */
297 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(dst
));
300 EMIT2(0x8B, add_2reg(0xC0, dst
, IA32_EAX
));
303 EMIT2(0xF7, add_1reg(0xE0, sreg
));
306 /* mov dword ptr [ebp+off],eax */
307 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
311 EMIT2(0x89, add_2reg(0xC0, dst
, IA32_EAX
));
316 static inline void emit_ia32_to_le_r64(const u8 dst
[], s32 val
,
317 bool dstk
, u8
**pprog
,
318 const struct bpf_prog_aux
*aux
)
322 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
323 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
325 if (dstk
&& val
!= 64) {
326 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
328 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
334 * Emit 'movzwl eax,ax' to zero extend 16-bit
338 EMIT1(add_2reg(0xC0, dreg_lo
, dreg_lo
));
339 if (!aux
->verifier_zext
)
340 /* xor dreg_hi,dreg_hi */
341 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
344 if (!aux
->verifier_zext
)
345 /* xor dreg_hi,dreg_hi */
346 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
353 if (dstk
&& val
!= 64) {
354 /* mov dword ptr [ebp+off],dreg_lo */
355 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
357 /* mov dword ptr [ebp+off],dreg_hi */
358 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
364 static inline void emit_ia32_to_be_r64(const u8 dst
[], s32 val
,
365 bool dstk
, u8
**pprog
,
366 const struct bpf_prog_aux
*aux
)
370 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
371 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
374 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
376 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
381 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
383 EMIT3(0xC1, add_1reg(0xC8, dreg_lo
), 8);
386 EMIT1(add_2reg(0xC0, dreg_lo
, dreg_lo
));
388 if (!aux
->verifier_zext
)
389 /* xor dreg_hi,dreg_hi */
390 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
393 /* Emit 'bswap eax' to swap lower 4 bytes */
395 EMIT1(add_1reg(0xC8, dreg_lo
));
397 if (!aux
->verifier_zext
)
398 /* xor dreg_hi,dreg_hi */
399 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
402 /* Emit 'bswap eax' to swap lower 4 bytes */
404 EMIT1(add_1reg(0xC8, dreg_lo
));
406 /* Emit 'bswap edx' to swap lower 4 bytes */
408 EMIT1(add_1reg(0xC8, dreg_hi
));
410 /* mov ecx,dreg_hi */
411 EMIT2(0x89, add_2reg(0xC0, IA32_ECX
, dreg_hi
));
412 /* mov dreg_hi,dreg_lo */
413 EMIT2(0x89, add_2reg(0xC0, dreg_hi
, dreg_lo
));
414 /* mov dreg_lo,ecx */
415 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, IA32_ECX
));
420 /* mov dword ptr [ebp+off],dreg_lo */
421 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
423 /* mov dword ptr [ebp+off],dreg_hi */
424 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
431 * ALU operation (32 bit)
432 * dst = dst (div|mod) src
434 static inline void emit_ia32_div_mod_r(const u8 op
, const u8 dst
, const u8 src
,
435 bool dstk
, bool sstk
, u8
**pprog
)
441 /* mov ecx,dword ptr [ebp+off] */
442 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
444 else if (src
!= IA32_ECX
)
446 EMIT2(0x8B, add_2reg(0xC0, src
, IA32_ECX
));
449 /* mov eax,dword ptr [ebp+off] */
450 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
454 EMIT2(0x8B, add_2reg(0xC0, dst
, IA32_EAX
));
457 EMIT2(0x31, add_2reg(0xC0, IA32_EDX
, IA32_EDX
));
459 EMIT2(0xF7, add_1reg(0xF0, IA32_ECX
));
463 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
466 EMIT2(0x89, add_2reg(0xC0, dst
, IA32_EDX
));
469 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
472 EMIT2(0x89, add_2reg(0xC0, dst
, IA32_EAX
));
478 * ALU operation (32 bit)
479 * dst = dst (shift) src
481 static inline void emit_ia32_shift_r(const u8 op
, const u8 dst
, const u8 src
,
482 bool dstk
, bool sstk
, u8
**pprog
)
486 u8 dreg
= dstk
? IA32_EAX
: dst
;
490 /* mov eax,dword ptr [ebp+off] */
491 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(dst
));
494 /* mov ecx,dword ptr [ebp+off] */
495 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(src
));
496 else if (src
!= IA32_ECX
)
498 EMIT2(0x8B, add_2reg(0xC0, src
, IA32_ECX
));
510 EMIT2(0xD3, add_1reg(b2
, dreg
));
513 /* mov dword ptr [ebp+off],dreg */
514 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg
), STACK_VAR(dst
));
519 * ALU operation (32 bit)
522 static inline void emit_ia32_alu_r(const bool is64
, const bool hi
, const u8 op
,
523 const u8 dst
, const u8 src
, bool dstk
,
524 bool sstk
, u8
**pprog
)
528 u8 sreg
= sstk
? IA32_EAX
: src
;
529 u8 dreg
= dstk
? IA32_EDX
: dst
;
532 /* mov eax,dword ptr [ebp+off] */
533 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(src
));
536 /* mov eax,dword ptr [ebp+off] */
537 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
), STACK_VAR(dst
));
539 switch (BPF_OP(op
)) {
540 /* dst = dst + src */
543 EMIT2(0x11, add_2reg(0xC0, dreg
, sreg
));
545 EMIT2(0x01, add_2reg(0xC0, dreg
, sreg
));
547 /* dst = dst - src */
550 EMIT2(0x19, add_2reg(0xC0, dreg
, sreg
));
552 EMIT2(0x29, add_2reg(0xC0, dreg
, sreg
));
554 /* dst = dst | src */
556 EMIT2(0x09, add_2reg(0xC0, dreg
, sreg
));
558 /* dst = dst & src */
560 EMIT2(0x21, add_2reg(0xC0, dreg
, sreg
));
562 /* dst = dst ^ src */
564 EMIT2(0x31, add_2reg(0xC0, dreg
, sreg
));
569 /* mov dword ptr [ebp+off],dreg */
570 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg
),
575 /* ALU operation (64 bit) */
576 static inline void emit_ia32_alu_r64(const bool is64
, const u8 op
,
577 const u8 dst
[], const u8 src
[],
578 bool dstk
, bool sstk
,
579 u8
**pprog
, const struct bpf_prog_aux
*aux
)
583 emit_ia32_alu_r(is64
, false, op
, dst_lo
, src_lo
, dstk
, sstk
, &prog
);
585 emit_ia32_alu_r(is64
, true, op
, dst_hi
, src_hi
, dstk
, sstk
,
587 else if (!aux
->verifier_zext
)
588 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
593 * ALU operation (32 bit)
596 static inline void emit_ia32_alu_i(const bool is64
, const bool hi
, const u8 op
,
597 const u8 dst
, const s32 val
, bool dstk
,
602 u8 dreg
= dstk
? IA32_EAX
: dst
;
606 /* mov eax,dword ptr [ebp+off] */
607 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(dst
));
611 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX
), val
);
614 /* dst = dst + val */
618 EMIT3(0x83, add_1reg(0xD0, dreg
), val
);
620 EMIT2(0x11, add_2reg(0xC0, dreg
, sreg
));
623 EMIT3(0x83, add_1reg(0xC0, dreg
), val
);
625 EMIT2(0x01, add_2reg(0xC0, dreg
, sreg
));
628 /* dst = dst - val */
632 EMIT3(0x83, add_1reg(0xD8, dreg
), val
);
634 EMIT2(0x19, add_2reg(0xC0, dreg
, sreg
));
637 EMIT3(0x83, add_1reg(0xE8, dreg
), val
);
639 EMIT2(0x29, add_2reg(0xC0, dreg
, sreg
));
642 /* dst = dst | val */
645 EMIT3(0x83, add_1reg(0xC8, dreg
), val
);
647 EMIT2(0x09, add_2reg(0xC0, dreg
, sreg
));
649 /* dst = dst & val */
652 EMIT3(0x83, add_1reg(0xE0, dreg
), val
);
654 EMIT2(0x21, add_2reg(0xC0, dreg
, sreg
));
656 /* dst = dst ^ val */
659 EMIT3(0x83, add_1reg(0xF0, dreg
), val
);
661 EMIT2(0x31, add_2reg(0xC0, dreg
, sreg
));
664 EMIT2(0xF7, add_1reg(0xD8, dreg
));
669 /* mov dword ptr [ebp+off],dreg */
670 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg
),
675 /* ALU operation (64 bit) */
676 static inline void emit_ia32_alu_i64(const bool is64
, const u8 op
,
677 const u8 dst
[], const u32 val
,
678 bool dstk
, u8
**pprog
,
679 const struct bpf_prog_aux
*aux
)
684 if (is64
&& (val
& (1<<31)))
687 emit_ia32_alu_i(is64
, false, op
, dst_lo
, val
, dstk
, &prog
);
689 emit_ia32_alu_i(is64
, true, op
, dst_hi
, hi
, dstk
, &prog
);
690 else if (!aux
->verifier_zext
)
691 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
696 /* dst = ~dst (64 bit) */
697 static inline void emit_ia32_neg64(const u8 dst
[], bool dstk
, u8
**pprog
)
701 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
702 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
705 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
707 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
712 EMIT2(0xF7, add_1reg(0xD8, dreg_lo
));
713 /* adc dreg_hi,0x0 */
714 EMIT3(0x83, add_1reg(0xD0, dreg_hi
), 0x00);
716 EMIT2(0xF7, add_1reg(0xD8, dreg_hi
));
719 /* mov dword ptr [ebp+off],dreg_lo */
720 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
722 /* mov dword ptr [ebp+off],dreg_hi */
723 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
729 /* dst = dst << src */
730 static inline void emit_ia32_lsh_r64(const u8 dst
[], const u8 src
[],
731 bool dstk
, bool sstk
, u8
**pprog
)
735 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
736 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
739 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
741 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
746 /* mov ecx,dword ptr [ebp+off] */
747 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
751 EMIT2(0x8B, add_2reg(0xC0, src_lo
, IA32_ECX
));
753 /* shld dreg_hi,dreg_lo,cl */
754 EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi
, dreg_lo
));
756 EMIT2(0xD3, add_1reg(0xE0, dreg_lo
));
758 /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
761 EMIT3(0x83, add_1reg(0xF8, IA32_ECX
), 32);
762 /* skip the next two instructions (4 bytes) when < 32 */
765 /* mov dreg_hi,dreg_lo */
766 EMIT2(0x89, add_2reg(0xC0, dreg_hi
, dreg_lo
));
767 /* xor dreg_lo,dreg_lo */
768 EMIT2(0x33, add_2reg(0xC0, dreg_lo
, dreg_lo
));
771 /* mov dword ptr [ebp+off],dreg_lo */
772 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
774 /* mov dword ptr [ebp+off],dreg_hi */
775 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
782 /* dst = dst >> src (signed)*/
783 static inline void emit_ia32_arsh_r64(const u8 dst
[], const u8 src
[],
784 bool dstk
, bool sstk
, u8
**pprog
)
788 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
789 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
792 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
794 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
799 /* mov ecx,dword ptr [ebp+off] */
800 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
804 EMIT2(0x8B, add_2reg(0xC0, src_lo
, IA32_ECX
));
806 /* shrd dreg_lo,dreg_hi,cl */
807 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo
, dreg_hi
));
809 EMIT2(0xD3, add_1reg(0xF8, dreg_hi
));
811 /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
814 EMIT3(0x83, add_1reg(0xF8, IA32_ECX
), 32);
815 /* skip the next two instructions (5 bytes) when < 32 */
818 /* mov dreg_lo,dreg_hi */
819 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, dreg_hi
));
821 EMIT3(0xC1, add_1reg(0xF8, dreg_hi
), 31);
824 /* mov dword ptr [ebp+off],dreg_lo */
825 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
827 /* mov dword ptr [ebp+off],dreg_hi */
828 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
835 /* dst = dst >> src */
836 static inline void emit_ia32_rsh_r64(const u8 dst
[], const u8 src
[], bool dstk
,
837 bool sstk
, u8
**pprog
)
841 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
842 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
845 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
847 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
852 /* mov ecx,dword ptr [ebp+off] */
853 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
857 EMIT2(0x8B, add_2reg(0xC0, src_lo
, IA32_ECX
));
859 /* shrd dreg_lo,dreg_hi,cl */
860 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo
, dreg_hi
));
862 EMIT2(0xD3, add_1reg(0xE8, dreg_hi
));
864 /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
867 EMIT3(0x83, add_1reg(0xF8, IA32_ECX
), 32);
868 /* skip the next two instructions (4 bytes) when < 32 */
871 /* mov dreg_lo,dreg_hi */
872 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, dreg_hi
));
873 /* xor dreg_hi,dreg_hi */
874 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
877 /* mov dword ptr [ebp+off],dreg_lo */
878 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
880 /* mov dword ptr [ebp+off],dreg_hi */
881 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
888 /* dst = dst << val */
889 static inline void emit_ia32_lsh_i64(const u8 dst
[], const u32 val
,
890 bool dstk
, u8
**pprog
)
894 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
895 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
898 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
900 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
903 /* Do LSH operation */
905 /* shld dreg_hi,dreg_lo,imm8 */
906 EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi
, dreg_lo
), val
);
907 /* shl dreg_lo,imm8 */
908 EMIT3(0xC1, add_1reg(0xE0, dreg_lo
), val
);
909 } else if (val
>= 32 && val
< 64) {
910 u32 value
= val
- 32;
912 /* shl dreg_lo,imm8 */
913 EMIT3(0xC1, add_1reg(0xE0, dreg_lo
), value
);
914 /* mov dreg_hi,dreg_lo */
915 EMIT2(0x89, add_2reg(0xC0, dreg_hi
, dreg_lo
));
916 /* xor dreg_lo,dreg_lo */
917 EMIT2(0x33, add_2reg(0xC0, dreg_lo
, dreg_lo
));
919 /* xor dreg_lo,dreg_lo */
920 EMIT2(0x33, add_2reg(0xC0, dreg_lo
, dreg_lo
));
921 /* xor dreg_hi,dreg_hi */
922 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
926 /* mov dword ptr [ebp+off],dreg_lo */
927 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
929 /* mov dword ptr [ebp+off],dreg_hi */
930 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
936 /* dst = dst >> val */
937 static inline void emit_ia32_rsh_i64(const u8 dst
[], const u32 val
,
938 bool dstk
, u8
**pprog
)
942 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
943 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
946 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
948 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
952 /* Do RSH operation */
954 /* shrd dreg_lo,dreg_hi,imm8 */
955 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo
, dreg_hi
), val
);
956 /* shr dreg_hi,imm8 */
957 EMIT3(0xC1, add_1reg(0xE8, dreg_hi
), val
);
958 } else if (val
>= 32 && val
< 64) {
959 u32 value
= val
- 32;
961 /* shr dreg_hi,imm8 */
962 EMIT3(0xC1, add_1reg(0xE8, dreg_hi
), value
);
963 /* mov dreg_lo,dreg_hi */
964 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, dreg_hi
));
965 /* xor dreg_hi,dreg_hi */
966 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
968 /* xor dreg_lo,dreg_lo */
969 EMIT2(0x33, add_2reg(0xC0, dreg_lo
, dreg_lo
));
970 /* xor dreg_hi,dreg_hi */
971 EMIT2(0x33, add_2reg(0xC0, dreg_hi
, dreg_hi
));
975 /* mov dword ptr [ebp+off],dreg_lo */
976 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
978 /* mov dword ptr [ebp+off],dreg_hi */
979 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
985 /* dst = dst >> val (signed) */
986 static inline void emit_ia32_arsh_i64(const u8 dst
[], const u32 val
,
987 bool dstk
, u8
**pprog
)
991 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
992 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
995 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
997 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
1000 /* Do RSH operation */
1002 /* shrd dreg_lo,dreg_hi,imm8 */
1003 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo
, dreg_hi
), val
);
1004 /* ashr dreg_hi,imm8 */
1005 EMIT3(0xC1, add_1reg(0xF8, dreg_hi
), val
);
1006 } else if (val
>= 32 && val
< 64) {
1007 u32 value
= val
- 32;
1009 /* ashr dreg_hi,imm8 */
1010 EMIT3(0xC1, add_1reg(0xF8, dreg_hi
), value
);
1011 /* mov dreg_lo,dreg_hi */
1012 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, dreg_hi
));
1014 /* ashr dreg_hi,imm8 */
1015 EMIT3(0xC1, add_1reg(0xF8, dreg_hi
), 31);
1017 /* ashr dreg_hi,imm8 */
1018 EMIT3(0xC1, add_1reg(0xF8, dreg_hi
), 31);
1019 /* mov dreg_lo,dreg_hi */
1020 EMIT2(0x89, add_2reg(0xC0, dreg_lo
, dreg_hi
));
1024 /* mov dword ptr [ebp+off],dreg_lo */
1025 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_lo
),
1027 /* mov dword ptr [ebp+off],dreg_hi */
1028 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, dreg_hi
),
1034 static inline void emit_ia32_mul_r64(const u8 dst
[], const u8 src
[], bool dstk
,
1035 bool sstk
, u8
**pprog
)
1041 /* mov eax,dword ptr [ebp+off] */
1042 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1045 /* mov eax,dst_hi */
1046 EMIT2(0x8B, add_2reg(0xC0, dst_hi
, IA32_EAX
));
1049 /* mul dword ptr [ebp+off] */
1050 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(src_lo
));
1053 EMIT2(0xF7, add_1reg(0xE0, src_lo
));
1056 EMIT2(0x89, add_2reg(0xC0, IA32_ECX
, IA32_EAX
));
1059 /* mov eax,dword ptr [ebp+off] */
1060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1063 /* mov eax,dst_lo */
1064 EMIT2(0x8B, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1067 /* mul dword ptr [ebp+off] */
1068 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(src_hi
));
1071 EMIT2(0xF7, add_1reg(0xE0, src_hi
));
1074 EMIT2(0x01, add_2reg(0xC0, IA32_ECX
, IA32_EAX
));
1077 /* mov eax,dword ptr [ebp+off] */
1078 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1081 /* mov eax,dst_lo */
1082 EMIT2(0x8B, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1085 /* mul dword ptr [ebp+off] */
1086 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(src_lo
));
1089 EMIT2(0xF7, add_1reg(0xE0, src_lo
));
1092 EMIT2(0x01, add_2reg(0xC0, IA32_ECX
, IA32_EDX
));
1095 /* mov dword ptr [ebp+off],eax */
1096 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1098 /* mov dword ptr [ebp+off],ecx */
1099 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
1102 /* mov dst_lo,eax */
1103 EMIT2(0x89, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1104 /* mov dst_hi,ecx */
1105 EMIT2(0x89, add_2reg(0xC0, dst_hi
, IA32_ECX
));
1111 static inline void emit_ia32_mul_i64(const u8 dst
[], const u32 val
,
1112 bool dstk
, u8
**pprog
)
1118 hi
= val
& (1<<31) ? (u32
)~0 : 0;
1119 /* movl eax,imm32 */
1120 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX
), val
);
1122 /* mul dword ptr [ebp+off] */
1123 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(dst_hi
));
1126 EMIT2(0xF7, add_1reg(0xE0, dst_hi
));
1129 EMIT2(0x89, add_2reg(0xC0, IA32_ECX
, IA32_EAX
));
1131 /* movl eax,imm32 */
1132 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX
), hi
);
1134 /* mul dword ptr [ebp+off] */
1135 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(dst_lo
));
1138 EMIT2(0xF7, add_1reg(0xE0, dst_lo
));
1140 EMIT2(0x01, add_2reg(0xC0, IA32_ECX
, IA32_EAX
));
1142 /* movl eax,imm32 */
1143 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX
), val
);
1145 /* mul dword ptr [ebp+off] */
1146 EMIT3(0xF7, add_1reg(0x60, IA32_EBP
), STACK_VAR(dst_lo
));
1149 EMIT2(0xF7, add_1reg(0xE0, dst_lo
));
1152 EMIT2(0x01, add_2reg(0xC0, IA32_ECX
, IA32_EDX
));
1155 /* mov dword ptr [ebp+off],eax */
1156 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1158 /* mov dword ptr [ebp+off],ecx */
1159 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
1162 /* mov dword ptr [ebp+off],eax */
1163 EMIT2(0x89, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1164 /* mov dword ptr [ebp+off],ecx */
1165 EMIT2(0x89, add_2reg(0xC0, dst_hi
, IA32_ECX
));
1171 static int bpf_size_to_x86_bytes(int bpf_size
)
1173 if (bpf_size
== BPF_W
)
1175 else if (bpf_size
== BPF_H
)
1177 else if (bpf_size
== BPF_B
)
1179 else if (bpf_size
== BPF_DW
)
1180 return 4; /* imm32 */
1185 struct jit_context
{
1186 int cleanup_addr
; /* Epilogue code offset */
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE 128
1191 #define BPF_INSN_SAFETY 64
1193 #define PROLOGUE_SIZE 35
1196 * Emit prologue code for BPF program and check it's size.
1197 * bpf_tail_call helper will skip it while jumping into another program.
1199 static void emit_prologue(u8
**pprog
, u32 stack_depth
)
1203 const u8
*r1
= bpf2ia32
[BPF_REG_1
];
1204 const u8 fplo
= bpf2ia32
[BPF_REG_FP
][0];
1205 const u8 fphi
= bpf2ia32
[BPF_REG_FP
][1];
1206 const u8
*tcc
= bpf2ia32
[TCALL_CNT
];
1219 /* sub esp,STACK_SIZE */
1220 EMIT2_off32(0x81, 0xEC, STACK_SIZE
);
1221 /* sub ebp,SCRATCH_SIZE+12*/
1222 EMIT3(0x83, add_1reg(0xE8, IA32_EBP
), SCRATCH_SIZE
+ 12);
1224 EMIT2(0x31, add_2reg(0xC0, IA32_EBX
, IA32_EBX
));
1226 /* Set up BPF prog stack base register */
1227 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBP
), STACK_VAR(fplo
));
1228 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(fphi
));
1230 /* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 /* mov dword ptr [ebp+off],eax */
1232 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(r1
[0]));
1233 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(r1
[1]));
1235 /* Initialize Tail Count */
1236 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(tcc
[0]));
1237 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(tcc
[1]));
1239 BUILD_BUG_ON(cnt
!= PROLOGUE_SIZE
);
1243 /* Emit epilogue code for BPF program */
1244 static void emit_epilogue(u8
**pprog
, u32 stack_depth
)
1247 const u8
*r0
= bpf2ia32
[BPF_REG_0
];
1250 /* mov eax,dword ptr [ebp+off]*/
1251 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(r0
[0]));
1252 /* mov edx,dword ptr [ebp+off]*/
1253 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
), STACK_VAR(r0
[1]));
1255 /* add ebp,SCRATCH_SIZE+12*/
1256 EMIT3(0x83, add_1reg(0xC0, IA32_EBP
), SCRATCH_SIZE
+ 12);
1258 /* mov ebx,dword ptr [ebp-12]*/
1259 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EBX
), -12);
1260 /* mov esi,dword ptr [ebp-8]*/
1261 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ESI
), -8);
1262 /* mov edi,dword ptr [ebp-4]*/
1263 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDI
), -4);
1265 EMIT1(0xC9); /* leave */
1266 EMIT1(0xC3); /* ret */
1271 * Generate the following code:
1272 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273 * if (index >= array->map.max_entries)
1275 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1277 * prog = array->ptrs[index];
1280 * goto *(prog->bpf_func + prologue_size);
1283 static void emit_bpf_tail_call(u8
**pprog
)
1287 const u8
*r1
= bpf2ia32
[BPF_REG_1
];
1288 const u8
*r2
= bpf2ia32
[BPF_REG_2
];
1289 const u8
*r3
= bpf2ia32
[BPF_REG_3
];
1290 const u8
*tcc
= bpf2ia32
[TCALL_CNT
];
1292 static int jmp_label1
= -1;
1295 * if (index >= array->map.max_entries)
1298 /* mov eax,dword ptr [ebp+off] */
1299 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(r2
[0]));
1300 /* mov edx,dword ptr [ebp+off] */
1301 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
), STACK_VAR(r3
[0]));
1303 /* cmp dword ptr [eax+off],edx */
1304 EMIT3(0x39, add_2reg(0x40, IA32_EAX
, IA32_EDX
),
1305 offsetof(struct bpf_array
, map
.max_entries
));
1307 EMIT2(IA32_JBE
, jmp_label(jmp_label1
, 2));
1310 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1313 lo
= (u32
)MAX_TAIL_CALL_CNT
;
1314 hi
= (u32
)((u64
)MAX_TAIL_CALL_CNT
>> 32);
1315 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(tcc
[0]));
1316 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(tcc
[1]));
1319 EMIT3(0x83, add_1reg(0xF8, IA32_EBX
), hi
);
1322 EMIT3(0x83, add_1reg(0xF8, IA32_ECX
), lo
);
1325 EMIT2(IA32_JAE
, jmp_label(jmp_label1
, 2));
1328 EMIT3(0x83, add_1reg(0xC0, IA32_ECX
), 0x01);
1330 EMIT3(0x83, add_1reg(0xD0, IA32_EBX
), 0x00);
1332 /* mov dword ptr [ebp+off],eax */
1333 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(tcc
[0]));
1334 /* mov dword ptr [ebp+off],edx */
1335 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EBX
), STACK_VAR(tcc
[1]));
1337 /* prog = array->ptrs[index]; */
1338 /* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array
, ptrs
));
1346 EMIT2(0x85, add_2reg(0xC0, IA32_EDX
, IA32_EDX
));
1348 EMIT2(IA32_JE
, jmp_label(jmp_label1
, 2));
1350 /* goto *(prog->bpf_func + prologue_size); */
1351 /* mov edx, dword ptr [edx + 32] */
1352 EMIT3(0x8B, add_2reg(0x40, IA32_EDX
, IA32_EDX
),
1353 offsetof(struct bpf_prog
, bpf_func
));
1354 /* add edx,prologue_size */
1355 EMIT3(0x83, add_1reg(0xC0, IA32_EDX
), PROLOGUE_SIZE
);
1357 /* mov eax,dword ptr [ebp+off] */
1358 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
), STACK_VAR(r1
[0]));
1361 * Now we're ready to jump into next BPF program:
1362 * eax == ctx (1st arg)
1363 * edx == prog->bpf_func + prologue_size
1365 RETPOLINE_EDX_BPF_JIT();
1367 if (jmp_label1
== -1)
1374 /* Push the scratch stack register on top of the stack. */
1375 static inline void emit_push_r64(const u8 src
[], u8
**pprog
)
1380 /* mov ecx,dword ptr [ebp+off] */
1381 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(src_hi
));
1385 /* mov ecx,dword ptr [ebp+off] */
1386 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
), STACK_VAR(src_lo
));
1393 static u8
get_cond_jmp_opcode(const u8 op
, bool is_cmp_lo
)
1397 /* Convert BPF opcode to x86 */
1404 jmp_cond
= IA32_JNE
;
1407 /* GT is unsigned '>', JA in x86 */
1411 /* LT is unsigned '<', JB in x86 */
1415 /* GE is unsigned '>=', JAE in x86 */
1416 jmp_cond
= IA32_JAE
;
1419 /* LE is unsigned '<=', JBE in x86 */
1420 jmp_cond
= IA32_JBE
;
1424 /* Signed '>', GT in x86 */
1427 /* GT is unsigned '>', JA in x86 */
1432 /* Signed '<', LT in x86 */
1435 /* LT is unsigned '<', JB in x86 */
1440 /* Signed '>=', GE in x86 */
1441 jmp_cond
= IA32_JGE
;
1443 /* GE is unsigned '>=', JAE in x86 */
1444 jmp_cond
= IA32_JAE
;
1448 /* Signed '<=', LE in x86 */
1449 jmp_cond
= IA32_JLE
;
1451 /* LE is unsigned '<=', JBE in x86 */
1452 jmp_cond
= IA32_JBE
;
1454 default: /* to silence GCC warning */
1455 jmp_cond
= COND_JMP_OPCODE_INVALID
;
1462 static int do_jit(struct bpf_prog
*bpf_prog
, int *addrs
, u8
*image
,
1463 int oldproglen
, struct jit_context
*ctx
)
1465 struct bpf_insn
*insn
= bpf_prog
->insnsi
;
1466 int insn_cnt
= bpf_prog
->len
;
1467 bool seen_exit
= false;
1468 u8 temp
[BPF_MAX_INSN_SIZE
+ BPF_INSN_SAFETY
];
1473 emit_prologue(&prog
, bpf_prog
->aux
->stack_depth
);
1475 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
1476 const s32 imm32
= insn
->imm
;
1477 const bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
1478 const bool dstk
= insn
->dst_reg
== BPF_REG_AX
? false : true;
1479 const bool sstk
= insn
->src_reg
== BPF_REG_AX
? false : true;
1480 const u8 code
= insn
->code
;
1481 const u8
*dst
= bpf2ia32
[insn
->dst_reg
];
1482 const u8
*src
= bpf2ia32
[insn
->src_reg
];
1483 const u8
*r0
= bpf2ia32
[BPF_REG_0
];
1490 /* ALU operations */
1492 case BPF_ALU
| BPF_MOV
| BPF_K
:
1493 case BPF_ALU
| BPF_MOV
| BPF_X
:
1494 case BPF_ALU64
| BPF_MOV
| BPF_K
:
1495 case BPF_ALU64
| BPF_MOV
| BPF_X
:
1496 switch (BPF_SRC(code
)) {
1499 /* Special mov32 for zext. */
1500 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1503 emit_ia32_mov_r64(is64
, dst
, src
, dstk
, sstk
,
1504 &prog
, bpf_prog
->aux
);
1507 /* Sign-extend immediate value to dst reg */
1508 emit_ia32_mov_i64(is64
, dst
, imm32
,
1513 /* dst = dst + src/imm */
1514 /* dst = dst - src/imm */
1515 /* dst = dst | src/imm */
1516 /* dst = dst & src/imm */
1517 /* dst = dst ^ src/imm */
1518 /* dst = dst * src/imm */
1519 /* dst = dst << src */
1520 /* dst = dst >> src */
1521 case BPF_ALU
| BPF_ADD
| BPF_K
:
1522 case BPF_ALU
| BPF_ADD
| BPF_X
:
1523 case BPF_ALU
| BPF_SUB
| BPF_K
:
1524 case BPF_ALU
| BPF_SUB
| BPF_X
:
1525 case BPF_ALU
| BPF_OR
| BPF_K
:
1526 case BPF_ALU
| BPF_OR
| BPF_X
:
1527 case BPF_ALU
| BPF_AND
| BPF_K
:
1528 case BPF_ALU
| BPF_AND
| BPF_X
:
1529 case BPF_ALU
| BPF_XOR
| BPF_K
:
1530 case BPF_ALU
| BPF_XOR
| BPF_X
:
1531 case BPF_ALU64
| BPF_ADD
| BPF_K
:
1532 case BPF_ALU64
| BPF_ADD
| BPF_X
:
1533 case BPF_ALU64
| BPF_SUB
| BPF_K
:
1534 case BPF_ALU64
| BPF_SUB
| BPF_X
:
1535 case BPF_ALU64
| BPF_OR
| BPF_K
:
1536 case BPF_ALU64
| BPF_OR
| BPF_X
:
1537 case BPF_ALU64
| BPF_AND
| BPF_K
:
1538 case BPF_ALU64
| BPF_AND
| BPF_X
:
1539 case BPF_ALU64
| BPF_XOR
| BPF_K
:
1540 case BPF_ALU64
| BPF_XOR
| BPF_X
:
1541 switch (BPF_SRC(code
)) {
1543 emit_ia32_alu_r64(is64
, BPF_OP(code
), dst
,
1544 src
, dstk
, sstk
, &prog
,
1548 emit_ia32_alu_i64(is64
, BPF_OP(code
), dst
,
1554 case BPF_ALU
| BPF_MUL
| BPF_K
:
1555 case BPF_ALU
| BPF_MUL
| BPF_X
:
1556 switch (BPF_SRC(code
)) {
1558 emit_ia32_mul_r(dst_lo
, src_lo
, dstk
,
1563 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
),
1565 emit_ia32_mul_r(dst_lo
, IA32_ECX
, dstk
,
1569 if (!bpf_prog
->aux
->verifier_zext
)
1570 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1572 case BPF_ALU
| BPF_LSH
| BPF_X
:
1573 case BPF_ALU
| BPF_RSH
| BPF_X
:
1574 case BPF_ALU
| BPF_ARSH
| BPF_K
:
1575 case BPF_ALU
| BPF_ARSH
| BPF_X
:
1576 switch (BPF_SRC(code
)) {
1578 emit_ia32_shift_r(BPF_OP(code
), dst_lo
, src_lo
,
1583 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
),
1585 emit_ia32_shift_r(BPF_OP(code
), dst_lo
,
1586 IA32_ECX
, dstk
, false,
1590 if (!bpf_prog
->aux
->verifier_zext
)
1591 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1593 /* dst = dst / src(imm) */
1594 /* dst = dst % src(imm) */
1595 case BPF_ALU
| BPF_DIV
| BPF_K
:
1596 case BPF_ALU
| BPF_DIV
| BPF_X
:
1597 case BPF_ALU
| BPF_MOD
| BPF_K
:
1598 case BPF_ALU
| BPF_MOD
| BPF_X
:
1599 switch (BPF_SRC(code
)) {
1601 emit_ia32_div_mod_r(BPF_OP(code
), dst_lo
,
1602 src_lo
, dstk
, sstk
, &prog
);
1606 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
),
1608 emit_ia32_div_mod_r(BPF_OP(code
), dst_lo
,
1609 IA32_ECX
, dstk
, false,
1613 if (!bpf_prog
->aux
->verifier_zext
)
1614 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1616 case BPF_ALU64
| BPF_DIV
| BPF_K
:
1617 case BPF_ALU64
| BPF_DIV
| BPF_X
:
1618 case BPF_ALU64
| BPF_MOD
| BPF_K
:
1619 case BPF_ALU64
| BPF_MOD
| BPF_X
:
1621 /* dst = dst >> imm */
1622 /* dst = dst << imm */
1623 case BPF_ALU
| BPF_RSH
| BPF_K
:
1624 case BPF_ALU
| BPF_LSH
| BPF_K
:
1625 if (unlikely(imm32
> 31))
1628 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
), imm32
);
1629 emit_ia32_shift_r(BPF_OP(code
), dst_lo
, IA32_ECX
, dstk
,
1631 if (!bpf_prog
->aux
->verifier_zext
)
1632 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1634 /* dst = dst << imm */
1635 case BPF_ALU64
| BPF_LSH
| BPF_K
:
1636 if (unlikely(imm32
> 63))
1638 emit_ia32_lsh_i64(dst
, imm32
, dstk
, &prog
);
1640 /* dst = dst >> imm */
1641 case BPF_ALU64
| BPF_RSH
| BPF_K
:
1642 if (unlikely(imm32
> 63))
1644 emit_ia32_rsh_i64(dst
, imm32
, dstk
, &prog
);
1646 /* dst = dst << src */
1647 case BPF_ALU64
| BPF_LSH
| BPF_X
:
1648 emit_ia32_lsh_r64(dst
, src
, dstk
, sstk
, &prog
);
1650 /* dst = dst >> src */
1651 case BPF_ALU64
| BPF_RSH
| BPF_X
:
1652 emit_ia32_rsh_r64(dst
, src
, dstk
, sstk
, &prog
);
1654 /* dst = dst >> src (signed) */
1655 case BPF_ALU64
| BPF_ARSH
| BPF_X
:
1656 emit_ia32_arsh_r64(dst
, src
, dstk
, sstk
, &prog
);
1658 /* dst = dst >> imm (signed) */
1659 case BPF_ALU64
| BPF_ARSH
| BPF_K
:
1660 if (unlikely(imm32
> 63))
1662 emit_ia32_arsh_i64(dst
, imm32
, dstk
, &prog
);
1665 case BPF_ALU
| BPF_NEG
:
1666 emit_ia32_alu_i(is64
, false, BPF_OP(code
),
1667 dst_lo
, 0, dstk
, &prog
);
1668 if (!bpf_prog
->aux
->verifier_zext
)
1669 emit_ia32_mov_i(dst_hi
, 0, dstk
, &prog
);
1671 /* dst = ~dst (64 bit) */
1672 case BPF_ALU64
| BPF_NEG
:
1673 emit_ia32_neg64(dst
, dstk
, &prog
);
1675 /* dst = dst * src/imm */
1676 case BPF_ALU64
| BPF_MUL
| BPF_X
:
1677 case BPF_ALU64
| BPF_MUL
| BPF_K
:
1678 switch (BPF_SRC(code
)) {
1680 emit_ia32_mul_r64(dst
, src
, dstk
, sstk
, &prog
);
1683 emit_ia32_mul_i64(dst
, imm32
, dstk
, &prog
);
1687 /* dst = htole(dst) */
1688 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
1689 emit_ia32_to_le_r64(dst
, imm32
, dstk
, &prog
,
1692 /* dst = htobe(dst) */
1693 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
1694 emit_ia32_to_be_r64(dst
, imm32
, dstk
, &prog
,
1698 case BPF_LD
| BPF_IMM
| BPF_DW
: {
1702 emit_ia32_mov_i(dst_lo
, lo
, dstk
, &prog
);
1703 emit_ia32_mov_i(dst_hi
, hi
, dstk
, &prog
);
1708 /* ST: *(u8*)(dst_reg + off) = imm */
1709 case BPF_ST
| BPF_MEM
| BPF_H
:
1710 case BPF_ST
| BPF_MEM
| BPF_B
:
1711 case BPF_ST
| BPF_MEM
| BPF_W
:
1712 case BPF_ST
| BPF_MEM
| BPF_DW
:
1714 /* mov eax,dword ptr [ebp+off] */
1715 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1718 /* mov eax,dst_lo */
1719 EMIT2(0x8B, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1721 switch (BPF_SIZE(code
)) {
1723 EMIT(0xC6, 1); break;
1725 EMIT2(0x66, 0xC7); break;
1728 EMIT(0xC7, 1); break;
1731 if (is_imm8(insn
->off
))
1732 EMIT2(add_1reg(0x40, IA32_EAX
), insn
->off
);
1734 EMIT1_off32(add_1reg(0x80, IA32_EAX
),
1736 EMIT(imm32
, bpf_size_to_x86_bytes(BPF_SIZE(code
)));
1738 if (BPF_SIZE(code
) == BPF_DW
) {
1741 hi
= imm32
& (1<<31) ? (u32
)~0 : 0;
1742 EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX
),
1748 /* STX: *(u8*)(dst_reg + off) = src_reg */
1749 case BPF_STX
| BPF_MEM
| BPF_B
:
1750 case BPF_STX
| BPF_MEM
| BPF_H
:
1751 case BPF_STX
| BPF_MEM
| BPF_W
:
1752 case BPF_STX
| BPF_MEM
| BPF_DW
:
1754 /* mov eax,dword ptr [ebp+off] */
1755 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1758 /* mov eax,dst_lo */
1759 EMIT2(0x8B, add_2reg(0xC0, dst_lo
, IA32_EAX
));
1762 /* mov edx,dword ptr [ebp+off] */
1763 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
1766 /* mov edx,src_lo */
1767 EMIT2(0x8B, add_2reg(0xC0, src_lo
, IA32_EDX
));
1769 switch (BPF_SIZE(code
)) {
1771 EMIT(0x88, 1); break;
1773 EMIT2(0x66, 0x89); break;
1776 EMIT(0x89, 1); break;
1779 if (is_imm8(insn
->off
))
1780 EMIT2(add_2reg(0x40, IA32_EAX
, IA32_EDX
),
1783 EMIT1_off32(add_2reg(0x80, IA32_EAX
, IA32_EDX
),
1786 if (BPF_SIZE(code
) == BPF_DW
) {
1788 /* mov edi,dword ptr [ebp+off] */
1789 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
,
1793 /* mov edi,src_hi */
1794 EMIT2(0x8B, add_2reg(0xC0, src_hi
,
1797 if (is_imm8(insn
->off
+ 4)) {
1798 EMIT2(add_2reg(0x40, IA32_EAX
,
1802 EMIT1(add_2reg(0x80, IA32_EAX
,
1804 EMIT(insn
->off
+ 4, 4);
1809 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1810 case BPF_LDX
| BPF_MEM
| BPF_B
:
1811 case BPF_LDX
| BPF_MEM
| BPF_H
:
1812 case BPF_LDX
| BPF_MEM
| BPF_W
:
1813 case BPF_LDX
| BPF_MEM
| BPF_DW
:
1815 /* mov eax,dword ptr [ebp+off] */
1816 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1819 /* mov eax,dword ptr [ebp+off] */
1820 EMIT2(0x8B, add_2reg(0xC0, src_lo
, IA32_EAX
));
1822 switch (BPF_SIZE(code
)) {
1824 EMIT2(0x0F, 0xB6); break;
1826 EMIT2(0x0F, 0xB7); break;
1829 EMIT(0x8B, 1); break;
1832 if (is_imm8(insn
->off
))
1833 EMIT2(add_2reg(0x40, IA32_EAX
, IA32_EDX
),
1836 EMIT1_off32(add_2reg(0x80, IA32_EAX
, IA32_EDX
),
1840 /* mov dword ptr [ebp+off],edx */
1841 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
1844 /* mov dst_lo,edx */
1845 EMIT2(0x89, add_2reg(0xC0, dst_lo
, IA32_EDX
));
1846 switch (BPF_SIZE(code
)) {
1850 if (!bpf_prog
->aux
->verifier_zext
)
1853 EMIT3(0xC7, add_1reg(0x40, IA32_EBP
),
1857 EMIT3(0xC7, add_1reg(0xC0, dst_hi
), 0);
1862 add_2reg(0x80, IA32_EAX
, IA32_EDX
),
1866 add_2reg(0x40, IA32_EBP
,
1871 add_2reg(0xC0, dst_hi
, IA32_EDX
));
1878 case BPF_JMP
| BPF_CALL
:
1880 const u8
*r1
= bpf2ia32
[BPF_REG_1
];
1881 const u8
*r2
= bpf2ia32
[BPF_REG_2
];
1882 const u8
*r3
= bpf2ia32
[BPF_REG_3
];
1883 const u8
*r4
= bpf2ia32
[BPF_REG_4
];
1884 const u8
*r5
= bpf2ia32
[BPF_REG_5
];
1886 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
1889 func
= (u8
*) __bpf_call_base
+ imm32
;
1890 jmp_offset
= func
- (image
+ addrs
[i
]);
1892 if (!imm32
|| !is_simm32(jmp_offset
)) {
1893 pr_err("unsupported BPF func %d addr %p image %p\n",
1894 imm32
, func
, image
);
1898 /* mov eax,dword ptr [ebp+off] */
1899 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1901 /* mov edx,dword ptr [ebp+off] */
1902 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
1905 emit_push_r64(r5
, &prog
);
1906 emit_push_r64(r4
, &prog
);
1907 emit_push_r64(r3
, &prog
);
1908 emit_push_r64(r2
, &prog
);
1910 EMIT1_off32(0xE8, jmp_offset
+ 9);
1912 /* mov dword ptr [ebp+off],eax */
1913 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1915 /* mov dword ptr [ebp+off],edx */
1916 EMIT3(0x89, add_2reg(0x40, IA32_EBP
, IA32_EDX
),
1920 EMIT3(0x83, add_1reg(0xC0, IA32_ESP
), 32);
1923 case BPF_JMP
| BPF_TAIL_CALL
:
1924 emit_bpf_tail_call(&prog
);
1928 case BPF_JMP
| BPF_JEQ
| BPF_X
:
1929 case BPF_JMP
| BPF_JNE
| BPF_X
:
1930 case BPF_JMP
| BPF_JGT
| BPF_X
:
1931 case BPF_JMP
| BPF_JLT
| BPF_X
:
1932 case BPF_JMP
| BPF_JGE
| BPF_X
:
1933 case BPF_JMP
| BPF_JLE
| BPF_X
:
1934 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
1935 case BPF_JMP32
| BPF_JNE
| BPF_X
:
1936 case BPF_JMP32
| BPF_JGT
| BPF_X
:
1937 case BPF_JMP32
| BPF_JLT
| BPF_X
:
1938 case BPF_JMP32
| BPF_JGE
| BPF_X
:
1939 case BPF_JMP32
| BPF_JLE
| BPF_X
:
1940 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
1941 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
1942 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
1943 case BPF_JMP32
| BPF_JSGE
| BPF_X
: {
1944 bool is_jmp64
= BPF_CLASS(insn
->code
) == BPF_JMP
;
1945 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
1946 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
1947 u8 sreg_lo
= sstk
? IA32_ECX
: src_lo
;
1948 u8 sreg_hi
= sstk
? IA32_EBX
: src_hi
;
1951 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1955 add_2reg(0x40, IA32_EBP
,
1961 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
1965 add_2reg(0x40, IA32_EBP
,
1971 /* cmp dreg_hi,sreg_hi */
1972 EMIT2(0x39, add_2reg(0xC0, dreg_hi
, sreg_hi
));
1975 /* cmp dreg_lo,sreg_lo */
1976 EMIT2(0x39, add_2reg(0xC0, dreg_lo
, sreg_lo
));
1979 case BPF_JMP
| BPF_JSGT
| BPF_X
:
1980 case BPF_JMP
| BPF_JSLE
| BPF_X
:
1981 case BPF_JMP
| BPF_JSLT
| BPF_X
:
1982 case BPF_JMP
| BPF_JSGE
| BPF_X
: {
1983 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
1984 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
1985 u8 sreg_lo
= sstk
? IA32_ECX
: src_lo
;
1986 u8 sreg_hi
= sstk
? IA32_EBX
: src_hi
;
1989 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
1992 add_2reg(0x40, IA32_EBP
,
1998 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
2001 add_2reg(0x40, IA32_EBP
,
2006 /* cmp dreg_hi,sreg_hi */
2007 EMIT2(0x39, add_2reg(0xC0, dreg_hi
, sreg_hi
));
2008 EMIT2(IA32_JNE
, 10);
2009 /* cmp dreg_lo,sreg_lo */
2010 EMIT2(0x39, add_2reg(0xC0, dreg_lo
, sreg_lo
));
2011 goto emit_cond_jmp_signed
;
2013 case BPF_JMP
| BPF_JSET
| BPF_X
:
2014 case BPF_JMP32
| BPF_JSET
| BPF_X
: {
2015 bool is_jmp64
= BPF_CLASS(insn
->code
) == BPF_JMP
;
2016 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
2017 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
2018 u8 sreg_lo
= sstk
? IA32_ECX
: src_lo
;
2019 u8 sreg_hi
= sstk
? IA32_EBX
: src_hi
;
2022 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
2026 add_2reg(0x40, IA32_EBP
,
2032 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_ECX
),
2036 add_2reg(0x40, IA32_EBP
,
2040 /* and dreg_lo,sreg_lo */
2041 EMIT2(0x23, add_2reg(0xC0, sreg_lo
, dreg_lo
));
2043 /* and dreg_hi,sreg_hi */
2044 EMIT2(0x23, add_2reg(0xC0, sreg_hi
, dreg_hi
));
2045 /* or dreg_lo,dreg_hi */
2046 EMIT2(0x09, add_2reg(0xC0, dreg_lo
, dreg_hi
));
2050 case BPF_JMP
| BPF_JSET
| BPF_K
:
2051 case BPF_JMP32
| BPF_JSET
| BPF_K
: {
2052 bool is_jmp64
= BPF_CLASS(insn
->code
) == BPF_JMP
;
2053 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
2054 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
2055 u8 sreg_lo
= IA32_ECX
;
2056 u8 sreg_hi
= IA32_EBX
;
2060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
2064 add_2reg(0x40, IA32_EBP
,
2070 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo
), imm32
);
2072 /* and dreg_lo,sreg_lo */
2073 EMIT2(0x23, add_2reg(0xC0, sreg_lo
, dreg_lo
));
2075 hi
= imm32
& (1 << 31) ? (u32
)~0 : 0;
2077 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi
), hi
);
2078 /* and dreg_hi,sreg_hi */
2079 EMIT2(0x23, add_2reg(0xC0, sreg_hi
, dreg_hi
));
2080 /* or dreg_lo,dreg_hi */
2081 EMIT2(0x09, add_2reg(0xC0, dreg_lo
, dreg_hi
));
2085 case BPF_JMP
| BPF_JEQ
| BPF_K
:
2086 case BPF_JMP
| BPF_JNE
| BPF_K
:
2087 case BPF_JMP
| BPF_JGT
| BPF_K
:
2088 case BPF_JMP
| BPF_JLT
| BPF_K
:
2089 case BPF_JMP
| BPF_JGE
| BPF_K
:
2090 case BPF_JMP
| BPF_JLE
| BPF_K
:
2091 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
2092 case BPF_JMP32
| BPF_JNE
| BPF_K
:
2093 case BPF_JMP32
| BPF_JGT
| BPF_K
:
2094 case BPF_JMP32
| BPF_JLT
| BPF_K
:
2095 case BPF_JMP32
| BPF_JGE
| BPF_K
:
2096 case BPF_JMP32
| BPF_JLE
| BPF_K
:
2097 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
2098 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
2099 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
2100 case BPF_JMP32
| BPF_JSGE
| BPF_K
: {
2101 bool is_jmp64
= BPF_CLASS(insn
->code
) == BPF_JMP
;
2102 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
2103 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
2104 u8 sreg_lo
= IA32_ECX
;
2105 u8 sreg_hi
= IA32_EBX
;
2109 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
2113 add_2reg(0x40, IA32_EBP
,
2119 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
), imm32
);
2121 hi
= imm32
& (1 << 31) ? (u32
)~0 : 0;
2123 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX
), hi
);
2124 /* cmp dreg_hi,sreg_hi */
2125 EMIT2(0x39, add_2reg(0xC0, dreg_hi
, sreg_hi
));
2128 /* cmp dreg_lo,sreg_lo */
2129 EMIT2(0x39, add_2reg(0xC0, dreg_lo
, sreg_lo
));
2131 emit_cond_jmp
: jmp_cond
= get_cond_jmp_opcode(BPF_OP(code
), false);
2132 if (jmp_cond
== COND_JMP_OPCODE_INVALID
)
2134 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
];
2135 if (is_imm8(jmp_offset
)) {
2136 EMIT2(jmp_cond
, jmp_offset
);
2137 } else if (is_simm32(jmp_offset
)) {
2138 EMIT2_off32(0x0F, jmp_cond
+ 0x10, jmp_offset
);
2140 pr_err("cond_jmp gen bug %llx\n", jmp_offset
);
2145 case BPF_JMP
| BPF_JSGT
| BPF_K
:
2146 case BPF_JMP
| BPF_JSLE
| BPF_K
:
2147 case BPF_JMP
| BPF_JSLT
| BPF_K
:
2148 case BPF_JMP
| BPF_JSGE
| BPF_K
: {
2149 u8 dreg_lo
= dstk
? IA32_EAX
: dst_lo
;
2150 u8 dreg_hi
= dstk
? IA32_EDX
: dst_hi
;
2151 u8 sreg_lo
= IA32_ECX
;
2152 u8 sreg_hi
= IA32_EBX
;
2156 EMIT3(0x8B, add_2reg(0x40, IA32_EBP
, IA32_EAX
),
2159 add_2reg(0x40, IA32_EBP
,
2165 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX
), imm32
);
2166 hi
= imm32
& (1 << 31) ? (u32
)~0 : 0;
2168 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX
), hi
);
2169 /* cmp dreg_hi,sreg_hi */
2170 EMIT2(0x39, add_2reg(0xC0, dreg_hi
, sreg_hi
));
2171 EMIT2(IA32_JNE
, 10);
2172 /* cmp dreg_lo,sreg_lo */
2173 EMIT2(0x39, add_2reg(0xC0, dreg_lo
, sreg_lo
));
2176 * For simplicity of branch offset computation,
2177 * let's use fixed jump coding here.
2179 emit_cond_jmp_signed
: /* Check the condition for low 32-bit comparison */
2180 jmp_cond
= get_cond_jmp_opcode(BPF_OP(code
), true);
2181 if (jmp_cond
== COND_JMP_OPCODE_INVALID
)
2183 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
] + 8;
2184 if (is_simm32(jmp_offset
)) {
2185 EMIT2_off32(0x0F, jmp_cond
+ 0x10, jmp_offset
);
2187 pr_err("cond_jmp gen bug %llx\n", jmp_offset
);
2192 /* Check the condition for high 32-bit comparison */
2193 jmp_cond
= get_cond_jmp_opcode(BPF_OP(code
), false);
2194 if (jmp_cond
== COND_JMP_OPCODE_INVALID
)
2196 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
];
2197 if (is_simm32(jmp_offset
)) {
2198 EMIT2_off32(0x0F, jmp_cond
+ 0x10, jmp_offset
);
2200 pr_err("cond_jmp gen bug %llx\n", jmp_offset
);
2205 case BPF_JMP
| BPF_JA
:
2206 if (insn
->off
== -1)
2207 /* -1 jmp instructions will always jump
2208 * backwards two bytes. Explicitly handling
2209 * this case avoids wasting too many passes
2210 * when there are long sequences of replaced
2215 jmp_offset
= addrs
[i
+ insn
->off
] - addrs
[i
];
2218 /* Optimize out nop jumps */
2221 if (is_imm8(jmp_offset
)) {
2222 EMIT2(0xEB, jmp_offset
);
2223 } else if (is_simm32(jmp_offset
)) {
2224 EMIT1_off32(0xE9, jmp_offset
);
2226 pr_err("jmp gen bug %llx\n", jmp_offset
);
2230 /* STX XADD: lock *(u32 *)(dst + off) += src */
2231 case BPF_STX
| BPF_XADD
| BPF_W
:
2232 /* STX XADD: lock *(u64 *)(dst + off) += src */
2233 case BPF_STX
| BPF_XADD
| BPF_DW
:
2235 case BPF_JMP
| BPF_EXIT
:
2237 jmp_offset
= ctx
->cleanup_addr
- addrs
[i
];
2241 /* Update cleanup_addr */
2242 ctx
->cleanup_addr
= proglen
;
2243 emit_epilogue(&prog
, bpf_prog
->aux
->stack_depth
);
2246 pr_info_once("*** NOT YET: opcode %02x ***\n", code
);
2250 * This error will be seen if new instruction was added
2251 * to interpreter, but not to JIT or if there is junk in
2254 pr_err("bpf_jit: unknown opcode %02x\n", code
);
2259 if (ilen
> BPF_MAX_INSN_SIZE
) {
2260 pr_err("bpf_jit: fatal insn size error\n");
2265 if (unlikely(proglen
+ ilen
> oldproglen
)) {
2266 pr_err("bpf_jit: fatal error\n");
2269 memcpy(image
+ proglen
, temp
, ilen
);
2278 bool bpf_jit_needs_zext(void)
2283 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*prog
)
2285 struct bpf_binary_header
*header
= NULL
;
2286 struct bpf_prog
*tmp
, *orig_prog
= prog
;
2287 int proglen
, oldproglen
= 0;
2288 struct jit_context ctx
= {};
2289 bool tmp_blinded
= false;
2295 if (!prog
->jit_requested
)
2298 tmp
= bpf_jit_blind_constants(prog
);
2300 * If blinding was requested and we failed during blinding,
2301 * we must fall back to the interpreter.
2310 addrs
= kmalloc_array(prog
->len
, sizeof(*addrs
), GFP_KERNEL
);
2317 * Before first pass, make a rough estimation of addrs[]
2318 * each BPF instruction is translated to less than 64 bytes
2320 for (proglen
= 0, i
= 0; i
< prog
->len
; i
++) {
2324 ctx
.cleanup_addr
= proglen
;
2327 * JITed image shrinks with every pass and the loop iterates
2328 * until the image stops shrinking. Very large BPF programs
2329 * may converge on the last pass. In such case do one more
2330 * pass to emit the final image.
2332 for (pass
= 0; pass
< 20 || image
; pass
++) {
2333 proglen
= do_jit(prog
, addrs
, image
, oldproglen
, &ctx
);
2338 bpf_jit_binary_free(header
);
2343 if (proglen
!= oldproglen
) {
2344 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2345 proglen
, oldproglen
);
2350 if (proglen
== oldproglen
) {
2351 header
= bpf_jit_binary_alloc(proglen
, &image
,
2358 oldproglen
= proglen
;
2362 if (bpf_jit_enable
> 1)
2363 bpf_jit_dump(prog
->len
, proglen
, pass
+ 1, image
);
2366 bpf_jit_binary_lock_ro(header
);
2367 prog
->bpf_func
= (void *)image
;
2369 prog
->jited_len
= proglen
;
2378 bpf_jit_prog_release_other(prog
, prog
== orig_prog
?