1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2016 Broadcom
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
21 #include <linux/bitops.h>
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/sha.h>
30 #include <crypto/md5.h>
31 #include <crypto/authenc.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha3.h>
42 /* ================= Device Structure ================== */
44 struct device_private iproc_priv
;
46 /* ==================== Parameters ===================== */
48 int flow_debug_logging
;
49 module_param(flow_debug_logging
, int, 0644);
50 MODULE_PARM_DESC(flow_debug_logging
, "Enable Flow Debug Logging");
52 int packet_debug_logging
;
53 module_param(packet_debug_logging
, int, 0644);
54 MODULE_PARM_DESC(packet_debug_logging
, "Enable Packet Debug Logging");
56 int debug_logging_sleep
;
57 module_param(debug_logging_sleep
, int, 0644);
58 MODULE_PARM_DESC(debug_logging_sleep
, "Packet Debug Logging Sleep");
61 * The value of these module parameters is used to set the priority for each
62 * algo type when this driver registers algos with the kernel crypto API.
63 * To use a priority other than the default, set the priority in the insmod or
64 * modprobe. Changing the module priority after init time has no effect.
66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67 * algos, but more preferred than generic software algos.
69 static int cipher_pri
= 150;
70 module_param(cipher_pri
, int, 0644);
71 MODULE_PARM_DESC(cipher_pri
, "Priority for cipher algos");
73 static int hash_pri
= 100;
74 module_param(hash_pri
, int, 0644);
75 MODULE_PARM_DESC(hash_pri
, "Priority for hash algos");
77 static int aead_pri
= 150;
78 module_param(aead_pri
, int, 0644);
79 MODULE_PARM_DESC(aead_pri
, "Priority for AEAD algos");
81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
88 static char BCMHEADER
[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91 * is set dynamically after reading SPU type from device tree.
93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
95 /* min and max time to sleep before retrying when mbox queue is full. usec */
96 #define MBOX_SLEEP_MIN 800
97 #define MBOX_SLEEP_MAX 1000
100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
101 * channel in round robin order.
103 * Return: channel index
105 static u8
select_channel(void)
107 u8 chan_idx
= atomic_inc_return(&iproc_priv
.next_chan
);
109 return chan_idx
% iproc_priv
.spu
.num_chan
;
113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114 * receive a SPU response message for an skcipher request. Includes buffers to
115 * catch SPU message headers and the response data.
116 * @mssg: mailbox message containing the receive sg
117 * @rctx: crypto request context
118 * @rx_frag_num: number of scatterlist elements required to hold the
119 * SPU response message
120 * @chunksize: Number of bytes of response data expected
121 * @stat_pad_len: Number of bytes required to pad the STAT field to
124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125 * when the request completes, whether the request is handled successfully or
133 spu_skcipher_rx_sg_create(struct brcm_message
*mssg
,
134 struct iproc_reqctx_s
*rctx
,
136 unsigned int chunksize
, u32 stat_pad_len
)
138 struct spu_hw
*spu
= &iproc_priv
.spu
;
139 struct scatterlist
*sg
; /* used to build sgs in mbox message */
140 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
141 u32 datalen
; /* Number of bytes of response data expected */
143 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
149 sg_init_table(sg
, rx_frag_num
);
150 /* Space for SPU message header */
151 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
155 spu
->spu_xts_tweak_in_payload())
156 sg_set_buf(sg
++, rctx
->msg_buf
.c
.supdt_tweak
,
159 /* Copy in each dst sg entry from request, up to chunksize */
160 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
161 rctx
->dst_nents
, chunksize
);
162 if (datalen
< chunksize
) {
163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164 __func__
, chunksize
, datalen
);
168 if (ctx
->cipher
.alg
== CIPHER_ALG_RC4
)
169 /* Add buffer to catch 260-byte SUPDT field for RC4 */
170 sg_set_buf(sg
++, rctx
->msg_buf
.c
.supdt_tweak
, SPU_SUPDT_LEN
);
173 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
175 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
176 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
182 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
183 * send a SPU request message for an skcipher request. Includes SPU message
184 * headers and the request data.
185 * @mssg: mailbox message containing the transmit sg
186 * @rctx: crypto request context
187 * @tx_frag_num: number of scatterlist elements required to construct the
188 * SPU request message
189 * @chunksize: Number of bytes of request data
190 * @pad_len: Number of pad bytes
192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
193 * when the request completes, whether the request is handled successfully or
201 spu_skcipher_tx_sg_create(struct brcm_message
*mssg
,
202 struct iproc_reqctx_s
*rctx
,
203 u8 tx_frag_num
, unsigned int chunksize
, u32 pad_len
)
205 struct spu_hw
*spu
= &iproc_priv
.spu
;
206 struct scatterlist
*sg
; /* used to build sgs in mbox message */
207 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
208 u32 datalen
; /* Number of bytes of response data expected */
211 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
213 if (unlikely(!mssg
->spu
.src
))
217 sg_init_table(sg
, tx_frag_num
);
219 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
220 BCM_HDR_LEN
+ ctx
->spu_req_hdr_len
);
222 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
223 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
224 spu
->spu_xts_tweak_in_payload())
225 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, SPU_XTS_TWEAK_SIZE
);
227 /* Copy in each src sg entry from request, up to chunksize */
228 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
229 rctx
->src_nents
, chunksize
);
230 if (unlikely(datalen
< chunksize
)) {
231 pr_err("%s(): failed to copy src sg to mbox msg",
237 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
239 stat_len
= spu
->spu_tx_status_len();
241 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
242 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
247 static int mailbox_send_message(struct brcm_message
*mssg
, u32 flags
,
252 struct device
*dev
= &(iproc_priv
.pdev
->dev
);
254 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
], mssg
);
255 if (flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) {
256 while ((err
== -ENOBUFS
) && (retry_cnt
< SPU_MB_RETRY_MAX
)) {
258 * Mailbox queue is full. Since MAY_SLEEP is set, assume
259 * not in atomic context and we can wait and try again.
262 usleep_range(MBOX_SLEEP_MIN
, MBOX_SLEEP_MAX
);
263 err
= mbox_send_message(iproc_priv
.mbox
[chan_idx
],
265 atomic_inc(&iproc_priv
.mb_no_spc
);
269 atomic_inc(&iproc_priv
.mb_send_fail
);
273 /* Check error returned by mailbox controller */
275 if (unlikely(err
< 0)) {
276 dev_err(dev
, "message error %d", err
);
277 /* Signal txdone for mailbox channel */
280 /* Signal txdone for mailbox channel */
281 mbox_client_txdone(iproc_priv
.mbox
[chan_idx
], err
);
286 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
287 * a single SPU request message, starting at the current position in the request
289 * @rctx: Crypto request context
291 * This may be called on the crypto API thread, or, when a request is so large
292 * it must be broken into multiple SPU messages, on the thread used to invoke
293 * the response callback. When requests are broken into multiple SPU
294 * messages, we assume subsequent messages depend on previous results, and
295 * thus always wait for previous results before submitting the next message.
296 * Because requests are submitted in lock step like this, there is no need
297 * to synchronize access to request data structures.
299 * Return: -EINPROGRESS: request has been accepted and result will be returned
301 * Any other value indicates an error
303 static int handle_skcipher_req(struct iproc_reqctx_s
*rctx
)
305 struct spu_hw
*spu
= &iproc_priv
.spu
;
306 struct crypto_async_request
*areq
= rctx
->parent
;
307 struct skcipher_request
*req
=
308 container_of(areq
, struct skcipher_request
, base
);
309 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
310 struct spu_cipher_parms cipher_parms
;
312 unsigned int chunksize
= 0; /* Num bytes of request to submit */
313 int remaining
= 0; /* Bytes of request still to process */
314 int chunk_start
; /* Beginning of data for current SPU msg */
316 /* IV or ctr value to use in this SPU msg */
317 u8 local_iv_ctr
[MAX_IV_SIZE
];
318 u32 stat_pad_len
; /* num bytes to align status field */
319 u32 pad_len
; /* total length of all padding */
320 bool update_key
= false;
321 struct brcm_message
*mssg
; /* mailbox message */
323 /* number of entries in src and dst sg in mailbox message. */
324 u8 rx_frag_num
= 2; /* response header and STATUS */
325 u8 tx_frag_num
= 1; /* request header */
327 flow_log("%s\n", __func__
);
329 cipher_parms
.alg
= ctx
->cipher
.alg
;
330 cipher_parms
.mode
= ctx
->cipher
.mode
;
331 cipher_parms
.type
= ctx
->cipher_type
;
332 cipher_parms
.key_len
= ctx
->enckeylen
;
333 cipher_parms
.key_buf
= ctx
->enckey
;
334 cipher_parms
.iv_buf
= local_iv_ctr
;
335 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
337 mssg
= &rctx
->mb_mssg
;
338 chunk_start
= rctx
->src_sent
;
339 remaining
= rctx
->total_todo
- chunk_start
;
341 /* determine the chunk we are breaking off and update the indexes */
342 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
343 (remaining
> ctx
->max_payload
))
344 chunksize
= ctx
->max_payload
;
346 chunksize
= remaining
;
348 rctx
->src_sent
+= chunksize
;
349 rctx
->total_sent
= rctx
->src_sent
;
351 /* Count number of sg entries to be included in this request */
352 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
353 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
355 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
356 rctx
->is_encrypt
&& chunk_start
)
358 * Encrypting non-first first chunk. Copy last block of
359 * previous result to IV for this chunk.
361 sg_copy_part_to_buf(req
->dst
, rctx
->msg_buf
.iv_ctr
,
363 chunk_start
- rctx
->iv_ctr_len
);
365 if (rctx
->iv_ctr_len
) {
366 /* get our local copy of the iv */
367 __builtin_memcpy(local_iv_ctr
, rctx
->msg_buf
.iv_ctr
,
370 /* generate the next IV if possible */
371 if ((ctx
->cipher
.mode
== CIPHER_MODE_CBC
) &&
374 * CBC Decrypt: next IV is the last ciphertext block in
377 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.iv_ctr
,
379 rctx
->src_sent
- rctx
->iv_ctr_len
);
380 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CTR
) {
382 * The SPU hardware increments the counter once for
383 * each AES block of 16 bytes. So update the counter
384 * for the next chunk, if there is one. Note that for
385 * this chunk, the counter has already been copied to
386 * local_iv_ctr. We can assume a block size of 16,
387 * because we only support CTR mode for AES, not for
388 * any other cipher alg.
390 add_to_ctr(rctx
->msg_buf
.iv_ctr
, chunksize
>> 4);
394 if (ctx
->cipher
.alg
== CIPHER_ALG_RC4
) {
398 * for non-first RC4 chunks, use SUPDT from previous
399 * response as key for this chunk.
401 cipher_parms
.key_buf
= rctx
->msg_buf
.c
.supdt_tweak
;
403 cipher_parms
.type
= CIPHER_TYPE_UPDT
;
404 } else if (!rctx
->is_encrypt
) {
406 * First RC4 chunk. For decrypt, key in pre-built msg
407 * header may have been changed if encrypt required
408 * multiple chunks. So revert the key to the
412 cipher_parms
.type
= CIPHER_TYPE_INIT
;
416 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
417 flow_log("max_payload infinite\n");
419 flow_log("max_payload %u\n", ctx
->max_payload
);
421 flow_log("sent:%u start:%u remains:%u size:%u\n",
422 rctx
->src_sent
, chunk_start
, remaining
, chunksize
);
424 /* Copy SPU header template created at setkey time */
425 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, ctx
->bcm_spu_req_hdr
,
426 sizeof(rctx
->msg_buf
.bcm_spu_req_hdr
));
429 * Pass SUPDT field as key. Key field in finish() call is only used
430 * when update_key has been set above for RC4. Will be ignored in
433 spu
->spu_cipher_req_finish(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
434 ctx
->spu_req_hdr_len
, !(rctx
->is_encrypt
),
435 &cipher_parms
, update_key
, chunksize
);
437 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
439 stat_pad_len
= spu
->spu_wordalign_padlen(chunksize
);
442 pad_len
= stat_pad_len
;
445 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, 0,
446 0, ctx
->auth
.alg
, ctx
->auth
.mode
,
447 rctx
->total_sent
, stat_pad_len
);
450 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
451 ctx
->spu_req_hdr_len
);
452 packet_log("payload:\n");
453 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
454 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
457 * Build mailbox message containing SPU request msg and rx buffers
458 * to catch response message
460 memset(mssg
, 0, sizeof(*mssg
));
461 mssg
->type
= BRCM_MESSAGE_SPU
;
462 mssg
->ctx
= rctx
; /* Will be returned in response */
464 /* Create rx scatterlist to catch result */
465 rx_frag_num
+= rctx
->dst_nents
;
467 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
468 spu
->spu_xts_tweak_in_payload())
469 rx_frag_num
++; /* extra sg to insert tweak */
471 err
= spu_skcipher_rx_sg_create(mssg
, rctx
, rx_frag_num
, chunksize
,
476 /* Create tx scatterlist containing SPU request message */
477 tx_frag_num
+= rctx
->src_nents
;
478 if (spu
->spu_tx_status_len())
481 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
482 spu
->spu_xts_tweak_in_payload())
483 tx_frag_num
++; /* extra sg to insert tweak */
485 err
= spu_skcipher_tx_sg_create(mssg
, rctx
, tx_frag_num
, chunksize
,
490 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
491 if (unlikely(err
< 0))
498 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
499 * total received count for the request and updates global stats.
500 * @rctx: Crypto request context
502 static void handle_skcipher_resp(struct iproc_reqctx_s
*rctx
)
504 struct spu_hw
*spu
= &iproc_priv
.spu
;
506 struct crypto_async_request
*areq
= rctx
->parent
;
507 struct skcipher_request
*req
= skcipher_request_cast(areq
);
509 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
512 /* See how much data was returned */
513 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
516 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
517 * encrypted tweak ("i") value; we don't count those.
519 if ((ctx
->cipher
.mode
== CIPHER_MODE_XTS
) &&
520 spu
->spu_xts_tweak_in_payload() &&
521 (payload_len
>= SPU_XTS_TWEAK_SIZE
))
522 payload_len
-= SPU_XTS_TWEAK_SIZE
;
524 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
526 flow_log("%s() offset: %u, bd_len: %u BD:\n",
527 __func__
, rctx
->total_received
, payload_len
);
529 dump_sg(req
->dst
, rctx
->total_received
, payload_len
);
530 if (ctx
->cipher
.alg
== CIPHER_ALG_RC4
)
531 packet_dump(" supdt ", rctx
->msg_buf
.c
.supdt_tweak
,
534 rctx
->total_received
+= payload_len
;
535 if (rctx
->total_received
== rctx
->total_todo
) {
536 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_CIPHER
]);
538 &iproc_priv
.cipher_cnt
[ctx
->cipher
.alg
][ctx
->cipher
.mode
]);
543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
544 * receive a SPU response message for an ahash request.
545 * @mssg: mailbox message containing the receive sg
546 * @rctx: crypto request context
547 * @rx_frag_num: number of scatterlist elements required to hold the
548 * SPU response message
549 * @digestsize: length of hash digest, in bytes
550 * @stat_pad_len: Number of bytes required to pad the STAT field to
553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
554 * when the request completes, whether the request is handled successfully or
562 spu_ahash_rx_sg_create(struct brcm_message
*mssg
,
563 struct iproc_reqctx_s
*rctx
,
564 u8 rx_frag_num
, unsigned int digestsize
,
567 struct spu_hw
*spu
= &iproc_priv
.spu
;
568 struct scatterlist
*sg
; /* used to build sgs in mbox message */
569 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
571 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
577 sg_init_table(sg
, rx_frag_num
);
578 /* Space for SPU message header */
579 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
581 /* Space for digest */
582 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
585 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
587 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
588 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
593 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
594 * a SPU request message for an ahash request. Includes SPU message headers and
596 * @mssg: mailbox message containing the transmit sg
597 * @rctx: crypto request context
598 * @tx_frag_num: number of scatterlist elements required to construct the
599 * SPU request message
600 * @spu_hdr_len: length in bytes of SPU message header
601 * @hash_carry_len: Number of bytes of data carried over from previous req
602 * @new_data_len: Number of bytes of new request data
603 * @pad_len: Number of pad bytes
605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
606 * when the request completes, whether the request is handled successfully or
614 spu_ahash_tx_sg_create(struct brcm_message
*mssg
,
615 struct iproc_reqctx_s
*rctx
,
618 unsigned int hash_carry_len
,
619 unsigned int new_data_len
, u32 pad_len
)
621 struct spu_hw
*spu
= &iproc_priv
.spu
;
622 struct scatterlist
*sg
; /* used to build sgs in mbox message */
623 u32 datalen
; /* Number of bytes of response data expected */
626 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
632 sg_init_table(sg
, tx_frag_num
);
634 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
635 BCM_HDR_LEN
+ spu_hdr_len
);
638 sg_set_buf(sg
++, rctx
->hash_carry
, hash_carry_len
);
641 /* Copy in each src sg entry from request, up to chunksize */
642 datalen
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
643 rctx
->src_nents
, new_data_len
);
644 if (datalen
< new_data_len
) {
645 pr_err("%s(): failed to copy src sg to mbox msg",
652 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
654 stat_len
= spu
->spu_tx_status_len();
656 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
657 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
664 * handle_ahash_req() - Process an asynchronous hash request from the crypto
666 * @rctx: Crypto request context
668 * Builds a SPU request message embedded in a mailbox message and submits the
669 * mailbox message on a selected mailbox channel. The SPU request message is
670 * constructed as a scatterlist, including entries from the crypto API's
671 * src scatterlist to avoid copying the data to be hashed. This function is
672 * called either on the thread from the crypto API, or, in the case that the
673 * crypto API request is too large to fit in a single SPU request message,
674 * on the thread that invokes the receive callback with a response message.
675 * Because some operations require the response from one chunk before the next
676 * chunk can be submitted, we always wait for the response for the previous
677 * chunk before submitting the next chunk. Because requests are submitted in
678 * lock step like this, there is no need to synchronize access to request data
682 * -EINPROGRESS: request has been submitted to SPU and response will be
683 * returned asynchronously
684 * -EAGAIN: non-final request included a small amount of data, which for
685 * efficiency we did not submit to the SPU, but instead stored
686 * to be submitted to the SPU with the next part of the request
687 * other: an error code
689 static int handle_ahash_req(struct iproc_reqctx_s
*rctx
)
691 struct spu_hw
*spu
= &iproc_priv
.spu
;
692 struct crypto_async_request
*areq
= rctx
->parent
;
693 struct ahash_request
*req
= ahash_request_cast(areq
);
694 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
695 struct crypto_tfm
*tfm
= crypto_ahash_tfm(ahash
);
696 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
697 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
699 /* number of bytes still to be hashed in this req */
700 unsigned int nbytes_to_hash
= 0;
702 unsigned int chunksize
= 0; /* length of hash carry + new data */
704 * length of new data, not from hash carry, to be submitted in
707 unsigned int new_data_len
;
709 unsigned int __maybe_unused chunk_start
= 0;
710 u32 db_size
; /* Length of data field, incl gcm and hash padding */
711 int pad_len
= 0; /* total pad len, including gcm, hash, stat padding */
712 u32 data_pad_len
= 0; /* length of GCM/CCM padding */
713 u32 stat_pad_len
= 0; /* length of padding to align STATUS word */
714 struct brcm_message
*mssg
; /* mailbox message */
715 struct spu_request_opts req_opts
;
716 struct spu_cipher_parms cipher_parms
;
717 struct spu_hash_parms hash_parms
;
718 struct spu_aead_parms aead_parms
;
719 unsigned int local_nbuf
;
721 unsigned int digestsize
;
725 * number of entries in src and dst sg. Always includes SPU msg header.
726 * rx always includes a buffer to catch digest and STATUS.
731 flow_log("total_todo %u, total_sent %u\n",
732 rctx
->total_todo
, rctx
->total_sent
);
734 memset(&req_opts
, 0, sizeof(req_opts
));
735 memset(&cipher_parms
, 0, sizeof(cipher_parms
));
736 memset(&hash_parms
, 0, sizeof(hash_parms
));
737 memset(&aead_parms
, 0, sizeof(aead_parms
));
739 req_opts
.bd_suppress
= true;
740 hash_parms
.alg
= ctx
->auth
.alg
;
741 hash_parms
.mode
= ctx
->auth
.mode
;
742 hash_parms
.type
= HASH_TYPE_NONE
;
743 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
744 hash_parms
.key_len
= ctx
->authkeylen
;
747 * For hash algorithms below assignment looks bit odd but
748 * it's needed for AES-XCBC and AES-CMAC hash algorithms
749 * to differentiate between 128, 192, 256 bit key values.
750 * Based on the key values, hash algorithm is selected.
751 * For example for 128 bit key, hash algorithm is AES-128.
753 cipher_parms
.type
= ctx
->cipher_type
;
755 mssg
= &rctx
->mb_mssg
;
756 chunk_start
= rctx
->src_sent
;
759 * Compute the amount remaining to hash. This may include data
760 * carried over from previous requests.
762 nbytes_to_hash
= rctx
->total_todo
- rctx
->total_sent
;
763 chunksize
= nbytes_to_hash
;
764 if ((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
765 (chunksize
> ctx
->max_payload
))
766 chunksize
= ctx
->max_payload
;
769 * If this is not a final request and the request data is not a multiple
770 * of a full block, then simply park the extra data and prefix it to the
771 * data for the next request.
773 if (!rctx
->is_final
) {
774 u8
*dest
= rctx
->hash_carry
+ rctx
->hash_carry_len
;
775 u16 new_len
; /* len of data to add to hash carry */
777 rem
= chunksize
% blocksize
; /* remainder */
779 /* chunksize not a multiple of blocksize */
781 if (chunksize
== 0) {
782 /* Don't have a full block to submit to hw */
783 new_len
= rem
- rctx
->hash_carry_len
;
784 sg_copy_part_to_buf(req
->src
, dest
, new_len
,
786 rctx
->hash_carry_len
= rem
;
787 flow_log("Exiting with hash carry len: %u\n",
788 rctx
->hash_carry_len
);
789 packet_dump(" buf: ",
791 rctx
->hash_carry_len
);
797 /* if we have hash carry, then prefix it to the data in this request */
798 local_nbuf
= rctx
->hash_carry_len
;
799 rctx
->hash_carry_len
= 0;
802 new_data_len
= chunksize
- local_nbuf
;
804 /* Count number of sg entries to be used in this request */
805 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
,
808 /* AES hashing keeps key size in type field, so need to copy it here */
809 if (hash_parms
.alg
== HASH_ALG_AES
)
810 hash_parms
.type
= (enum hash_type
)cipher_parms
.type
;
812 hash_parms
.type
= spu
->spu_hash_type(rctx
->total_sent
);
814 digestsize
= spu
->spu_digest_size(ctx
->digestsize
, ctx
->auth
.alg
,
816 hash_parms
.digestsize
= digestsize
;
818 /* update the indexes */
819 rctx
->total_sent
+= chunksize
;
820 /* if you sent a prebuf then that wasn't from this req->src */
821 rctx
->src_sent
+= new_data_len
;
823 if ((rctx
->total_sent
== rctx
->total_todo
) && rctx
->is_final
)
824 hash_parms
.pad_len
= spu
->spu_hash_pad_len(hash_parms
.alg
,
830 * If a non-first chunk, then include the digest returned from the
831 * previous chunk so that hw can add to it (except for AES types).
833 if ((hash_parms
.type
== HASH_TYPE_UPDT
) &&
834 (hash_parms
.alg
!= HASH_ALG_AES
)) {
835 hash_parms
.key_buf
= rctx
->incr_hash
;
836 hash_parms
.key_len
= digestsize
;
839 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
841 flow_log("%s() final: %u nbuf: %u ",
842 __func__
, rctx
->is_final
, local_nbuf
);
844 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
845 flow_log("max_payload infinite\n");
847 flow_log("max_payload %u\n", ctx
->max_payload
);
849 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start
, chunksize
);
851 /* Prepend SPU header with type 3 BCM header */
852 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
854 hash_parms
.prebuf_len
= local_nbuf
;
855 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
857 &req_opts
, &cipher_parms
,
858 &hash_parms
, &aead_parms
,
861 if (spu_hdr_len
== 0) {
862 pr_err("Failed to create SPU request header\n");
867 * Determine total length of padding required. Put all padding in one
870 data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
, chunksize
);
871 db_size
= spu_real_db_size(0, 0, local_nbuf
, new_data_len
,
872 0, 0, hash_parms
.pad_len
);
873 if (spu
->spu_tx_status_len())
874 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
877 pad_len
= hash_parms
.pad_len
+ data_pad_len
+ stat_pad_len
;
880 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
, data_pad_len
,
881 hash_parms
.pad_len
, ctx
->auth
.alg
,
882 ctx
->auth
.mode
, rctx
->total_sent
,
886 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
888 packet_dump(" prebuf: ", rctx
->hash_carry
, local_nbuf
);
890 dump_sg(rctx
->src_sg
, rctx
->src_skip
, new_data_len
);
891 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
894 * Build mailbox message containing SPU request msg and rx buffers
895 * to catch response message
897 memset(mssg
, 0, sizeof(*mssg
));
898 mssg
->type
= BRCM_MESSAGE_SPU
;
899 mssg
->ctx
= rctx
; /* Will be returned in response */
901 /* Create rx scatterlist to catch result */
902 err
= spu_ahash_rx_sg_create(mssg
, rctx
, rx_frag_num
, digestsize
,
907 /* Create tx scatterlist containing SPU request message */
908 tx_frag_num
+= rctx
->src_nents
;
909 if (spu
->spu_tx_status_len())
911 err
= spu_ahash_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
912 local_nbuf
, new_data_len
, pad_len
);
916 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
917 if (unlikely(err
< 0))
924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
925 * for an HMAC request.
926 * @req: The HMAC request from the crypto API
927 * @ctx: The session context
929 * Return: 0 if synchronous hash operation successful
930 * -EINVAL if the hash algo is unrecognized
931 * any other value indicates an error
933 static int spu_hmac_outer_hash(struct ahash_request
*req
,
934 struct iproc_ctx_s
*ctx
)
936 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
937 unsigned int blocksize
=
938 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
941 switch (ctx
->auth
.alg
) {
943 rc
= do_shash("md5", req
->result
, ctx
->opad
, blocksize
,
944 req
->result
, ctx
->digestsize
, NULL
, 0);
947 rc
= do_shash("sha1", req
->result
, ctx
->opad
, blocksize
,
948 req
->result
, ctx
->digestsize
, NULL
, 0);
950 case HASH_ALG_SHA224
:
951 rc
= do_shash("sha224", req
->result
, ctx
->opad
, blocksize
,
952 req
->result
, ctx
->digestsize
, NULL
, 0);
954 case HASH_ALG_SHA256
:
955 rc
= do_shash("sha256", req
->result
, ctx
->opad
, blocksize
,
956 req
->result
, ctx
->digestsize
, NULL
, 0);
958 case HASH_ALG_SHA384
:
959 rc
= do_shash("sha384", req
->result
, ctx
->opad
, blocksize
,
960 req
->result
, ctx
->digestsize
, NULL
, 0);
962 case HASH_ALG_SHA512
:
963 rc
= do_shash("sha512", req
->result
, ctx
->opad
, blocksize
,
964 req
->result
, ctx
->digestsize
, NULL
, 0);
967 pr_err("%s() Error : unknown hmac type\n", __func__
);
974 * ahash_req_done() - Process a hash result from the SPU hardware.
975 * @rctx: Crypto request context
977 * Return: 0 if successful
980 static int ahash_req_done(struct iproc_reqctx_s
*rctx
)
982 struct spu_hw
*spu
= &iproc_priv
.spu
;
983 struct crypto_async_request
*areq
= rctx
->parent
;
984 struct ahash_request
*req
= ahash_request_cast(areq
);
985 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
988 memcpy(req
->result
, rctx
->msg_buf
.digest
, ctx
->digestsize
);
990 if (spu
->spu_type
== SPU_TYPE_SPUM
) {
991 /* byte swap the output from the UPDT function to network byte
994 if (ctx
->auth
.alg
== HASH_ALG_MD5
) {
995 __swab32s((u32
*)req
->result
);
996 __swab32s(((u32
*)req
->result
) + 1);
997 __swab32s(((u32
*)req
->result
) + 2);
998 __swab32s(((u32
*)req
->result
) + 3);
999 __swab32s(((u32
*)req
->result
) + 4);
1003 flow_dump(" digest ", req
->result
, ctx
->digestsize
);
1005 /* if this an HMAC then do the outer hash */
1006 if (rctx
->is_sw_hmac
) {
1007 err
= spu_hmac_outer_hash(req
, ctx
);
1010 flow_dump(" hmac: ", req
->result
, ctx
->digestsize
);
1013 if (rctx
->is_sw_hmac
|| ctx
->auth
.mode
== HASH_MODE_HMAC
) {
1014 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HMAC
]);
1015 atomic_inc(&iproc_priv
.hmac_cnt
[ctx
->auth
.alg
]);
1017 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_HASH
]);
1018 atomic_inc(&iproc_priv
.hash_cnt
[ctx
->auth
.alg
]);
1025 * handle_ahash_resp() - Process a SPU response message for a hash request.
1026 * Checks if the entire crypto API request has been processed, and if so,
1027 * invokes post processing on the result.
1028 * @rctx: Crypto request context
1030 static void handle_ahash_resp(struct iproc_reqctx_s
*rctx
)
1032 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1034 struct crypto_async_request
*areq
= rctx
->parent
;
1035 struct ahash_request
*req
= ahash_request_cast(areq
);
1036 struct crypto_ahash
*ahash
= crypto_ahash_reqtfm(req
);
1037 unsigned int blocksize
=
1038 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
1041 * Save hash to use as input to next op if incremental. Might be copying
1042 * too much, but that's easier than figuring out actual digest size here
1044 memcpy(rctx
->incr_hash
, rctx
->msg_buf
.digest
, MAX_DIGEST_SIZE
);
1046 flow_log("%s() blocksize:%u digestsize:%u\n",
1047 __func__
, blocksize
, ctx
->digestsize
);
1049 atomic64_add(ctx
->digestsize
, &iproc_priv
.bytes_in
);
1051 if (rctx
->is_final
&& (rctx
->total_sent
== rctx
->total_todo
))
1052 ahash_req_done(rctx
);
1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058 * message headers and the response data.
1059 * @mssg: mailbox message containing the receive sg
1060 * @rctx: crypto request context
1061 * @rx_frag_num: number of scatterlist elements required to hold the
1062 * SPU response message
1063 * @assoc_len: Length of associated data included in the crypto request
1064 * @ret_iv_len: Length of IV returned in response
1065 * @resp_len: Number of bytes of response data expected to be written to
1066 * dst buffer from crypto API
1067 * @digestsize: Length of hash digest, in bytes
1068 * @stat_pad_len: Number of bytes required to pad the STAT field to
1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072 * when the request completes, whether the request is handled successfully or
1073 * there is an error.
1079 static int spu_aead_rx_sg_create(struct brcm_message
*mssg
,
1080 struct aead_request
*req
,
1081 struct iproc_reqctx_s
*rctx
,
1083 unsigned int assoc_len
,
1084 u32 ret_iv_len
, unsigned int resp_len
,
1085 unsigned int digestsize
, u32 stat_pad_len
)
1087 struct spu_hw
*spu
= &iproc_priv
.spu
;
1088 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1089 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1090 u32 datalen
; /* Number of bytes of response data expected */
1094 if (ctx
->is_rfc4543
) {
1095 /* RFC4543: only pad after data, not after AAD */
1096 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1097 assoc_len
+ resp_len
);
1098 assoc_buf_len
= assoc_len
;
1100 data_padlen
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1102 assoc_buf_len
= spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1103 assoc_len
, ret_iv_len
,
1107 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1108 /* ICV (after data) must be in the next 32-bit word for CCM */
1109 data_padlen
+= spu
->spu_wordalign_padlen(assoc_buf_len
+
1114 /* have to catch gcm pad in separate buffer */
1117 mssg
->spu
.dst
= kcalloc(rx_frag_num
, sizeof(struct scatterlist
),
1123 sg_init_table(sg
, rx_frag_num
);
1125 /* Space for SPU message header */
1126 sg_set_buf(sg
++, rctx
->msg_buf
.spu_resp_hdr
, ctx
->spu_resp_hdr_len
);
1128 if (assoc_buf_len
) {
1130 * Don't write directly to req->dst, because SPU may pad the
1131 * assoc data in the response
1133 memset(rctx
->msg_buf
.a
.resp_aad
, 0, assoc_buf_len
);
1134 sg_set_buf(sg
++, rctx
->msg_buf
.a
.resp_aad
, assoc_buf_len
);
1139 * Copy in each dst sg entry from request, up to chunksize.
1140 * dst sg catches just the data. digest caught in separate buf.
1142 datalen
= spu_msg_sg_add(&sg
, &rctx
->dst_sg
, &rctx
->dst_skip
,
1143 rctx
->dst_nents
, resp_len
);
1144 if (datalen
< (resp_len
)) {
1145 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146 __func__
, resp_len
, datalen
);
1151 /* If GCM/CCM data is padded, catch padding in separate buffer */
1153 memset(rctx
->msg_buf
.a
.gcmpad
, 0, data_padlen
);
1154 sg_set_buf(sg
++, rctx
->msg_buf
.a
.gcmpad
, data_padlen
);
1157 /* Always catch ICV in separate buffer */
1158 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, digestsize
);
1160 flow_log("stat_pad_len %u\n", stat_pad_len
);
1162 memset(rctx
->msg_buf
.rx_stat_pad
, 0, stat_pad_len
);
1163 sg_set_buf(sg
++, rctx
->msg_buf
.rx_stat_pad
, stat_pad_len
);
1166 memset(rctx
->msg_buf
.rx_stat
, 0, SPU_RX_STATUS_LEN
);
1167 sg_set_buf(sg
, rctx
->msg_buf
.rx_stat
, spu
->spu_rx_status_len());
1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174 * SPU request message for an AEAD request. Includes SPU message headers and the
1176 * @mssg: mailbox message containing the transmit sg
1177 * @rctx: crypto request context
1178 * @tx_frag_num: number of scatterlist elements required to construct the
1179 * SPU request message
1180 * @spu_hdr_len: length of SPU message header in bytes
1181 * @assoc: crypto API associated data scatterlist
1182 * @assoc_len: length of associated data
1183 * @assoc_nents: number of scatterlist entries containing assoc data
1184 * @aead_iv_len: length of AEAD IV, if included
1185 * @chunksize: Number of bytes of request data
1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187 * @pad_len: Number of pad bytes
1188 * @incl_icv: If true, write separate ICV buffer after data and
1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192 * when the request completes, whether the request is handled successfully or
1193 * there is an error.
1199 static int spu_aead_tx_sg_create(struct brcm_message
*mssg
,
1200 struct iproc_reqctx_s
*rctx
,
1203 struct scatterlist
*assoc
,
1204 unsigned int assoc_len
,
1206 unsigned int aead_iv_len
,
1207 unsigned int chunksize
,
1208 u32 aad_pad_len
, u32 pad_len
, bool incl_icv
)
1210 struct spu_hw
*spu
= &iproc_priv
.spu
;
1211 struct scatterlist
*sg
; /* used to build sgs in mbox message */
1212 struct scatterlist
*assoc_sg
= assoc
;
1213 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1214 u32 datalen
; /* Number of bytes of data to write */
1215 u32 written
; /* Number of bytes of data written */
1216 u32 assoc_offset
= 0;
1219 mssg
->spu
.src
= kcalloc(tx_frag_num
, sizeof(struct scatterlist
),
1225 sg_init_table(sg
, tx_frag_num
);
1227 sg_set_buf(sg
++, rctx
->msg_buf
.bcm_spu_req_hdr
,
1228 BCM_HDR_LEN
+ spu_hdr_len
);
1231 /* Copy in each associated data sg entry from request */
1232 written
= spu_msg_sg_add(&sg
, &assoc_sg
, &assoc_offset
,
1233 assoc_nents
, assoc_len
);
1234 if (written
< assoc_len
) {
1235 pr_err("%s(): failed to copy assoc sg to mbox msg",
1242 sg_set_buf(sg
++, rctx
->msg_buf
.iv_ctr
, aead_iv_len
);
1245 memset(rctx
->msg_buf
.a
.req_aad_pad
, 0, aad_pad_len
);
1246 sg_set_buf(sg
++, rctx
->msg_buf
.a
.req_aad_pad
, aad_pad_len
);
1249 datalen
= chunksize
;
1250 if ((chunksize
> ctx
->digestsize
) && incl_icv
)
1251 datalen
-= ctx
->digestsize
;
1253 /* For aead, a single msg should consume the entire src sg */
1254 written
= spu_msg_sg_add(&sg
, &rctx
->src_sg
, &rctx
->src_skip
,
1255 rctx
->src_nents
, datalen
);
1256 if (written
< datalen
) {
1257 pr_err("%s(): failed to copy src sg to mbox msg",
1264 memset(rctx
->msg_buf
.spu_req_pad
, 0, pad_len
);
1265 sg_set_buf(sg
++, rctx
->msg_buf
.spu_req_pad
, pad_len
);
1269 sg_set_buf(sg
++, rctx
->msg_buf
.digest
, ctx
->digestsize
);
1271 stat_len
= spu
->spu_tx_status_len();
1273 memset(rctx
->msg_buf
.tx_stat
, 0, stat_len
);
1274 sg_set_buf(sg
, rctx
->msg_buf
.tx_stat
, stat_len
);
1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281 * current AEAD request.
1282 * @rctx: Crypto request context
1284 * Unlike other operation types, we assume the length of the request fits in
1285 * a single SPU request message. aead_enqueue() makes sure this is true.
1286 * Comments for other op types regarding threads applies here as well.
1288 * Unlike incremental hash ops, where the spu returns the entire hash for
1289 * truncated algs like sha-224, the SPU returns just the truncated hash in
1290 * response to aead requests. So digestsize is always ctx->digestsize here.
1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293 * returned asynchronously
1294 * Any other value indicates an error
1296 static int handle_aead_req(struct iproc_reqctx_s
*rctx
)
1298 struct spu_hw
*spu
= &iproc_priv
.spu
;
1299 struct crypto_async_request
*areq
= rctx
->parent
;
1300 struct aead_request
*req
= container_of(areq
,
1301 struct aead_request
, base
);
1302 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1304 unsigned int chunksize
;
1305 unsigned int resp_len
;
1310 struct brcm_message
*mssg
; /* mailbox message */
1311 struct spu_request_opts req_opts
;
1312 struct spu_cipher_parms cipher_parms
;
1313 struct spu_hash_parms hash_parms
;
1314 struct spu_aead_parms aead_parms
;
1315 int assoc_nents
= 0;
1316 bool incl_icv
= false;
1317 unsigned int digestsize
= ctx
->digestsize
;
1319 /* number of entries in src and dst sg. Always includes SPU msg header.
1321 u8 rx_frag_num
= 2; /* and STATUS */
1324 /* doing the whole thing at once */
1325 chunksize
= rctx
->total_todo
;
1327 flow_log("%s: chunksize %u\n", __func__
, chunksize
);
1329 memset(&req_opts
, 0, sizeof(req_opts
));
1330 memset(&hash_parms
, 0, sizeof(hash_parms
));
1331 memset(&aead_parms
, 0, sizeof(aead_parms
));
1333 req_opts
.is_inbound
= !(rctx
->is_encrypt
);
1334 req_opts
.auth_first
= ctx
->auth_first
;
1335 req_opts
.is_aead
= true;
1336 req_opts
.is_esp
= ctx
->is_esp
;
1338 cipher_parms
.alg
= ctx
->cipher
.alg
;
1339 cipher_parms
.mode
= ctx
->cipher
.mode
;
1340 cipher_parms
.type
= ctx
->cipher_type
;
1341 cipher_parms
.key_buf
= ctx
->enckey
;
1342 cipher_parms
.key_len
= ctx
->enckeylen
;
1343 cipher_parms
.iv_buf
= rctx
->msg_buf
.iv_ctr
;
1344 cipher_parms
.iv_len
= rctx
->iv_ctr_len
;
1346 hash_parms
.alg
= ctx
->auth
.alg
;
1347 hash_parms
.mode
= ctx
->auth
.mode
;
1348 hash_parms
.type
= HASH_TYPE_NONE
;
1349 hash_parms
.key_buf
= (u8
*)ctx
->authkey
;
1350 hash_parms
.key_len
= ctx
->authkeylen
;
1351 hash_parms
.digestsize
= digestsize
;
1353 if ((ctx
->auth
.alg
== HASH_ALG_SHA224
) &&
1354 (ctx
->authkeylen
< SHA224_DIGEST_SIZE
))
1355 hash_parms
.key_len
= SHA224_DIGEST_SIZE
;
1357 aead_parms
.assoc_size
= req
->assoclen
;
1358 if (ctx
->is_esp
&& !ctx
->is_rfc4543
) {
1360 * 8-byte IV is included assoc data in request. SPU2
1361 * expects AAD to include just SPI and seqno. So
1362 * subtract off the IV len.
1364 aead_parms
.assoc_size
-= GCM_RFC4106_IV_SIZE
;
1366 if (rctx
->is_encrypt
) {
1367 aead_parms
.return_iv
= true;
1368 aead_parms
.ret_iv_len
= GCM_RFC4106_IV_SIZE
;
1369 aead_parms
.ret_iv_off
= GCM_ESP_SALT_SIZE
;
1372 aead_parms
.ret_iv_len
= 0;
1376 * Count number of sg entries from the crypto API request that are to
1377 * be included in this mailbox message. For dst sg, don't count space
1378 * for digest. Digest gets caught in a separate buffer and copied back
1379 * to dst sg when processing response.
1381 rctx
->src_nents
= spu_sg_count(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1382 rctx
->dst_nents
= spu_sg_count(rctx
->dst_sg
, rctx
->dst_skip
, chunksize
);
1383 if (aead_parms
.assoc_size
)
1384 assoc_nents
= spu_sg_count(rctx
->assoc
, 0,
1385 aead_parms
.assoc_size
);
1387 mssg
= &rctx
->mb_mssg
;
1389 rctx
->total_sent
= chunksize
;
1390 rctx
->src_sent
= chunksize
;
1391 if (spu
->spu_assoc_resp_len(ctx
->cipher
.mode
,
1392 aead_parms
.assoc_size
,
1393 aead_parms
.ret_iv_len
,
1397 aead_parms
.iv_len
= spu
->spu_aead_ivlen(ctx
->cipher
.mode
,
1400 if (ctx
->auth
.alg
== HASH_ALG_AES
)
1401 hash_parms
.type
= (enum hash_type
)ctx
->cipher_type
;
1403 /* General case AAD padding (CCM and RFC4543 special cases below) */
1404 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1405 aead_parms
.assoc_size
);
1407 /* General case data padding (CCM decrypt special case below) */
1408 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1411 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1413 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1416 aead_parms
.aad_pad_len
= spu
->spu_gcm_ccm_pad_len(
1418 aead_parms
.assoc_size
+ 2);
1421 * And when decrypting CCM, need to pad without including
1422 * size of ICV which is tacked on to end of chunk
1424 if (!rctx
->is_encrypt
)
1425 aead_parms
.data_pad_len
=
1426 spu
->spu_gcm_ccm_pad_len(ctx
->cipher
.mode
,
1427 chunksize
- digestsize
);
1429 /* CCM also requires software to rewrite portions of IV: */
1430 spu
->spu_ccm_update_iv(digestsize
, &cipher_parms
, req
->assoclen
,
1431 chunksize
, rctx
->is_encrypt
,
1435 if (ctx
->is_rfc4543
) {
1437 * RFC4543: data is included in AAD, so don't pad after AAD
1438 * and pad data based on both AAD + data size
1440 aead_parms
.aad_pad_len
= 0;
1441 if (!rctx
->is_encrypt
)
1442 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1444 aead_parms
.assoc_size
+ chunksize
-
1447 aead_parms
.data_pad_len
= spu
->spu_gcm_ccm_pad_len(
1449 aead_parms
.assoc_size
+ chunksize
);
1451 req_opts
.is_rfc4543
= true;
1454 if (spu_req_incl_icv(ctx
->cipher
.mode
, rctx
->is_encrypt
)) {
1457 /* Copy ICV from end of src scatterlist to digest buf */
1458 sg_copy_part_to_buf(req
->src
, rctx
->msg_buf
.digest
, digestsize
,
1459 req
->assoclen
+ rctx
->total_sent
-
1463 atomic64_add(chunksize
, &iproc_priv
.bytes_out
);
1465 flow_log("%s()-sent chunksize:%u\n", __func__
, chunksize
);
1467 /* Prepend SPU header with type 3 BCM header */
1468 memcpy(rctx
->msg_buf
.bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1470 spu_hdr_len
= spu
->spu_create_request(rctx
->msg_buf
.bcm_spu_req_hdr
+
1471 BCM_HDR_LEN
, &req_opts
,
1472 &cipher_parms
, &hash_parms
,
1473 &aead_parms
, chunksize
);
1475 /* Determine total length of padding. Put all padding in one buffer. */
1476 db_size
= spu_real_db_size(aead_parms
.assoc_size
, aead_parms
.iv_len
, 0,
1477 chunksize
, aead_parms
.aad_pad_len
,
1478 aead_parms
.data_pad_len
, 0);
1480 stat_pad_len
= spu
->spu_wordalign_padlen(db_size
);
1484 pad_len
= aead_parms
.data_pad_len
+ stat_pad_len
;
1487 spu
->spu_request_pad(rctx
->msg_buf
.spu_req_pad
,
1488 aead_parms
.data_pad_len
, 0,
1489 ctx
->auth
.alg
, ctx
->auth
.mode
,
1490 rctx
->total_sent
, stat_pad_len
);
1493 spu
->spu_dump_msg_hdr(rctx
->msg_buf
.bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1495 dump_sg(rctx
->assoc
, 0, aead_parms
.assoc_size
);
1496 packet_dump(" aead iv: ", rctx
->msg_buf
.iv_ctr
, aead_parms
.iv_len
);
1497 packet_log("BD:\n");
1498 dump_sg(rctx
->src_sg
, rctx
->src_skip
, chunksize
);
1499 packet_dump(" pad: ", rctx
->msg_buf
.spu_req_pad
, pad_len
);
1502 * Build mailbox message containing SPU request msg and rx buffers
1503 * to catch response message
1505 memset(mssg
, 0, sizeof(*mssg
));
1506 mssg
->type
= BRCM_MESSAGE_SPU
;
1507 mssg
->ctx
= rctx
; /* Will be returned in response */
1509 /* Create rx scatterlist to catch result */
1510 rx_frag_num
+= rctx
->dst_nents
;
1511 resp_len
= chunksize
;
1514 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516 * sends entire digest back.
1520 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
1521 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) && !rctx
->is_encrypt
) {
1523 * Input is ciphertxt plus ICV, but ICV not incl
1526 resp_len
-= ctx
->digestsize
;
1528 /* no rx frags to catch output data */
1529 rx_frag_num
-= rctx
->dst_nents
;
1532 err
= spu_aead_rx_sg_create(mssg
, req
, rctx
, rx_frag_num
,
1533 aead_parms
.assoc_size
,
1534 aead_parms
.ret_iv_len
, resp_len
, digestsize
,
1539 /* Create tx scatterlist containing SPU request message */
1540 tx_frag_num
+= rctx
->src_nents
;
1541 tx_frag_num
+= assoc_nents
;
1542 if (aead_parms
.aad_pad_len
)
1544 if (aead_parms
.iv_len
)
1546 if (spu
->spu_tx_status_len())
1548 err
= spu_aead_tx_sg_create(mssg
, rctx
, tx_frag_num
, spu_hdr_len
,
1549 rctx
->assoc
, aead_parms
.assoc_size
,
1550 assoc_nents
, aead_parms
.iv_len
, chunksize
,
1551 aead_parms
.aad_pad_len
, pad_len
, incl_icv
);
1555 err
= mailbox_send_message(mssg
, req
->base
.flags
, rctx
->chan_idx
);
1556 if (unlikely(err
< 0))
1559 return -EINPROGRESS
;
1563 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564 * @rctx: Crypto request context
1566 static void handle_aead_resp(struct iproc_reqctx_s
*rctx
)
1568 struct spu_hw
*spu
= &iproc_priv
.spu
;
1569 struct crypto_async_request
*areq
= rctx
->parent
;
1570 struct aead_request
*req
= container_of(areq
,
1571 struct aead_request
, base
);
1572 struct iproc_ctx_s
*ctx
= rctx
->ctx
;
1574 unsigned int icv_offset
;
1577 /* See how much data was returned */
1578 payload_len
= spu
->spu_payload_length(rctx
->msg_buf
.spu_resp_hdr
);
1579 flow_log("payload_len %u\n", payload_len
);
1581 /* only count payload */
1582 atomic64_add(payload_len
, &iproc_priv
.bytes_in
);
1585 packet_dump(" assoc_data ", rctx
->msg_buf
.a
.resp_aad
,
1589 * Copy the ICV back to the destination
1590 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591 * API doesn't expect ICV in dst buffer.
1593 result_len
= req
->cryptlen
;
1594 if (rctx
->is_encrypt
) {
1595 icv_offset
= req
->assoclen
+ rctx
->total_sent
;
1596 packet_dump(" ICV: ", rctx
->msg_buf
.digest
, ctx
->digestsize
);
1597 flow_log("copying ICV to dst sg at offset %u\n", icv_offset
);
1598 sg_copy_part_from_buf(req
->dst
, rctx
->msg_buf
.digest
,
1599 ctx
->digestsize
, icv_offset
);
1600 result_len
+= ctx
->digestsize
;
1603 packet_log("response data: ");
1604 dump_sg(req
->dst
, req
->assoclen
, result_len
);
1606 atomic_inc(&iproc_priv
.op_counts
[SPU_OP_AEAD
]);
1607 if (ctx
->cipher
.alg
== CIPHER_ALG_AES
) {
1608 if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)
1609 atomic_inc(&iproc_priv
.aead_cnt
[AES_CCM
]);
1610 else if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
)
1611 atomic_inc(&iproc_priv
.aead_cnt
[AES_GCM
]);
1613 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1615 atomic_inc(&iproc_priv
.aead_cnt
[AUTHENC
]);
1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621 * @rctx: request context
1623 * Mailbox scatterlists are allocated for each chunk. So free them after
1624 * processing each chunk.
1626 static void spu_chunk_cleanup(struct iproc_reqctx_s
*rctx
)
1628 /* mailbox message used to tx request */
1629 struct brcm_message
*mssg
= &rctx
->mb_mssg
;
1631 kfree(mssg
->spu
.src
);
1632 kfree(mssg
->spu
.dst
);
1633 memset(mssg
, 0, sizeof(struct brcm_message
));
1637 * finish_req() - Used to invoke the complete callback from the requester when
1638 * a request has been handled asynchronously.
1639 * @rctx: Request context
1640 * @err: Indicates whether the request was successful or not
1642 * Ensures that cleanup has been done for request
1644 static void finish_req(struct iproc_reqctx_s
*rctx
, int err
)
1646 struct crypto_async_request
*areq
= rctx
->parent
;
1648 flow_log("%s() err:%d\n\n", __func__
, err
);
1650 /* No harm done if already called */
1651 spu_chunk_cleanup(rctx
);
1654 areq
->complete(areq
, err
);
1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659 * @cl: mailbox client structure for SPU driver
1660 * @msg: mailbox message containing SPU response
1662 static void spu_rx_callback(struct mbox_client
*cl
, void *msg
)
1664 struct spu_hw
*spu
= &iproc_priv
.spu
;
1665 struct brcm_message
*mssg
= msg
;
1666 struct iproc_reqctx_s
*rctx
;
1670 if (unlikely(!rctx
)) {
1672 pr_err("%s(): no request context", __func__
);
1677 /* process the SPU status */
1678 err
= spu
->spu_status_process(rctx
->msg_buf
.rx_stat
);
1680 if (err
== SPU_INVALID_ICV
)
1681 atomic_inc(&iproc_priv
.bad_icv
);
1686 /* Process the SPU response message */
1687 switch (rctx
->ctx
->alg
->type
) {
1688 case CRYPTO_ALG_TYPE_SKCIPHER
:
1689 handle_skcipher_resp(rctx
);
1691 case CRYPTO_ALG_TYPE_AHASH
:
1692 handle_ahash_resp(rctx
);
1694 case CRYPTO_ALG_TYPE_AEAD
:
1695 handle_aead_resp(rctx
);
1703 * If this response does not complete the request, then send the next
1706 if (rctx
->total_sent
< rctx
->total_todo
) {
1707 /* Deallocate anything specific to previous chunk */
1708 spu_chunk_cleanup(rctx
);
1710 switch (rctx
->ctx
->alg
->type
) {
1711 case CRYPTO_ALG_TYPE_SKCIPHER
:
1712 err
= handle_skcipher_req(rctx
);
1714 case CRYPTO_ALG_TYPE_AHASH
:
1715 err
= handle_ahash_req(rctx
);
1718 * we saved data in hash carry, but tell crypto
1719 * API we successfully completed request.
1723 case CRYPTO_ALG_TYPE_AEAD
:
1724 err
= handle_aead_req(rctx
);
1730 if (err
== -EINPROGRESS
)
1731 /* Successfully submitted request for next chunk */
1736 finish_req(rctx
, err
);
1739 /* ==================== Kernel Cryptographic API ==================== */
1742 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1743 * @req: Crypto API request
1744 * @encrypt: true if encrypting; false if decrypting
1746 * Return: -EINPROGRESS if request accepted and result will be returned
1750 static int skcipher_enqueue(struct skcipher_request
*req
, bool encrypt
)
1752 struct iproc_reqctx_s
*rctx
= skcipher_request_ctx(req
);
1753 struct iproc_ctx_s
*ctx
=
1754 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req
));
1757 flow_log("%s() enc:%u\n", __func__
, encrypt
);
1759 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1760 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1761 rctx
->parent
= &req
->base
;
1762 rctx
->is_encrypt
= encrypt
;
1763 rctx
->bd_suppress
= false;
1764 rctx
->total_todo
= req
->cryptlen
;
1766 rctx
->total_sent
= 0;
1767 rctx
->total_received
= 0;
1770 /* Initialize current position in src and dst scatterlists */
1771 rctx
->src_sg
= req
->src
;
1772 rctx
->src_nents
= 0;
1774 rctx
->dst_sg
= req
->dst
;
1775 rctx
->dst_nents
= 0;
1778 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
1779 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
1780 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
1781 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
1782 ctx
->cipher
.mode
== CIPHER_MODE_GCM
||
1783 ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
1785 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req
));
1786 memcpy(rctx
->msg_buf
.iv_ctr
, req
->iv
, rctx
->iv_ctr_len
);
1788 rctx
->iv_ctr_len
= 0;
1791 /* Choose a SPU to process this request */
1792 rctx
->chan_idx
= select_channel();
1793 err
= handle_skcipher_req(rctx
);
1794 if (err
!= -EINPROGRESS
)
1795 /* synchronous result */
1796 spu_chunk_cleanup(rctx
);
1801 static int des_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1802 unsigned int keylen
)
1804 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1807 err
= verify_skcipher_des_key(cipher
, key
);
1811 ctx
->cipher_type
= CIPHER_TYPE_DES
;
1815 static int threedes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1816 unsigned int keylen
)
1818 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1821 err
= verify_skcipher_des3_key(cipher
, key
);
1825 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
1829 static int aes_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1830 unsigned int keylen
)
1832 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1834 if (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)
1835 /* XTS includes two keys of equal length */
1836 keylen
= keylen
/ 2;
1839 case AES_KEYSIZE_128
:
1840 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
1842 case AES_KEYSIZE_192
:
1843 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
1845 case AES_KEYSIZE_256
:
1846 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
1851 WARN_ON((ctx
->max_payload
!= SPU_MAX_PAYLOAD_INF
) &&
1852 ((ctx
->max_payload
% AES_BLOCK_SIZE
) != 0));
1856 static int rc4_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1857 unsigned int keylen
)
1859 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1862 ctx
->enckeylen
= ARC4_MAX_KEY_SIZE
+ ARC4_STATE_SIZE
;
1864 ctx
->enckey
[0] = 0x00; /* 0x00 */
1865 ctx
->enckey
[1] = 0x00; /* i */
1866 ctx
->enckey
[2] = 0x00; /* 0x00 */
1867 ctx
->enckey
[3] = 0x00; /* j */
1868 for (i
= 0; i
< ARC4_MAX_KEY_SIZE
; i
++)
1869 ctx
->enckey
[i
+ ARC4_STATE_SIZE
] = key
[i
% keylen
];
1871 ctx
->cipher_type
= CIPHER_TYPE_INIT
;
1876 static int skcipher_setkey(struct crypto_skcipher
*cipher
, const u8
*key
,
1877 unsigned int keylen
)
1879 struct spu_hw
*spu
= &iproc_priv
.spu
;
1880 struct iproc_ctx_s
*ctx
= crypto_skcipher_ctx(cipher
);
1881 struct spu_cipher_parms cipher_parms
;
1885 flow_log("skcipher_setkey() keylen: %d\n", keylen
);
1886 flow_dump(" key: ", key
, keylen
);
1888 switch (ctx
->cipher
.alg
) {
1889 case CIPHER_ALG_DES
:
1890 err
= des_setkey(cipher
, key
, keylen
);
1892 case CIPHER_ALG_3DES
:
1893 err
= threedes_setkey(cipher
, key
, keylen
);
1895 case CIPHER_ALG_AES
:
1896 err
= aes_setkey(cipher
, key
, keylen
);
1898 case CIPHER_ALG_RC4
:
1899 err
= rc4_setkey(cipher
, key
, keylen
);
1902 pr_err("%s() Error: unknown cipher alg\n", __func__
);
1908 /* RC4 already populated ctx->enkey */
1909 if (ctx
->cipher
.alg
!= CIPHER_ALG_RC4
) {
1910 memcpy(ctx
->enckey
, key
, keylen
);
1911 ctx
->enckeylen
= keylen
;
1913 /* SPU needs XTS keys in the reverse order the crypto API presents */
1914 if ((ctx
->cipher
.alg
== CIPHER_ALG_AES
) &&
1915 (ctx
->cipher
.mode
== CIPHER_MODE_XTS
)) {
1916 unsigned int xts_keylen
= keylen
/ 2;
1918 memcpy(ctx
->enckey
, key
+ xts_keylen
, xts_keylen
);
1919 memcpy(ctx
->enckey
+ xts_keylen
, key
, xts_keylen
);
1922 if (spu
->spu_type
== SPU_TYPE_SPUM
)
1923 alloc_len
= BCM_HDR_LEN
+ SPU_HEADER_ALLOC_LEN
;
1924 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
1925 alloc_len
= BCM_HDR_LEN
+ SPU2_HEADER_ALLOC_LEN
;
1926 memset(ctx
->bcm_spu_req_hdr
, 0, alloc_len
);
1927 cipher_parms
.iv_buf
= NULL
;
1928 cipher_parms
.iv_len
= crypto_skcipher_ivsize(cipher
);
1929 flow_log("%s: iv_len %u\n", __func__
, cipher_parms
.iv_len
);
1931 cipher_parms
.alg
= ctx
->cipher
.alg
;
1932 cipher_parms
.mode
= ctx
->cipher
.mode
;
1933 cipher_parms
.type
= ctx
->cipher_type
;
1934 cipher_parms
.key_buf
= ctx
->enckey
;
1935 cipher_parms
.key_len
= ctx
->enckeylen
;
1937 /* Prepend SPU request message with BCM header */
1938 memcpy(ctx
->bcm_spu_req_hdr
, BCMHEADER
, BCM_HDR_LEN
);
1939 ctx
->spu_req_hdr_len
=
1940 spu
->spu_cipher_req_init(ctx
->bcm_spu_req_hdr
+ BCM_HDR_LEN
,
1943 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
1947 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_CIPHER
]);
1952 static int skcipher_encrypt(struct skcipher_request
*req
)
1954 flow_log("skcipher_encrypt() nbytes:%u\n", req
->cryptlen
);
1956 return skcipher_enqueue(req
, true);
1959 static int skcipher_decrypt(struct skcipher_request
*req
)
1961 flow_log("skcipher_decrypt() nbytes:%u\n", req
->cryptlen
);
1962 return skcipher_enqueue(req
, false);
1965 static int ahash_enqueue(struct ahash_request
*req
)
1967 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
1968 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1969 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
1971 const char *alg_name
;
1973 flow_log("ahash_enqueue() nbytes:%u\n", req
->nbytes
);
1975 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
1976 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
1977 rctx
->parent
= &req
->base
;
1979 rctx
->bd_suppress
= true;
1980 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
1982 /* Initialize position in src scatterlist */
1983 rctx
->src_sg
= req
->src
;
1985 rctx
->src_nents
= 0;
1986 rctx
->dst_sg
= NULL
;
1988 rctx
->dst_nents
= 0;
1990 /* SPU2 hardware does not compute hash of zero length data */
1991 if ((rctx
->is_final
== 1) && (rctx
->total_todo
== 0) &&
1992 (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
)) {
1993 alg_name
= crypto_tfm_alg_name(crypto_ahash_tfm(tfm
));
1994 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1995 rctx
->is_final
? "" : "non-", alg_name
);
1996 err
= do_shash((unsigned char *)alg_name
, req
->result
,
1997 NULL
, 0, NULL
, 0, ctx
->authkey
,
2000 flow_log("Hash request failed with error %d\n", err
);
2003 /* Choose a SPU to process this request */
2004 rctx
->chan_idx
= select_channel();
2006 err
= handle_ahash_req(rctx
);
2007 if (err
!= -EINPROGRESS
)
2008 /* synchronous result */
2009 spu_chunk_cleanup(rctx
);
2013 * we saved data in hash carry, but tell crypto API
2014 * we successfully completed request.
2021 static int __ahash_init(struct ahash_request
*req
)
2023 struct spu_hw
*spu
= &iproc_priv
.spu
;
2024 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2025 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2026 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2028 flow_log("%s()\n", __func__
);
2030 /* Initialize the context */
2031 rctx
->hash_carry_len
= 0;
2034 rctx
->total_todo
= 0;
2036 rctx
->total_sent
= 0;
2037 rctx
->total_received
= 0;
2039 ctx
->digestsize
= crypto_ahash_digestsize(tfm
);
2040 /* If we add a hash whose digest is larger, catch it here. */
2041 WARN_ON(ctx
->digestsize
> MAX_DIGEST_SIZE
);
2043 rctx
->is_sw_hmac
= false;
2045 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
, 0,
2052 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2053 * @ctx: Crypto session context
2055 * SPU-2 does not support incremental hashing (we'll have to revisit and
2056 * condition based on chip revision or device tree entry if future versions do
2057 * support incremental hash)
2059 * SPU-M also doesn't support incremental hashing of AES-XCBC
2061 * Return: true if incremental hashing is not supported
2064 static bool spu_no_incr_hash(struct iproc_ctx_s
*ctx
)
2066 struct spu_hw
*spu
= &iproc_priv
.spu
;
2068 if (spu
->spu_type
== SPU_TYPE_SPU2
)
2071 if ((ctx
->auth
.alg
== HASH_ALG_AES
) &&
2072 (ctx
->auth
.mode
== HASH_MODE_XCBC
))
2075 /* Otherwise, incremental hashing is supported */
2079 static int ahash_init(struct ahash_request
*req
)
2081 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2082 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2083 const char *alg_name
;
2084 struct crypto_shash
*hash
;
2088 if (spu_no_incr_hash(ctx
)) {
2090 * If we get an incremental hashing request and it's not
2091 * supported by the hardware, we need to handle it in software
2092 * by calling synchronous hash functions.
2094 alg_name
= crypto_tfm_alg_name(crypto_ahash_tfm(tfm
));
2095 hash
= crypto_alloc_shash(alg_name
, 0, 0);
2097 ret
= PTR_ERR(hash
);
2101 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2102 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2103 ctx
->shash
= kmalloc(sizeof(*ctx
->shash
) +
2104 crypto_shash_descsize(hash
), gfp
);
2109 ctx
->shash
->tfm
= hash
;
2111 /* Set the key using data we already have from setkey */
2112 if (ctx
->authkeylen
> 0) {
2113 ret
= crypto_shash_setkey(hash
, ctx
->authkey
,
2119 /* Initialize hash w/ this key and other params */
2120 ret
= crypto_shash_init(ctx
->shash
);
2124 /* Otherwise call the internal function which uses SPU hw */
2125 ret
= __ahash_init(req
);
2133 crypto_free_shash(hash
);
2138 static int __ahash_update(struct ahash_request
*req
)
2140 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2142 flow_log("ahash_update() nbytes:%u\n", req
->nbytes
);
2146 rctx
->total_todo
+= req
->nbytes
;
2149 return ahash_enqueue(req
);
2152 static int ahash_update(struct ahash_request
*req
)
2154 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2155 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2161 if (spu_no_incr_hash(ctx
)) {
2163 * If we get an incremental hashing request and it's not
2164 * supported by the hardware, we need to handle it in software
2165 * by calling synchronous hash functions.
2168 nents
= sg_nents(req
->src
);
2172 /* Copy data from req scatterlist to tmp buffer */
2173 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2174 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2175 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2179 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2185 /* Call synchronous update */
2186 ret
= crypto_shash_update(ctx
->shash
, tmpbuf
, req
->nbytes
);
2189 /* Otherwise call the internal function which uses SPU hw */
2190 ret
= __ahash_update(req
);
2196 static int __ahash_final(struct ahash_request
*req
)
2198 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2200 flow_log("ahash_final() nbytes:%u\n", req
->nbytes
);
2204 return ahash_enqueue(req
);
2207 static int ahash_final(struct ahash_request
*req
)
2209 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2210 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2213 if (spu_no_incr_hash(ctx
)) {
2215 * If we get an incremental hashing request and it's not
2216 * supported by the hardware, we need to handle it in software
2217 * by calling synchronous hash functions.
2219 ret
= crypto_shash_final(ctx
->shash
, req
->result
);
2221 /* Done with hash, can deallocate it now */
2222 crypto_free_shash(ctx
->shash
->tfm
);
2226 /* Otherwise call the internal function which uses SPU hw */
2227 ret
= __ahash_final(req
);
2233 static int __ahash_finup(struct ahash_request
*req
)
2235 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2237 flow_log("ahash_finup() nbytes:%u\n", req
->nbytes
);
2239 rctx
->total_todo
+= req
->nbytes
;
2243 return ahash_enqueue(req
);
2246 static int ahash_finup(struct ahash_request
*req
)
2248 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2249 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2255 if (spu_no_incr_hash(ctx
)) {
2257 * If we get an incremental hashing request and it's not
2258 * supported by the hardware, we need to handle it in software
2259 * by calling synchronous hash functions.
2262 nents
= sg_nents(req
->src
);
2265 goto ahash_finup_exit
;
2268 /* Copy data from req scatterlist to tmp buffer */
2269 gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2270 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2271 tmpbuf
= kmalloc(req
->nbytes
, gfp
);
2274 goto ahash_finup_exit
;
2277 if (sg_copy_to_buffer(req
->src
, nents
, tmpbuf
, req
->nbytes
) !=
2280 goto ahash_finup_free
;
2283 /* Call synchronous update */
2284 ret
= crypto_shash_finup(ctx
->shash
, tmpbuf
, req
->nbytes
,
2287 /* Otherwise call the internal function which uses SPU hw */
2288 return __ahash_finup(req
);
2294 /* Done with hash, can deallocate it now */
2295 crypto_free_shash(ctx
->shash
->tfm
);
2300 static int ahash_digest(struct ahash_request
*req
)
2304 flow_log("ahash_digest() nbytes:%u\n", req
->nbytes
);
2306 /* whole thing at once */
2307 err
= __ahash_init(req
);
2309 err
= __ahash_finup(req
);
2314 static int ahash_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2315 unsigned int keylen
)
2317 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2319 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2320 __func__
, ahash
, key
, keylen
);
2321 flow_dump(" key: ", key
, keylen
);
2323 if (ctx
->auth
.alg
== HASH_ALG_AES
) {
2325 case AES_KEYSIZE_128
:
2326 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2328 case AES_KEYSIZE_192
:
2329 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2331 case AES_KEYSIZE_256
:
2332 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2335 pr_err("%s() Error: Invalid key length\n", __func__
);
2339 pr_err("%s() Error: unknown hash alg\n", __func__
);
2342 memcpy(ctx
->authkey
, key
, keylen
);
2343 ctx
->authkeylen
= keylen
;
2348 static int ahash_export(struct ahash_request
*req
, void *out
)
2350 const struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2351 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)out
;
2353 spu_exp
->total_todo
= rctx
->total_todo
;
2354 spu_exp
->total_sent
= rctx
->total_sent
;
2355 spu_exp
->is_sw_hmac
= rctx
->is_sw_hmac
;
2356 memcpy(spu_exp
->hash_carry
, rctx
->hash_carry
, sizeof(rctx
->hash_carry
));
2357 spu_exp
->hash_carry_len
= rctx
->hash_carry_len
;
2358 memcpy(spu_exp
->incr_hash
, rctx
->incr_hash
, sizeof(rctx
->incr_hash
));
2363 static int ahash_import(struct ahash_request
*req
, const void *in
)
2365 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2366 struct spu_hash_export_s
*spu_exp
= (struct spu_hash_export_s
*)in
;
2368 rctx
->total_todo
= spu_exp
->total_todo
;
2369 rctx
->total_sent
= spu_exp
->total_sent
;
2370 rctx
->is_sw_hmac
= spu_exp
->is_sw_hmac
;
2371 memcpy(rctx
->hash_carry
, spu_exp
->hash_carry
, sizeof(rctx
->hash_carry
));
2372 rctx
->hash_carry_len
= spu_exp
->hash_carry_len
;
2373 memcpy(rctx
->incr_hash
, spu_exp
->incr_hash
, sizeof(rctx
->incr_hash
));
2378 static int ahash_hmac_setkey(struct crypto_ahash
*ahash
, const u8
*key
,
2379 unsigned int keylen
)
2381 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(ahash
);
2382 unsigned int blocksize
=
2383 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash
));
2384 unsigned int digestsize
= crypto_ahash_digestsize(ahash
);
2388 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2389 __func__
, ahash
, key
, keylen
, blocksize
, digestsize
);
2390 flow_dump(" key: ", key
, keylen
);
2392 if (keylen
> blocksize
) {
2393 switch (ctx
->auth
.alg
) {
2395 rc
= do_shash("md5", ctx
->authkey
, key
, keylen
, NULL
,
2399 rc
= do_shash("sha1", ctx
->authkey
, key
, keylen
, NULL
,
2402 case HASH_ALG_SHA224
:
2403 rc
= do_shash("sha224", ctx
->authkey
, key
, keylen
, NULL
,
2406 case HASH_ALG_SHA256
:
2407 rc
= do_shash("sha256", ctx
->authkey
, key
, keylen
, NULL
,
2410 case HASH_ALG_SHA384
:
2411 rc
= do_shash("sha384", ctx
->authkey
, key
, keylen
, NULL
,
2414 case HASH_ALG_SHA512
:
2415 rc
= do_shash("sha512", ctx
->authkey
, key
, keylen
, NULL
,
2418 case HASH_ALG_SHA3_224
:
2419 rc
= do_shash("sha3-224", ctx
->authkey
, key
, keylen
,
2422 case HASH_ALG_SHA3_256
:
2423 rc
= do_shash("sha3-256", ctx
->authkey
, key
, keylen
,
2426 case HASH_ALG_SHA3_384
:
2427 rc
= do_shash("sha3-384", ctx
->authkey
, key
, keylen
,
2430 case HASH_ALG_SHA3_512
:
2431 rc
= do_shash("sha3-512", ctx
->authkey
, key
, keylen
,
2435 pr_err("%s() Error: unknown hash alg\n", __func__
);
2439 pr_err("%s() Error %d computing shash for %s\n",
2440 __func__
, rc
, hash_alg_name
[ctx
->auth
.alg
]);
2443 ctx
->authkeylen
= digestsize
;
2445 flow_log(" keylen > digestsize... hashed\n");
2446 flow_dump(" newkey: ", ctx
->authkey
, ctx
->authkeylen
);
2448 memcpy(ctx
->authkey
, key
, keylen
);
2449 ctx
->authkeylen
= keylen
;
2453 * Full HMAC operation in SPUM is not verified,
2454 * So keeping the generation of IPAD, OPAD and
2455 * outer hashing in software.
2457 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPUM
) {
2458 memcpy(ctx
->ipad
, ctx
->authkey
, ctx
->authkeylen
);
2459 memset(ctx
->ipad
+ ctx
->authkeylen
, 0,
2460 blocksize
- ctx
->authkeylen
);
2461 ctx
->authkeylen
= 0;
2462 memcpy(ctx
->opad
, ctx
->ipad
, blocksize
);
2464 for (index
= 0; index
< blocksize
; index
++) {
2465 ctx
->ipad
[index
] ^= HMAC_IPAD_VALUE
;
2466 ctx
->opad
[index
] ^= HMAC_OPAD_VALUE
;
2469 flow_dump(" ipad: ", ctx
->ipad
, blocksize
);
2470 flow_dump(" opad: ", ctx
->opad
, blocksize
);
2472 ctx
->digestsize
= digestsize
;
2473 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_HMAC
]);
2478 static int ahash_hmac_init(struct ahash_request
*req
)
2480 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2481 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2482 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2483 unsigned int blocksize
=
2484 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2486 flow_log("ahash_hmac_init()\n");
2488 /* init the context as a hash */
2491 if (!spu_no_incr_hash(ctx
)) {
2492 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2493 rctx
->is_sw_hmac
= true;
2494 ctx
->auth
.mode
= HASH_MODE_HASH
;
2495 /* start with a prepended ipad */
2496 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2497 rctx
->hash_carry_len
= blocksize
;
2498 rctx
->total_todo
+= blocksize
;
2504 static int ahash_hmac_update(struct ahash_request
*req
)
2506 flow_log("ahash_hmac_update() nbytes:%u\n", req
->nbytes
);
2511 return ahash_update(req
);
2514 static int ahash_hmac_final(struct ahash_request
*req
)
2516 flow_log("ahash_hmac_final() nbytes:%u\n", req
->nbytes
);
2518 return ahash_final(req
);
2521 static int ahash_hmac_finup(struct ahash_request
*req
)
2523 flow_log("ahash_hmac_finupl() nbytes:%u\n", req
->nbytes
);
2525 return ahash_finup(req
);
2528 static int ahash_hmac_digest(struct ahash_request
*req
)
2530 struct iproc_reqctx_s
*rctx
= ahash_request_ctx(req
);
2531 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
2532 struct iproc_ctx_s
*ctx
= crypto_ahash_ctx(tfm
);
2533 unsigned int blocksize
=
2534 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm
));
2536 flow_log("ahash_hmac_digest() nbytes:%u\n", req
->nbytes
);
2538 /* Perform initialization and then call finup */
2541 if (iproc_priv
.spu
.spu_type
== SPU_TYPE_SPU2
) {
2543 * SPU2 supports full HMAC implementation in the
2544 * hardware, need not to generate IPAD, OPAD and
2545 * outer hash in software.
2546 * Only for hash key len > hash block size, SPU2
2547 * expects to perform hashing on the key, shorten
2548 * it to digest size and feed it as hash key.
2550 rctx
->is_sw_hmac
= false;
2551 ctx
->auth
.mode
= HASH_MODE_HMAC
;
2553 rctx
->is_sw_hmac
= true;
2554 ctx
->auth
.mode
= HASH_MODE_HASH
;
2555 /* start with a prepended ipad */
2556 memcpy(rctx
->hash_carry
, ctx
->ipad
, blocksize
);
2557 rctx
->hash_carry_len
= blocksize
;
2558 rctx
->total_todo
+= blocksize
;
2561 return __ahash_finup(req
);
2566 static int aead_need_fallback(struct aead_request
*req
)
2568 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2569 struct spu_hw
*spu
= &iproc_priv
.spu
;
2570 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2571 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2575 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2576 * and AAD are both 0 bytes long. So use fallback in this case.
2578 if (((ctx
->cipher
.mode
== CIPHER_MODE_GCM
) ||
2579 (ctx
->cipher
.mode
== CIPHER_MODE_CCM
)) &&
2580 (req
->assoclen
== 0)) {
2581 if ((rctx
->is_encrypt
&& (req
->cryptlen
== 0)) ||
2582 (!rctx
->is_encrypt
&& (req
->cryptlen
== ctx
->digestsize
))) {
2583 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2588 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2589 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2590 (spu
->spu_type
== SPU_TYPE_SPUM
) &&
2591 (ctx
->digestsize
!= 8) && (ctx
->digestsize
!= 12) &&
2592 (ctx
->digestsize
!= 16)) {
2593 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2594 __func__
, ctx
->digestsize
);
2599 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2600 * when AAD size is 0
2602 if ((ctx
->cipher
.mode
== CIPHER_MODE_CCM
) &&
2603 (spu
->spu_subtype
== SPU_SUBTYPE_SPUM_NSP
) &&
2604 (req
->assoclen
== 0)) {
2605 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2611 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2612 * 16 or 20 bytes long. So use fallback in this case.
2614 if (ctx
->cipher
.mode
== CIPHER_MODE_GCM
&&
2615 ctx
->cipher
.alg
== CIPHER_ALG_AES
&&
2616 rctx
->iv_ctr_len
== GCM_RFC4106_IV_SIZE
&&
2617 req
->assoclen
!= 16 && req
->assoclen
!= 20) {
2618 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2619 " other than 16 or 20 bytes\n");
2623 payload_len
= req
->cryptlen
;
2624 if (spu
->spu_type
== SPU_TYPE_SPUM
)
2625 payload_len
+= req
->assoclen
;
2627 flow_log("%s() payload len: %u\n", __func__
, payload_len
);
2629 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2632 return payload_len
> ctx
->max_payload
;
2635 static void aead_complete(struct crypto_async_request
*areq
, int err
)
2637 struct aead_request
*req
=
2638 container_of(areq
, struct aead_request
, base
);
2639 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2640 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2642 flow_log("%s() err:%d\n", __func__
, err
);
2644 areq
->tfm
= crypto_aead_tfm(aead
);
2646 areq
->complete
= rctx
->old_complete
;
2647 areq
->data
= rctx
->old_data
;
2649 areq
->complete(areq
, err
);
2652 static int aead_do_fallback(struct aead_request
*req
, bool is_encrypt
)
2654 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2655 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
2656 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2657 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
2661 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2663 if (ctx
->fallback_cipher
) {
2664 /* Store the cipher tfm and then use the fallback tfm */
2665 rctx
->old_tfm
= tfm
;
2666 aead_request_set_tfm(req
, ctx
->fallback_cipher
);
2668 * Save the callback and chain ourselves in, so we can restore
2671 rctx
->old_complete
= req
->base
.complete
;
2672 rctx
->old_data
= req
->base
.data
;
2673 req_flags
= aead_request_flags(req
);
2674 aead_request_set_callback(req
, req_flags
, aead_complete
, req
);
2675 err
= is_encrypt
? crypto_aead_encrypt(req
) :
2676 crypto_aead_decrypt(req
);
2680 * fallback was synchronous (did not return
2681 * -EINPROGRESS). So restore request state here.
2683 aead_request_set_callback(req
, req_flags
,
2684 rctx
->old_complete
, req
);
2685 req
->base
.data
= rctx
->old_data
;
2686 aead_request_set_tfm(req
, aead
);
2687 flow_log("%s() fallback completed successfully\n\n",
2697 static int aead_enqueue(struct aead_request
*req
, bool is_encrypt
)
2699 struct iproc_reqctx_s
*rctx
= aead_request_ctx(req
);
2700 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
2701 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(aead
);
2704 flow_log("%s() enc:%u\n", __func__
, is_encrypt
);
2706 if (req
->assoclen
> MAX_ASSOC_SIZE
) {
2708 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2709 __func__
, req
->assoclen
, MAX_ASSOC_SIZE
);
2713 rctx
->gfp
= (req
->base
.flags
& (CRYPTO_TFM_REQ_MAY_BACKLOG
|
2714 CRYPTO_TFM_REQ_MAY_SLEEP
)) ? GFP_KERNEL
: GFP_ATOMIC
;
2715 rctx
->parent
= &req
->base
;
2716 rctx
->is_encrypt
= is_encrypt
;
2717 rctx
->bd_suppress
= false;
2718 rctx
->total_todo
= req
->cryptlen
;
2720 rctx
->total_sent
= 0;
2721 rctx
->total_received
= 0;
2722 rctx
->is_sw_hmac
= false;
2724 memset(&rctx
->mb_mssg
, 0, sizeof(struct brcm_message
));
2726 /* assoc data is at start of src sg */
2727 rctx
->assoc
= req
->src
;
2730 * Init current position in src scatterlist to be after assoc data.
2731 * src_skip set to buffer offset where data begins. (Assoc data could
2732 * end in the middle of a buffer.)
2734 if (spu_sg_at_offset(req
->src
, req
->assoclen
, &rctx
->src_sg
,
2735 &rctx
->src_skip
) < 0) {
2736 pr_err("%s() Error: Unable to find start of src data\n",
2741 rctx
->src_nents
= 0;
2742 rctx
->dst_nents
= 0;
2743 if (req
->dst
== req
->src
) {
2744 rctx
->dst_sg
= rctx
->src_sg
;
2745 rctx
->dst_skip
= rctx
->src_skip
;
2748 * Expect req->dst to have room for assoc data followed by
2749 * output data and ICV, if encrypt. So initialize dst_sg
2750 * to point beyond assoc len offset.
2752 if (spu_sg_at_offset(req
->dst
, req
->assoclen
, &rctx
->dst_sg
,
2753 &rctx
->dst_skip
) < 0) {
2754 pr_err("%s() Error: Unable to find start of dst data\n",
2760 if (ctx
->cipher
.mode
== CIPHER_MODE_CBC
||
2761 ctx
->cipher
.mode
== CIPHER_MODE_CTR
||
2762 ctx
->cipher
.mode
== CIPHER_MODE_OFB
||
2763 ctx
->cipher
.mode
== CIPHER_MODE_XTS
||
2764 ctx
->cipher
.mode
== CIPHER_MODE_GCM
) {
2767 crypto_aead_ivsize(crypto_aead_reqtfm(req
));
2768 } else if (ctx
->cipher
.mode
== CIPHER_MODE_CCM
) {
2769 rctx
->iv_ctr_len
= CCM_AES_IV_SIZE
;
2771 rctx
->iv_ctr_len
= 0;
2774 rctx
->hash_carry_len
= 0;
2776 flow_log(" src sg: %p\n", req
->src
);
2777 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2778 rctx
->src_sg
, rctx
->src_skip
);
2779 flow_log(" assoc: %p, assoclen %u\n", rctx
->assoc
, req
->assoclen
);
2780 flow_log(" dst sg: %p\n", req
->dst
);
2781 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2782 rctx
->dst_sg
, rctx
->dst_skip
);
2783 flow_log(" iv_ctr_len:%u\n", rctx
->iv_ctr_len
);
2784 flow_dump(" iv: ", req
->iv
, rctx
->iv_ctr_len
);
2785 flow_log(" authkeylen:%u\n", ctx
->authkeylen
);
2786 flow_log(" is_esp: %s\n", ctx
->is_esp
? "yes" : "no");
2788 if (ctx
->max_payload
== SPU_MAX_PAYLOAD_INF
)
2789 flow_log(" max_payload infinite");
2791 flow_log(" max_payload: %u\n", ctx
->max_payload
);
2793 if (unlikely(aead_need_fallback(req
)))
2794 return aead_do_fallback(req
, is_encrypt
);
2797 * Do memory allocations for request after fallback check, because if we
2798 * do fallback, we won't call finish_req() to dealloc.
2800 if (rctx
->iv_ctr_len
) {
2802 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
,
2803 ctx
->salt
, ctx
->salt_len
);
2804 memcpy(rctx
->msg_buf
.iv_ctr
+ ctx
->salt_offset
+ ctx
->salt_len
,
2806 rctx
->iv_ctr_len
- ctx
->salt_len
- ctx
->salt_offset
);
2809 rctx
->chan_idx
= select_channel();
2810 err
= handle_aead_req(rctx
);
2811 if (err
!= -EINPROGRESS
)
2812 /* synchronous result */
2813 spu_chunk_cleanup(rctx
);
2818 static int aead_authenc_setkey(struct crypto_aead
*cipher
,
2819 const u8
*key
, unsigned int keylen
)
2821 struct spu_hw
*spu
= &iproc_priv
.spu
;
2822 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2823 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2824 struct crypto_authenc_keys keys
;
2827 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__
, cipher
, key
,
2829 flow_dump(" key: ", key
, keylen
);
2831 ret
= crypto_authenc_extractkeys(&keys
, key
, keylen
);
2835 if (keys
.enckeylen
> MAX_KEY_SIZE
||
2836 keys
.authkeylen
> MAX_KEY_SIZE
)
2839 ctx
->enckeylen
= keys
.enckeylen
;
2840 ctx
->authkeylen
= keys
.authkeylen
;
2842 memcpy(ctx
->enckey
, keys
.enckey
, keys
.enckeylen
);
2843 /* May end up padding auth key. So make sure it's zeroed. */
2844 memset(ctx
->authkey
, 0, sizeof(ctx
->authkey
));
2845 memcpy(ctx
->authkey
, keys
.authkey
, keys
.authkeylen
);
2847 switch (ctx
->alg
->cipher_info
.alg
) {
2848 case CIPHER_ALG_DES
:
2849 if (verify_aead_des_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2852 ctx
->cipher_type
= CIPHER_TYPE_DES
;
2854 case CIPHER_ALG_3DES
:
2855 if (verify_aead_des3_key(cipher
, keys
.enckey
, keys
.enckeylen
))
2858 ctx
->cipher_type
= CIPHER_TYPE_3DES
;
2860 case CIPHER_ALG_AES
:
2861 switch (ctx
->enckeylen
) {
2862 case AES_KEYSIZE_128
:
2863 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2865 case AES_KEYSIZE_192
:
2866 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2868 case AES_KEYSIZE_256
:
2869 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2875 case CIPHER_ALG_RC4
:
2876 ctx
->cipher_type
= CIPHER_TYPE_INIT
;
2879 pr_err("%s() Error: Unknown cipher alg\n", __func__
);
2883 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2885 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2886 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2888 /* setkey the fallback just in case we needto use it */
2889 if (ctx
->fallback_cipher
) {
2890 flow_log(" running fallback setkey()\n");
2892 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2893 ctx
->fallback_cipher
->base
.crt_flags
|=
2894 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2895 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
, keylen
);
2897 flow_log(" fallback setkey() returned:%d\n", ret
);
2900 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2904 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2910 ctx
->authkeylen
= 0;
2911 ctx
->digestsize
= 0;
2916 static int aead_gcm_ccm_setkey(struct crypto_aead
*cipher
,
2917 const u8
*key
, unsigned int keylen
)
2919 struct spu_hw
*spu
= &iproc_priv
.spu
;
2920 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
2921 struct crypto_tfm
*tfm
= crypto_aead_tfm(cipher
);
2925 flow_log("%s() keylen:%u\n", __func__
, keylen
);
2926 flow_dump(" key: ", key
, keylen
);
2929 ctx
->digestsize
= keylen
;
2931 ctx
->enckeylen
= keylen
;
2932 ctx
->authkeylen
= 0;
2933 memcpy(ctx
->enckey
, key
, ctx
->enckeylen
);
2935 switch (ctx
->enckeylen
) {
2936 case AES_KEYSIZE_128
:
2937 ctx
->cipher_type
= CIPHER_TYPE_AES128
;
2939 case AES_KEYSIZE_192
:
2940 ctx
->cipher_type
= CIPHER_TYPE_AES192
;
2942 case AES_KEYSIZE_256
:
2943 ctx
->cipher_type
= CIPHER_TYPE_AES256
;
2949 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2951 flow_dump(" enc: ", ctx
->enckey
, ctx
->enckeylen
);
2952 flow_dump(" auth: ", ctx
->authkey
, ctx
->authkeylen
);
2954 /* setkey the fallback just in case we need to use it */
2955 if (ctx
->fallback_cipher
) {
2956 flow_log(" running fallback setkey()\n");
2958 ctx
->fallback_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
2959 ctx
->fallback_cipher
->base
.crt_flags
|=
2960 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
2961 ret
= crypto_aead_setkey(ctx
->fallback_cipher
, key
,
2962 keylen
+ ctx
->salt_len
);
2964 flow_log(" fallback setkey() returned:%d\n", ret
);
2967 ctx
->spu_resp_hdr_len
= spu
->spu_response_hdr_len(ctx
->authkeylen
,
2971 atomic_inc(&iproc_priv
.setkey_cnt
[SPU_OP_AEAD
]);
2973 flow_log(" enckeylen:%u authkeylen:%u\n", ctx
->enckeylen
,
2980 ctx
->authkeylen
= 0;
2981 ctx
->digestsize
= 0;
2987 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2988 * @cipher: AEAD structure
2989 * @key: Key followed by 4 bytes of salt
2990 * @keylen: Length of key plus salt, in bytes
2992 * Extracts salt from key and stores it to be prepended to IV on each request.
2993 * Digest is always 16 bytes
2995 * Return: Value from generic gcm setkey.
2997 static int aead_gcm_esp_setkey(struct crypto_aead
*cipher
,
2998 const u8
*key
, unsigned int keylen
)
3000 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3002 flow_log("%s\n", __func__
);
3003 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
3004 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
3005 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
3006 keylen
-= GCM_ESP_SALT_SIZE
;
3007 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
3009 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
3011 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
3015 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3016 * cipher: AEAD structure
3017 * key: Key followed by 4 bytes of salt
3018 * keylen: Length of key plus salt, in bytes
3020 * Extracts salt from key and stores it to be prepended to IV on each request.
3021 * Digest is always 16 bytes
3023 * Return: Value from generic gcm setkey.
3025 static int rfc4543_gcm_esp_setkey(struct crypto_aead
*cipher
,
3026 const u8
*key
, unsigned int keylen
)
3028 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3030 flow_log("%s\n", __func__
);
3031 ctx
->salt_len
= GCM_ESP_SALT_SIZE
;
3032 ctx
->salt_offset
= GCM_ESP_SALT_OFFSET
;
3033 memcpy(ctx
->salt
, key
+ keylen
- GCM_ESP_SALT_SIZE
, GCM_ESP_SALT_SIZE
);
3034 keylen
-= GCM_ESP_SALT_SIZE
;
3035 ctx
->digestsize
= GCM_ESP_DIGESTSIZE
;
3037 ctx
->is_rfc4543
= true;
3038 flow_dump("salt: ", ctx
->salt
, GCM_ESP_SALT_SIZE
);
3040 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
3044 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3045 * @cipher: AEAD structure
3046 * @key: Key followed by 4 bytes of salt
3047 * @keylen: Length of key plus salt, in bytes
3049 * Extracts salt from key and stores it to be prepended to IV on each request.
3050 * Digest is always 16 bytes
3052 * Return: Value from generic ccm setkey.
3054 static int aead_ccm_esp_setkey(struct crypto_aead
*cipher
,
3055 const u8
*key
, unsigned int keylen
)
3057 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3059 flow_log("%s\n", __func__
);
3060 ctx
->salt_len
= CCM_ESP_SALT_SIZE
;
3061 ctx
->salt_offset
= CCM_ESP_SALT_OFFSET
;
3062 memcpy(ctx
->salt
, key
+ keylen
- CCM_ESP_SALT_SIZE
, CCM_ESP_SALT_SIZE
);
3063 keylen
-= CCM_ESP_SALT_SIZE
;
3065 flow_dump("salt: ", ctx
->salt
, CCM_ESP_SALT_SIZE
);
3067 return aead_gcm_ccm_setkey(cipher
, key
, keylen
);
3070 static int aead_setauthsize(struct crypto_aead
*cipher
, unsigned int authsize
)
3072 struct iproc_ctx_s
*ctx
= crypto_aead_ctx(cipher
);
3075 flow_log("%s() authkeylen:%u authsize:%u\n",
3076 __func__
, ctx
->authkeylen
, authsize
);
3078 ctx
->digestsize
= authsize
;
3080 /* setkey the fallback just in case we needto use it */
3081 if (ctx
->fallback_cipher
) {
3082 flow_log(" running fallback setauth()\n");
3084 ret
= crypto_aead_setauthsize(ctx
->fallback_cipher
, authsize
);
3086 flow_log(" fallback setauth() returned:%d\n", ret
);
3092 static int aead_encrypt(struct aead_request
*req
)
3094 flow_log("%s() cryptlen:%u %08x\n", __func__
, req
->cryptlen
,
3096 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3097 flow_log(" assoc_len:%u\n", req
->assoclen
);
3099 return aead_enqueue(req
, true);
3102 static int aead_decrypt(struct aead_request
*req
)
3104 flow_log("%s() cryptlen:%u\n", __func__
, req
->cryptlen
);
3105 dump_sg(req
->src
, 0, req
->cryptlen
+ req
->assoclen
);
3106 flow_log(" assoc_len:%u\n", req
->assoclen
);
3108 return aead_enqueue(req
, false);
3111 /* ==================== Supported Cipher Algorithms ==================== */
3113 static struct iproc_alg_s driver_algs
[] = {
3115 .type
= CRYPTO_ALG_TYPE_AEAD
,
3118 .cra_name
= "gcm(aes)",
3119 .cra_driver_name
= "gcm-aes-iproc",
3120 .cra_blocksize
= AES_BLOCK_SIZE
,
3121 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3123 .setkey
= aead_gcm_ccm_setkey
,
3124 .ivsize
= GCM_AES_IV_SIZE
,
3125 .maxauthsize
= AES_BLOCK_SIZE
,
3128 .alg
= CIPHER_ALG_AES
,
3129 .mode
= CIPHER_MODE_GCM
,
3132 .alg
= HASH_ALG_AES
,
3133 .mode
= HASH_MODE_GCM
,
3138 .type
= CRYPTO_ALG_TYPE_AEAD
,
3141 .cra_name
= "ccm(aes)",
3142 .cra_driver_name
= "ccm-aes-iproc",
3143 .cra_blocksize
= AES_BLOCK_SIZE
,
3144 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3146 .setkey
= aead_gcm_ccm_setkey
,
3147 .ivsize
= CCM_AES_IV_SIZE
,
3148 .maxauthsize
= AES_BLOCK_SIZE
,
3151 .alg
= CIPHER_ALG_AES
,
3152 .mode
= CIPHER_MODE_CCM
,
3155 .alg
= HASH_ALG_AES
,
3156 .mode
= HASH_MODE_CCM
,
3161 .type
= CRYPTO_ALG_TYPE_AEAD
,
3164 .cra_name
= "rfc4106(gcm(aes))",
3165 .cra_driver_name
= "gcm-aes-esp-iproc",
3166 .cra_blocksize
= AES_BLOCK_SIZE
,
3167 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3169 .setkey
= aead_gcm_esp_setkey
,
3170 .ivsize
= GCM_RFC4106_IV_SIZE
,
3171 .maxauthsize
= AES_BLOCK_SIZE
,
3174 .alg
= CIPHER_ALG_AES
,
3175 .mode
= CIPHER_MODE_GCM
,
3178 .alg
= HASH_ALG_AES
,
3179 .mode
= HASH_MODE_GCM
,
3184 .type
= CRYPTO_ALG_TYPE_AEAD
,
3187 .cra_name
= "rfc4309(ccm(aes))",
3188 .cra_driver_name
= "ccm-aes-esp-iproc",
3189 .cra_blocksize
= AES_BLOCK_SIZE
,
3190 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3192 .setkey
= aead_ccm_esp_setkey
,
3193 .ivsize
= CCM_AES_IV_SIZE
,
3194 .maxauthsize
= AES_BLOCK_SIZE
,
3197 .alg
= CIPHER_ALG_AES
,
3198 .mode
= CIPHER_MODE_CCM
,
3201 .alg
= HASH_ALG_AES
,
3202 .mode
= HASH_MODE_CCM
,
3207 .type
= CRYPTO_ALG_TYPE_AEAD
,
3210 .cra_name
= "rfc4543(gcm(aes))",
3211 .cra_driver_name
= "gmac-aes-esp-iproc",
3212 .cra_blocksize
= AES_BLOCK_SIZE
,
3213 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
3215 .setkey
= rfc4543_gcm_esp_setkey
,
3216 .ivsize
= GCM_RFC4106_IV_SIZE
,
3217 .maxauthsize
= AES_BLOCK_SIZE
,
3220 .alg
= CIPHER_ALG_AES
,
3221 .mode
= CIPHER_MODE_GCM
,
3224 .alg
= HASH_ALG_AES
,
3225 .mode
= HASH_MODE_GCM
,
3230 .type
= CRYPTO_ALG_TYPE_AEAD
,
3233 .cra_name
= "authenc(hmac(md5),cbc(aes))",
3234 .cra_driver_name
= "authenc-hmac-md5-cbc-aes-iproc",
3235 .cra_blocksize
= AES_BLOCK_SIZE
,
3236 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3238 .setkey
= aead_authenc_setkey
,
3239 .ivsize
= AES_BLOCK_SIZE
,
3240 .maxauthsize
= MD5_DIGEST_SIZE
,
3243 .alg
= CIPHER_ALG_AES
,
3244 .mode
= CIPHER_MODE_CBC
,
3247 .alg
= HASH_ALG_MD5
,
3248 .mode
= HASH_MODE_HMAC
,
3253 .type
= CRYPTO_ALG_TYPE_AEAD
,
3256 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
3257 .cra_driver_name
= "authenc-hmac-sha1-cbc-aes-iproc",
3258 .cra_blocksize
= AES_BLOCK_SIZE
,
3259 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3261 .setkey
= aead_authenc_setkey
,
3262 .ivsize
= AES_BLOCK_SIZE
,
3263 .maxauthsize
= SHA1_DIGEST_SIZE
,
3266 .alg
= CIPHER_ALG_AES
,
3267 .mode
= CIPHER_MODE_CBC
,
3270 .alg
= HASH_ALG_SHA1
,
3271 .mode
= HASH_MODE_HMAC
,
3276 .type
= CRYPTO_ALG_TYPE_AEAD
,
3279 .cra_name
= "authenc(hmac(sha256),cbc(aes))",
3280 .cra_driver_name
= "authenc-hmac-sha256-cbc-aes-iproc",
3281 .cra_blocksize
= AES_BLOCK_SIZE
,
3282 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3284 .setkey
= aead_authenc_setkey
,
3285 .ivsize
= AES_BLOCK_SIZE
,
3286 .maxauthsize
= SHA256_DIGEST_SIZE
,
3289 .alg
= CIPHER_ALG_AES
,
3290 .mode
= CIPHER_MODE_CBC
,
3293 .alg
= HASH_ALG_SHA256
,
3294 .mode
= HASH_MODE_HMAC
,
3299 .type
= CRYPTO_ALG_TYPE_AEAD
,
3302 .cra_name
= "authenc(hmac(md5),cbc(des))",
3303 .cra_driver_name
= "authenc-hmac-md5-cbc-des-iproc",
3304 .cra_blocksize
= DES_BLOCK_SIZE
,
3305 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3307 .setkey
= aead_authenc_setkey
,
3308 .ivsize
= DES_BLOCK_SIZE
,
3309 .maxauthsize
= MD5_DIGEST_SIZE
,
3312 .alg
= CIPHER_ALG_DES
,
3313 .mode
= CIPHER_MODE_CBC
,
3316 .alg
= HASH_ALG_MD5
,
3317 .mode
= HASH_MODE_HMAC
,
3322 .type
= CRYPTO_ALG_TYPE_AEAD
,
3325 .cra_name
= "authenc(hmac(sha1),cbc(des))",
3326 .cra_driver_name
= "authenc-hmac-sha1-cbc-des-iproc",
3327 .cra_blocksize
= DES_BLOCK_SIZE
,
3328 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3330 .setkey
= aead_authenc_setkey
,
3331 .ivsize
= DES_BLOCK_SIZE
,
3332 .maxauthsize
= SHA1_DIGEST_SIZE
,
3335 .alg
= CIPHER_ALG_DES
,
3336 .mode
= CIPHER_MODE_CBC
,
3339 .alg
= HASH_ALG_SHA1
,
3340 .mode
= HASH_MODE_HMAC
,
3345 .type
= CRYPTO_ALG_TYPE_AEAD
,
3348 .cra_name
= "authenc(hmac(sha224),cbc(des))",
3349 .cra_driver_name
= "authenc-hmac-sha224-cbc-des-iproc",
3350 .cra_blocksize
= DES_BLOCK_SIZE
,
3351 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3353 .setkey
= aead_authenc_setkey
,
3354 .ivsize
= DES_BLOCK_SIZE
,
3355 .maxauthsize
= SHA224_DIGEST_SIZE
,
3358 .alg
= CIPHER_ALG_DES
,
3359 .mode
= CIPHER_MODE_CBC
,
3362 .alg
= HASH_ALG_SHA224
,
3363 .mode
= HASH_MODE_HMAC
,
3368 .type
= CRYPTO_ALG_TYPE_AEAD
,
3371 .cra_name
= "authenc(hmac(sha256),cbc(des))",
3372 .cra_driver_name
= "authenc-hmac-sha256-cbc-des-iproc",
3373 .cra_blocksize
= DES_BLOCK_SIZE
,
3374 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3376 .setkey
= aead_authenc_setkey
,
3377 .ivsize
= DES_BLOCK_SIZE
,
3378 .maxauthsize
= SHA256_DIGEST_SIZE
,
3381 .alg
= CIPHER_ALG_DES
,
3382 .mode
= CIPHER_MODE_CBC
,
3385 .alg
= HASH_ALG_SHA256
,
3386 .mode
= HASH_MODE_HMAC
,
3391 .type
= CRYPTO_ALG_TYPE_AEAD
,
3394 .cra_name
= "authenc(hmac(sha384),cbc(des))",
3395 .cra_driver_name
= "authenc-hmac-sha384-cbc-des-iproc",
3396 .cra_blocksize
= DES_BLOCK_SIZE
,
3397 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3399 .setkey
= aead_authenc_setkey
,
3400 .ivsize
= DES_BLOCK_SIZE
,
3401 .maxauthsize
= SHA384_DIGEST_SIZE
,
3404 .alg
= CIPHER_ALG_DES
,
3405 .mode
= CIPHER_MODE_CBC
,
3408 .alg
= HASH_ALG_SHA384
,
3409 .mode
= HASH_MODE_HMAC
,
3414 .type
= CRYPTO_ALG_TYPE_AEAD
,
3417 .cra_name
= "authenc(hmac(sha512),cbc(des))",
3418 .cra_driver_name
= "authenc-hmac-sha512-cbc-des-iproc",
3419 .cra_blocksize
= DES_BLOCK_SIZE
,
3420 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3422 .setkey
= aead_authenc_setkey
,
3423 .ivsize
= DES_BLOCK_SIZE
,
3424 .maxauthsize
= SHA512_DIGEST_SIZE
,
3427 .alg
= CIPHER_ALG_DES
,
3428 .mode
= CIPHER_MODE_CBC
,
3431 .alg
= HASH_ALG_SHA512
,
3432 .mode
= HASH_MODE_HMAC
,
3437 .type
= CRYPTO_ALG_TYPE_AEAD
,
3440 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
3441 .cra_driver_name
= "authenc-hmac-md5-cbc-des3-iproc",
3442 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3443 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3445 .setkey
= aead_authenc_setkey
,
3446 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3447 .maxauthsize
= MD5_DIGEST_SIZE
,
3450 .alg
= CIPHER_ALG_3DES
,
3451 .mode
= CIPHER_MODE_CBC
,
3454 .alg
= HASH_ALG_MD5
,
3455 .mode
= HASH_MODE_HMAC
,
3460 .type
= CRYPTO_ALG_TYPE_AEAD
,
3463 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
3464 .cra_driver_name
= "authenc-hmac-sha1-cbc-des3-iproc",
3465 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3466 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3468 .setkey
= aead_authenc_setkey
,
3469 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3470 .maxauthsize
= SHA1_DIGEST_SIZE
,
3473 .alg
= CIPHER_ALG_3DES
,
3474 .mode
= CIPHER_MODE_CBC
,
3477 .alg
= HASH_ALG_SHA1
,
3478 .mode
= HASH_MODE_HMAC
,
3483 .type
= CRYPTO_ALG_TYPE_AEAD
,
3486 .cra_name
= "authenc(hmac(sha224),cbc(des3_ede))",
3487 .cra_driver_name
= "authenc-hmac-sha224-cbc-des3-iproc",
3488 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3489 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3491 .setkey
= aead_authenc_setkey
,
3492 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3493 .maxauthsize
= SHA224_DIGEST_SIZE
,
3496 .alg
= CIPHER_ALG_3DES
,
3497 .mode
= CIPHER_MODE_CBC
,
3500 .alg
= HASH_ALG_SHA224
,
3501 .mode
= HASH_MODE_HMAC
,
3506 .type
= CRYPTO_ALG_TYPE_AEAD
,
3509 .cra_name
= "authenc(hmac(sha256),cbc(des3_ede))",
3510 .cra_driver_name
= "authenc-hmac-sha256-cbc-des3-iproc",
3511 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3512 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3514 .setkey
= aead_authenc_setkey
,
3515 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3516 .maxauthsize
= SHA256_DIGEST_SIZE
,
3519 .alg
= CIPHER_ALG_3DES
,
3520 .mode
= CIPHER_MODE_CBC
,
3523 .alg
= HASH_ALG_SHA256
,
3524 .mode
= HASH_MODE_HMAC
,
3529 .type
= CRYPTO_ALG_TYPE_AEAD
,
3532 .cra_name
= "authenc(hmac(sha384),cbc(des3_ede))",
3533 .cra_driver_name
= "authenc-hmac-sha384-cbc-des3-iproc",
3534 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3535 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3537 .setkey
= aead_authenc_setkey
,
3538 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3539 .maxauthsize
= SHA384_DIGEST_SIZE
,
3542 .alg
= CIPHER_ALG_3DES
,
3543 .mode
= CIPHER_MODE_CBC
,
3546 .alg
= HASH_ALG_SHA384
,
3547 .mode
= HASH_MODE_HMAC
,
3552 .type
= CRYPTO_ALG_TYPE_AEAD
,
3555 .cra_name
= "authenc(hmac(sha512),cbc(des3_ede))",
3556 .cra_driver_name
= "authenc-hmac-sha512-cbc-des3-iproc",
3557 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3558 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
| CRYPTO_ALG_ASYNC
3560 .setkey
= aead_authenc_setkey
,
3561 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3562 .maxauthsize
= SHA512_DIGEST_SIZE
,
3565 .alg
= CIPHER_ALG_3DES
,
3566 .mode
= CIPHER_MODE_CBC
,
3569 .alg
= HASH_ALG_SHA512
,
3570 .mode
= HASH_MODE_HMAC
,
3575 /* SKCIPHER algorithms. */
3577 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3579 .base
.cra_name
= "ecb(arc4)",
3580 .base
.cra_driver_name
= "ecb-arc4-iproc",
3581 .base
.cra_blocksize
= ARC4_BLOCK_SIZE
,
3582 .min_keysize
= ARC4_MIN_KEY_SIZE
,
3583 .max_keysize
= ARC4_MAX_KEY_SIZE
,
3587 .alg
= CIPHER_ALG_RC4
,
3588 .mode
= CIPHER_MODE_NONE
,
3591 .alg
= HASH_ALG_NONE
,
3592 .mode
= HASH_MODE_NONE
,
3596 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3598 .base
.cra_name
= "ofb(des)",
3599 .base
.cra_driver_name
= "ofb-des-iproc",
3600 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3601 .min_keysize
= DES_KEY_SIZE
,
3602 .max_keysize
= DES_KEY_SIZE
,
3603 .ivsize
= DES_BLOCK_SIZE
,
3606 .alg
= CIPHER_ALG_DES
,
3607 .mode
= CIPHER_MODE_OFB
,
3610 .alg
= HASH_ALG_NONE
,
3611 .mode
= HASH_MODE_NONE
,
3615 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3617 .base
.cra_name
= "cbc(des)",
3618 .base
.cra_driver_name
= "cbc-des-iproc",
3619 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3620 .min_keysize
= DES_KEY_SIZE
,
3621 .max_keysize
= DES_KEY_SIZE
,
3622 .ivsize
= DES_BLOCK_SIZE
,
3625 .alg
= CIPHER_ALG_DES
,
3626 .mode
= CIPHER_MODE_CBC
,
3629 .alg
= HASH_ALG_NONE
,
3630 .mode
= HASH_MODE_NONE
,
3634 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3636 .base
.cra_name
= "ecb(des)",
3637 .base
.cra_driver_name
= "ecb-des-iproc",
3638 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
3639 .min_keysize
= DES_KEY_SIZE
,
3640 .max_keysize
= DES_KEY_SIZE
,
3644 .alg
= CIPHER_ALG_DES
,
3645 .mode
= CIPHER_MODE_ECB
,
3648 .alg
= HASH_ALG_NONE
,
3649 .mode
= HASH_MODE_NONE
,
3653 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3655 .base
.cra_name
= "ofb(des3_ede)",
3656 .base
.cra_driver_name
= "ofb-des3-iproc",
3657 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3658 .min_keysize
= DES3_EDE_KEY_SIZE
,
3659 .max_keysize
= DES3_EDE_KEY_SIZE
,
3660 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3663 .alg
= CIPHER_ALG_3DES
,
3664 .mode
= CIPHER_MODE_OFB
,
3667 .alg
= HASH_ALG_NONE
,
3668 .mode
= HASH_MODE_NONE
,
3672 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3674 .base
.cra_name
= "cbc(des3_ede)",
3675 .base
.cra_driver_name
= "cbc-des3-iproc",
3676 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3677 .min_keysize
= DES3_EDE_KEY_SIZE
,
3678 .max_keysize
= DES3_EDE_KEY_SIZE
,
3679 .ivsize
= DES3_EDE_BLOCK_SIZE
,
3682 .alg
= CIPHER_ALG_3DES
,
3683 .mode
= CIPHER_MODE_CBC
,
3686 .alg
= HASH_ALG_NONE
,
3687 .mode
= HASH_MODE_NONE
,
3691 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3693 .base
.cra_name
= "ecb(des3_ede)",
3694 .base
.cra_driver_name
= "ecb-des3-iproc",
3695 .base
.cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
3696 .min_keysize
= DES3_EDE_KEY_SIZE
,
3697 .max_keysize
= DES3_EDE_KEY_SIZE
,
3701 .alg
= CIPHER_ALG_3DES
,
3702 .mode
= CIPHER_MODE_ECB
,
3705 .alg
= HASH_ALG_NONE
,
3706 .mode
= HASH_MODE_NONE
,
3710 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3712 .base
.cra_name
= "ofb(aes)",
3713 .base
.cra_driver_name
= "ofb-aes-iproc",
3714 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3715 .min_keysize
= AES_MIN_KEY_SIZE
,
3716 .max_keysize
= AES_MAX_KEY_SIZE
,
3717 .ivsize
= AES_BLOCK_SIZE
,
3720 .alg
= CIPHER_ALG_AES
,
3721 .mode
= CIPHER_MODE_OFB
,
3724 .alg
= HASH_ALG_NONE
,
3725 .mode
= HASH_MODE_NONE
,
3729 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3731 .base
.cra_name
= "cbc(aes)",
3732 .base
.cra_driver_name
= "cbc-aes-iproc",
3733 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3734 .min_keysize
= AES_MIN_KEY_SIZE
,
3735 .max_keysize
= AES_MAX_KEY_SIZE
,
3736 .ivsize
= AES_BLOCK_SIZE
,
3739 .alg
= CIPHER_ALG_AES
,
3740 .mode
= CIPHER_MODE_CBC
,
3743 .alg
= HASH_ALG_NONE
,
3744 .mode
= HASH_MODE_NONE
,
3748 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3750 .base
.cra_name
= "ecb(aes)",
3751 .base
.cra_driver_name
= "ecb-aes-iproc",
3752 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3753 .min_keysize
= AES_MIN_KEY_SIZE
,
3754 .max_keysize
= AES_MAX_KEY_SIZE
,
3758 .alg
= CIPHER_ALG_AES
,
3759 .mode
= CIPHER_MODE_ECB
,
3762 .alg
= HASH_ALG_NONE
,
3763 .mode
= HASH_MODE_NONE
,
3767 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3769 .base
.cra_name
= "ctr(aes)",
3770 .base
.cra_driver_name
= "ctr-aes-iproc",
3771 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3772 .min_keysize
= AES_MIN_KEY_SIZE
,
3773 .max_keysize
= AES_MAX_KEY_SIZE
,
3774 .ivsize
= AES_BLOCK_SIZE
,
3777 .alg
= CIPHER_ALG_AES
,
3778 .mode
= CIPHER_MODE_CTR
,
3781 .alg
= HASH_ALG_NONE
,
3782 .mode
= HASH_MODE_NONE
,
3786 .type
= CRYPTO_ALG_TYPE_SKCIPHER
,
3788 .base
.cra_name
= "xts(aes)",
3789 .base
.cra_driver_name
= "xts-aes-iproc",
3790 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
3791 .min_keysize
= 2 * AES_MIN_KEY_SIZE
,
3792 .max_keysize
= 2 * AES_MAX_KEY_SIZE
,
3793 .ivsize
= AES_BLOCK_SIZE
,
3796 .alg
= CIPHER_ALG_AES
,
3797 .mode
= CIPHER_MODE_XTS
,
3800 .alg
= HASH_ALG_NONE
,
3801 .mode
= HASH_MODE_NONE
,
3805 /* AHASH algorithms. */
3807 .type
= CRYPTO_ALG_TYPE_AHASH
,
3809 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3812 .cra_driver_name
= "md5-iproc",
3813 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3814 .cra_flags
= CRYPTO_ALG_ASYNC
,
3818 .alg
= CIPHER_ALG_NONE
,
3819 .mode
= CIPHER_MODE_NONE
,
3822 .alg
= HASH_ALG_MD5
,
3823 .mode
= HASH_MODE_HASH
,
3827 .type
= CRYPTO_ALG_TYPE_AHASH
,
3829 .halg
.digestsize
= MD5_DIGEST_SIZE
,
3831 .cra_name
= "hmac(md5)",
3832 .cra_driver_name
= "hmac-md5-iproc",
3833 .cra_blocksize
= MD5_BLOCK_WORDS
* 4,
3837 .alg
= CIPHER_ALG_NONE
,
3838 .mode
= CIPHER_MODE_NONE
,
3841 .alg
= HASH_ALG_MD5
,
3842 .mode
= HASH_MODE_HMAC
,
3845 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3847 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3850 .cra_driver_name
= "sha1-iproc",
3851 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3855 .alg
= CIPHER_ALG_NONE
,
3856 .mode
= CIPHER_MODE_NONE
,
3859 .alg
= HASH_ALG_SHA1
,
3860 .mode
= HASH_MODE_HASH
,
3863 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3865 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
3867 .cra_name
= "hmac(sha1)",
3868 .cra_driver_name
= "hmac-sha1-iproc",
3869 .cra_blocksize
= SHA1_BLOCK_SIZE
,
3873 .alg
= CIPHER_ALG_NONE
,
3874 .mode
= CIPHER_MODE_NONE
,
3877 .alg
= HASH_ALG_SHA1
,
3878 .mode
= HASH_MODE_HMAC
,
3881 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3883 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3885 .cra_name
= "sha224",
3886 .cra_driver_name
= "sha224-iproc",
3887 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3891 .alg
= CIPHER_ALG_NONE
,
3892 .mode
= CIPHER_MODE_NONE
,
3895 .alg
= HASH_ALG_SHA224
,
3896 .mode
= HASH_MODE_HASH
,
3899 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3901 .halg
.digestsize
= SHA224_DIGEST_SIZE
,
3903 .cra_name
= "hmac(sha224)",
3904 .cra_driver_name
= "hmac-sha224-iproc",
3905 .cra_blocksize
= SHA224_BLOCK_SIZE
,
3909 .alg
= CIPHER_ALG_NONE
,
3910 .mode
= CIPHER_MODE_NONE
,
3913 .alg
= HASH_ALG_SHA224
,
3914 .mode
= HASH_MODE_HMAC
,
3917 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3919 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3921 .cra_name
= "sha256",
3922 .cra_driver_name
= "sha256-iproc",
3923 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3927 .alg
= CIPHER_ALG_NONE
,
3928 .mode
= CIPHER_MODE_NONE
,
3931 .alg
= HASH_ALG_SHA256
,
3932 .mode
= HASH_MODE_HASH
,
3935 {.type
= CRYPTO_ALG_TYPE_AHASH
,
3937 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
3939 .cra_name
= "hmac(sha256)",
3940 .cra_driver_name
= "hmac-sha256-iproc",
3941 .cra_blocksize
= SHA256_BLOCK_SIZE
,
3945 .alg
= CIPHER_ALG_NONE
,
3946 .mode
= CIPHER_MODE_NONE
,
3949 .alg
= HASH_ALG_SHA256
,
3950 .mode
= HASH_MODE_HMAC
,
3954 .type
= CRYPTO_ALG_TYPE_AHASH
,
3956 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3958 .cra_name
= "sha384",
3959 .cra_driver_name
= "sha384-iproc",
3960 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3964 .alg
= CIPHER_ALG_NONE
,
3965 .mode
= CIPHER_MODE_NONE
,
3968 .alg
= HASH_ALG_SHA384
,
3969 .mode
= HASH_MODE_HASH
,
3973 .type
= CRYPTO_ALG_TYPE_AHASH
,
3975 .halg
.digestsize
= SHA384_DIGEST_SIZE
,
3977 .cra_name
= "hmac(sha384)",
3978 .cra_driver_name
= "hmac-sha384-iproc",
3979 .cra_blocksize
= SHA384_BLOCK_SIZE
,
3983 .alg
= CIPHER_ALG_NONE
,
3984 .mode
= CIPHER_MODE_NONE
,
3987 .alg
= HASH_ALG_SHA384
,
3988 .mode
= HASH_MODE_HMAC
,
3992 .type
= CRYPTO_ALG_TYPE_AHASH
,
3994 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
3996 .cra_name
= "sha512",
3997 .cra_driver_name
= "sha512-iproc",
3998 .cra_blocksize
= SHA512_BLOCK_SIZE
,
4002 .alg
= CIPHER_ALG_NONE
,
4003 .mode
= CIPHER_MODE_NONE
,
4006 .alg
= HASH_ALG_SHA512
,
4007 .mode
= HASH_MODE_HASH
,
4011 .type
= CRYPTO_ALG_TYPE_AHASH
,
4013 .halg
.digestsize
= SHA512_DIGEST_SIZE
,
4015 .cra_name
= "hmac(sha512)",
4016 .cra_driver_name
= "hmac-sha512-iproc",
4017 .cra_blocksize
= SHA512_BLOCK_SIZE
,
4021 .alg
= CIPHER_ALG_NONE
,
4022 .mode
= CIPHER_MODE_NONE
,
4025 .alg
= HASH_ALG_SHA512
,
4026 .mode
= HASH_MODE_HMAC
,
4030 .type
= CRYPTO_ALG_TYPE_AHASH
,
4032 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
4034 .cra_name
= "sha3-224",
4035 .cra_driver_name
= "sha3-224-iproc",
4036 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4040 .alg
= CIPHER_ALG_NONE
,
4041 .mode
= CIPHER_MODE_NONE
,
4044 .alg
= HASH_ALG_SHA3_224
,
4045 .mode
= HASH_MODE_HASH
,
4049 .type
= CRYPTO_ALG_TYPE_AHASH
,
4051 .halg
.digestsize
= SHA3_224_DIGEST_SIZE
,
4053 .cra_name
= "hmac(sha3-224)",
4054 .cra_driver_name
= "hmac-sha3-224-iproc",
4055 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4059 .alg
= CIPHER_ALG_NONE
,
4060 .mode
= CIPHER_MODE_NONE
,
4063 .alg
= HASH_ALG_SHA3_224
,
4064 .mode
= HASH_MODE_HMAC
4068 .type
= CRYPTO_ALG_TYPE_AHASH
,
4070 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
4072 .cra_name
= "sha3-256",
4073 .cra_driver_name
= "sha3-256-iproc",
4074 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
4078 .alg
= CIPHER_ALG_NONE
,
4079 .mode
= CIPHER_MODE_NONE
,
4082 .alg
= HASH_ALG_SHA3_256
,
4083 .mode
= HASH_MODE_HASH
,
4087 .type
= CRYPTO_ALG_TYPE_AHASH
,
4089 .halg
.digestsize
= SHA3_256_DIGEST_SIZE
,
4091 .cra_name
= "hmac(sha3-256)",
4092 .cra_driver_name
= "hmac-sha3-256-iproc",
4093 .cra_blocksize
= SHA3_256_BLOCK_SIZE
,
4097 .alg
= CIPHER_ALG_NONE
,
4098 .mode
= CIPHER_MODE_NONE
,
4101 .alg
= HASH_ALG_SHA3_256
,
4102 .mode
= HASH_MODE_HMAC
,
4106 .type
= CRYPTO_ALG_TYPE_AHASH
,
4108 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
4110 .cra_name
= "sha3-384",
4111 .cra_driver_name
= "sha3-384-iproc",
4112 .cra_blocksize
= SHA3_224_BLOCK_SIZE
,
4116 .alg
= CIPHER_ALG_NONE
,
4117 .mode
= CIPHER_MODE_NONE
,
4120 .alg
= HASH_ALG_SHA3_384
,
4121 .mode
= HASH_MODE_HASH
,
4125 .type
= CRYPTO_ALG_TYPE_AHASH
,
4127 .halg
.digestsize
= SHA3_384_DIGEST_SIZE
,
4129 .cra_name
= "hmac(sha3-384)",
4130 .cra_driver_name
= "hmac-sha3-384-iproc",
4131 .cra_blocksize
= SHA3_384_BLOCK_SIZE
,
4135 .alg
= CIPHER_ALG_NONE
,
4136 .mode
= CIPHER_MODE_NONE
,
4139 .alg
= HASH_ALG_SHA3_384
,
4140 .mode
= HASH_MODE_HMAC
,
4144 .type
= CRYPTO_ALG_TYPE_AHASH
,
4146 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4148 .cra_name
= "sha3-512",
4149 .cra_driver_name
= "sha3-512-iproc",
4150 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4154 .alg
= CIPHER_ALG_NONE
,
4155 .mode
= CIPHER_MODE_NONE
,
4158 .alg
= HASH_ALG_SHA3_512
,
4159 .mode
= HASH_MODE_HASH
,
4163 .type
= CRYPTO_ALG_TYPE_AHASH
,
4165 .halg
.digestsize
= SHA3_512_DIGEST_SIZE
,
4167 .cra_name
= "hmac(sha3-512)",
4168 .cra_driver_name
= "hmac-sha3-512-iproc",
4169 .cra_blocksize
= SHA3_512_BLOCK_SIZE
,
4173 .alg
= CIPHER_ALG_NONE
,
4174 .mode
= CIPHER_MODE_NONE
,
4177 .alg
= HASH_ALG_SHA3_512
,
4178 .mode
= HASH_MODE_HMAC
,
4182 .type
= CRYPTO_ALG_TYPE_AHASH
,
4184 .halg
.digestsize
= AES_BLOCK_SIZE
,
4186 .cra_name
= "xcbc(aes)",
4187 .cra_driver_name
= "xcbc-aes-iproc",
4188 .cra_blocksize
= AES_BLOCK_SIZE
,
4192 .alg
= CIPHER_ALG_NONE
,
4193 .mode
= CIPHER_MODE_NONE
,
4196 .alg
= HASH_ALG_AES
,
4197 .mode
= HASH_MODE_XCBC
,
4201 .type
= CRYPTO_ALG_TYPE_AHASH
,
4203 .halg
.digestsize
= AES_BLOCK_SIZE
,
4205 .cra_name
= "cmac(aes)",
4206 .cra_driver_name
= "cmac-aes-iproc",
4207 .cra_blocksize
= AES_BLOCK_SIZE
,
4211 .alg
= CIPHER_ALG_NONE
,
4212 .mode
= CIPHER_MODE_NONE
,
4215 .alg
= HASH_ALG_AES
,
4216 .mode
= HASH_MODE_CMAC
,
4221 static int generic_cra_init(struct crypto_tfm
*tfm
,
4222 struct iproc_alg_s
*cipher_alg
)
4224 struct spu_hw
*spu
= &iproc_priv
.spu
;
4225 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4226 unsigned int blocksize
= crypto_tfm_alg_blocksize(tfm
);
4228 flow_log("%s()\n", __func__
);
4230 ctx
->alg
= cipher_alg
;
4231 ctx
->cipher
= cipher_alg
->cipher_info
;
4232 ctx
->auth
= cipher_alg
->auth_info
;
4233 ctx
->auth_first
= cipher_alg
->auth_first
;
4234 ctx
->max_payload
= spu
->spu_ctx_max_payload(ctx
->cipher
.alg
,
4237 ctx
->fallback_cipher
= NULL
;
4240 ctx
->authkeylen
= 0;
4242 atomic_inc(&iproc_priv
.stream_count
);
4243 atomic_inc(&iproc_priv
.session_count
);
4248 static int skcipher_init_tfm(struct crypto_skcipher
*skcipher
)
4250 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
4251 struct skcipher_alg
*alg
= crypto_skcipher_alg(skcipher
);
4252 struct iproc_alg_s
*cipher_alg
;
4254 flow_log("%s()\n", __func__
);
4256 crypto_skcipher_set_reqsize(skcipher
, sizeof(struct iproc_reqctx_s
));
4258 cipher_alg
= container_of(alg
, struct iproc_alg_s
, alg
.skcipher
);
4259 return generic_cra_init(tfm
, cipher_alg
);
4262 static int ahash_cra_init(struct crypto_tfm
*tfm
)
4265 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4266 struct iproc_alg_s
*cipher_alg
;
4268 cipher_alg
= container_of(__crypto_ahash_alg(alg
), struct iproc_alg_s
,
4271 err
= generic_cra_init(tfm
, cipher_alg
);
4272 flow_log("%s()\n", __func__
);
4275 * export state size has to be < 512 bytes. So don't include msg bufs
4278 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
4279 sizeof(struct iproc_reqctx_s
));
4284 static int aead_cra_init(struct crypto_aead
*aead
)
4286 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4287 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4288 struct crypto_alg
*alg
= tfm
->__crt_alg
;
4289 struct aead_alg
*aalg
= container_of(alg
, struct aead_alg
, base
);
4290 struct iproc_alg_s
*cipher_alg
= container_of(aalg
, struct iproc_alg_s
,
4293 int err
= generic_cra_init(tfm
, cipher_alg
);
4295 flow_log("%s()\n", __func__
);
4297 crypto_aead_set_reqsize(aead
, sizeof(struct iproc_reqctx_s
));
4298 ctx
->is_esp
= false;
4300 ctx
->salt_offset
= 0;
4302 /* random first IV */
4303 get_random_bytes(ctx
->iv
, MAX_IV_SIZE
);
4304 flow_dump(" iv: ", ctx
->iv
, MAX_IV_SIZE
);
4307 if (alg
->cra_flags
& CRYPTO_ALG_NEED_FALLBACK
) {
4308 flow_log("%s() creating fallback cipher\n", __func__
);
4310 ctx
->fallback_cipher
=
4311 crypto_alloc_aead(alg
->cra_name
, 0,
4313 CRYPTO_ALG_NEED_FALLBACK
);
4314 if (IS_ERR(ctx
->fallback_cipher
)) {
4315 pr_err("%s() Error: failed to allocate fallback for %s\n",
4316 __func__
, alg
->cra_name
);
4317 return PTR_ERR(ctx
->fallback_cipher
);
4325 static void generic_cra_exit(struct crypto_tfm
*tfm
)
4327 atomic_dec(&iproc_priv
.session_count
);
4330 static void skcipher_exit_tfm(struct crypto_skcipher
*tfm
)
4332 generic_cra_exit(crypto_skcipher_tfm(tfm
));
4335 static void aead_cra_exit(struct crypto_aead
*aead
)
4337 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
4338 struct iproc_ctx_s
*ctx
= crypto_tfm_ctx(tfm
);
4340 generic_cra_exit(tfm
);
4342 if (ctx
->fallback_cipher
) {
4343 crypto_free_aead(ctx
->fallback_cipher
);
4344 ctx
->fallback_cipher
= NULL
;
4349 * spu_functions_register() - Specify hardware-specific SPU functions based on
4350 * SPU type read from device tree.
4351 * @dev: device structure
4352 * @spu_type: SPU hardware generation
4353 * @spu_subtype: SPU hardware version
4355 static void spu_functions_register(struct device
*dev
,
4356 enum spu_spu_type spu_type
,
4357 enum spu_spu_subtype spu_subtype
)
4359 struct spu_hw
*spu
= &iproc_priv
.spu
;
4361 if (spu_type
== SPU_TYPE_SPUM
) {
4362 dev_dbg(dev
, "Registering SPUM functions");
4363 spu
->spu_dump_msg_hdr
= spum_dump_msg_hdr
;
4364 spu
->spu_payload_length
= spum_payload_length
;
4365 spu
->spu_response_hdr_len
= spum_response_hdr_len
;
4366 spu
->spu_hash_pad_len
= spum_hash_pad_len
;
4367 spu
->spu_gcm_ccm_pad_len
= spum_gcm_ccm_pad_len
;
4368 spu
->spu_assoc_resp_len
= spum_assoc_resp_len
;
4369 spu
->spu_aead_ivlen
= spum_aead_ivlen
;
4370 spu
->spu_hash_type
= spum_hash_type
;
4371 spu
->spu_digest_size
= spum_digest_size
;
4372 spu
->spu_create_request
= spum_create_request
;
4373 spu
->spu_cipher_req_init
= spum_cipher_req_init
;
4374 spu
->spu_cipher_req_finish
= spum_cipher_req_finish
;
4375 spu
->spu_request_pad
= spum_request_pad
;
4376 spu
->spu_tx_status_len
= spum_tx_status_len
;
4377 spu
->spu_rx_status_len
= spum_rx_status_len
;
4378 spu
->spu_status_process
= spum_status_process
;
4379 spu
->spu_xts_tweak_in_payload
= spum_xts_tweak_in_payload
;
4380 spu
->spu_ccm_update_iv
= spum_ccm_update_iv
;
4381 spu
->spu_wordalign_padlen
= spum_wordalign_padlen
;
4382 if (spu_subtype
== SPU_SUBTYPE_SPUM_NS2
)
4383 spu
->spu_ctx_max_payload
= spum_ns2_ctx_max_payload
;
4385 spu
->spu_ctx_max_payload
= spum_nsp_ctx_max_payload
;
4387 dev_dbg(dev
, "Registering SPU2 functions");
4388 spu
->spu_dump_msg_hdr
= spu2_dump_msg_hdr
;
4389 spu
->spu_ctx_max_payload
= spu2_ctx_max_payload
;
4390 spu
->spu_payload_length
= spu2_payload_length
;
4391 spu
->spu_response_hdr_len
= spu2_response_hdr_len
;
4392 spu
->spu_hash_pad_len
= spu2_hash_pad_len
;
4393 spu
->spu_gcm_ccm_pad_len
= spu2_gcm_ccm_pad_len
;
4394 spu
->spu_assoc_resp_len
= spu2_assoc_resp_len
;
4395 spu
->spu_aead_ivlen
= spu2_aead_ivlen
;
4396 spu
->spu_hash_type
= spu2_hash_type
;
4397 spu
->spu_digest_size
= spu2_digest_size
;
4398 spu
->spu_create_request
= spu2_create_request
;
4399 spu
->spu_cipher_req_init
= spu2_cipher_req_init
;
4400 spu
->spu_cipher_req_finish
= spu2_cipher_req_finish
;
4401 spu
->spu_request_pad
= spu2_request_pad
;
4402 spu
->spu_tx_status_len
= spu2_tx_status_len
;
4403 spu
->spu_rx_status_len
= spu2_rx_status_len
;
4404 spu
->spu_status_process
= spu2_status_process
;
4405 spu
->spu_xts_tweak_in_payload
= spu2_xts_tweak_in_payload
;
4406 spu
->spu_ccm_update_iv
= spu2_ccm_update_iv
;
4407 spu
->spu_wordalign_padlen
= spu2_wordalign_padlen
;
4412 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4413 * channel for the SPU being probed.
4414 * @dev: SPU driver device structure
4416 * Return: 0 if successful
4419 static int spu_mb_init(struct device
*dev
)
4421 struct mbox_client
*mcl
= &iproc_priv
.mcl
;
4424 iproc_priv
.mbox
= devm_kcalloc(dev
, iproc_priv
.spu
.num_chan
,
4425 sizeof(struct mbox_chan
*), GFP_KERNEL
);
4426 if (!iproc_priv
.mbox
)
4430 mcl
->tx_block
= false;
4432 mcl
->knows_txdone
= true;
4433 mcl
->rx_callback
= spu_rx_callback
;
4434 mcl
->tx_done
= NULL
;
4436 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4437 iproc_priv
.mbox
[i
] = mbox_request_channel(mcl
, i
);
4438 if (IS_ERR(iproc_priv
.mbox
[i
])) {
4439 err
= (int)PTR_ERR(iproc_priv
.mbox
[i
]);
4441 "Mbox channel %d request failed with err %d",
4443 iproc_priv
.mbox
[i
] = NULL
;
4450 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++) {
4451 if (iproc_priv
.mbox
[i
])
4452 mbox_free_channel(iproc_priv
.mbox
[i
]);
4458 static void spu_mb_release(struct platform_device
*pdev
)
4462 for (i
= 0; i
< iproc_priv
.spu
.num_chan
; i
++)
4463 mbox_free_channel(iproc_priv
.mbox
[i
]);
4466 static void spu_counters_init(void)
4471 atomic_set(&iproc_priv
.session_count
, 0);
4472 atomic_set(&iproc_priv
.stream_count
, 0);
4473 atomic_set(&iproc_priv
.next_chan
, (int)iproc_priv
.spu
.num_chan
);
4474 atomic64_set(&iproc_priv
.bytes_in
, 0);
4475 atomic64_set(&iproc_priv
.bytes_out
, 0);
4476 for (i
= 0; i
< SPU_OP_NUM
; i
++) {
4477 atomic_set(&iproc_priv
.op_counts
[i
], 0);
4478 atomic_set(&iproc_priv
.setkey_cnt
[i
], 0);
4480 for (i
= 0; i
< CIPHER_ALG_LAST
; i
++)
4481 for (j
= 0; j
< CIPHER_MODE_LAST
; j
++)
4482 atomic_set(&iproc_priv
.cipher_cnt
[i
][j
], 0);
4484 for (i
= 0; i
< HASH_ALG_LAST
; i
++) {
4485 atomic_set(&iproc_priv
.hash_cnt
[i
], 0);
4486 atomic_set(&iproc_priv
.hmac_cnt
[i
], 0);
4488 for (i
= 0; i
< AEAD_TYPE_LAST
; i
++)
4489 atomic_set(&iproc_priv
.aead_cnt
[i
], 0);
4491 atomic_set(&iproc_priv
.mb_no_spc
, 0);
4492 atomic_set(&iproc_priv
.mb_send_fail
, 0);
4493 atomic_set(&iproc_priv
.bad_icv
, 0);
4496 static int spu_register_skcipher(struct iproc_alg_s
*driver_alg
)
4498 struct spu_hw
*spu
= &iproc_priv
.spu
;
4499 struct skcipher_alg
*crypto
= &driver_alg
->alg
.skcipher
;
4502 /* SPU2 does not support RC4 */
4503 if ((driver_alg
->cipher_info
.alg
== CIPHER_ALG_RC4
) &&
4504 (spu
->spu_type
== SPU_TYPE_SPU2
))
4507 crypto
->base
.cra_module
= THIS_MODULE
;
4508 crypto
->base
.cra_priority
= cipher_pri
;
4509 crypto
->base
.cra_alignmask
= 0;
4510 crypto
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4511 crypto
->base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
;
4513 crypto
->init
= skcipher_init_tfm
;
4514 crypto
->exit
= skcipher_exit_tfm
;
4515 crypto
->setkey
= skcipher_setkey
;
4516 crypto
->encrypt
= skcipher_encrypt
;
4517 crypto
->decrypt
= skcipher_decrypt
;
4519 err
= crypto_register_skcipher(crypto
);
4520 /* Mark alg as having been registered, if successful */
4522 driver_alg
->registered
= true;
4523 pr_debug(" registered skcipher %s\n", crypto
->base
.cra_driver_name
);
4527 static int spu_register_ahash(struct iproc_alg_s
*driver_alg
)
4529 struct spu_hw
*spu
= &iproc_priv
.spu
;
4530 struct ahash_alg
*hash
= &driver_alg
->alg
.hash
;
4533 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4534 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4535 (driver_alg
->auth_info
.mode
!= HASH_MODE_XCBC
) &&
4536 (spu
->spu_type
== SPU_TYPE_SPUM
))
4539 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4540 if ((driver_alg
->auth_info
.alg
>= HASH_ALG_SHA3_224
) &&
4541 (spu
->spu_subtype
!= SPU_SUBTYPE_SPU2_V2
))
4544 hash
->halg
.base
.cra_module
= THIS_MODULE
;
4545 hash
->halg
.base
.cra_priority
= hash_pri
;
4546 hash
->halg
.base
.cra_alignmask
= 0;
4547 hash
->halg
.base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4548 hash
->halg
.base
.cra_init
= ahash_cra_init
;
4549 hash
->halg
.base
.cra_exit
= generic_cra_exit
;
4550 hash
->halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
;
4551 hash
->halg
.statesize
= sizeof(struct spu_hash_export_s
);
4553 if (driver_alg
->auth_info
.mode
!= HASH_MODE_HMAC
) {
4554 hash
->init
= ahash_init
;
4555 hash
->update
= ahash_update
;
4556 hash
->final
= ahash_final
;
4557 hash
->finup
= ahash_finup
;
4558 hash
->digest
= ahash_digest
;
4559 if ((driver_alg
->auth_info
.alg
== HASH_ALG_AES
) &&
4560 ((driver_alg
->auth_info
.mode
== HASH_MODE_XCBC
) ||
4561 (driver_alg
->auth_info
.mode
== HASH_MODE_CMAC
))) {
4562 hash
->setkey
= ahash_setkey
;
4565 hash
->setkey
= ahash_hmac_setkey
;
4566 hash
->init
= ahash_hmac_init
;
4567 hash
->update
= ahash_hmac_update
;
4568 hash
->final
= ahash_hmac_final
;
4569 hash
->finup
= ahash_hmac_finup
;
4570 hash
->digest
= ahash_hmac_digest
;
4572 hash
->export
= ahash_export
;
4573 hash
->import
= ahash_import
;
4575 err
= crypto_register_ahash(hash
);
4576 /* Mark alg as having been registered, if successful */
4578 driver_alg
->registered
= true;
4579 pr_debug(" registered ahash %s\n",
4580 hash
->halg
.base
.cra_driver_name
);
4584 static int spu_register_aead(struct iproc_alg_s
*driver_alg
)
4586 struct aead_alg
*aead
= &driver_alg
->alg
.aead
;
4589 aead
->base
.cra_module
= THIS_MODULE
;
4590 aead
->base
.cra_priority
= aead_pri
;
4591 aead
->base
.cra_alignmask
= 0;
4592 aead
->base
.cra_ctxsize
= sizeof(struct iproc_ctx_s
);
4594 aead
->base
.cra_flags
|= CRYPTO_ALG_ASYNC
;
4595 /* setkey set in alg initialization */
4596 aead
->setauthsize
= aead_setauthsize
;
4597 aead
->encrypt
= aead_encrypt
;
4598 aead
->decrypt
= aead_decrypt
;
4599 aead
->init
= aead_cra_init
;
4600 aead
->exit
= aead_cra_exit
;
4602 err
= crypto_register_aead(aead
);
4603 /* Mark alg as having been registered, if successful */
4605 driver_alg
->registered
= true;
4606 pr_debug(" registered aead %s\n", aead
->base
.cra_driver_name
);
4610 /* register crypto algorithms the device supports */
4611 static int spu_algs_register(struct device
*dev
)
4616 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4617 switch (driver_algs
[i
].type
) {
4618 case CRYPTO_ALG_TYPE_SKCIPHER
:
4619 err
= spu_register_skcipher(&driver_algs
[i
]);
4621 case CRYPTO_ALG_TYPE_AHASH
:
4622 err
= spu_register_ahash(&driver_algs
[i
]);
4624 case CRYPTO_ALG_TYPE_AEAD
:
4625 err
= spu_register_aead(&driver_algs
[i
]);
4629 "iproc-crypto: unknown alg type: %d",
4630 driver_algs
[i
].type
);
4635 dev_err(dev
, "alg registration failed with error %d\n",
4644 for (j
= 0; j
< i
; j
++) {
4645 /* Skip any algorithm not registered */
4646 if (!driver_algs
[j
].registered
)
4648 switch (driver_algs
[j
].type
) {
4649 case CRYPTO_ALG_TYPE_SKCIPHER
:
4650 crypto_unregister_skcipher(&driver_algs
[j
].alg
.skcipher
);
4651 driver_algs
[j
].registered
= false;
4653 case CRYPTO_ALG_TYPE_AHASH
:
4654 crypto_unregister_ahash(&driver_algs
[j
].alg
.hash
);
4655 driver_algs
[j
].registered
= false;
4657 case CRYPTO_ALG_TYPE_AEAD
:
4658 crypto_unregister_aead(&driver_algs
[j
].alg
.aead
);
4659 driver_algs
[j
].registered
= false;
4666 /* ==================== Kernel Platform API ==================== */
4668 static struct spu_type_subtype spum_ns2_types
= {
4669 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NS2
4672 static struct spu_type_subtype spum_nsp_types
= {
4673 SPU_TYPE_SPUM
, SPU_SUBTYPE_SPUM_NSP
4676 static struct spu_type_subtype spu2_types
= {
4677 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V1
4680 static struct spu_type_subtype spu2_v2_types
= {
4681 SPU_TYPE_SPU2
, SPU_SUBTYPE_SPU2_V2
4684 static const struct of_device_id bcm_spu_dt_ids
[] = {
4686 .compatible
= "brcm,spum-crypto",
4687 .data
= &spum_ns2_types
,
4690 .compatible
= "brcm,spum-nsp-crypto",
4691 .data
= &spum_nsp_types
,
4694 .compatible
= "brcm,spu2-crypto",
4695 .data
= &spu2_types
,
4698 .compatible
= "brcm,spu2-v2-crypto",
4699 .data
= &spu2_v2_types
,
4704 MODULE_DEVICE_TABLE(of
, bcm_spu_dt_ids
);
4706 static int spu_dt_read(struct platform_device
*pdev
)
4708 struct device
*dev
= &pdev
->dev
;
4709 struct spu_hw
*spu
= &iproc_priv
.spu
;
4710 struct resource
*spu_ctrl_regs
;
4711 const struct spu_type_subtype
*matched_spu_type
;
4712 struct device_node
*dn
= pdev
->dev
.of_node
;
4715 /* Count number of mailbox channels */
4716 spu
->num_chan
= of_count_phandle_with_args(dn
, "mboxes", "#mbox-cells");
4718 matched_spu_type
= of_device_get_match_data(dev
);
4719 if (!matched_spu_type
) {
4720 dev_err(&pdev
->dev
, "Failed to match device\n");
4724 spu
->spu_type
= matched_spu_type
->type
;
4725 spu
->spu_subtype
= matched_spu_type
->subtype
;
4728 for (i
= 0; (i
< MAX_SPUS
) && ((spu_ctrl_regs
=
4729 platform_get_resource(pdev
, IORESOURCE_MEM
, i
)) != NULL
); i
++) {
4731 spu
->reg_vbase
[i
] = devm_ioremap_resource(dev
, spu_ctrl_regs
);
4732 if (IS_ERR(spu
->reg_vbase
[i
])) {
4733 err
= PTR_ERR(spu
->reg_vbase
[i
]);
4734 dev_err(&pdev
->dev
, "Failed to map registers: %d\n",
4736 spu
->reg_vbase
[i
] = NULL
;
4741 dev_dbg(dev
, "Device has %d SPUs", spu
->num_spu
);
4746 static int bcm_spu_probe(struct platform_device
*pdev
)
4748 struct device
*dev
= &pdev
->dev
;
4749 struct spu_hw
*spu
= &iproc_priv
.spu
;
4752 iproc_priv
.pdev
= pdev
;
4753 platform_set_drvdata(iproc_priv
.pdev
,
4756 err
= spu_dt_read(pdev
);
4760 err
= spu_mb_init(&pdev
->dev
);
4764 if (spu
->spu_type
== SPU_TYPE_SPUM
)
4765 iproc_priv
.bcm_hdr_len
= 8;
4766 else if (spu
->spu_type
== SPU_TYPE_SPU2
)
4767 iproc_priv
.bcm_hdr_len
= 0;
4769 spu_functions_register(&pdev
->dev
, spu
->spu_type
, spu
->spu_subtype
);
4771 spu_counters_init();
4773 spu_setup_debugfs();
4775 err
= spu_algs_register(dev
);
4784 spu_mb_release(pdev
);
4785 dev_err(dev
, "%s failed with error %d.\n", __func__
, err
);
4790 static int bcm_spu_remove(struct platform_device
*pdev
)
4793 struct device
*dev
= &pdev
->dev
;
4796 for (i
= 0; i
< ARRAY_SIZE(driver_algs
); i
++) {
4798 * Not all algorithms were registered, depending on whether
4799 * hardware is SPU or SPU2. So here we make sure to skip
4800 * those algorithms that were not previously registered.
4802 if (!driver_algs
[i
].registered
)
4805 switch (driver_algs
[i
].type
) {
4806 case CRYPTO_ALG_TYPE_SKCIPHER
:
4807 crypto_unregister_skcipher(&driver_algs
[i
].alg
.skcipher
);
4808 dev_dbg(dev
, " unregistered cipher %s\n",
4809 driver_algs
[i
].alg
.skcipher
.base
.cra_driver_name
);
4810 driver_algs
[i
].registered
= false;
4812 case CRYPTO_ALG_TYPE_AHASH
:
4813 crypto_unregister_ahash(&driver_algs
[i
].alg
.hash
);
4814 cdn
= driver_algs
[i
].alg
.hash
.halg
.base
.cra_driver_name
;
4815 dev_dbg(dev
, " unregistered hash %s\n", cdn
);
4816 driver_algs
[i
].registered
= false;
4818 case CRYPTO_ALG_TYPE_AEAD
:
4819 crypto_unregister_aead(&driver_algs
[i
].alg
.aead
);
4820 dev_dbg(dev
, " unregistered aead %s\n",
4821 driver_algs
[i
].alg
.aead
.base
.cra_driver_name
);
4822 driver_algs
[i
].registered
= false;
4827 spu_mb_release(pdev
);
4831 /* ===== Kernel Module API ===== */
4833 static struct platform_driver bcm_spu_pdriver
= {
4835 .name
= "brcm-spu-crypto",
4836 .of_match_table
= of_match_ptr(bcm_spu_dt_ids
),
4838 .probe
= bcm_spu_probe
,
4839 .remove
= bcm_spu_remove
,
4841 module_platform_driver(bcm_spu_pdriver
);
4843 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4844 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4845 MODULE_LICENSE("GPL v2");