gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
blobd975338bf78df35dfb6fd5a82961f89dde1621bb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
5 * Copyright (c) 2014-2019 Broadcom
6 */
8 #define pr_fmt(fmt) "bcmgenet: " fmt
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <net/arp.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/netdevice.h>
36 #include <linux/inetdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/ipv6.h>
42 #include <linux/phy.h>
43 #include <linux/platform_data/bcmgenet.h>
45 #include <asm/unaligned.h>
47 #include "bcmgenet.h"
49 /* Maximum number of hardware queues, downsized if needed */
50 #define GENET_MAX_MQ_CNT 4
52 /* Default highest priority queue for multi queue support */
53 #define GENET_Q0_PRIORITY 0
55 #define GENET_Q16_RX_BD_CNT \
56 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
57 #define GENET_Q16_TX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
60 #define RX_BUF_LENGTH 2048
61 #define SKB_ALIGNMENT 32
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
67 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
68 TOTAL_DESC * DMA_DESC_SIZE)
70 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
71 TOTAL_DESC * DMA_DESC_SIZE)
73 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
75 /* MIPS chips strapped for BE will automagically configure the
76 * peripheral registers for CPU-native byte order.
78 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
79 __raw_writel(value, offset);
80 else
81 writel_relaxed(value, offset);
84 static inline u32 bcmgenet_readl(void __iomem *offset)
86 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
87 return __raw_readl(offset);
88 else
89 return readl_relaxed(offset);
92 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
93 void __iomem *d, u32 value)
95 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
99 void __iomem *d,
100 dma_addr_t addr)
102 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
104 /* Register writes to GISB bus can take couple hundred nanoseconds
105 * and are done for each packet, save these expensive writes unless
106 * the platform is explicitly configured for 64-bits/LPAE.
108 #ifdef CONFIG_PHYS_ADDR_T_64BIT
109 if (priv->hw_params->flags & GENET_HAS_40BITS)
110 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
111 #endif
114 /* Combined address + length/status setter */
115 static inline void dmadesc_set(struct bcmgenet_priv *priv,
116 void __iomem *d, dma_addr_t addr, u32 val)
118 dmadesc_set_addr(priv, d, addr);
119 dmadesc_set_length_status(priv, d, val);
122 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
123 void __iomem *d)
125 dma_addr_t addr;
127 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
129 /* Register writes to GISB bus can take couple hundred nanoseconds
130 * and are done for each packet, save these expensive writes unless
131 * the platform is explicitly configured for 64-bits/LPAE.
133 #ifdef CONFIG_PHYS_ADDR_T_64BIT
134 if (priv->hw_params->flags & GENET_HAS_40BITS)
135 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
136 #endif
137 return addr;
140 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
142 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
143 NETIF_MSG_LINK)
145 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
149 else
150 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
153 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 if (GENET_IS_V1(priv))
156 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
157 else
158 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
161 /* These macros are defined to deal with register map change
162 * between GENET1.1 and GENET2. Only those currently being used
163 * by driver are defined.
165 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
167 if (GENET_IS_V1(priv))
168 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
169 else
170 return bcmgenet_readl(priv->base +
171 priv->hw_params->tbuf_offset + TBUF_CTRL);
174 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
176 if (GENET_IS_V1(priv))
177 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
178 else
179 bcmgenet_writel(val, priv->base +
180 priv->hw_params->tbuf_offset + TBUF_CTRL);
183 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
185 if (GENET_IS_V1(priv))
186 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
187 else
188 return bcmgenet_readl(priv->base +
189 priv->hw_params->tbuf_offset + TBUF_BP_MC);
192 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
194 if (GENET_IS_V1(priv))
195 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
196 else
197 bcmgenet_writel(val, priv->base +
198 priv->hw_params->tbuf_offset + TBUF_BP_MC);
201 /* RX/TX DMA register accessors */
202 enum dma_reg {
203 DMA_RING_CFG = 0,
204 DMA_CTRL,
205 DMA_STATUS,
206 DMA_SCB_BURST_SIZE,
207 DMA_ARB_CTRL,
208 DMA_PRIORITY_0,
209 DMA_PRIORITY_1,
210 DMA_PRIORITY_2,
211 DMA_INDEX2RING_0,
212 DMA_INDEX2RING_1,
213 DMA_INDEX2RING_2,
214 DMA_INDEX2RING_3,
215 DMA_INDEX2RING_4,
216 DMA_INDEX2RING_5,
217 DMA_INDEX2RING_6,
218 DMA_INDEX2RING_7,
219 DMA_RING0_TIMEOUT,
220 DMA_RING1_TIMEOUT,
221 DMA_RING2_TIMEOUT,
222 DMA_RING3_TIMEOUT,
223 DMA_RING4_TIMEOUT,
224 DMA_RING5_TIMEOUT,
225 DMA_RING6_TIMEOUT,
226 DMA_RING7_TIMEOUT,
227 DMA_RING8_TIMEOUT,
228 DMA_RING9_TIMEOUT,
229 DMA_RING10_TIMEOUT,
230 DMA_RING11_TIMEOUT,
231 DMA_RING12_TIMEOUT,
232 DMA_RING13_TIMEOUT,
233 DMA_RING14_TIMEOUT,
234 DMA_RING15_TIMEOUT,
235 DMA_RING16_TIMEOUT,
238 static const u8 bcmgenet_dma_regs_v3plus[] = {
239 [DMA_RING_CFG] = 0x00,
240 [DMA_CTRL] = 0x04,
241 [DMA_STATUS] = 0x08,
242 [DMA_SCB_BURST_SIZE] = 0x0C,
243 [DMA_ARB_CTRL] = 0x2C,
244 [DMA_PRIORITY_0] = 0x30,
245 [DMA_PRIORITY_1] = 0x34,
246 [DMA_PRIORITY_2] = 0x38,
247 [DMA_RING0_TIMEOUT] = 0x2C,
248 [DMA_RING1_TIMEOUT] = 0x30,
249 [DMA_RING2_TIMEOUT] = 0x34,
250 [DMA_RING3_TIMEOUT] = 0x38,
251 [DMA_RING4_TIMEOUT] = 0x3c,
252 [DMA_RING5_TIMEOUT] = 0x40,
253 [DMA_RING6_TIMEOUT] = 0x44,
254 [DMA_RING7_TIMEOUT] = 0x48,
255 [DMA_RING8_TIMEOUT] = 0x4c,
256 [DMA_RING9_TIMEOUT] = 0x50,
257 [DMA_RING10_TIMEOUT] = 0x54,
258 [DMA_RING11_TIMEOUT] = 0x58,
259 [DMA_RING12_TIMEOUT] = 0x5c,
260 [DMA_RING13_TIMEOUT] = 0x60,
261 [DMA_RING14_TIMEOUT] = 0x64,
262 [DMA_RING15_TIMEOUT] = 0x68,
263 [DMA_RING16_TIMEOUT] = 0x6C,
264 [DMA_INDEX2RING_0] = 0x70,
265 [DMA_INDEX2RING_1] = 0x74,
266 [DMA_INDEX2RING_2] = 0x78,
267 [DMA_INDEX2RING_3] = 0x7C,
268 [DMA_INDEX2RING_4] = 0x80,
269 [DMA_INDEX2RING_5] = 0x84,
270 [DMA_INDEX2RING_6] = 0x88,
271 [DMA_INDEX2RING_7] = 0x8C,
274 static const u8 bcmgenet_dma_regs_v2[] = {
275 [DMA_RING_CFG] = 0x00,
276 [DMA_CTRL] = 0x04,
277 [DMA_STATUS] = 0x08,
278 [DMA_SCB_BURST_SIZE] = 0x0C,
279 [DMA_ARB_CTRL] = 0x30,
280 [DMA_PRIORITY_0] = 0x34,
281 [DMA_PRIORITY_1] = 0x38,
282 [DMA_PRIORITY_2] = 0x3C,
283 [DMA_RING0_TIMEOUT] = 0x2C,
284 [DMA_RING1_TIMEOUT] = 0x30,
285 [DMA_RING2_TIMEOUT] = 0x34,
286 [DMA_RING3_TIMEOUT] = 0x38,
287 [DMA_RING4_TIMEOUT] = 0x3c,
288 [DMA_RING5_TIMEOUT] = 0x40,
289 [DMA_RING6_TIMEOUT] = 0x44,
290 [DMA_RING7_TIMEOUT] = 0x48,
291 [DMA_RING8_TIMEOUT] = 0x4c,
292 [DMA_RING9_TIMEOUT] = 0x50,
293 [DMA_RING10_TIMEOUT] = 0x54,
294 [DMA_RING11_TIMEOUT] = 0x58,
295 [DMA_RING12_TIMEOUT] = 0x5c,
296 [DMA_RING13_TIMEOUT] = 0x60,
297 [DMA_RING14_TIMEOUT] = 0x64,
298 [DMA_RING15_TIMEOUT] = 0x68,
299 [DMA_RING16_TIMEOUT] = 0x6C,
302 static const u8 bcmgenet_dma_regs_v1[] = {
303 [DMA_CTRL] = 0x00,
304 [DMA_STATUS] = 0x04,
305 [DMA_SCB_BURST_SIZE] = 0x0C,
306 [DMA_ARB_CTRL] = 0x30,
307 [DMA_PRIORITY_0] = 0x34,
308 [DMA_PRIORITY_1] = 0x38,
309 [DMA_PRIORITY_2] = 0x3C,
310 [DMA_RING0_TIMEOUT] = 0x2C,
311 [DMA_RING1_TIMEOUT] = 0x30,
312 [DMA_RING2_TIMEOUT] = 0x34,
313 [DMA_RING3_TIMEOUT] = 0x38,
314 [DMA_RING4_TIMEOUT] = 0x3c,
315 [DMA_RING5_TIMEOUT] = 0x40,
316 [DMA_RING6_TIMEOUT] = 0x44,
317 [DMA_RING7_TIMEOUT] = 0x48,
318 [DMA_RING8_TIMEOUT] = 0x4c,
319 [DMA_RING9_TIMEOUT] = 0x50,
320 [DMA_RING10_TIMEOUT] = 0x54,
321 [DMA_RING11_TIMEOUT] = 0x58,
322 [DMA_RING12_TIMEOUT] = 0x5c,
323 [DMA_RING13_TIMEOUT] = 0x60,
324 [DMA_RING14_TIMEOUT] = 0x64,
325 [DMA_RING15_TIMEOUT] = 0x68,
326 [DMA_RING16_TIMEOUT] = 0x6C,
329 /* Set at runtime once bcmgenet version is known */
330 static const u8 *bcmgenet_dma_regs;
332 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
334 return netdev_priv(dev_get_drvdata(dev));
337 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
338 enum dma_reg r)
340 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
341 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
344 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
345 u32 val, enum dma_reg r)
347 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
348 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
351 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
352 enum dma_reg r)
354 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
355 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
358 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
359 u32 val, enum dma_reg r)
361 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
362 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
365 /* RDMA/TDMA ring registers and accessors
366 * we merge the common fields and just prefix with T/D the registers
367 * having different meaning depending on the direction
369 enum dma_ring_reg {
370 TDMA_READ_PTR = 0,
371 RDMA_WRITE_PTR = TDMA_READ_PTR,
372 TDMA_READ_PTR_HI,
373 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
374 TDMA_CONS_INDEX,
375 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
376 TDMA_PROD_INDEX,
377 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
378 DMA_RING_BUF_SIZE,
379 DMA_START_ADDR,
380 DMA_START_ADDR_HI,
381 DMA_END_ADDR,
382 DMA_END_ADDR_HI,
383 DMA_MBUF_DONE_THRESH,
384 TDMA_FLOW_PERIOD,
385 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
386 TDMA_WRITE_PTR,
387 RDMA_READ_PTR = TDMA_WRITE_PTR,
388 TDMA_WRITE_PTR_HI,
389 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
392 /* GENET v4 supports 40-bits pointer addressing
393 * for obvious reasons the LO and HI word parts
394 * are contiguous, but this offsets the other
395 * registers.
397 static const u8 genet_dma_ring_regs_v4[] = {
398 [TDMA_READ_PTR] = 0x00,
399 [TDMA_READ_PTR_HI] = 0x04,
400 [TDMA_CONS_INDEX] = 0x08,
401 [TDMA_PROD_INDEX] = 0x0C,
402 [DMA_RING_BUF_SIZE] = 0x10,
403 [DMA_START_ADDR] = 0x14,
404 [DMA_START_ADDR_HI] = 0x18,
405 [DMA_END_ADDR] = 0x1C,
406 [DMA_END_ADDR_HI] = 0x20,
407 [DMA_MBUF_DONE_THRESH] = 0x24,
408 [TDMA_FLOW_PERIOD] = 0x28,
409 [TDMA_WRITE_PTR] = 0x2C,
410 [TDMA_WRITE_PTR_HI] = 0x30,
413 static const u8 genet_dma_ring_regs_v123[] = {
414 [TDMA_READ_PTR] = 0x00,
415 [TDMA_CONS_INDEX] = 0x04,
416 [TDMA_PROD_INDEX] = 0x08,
417 [DMA_RING_BUF_SIZE] = 0x0C,
418 [DMA_START_ADDR] = 0x10,
419 [DMA_END_ADDR] = 0x14,
420 [DMA_MBUF_DONE_THRESH] = 0x18,
421 [TDMA_FLOW_PERIOD] = 0x1C,
422 [TDMA_WRITE_PTR] = 0x20,
425 /* Set at runtime once GENET version is known */
426 static const u8 *genet_dma_ring_regs;
428 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
429 unsigned int ring,
430 enum dma_ring_reg r)
432 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
433 (DMA_RING_SIZE * ring) +
434 genet_dma_ring_regs[r]);
437 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
438 unsigned int ring, u32 val,
439 enum dma_ring_reg r)
441 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
442 (DMA_RING_SIZE * ring) +
443 genet_dma_ring_regs[r]);
446 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
447 unsigned int ring,
448 enum dma_ring_reg r)
450 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
451 (DMA_RING_SIZE * ring) +
452 genet_dma_ring_regs[r]);
455 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
456 unsigned int ring, u32 val,
457 enum dma_ring_reg r)
459 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
460 (DMA_RING_SIZE * ring) +
461 genet_dma_ring_regs[r]);
464 static int bcmgenet_begin(struct net_device *dev)
466 struct bcmgenet_priv *priv = netdev_priv(dev);
468 /* Turn on the clock */
469 return clk_prepare_enable(priv->clk);
472 static void bcmgenet_complete(struct net_device *dev)
474 struct bcmgenet_priv *priv = netdev_priv(dev);
476 /* Turn off the clock */
477 clk_disable_unprepare(priv->clk);
480 static int bcmgenet_get_link_ksettings(struct net_device *dev,
481 struct ethtool_link_ksettings *cmd)
483 if (!netif_running(dev))
484 return -EINVAL;
486 if (!dev->phydev)
487 return -ENODEV;
489 phy_ethtool_ksettings_get(dev->phydev, cmd);
491 return 0;
494 static int bcmgenet_set_link_ksettings(struct net_device *dev,
495 const struct ethtool_link_ksettings *cmd)
497 if (!netif_running(dev))
498 return -EINVAL;
500 if (!dev->phydev)
501 return -ENODEV;
503 return phy_ethtool_ksettings_set(dev->phydev, cmd);
506 static int bcmgenet_set_features(struct net_device *dev,
507 netdev_features_t features)
509 struct bcmgenet_priv *priv = netdev_priv(dev);
510 u32 reg;
511 int ret;
513 ret = clk_prepare_enable(priv->clk);
514 if (ret)
515 return ret;
517 /* Make sure we reflect the value of CRC_CMD_FWD */
518 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
519 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
521 clk_disable_unprepare(priv->clk);
523 return ret;
526 static u32 bcmgenet_get_msglevel(struct net_device *dev)
528 struct bcmgenet_priv *priv = netdev_priv(dev);
530 return priv->msg_enable;
533 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
535 struct bcmgenet_priv *priv = netdev_priv(dev);
537 priv->msg_enable = level;
540 static int bcmgenet_get_coalesce(struct net_device *dev,
541 struct ethtool_coalesce *ec)
543 struct bcmgenet_priv *priv = netdev_priv(dev);
544 struct bcmgenet_rx_ring *ring;
545 unsigned int i;
547 ec->tx_max_coalesced_frames =
548 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
549 DMA_MBUF_DONE_THRESH);
550 ec->rx_max_coalesced_frames =
551 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
552 DMA_MBUF_DONE_THRESH);
553 ec->rx_coalesce_usecs =
554 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
556 for (i = 0; i < priv->hw_params->rx_queues; i++) {
557 ring = &priv->rx_rings[i];
558 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
560 ring = &priv->rx_rings[DESC_INDEX];
561 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
563 return 0;
566 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
567 u32 usecs, u32 pkts)
569 struct bcmgenet_priv *priv = ring->priv;
570 unsigned int i = ring->index;
571 u32 reg;
573 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
575 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
576 reg &= ~DMA_TIMEOUT_MASK;
577 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
578 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
581 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
582 struct ethtool_coalesce *ec)
584 struct dim_cq_moder moder;
585 u32 usecs, pkts;
587 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
588 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
589 usecs = ring->rx_coalesce_usecs;
590 pkts = ring->rx_max_coalesced_frames;
592 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
593 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
594 usecs = moder.usec;
595 pkts = moder.pkts;
598 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
599 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 struct ethtool_coalesce *ec)
605 struct bcmgenet_priv *priv = netdev_priv(dev);
606 unsigned int i;
608 /* Base system clock is 125Mhz, DMA timeout is this reference clock
609 * divided by 1024, which yields roughly 8.192us, our maximum value
610 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
612 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
613 ec->tx_max_coalesced_frames == 0 ||
614 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
615 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
616 return -EINVAL;
618 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
619 return -EINVAL;
621 /* GENET TDMA hardware does not support a configurable timeout, but will
622 * always generate an interrupt either after MBDONE packets have been
623 * transmitted, or when the ring is empty.
626 /* Program all TX queues with the same values, as there is no
627 * ethtool knob to do coalescing on a per-queue basis
629 for (i = 0; i < priv->hw_params->tx_queues; i++)
630 bcmgenet_tdma_ring_writel(priv, i,
631 ec->tx_max_coalesced_frames,
632 DMA_MBUF_DONE_THRESH);
633 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
634 ec->tx_max_coalesced_frames,
635 DMA_MBUF_DONE_THRESH);
637 for (i = 0; i < priv->hw_params->rx_queues; i++)
638 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
639 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
641 return 0;
644 /* standard ethtool support functions. */
645 enum bcmgenet_stat_type {
646 BCMGENET_STAT_NETDEV = -1,
647 BCMGENET_STAT_MIB_RX,
648 BCMGENET_STAT_MIB_TX,
649 BCMGENET_STAT_RUNT,
650 BCMGENET_STAT_MISC,
651 BCMGENET_STAT_SOFT,
654 struct bcmgenet_stats {
655 char stat_string[ETH_GSTRING_LEN];
656 int stat_sizeof;
657 int stat_offset;
658 enum bcmgenet_stat_type type;
659 /* reg offset from UMAC base for misc counters */
660 u16 reg_offset;
663 #define STAT_NETDEV(m) { \
664 .stat_string = __stringify(m), \
665 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
666 .stat_offset = offsetof(struct net_device_stats, m), \
667 .type = BCMGENET_STAT_NETDEV, \
670 #define STAT_GENET_MIB(str, m, _type) { \
671 .stat_string = str, \
672 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
673 .stat_offset = offsetof(struct bcmgenet_priv, m), \
674 .type = _type, \
677 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
678 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
679 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
680 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
682 #define STAT_GENET_MISC(str, m, offset) { \
683 .stat_string = str, \
684 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
685 .stat_offset = offsetof(struct bcmgenet_priv, m), \
686 .type = BCMGENET_STAT_MISC, \
687 .reg_offset = offset, \
690 #define STAT_GENET_Q(num) \
691 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
692 tx_rings[num].packets), \
693 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
694 tx_rings[num].bytes), \
695 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
696 rx_rings[num].bytes), \
697 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
698 rx_rings[num].packets), \
699 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
700 rx_rings[num].errors), \
701 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
702 rx_rings[num].dropped)
704 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
705 * between the end of TX stats and the beginning of the RX RUNT
707 #define BCMGENET_STAT_OFFSET 0xc
709 /* Hardware counters must be kept in sync because the order/offset
710 * is important here (order in structure declaration = order in hardware)
712 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
713 /* general stats */
714 STAT_NETDEV(rx_packets),
715 STAT_NETDEV(tx_packets),
716 STAT_NETDEV(rx_bytes),
717 STAT_NETDEV(tx_bytes),
718 STAT_NETDEV(rx_errors),
719 STAT_NETDEV(tx_errors),
720 STAT_NETDEV(rx_dropped),
721 STAT_NETDEV(tx_dropped),
722 STAT_NETDEV(multicast),
723 /* UniMAC RSV counters */
724 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
725 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
726 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
727 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
728 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
729 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
730 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
731 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
732 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
733 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
734 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
735 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
736 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
737 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
738 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
739 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
740 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
741 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
742 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
743 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
744 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
745 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
746 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
747 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
748 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
749 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
750 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
751 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
752 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
753 /* UniMAC TSV counters */
754 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
755 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
756 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
757 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
758 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
759 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
760 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
761 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
762 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
763 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
764 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
765 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
766 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
767 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
768 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
769 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
770 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
771 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
772 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
773 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
774 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
775 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
776 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
777 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
778 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
779 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
780 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
781 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
782 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
783 /* UniMAC RUNT counters */
784 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
785 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
786 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
787 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
788 /* Misc UniMAC counters */
789 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
790 UMAC_RBUF_OVFL_CNT_V1),
791 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
792 UMAC_RBUF_ERR_CNT_V1),
793 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
794 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
795 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
796 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
797 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
798 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
799 mib.tx_realloc_tsb_failed),
800 /* Per TX queues */
801 STAT_GENET_Q(0),
802 STAT_GENET_Q(1),
803 STAT_GENET_Q(2),
804 STAT_GENET_Q(3),
805 STAT_GENET_Q(16),
808 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
810 static void bcmgenet_get_drvinfo(struct net_device *dev,
811 struct ethtool_drvinfo *info)
813 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
816 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
818 switch (string_set) {
819 case ETH_SS_STATS:
820 return BCMGENET_STATS_LEN;
821 default:
822 return -EOPNOTSUPP;
826 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
827 u8 *data)
829 int i;
831 switch (stringset) {
832 case ETH_SS_STATS:
833 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
834 memcpy(data + i * ETH_GSTRING_LEN,
835 bcmgenet_gstrings_stats[i].stat_string,
836 ETH_GSTRING_LEN);
838 break;
842 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
844 u16 new_offset;
845 u32 val;
847 switch (offset) {
848 case UMAC_RBUF_OVFL_CNT_V1:
849 if (GENET_IS_V2(priv))
850 new_offset = RBUF_OVFL_CNT_V2;
851 else
852 new_offset = RBUF_OVFL_CNT_V3PLUS;
854 val = bcmgenet_rbuf_readl(priv, new_offset);
855 /* clear if overflowed */
856 if (val == ~0)
857 bcmgenet_rbuf_writel(priv, 0, new_offset);
858 break;
859 case UMAC_RBUF_ERR_CNT_V1:
860 if (GENET_IS_V2(priv))
861 new_offset = RBUF_ERR_CNT_V2;
862 else
863 new_offset = RBUF_ERR_CNT_V3PLUS;
865 val = bcmgenet_rbuf_readl(priv, new_offset);
866 /* clear if overflowed */
867 if (val == ~0)
868 bcmgenet_rbuf_writel(priv, 0, new_offset);
869 break;
870 default:
871 val = bcmgenet_umac_readl(priv, offset);
872 /* clear if overflowed */
873 if (val == ~0)
874 bcmgenet_umac_writel(priv, 0, offset);
875 break;
878 return val;
881 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
883 int i, j = 0;
885 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
886 const struct bcmgenet_stats *s;
887 u8 offset = 0;
888 u32 val = 0;
889 char *p;
891 s = &bcmgenet_gstrings_stats[i];
892 switch (s->type) {
893 case BCMGENET_STAT_NETDEV:
894 case BCMGENET_STAT_SOFT:
895 continue;
896 case BCMGENET_STAT_RUNT:
897 offset += BCMGENET_STAT_OFFSET;
898 /* fall through */
899 case BCMGENET_STAT_MIB_TX:
900 offset += BCMGENET_STAT_OFFSET;
901 /* fall through */
902 case BCMGENET_STAT_MIB_RX:
903 val = bcmgenet_umac_readl(priv,
904 UMAC_MIB_START + j + offset);
905 offset = 0; /* Reset Offset */
906 break;
907 case BCMGENET_STAT_MISC:
908 if (GENET_IS_V1(priv)) {
909 val = bcmgenet_umac_readl(priv, s->reg_offset);
910 /* clear if overflowed */
911 if (val == ~0)
912 bcmgenet_umac_writel(priv, 0,
913 s->reg_offset);
914 } else {
915 val = bcmgenet_update_stat_misc(priv,
916 s->reg_offset);
918 break;
921 j += s->stat_sizeof;
922 p = (char *)priv + s->stat_offset;
923 *(u32 *)p = val;
927 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
928 struct ethtool_stats *stats,
929 u64 *data)
931 struct bcmgenet_priv *priv = netdev_priv(dev);
932 int i;
934 if (netif_running(dev))
935 bcmgenet_update_mib_counters(priv);
937 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
938 const struct bcmgenet_stats *s;
939 char *p;
941 s = &bcmgenet_gstrings_stats[i];
942 if (s->type == BCMGENET_STAT_NETDEV)
943 p = (char *)&dev->stats;
944 else
945 p = (char *)priv;
946 p += s->stat_offset;
947 if (sizeof(unsigned long) != sizeof(u32) &&
948 s->stat_sizeof == sizeof(unsigned long))
949 data[i] = *(unsigned long *)p;
950 else
951 data[i] = *(u32 *)p;
955 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
957 struct bcmgenet_priv *priv = netdev_priv(dev);
958 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
959 u32 reg;
961 if (enable && !priv->clk_eee_enabled) {
962 clk_prepare_enable(priv->clk_eee);
963 priv->clk_eee_enabled = true;
966 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
967 if (enable)
968 reg |= EEE_EN;
969 else
970 reg &= ~EEE_EN;
971 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
973 /* Enable EEE and switch to a 27Mhz clock automatically */
974 reg = bcmgenet_readl(priv->base + off);
975 if (enable)
976 reg |= TBUF_EEE_EN | TBUF_PM_EN;
977 else
978 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
979 bcmgenet_writel(reg, priv->base + off);
981 /* Do the same for thing for RBUF */
982 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
983 if (enable)
984 reg |= RBUF_EEE_EN | RBUF_PM_EN;
985 else
986 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
987 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
989 if (!enable && priv->clk_eee_enabled) {
990 clk_disable_unprepare(priv->clk_eee);
991 priv->clk_eee_enabled = false;
994 priv->eee.eee_enabled = enable;
995 priv->eee.eee_active = enable;
998 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1000 struct bcmgenet_priv *priv = netdev_priv(dev);
1001 struct ethtool_eee *p = &priv->eee;
1003 if (GENET_IS_V1(priv))
1004 return -EOPNOTSUPP;
1006 if (!dev->phydev)
1007 return -ENODEV;
1009 e->eee_enabled = p->eee_enabled;
1010 e->eee_active = p->eee_active;
1011 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1013 return phy_ethtool_get_eee(dev->phydev, e);
1016 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1018 struct bcmgenet_priv *priv = netdev_priv(dev);
1019 struct ethtool_eee *p = &priv->eee;
1020 int ret = 0;
1022 if (GENET_IS_V1(priv))
1023 return -EOPNOTSUPP;
1025 if (!dev->phydev)
1026 return -ENODEV;
1028 p->eee_enabled = e->eee_enabled;
1030 if (!p->eee_enabled) {
1031 bcmgenet_eee_enable_set(dev, false);
1032 } else {
1033 ret = phy_init_eee(dev->phydev, 0);
1034 if (ret) {
1035 netif_err(priv, hw, dev, "EEE initialization failed\n");
1036 return ret;
1039 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1040 bcmgenet_eee_enable_set(dev, true);
1043 return phy_ethtool_set_eee(dev->phydev, e);
1046 /* standard ethtool support functions. */
1047 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1048 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1049 ETHTOOL_COALESCE_MAX_FRAMES |
1050 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1051 .begin = bcmgenet_begin,
1052 .complete = bcmgenet_complete,
1053 .get_strings = bcmgenet_get_strings,
1054 .get_sset_count = bcmgenet_get_sset_count,
1055 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1056 .get_drvinfo = bcmgenet_get_drvinfo,
1057 .get_link = ethtool_op_get_link,
1058 .get_msglevel = bcmgenet_get_msglevel,
1059 .set_msglevel = bcmgenet_set_msglevel,
1060 .get_wol = bcmgenet_get_wol,
1061 .set_wol = bcmgenet_set_wol,
1062 .get_eee = bcmgenet_get_eee,
1063 .set_eee = bcmgenet_set_eee,
1064 .nway_reset = phy_ethtool_nway_reset,
1065 .get_coalesce = bcmgenet_get_coalesce,
1066 .set_coalesce = bcmgenet_set_coalesce,
1067 .get_link_ksettings = bcmgenet_get_link_ksettings,
1068 .set_link_ksettings = bcmgenet_set_link_ksettings,
1069 .get_ts_info = ethtool_op_get_ts_info,
1072 /* Power down the unimac, based on mode. */
1073 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1074 enum bcmgenet_power_mode mode)
1076 int ret = 0;
1077 u32 reg;
1079 switch (mode) {
1080 case GENET_POWER_CABLE_SENSE:
1081 phy_detach(priv->dev->phydev);
1082 break;
1084 case GENET_POWER_WOL_MAGIC:
1085 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1086 break;
1088 case GENET_POWER_PASSIVE:
1089 /* Power down LED */
1090 if (priv->hw_params->flags & GENET_HAS_EXT) {
1091 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1092 if (GENET_IS_V5(priv))
1093 reg |= EXT_PWR_DOWN_PHY_EN |
1094 EXT_PWR_DOWN_PHY_RD |
1095 EXT_PWR_DOWN_PHY_SD |
1096 EXT_PWR_DOWN_PHY_RX |
1097 EXT_PWR_DOWN_PHY_TX |
1098 EXT_IDDQ_GLBL_PWR;
1099 else
1100 reg |= EXT_PWR_DOWN_PHY;
1102 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1103 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1105 bcmgenet_phy_power_set(priv->dev, false);
1107 break;
1108 default:
1109 break;
1112 return ret;
1115 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1116 enum bcmgenet_power_mode mode)
1118 u32 reg;
1120 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1121 return;
1123 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1125 switch (mode) {
1126 case GENET_POWER_PASSIVE:
1127 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1128 if (GENET_IS_V5(priv)) {
1129 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1130 EXT_PWR_DOWN_PHY_RD |
1131 EXT_PWR_DOWN_PHY_SD |
1132 EXT_PWR_DOWN_PHY_RX |
1133 EXT_PWR_DOWN_PHY_TX |
1134 EXT_IDDQ_GLBL_PWR);
1135 reg |= EXT_PHY_RESET;
1136 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1137 mdelay(1);
1139 reg &= ~EXT_PHY_RESET;
1140 } else {
1141 reg &= ~EXT_PWR_DOWN_PHY;
1142 reg |= EXT_PWR_DN_EN_LD;
1144 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1145 bcmgenet_phy_power_set(priv->dev, true);
1146 break;
1148 case GENET_POWER_CABLE_SENSE:
1149 /* enable APD */
1150 if (!GENET_IS_V5(priv)) {
1151 reg |= EXT_PWR_DN_EN_LD;
1152 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1154 break;
1155 case GENET_POWER_WOL_MAGIC:
1156 bcmgenet_wol_power_up_cfg(priv, mode);
1157 return;
1158 default:
1159 break;
1163 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1164 struct bcmgenet_tx_ring *ring)
1166 struct enet_cb *tx_cb_ptr;
1168 tx_cb_ptr = ring->cbs;
1169 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1171 /* Advancing local write pointer */
1172 if (ring->write_ptr == ring->end_ptr)
1173 ring->write_ptr = ring->cb_ptr;
1174 else
1175 ring->write_ptr++;
1177 return tx_cb_ptr;
1180 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1181 struct bcmgenet_tx_ring *ring)
1183 struct enet_cb *tx_cb_ptr;
1185 tx_cb_ptr = ring->cbs;
1186 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1188 /* Rewinding local write pointer */
1189 if (ring->write_ptr == ring->cb_ptr)
1190 ring->write_ptr = ring->end_ptr;
1191 else
1192 ring->write_ptr--;
1194 return tx_cb_ptr;
1197 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1199 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1200 INTRL2_CPU_MASK_SET);
1203 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1205 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1206 INTRL2_CPU_MASK_CLEAR);
1209 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1211 bcmgenet_intrl2_1_writel(ring->priv,
1212 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1213 INTRL2_CPU_MASK_SET);
1216 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1218 bcmgenet_intrl2_1_writel(ring->priv,
1219 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1220 INTRL2_CPU_MASK_CLEAR);
1223 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1225 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1226 INTRL2_CPU_MASK_SET);
1229 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1231 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1232 INTRL2_CPU_MASK_CLEAR);
1235 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1237 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1238 INTRL2_CPU_MASK_CLEAR);
1241 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1243 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1244 INTRL2_CPU_MASK_SET);
1247 /* Simple helper to free a transmit control block's resources
1248 * Returns an skb when the last transmit control block associated with the
1249 * skb is freed. The skb should be freed by the caller if necessary.
1251 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1252 struct enet_cb *cb)
1254 struct sk_buff *skb;
1256 skb = cb->skb;
1258 if (skb) {
1259 cb->skb = NULL;
1260 if (cb == GENET_CB(skb)->first_cb)
1261 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1262 dma_unmap_len(cb, dma_len),
1263 DMA_TO_DEVICE);
1264 else
1265 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1266 dma_unmap_len(cb, dma_len),
1267 DMA_TO_DEVICE);
1268 dma_unmap_addr_set(cb, dma_addr, 0);
1270 if (cb == GENET_CB(skb)->last_cb)
1271 return skb;
1273 } else if (dma_unmap_addr(cb, dma_addr)) {
1274 dma_unmap_page(dev,
1275 dma_unmap_addr(cb, dma_addr),
1276 dma_unmap_len(cb, dma_len),
1277 DMA_TO_DEVICE);
1278 dma_unmap_addr_set(cb, dma_addr, 0);
1281 return NULL;
1284 /* Simple helper to free a receive control block's resources */
1285 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1286 struct enet_cb *cb)
1288 struct sk_buff *skb;
1290 skb = cb->skb;
1291 cb->skb = NULL;
1293 if (dma_unmap_addr(cb, dma_addr)) {
1294 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1295 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1296 dma_unmap_addr_set(cb, dma_addr, 0);
1299 return skb;
1302 /* Unlocked version of the reclaim routine */
1303 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1304 struct bcmgenet_tx_ring *ring)
1306 struct bcmgenet_priv *priv = netdev_priv(dev);
1307 unsigned int txbds_processed = 0;
1308 unsigned int bytes_compl = 0;
1309 unsigned int pkts_compl = 0;
1310 unsigned int txbds_ready;
1311 unsigned int c_index;
1312 struct sk_buff *skb;
1314 /* Clear status before servicing to reduce spurious interrupts */
1315 if (ring->index == DESC_INDEX)
1316 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1317 INTRL2_CPU_CLEAR);
1318 else
1319 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1320 INTRL2_CPU_CLEAR);
1322 /* Compute how many buffers are transmitted since last xmit call */
1323 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1324 & DMA_C_INDEX_MASK;
1325 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1327 netif_dbg(priv, tx_done, dev,
1328 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1329 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1331 /* Reclaim transmitted buffers */
1332 while (txbds_processed < txbds_ready) {
1333 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1334 &priv->tx_cbs[ring->clean_ptr]);
1335 if (skb) {
1336 pkts_compl++;
1337 bytes_compl += GENET_CB(skb)->bytes_sent;
1338 dev_consume_skb_any(skb);
1341 txbds_processed++;
1342 if (likely(ring->clean_ptr < ring->end_ptr))
1343 ring->clean_ptr++;
1344 else
1345 ring->clean_ptr = ring->cb_ptr;
1348 ring->free_bds += txbds_processed;
1349 ring->c_index = c_index;
1351 ring->packets += pkts_compl;
1352 ring->bytes += bytes_compl;
1354 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1355 pkts_compl, bytes_compl);
1357 return txbds_processed;
1360 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1361 struct bcmgenet_tx_ring *ring)
1363 unsigned int released;
1365 spin_lock_bh(&ring->lock);
1366 released = __bcmgenet_tx_reclaim(dev, ring);
1367 spin_unlock_bh(&ring->lock);
1369 return released;
1372 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1374 struct bcmgenet_tx_ring *ring =
1375 container_of(napi, struct bcmgenet_tx_ring, napi);
1376 unsigned int work_done = 0;
1377 struct netdev_queue *txq;
1379 spin_lock(&ring->lock);
1380 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1381 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1382 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1383 netif_tx_wake_queue(txq);
1385 spin_unlock(&ring->lock);
1387 if (work_done == 0) {
1388 napi_complete(napi);
1389 ring->int_enable(ring);
1391 return 0;
1394 return budget;
1397 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1399 struct bcmgenet_priv *priv = netdev_priv(dev);
1400 int i;
1402 if (netif_is_multiqueue(dev)) {
1403 for (i = 0; i < priv->hw_params->tx_queues; i++)
1404 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1407 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1410 /* Reallocate the SKB to put enough headroom in front of it and insert
1411 * the transmit checksum offsets in the descriptors
1413 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1414 struct sk_buff *skb)
1416 struct bcmgenet_priv *priv = netdev_priv(dev);
1417 struct status_64 *status = NULL;
1418 struct sk_buff *new_skb;
1419 u16 offset;
1420 u8 ip_proto;
1421 __be16 ip_ver;
1422 u32 tx_csum_info;
1424 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1425 /* If 64 byte status block enabled, must make sure skb has
1426 * enough headroom for us to insert 64B status block.
1428 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1429 if (!new_skb) {
1430 dev_kfree_skb_any(skb);
1431 priv->mib.tx_realloc_tsb_failed++;
1432 dev->stats.tx_dropped++;
1433 return NULL;
1435 dev_consume_skb_any(skb);
1436 skb = new_skb;
1437 priv->mib.tx_realloc_tsb++;
1440 skb_push(skb, sizeof(*status));
1441 status = (struct status_64 *)skb->data;
1443 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1444 ip_ver = skb->protocol;
1445 switch (ip_ver) {
1446 case htons(ETH_P_IP):
1447 ip_proto = ip_hdr(skb)->protocol;
1448 break;
1449 case htons(ETH_P_IPV6):
1450 ip_proto = ipv6_hdr(skb)->nexthdr;
1451 break;
1452 default:
1453 /* don't use UDP flag */
1454 ip_proto = 0;
1455 break;
1458 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1459 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1460 (offset + skb->csum_offset) |
1461 STATUS_TX_CSUM_LV;
1463 /* Set the special UDP flag for UDP */
1464 if (ip_proto == IPPROTO_UDP)
1465 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1467 status->tx_csum_info = tx_csum_info;
1470 return skb;
1473 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1475 struct bcmgenet_priv *priv = netdev_priv(dev);
1476 struct device *kdev = &priv->pdev->dev;
1477 struct bcmgenet_tx_ring *ring = NULL;
1478 struct enet_cb *tx_cb_ptr;
1479 struct netdev_queue *txq;
1480 int nr_frags, index;
1481 dma_addr_t mapping;
1482 unsigned int size;
1483 skb_frag_t *frag;
1484 u32 len_stat;
1485 int ret;
1486 int i;
1488 index = skb_get_queue_mapping(skb);
1489 /* Mapping strategy:
1490 * queue_mapping = 0, unclassified, packet xmited through ring16
1491 * queue_mapping = 1, goes to ring 0. (highest priority queue
1492 * queue_mapping = 2, goes to ring 1.
1493 * queue_mapping = 3, goes to ring 2.
1494 * queue_mapping = 4, goes to ring 3.
1496 if (index == 0)
1497 index = DESC_INDEX;
1498 else
1499 index -= 1;
1501 ring = &priv->tx_rings[index];
1502 txq = netdev_get_tx_queue(dev, ring->queue);
1504 nr_frags = skb_shinfo(skb)->nr_frags;
1506 spin_lock(&ring->lock);
1507 if (ring->free_bds <= (nr_frags + 1)) {
1508 if (!netif_tx_queue_stopped(txq)) {
1509 netif_tx_stop_queue(txq);
1510 netdev_err(dev,
1511 "%s: tx ring %d full when queue %d awake\n",
1512 __func__, index, ring->queue);
1514 ret = NETDEV_TX_BUSY;
1515 goto out;
1518 if (skb_padto(skb, ETH_ZLEN)) {
1519 ret = NETDEV_TX_OK;
1520 goto out;
1523 /* Retain how many bytes will be sent on the wire, without TSB inserted
1524 * by transmit checksum offload
1526 GENET_CB(skb)->bytes_sent = skb->len;
1528 /* add the Transmit Status Block */
1529 skb = bcmgenet_add_tsb(dev, skb);
1530 if (!skb) {
1531 ret = NETDEV_TX_OK;
1532 goto out;
1535 for (i = 0; i <= nr_frags; i++) {
1536 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1538 BUG_ON(!tx_cb_ptr);
1540 if (!i) {
1541 /* Transmit single SKB or head of fragment list */
1542 GENET_CB(skb)->first_cb = tx_cb_ptr;
1543 size = skb_headlen(skb);
1544 mapping = dma_map_single(kdev, skb->data, size,
1545 DMA_TO_DEVICE);
1546 } else {
1547 /* xmit fragment */
1548 frag = &skb_shinfo(skb)->frags[i - 1];
1549 size = skb_frag_size(frag);
1550 mapping = skb_frag_dma_map(kdev, frag, 0, size,
1551 DMA_TO_DEVICE);
1554 ret = dma_mapping_error(kdev, mapping);
1555 if (ret) {
1556 priv->mib.tx_dma_failed++;
1557 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1558 ret = NETDEV_TX_OK;
1559 goto out_unmap_frags;
1561 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1562 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1564 tx_cb_ptr->skb = skb;
1566 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1567 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1569 if (!i) {
1570 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1571 if (skb->ip_summed == CHECKSUM_PARTIAL)
1572 len_stat |= DMA_TX_DO_CSUM;
1574 if (i == nr_frags)
1575 len_stat |= DMA_EOP;
1577 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1580 GENET_CB(skb)->last_cb = tx_cb_ptr;
1581 skb_tx_timestamp(skb);
1583 /* Decrement total BD count and advance our write pointer */
1584 ring->free_bds -= nr_frags + 1;
1585 ring->prod_index += nr_frags + 1;
1586 ring->prod_index &= DMA_P_INDEX_MASK;
1588 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1590 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1591 netif_tx_stop_queue(txq);
1593 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1594 /* Packets are ready, update producer index */
1595 bcmgenet_tdma_ring_writel(priv, ring->index,
1596 ring->prod_index, TDMA_PROD_INDEX);
1597 out:
1598 spin_unlock(&ring->lock);
1600 return ret;
1602 out_unmap_frags:
1603 /* Back up for failed control block mapping */
1604 bcmgenet_put_txcb(priv, ring);
1606 /* Unmap successfully mapped control blocks */
1607 while (i-- > 0) {
1608 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1609 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1612 dev_kfree_skb(skb);
1613 goto out;
1616 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1617 struct enet_cb *cb)
1619 struct device *kdev = &priv->pdev->dev;
1620 struct sk_buff *skb;
1621 struct sk_buff *rx_skb;
1622 dma_addr_t mapping;
1624 /* Allocate a new Rx skb */
1625 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1626 if (!skb) {
1627 priv->mib.alloc_rx_buff_failed++;
1628 netif_err(priv, rx_err, priv->dev,
1629 "%s: Rx skb allocation failed\n", __func__);
1630 return NULL;
1633 /* DMA-map the new Rx skb */
1634 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1635 DMA_FROM_DEVICE);
1636 if (dma_mapping_error(kdev, mapping)) {
1637 priv->mib.rx_dma_failed++;
1638 dev_kfree_skb_any(skb);
1639 netif_err(priv, rx_err, priv->dev,
1640 "%s: Rx skb DMA mapping failed\n", __func__);
1641 return NULL;
1644 /* Grab the current Rx skb from the ring and DMA-unmap it */
1645 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1647 /* Put the new Rx skb on the ring */
1648 cb->skb = skb;
1649 dma_unmap_addr_set(cb, dma_addr, mapping);
1650 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1651 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1653 /* Return the current Rx skb to caller */
1654 return rx_skb;
1657 /* bcmgenet_desc_rx - descriptor based rx process.
1658 * this could be called from bottom half, or from NAPI polling method.
1660 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1661 unsigned int budget)
1663 struct bcmgenet_priv *priv = ring->priv;
1664 struct net_device *dev = priv->dev;
1665 struct enet_cb *cb;
1666 struct sk_buff *skb;
1667 u32 dma_length_status;
1668 unsigned long dma_flag;
1669 int len;
1670 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1671 unsigned int bytes_processed = 0;
1672 unsigned int p_index, mask;
1673 unsigned int discards;
1675 /* Clear status before servicing to reduce spurious interrupts */
1676 if (ring->index == DESC_INDEX) {
1677 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1678 INTRL2_CPU_CLEAR);
1679 } else {
1680 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1681 bcmgenet_intrl2_1_writel(priv,
1682 mask,
1683 INTRL2_CPU_CLEAR);
1686 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1688 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1689 DMA_P_INDEX_DISCARD_CNT_MASK;
1690 if (discards > ring->old_discards) {
1691 discards = discards - ring->old_discards;
1692 ring->errors += discards;
1693 ring->old_discards += discards;
1695 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1696 if (ring->old_discards >= 0xC000) {
1697 ring->old_discards = 0;
1698 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1699 RDMA_PROD_INDEX);
1703 p_index &= DMA_P_INDEX_MASK;
1704 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1706 netif_dbg(priv, rx_status, dev,
1707 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1709 while ((rxpktprocessed < rxpkttoprocess) &&
1710 (rxpktprocessed < budget)) {
1711 struct status_64 *status;
1712 __be16 rx_csum;
1714 cb = &priv->rx_cbs[ring->read_ptr];
1715 skb = bcmgenet_rx_refill(priv, cb);
1717 if (unlikely(!skb)) {
1718 ring->dropped++;
1719 goto next;
1722 status = (struct status_64 *)skb->data;
1723 dma_length_status = status->length_status;
1724 if (dev->features & NETIF_F_RXCSUM) {
1725 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1726 skb->csum = (__force __wsum)ntohs(rx_csum);
1727 skb->ip_summed = CHECKSUM_COMPLETE;
1730 /* DMA flags and length are still valid no matter how
1731 * we got the Receive Status Vector (64B RSB or register)
1733 dma_flag = dma_length_status & 0xffff;
1734 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1736 netif_dbg(priv, rx_status, dev,
1737 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1738 __func__, p_index, ring->c_index,
1739 ring->read_ptr, dma_length_status);
1741 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1742 netif_err(priv, rx_status, dev,
1743 "dropping fragmented packet!\n");
1744 ring->errors++;
1745 dev_kfree_skb_any(skb);
1746 goto next;
1749 /* report errors */
1750 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1751 DMA_RX_OV |
1752 DMA_RX_NO |
1753 DMA_RX_LG |
1754 DMA_RX_RXER))) {
1755 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1756 (unsigned int)dma_flag);
1757 if (dma_flag & DMA_RX_CRC_ERROR)
1758 dev->stats.rx_crc_errors++;
1759 if (dma_flag & DMA_RX_OV)
1760 dev->stats.rx_over_errors++;
1761 if (dma_flag & DMA_RX_NO)
1762 dev->stats.rx_frame_errors++;
1763 if (dma_flag & DMA_RX_LG)
1764 dev->stats.rx_length_errors++;
1765 dev->stats.rx_errors++;
1766 dev_kfree_skb_any(skb);
1767 goto next;
1768 } /* error packet */
1770 skb_put(skb, len);
1772 /* remove RSB and hardware 2bytes added for IP alignment */
1773 skb_pull(skb, 66);
1774 len -= 66;
1776 if (priv->crc_fwd_en) {
1777 skb_trim(skb, len - ETH_FCS_LEN);
1778 len -= ETH_FCS_LEN;
1781 bytes_processed += len;
1783 /*Finish setting up the received SKB and send it to the kernel*/
1784 skb->protocol = eth_type_trans(skb, priv->dev);
1785 ring->packets++;
1786 ring->bytes += len;
1787 if (dma_flag & DMA_RX_MULT)
1788 dev->stats.multicast++;
1790 /* Notify kernel */
1791 napi_gro_receive(&ring->napi, skb);
1792 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1794 next:
1795 rxpktprocessed++;
1796 if (likely(ring->read_ptr < ring->end_ptr))
1797 ring->read_ptr++;
1798 else
1799 ring->read_ptr = ring->cb_ptr;
1801 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1802 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1805 ring->dim.bytes = bytes_processed;
1806 ring->dim.packets = rxpktprocessed;
1808 return rxpktprocessed;
1811 /* Rx NAPI polling method */
1812 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1814 struct bcmgenet_rx_ring *ring = container_of(napi,
1815 struct bcmgenet_rx_ring, napi);
1816 struct dim_sample dim_sample = {};
1817 unsigned int work_done;
1819 work_done = bcmgenet_desc_rx(ring, budget);
1821 if (work_done < budget) {
1822 napi_complete_done(napi, work_done);
1823 ring->int_enable(ring);
1826 if (ring->dim.use_dim) {
1827 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1828 ring->dim.bytes, &dim_sample);
1829 net_dim(&ring->dim.dim, dim_sample);
1832 return work_done;
1835 static void bcmgenet_dim_work(struct work_struct *work)
1837 struct dim *dim = container_of(work, struct dim, work);
1838 struct bcmgenet_net_dim *ndim =
1839 container_of(dim, struct bcmgenet_net_dim, dim);
1840 struct bcmgenet_rx_ring *ring =
1841 container_of(ndim, struct bcmgenet_rx_ring, dim);
1842 struct dim_cq_moder cur_profile =
1843 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1845 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1846 dim->state = DIM_START_MEASURE;
1849 /* Assign skb to RX DMA descriptor. */
1850 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1851 struct bcmgenet_rx_ring *ring)
1853 struct enet_cb *cb;
1854 struct sk_buff *skb;
1855 int i;
1857 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1859 /* loop here for each buffer needing assign */
1860 for (i = 0; i < ring->size; i++) {
1861 cb = ring->cbs + i;
1862 skb = bcmgenet_rx_refill(priv, cb);
1863 if (skb)
1864 dev_consume_skb_any(skb);
1865 if (!cb->skb)
1866 return -ENOMEM;
1869 return 0;
1872 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1874 struct sk_buff *skb;
1875 struct enet_cb *cb;
1876 int i;
1878 for (i = 0; i < priv->num_rx_bds; i++) {
1879 cb = &priv->rx_cbs[i];
1881 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1882 if (skb)
1883 dev_consume_skb_any(skb);
1887 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1889 u32 reg;
1891 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1892 if (reg & CMD_SW_RESET)
1893 return;
1894 if (enable)
1895 reg |= mask;
1896 else
1897 reg &= ~mask;
1898 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1900 /* UniMAC stops on a packet boundary, wait for a full-size packet
1901 * to be processed
1903 if (enable == 0)
1904 usleep_range(1000, 2000);
1907 static void reset_umac(struct bcmgenet_priv *priv)
1909 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1910 bcmgenet_rbuf_ctrl_set(priv, 0);
1911 udelay(10);
1913 /* issue soft reset and disable MAC while updating its registers */
1914 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1915 udelay(2);
1918 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1920 /* Mask all interrupts.*/
1921 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1922 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1923 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1924 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1927 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1929 u32 int0_enable = 0;
1931 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1932 * and MoCA PHY
1934 if (priv->internal_phy) {
1935 int0_enable |= UMAC_IRQ_LINK_EVENT;
1936 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1937 int0_enable |= UMAC_IRQ_PHY_DET_R;
1938 } else if (priv->ext_phy) {
1939 int0_enable |= UMAC_IRQ_LINK_EVENT;
1940 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1941 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1942 int0_enable |= UMAC_IRQ_LINK_EVENT;
1944 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1947 static void init_umac(struct bcmgenet_priv *priv)
1949 struct device *kdev = &priv->pdev->dev;
1950 u32 reg;
1951 u32 int0_enable = 0;
1953 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1955 reset_umac(priv);
1957 /* clear tx/rx counter */
1958 bcmgenet_umac_writel(priv,
1959 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1960 UMAC_MIB_CTRL);
1961 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1963 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1965 /* init tx registers, enable TSB */
1966 reg = bcmgenet_tbuf_ctrl_get(priv);
1967 reg |= TBUF_64B_EN;
1968 bcmgenet_tbuf_ctrl_set(priv, reg);
1970 /* init rx registers, enable ip header optimization and RSB */
1971 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1972 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1973 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1975 /* enable rx checksumming */
1976 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1977 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1978 /* If UniMAC forwards CRC, we need to skip over it to get
1979 * a valid CHK bit to be set in the per-packet status word
1981 if (priv->crc_fwd_en)
1982 reg |= RBUF_SKIP_FCS;
1983 else
1984 reg &= ~RBUF_SKIP_FCS;
1985 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1987 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1988 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1990 bcmgenet_intr_disable(priv);
1992 /* Configure backpressure vectors for MoCA */
1993 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1994 reg = bcmgenet_bp_mc_get(priv);
1995 reg |= BIT(priv->hw_params->bp_in_en_shift);
1997 /* bp_mask: back pressure mask */
1998 if (netif_is_multiqueue(priv->dev))
1999 reg |= priv->hw_params->bp_in_mask;
2000 else
2001 reg &= ~priv->hw_params->bp_in_mask;
2002 bcmgenet_bp_mc_set(priv, reg);
2005 /* Enable MDIO interrupts on GENET v3+ */
2006 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2007 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2009 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2011 dev_dbg(kdev, "done init umac\n");
2014 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2015 void (*cb)(struct work_struct *work))
2017 struct bcmgenet_net_dim *dim = &ring->dim;
2019 INIT_WORK(&dim->dim.work, cb);
2020 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2021 dim->event_ctr = 0;
2022 dim->packets = 0;
2023 dim->bytes = 0;
2026 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2028 struct bcmgenet_net_dim *dim = &ring->dim;
2029 struct dim_cq_moder moder;
2030 u32 usecs, pkts;
2032 usecs = ring->rx_coalesce_usecs;
2033 pkts = ring->rx_max_coalesced_frames;
2035 /* If DIM was enabled, re-apply default parameters */
2036 if (dim->use_dim) {
2037 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2038 usecs = moder.usec;
2039 pkts = moder.pkts;
2042 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2045 /* Initialize a Tx ring along with corresponding hardware registers */
2046 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2047 unsigned int index, unsigned int size,
2048 unsigned int start_ptr, unsigned int end_ptr)
2050 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2051 u32 words_per_bd = WORDS_PER_BD(priv);
2052 u32 flow_period_val = 0;
2054 spin_lock_init(&ring->lock);
2055 ring->priv = priv;
2056 ring->index = index;
2057 if (index == DESC_INDEX) {
2058 ring->queue = 0;
2059 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2060 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2061 } else {
2062 ring->queue = index + 1;
2063 ring->int_enable = bcmgenet_tx_ring_int_enable;
2064 ring->int_disable = bcmgenet_tx_ring_int_disable;
2066 ring->cbs = priv->tx_cbs + start_ptr;
2067 ring->size = size;
2068 ring->clean_ptr = start_ptr;
2069 ring->c_index = 0;
2070 ring->free_bds = size;
2071 ring->write_ptr = start_ptr;
2072 ring->cb_ptr = start_ptr;
2073 ring->end_ptr = end_ptr - 1;
2074 ring->prod_index = 0;
2076 /* Set flow period for ring != 16 */
2077 if (index != DESC_INDEX)
2078 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2080 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2081 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2082 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2083 /* Disable rate control for now */
2084 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2085 TDMA_FLOW_PERIOD);
2086 bcmgenet_tdma_ring_writel(priv, index,
2087 ((size << DMA_RING_SIZE_SHIFT) |
2088 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2090 /* Set start and end address, read and write pointers */
2091 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2092 DMA_START_ADDR);
2093 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2094 TDMA_READ_PTR);
2095 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2096 TDMA_WRITE_PTR);
2097 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2098 DMA_END_ADDR);
2100 /* Initialize Tx NAPI */
2101 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2102 NAPI_POLL_WEIGHT);
2105 /* Initialize a RDMA ring */
2106 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2107 unsigned int index, unsigned int size,
2108 unsigned int start_ptr, unsigned int end_ptr)
2110 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2111 u32 words_per_bd = WORDS_PER_BD(priv);
2112 int ret;
2114 ring->priv = priv;
2115 ring->index = index;
2116 if (index == DESC_INDEX) {
2117 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2118 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2119 } else {
2120 ring->int_enable = bcmgenet_rx_ring_int_enable;
2121 ring->int_disable = bcmgenet_rx_ring_int_disable;
2123 ring->cbs = priv->rx_cbs + start_ptr;
2124 ring->size = size;
2125 ring->c_index = 0;
2126 ring->read_ptr = start_ptr;
2127 ring->cb_ptr = start_ptr;
2128 ring->end_ptr = end_ptr - 1;
2130 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2131 if (ret)
2132 return ret;
2134 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2135 bcmgenet_init_rx_coalesce(ring);
2137 /* Initialize Rx NAPI */
2138 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2139 NAPI_POLL_WEIGHT);
2141 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2142 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2143 bcmgenet_rdma_ring_writel(priv, index,
2144 ((size << DMA_RING_SIZE_SHIFT) |
2145 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2146 bcmgenet_rdma_ring_writel(priv, index,
2147 (DMA_FC_THRESH_LO <<
2148 DMA_XOFF_THRESHOLD_SHIFT) |
2149 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2151 /* Set start and end address, read and write pointers */
2152 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153 DMA_START_ADDR);
2154 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155 RDMA_READ_PTR);
2156 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2157 RDMA_WRITE_PTR);
2158 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2159 DMA_END_ADDR);
2161 return ret;
2164 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2166 unsigned int i;
2167 struct bcmgenet_tx_ring *ring;
2169 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2170 ring = &priv->tx_rings[i];
2171 napi_enable(&ring->napi);
2172 ring->int_enable(ring);
2175 ring = &priv->tx_rings[DESC_INDEX];
2176 napi_enable(&ring->napi);
2177 ring->int_enable(ring);
2180 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2182 unsigned int i;
2183 struct bcmgenet_tx_ring *ring;
2185 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2186 ring = &priv->tx_rings[i];
2187 napi_disable(&ring->napi);
2190 ring = &priv->tx_rings[DESC_INDEX];
2191 napi_disable(&ring->napi);
2194 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2196 unsigned int i;
2197 struct bcmgenet_tx_ring *ring;
2199 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2200 ring = &priv->tx_rings[i];
2201 netif_napi_del(&ring->napi);
2204 ring = &priv->tx_rings[DESC_INDEX];
2205 netif_napi_del(&ring->napi);
2208 /* Initialize Tx queues
2210 * Queues 0-3 are priority-based, each one has 32 descriptors,
2211 * with queue 0 being the highest priority queue.
2213 * Queue 16 is the default Tx queue with
2214 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2216 * The transmit control block pool is then partitioned as follows:
2217 * - Tx queue 0 uses tx_cbs[0..31]
2218 * - Tx queue 1 uses tx_cbs[32..63]
2219 * - Tx queue 2 uses tx_cbs[64..95]
2220 * - Tx queue 3 uses tx_cbs[96..127]
2221 * - Tx queue 16 uses tx_cbs[128..255]
2223 static void bcmgenet_init_tx_queues(struct net_device *dev)
2225 struct bcmgenet_priv *priv = netdev_priv(dev);
2226 u32 i, dma_enable;
2227 u32 dma_ctrl, ring_cfg;
2228 u32 dma_priority[3] = {0, 0, 0};
2230 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2231 dma_enable = dma_ctrl & DMA_EN;
2232 dma_ctrl &= ~DMA_EN;
2233 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2235 dma_ctrl = 0;
2236 ring_cfg = 0;
2238 /* Enable strict priority arbiter mode */
2239 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2241 /* Initialize Tx priority queues */
2242 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2243 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2244 i * priv->hw_params->tx_bds_per_q,
2245 (i + 1) * priv->hw_params->tx_bds_per_q);
2246 ring_cfg |= (1 << i);
2247 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2248 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2249 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2252 /* Initialize Tx default queue 16 */
2253 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2254 priv->hw_params->tx_queues *
2255 priv->hw_params->tx_bds_per_q,
2256 TOTAL_DESC);
2257 ring_cfg |= (1 << DESC_INDEX);
2258 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2259 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2260 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2261 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2263 /* Set Tx queue priorities */
2264 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2265 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2266 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2268 /* Enable Tx queues */
2269 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2271 /* Enable Tx DMA */
2272 if (dma_enable)
2273 dma_ctrl |= DMA_EN;
2274 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2277 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2279 unsigned int i;
2280 struct bcmgenet_rx_ring *ring;
2282 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2283 ring = &priv->rx_rings[i];
2284 napi_enable(&ring->napi);
2285 ring->int_enable(ring);
2288 ring = &priv->rx_rings[DESC_INDEX];
2289 napi_enable(&ring->napi);
2290 ring->int_enable(ring);
2293 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2295 unsigned int i;
2296 struct bcmgenet_rx_ring *ring;
2298 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2299 ring = &priv->rx_rings[i];
2300 napi_disable(&ring->napi);
2301 cancel_work_sync(&ring->dim.dim.work);
2304 ring = &priv->rx_rings[DESC_INDEX];
2305 napi_disable(&ring->napi);
2306 cancel_work_sync(&ring->dim.dim.work);
2309 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2311 unsigned int i;
2312 struct bcmgenet_rx_ring *ring;
2314 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2315 ring = &priv->rx_rings[i];
2316 netif_napi_del(&ring->napi);
2319 ring = &priv->rx_rings[DESC_INDEX];
2320 netif_napi_del(&ring->napi);
2323 /* Initialize Rx queues
2325 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2326 * used to direct traffic to these queues.
2328 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2330 static int bcmgenet_init_rx_queues(struct net_device *dev)
2332 struct bcmgenet_priv *priv = netdev_priv(dev);
2333 u32 i;
2334 u32 dma_enable;
2335 u32 dma_ctrl;
2336 u32 ring_cfg;
2337 int ret;
2339 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2340 dma_enable = dma_ctrl & DMA_EN;
2341 dma_ctrl &= ~DMA_EN;
2342 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2344 dma_ctrl = 0;
2345 ring_cfg = 0;
2347 /* Initialize Rx priority queues */
2348 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2349 ret = bcmgenet_init_rx_ring(priv, i,
2350 priv->hw_params->rx_bds_per_q,
2351 i * priv->hw_params->rx_bds_per_q,
2352 (i + 1) *
2353 priv->hw_params->rx_bds_per_q);
2354 if (ret)
2355 return ret;
2357 ring_cfg |= (1 << i);
2358 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2361 /* Initialize Rx default queue 16 */
2362 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2363 priv->hw_params->rx_queues *
2364 priv->hw_params->rx_bds_per_q,
2365 TOTAL_DESC);
2366 if (ret)
2367 return ret;
2369 ring_cfg |= (1 << DESC_INDEX);
2370 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2372 /* Enable rings */
2373 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2375 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2376 if (dma_enable)
2377 dma_ctrl |= DMA_EN;
2378 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2380 return 0;
2383 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2385 int ret = 0;
2386 int timeout = 0;
2387 u32 reg;
2388 u32 dma_ctrl;
2389 int i;
2391 /* Disable TDMA to stop add more frames in TX DMA */
2392 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2393 reg &= ~DMA_EN;
2394 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2396 /* Check TDMA status register to confirm TDMA is disabled */
2397 while (timeout++ < DMA_TIMEOUT_VAL) {
2398 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2399 if (reg & DMA_DISABLED)
2400 break;
2402 udelay(1);
2405 if (timeout == DMA_TIMEOUT_VAL) {
2406 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2407 ret = -ETIMEDOUT;
2410 /* Wait 10ms for packet drain in both tx and rx dma */
2411 usleep_range(10000, 20000);
2413 /* Disable RDMA */
2414 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2415 reg &= ~DMA_EN;
2416 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2418 timeout = 0;
2419 /* Check RDMA status register to confirm RDMA is disabled */
2420 while (timeout++ < DMA_TIMEOUT_VAL) {
2421 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2422 if (reg & DMA_DISABLED)
2423 break;
2425 udelay(1);
2428 if (timeout == DMA_TIMEOUT_VAL) {
2429 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2430 ret = -ETIMEDOUT;
2433 dma_ctrl = 0;
2434 for (i = 0; i < priv->hw_params->rx_queues; i++)
2435 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2436 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2437 reg &= ~dma_ctrl;
2438 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2440 dma_ctrl = 0;
2441 for (i = 0; i < priv->hw_params->tx_queues; i++)
2442 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2443 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2444 reg &= ~dma_ctrl;
2445 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2447 return ret;
2450 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2452 struct netdev_queue *txq;
2453 int i;
2455 bcmgenet_fini_rx_napi(priv);
2456 bcmgenet_fini_tx_napi(priv);
2458 for (i = 0; i < priv->num_tx_bds; i++)
2459 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2460 priv->tx_cbs + i));
2462 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2463 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2464 netdev_tx_reset_queue(txq);
2467 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2468 netdev_tx_reset_queue(txq);
2470 bcmgenet_free_rx_buffers(priv);
2471 kfree(priv->rx_cbs);
2472 kfree(priv->tx_cbs);
2475 /* init_edma: Initialize DMA control register */
2476 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2478 int ret;
2479 unsigned int i;
2480 struct enet_cb *cb;
2482 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2484 /* Initialize common Rx ring structures */
2485 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2486 priv->num_rx_bds = TOTAL_DESC;
2487 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2488 GFP_KERNEL);
2489 if (!priv->rx_cbs)
2490 return -ENOMEM;
2492 for (i = 0; i < priv->num_rx_bds; i++) {
2493 cb = priv->rx_cbs + i;
2494 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2497 /* Initialize common TX ring structures */
2498 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2499 priv->num_tx_bds = TOTAL_DESC;
2500 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2501 GFP_KERNEL);
2502 if (!priv->tx_cbs) {
2503 kfree(priv->rx_cbs);
2504 return -ENOMEM;
2507 for (i = 0; i < priv->num_tx_bds; i++) {
2508 cb = priv->tx_cbs + i;
2509 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2512 /* Init rDma */
2513 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2514 DMA_SCB_BURST_SIZE);
2516 /* Initialize Rx queues */
2517 ret = bcmgenet_init_rx_queues(priv->dev);
2518 if (ret) {
2519 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2520 bcmgenet_free_rx_buffers(priv);
2521 kfree(priv->rx_cbs);
2522 kfree(priv->tx_cbs);
2523 return ret;
2526 /* Init tDma */
2527 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2528 DMA_SCB_BURST_SIZE);
2530 /* Initialize Tx queues */
2531 bcmgenet_init_tx_queues(priv->dev);
2533 return 0;
2536 /* Interrupt bottom half */
2537 static void bcmgenet_irq_task(struct work_struct *work)
2539 unsigned int status;
2540 struct bcmgenet_priv *priv = container_of(
2541 work, struct bcmgenet_priv, bcmgenet_irq_work);
2543 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2545 spin_lock_irq(&priv->lock);
2546 status = priv->irq0_stat;
2547 priv->irq0_stat = 0;
2548 spin_unlock_irq(&priv->lock);
2550 if (status & UMAC_IRQ_PHY_DET_R &&
2551 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2552 phy_init_hw(priv->dev->phydev);
2553 genphy_config_aneg(priv->dev->phydev);
2556 /* Link UP/DOWN event */
2557 if (status & UMAC_IRQ_LINK_EVENT)
2558 phy_mac_interrupt(priv->dev->phydev);
2562 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2563 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2565 struct bcmgenet_priv *priv = dev_id;
2566 struct bcmgenet_rx_ring *rx_ring;
2567 struct bcmgenet_tx_ring *tx_ring;
2568 unsigned int index, status;
2570 /* Read irq status */
2571 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2572 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2574 /* clear interrupts */
2575 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2577 netif_dbg(priv, intr, priv->dev,
2578 "%s: IRQ=0x%x\n", __func__, status);
2580 /* Check Rx priority queue interrupts */
2581 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2582 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2583 continue;
2585 rx_ring = &priv->rx_rings[index];
2586 rx_ring->dim.event_ctr++;
2588 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2589 rx_ring->int_disable(rx_ring);
2590 __napi_schedule_irqoff(&rx_ring->napi);
2594 /* Check Tx priority queue interrupts */
2595 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2596 if (!(status & BIT(index)))
2597 continue;
2599 tx_ring = &priv->tx_rings[index];
2601 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2602 tx_ring->int_disable(tx_ring);
2603 __napi_schedule_irqoff(&tx_ring->napi);
2607 return IRQ_HANDLED;
2610 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2611 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2613 struct bcmgenet_priv *priv = dev_id;
2614 struct bcmgenet_rx_ring *rx_ring;
2615 struct bcmgenet_tx_ring *tx_ring;
2616 unsigned int status;
2617 unsigned long flags;
2619 /* Read irq status */
2620 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2621 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2623 /* clear interrupts */
2624 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2626 netif_dbg(priv, intr, priv->dev,
2627 "IRQ=0x%x\n", status);
2629 if (status & UMAC_IRQ_RXDMA_DONE) {
2630 rx_ring = &priv->rx_rings[DESC_INDEX];
2631 rx_ring->dim.event_ctr++;
2633 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2634 rx_ring->int_disable(rx_ring);
2635 __napi_schedule_irqoff(&rx_ring->napi);
2639 if (status & UMAC_IRQ_TXDMA_DONE) {
2640 tx_ring = &priv->tx_rings[DESC_INDEX];
2642 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2643 tx_ring->int_disable(tx_ring);
2644 __napi_schedule_irqoff(&tx_ring->napi);
2648 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2649 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2650 wake_up(&priv->wq);
2653 /* all other interested interrupts handled in bottom half */
2654 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2655 if (status) {
2656 /* Save irq status for bottom-half processing. */
2657 spin_lock_irqsave(&priv->lock, flags);
2658 priv->irq0_stat |= status;
2659 spin_unlock_irqrestore(&priv->lock, flags);
2661 schedule_work(&priv->bcmgenet_irq_work);
2664 return IRQ_HANDLED;
2667 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2669 struct bcmgenet_priv *priv = dev_id;
2671 pm_wakeup_event(&priv->pdev->dev, 0);
2673 return IRQ_HANDLED;
2676 #ifdef CONFIG_NET_POLL_CONTROLLER
2677 static void bcmgenet_poll_controller(struct net_device *dev)
2679 struct bcmgenet_priv *priv = netdev_priv(dev);
2681 /* Invoke the main RX/TX interrupt handler */
2682 disable_irq(priv->irq0);
2683 bcmgenet_isr0(priv->irq0, priv);
2684 enable_irq(priv->irq0);
2686 /* And the interrupt handler for RX/TX priority queues */
2687 disable_irq(priv->irq1);
2688 bcmgenet_isr1(priv->irq1, priv);
2689 enable_irq(priv->irq1);
2691 #endif
2693 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2695 u32 reg;
2697 reg = bcmgenet_rbuf_ctrl_get(priv);
2698 reg |= BIT(1);
2699 bcmgenet_rbuf_ctrl_set(priv, reg);
2700 udelay(10);
2702 reg &= ~BIT(1);
2703 bcmgenet_rbuf_ctrl_set(priv, reg);
2704 udelay(10);
2707 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2708 unsigned char *addr)
2710 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2711 (addr[2] << 8) | addr[3], UMAC_MAC0);
2712 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2715 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2716 unsigned char *addr)
2718 u32 addr_tmp;
2720 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2721 addr[0] = addr_tmp >> 24;
2722 addr[1] = (addr_tmp >> 16) & 0xff;
2723 addr[2] = (addr_tmp >> 8) & 0xff;
2724 addr[3] = addr_tmp & 0xff;
2725 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2726 addr[4] = (addr_tmp >> 8) & 0xff;
2727 addr[5] = addr_tmp & 0xff;
2730 /* Returns a reusable dma control register value */
2731 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2733 u32 reg;
2734 u32 dma_ctrl;
2736 /* disable DMA */
2737 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2738 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2739 reg &= ~dma_ctrl;
2740 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2742 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2743 reg &= ~dma_ctrl;
2744 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2746 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2747 udelay(10);
2748 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2750 return dma_ctrl;
2753 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2755 u32 reg;
2757 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2758 reg |= dma_ctrl;
2759 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2761 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2762 reg |= dma_ctrl;
2763 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2766 /* bcmgenet_hfb_clear
2768 * Clear Hardware Filter Block and disable all filtering.
2770 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2772 u32 i;
2774 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2775 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2776 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2778 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2779 bcmgenet_rdma_writel(priv, 0x0, i);
2781 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2782 bcmgenet_hfb_reg_writel(priv, 0x0,
2783 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2785 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2786 priv->hw_params->hfb_filter_size; i++)
2787 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2790 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2792 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2793 return;
2795 bcmgenet_hfb_clear(priv);
2798 static void bcmgenet_netif_start(struct net_device *dev)
2800 struct bcmgenet_priv *priv = netdev_priv(dev);
2802 /* Start the network engine */
2803 bcmgenet_enable_rx_napi(priv);
2805 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2807 bcmgenet_enable_tx_napi(priv);
2809 /* Monitor link interrupts now */
2810 bcmgenet_link_intr_enable(priv);
2812 phy_start(dev->phydev);
2815 static int bcmgenet_open(struct net_device *dev)
2817 struct bcmgenet_priv *priv = netdev_priv(dev);
2818 unsigned long dma_ctrl;
2819 u32 reg;
2820 int ret;
2822 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2824 /* Turn on the clock */
2825 clk_prepare_enable(priv->clk);
2827 /* If this is an internal GPHY, power it back on now, before UniMAC is
2828 * brought out of reset as absolutely no UniMAC activity is allowed
2830 if (priv->internal_phy)
2831 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2833 /* take MAC out of reset */
2834 bcmgenet_umac_reset(priv);
2836 init_umac(priv);
2838 /* Apply features again in case we changed them while interface was
2839 * down
2841 bcmgenet_set_features(dev, dev->features);
2843 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2845 if (priv->internal_phy) {
2846 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2847 reg |= EXT_ENERGY_DET_MASK;
2848 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2851 /* Disable RX/TX DMA and flush TX queues */
2852 dma_ctrl = bcmgenet_dma_disable(priv);
2854 /* Reinitialize TDMA and RDMA and SW housekeeping */
2855 ret = bcmgenet_init_dma(priv);
2856 if (ret) {
2857 netdev_err(dev, "failed to initialize DMA\n");
2858 goto err_clk_disable;
2861 /* Always enable ring 16 - descriptor ring */
2862 bcmgenet_enable_dma(priv, dma_ctrl);
2864 /* HFB init */
2865 bcmgenet_hfb_init(priv);
2867 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2868 dev->name, priv);
2869 if (ret < 0) {
2870 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2871 goto err_fini_dma;
2874 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2875 dev->name, priv);
2876 if (ret < 0) {
2877 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2878 goto err_irq0;
2881 ret = bcmgenet_mii_probe(dev);
2882 if (ret) {
2883 netdev_err(dev, "failed to connect to PHY\n");
2884 goto err_irq1;
2887 bcmgenet_netif_start(dev);
2889 netif_tx_start_all_queues(dev);
2891 return 0;
2893 err_irq1:
2894 free_irq(priv->irq1, priv);
2895 err_irq0:
2896 free_irq(priv->irq0, priv);
2897 err_fini_dma:
2898 bcmgenet_dma_teardown(priv);
2899 bcmgenet_fini_dma(priv);
2900 err_clk_disable:
2901 if (priv->internal_phy)
2902 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2903 clk_disable_unprepare(priv->clk);
2904 return ret;
2907 static void bcmgenet_netif_stop(struct net_device *dev)
2909 struct bcmgenet_priv *priv = netdev_priv(dev);
2911 bcmgenet_disable_tx_napi(priv);
2912 netif_tx_disable(dev);
2914 /* Disable MAC receive */
2915 umac_enable_set(priv, CMD_RX_EN, false);
2917 bcmgenet_dma_teardown(priv);
2919 /* Disable MAC transmit. TX DMA disabled must be done before this */
2920 umac_enable_set(priv, CMD_TX_EN, false);
2922 phy_stop(dev->phydev);
2923 bcmgenet_disable_rx_napi(priv);
2924 bcmgenet_intr_disable(priv);
2926 /* Wait for pending work items to complete. Since interrupts are
2927 * disabled no new work will be scheduled.
2929 cancel_work_sync(&priv->bcmgenet_irq_work);
2931 priv->old_link = -1;
2932 priv->old_speed = -1;
2933 priv->old_duplex = -1;
2934 priv->old_pause = -1;
2936 /* tx reclaim */
2937 bcmgenet_tx_reclaim_all(dev);
2938 bcmgenet_fini_dma(priv);
2941 static int bcmgenet_close(struct net_device *dev)
2943 struct bcmgenet_priv *priv = netdev_priv(dev);
2944 int ret = 0;
2946 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2948 bcmgenet_netif_stop(dev);
2950 /* Really kill the PHY state machine and disconnect from it */
2951 phy_disconnect(dev->phydev);
2953 free_irq(priv->irq0, priv);
2954 free_irq(priv->irq1, priv);
2956 if (priv->internal_phy)
2957 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2959 clk_disable_unprepare(priv->clk);
2961 return ret;
2964 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2966 struct bcmgenet_priv *priv = ring->priv;
2967 u32 p_index, c_index, intsts, intmsk;
2968 struct netdev_queue *txq;
2969 unsigned int free_bds;
2970 bool txq_stopped;
2972 if (!netif_msg_tx_err(priv))
2973 return;
2975 txq = netdev_get_tx_queue(priv->dev, ring->queue);
2977 spin_lock(&ring->lock);
2978 if (ring->index == DESC_INDEX) {
2979 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2980 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2981 } else {
2982 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2983 intmsk = 1 << ring->index;
2985 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2986 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2987 txq_stopped = netif_tx_queue_stopped(txq);
2988 free_bds = ring->free_bds;
2989 spin_unlock(&ring->lock);
2991 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2992 "TX queue status: %s, interrupts: %s\n"
2993 "(sw)free_bds: %d (sw)size: %d\n"
2994 "(sw)p_index: %d (hw)p_index: %d\n"
2995 "(sw)c_index: %d (hw)c_index: %d\n"
2996 "(sw)clean_p: %d (sw)write_p: %d\n"
2997 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2998 ring->index, ring->queue,
2999 txq_stopped ? "stopped" : "active",
3000 intsts & intmsk ? "enabled" : "disabled",
3001 free_bds, ring->size,
3002 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3003 ring->c_index, c_index & DMA_C_INDEX_MASK,
3004 ring->clean_ptr, ring->write_ptr,
3005 ring->cb_ptr, ring->end_ptr);
3008 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3010 struct bcmgenet_priv *priv = netdev_priv(dev);
3011 u32 int0_enable = 0;
3012 u32 int1_enable = 0;
3013 unsigned int q;
3015 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3017 for (q = 0; q < priv->hw_params->tx_queues; q++)
3018 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3019 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3021 bcmgenet_tx_reclaim_all(dev);
3023 for (q = 0; q < priv->hw_params->tx_queues; q++)
3024 int1_enable |= (1 << q);
3026 int0_enable = UMAC_IRQ_TXDMA_DONE;
3028 /* Re-enable TX interrupts if disabled */
3029 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3030 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3032 netif_trans_update(dev);
3034 dev->stats.tx_errors++;
3036 netif_tx_wake_all_queues(dev);
3039 #define MAX_MDF_FILTER 17
3041 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3042 unsigned char *addr,
3043 int *i)
3045 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3046 UMAC_MDF_ADDR + (*i * 4));
3047 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3048 addr[4] << 8 | addr[5],
3049 UMAC_MDF_ADDR + ((*i + 1) * 4));
3050 *i += 2;
3053 static void bcmgenet_set_rx_mode(struct net_device *dev)
3055 struct bcmgenet_priv *priv = netdev_priv(dev);
3056 struct netdev_hw_addr *ha;
3057 int i, nfilter;
3058 u32 reg;
3060 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3062 /* Number of filters needed */
3063 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3066 * Turn on promicuous mode for three scenarios
3067 * 1. IFF_PROMISC flag is set
3068 * 2. IFF_ALLMULTI flag is set
3069 * 3. The number of filters needed exceeds the number filters
3070 * supported by the hardware.
3072 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3073 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3074 (nfilter > MAX_MDF_FILTER)) {
3075 reg |= CMD_PROMISC;
3076 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3077 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3078 return;
3079 } else {
3080 reg &= ~CMD_PROMISC;
3081 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3084 /* update MDF filter */
3085 i = 0;
3086 /* Broadcast */
3087 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3088 /* my own address.*/
3089 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3091 /* Unicast */
3092 netdev_for_each_uc_addr(ha, dev)
3093 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3095 /* Multicast */
3096 netdev_for_each_mc_addr(ha, dev)
3097 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3099 /* Enable filters */
3100 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3101 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3104 /* Set the hardware MAC address. */
3105 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3107 struct sockaddr *addr = p;
3109 /* Setting the MAC address at the hardware level is not possible
3110 * without disabling the UniMAC RX/TX enable bits.
3112 if (netif_running(dev))
3113 return -EBUSY;
3115 ether_addr_copy(dev->dev_addr, addr->sa_data);
3117 return 0;
3120 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3122 struct bcmgenet_priv *priv = netdev_priv(dev);
3123 unsigned long tx_bytes = 0, tx_packets = 0;
3124 unsigned long rx_bytes = 0, rx_packets = 0;
3125 unsigned long rx_errors = 0, rx_dropped = 0;
3126 struct bcmgenet_tx_ring *tx_ring;
3127 struct bcmgenet_rx_ring *rx_ring;
3128 unsigned int q;
3130 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3131 tx_ring = &priv->tx_rings[q];
3132 tx_bytes += tx_ring->bytes;
3133 tx_packets += tx_ring->packets;
3135 tx_ring = &priv->tx_rings[DESC_INDEX];
3136 tx_bytes += tx_ring->bytes;
3137 tx_packets += tx_ring->packets;
3139 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3140 rx_ring = &priv->rx_rings[q];
3142 rx_bytes += rx_ring->bytes;
3143 rx_packets += rx_ring->packets;
3144 rx_errors += rx_ring->errors;
3145 rx_dropped += rx_ring->dropped;
3147 rx_ring = &priv->rx_rings[DESC_INDEX];
3148 rx_bytes += rx_ring->bytes;
3149 rx_packets += rx_ring->packets;
3150 rx_errors += rx_ring->errors;
3151 rx_dropped += rx_ring->dropped;
3153 dev->stats.tx_bytes = tx_bytes;
3154 dev->stats.tx_packets = tx_packets;
3155 dev->stats.rx_bytes = rx_bytes;
3156 dev->stats.rx_packets = rx_packets;
3157 dev->stats.rx_errors = rx_errors;
3158 dev->stats.rx_missed_errors = rx_errors;
3159 return &dev->stats;
3162 static const struct net_device_ops bcmgenet_netdev_ops = {
3163 .ndo_open = bcmgenet_open,
3164 .ndo_stop = bcmgenet_close,
3165 .ndo_start_xmit = bcmgenet_xmit,
3166 .ndo_tx_timeout = bcmgenet_timeout,
3167 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3168 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3169 .ndo_do_ioctl = phy_do_ioctl_running,
3170 .ndo_set_features = bcmgenet_set_features,
3171 #ifdef CONFIG_NET_POLL_CONTROLLER
3172 .ndo_poll_controller = bcmgenet_poll_controller,
3173 #endif
3174 .ndo_get_stats = bcmgenet_get_stats,
3177 /* Array of GENET hardware parameters/characteristics */
3178 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3179 [GENET_V1] = {
3180 .tx_queues = 0,
3181 .tx_bds_per_q = 0,
3182 .rx_queues = 0,
3183 .rx_bds_per_q = 0,
3184 .bp_in_en_shift = 16,
3185 .bp_in_mask = 0xffff,
3186 .hfb_filter_cnt = 16,
3187 .qtag_mask = 0x1F,
3188 .hfb_offset = 0x1000,
3189 .rdma_offset = 0x2000,
3190 .tdma_offset = 0x3000,
3191 .words_per_bd = 2,
3193 [GENET_V2] = {
3194 .tx_queues = 4,
3195 .tx_bds_per_q = 32,
3196 .rx_queues = 0,
3197 .rx_bds_per_q = 0,
3198 .bp_in_en_shift = 16,
3199 .bp_in_mask = 0xffff,
3200 .hfb_filter_cnt = 16,
3201 .qtag_mask = 0x1F,
3202 .tbuf_offset = 0x0600,
3203 .hfb_offset = 0x1000,
3204 .hfb_reg_offset = 0x2000,
3205 .rdma_offset = 0x3000,
3206 .tdma_offset = 0x4000,
3207 .words_per_bd = 2,
3208 .flags = GENET_HAS_EXT,
3210 [GENET_V3] = {
3211 .tx_queues = 4,
3212 .tx_bds_per_q = 32,
3213 .rx_queues = 0,
3214 .rx_bds_per_q = 0,
3215 .bp_in_en_shift = 17,
3216 .bp_in_mask = 0x1ffff,
3217 .hfb_filter_cnt = 48,
3218 .hfb_filter_size = 128,
3219 .qtag_mask = 0x3F,
3220 .tbuf_offset = 0x0600,
3221 .hfb_offset = 0x8000,
3222 .hfb_reg_offset = 0xfc00,
3223 .rdma_offset = 0x10000,
3224 .tdma_offset = 0x11000,
3225 .words_per_bd = 2,
3226 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3227 GENET_HAS_MOCA_LINK_DET,
3229 [GENET_V4] = {
3230 .tx_queues = 4,
3231 .tx_bds_per_q = 32,
3232 .rx_queues = 0,
3233 .rx_bds_per_q = 0,
3234 .bp_in_en_shift = 17,
3235 .bp_in_mask = 0x1ffff,
3236 .hfb_filter_cnt = 48,
3237 .hfb_filter_size = 128,
3238 .qtag_mask = 0x3F,
3239 .tbuf_offset = 0x0600,
3240 .hfb_offset = 0x8000,
3241 .hfb_reg_offset = 0xfc00,
3242 .rdma_offset = 0x2000,
3243 .tdma_offset = 0x4000,
3244 .words_per_bd = 3,
3245 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3246 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3248 [GENET_V5] = {
3249 .tx_queues = 4,
3250 .tx_bds_per_q = 32,
3251 .rx_queues = 0,
3252 .rx_bds_per_q = 0,
3253 .bp_in_en_shift = 17,
3254 .bp_in_mask = 0x1ffff,
3255 .hfb_filter_cnt = 48,
3256 .hfb_filter_size = 128,
3257 .qtag_mask = 0x3F,
3258 .tbuf_offset = 0x0600,
3259 .hfb_offset = 0x8000,
3260 .hfb_reg_offset = 0xfc00,
3261 .rdma_offset = 0x2000,
3262 .tdma_offset = 0x4000,
3263 .words_per_bd = 3,
3264 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3265 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3269 /* Infer hardware parameters from the detected GENET version */
3270 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3272 struct bcmgenet_hw_params *params;
3273 u32 reg;
3274 u8 major;
3275 u16 gphy_rev;
3277 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3278 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3279 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3280 } else if (GENET_IS_V3(priv)) {
3281 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3282 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3283 } else if (GENET_IS_V2(priv)) {
3284 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3285 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3286 } else if (GENET_IS_V1(priv)) {
3287 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3288 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3291 /* enum genet_version starts at 1 */
3292 priv->hw_params = &bcmgenet_hw_params[priv->version];
3293 params = priv->hw_params;
3295 /* Read GENET HW version */
3296 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3297 major = (reg >> 24 & 0x0f);
3298 if (major == 6)
3299 major = 5;
3300 else if (major == 5)
3301 major = 4;
3302 else if (major == 0)
3303 major = 1;
3304 if (major != priv->version) {
3305 dev_err(&priv->pdev->dev,
3306 "GENET version mismatch, got: %d, configured for: %d\n",
3307 major, priv->version);
3310 /* Print the GENET core version */
3311 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3312 major, (reg >> 16) & 0x0f, reg & 0xffff);
3314 /* Store the integrated PHY revision for the MDIO probing function
3315 * to pass this information to the PHY driver. The PHY driver expects
3316 * to find the PHY major revision in bits 15:8 while the GENET register
3317 * stores that information in bits 7:0, account for that.
3319 * On newer chips, starting with PHY revision G0, a new scheme is
3320 * deployed similar to the Starfighter 2 switch with GPHY major
3321 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3322 * is reserved as well as special value 0x01ff, we have a small
3323 * heuristic to check for the new GPHY revision and re-arrange things
3324 * so the GPHY driver is happy.
3326 gphy_rev = reg & 0xffff;
3328 if (GENET_IS_V5(priv)) {
3329 /* The EPHY revision should come from the MDIO registers of
3330 * the PHY not from GENET.
3332 if (gphy_rev != 0) {
3333 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3334 gphy_rev);
3336 /* This is reserved so should require special treatment */
3337 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3338 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3339 return;
3340 /* This is the good old scheme, just GPHY major, no minor nor patch */
3341 } else if ((gphy_rev & 0xf0) != 0) {
3342 priv->gphy_rev = gphy_rev << 8;
3343 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3344 } else if ((gphy_rev & 0xff00) != 0) {
3345 priv->gphy_rev = gphy_rev;
3348 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3349 if (!(params->flags & GENET_HAS_40BITS))
3350 pr_warn("GENET does not support 40-bits PA\n");
3351 #endif
3353 pr_debug("Configuration for version: %d\n"
3354 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3355 "BP << en: %2d, BP msk: 0x%05x\n"
3356 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3357 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3358 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3359 "Words/BD: %d\n",
3360 priv->version,
3361 params->tx_queues, params->tx_bds_per_q,
3362 params->rx_queues, params->rx_bds_per_q,
3363 params->bp_in_en_shift, params->bp_in_mask,
3364 params->hfb_filter_cnt, params->qtag_mask,
3365 params->tbuf_offset, params->hfb_offset,
3366 params->hfb_reg_offset,
3367 params->rdma_offset, params->tdma_offset,
3368 params->words_per_bd);
3371 struct bcmgenet_plat_data {
3372 enum bcmgenet_version version;
3373 u32 dma_max_burst_length;
3376 static const struct bcmgenet_plat_data v1_plat_data = {
3377 .version = GENET_V1,
3378 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3381 static const struct bcmgenet_plat_data v2_plat_data = {
3382 .version = GENET_V2,
3383 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3386 static const struct bcmgenet_plat_data v3_plat_data = {
3387 .version = GENET_V3,
3388 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3391 static const struct bcmgenet_plat_data v4_plat_data = {
3392 .version = GENET_V4,
3393 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3396 static const struct bcmgenet_plat_data v5_plat_data = {
3397 .version = GENET_V5,
3398 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3401 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3402 .version = GENET_V5,
3403 .dma_max_burst_length = 0x08,
3406 static const struct of_device_id bcmgenet_match[] = {
3407 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3408 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3409 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3410 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3411 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3412 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3413 { },
3415 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3417 static int bcmgenet_probe(struct platform_device *pdev)
3419 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3420 struct device_node *dn = pdev->dev.of_node;
3421 const struct of_device_id *of_id = NULL;
3422 const struct bcmgenet_plat_data *pdata;
3423 struct bcmgenet_priv *priv;
3424 struct net_device *dev;
3425 unsigned int i;
3426 int err = -EIO;
3428 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3429 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3430 GENET_MAX_MQ_CNT + 1);
3431 if (!dev) {
3432 dev_err(&pdev->dev, "can't allocate net device\n");
3433 return -ENOMEM;
3436 if (dn) {
3437 of_id = of_match_node(bcmgenet_match, dn);
3438 if (!of_id)
3439 return -EINVAL;
3442 priv = netdev_priv(dev);
3443 priv->irq0 = platform_get_irq(pdev, 0);
3444 if (priv->irq0 < 0) {
3445 err = priv->irq0;
3446 goto err;
3448 priv->irq1 = platform_get_irq(pdev, 1);
3449 if (priv->irq1 < 0) {
3450 err = priv->irq1;
3451 goto err;
3453 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3455 priv->base = devm_platform_ioremap_resource(pdev, 0);
3456 if (IS_ERR(priv->base)) {
3457 err = PTR_ERR(priv->base);
3458 goto err;
3461 spin_lock_init(&priv->lock);
3463 SET_NETDEV_DEV(dev, &pdev->dev);
3464 dev_set_drvdata(&pdev->dev, dev);
3465 dev->watchdog_timeo = 2 * HZ;
3466 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3467 dev->netdev_ops = &bcmgenet_netdev_ops;
3469 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3471 /* Set default features */
3472 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3473 NETIF_F_RXCSUM;
3474 dev->hw_features |= dev->features;
3475 dev->vlan_features |= dev->features;
3477 /* Request the WOL interrupt and advertise suspend if available */
3478 priv->wol_irq_disabled = true;
3479 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3480 dev->name, priv);
3481 if (!err)
3482 device_set_wakeup_capable(&pdev->dev, 1);
3484 /* Set the needed headroom to account for any possible
3485 * features enabling/disabling at runtime
3487 dev->needed_headroom += 64;
3489 netdev_boot_setup_check(dev);
3491 priv->dev = dev;
3492 priv->pdev = pdev;
3494 pdata = device_get_match_data(&pdev->dev);
3495 if (pdata) {
3496 priv->version = pdata->version;
3497 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3498 } else {
3499 priv->version = pd->genet_version;
3500 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3503 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3504 if (IS_ERR(priv->clk)) {
3505 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3506 priv->clk = NULL;
3509 clk_prepare_enable(priv->clk);
3511 bcmgenet_set_hw_params(priv);
3513 err = -EIO;
3514 if (priv->hw_params->flags & GENET_HAS_40BITS)
3515 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3516 if (err)
3517 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3518 if (err)
3519 goto err;
3521 /* Mii wait queue */
3522 init_waitqueue_head(&priv->wq);
3523 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3524 priv->rx_buf_len = RX_BUF_LENGTH;
3525 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3527 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3528 if (IS_ERR(priv->clk_wol)) {
3529 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3530 priv->clk_wol = NULL;
3533 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3534 if (IS_ERR(priv->clk_eee)) {
3535 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3536 priv->clk_eee = NULL;
3539 /* If this is an internal GPHY, power it on now, before UniMAC is
3540 * brought out of reset as absolutely no UniMAC activity is allowed
3542 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3543 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3545 if ((pd) && (!IS_ERR_OR_NULL(pd->mac_address)))
3546 ether_addr_copy(dev->dev_addr, pd->mac_address);
3547 else
3548 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3549 if (has_acpi_companion(&pdev->dev))
3550 bcmgenet_get_hw_addr(priv, dev->dev_addr);
3552 if (!is_valid_ether_addr(dev->dev_addr)) {
3553 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3554 eth_hw_addr_random(dev);
3557 reset_umac(priv);
3559 err = bcmgenet_mii_init(dev);
3560 if (err)
3561 goto err_clk_disable;
3563 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3564 * just the ring 16 descriptor based TX
3566 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3567 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3569 /* Set default coalescing parameters */
3570 for (i = 0; i < priv->hw_params->rx_queues; i++)
3571 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3572 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3574 /* libphy will determine the link state */
3575 netif_carrier_off(dev);
3577 /* Turn off the main clock, WOL clock is handled separately */
3578 clk_disable_unprepare(priv->clk);
3580 err = register_netdev(dev);
3581 if (err)
3582 goto err;
3584 return err;
3586 err_clk_disable:
3587 clk_disable_unprepare(priv->clk);
3588 err:
3589 free_netdev(dev);
3590 return err;
3593 static int bcmgenet_remove(struct platform_device *pdev)
3595 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3597 dev_set_drvdata(&pdev->dev, NULL);
3598 unregister_netdev(priv->dev);
3599 bcmgenet_mii_exit(priv->dev);
3600 free_netdev(priv->dev);
3602 return 0;
3605 static void bcmgenet_shutdown(struct platform_device *pdev)
3607 bcmgenet_remove(pdev);
3610 #ifdef CONFIG_PM_SLEEP
3611 static int bcmgenet_resume(struct device *d)
3613 struct net_device *dev = dev_get_drvdata(d);
3614 struct bcmgenet_priv *priv = netdev_priv(dev);
3615 unsigned long dma_ctrl;
3616 int ret;
3617 u32 reg;
3619 if (!netif_running(dev))
3620 return 0;
3622 /* Turn on the clock */
3623 ret = clk_prepare_enable(priv->clk);
3624 if (ret)
3625 return ret;
3627 /* If this is an internal GPHY, power it back on now, before UniMAC is
3628 * brought out of reset as absolutely no UniMAC activity is allowed
3630 if (priv->internal_phy)
3631 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3633 bcmgenet_umac_reset(priv);
3635 init_umac(priv);
3637 /* From WOL-enabled suspend, switch to regular clock */
3638 if (priv->wolopts)
3639 clk_disable_unprepare(priv->clk_wol);
3641 phy_init_hw(dev->phydev);
3643 /* Speed settings must be restored */
3644 genphy_config_aneg(dev->phydev);
3645 bcmgenet_mii_config(priv->dev, false);
3647 /* Restore enabled features */
3648 bcmgenet_set_features(dev, dev->features);
3650 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3652 if (priv->internal_phy) {
3653 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3654 reg |= EXT_ENERGY_DET_MASK;
3655 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3658 if (priv->wolopts)
3659 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3661 /* Disable RX/TX DMA and flush TX queues */
3662 dma_ctrl = bcmgenet_dma_disable(priv);
3664 /* Reinitialize TDMA and RDMA and SW housekeeping */
3665 ret = bcmgenet_init_dma(priv);
3666 if (ret) {
3667 netdev_err(dev, "failed to initialize DMA\n");
3668 goto out_clk_disable;
3671 /* Always enable ring 16 - descriptor ring */
3672 bcmgenet_enable_dma(priv, dma_ctrl);
3674 if (!device_may_wakeup(d))
3675 phy_resume(dev->phydev);
3677 if (priv->eee.eee_enabled)
3678 bcmgenet_eee_enable_set(dev, true);
3680 bcmgenet_netif_start(dev);
3682 netif_device_attach(dev);
3684 return 0;
3686 out_clk_disable:
3687 if (priv->internal_phy)
3688 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3689 clk_disable_unprepare(priv->clk);
3690 return ret;
3693 static int bcmgenet_suspend(struct device *d)
3695 struct net_device *dev = dev_get_drvdata(d);
3696 struct bcmgenet_priv *priv = netdev_priv(dev);
3697 int ret = 0;
3699 if (!netif_running(dev))
3700 return 0;
3702 netif_device_detach(dev);
3704 bcmgenet_netif_stop(dev);
3706 if (!device_may_wakeup(d))
3707 phy_suspend(dev->phydev);
3709 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3710 if (device_may_wakeup(d) && priv->wolopts) {
3711 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3712 clk_prepare_enable(priv->clk_wol);
3713 } else if (priv->internal_phy) {
3714 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3717 /* Turn off the clocks */
3718 clk_disable_unprepare(priv->clk);
3720 if (ret)
3721 bcmgenet_resume(d);
3723 return ret;
3725 #endif /* CONFIG_PM_SLEEP */
3727 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3729 static const struct acpi_device_id genet_acpi_match[] = {
3730 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3731 { },
3733 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3735 static struct platform_driver bcmgenet_driver = {
3736 .probe = bcmgenet_probe,
3737 .remove = bcmgenet_remove,
3738 .shutdown = bcmgenet_shutdown,
3739 .driver = {
3740 .name = "bcmgenet",
3741 .of_match_table = bcmgenet_match,
3742 .pm = &bcmgenet_pm_ops,
3743 .acpi_match_table = ACPI_PTR(genet_acpi_match),
3746 module_platform_driver(bcmgenet_driver);
3748 MODULE_AUTHOR("Broadcom Corporation");
3749 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3750 MODULE_ALIAS("platform:bcmgenet");
3751 MODULE_LICENSE("GPL");