gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blob177c6da80c576f06b73c7754d4a68a350379c22c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
29 #include "e1000.h"
31 #define DRV_EXTRAVERSION "-k"
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
42 static const struct e1000_info *e1000_info_tbl[] = {
43 [board_82571] = &e1000_82571_info,
44 [board_82572] = &e1000_82572_info,
45 [board_82573] = &e1000_82573_info,
46 [board_82574] = &e1000_82574_info,
47 [board_82583] = &e1000_82583_info,
48 [board_80003es2lan] = &e1000_es2_info,
49 [board_ich8lan] = &e1000_ich8_info,
50 [board_ich9lan] = &e1000_ich9_info,
51 [board_ich10lan] = &e1000_ich10_info,
52 [board_pchlan] = &e1000_pch_info,
53 [board_pch2lan] = &e1000_pch2_info,
54 [board_pch_lpt] = &e1000_pch_lpt_info,
55 [board_pch_spt] = &e1000_pch_spt_info,
56 [board_pch_cnp] = &e1000_pch_cnp_info,
59 struct e1000_reg_info {
60 u32 ofs;
61 char *name;
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65 /* General Registers */
66 {E1000_CTRL, "CTRL"},
67 {E1000_STATUS, "STATUS"},
68 {E1000_CTRL_EXT, "CTRL_EXT"},
70 /* Interrupt Registers */
71 {E1000_ICR, "ICR"},
73 /* Rx Registers */
74 {E1000_RCTL, "RCTL"},
75 {E1000_RDLEN(0), "RDLEN"},
76 {E1000_RDH(0), "RDH"},
77 {E1000_RDT(0), "RDT"},
78 {E1000_RDTR, "RDTR"},
79 {E1000_RXDCTL(0), "RXDCTL"},
80 {E1000_ERT, "ERT"},
81 {E1000_RDBAL(0), "RDBAL"},
82 {E1000_RDBAH(0), "RDBAH"},
83 {E1000_RDFH, "RDFH"},
84 {E1000_RDFT, "RDFT"},
85 {E1000_RDFHS, "RDFHS"},
86 {E1000_RDFTS, "RDFTS"},
87 {E1000_RDFPC, "RDFPC"},
89 /* Tx Registers */
90 {E1000_TCTL, "TCTL"},
91 {E1000_TDBAL(0), "TDBAL"},
92 {E1000_TDBAH(0), "TDBAH"},
93 {E1000_TDLEN(0), "TDLEN"},
94 {E1000_TDH(0), "TDH"},
95 {E1000_TDT(0), "TDT"},
96 {E1000_TIDV, "TIDV"},
97 {E1000_TXDCTL(0), "TXDCTL"},
98 {E1000_TADV, "TADV"},
99 {E1000_TARC(0), "TARC"},
100 {E1000_TDFH, "TDFH"},
101 {E1000_TDFT, "TDFT"},
102 {E1000_TDFHS, "TDFHS"},
103 {E1000_TDFTS, "TDFTS"},
104 {E1000_TDFPC, "TDFPC"},
106 /* List Terminator */
107 {0, NULL}
111 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112 * @hw: pointer to the HW structure
114 * When updating the MAC CSR registers, the Manageability Engine (ME) could
115 * be accessing the registers at the same time. Normally, this is handled in
116 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117 * accesses later than it should which could result in the register to have
118 * an incorrect value. Workaround this by checking the FWSM register which
119 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120 * and try again a number of times.
122 s32 __ew32_prepare(struct e1000_hw *hw)
124 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127 udelay(50);
129 return i;
132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
134 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135 __ew32_prepare(hw);
137 writel(val, hw->hw_addr + reg);
141 * e1000_regdump - register printout routine
142 * @hw: pointer to the HW structure
143 * @reginfo: pointer to the register info table
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
147 int n = 0;
148 char rname[16];
149 u32 regs[8];
151 switch (reginfo->ofs) {
152 case E1000_RXDCTL(0):
153 for (n = 0; n < 2; n++)
154 regs[n] = __er32(hw, E1000_RXDCTL(n));
155 break;
156 case E1000_TXDCTL(0):
157 for (n = 0; n < 2; n++)
158 regs[n] = __er32(hw, E1000_TXDCTL(n));
159 break;
160 case E1000_TARC(0):
161 for (n = 0; n < 2; n++)
162 regs[n] = __er32(hw, E1000_TARC(n));
163 break;
164 default:
165 pr_info("%-15s %08x\n",
166 reginfo->name, __er32(hw, reginfo->ofs));
167 return;
170 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175 struct e1000_buffer *bi)
177 int i;
178 struct e1000_ps_page *ps_page;
180 for (i = 0; i < adapter->rx_ps_pages; i++) {
181 ps_page = &bi->ps_pages[i];
183 if (ps_page->page) {
184 pr_info("packet dump for ps_page %d:\n", i);
185 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186 16, 1, page_address(ps_page->page),
187 PAGE_SIZE, true);
193 * e1000e_dump - Print registers, Tx-ring and Rx-ring
194 * @adapter: board private structure
196 static void e1000e_dump(struct e1000_adapter *adapter)
198 struct net_device *netdev = adapter->netdev;
199 struct e1000_hw *hw = &adapter->hw;
200 struct e1000_reg_info *reginfo;
201 struct e1000_ring *tx_ring = adapter->tx_ring;
202 struct e1000_tx_desc *tx_desc;
203 struct my_u0 {
204 __le64 a;
205 __le64 b;
206 } *u0;
207 struct e1000_buffer *buffer_info;
208 struct e1000_ring *rx_ring = adapter->rx_ring;
209 union e1000_rx_desc_packet_split *rx_desc_ps;
210 union e1000_rx_desc_extended *rx_desc;
211 struct my_u1 {
212 __le64 a;
213 __le64 b;
214 __le64 c;
215 __le64 d;
216 } *u1;
217 u32 staterr;
218 int i = 0;
220 if (!netif_msg_hw(adapter))
221 return;
223 /* Print netdevice Info */
224 if (netdev) {
225 dev_info(&adapter->pdev->dev, "Net device Info\n");
226 pr_info("Device Name state trans_start\n");
227 pr_info("%-15s %016lX %016lX\n", netdev->name,
228 netdev->state, dev_trans_start(netdev));
231 /* Print Registers */
232 dev_info(&adapter->pdev->dev, "Register Dump\n");
233 pr_info(" Register Name Value\n");
234 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235 reginfo->name; reginfo++) {
236 e1000_regdump(hw, reginfo);
239 /* Print Tx Ring Summary */
240 if (!netdev || !netif_running(netdev))
241 return;
243 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
245 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247 0, tx_ring->next_to_use, tx_ring->next_to_clean,
248 (unsigned long long)buffer_info->dma,
249 buffer_info->length,
250 buffer_info->next_to_watch,
251 (unsigned long long)buffer_info->time_stamp);
253 /* Print Tx Ring */
254 if (!netif_msg_tx_done(adapter))
255 goto rx_ring_summary;
257 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
259 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
261 * Legacy Transmit Descriptor
262 * +--------------------------------------------------------------+
263 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
264 * +--------------------------------------------------------------+
265 * 8 | Special | CSS | Status | CMD | CSO | Length |
266 * +--------------------------------------------------------------+
267 * 63 48 47 36 35 32 31 24 23 16 15 0
269 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270 * 63 48 47 40 39 32 31 16 15 8 7 0
271 * +----------------------------------------------------------------+
272 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
273 * +----------------------------------------------------------------+
274 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
275 * +----------------------------------------------------------------+
276 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
278 * Extended Data Descriptor (DTYP=0x1)
279 * +----------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] |
281 * +----------------------------------------------------------------+
282 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
283 * +----------------------------------------------------------------+
284 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
286 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
287 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
288 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
289 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290 const char *next_desc;
291 tx_desc = E1000_TX_DESC(*tx_ring, i);
292 buffer_info = &tx_ring->buffer_info[i];
293 u0 = (struct my_u0 *)tx_desc;
294 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295 next_desc = " NTC/U";
296 else if (i == tx_ring->next_to_use)
297 next_desc = " NTU";
298 else if (i == tx_ring->next_to_clean)
299 next_desc = " NTC";
300 else
301 next_desc = "";
302 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
303 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
306 (unsigned long long)le64_to_cpu(u0->a),
307 (unsigned long long)le64_to_cpu(u0->b),
308 (unsigned long long)buffer_info->dma,
309 buffer_info->length, buffer_info->next_to_watch,
310 (unsigned long long)buffer_info->time_stamp,
311 buffer_info->skb, next_desc);
313 if (netif_msg_pktdata(adapter) && buffer_info->skb)
314 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315 16, 1, buffer_info->skb->data,
316 buffer_info->skb->len, true);
319 /* Print Rx Ring Summary */
320 rx_ring_summary:
321 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322 pr_info("Queue [NTU] [NTC]\n");
323 pr_info(" %5d %5X %5X\n",
324 0, rx_ring->next_to_use, rx_ring->next_to_clean);
326 /* Print Rx Ring */
327 if (!netif_msg_rx_status(adapter))
328 return;
330 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331 switch (adapter->rx_ps_pages) {
332 case 1:
333 case 2:
334 case 3:
335 /* [Extended] Packet Split Receive Descriptor Format
337 * +-----------------------------------------------------+
338 * 0 | Buffer Address 0 [63:0] |
339 * +-----------------------------------------------------+
340 * 8 | Buffer Address 1 [63:0] |
341 * +-----------------------------------------------------+
342 * 16 | Buffer Address 2 [63:0] |
343 * +-----------------------------------------------------+
344 * 24 | Buffer Address 3 [63:0] |
345 * +-----------------------------------------------------+
347 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
348 /* [Extended] Receive Descriptor (Write-Back) Format
350 * 63 48 47 32 31 13 12 8 7 4 3 0
351 * +------------------------------------------------------+
352 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
353 * | Checksum | Ident | | Queue | | Type |
354 * +------------------------------------------------------+
355 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356 * +------------------------------------------------------+
357 * 63 48 47 32 31 20 19 0
359 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360 for (i = 0; i < rx_ring->count; i++) {
361 const char *next_desc;
362 buffer_info = &rx_ring->buffer_info[i];
363 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364 u1 = (struct my_u1 *)rx_desc_ps;
365 staterr =
366 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
368 if (i == rx_ring->next_to_use)
369 next_desc = " NTU";
370 else if (i == rx_ring->next_to_clean)
371 next_desc = " NTC";
372 else
373 next_desc = "";
375 if (staterr & E1000_RXD_STAT_DD) {
376 /* Descriptor Done */
377 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378 "RWB", i,
379 (unsigned long long)le64_to_cpu(u1->a),
380 (unsigned long long)le64_to_cpu(u1->b),
381 (unsigned long long)le64_to_cpu(u1->c),
382 (unsigned long long)le64_to_cpu(u1->d),
383 buffer_info->skb, next_desc);
384 } else {
385 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
386 "R ", i,
387 (unsigned long long)le64_to_cpu(u1->a),
388 (unsigned long long)le64_to_cpu(u1->b),
389 (unsigned long long)le64_to_cpu(u1->c),
390 (unsigned long long)le64_to_cpu(u1->d),
391 (unsigned long long)buffer_info->dma,
392 buffer_info->skb, next_desc);
394 if (netif_msg_pktdata(adapter))
395 e1000e_dump_ps_pages(adapter,
396 buffer_info);
399 break;
400 default:
401 case 0:
402 /* Extended Receive Descriptor (Read) Format
404 * +-----------------------------------------------------+
405 * 0 | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
407 * 8 | Reserved |
408 * +-----------------------------------------------------+
410 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
411 /* Extended Receive Descriptor (Write-Back) Format
413 * 63 48 47 32 31 24 23 4 3 0
414 * +------------------------------------------------------+
415 * | RSS Hash | | | |
416 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
417 * | Packet | IP | | | Type |
418 * | Checksum | Ident | | | |
419 * +------------------------------------------------------+
420 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421 * +------------------------------------------------------+
422 * 63 48 47 32 31 20 19 0
424 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
426 for (i = 0; i < rx_ring->count; i++) {
427 const char *next_desc;
429 buffer_info = &rx_ring->buffer_info[i];
430 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431 u1 = (struct my_u1 *)rx_desc;
432 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
434 if (i == rx_ring->next_to_use)
435 next_desc = " NTU";
436 else if (i == rx_ring->next_to_clean)
437 next_desc = " NTC";
438 else
439 next_desc = "";
441 if (staterr & E1000_RXD_STAT_DD) {
442 /* Descriptor Done */
443 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
444 "RWB", i,
445 (unsigned long long)le64_to_cpu(u1->a),
446 (unsigned long long)le64_to_cpu(u1->b),
447 buffer_info->skb, next_desc);
448 } else {
449 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
450 "R ", i,
451 (unsigned long long)le64_to_cpu(u1->a),
452 (unsigned long long)le64_to_cpu(u1->b),
453 (unsigned long long)buffer_info->dma,
454 buffer_info->skb, next_desc);
456 if (netif_msg_pktdata(adapter) &&
457 buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS, 16,
461 buffer_info->skb->data,
462 adapter->rx_buffer_len,
463 true);
470 * e1000_desc_unused - calculate if we have unused descriptors
472 static int e1000_desc_unused(struct e1000_ring *ring)
474 if (ring->next_to_clean > ring->next_to_use)
475 return ring->next_to_clean - ring->next_to_use - 1;
477 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482 * @adapter: board private structure
483 * @hwtstamps: time stamp structure to update
484 * @systim: unsigned 64bit system time value.
486 * Convert the system time value stored in the RX/TXSTMP registers into a
487 * hwtstamp which can be used by the upper level time stamping functions.
489 * The 'systim_lock' spinlock is used to protect the consistency of the
490 * system time value. This is needed because reading the 64 bit time
491 * value involves reading two 32 bit registers. The first read latches the
492 * value.
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495 struct skb_shared_hwtstamps *hwtstamps,
496 u64 systim)
498 u64 ns;
499 unsigned long flags;
501 spin_lock_irqsave(&adapter->systim_lock, flags);
502 ns = timecounter_cyc2time(&adapter->tc, systim);
503 spin_unlock_irqrestore(&adapter->systim_lock, flags);
505 memset(hwtstamps, 0, sizeof(*hwtstamps));
506 hwtstamps->hwtstamp = ns_to_ktime(ns);
510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511 * @adapter: board private structure
512 * @status: descriptor extended error and status field
513 * @skb: particular skb to include time stamp
515 * If the time stamp is valid, convert it into the timecounter ns value
516 * and store that result into the shhwtstamps structure which is passed
517 * up the network stack.
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520 struct sk_buff *skb)
522 struct e1000_hw *hw = &adapter->hw;
523 u64 rxstmp;
525 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526 !(status & E1000_RXDEXT_STATERR_TST) ||
527 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528 return;
530 /* The Rx time stamp registers contain the time stamp. No other
531 * received packet will be time stamped until the Rx time stamp
532 * registers are read. Because only one packet can be time stamped
533 * at a time, the register values must belong to this packet and
534 * therefore none of the other additional attributes need to be
535 * compared.
537 rxstmp = (u64)er32(RXSTMPL);
538 rxstmp |= (u64)er32(RXSTMPH) << 32;
539 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
541 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
545 * e1000_receive_skb - helper function to handle Rx indications
546 * @adapter: board private structure
547 * @staterr: descriptor extended error and status field as written by hardware
548 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
549 * @skb: pointer to sk_buff to be indicated to stack
551 static void e1000_receive_skb(struct e1000_adapter *adapter,
552 struct net_device *netdev, struct sk_buff *skb,
553 u32 staterr, __le16 vlan)
555 u16 tag = le16_to_cpu(vlan);
557 e1000e_rx_hwtstamp(adapter, staterr, skb);
559 skb->protocol = eth_type_trans(skb, netdev);
561 if (staterr & E1000_RXD_STAT_VP)
562 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564 napi_gro_receive(&adapter->napi, skb);
568 * e1000_rx_checksum - Receive Checksum Offload
569 * @adapter: board private structure
570 * @status_err: receive descriptor status and error fields
571 * @csum: receive descriptor csum field
572 * @sk_buff: socket buffer with received data
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575 struct sk_buff *skb)
577 u16 status = (u16)status_err;
578 u8 errors = (u8)(status_err >> 24);
580 skb_checksum_none_assert(skb);
582 /* Rx checksum disabled */
583 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584 return;
586 /* Ignore Checksum bit is set */
587 if (status & E1000_RXD_STAT_IXSM)
588 return;
590 /* TCP/UDP checksum error bit or IP checksum error bit is set */
591 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592 /* let the stack verify checksum errors */
593 adapter->hw_csum_err++;
594 return;
597 /* TCP/UDP Checksum has not been calculated */
598 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599 return;
601 /* It must be a TCP or UDP packet with a valid checksum */
602 skb->ip_summed = CHECKSUM_UNNECESSARY;
603 adapter->hw_csum_good++;
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
608 struct e1000_adapter *adapter = rx_ring->adapter;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 ret_val = __ew32_prepare(hw);
612 writel(i, rx_ring->tail);
614 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
615 u32 rctl = er32(RCTL);
617 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618 e_err("ME firmware caused invalid RDT - resetting\n");
619 schedule_work(&adapter->reset_task);
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
625 struct e1000_adapter *adapter = tx_ring->adapter;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 ret_val = __ew32_prepare(hw);
629 writel(i, tx_ring->tail);
631 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
632 u32 tctl = er32(TCTL);
634 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635 e_err("ME firmware caused invalid TDT - resetting\n");
636 schedule_work(&adapter->reset_task);
641 * e1000_alloc_rx_buffers - Replace used receive buffers
642 * @rx_ring: Rx descriptor ring
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645 int cleaned_count, gfp_t gfp)
647 struct e1000_adapter *adapter = rx_ring->adapter;
648 struct net_device *netdev = adapter->netdev;
649 struct pci_dev *pdev = adapter->pdev;
650 union e1000_rx_desc_extended *rx_desc;
651 struct e1000_buffer *buffer_info;
652 struct sk_buff *skb;
653 unsigned int i;
654 unsigned int bufsz = adapter->rx_buffer_len;
656 i = rx_ring->next_to_use;
657 buffer_info = &rx_ring->buffer_info[i];
659 while (cleaned_count--) {
660 skb = buffer_info->skb;
661 if (skb) {
662 skb_trim(skb, 0);
663 goto map_skb;
666 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667 if (!skb) {
668 /* Better luck next round */
669 adapter->alloc_rx_buff_failed++;
670 break;
673 buffer_info->skb = skb;
674 map_skb:
675 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676 adapter->rx_buffer_len,
677 DMA_FROM_DEVICE);
678 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679 dev_err(&pdev->dev, "Rx DMA map failed\n");
680 adapter->rx_dma_failed++;
681 break;
684 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
687 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688 /* Force memory writes to complete before letting h/w
689 * know there are new descriptors to fetch. (Only
690 * applicable for weak-ordered memory model archs,
691 * such as IA-64).
693 wmb();
694 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695 e1000e_update_rdt_wa(rx_ring, i);
696 else
697 writel(i, rx_ring->tail);
699 i++;
700 if (i == rx_ring->count)
701 i = 0;
702 buffer_info = &rx_ring->buffer_info[i];
705 rx_ring->next_to_use = i;
709 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710 * @rx_ring: Rx descriptor ring
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713 int cleaned_count, gfp_t gfp)
715 struct e1000_adapter *adapter = rx_ring->adapter;
716 struct net_device *netdev = adapter->netdev;
717 struct pci_dev *pdev = adapter->pdev;
718 union e1000_rx_desc_packet_split *rx_desc;
719 struct e1000_buffer *buffer_info;
720 struct e1000_ps_page *ps_page;
721 struct sk_buff *skb;
722 unsigned int i, j;
724 i = rx_ring->next_to_use;
725 buffer_info = &rx_ring->buffer_info[i];
727 while (cleaned_count--) {
728 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
730 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731 ps_page = &buffer_info->ps_pages[j];
732 if (j >= adapter->rx_ps_pages) {
733 /* all unused desc entries get hw null ptr */
734 rx_desc->read.buffer_addr[j + 1] =
735 ~cpu_to_le64(0);
736 continue;
738 if (!ps_page->page) {
739 ps_page->page = alloc_page(gfp);
740 if (!ps_page->page) {
741 adapter->alloc_rx_buff_failed++;
742 goto no_buffers;
744 ps_page->dma = dma_map_page(&pdev->dev,
745 ps_page->page,
746 0, PAGE_SIZE,
747 DMA_FROM_DEVICE);
748 if (dma_mapping_error(&pdev->dev,
749 ps_page->dma)) {
750 dev_err(&adapter->pdev->dev,
751 "Rx DMA page map failed\n");
752 adapter->rx_dma_failed++;
753 goto no_buffers;
756 /* Refresh the desc even if buffer_addrs
757 * didn't change because each write-back
758 * erases this info.
760 rx_desc->read.buffer_addr[j + 1] =
761 cpu_to_le64(ps_page->dma);
764 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
765 gfp);
767 if (!skb) {
768 adapter->alloc_rx_buff_failed++;
769 break;
772 buffer_info->skb = skb;
773 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774 adapter->rx_ps_bsize0,
775 DMA_FROM_DEVICE);
776 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777 dev_err(&pdev->dev, "Rx DMA map failed\n");
778 adapter->rx_dma_failed++;
779 /* cleanup skb */
780 dev_kfree_skb_any(skb);
781 buffer_info->skb = NULL;
782 break;
785 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
787 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788 /* Force memory writes to complete before letting h/w
789 * know there are new descriptors to fetch. (Only
790 * applicable for weak-ordered memory model archs,
791 * such as IA-64).
793 wmb();
794 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795 e1000e_update_rdt_wa(rx_ring, i << 1);
796 else
797 writel(i << 1, rx_ring->tail);
800 i++;
801 if (i == rx_ring->count)
802 i = 0;
803 buffer_info = &rx_ring->buffer_info[i];
806 no_buffers:
807 rx_ring->next_to_use = i;
811 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812 * @rx_ring: Rx descriptor ring
813 * @cleaned_count: number of buffers to allocate this pass
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817 int cleaned_count, gfp_t gfp)
819 struct e1000_adapter *adapter = rx_ring->adapter;
820 struct net_device *netdev = adapter->netdev;
821 struct pci_dev *pdev = adapter->pdev;
822 union e1000_rx_desc_extended *rx_desc;
823 struct e1000_buffer *buffer_info;
824 struct sk_buff *skb;
825 unsigned int i;
826 unsigned int bufsz = 256 - 16; /* for skb_reserve */
828 i = rx_ring->next_to_use;
829 buffer_info = &rx_ring->buffer_info[i];
831 while (cleaned_count--) {
832 skb = buffer_info->skb;
833 if (skb) {
834 skb_trim(skb, 0);
835 goto check_page;
838 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839 if (unlikely(!skb)) {
840 /* Better luck next round */
841 adapter->alloc_rx_buff_failed++;
842 break;
845 buffer_info->skb = skb;
846 check_page:
847 /* allocate a new page if necessary */
848 if (!buffer_info->page) {
849 buffer_info->page = alloc_page(gfp);
850 if (unlikely(!buffer_info->page)) {
851 adapter->alloc_rx_buff_failed++;
852 break;
856 if (!buffer_info->dma) {
857 buffer_info->dma = dma_map_page(&pdev->dev,
858 buffer_info->page, 0,
859 PAGE_SIZE,
860 DMA_FROM_DEVICE);
861 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862 adapter->alloc_rx_buff_failed++;
863 break;
867 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
870 if (unlikely(++i == rx_ring->count))
871 i = 0;
872 buffer_info = &rx_ring->buffer_info[i];
875 if (likely(rx_ring->next_to_use != i)) {
876 rx_ring->next_to_use = i;
877 if (unlikely(i-- == 0))
878 i = (rx_ring->count - 1);
880 /* Force memory writes to complete before letting h/w
881 * know there are new descriptors to fetch. (Only
882 * applicable for weak-ordered memory model archs,
883 * such as IA-64).
885 wmb();
886 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887 e1000e_update_rdt_wa(rx_ring, i);
888 else
889 writel(i, rx_ring->tail);
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894 struct sk_buff *skb)
896 if (netdev->features & NETIF_F_RXHASH)
897 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
901 * e1000_clean_rx_irq - Send received data up the network stack
902 * @rx_ring: Rx descriptor ring
904 * the return value indicates whether actual cleaning was done, there
905 * is no guarantee that everything was cleaned
907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
908 int work_to_do)
910 struct e1000_adapter *adapter = rx_ring->adapter;
911 struct net_device *netdev = adapter->netdev;
912 struct pci_dev *pdev = adapter->pdev;
913 struct e1000_hw *hw = &adapter->hw;
914 union e1000_rx_desc_extended *rx_desc, *next_rxd;
915 struct e1000_buffer *buffer_info, *next_buffer;
916 u32 length, staterr;
917 unsigned int i;
918 int cleaned_count = 0;
919 bool cleaned = false;
920 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
922 i = rx_ring->next_to_clean;
923 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
924 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
925 buffer_info = &rx_ring->buffer_info[i];
927 while (staterr & E1000_RXD_STAT_DD) {
928 struct sk_buff *skb;
930 if (*work_done >= work_to_do)
931 break;
932 (*work_done)++;
933 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
935 skb = buffer_info->skb;
936 buffer_info->skb = NULL;
938 prefetch(skb->data - NET_IP_ALIGN);
940 i++;
941 if (i == rx_ring->count)
942 i = 0;
943 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
944 prefetch(next_rxd);
946 next_buffer = &rx_ring->buffer_info[i];
948 cleaned = true;
949 cleaned_count++;
950 dma_unmap_single(&pdev->dev, buffer_info->dma,
951 adapter->rx_buffer_len, DMA_FROM_DEVICE);
952 buffer_info->dma = 0;
954 length = le16_to_cpu(rx_desc->wb.upper.length);
956 /* !EOP means multiple descriptors were used to store a single
957 * packet, if that's the case we need to toss it. In fact, we
958 * need to toss every packet with the EOP bit clear and the
959 * next frame that _does_ have the EOP bit set, as it is by
960 * definition only a frame fragment
962 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
963 adapter->flags2 |= FLAG2_IS_DISCARDING;
965 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
966 /* All receives must fit into a single buffer */
967 e_dbg("Receive packet consumed multiple buffers\n");
968 /* recycle */
969 buffer_info->skb = skb;
970 if (staterr & E1000_RXD_STAT_EOP)
971 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
972 goto next_desc;
975 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
976 !(netdev->features & NETIF_F_RXALL))) {
977 /* recycle */
978 buffer_info->skb = skb;
979 goto next_desc;
982 /* adjust length to remove Ethernet CRC */
983 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
984 /* If configured to store CRC, don't subtract FCS,
985 * but keep the FCS bytes out of the total_rx_bytes
986 * counter
988 if (netdev->features & NETIF_F_RXFCS)
989 total_rx_bytes -= 4;
990 else
991 length -= 4;
994 total_rx_bytes += length;
995 total_rx_packets++;
997 /* code added for copybreak, this should improve
998 * performance for small packets with large amounts
999 * of reassembly being done in the stack
1001 if (length < copybreak) {
1002 struct sk_buff *new_skb =
1003 napi_alloc_skb(&adapter->napi, length);
1004 if (new_skb) {
1005 skb_copy_to_linear_data_offset(new_skb,
1006 -NET_IP_ALIGN,
1007 (skb->data -
1008 NET_IP_ALIGN),
1009 (length +
1010 NET_IP_ALIGN));
1011 /* save the skb in buffer_info as good */
1012 buffer_info->skb = skb;
1013 skb = new_skb;
1015 /* else just continue with the old one */
1017 /* end copybreak code */
1018 skb_put(skb, length);
1020 /* Receive Checksum Offload */
1021 e1000_rx_checksum(adapter, staterr, skb);
1023 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1025 e1000_receive_skb(adapter, netdev, skb, staterr,
1026 rx_desc->wb.upper.vlan);
1028 next_desc:
1029 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1031 /* return some buffers to hardware, one at a time is too slow */
1032 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1033 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1034 GFP_ATOMIC);
1035 cleaned_count = 0;
1038 /* use prefetched values */
1039 rx_desc = next_rxd;
1040 buffer_info = next_buffer;
1042 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1044 rx_ring->next_to_clean = i;
1046 cleaned_count = e1000_desc_unused(rx_ring);
1047 if (cleaned_count)
1048 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1050 adapter->total_rx_bytes += total_rx_bytes;
1051 adapter->total_rx_packets += total_rx_packets;
1052 return cleaned;
1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1056 struct e1000_buffer *buffer_info,
1057 bool drop)
1059 struct e1000_adapter *adapter = tx_ring->adapter;
1061 if (buffer_info->dma) {
1062 if (buffer_info->mapped_as_page)
1063 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1064 buffer_info->length, DMA_TO_DEVICE);
1065 else
1066 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1067 buffer_info->length, DMA_TO_DEVICE);
1068 buffer_info->dma = 0;
1070 if (buffer_info->skb) {
1071 if (drop)
1072 dev_kfree_skb_any(buffer_info->skb);
1073 else
1074 dev_consume_skb_any(buffer_info->skb);
1075 buffer_info->skb = NULL;
1077 buffer_info->time_stamp = 0;
1080 static void e1000_print_hw_hang(struct work_struct *work)
1082 struct e1000_adapter *adapter = container_of(work,
1083 struct e1000_adapter,
1084 print_hang_task);
1085 struct net_device *netdev = adapter->netdev;
1086 struct e1000_ring *tx_ring = adapter->tx_ring;
1087 unsigned int i = tx_ring->next_to_clean;
1088 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1089 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1090 struct e1000_hw *hw = &adapter->hw;
1091 u16 phy_status, phy_1000t_status, phy_ext_status;
1092 u16 pci_status;
1094 if (test_bit(__E1000_DOWN, &adapter->state))
1095 return;
1097 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1098 /* May be block on write-back, flush and detect again
1099 * flush pending descriptor writebacks to memory
1101 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102 /* execute the writes immediately */
1103 e1e_flush();
1104 /* Due to rare timing issues, write to TIDV again to ensure
1105 * the write is successful
1107 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1108 /* execute the writes immediately */
1109 e1e_flush();
1110 adapter->tx_hang_recheck = true;
1111 return;
1113 adapter->tx_hang_recheck = false;
1115 if (er32(TDH(0)) == er32(TDT(0))) {
1116 e_dbg("false hang detected, ignoring\n");
1117 return;
1120 /* Real hang detected */
1121 netif_stop_queue(netdev);
1123 e1e_rphy(hw, MII_BMSR, &phy_status);
1124 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1125 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1127 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1129 /* detected Hardware unit hang */
1130 e_err("Detected Hardware Unit Hang:\n"
1131 " TDH <%x>\n"
1132 " TDT <%x>\n"
1133 " next_to_use <%x>\n"
1134 " next_to_clean <%x>\n"
1135 "buffer_info[next_to_clean]:\n"
1136 " time_stamp <%lx>\n"
1137 " next_to_watch <%x>\n"
1138 " jiffies <%lx>\n"
1139 " next_to_watch.status <%x>\n"
1140 "MAC Status <%x>\n"
1141 "PHY Status <%x>\n"
1142 "PHY 1000BASE-T Status <%x>\n"
1143 "PHY Extended Status <%x>\n"
1144 "PCI Status <%x>\n",
1145 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1146 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1147 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1148 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1150 e1000e_dump(adapter);
1152 /* Suggest workaround for known h/w issue */
1153 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1154 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1158 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1159 * @work: pointer to work struct
1161 * This work function polls the TSYNCTXCTL valid bit to determine when a
1162 * timestamp has been taken for the current stored skb. The timestamp must
1163 * be for this skb because only one such packet is allowed in the queue.
1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1167 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1168 tx_hwtstamp_work);
1169 struct e1000_hw *hw = &adapter->hw;
1171 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1172 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1173 struct skb_shared_hwtstamps shhwtstamps;
1174 u64 txstmp;
1176 txstmp = er32(TXSTMPL);
1177 txstmp |= (u64)er32(TXSTMPH) << 32;
1179 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1181 /* Clear the global tx_hwtstamp_skb pointer and force writes
1182 * prior to notifying the stack of a Tx timestamp.
1184 adapter->tx_hwtstamp_skb = NULL;
1185 wmb(); /* force write prior to skb_tstamp_tx */
1187 skb_tstamp_tx(skb, &shhwtstamps);
1188 dev_consume_skb_any(skb);
1189 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1190 + adapter->tx_timeout_factor * HZ)) {
1191 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1192 adapter->tx_hwtstamp_skb = NULL;
1193 adapter->tx_hwtstamp_timeouts++;
1194 e_warn("clearing Tx timestamp hang\n");
1195 } else {
1196 /* reschedule to check later */
1197 schedule_work(&adapter->tx_hwtstamp_work);
1202 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1203 * @tx_ring: Tx descriptor ring
1205 * the return value indicates whether actual cleaning was done, there
1206 * is no guarantee that everything was cleaned
1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1210 struct e1000_adapter *adapter = tx_ring->adapter;
1211 struct net_device *netdev = adapter->netdev;
1212 struct e1000_hw *hw = &adapter->hw;
1213 struct e1000_tx_desc *tx_desc, *eop_desc;
1214 struct e1000_buffer *buffer_info;
1215 unsigned int i, eop;
1216 unsigned int count = 0;
1217 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1218 unsigned int bytes_compl = 0, pkts_compl = 0;
1220 i = tx_ring->next_to_clean;
1221 eop = tx_ring->buffer_info[i].next_to_watch;
1222 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1224 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1225 (count < tx_ring->count)) {
1226 bool cleaned = false;
1228 dma_rmb(); /* read buffer_info after eop_desc */
1229 for (; !cleaned; count++) {
1230 tx_desc = E1000_TX_DESC(*tx_ring, i);
1231 buffer_info = &tx_ring->buffer_info[i];
1232 cleaned = (i == eop);
1234 if (cleaned) {
1235 total_tx_packets += buffer_info->segs;
1236 total_tx_bytes += buffer_info->bytecount;
1237 if (buffer_info->skb) {
1238 bytes_compl += buffer_info->skb->len;
1239 pkts_compl++;
1243 e1000_put_txbuf(tx_ring, buffer_info, false);
1244 tx_desc->upper.data = 0;
1246 i++;
1247 if (i == tx_ring->count)
1248 i = 0;
1251 if (i == tx_ring->next_to_use)
1252 break;
1253 eop = tx_ring->buffer_info[i].next_to_watch;
1254 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1257 tx_ring->next_to_clean = i;
1259 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1261 #define TX_WAKE_THRESHOLD 32
1262 if (count && netif_carrier_ok(netdev) &&
1263 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1264 /* Make sure that anybody stopping the queue after this
1265 * sees the new next_to_clean.
1267 smp_mb();
1269 if (netif_queue_stopped(netdev) &&
1270 !(test_bit(__E1000_DOWN, &adapter->state))) {
1271 netif_wake_queue(netdev);
1272 ++adapter->restart_queue;
1276 if (adapter->detect_tx_hung) {
1277 /* Detect a transmit hang in hardware, this serializes the
1278 * check with the clearing of time_stamp and movement of i
1280 adapter->detect_tx_hung = false;
1281 if (tx_ring->buffer_info[i].time_stamp &&
1282 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1283 + (adapter->tx_timeout_factor * HZ)) &&
1284 !(er32(STATUS) & E1000_STATUS_TXOFF))
1285 schedule_work(&adapter->print_hang_task);
1286 else
1287 adapter->tx_hang_recheck = false;
1289 adapter->total_tx_bytes += total_tx_bytes;
1290 adapter->total_tx_packets += total_tx_packets;
1291 return count < tx_ring->count;
1295 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1296 * @rx_ring: Rx descriptor ring
1298 * the return value indicates whether actual cleaning was done, there
1299 * is no guarantee that everything was cleaned
1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1302 int work_to_do)
1304 struct e1000_adapter *adapter = rx_ring->adapter;
1305 struct e1000_hw *hw = &adapter->hw;
1306 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1307 struct net_device *netdev = adapter->netdev;
1308 struct pci_dev *pdev = adapter->pdev;
1309 struct e1000_buffer *buffer_info, *next_buffer;
1310 struct e1000_ps_page *ps_page;
1311 struct sk_buff *skb;
1312 unsigned int i, j;
1313 u32 length, staterr;
1314 int cleaned_count = 0;
1315 bool cleaned = false;
1316 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1318 i = rx_ring->next_to_clean;
1319 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1320 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1321 buffer_info = &rx_ring->buffer_info[i];
1323 while (staterr & E1000_RXD_STAT_DD) {
1324 if (*work_done >= work_to_do)
1325 break;
1326 (*work_done)++;
1327 skb = buffer_info->skb;
1328 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1330 /* in the packet split case this is header only */
1331 prefetch(skb->data - NET_IP_ALIGN);
1333 i++;
1334 if (i == rx_ring->count)
1335 i = 0;
1336 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1337 prefetch(next_rxd);
1339 next_buffer = &rx_ring->buffer_info[i];
1341 cleaned = true;
1342 cleaned_count++;
1343 dma_unmap_single(&pdev->dev, buffer_info->dma,
1344 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1345 buffer_info->dma = 0;
1347 /* see !EOP comment in other Rx routine */
1348 if (!(staterr & E1000_RXD_STAT_EOP))
1349 adapter->flags2 |= FLAG2_IS_DISCARDING;
1351 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1352 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1353 dev_kfree_skb_irq(skb);
1354 if (staterr & E1000_RXD_STAT_EOP)
1355 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1356 goto next_desc;
1359 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1360 !(netdev->features & NETIF_F_RXALL))) {
1361 dev_kfree_skb_irq(skb);
1362 goto next_desc;
1365 length = le16_to_cpu(rx_desc->wb.middle.length0);
1367 if (!length) {
1368 e_dbg("Last part of the packet spanning multiple descriptors\n");
1369 dev_kfree_skb_irq(skb);
1370 goto next_desc;
1373 /* Good Receive */
1374 skb_put(skb, length);
1377 /* this looks ugly, but it seems compiler issues make
1378 * it more efficient than reusing j
1380 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1382 /* page alloc/put takes too long and effects small
1383 * packet throughput, so unsplit small packets and
1384 * save the alloc/put only valid in softirq (napi)
1385 * context to call kmap_*
1387 if (l1 && (l1 <= copybreak) &&
1388 ((length + l1) <= adapter->rx_ps_bsize0)) {
1389 u8 *vaddr;
1391 ps_page = &buffer_info->ps_pages[0];
1393 /* there is no documentation about how to call
1394 * kmap_atomic, so we can't hold the mapping
1395 * very long
1397 dma_sync_single_for_cpu(&pdev->dev,
1398 ps_page->dma,
1399 PAGE_SIZE,
1400 DMA_FROM_DEVICE);
1401 vaddr = kmap_atomic(ps_page->page);
1402 memcpy(skb_tail_pointer(skb), vaddr, l1);
1403 kunmap_atomic(vaddr);
1404 dma_sync_single_for_device(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
1409 /* remove the CRC */
1410 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411 if (!(netdev->features & NETIF_F_RXFCS))
1412 l1 -= 4;
1415 skb_put(skb, l1);
1416 goto copydone;
1417 } /* if */
1420 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1421 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1422 if (!length)
1423 break;
1425 ps_page = &buffer_info->ps_pages[j];
1426 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1427 DMA_FROM_DEVICE);
1428 ps_page->dma = 0;
1429 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1430 ps_page->page = NULL;
1431 skb->len += length;
1432 skb->data_len += length;
1433 skb->truesize += PAGE_SIZE;
1436 /* strip the ethernet crc, problem is we're using pages now so
1437 * this whole operation can get a little cpu intensive
1439 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1440 if (!(netdev->features & NETIF_F_RXFCS))
1441 pskb_trim(skb, skb->len - 4);
1444 copydone:
1445 total_rx_bytes += skb->len;
1446 total_rx_packets++;
1448 e1000_rx_checksum(adapter, staterr, skb);
1450 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452 if (rx_desc->wb.upper.header_status &
1453 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1454 adapter->rx_hdr_split++;
1456 e1000_receive_skb(adapter, netdev, skb, staterr,
1457 rx_desc->wb.middle.vlan);
1459 next_desc:
1460 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1461 buffer_info->skb = NULL;
1463 /* return some buffers to hardware, one at a time is too slow */
1464 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1465 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1466 GFP_ATOMIC);
1467 cleaned_count = 0;
1470 /* use prefetched values */
1471 rx_desc = next_rxd;
1472 buffer_info = next_buffer;
1474 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476 rx_ring->next_to_clean = i;
1478 cleaned_count = e1000_desc_unused(rx_ring);
1479 if (cleaned_count)
1480 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482 adapter->total_rx_bytes += total_rx_bytes;
1483 adapter->total_rx_packets += total_rx_packets;
1484 return cleaned;
1488 * e1000_consume_page - helper function
1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1491 u16 length)
1493 bi->page = NULL;
1494 skb->len += length;
1495 skb->data_len += length;
1496 skb->truesize += PAGE_SIZE;
1500 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1501 * @adapter: board private structure
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507 int work_to_do)
1509 struct e1000_adapter *adapter = rx_ring->adapter;
1510 struct net_device *netdev = adapter->netdev;
1511 struct pci_dev *pdev = adapter->pdev;
1512 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513 struct e1000_buffer *buffer_info, *next_buffer;
1514 u32 length, staterr;
1515 unsigned int i;
1516 int cleaned_count = 0;
1517 bool cleaned = false;
1518 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519 struct skb_shared_info *shinfo;
1521 i = rx_ring->next_to_clean;
1522 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524 buffer_info = &rx_ring->buffer_info[i];
1526 while (staterr & E1000_RXD_STAT_DD) {
1527 struct sk_buff *skb;
1529 if (*work_done >= work_to_do)
1530 break;
1531 (*work_done)++;
1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1534 skb = buffer_info->skb;
1535 buffer_info->skb = NULL;
1537 ++i;
1538 if (i == rx_ring->count)
1539 i = 0;
1540 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541 prefetch(next_rxd);
1543 next_buffer = &rx_ring->buffer_info[i];
1545 cleaned = true;
1546 cleaned_count++;
1547 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548 DMA_FROM_DEVICE);
1549 buffer_info->dma = 0;
1551 length = le16_to_cpu(rx_desc->wb.upper.length);
1553 /* errors is only valid for DD + EOP descriptors */
1554 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556 !(netdev->features & NETIF_F_RXALL)))) {
1557 /* recycle both page and skb */
1558 buffer_info->skb = skb;
1559 /* an error means any chain goes out the window too */
1560 if (rx_ring->rx_skb_top)
1561 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562 rx_ring->rx_skb_top = NULL;
1563 goto next_desc;
1565 #define rxtop (rx_ring->rx_skb_top)
1566 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567 /* this descriptor is only the beginning (or middle) */
1568 if (!rxtop) {
1569 /* this is the beginning of a chain */
1570 rxtop = skb;
1571 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572 0, length);
1573 } else {
1574 /* this is the middle of a chain */
1575 shinfo = skb_shinfo(rxtop);
1576 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577 buffer_info->page, 0,
1578 length);
1579 /* re-use the skb, only consumed the page */
1580 buffer_info->skb = skb;
1582 e1000_consume_page(buffer_info, rxtop, length);
1583 goto next_desc;
1584 } else {
1585 if (rxtop) {
1586 /* end of the chain */
1587 shinfo = skb_shinfo(rxtop);
1588 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589 buffer_info->page, 0,
1590 length);
1591 /* re-use the current skb, we only consumed the
1592 * page
1594 buffer_info->skb = skb;
1595 skb = rxtop;
1596 rxtop = NULL;
1597 e1000_consume_page(buffer_info, skb, length);
1598 } else {
1599 /* no chain, got EOP, this buf is the packet
1600 * copybreak to save the put_page/alloc_page
1602 if (length <= copybreak &&
1603 skb_tailroom(skb) >= length) {
1604 u8 *vaddr;
1605 vaddr = kmap_atomic(buffer_info->page);
1606 memcpy(skb_tail_pointer(skb), vaddr,
1607 length);
1608 kunmap_atomic(vaddr);
1609 /* re-use the page, so don't erase
1610 * buffer_info->page
1612 skb_put(skb, length);
1613 } else {
1614 skb_fill_page_desc(skb, 0,
1615 buffer_info->page, 0,
1616 length);
1617 e1000_consume_page(buffer_info, skb,
1618 length);
1623 /* Receive Checksum Offload */
1624 e1000_rx_checksum(adapter, staterr, skb);
1626 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1628 /* probably a little skewed due to removing CRC */
1629 total_rx_bytes += skb->len;
1630 total_rx_packets++;
1632 /* eth type trans needs skb->data to point to something */
1633 if (!pskb_may_pull(skb, ETH_HLEN)) {
1634 e_err("pskb_may_pull failed.\n");
1635 dev_kfree_skb_irq(skb);
1636 goto next_desc;
1639 e1000_receive_skb(adapter, netdev, skb, staterr,
1640 rx_desc->wb.upper.vlan);
1642 next_desc:
1643 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1645 /* return some buffers to hardware, one at a time is too slow */
1646 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1647 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1648 GFP_ATOMIC);
1649 cleaned_count = 0;
1652 /* use prefetched values */
1653 rx_desc = next_rxd;
1654 buffer_info = next_buffer;
1656 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1658 rx_ring->next_to_clean = i;
1660 cleaned_count = e1000_desc_unused(rx_ring);
1661 if (cleaned_count)
1662 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1664 adapter->total_rx_bytes += total_rx_bytes;
1665 adapter->total_rx_packets += total_rx_packets;
1666 return cleaned;
1670 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1671 * @rx_ring: Rx descriptor ring
1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1675 struct e1000_adapter *adapter = rx_ring->adapter;
1676 struct e1000_buffer *buffer_info;
1677 struct e1000_ps_page *ps_page;
1678 struct pci_dev *pdev = adapter->pdev;
1679 unsigned int i, j;
1681 /* Free all the Rx ring sk_buffs */
1682 for (i = 0; i < rx_ring->count; i++) {
1683 buffer_info = &rx_ring->buffer_info[i];
1684 if (buffer_info->dma) {
1685 if (adapter->clean_rx == e1000_clean_rx_irq)
1686 dma_unmap_single(&pdev->dev, buffer_info->dma,
1687 adapter->rx_buffer_len,
1688 DMA_FROM_DEVICE);
1689 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1690 dma_unmap_page(&pdev->dev, buffer_info->dma,
1691 PAGE_SIZE, DMA_FROM_DEVICE);
1692 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1693 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 adapter->rx_ps_bsize0,
1695 DMA_FROM_DEVICE);
1696 buffer_info->dma = 0;
1699 if (buffer_info->page) {
1700 put_page(buffer_info->page);
1701 buffer_info->page = NULL;
1704 if (buffer_info->skb) {
1705 dev_kfree_skb(buffer_info->skb);
1706 buffer_info->skb = NULL;
1709 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1710 ps_page = &buffer_info->ps_pages[j];
1711 if (!ps_page->page)
1712 break;
1713 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714 DMA_FROM_DEVICE);
1715 ps_page->dma = 0;
1716 put_page(ps_page->page);
1717 ps_page->page = NULL;
1721 /* there also may be some cached data from a chained receive */
1722 if (rx_ring->rx_skb_top) {
1723 dev_kfree_skb(rx_ring->rx_skb_top);
1724 rx_ring->rx_skb_top = NULL;
1727 /* Zero out the descriptor ring */
1728 memset(rx_ring->desc, 0, rx_ring->size);
1730 rx_ring->next_to_clean = 0;
1731 rx_ring->next_to_use = 0;
1732 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1735 static void e1000e_downshift_workaround(struct work_struct *work)
1737 struct e1000_adapter *adapter = container_of(work,
1738 struct e1000_adapter,
1739 downshift_task);
1741 if (test_bit(__E1000_DOWN, &adapter->state))
1742 return;
1744 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1748 * e1000_intr_msi - Interrupt Handler
1749 * @irq: interrupt number
1750 * @data: pointer to a network interface device structure
1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1754 struct net_device *netdev = data;
1755 struct e1000_adapter *adapter = netdev_priv(netdev);
1756 struct e1000_hw *hw = &adapter->hw;
1757 u32 icr = er32(ICR);
1759 /* read ICR disables interrupts using IAM */
1760 if (icr & E1000_ICR_LSC) {
1761 hw->mac.get_link_status = true;
1762 /* ICH8 workaround-- Call gig speed drop workaround on cable
1763 * disconnect (LSC) before accessing any PHY registers
1765 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1766 (!(er32(STATUS) & E1000_STATUS_LU)))
1767 schedule_work(&adapter->downshift_task);
1769 /* 80003ES2LAN workaround-- For packet buffer work-around on
1770 * link down event; disable receives here in the ISR and reset
1771 * adapter in watchdog
1773 if (netif_carrier_ok(netdev) &&
1774 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1775 /* disable receives */
1776 u32 rctl = er32(RCTL);
1778 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1779 adapter->flags |= FLAG_RESTART_NOW;
1781 /* guard against interrupt when we're going down */
1782 if (!test_bit(__E1000_DOWN, &adapter->state))
1783 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1786 /* Reset on uncorrectable ECC error */
1787 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1788 u32 pbeccsts = er32(PBECCSTS);
1790 adapter->corr_errors +=
1791 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1792 adapter->uncorr_errors +=
1793 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1794 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1796 /* Do the reset outside of interrupt context */
1797 schedule_work(&adapter->reset_task);
1799 /* return immediately since reset is imminent */
1800 return IRQ_HANDLED;
1803 if (napi_schedule_prep(&adapter->napi)) {
1804 adapter->total_tx_bytes = 0;
1805 adapter->total_tx_packets = 0;
1806 adapter->total_rx_bytes = 0;
1807 adapter->total_rx_packets = 0;
1808 __napi_schedule(&adapter->napi);
1811 return IRQ_HANDLED;
1815 * e1000_intr - Interrupt Handler
1816 * @irq: interrupt number
1817 * @data: pointer to a network interface device structure
1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1821 struct net_device *netdev = data;
1822 struct e1000_adapter *adapter = netdev_priv(netdev);
1823 struct e1000_hw *hw = &adapter->hw;
1824 u32 rctl, icr = er32(ICR);
1826 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1827 return IRQ_NONE; /* Not our interrupt */
1829 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1830 * not set, then the adapter didn't send an interrupt
1832 if (!(icr & E1000_ICR_INT_ASSERTED))
1833 return IRQ_NONE;
1835 /* Interrupt Auto-Mask...upon reading ICR,
1836 * interrupts are masked. No need for the
1837 * IMC write
1840 if (icr & E1000_ICR_LSC) {
1841 hw->mac.get_link_status = true;
1842 /* ICH8 workaround-- Call gig speed drop workaround on cable
1843 * disconnect (LSC) before accessing any PHY registers
1845 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1846 (!(er32(STATUS) & E1000_STATUS_LU)))
1847 schedule_work(&adapter->downshift_task);
1849 /* 80003ES2LAN workaround--
1850 * For packet buffer work-around on link down event;
1851 * disable receives here in the ISR and
1852 * reset adapter in watchdog
1854 if (netif_carrier_ok(netdev) &&
1855 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1856 /* disable receives */
1857 rctl = er32(RCTL);
1858 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1859 adapter->flags |= FLAG_RESTART_NOW;
1861 /* guard against interrupt when we're going down */
1862 if (!test_bit(__E1000_DOWN, &adapter->state))
1863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1866 /* Reset on uncorrectable ECC error */
1867 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1868 u32 pbeccsts = er32(PBECCSTS);
1870 adapter->corr_errors +=
1871 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1872 adapter->uncorr_errors +=
1873 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1874 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1876 /* Do the reset outside of interrupt context */
1877 schedule_work(&adapter->reset_task);
1879 /* return immediately since reset is imminent */
1880 return IRQ_HANDLED;
1883 if (napi_schedule_prep(&adapter->napi)) {
1884 adapter->total_tx_bytes = 0;
1885 adapter->total_tx_packets = 0;
1886 adapter->total_rx_bytes = 0;
1887 adapter->total_rx_packets = 0;
1888 __napi_schedule(&adapter->napi);
1891 return IRQ_HANDLED;
1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1896 struct net_device *netdev = data;
1897 struct e1000_adapter *adapter = netdev_priv(netdev);
1898 struct e1000_hw *hw = &adapter->hw;
1899 u32 icr = er32(ICR);
1901 if (icr & adapter->eiac_mask)
1902 ew32(ICS, (icr & adapter->eiac_mask));
1904 if (icr & E1000_ICR_LSC) {
1905 hw->mac.get_link_status = true;
1906 /* guard against interrupt when we're going down */
1907 if (!test_bit(__E1000_DOWN, &adapter->state))
1908 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1911 if (!test_bit(__E1000_DOWN, &adapter->state))
1912 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1914 return IRQ_HANDLED;
1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1919 struct net_device *netdev = data;
1920 struct e1000_adapter *adapter = netdev_priv(netdev);
1921 struct e1000_hw *hw = &adapter->hw;
1922 struct e1000_ring *tx_ring = adapter->tx_ring;
1924 adapter->total_tx_bytes = 0;
1925 adapter->total_tx_packets = 0;
1927 if (!e1000_clean_tx_irq(tx_ring))
1928 /* Ring was not completely cleaned, so fire another interrupt */
1929 ew32(ICS, tx_ring->ims_val);
1931 if (!test_bit(__E1000_DOWN, &adapter->state))
1932 ew32(IMS, adapter->tx_ring->ims_val);
1934 return IRQ_HANDLED;
1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1939 struct net_device *netdev = data;
1940 struct e1000_adapter *adapter = netdev_priv(netdev);
1941 struct e1000_ring *rx_ring = adapter->rx_ring;
1943 /* Write the ITR value calculated at the end of the
1944 * previous interrupt.
1946 if (rx_ring->set_itr) {
1947 u32 itr = rx_ring->itr_val ?
1948 1000000000 / (rx_ring->itr_val * 256) : 0;
1950 writel(itr, rx_ring->itr_register);
1951 rx_ring->set_itr = 0;
1954 if (napi_schedule_prep(&adapter->napi)) {
1955 adapter->total_rx_bytes = 0;
1956 adapter->total_rx_packets = 0;
1957 __napi_schedule(&adapter->napi);
1959 return IRQ_HANDLED;
1963 * e1000_configure_msix - Configure MSI-X hardware
1965 * e1000_configure_msix sets up the hardware to properly
1966 * generate MSI-X interrupts.
1968 static void e1000_configure_msix(struct e1000_adapter *adapter)
1970 struct e1000_hw *hw = &adapter->hw;
1971 struct e1000_ring *rx_ring = adapter->rx_ring;
1972 struct e1000_ring *tx_ring = adapter->tx_ring;
1973 int vector = 0;
1974 u32 ctrl_ext, ivar = 0;
1976 adapter->eiac_mask = 0;
1978 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979 if (hw->mac.type == e1000_82574) {
1980 u32 rfctl = er32(RFCTL);
1982 rfctl |= E1000_RFCTL_ACK_DIS;
1983 ew32(RFCTL, rfctl);
1986 /* Configure Rx vector */
1987 rx_ring->ims_val = E1000_IMS_RXQ0;
1988 adapter->eiac_mask |= rx_ring->ims_val;
1989 if (rx_ring->itr_val)
1990 writel(1000000000 / (rx_ring->itr_val * 256),
1991 rx_ring->itr_register);
1992 else
1993 writel(1, rx_ring->itr_register);
1994 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1996 /* Configure Tx vector */
1997 tx_ring->ims_val = E1000_IMS_TXQ0;
1998 vector++;
1999 if (tx_ring->itr_val)
2000 writel(1000000000 / (tx_ring->itr_val * 256),
2001 tx_ring->itr_register);
2002 else
2003 writel(1, tx_ring->itr_register);
2004 adapter->eiac_mask |= tx_ring->ims_val;
2005 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2007 /* set vector for Other Causes, e.g. link changes */
2008 vector++;
2009 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010 if (rx_ring->itr_val)
2011 writel(1000000000 / (rx_ring->itr_val * 256),
2012 hw->hw_addr + E1000_EITR_82574(vector));
2013 else
2014 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2016 /* Cause Tx interrupts on every write back */
2017 ivar |= BIT(31);
2019 ew32(IVAR, ivar);
2021 /* enable MSI-X PBA support */
2022 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024 ew32(CTRL_EXT, ctrl_ext);
2025 e1e_flush();
2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2030 if (adapter->msix_entries) {
2031 pci_disable_msix(adapter->pdev);
2032 kfree(adapter->msix_entries);
2033 adapter->msix_entries = NULL;
2034 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2035 pci_disable_msi(adapter->pdev);
2036 adapter->flags &= ~FLAG_MSI_ENABLED;
2041 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2043 * Attempt to configure interrupts using the best available
2044 * capabilities of the hardware and kernel.
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2048 int err;
2049 int i;
2051 switch (adapter->int_mode) {
2052 case E1000E_INT_MODE_MSIX:
2053 if (adapter->flags & FLAG_HAS_MSIX) {
2054 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055 adapter->msix_entries = kcalloc(adapter->num_vectors,
2056 sizeof(struct
2057 msix_entry),
2058 GFP_KERNEL);
2059 if (adapter->msix_entries) {
2060 struct e1000_adapter *a = adapter;
2062 for (i = 0; i < adapter->num_vectors; i++)
2063 adapter->msix_entries[i].entry = i;
2065 err = pci_enable_msix_range(a->pdev,
2066 a->msix_entries,
2067 a->num_vectors,
2068 a->num_vectors);
2069 if (err > 0)
2070 return;
2072 /* MSI-X failed, so fall through and try MSI */
2073 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2074 e1000e_reset_interrupt_capability(adapter);
2076 adapter->int_mode = E1000E_INT_MODE_MSI;
2077 /* Fall through */
2078 case E1000E_INT_MODE_MSI:
2079 if (!pci_enable_msi(adapter->pdev)) {
2080 adapter->flags |= FLAG_MSI_ENABLED;
2081 } else {
2082 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2085 /* Fall through */
2086 case E1000E_INT_MODE_LEGACY:
2087 /* Don't do anything; this is the system default */
2088 break;
2091 /* store the number of vectors being used */
2092 adapter->num_vectors = 1;
2096 * e1000_request_msix - Initialize MSI-X interrupts
2098 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2099 * kernel.
2101 static int e1000_request_msix(struct e1000_adapter *adapter)
2103 struct net_device *netdev = adapter->netdev;
2104 int err = 0, vector = 0;
2106 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2107 snprintf(adapter->rx_ring->name,
2108 sizeof(adapter->rx_ring->name) - 1,
2109 "%.14s-rx-0", netdev->name);
2110 else
2111 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2112 err = request_irq(adapter->msix_entries[vector].vector,
2113 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2114 netdev);
2115 if (err)
2116 return err;
2117 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2118 E1000_EITR_82574(vector);
2119 adapter->rx_ring->itr_val = adapter->itr;
2120 vector++;
2122 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2123 snprintf(adapter->tx_ring->name,
2124 sizeof(adapter->tx_ring->name) - 1,
2125 "%.14s-tx-0", netdev->name);
2126 else
2127 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2128 err = request_irq(adapter->msix_entries[vector].vector,
2129 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2130 netdev);
2131 if (err)
2132 return err;
2133 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2134 E1000_EITR_82574(vector);
2135 adapter->tx_ring->itr_val = adapter->itr;
2136 vector++;
2138 err = request_irq(adapter->msix_entries[vector].vector,
2139 e1000_msix_other, 0, netdev->name, netdev);
2140 if (err)
2141 return err;
2143 e1000_configure_msix(adapter);
2145 return 0;
2149 * e1000_request_irq - initialize interrupts
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2156 struct net_device *netdev = adapter->netdev;
2157 int err;
2159 if (adapter->msix_entries) {
2160 err = e1000_request_msix(adapter);
2161 if (!err)
2162 return err;
2163 /* fall back to MSI */
2164 e1000e_reset_interrupt_capability(adapter);
2165 adapter->int_mode = E1000E_INT_MODE_MSI;
2166 e1000e_set_interrupt_capability(adapter);
2168 if (adapter->flags & FLAG_MSI_ENABLED) {
2169 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170 netdev->name, netdev);
2171 if (!err)
2172 return err;
2174 /* fall back to legacy interrupt */
2175 e1000e_reset_interrupt_capability(adapter);
2176 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2179 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180 netdev->name, netdev);
2181 if (err)
2182 e_err("Unable to allocate interrupt, Error: %d\n", err);
2184 return err;
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2189 struct net_device *netdev = adapter->netdev;
2191 if (adapter->msix_entries) {
2192 int vector = 0;
2194 free_irq(adapter->msix_entries[vector].vector, netdev);
2195 vector++;
2197 free_irq(adapter->msix_entries[vector].vector, netdev);
2198 vector++;
2200 /* Other Causes interrupt vector */
2201 free_irq(adapter->msix_entries[vector].vector, netdev);
2202 return;
2205 free_irq(adapter->pdev->irq, netdev);
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2211 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 struct e1000_hw *hw = &adapter->hw;
2215 ew32(IMC, ~0);
2216 if (adapter->msix_entries)
2217 ew32(EIAC_82574, 0);
2218 e1e_flush();
2220 if (adapter->msix_entries) {
2221 int i;
2223 for (i = 0; i < adapter->num_vectors; i++)
2224 synchronize_irq(adapter->msix_entries[i].vector);
2225 } else {
2226 synchronize_irq(adapter->pdev->irq);
2231 * e1000_irq_enable - Enable default interrupt generation settings
2233 static void e1000_irq_enable(struct e1000_adapter *adapter)
2235 struct e1000_hw *hw = &adapter->hw;
2237 if (adapter->msix_entries) {
2238 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2239 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2240 IMS_OTHER_MASK);
2241 } else if (hw->mac.type >= e1000_pch_lpt) {
2242 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2243 } else {
2244 ew32(IMS, IMS_ENABLE_MASK);
2246 e1e_flush();
2250 * e1000e_get_hw_control - get control of the h/w from f/w
2251 * @adapter: address of board private structure
2253 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2254 * For ASF and Pass Through versions of f/w this means that
2255 * the driver is loaded. For AMT version (only with 82573)
2256 * of the f/w this means that the network i/f is open.
2258 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2260 struct e1000_hw *hw = &adapter->hw;
2261 u32 ctrl_ext;
2262 u32 swsm;
2264 /* Let firmware know the driver has taken over */
2265 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2266 swsm = er32(SWSM);
2267 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2268 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2269 ctrl_ext = er32(CTRL_EXT);
2270 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2275 * e1000e_release_hw_control - release control of the h/w to f/w
2276 * @adapter: address of board private structure
2278 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2279 * For ASF and Pass Through versions of f/w this means that the
2280 * driver is no longer loaded. For AMT version (only with 82573) i
2281 * of the f/w this means that the network i/f is closed.
2284 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2286 struct e1000_hw *hw = &adapter->hw;
2287 u32 ctrl_ext;
2288 u32 swsm;
2290 /* Let firmware taken over control of h/w */
2291 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2292 swsm = er32(SWSM);
2293 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2294 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2295 ctrl_ext = er32(CTRL_EXT);
2296 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2301 * e1000_alloc_ring_dma - allocate memory for a ring structure
2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2304 struct e1000_ring *ring)
2306 struct pci_dev *pdev = adapter->pdev;
2308 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2309 GFP_KERNEL);
2310 if (!ring->desc)
2311 return -ENOMEM;
2313 return 0;
2317 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2318 * @tx_ring: Tx descriptor ring
2320 * Return 0 on success, negative on failure
2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2324 struct e1000_adapter *adapter = tx_ring->adapter;
2325 int err = -ENOMEM, size;
2327 size = sizeof(struct e1000_buffer) * tx_ring->count;
2328 tx_ring->buffer_info = vzalloc(size);
2329 if (!tx_ring->buffer_info)
2330 goto err;
2332 /* round up to nearest 4K */
2333 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2334 tx_ring->size = ALIGN(tx_ring->size, 4096);
2336 err = e1000_alloc_ring_dma(adapter, tx_ring);
2337 if (err)
2338 goto err;
2340 tx_ring->next_to_use = 0;
2341 tx_ring->next_to_clean = 0;
2343 return 0;
2344 err:
2345 vfree(tx_ring->buffer_info);
2346 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2347 return err;
2351 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2352 * @rx_ring: Rx descriptor ring
2354 * Returns 0 on success, negative on failure
2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2358 struct e1000_adapter *adapter = rx_ring->adapter;
2359 struct e1000_buffer *buffer_info;
2360 int i, size, desc_len, err = -ENOMEM;
2362 size = sizeof(struct e1000_buffer) * rx_ring->count;
2363 rx_ring->buffer_info = vzalloc(size);
2364 if (!rx_ring->buffer_info)
2365 goto err;
2367 for (i = 0; i < rx_ring->count; i++) {
2368 buffer_info = &rx_ring->buffer_info[i];
2369 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2370 sizeof(struct e1000_ps_page),
2371 GFP_KERNEL);
2372 if (!buffer_info->ps_pages)
2373 goto err_pages;
2376 desc_len = sizeof(union e1000_rx_desc_packet_split);
2378 /* Round up to nearest 4K */
2379 rx_ring->size = rx_ring->count * desc_len;
2380 rx_ring->size = ALIGN(rx_ring->size, 4096);
2382 err = e1000_alloc_ring_dma(adapter, rx_ring);
2383 if (err)
2384 goto err_pages;
2386 rx_ring->next_to_clean = 0;
2387 rx_ring->next_to_use = 0;
2388 rx_ring->rx_skb_top = NULL;
2390 return 0;
2392 err_pages:
2393 for (i = 0; i < rx_ring->count; i++) {
2394 buffer_info = &rx_ring->buffer_info[i];
2395 kfree(buffer_info->ps_pages);
2397 err:
2398 vfree(rx_ring->buffer_info);
2399 e_err("Unable to allocate memory for the receive descriptor ring\n");
2400 return err;
2404 * e1000_clean_tx_ring - Free Tx Buffers
2405 * @tx_ring: Tx descriptor ring
2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2409 struct e1000_adapter *adapter = tx_ring->adapter;
2410 struct e1000_buffer *buffer_info;
2411 unsigned long size;
2412 unsigned int i;
2414 for (i = 0; i < tx_ring->count; i++) {
2415 buffer_info = &tx_ring->buffer_info[i];
2416 e1000_put_txbuf(tx_ring, buffer_info, false);
2419 netdev_reset_queue(adapter->netdev);
2420 size = sizeof(struct e1000_buffer) * tx_ring->count;
2421 memset(tx_ring->buffer_info, 0, size);
2423 memset(tx_ring->desc, 0, tx_ring->size);
2425 tx_ring->next_to_use = 0;
2426 tx_ring->next_to_clean = 0;
2430 * e1000e_free_tx_resources - Free Tx Resources per Queue
2431 * @tx_ring: Tx descriptor ring
2433 * Free all transmit software resources
2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2437 struct e1000_adapter *adapter = tx_ring->adapter;
2438 struct pci_dev *pdev = adapter->pdev;
2440 e1000_clean_tx_ring(tx_ring);
2442 vfree(tx_ring->buffer_info);
2443 tx_ring->buffer_info = NULL;
2445 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2446 tx_ring->dma);
2447 tx_ring->desc = NULL;
2451 * e1000e_free_rx_resources - Free Rx Resources
2452 * @rx_ring: Rx descriptor ring
2454 * Free all receive software resources
2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2458 struct e1000_adapter *adapter = rx_ring->adapter;
2459 struct pci_dev *pdev = adapter->pdev;
2460 int i;
2462 e1000_clean_rx_ring(rx_ring);
2464 for (i = 0; i < rx_ring->count; i++)
2465 kfree(rx_ring->buffer_info[i].ps_pages);
2467 vfree(rx_ring->buffer_info);
2468 rx_ring->buffer_info = NULL;
2470 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2471 rx_ring->dma);
2472 rx_ring->desc = NULL;
2476 * e1000_update_itr - update the dynamic ITR value based on statistics
2477 * @adapter: pointer to adapter
2478 * @itr_setting: current adapter->itr
2479 * @packets: the number of packets during this measurement interval
2480 * @bytes: the number of bytes during this measurement interval
2482 * Stores a new ITR value based on packets and byte
2483 * counts during the last interrupt. The advantage of per interrupt
2484 * computation is faster updates and more accurate ITR for the current
2485 * traffic pattern. Constants in this function were computed
2486 * based on theoretical maximum wire speed and thresholds were set based
2487 * on testing data as well as attempting to minimize response time
2488 * while increasing bulk throughput. This functionality is controlled
2489 * by the InterruptThrottleRate module parameter.
2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2493 unsigned int retval = itr_setting;
2495 if (packets == 0)
2496 return itr_setting;
2498 switch (itr_setting) {
2499 case lowest_latency:
2500 /* handle TSO and jumbo frames */
2501 if (bytes / packets > 8000)
2502 retval = bulk_latency;
2503 else if ((packets < 5) && (bytes > 512))
2504 retval = low_latency;
2505 break;
2506 case low_latency: /* 50 usec aka 20000 ints/s */
2507 if (bytes > 10000) {
2508 /* this if handles the TSO accounting */
2509 if (bytes / packets > 8000)
2510 retval = bulk_latency;
2511 else if ((packets < 10) || ((bytes / packets) > 1200))
2512 retval = bulk_latency;
2513 else if ((packets > 35))
2514 retval = lowest_latency;
2515 } else if (bytes / packets > 2000) {
2516 retval = bulk_latency;
2517 } else if (packets <= 2 && bytes < 512) {
2518 retval = lowest_latency;
2520 break;
2521 case bulk_latency: /* 250 usec aka 4000 ints/s */
2522 if (bytes > 25000) {
2523 if (packets > 35)
2524 retval = low_latency;
2525 } else if (bytes < 6000) {
2526 retval = low_latency;
2528 break;
2531 return retval;
2534 static void e1000_set_itr(struct e1000_adapter *adapter)
2536 u16 current_itr;
2537 u32 new_itr = adapter->itr;
2539 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2540 if (adapter->link_speed != SPEED_1000) {
2541 current_itr = 0;
2542 new_itr = 4000;
2543 goto set_itr_now;
2546 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2547 new_itr = 0;
2548 goto set_itr_now;
2551 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2552 adapter->total_tx_packets,
2553 adapter->total_tx_bytes);
2554 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2555 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2556 adapter->tx_itr = low_latency;
2558 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2559 adapter->total_rx_packets,
2560 adapter->total_rx_bytes);
2561 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2562 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2563 adapter->rx_itr = low_latency;
2565 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2567 /* counts and packets in update_itr are dependent on these numbers */
2568 switch (current_itr) {
2569 case lowest_latency:
2570 new_itr = 70000;
2571 break;
2572 case low_latency:
2573 new_itr = 20000; /* aka hwitr = ~200 */
2574 break;
2575 case bulk_latency:
2576 new_itr = 4000;
2577 break;
2578 default:
2579 break;
2582 set_itr_now:
2583 if (new_itr != adapter->itr) {
2584 /* this attempts to bias the interrupt rate towards Bulk
2585 * by adding intermediate steps when interrupt rate is
2586 * increasing
2588 new_itr = new_itr > adapter->itr ?
2589 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2590 adapter->itr = new_itr;
2591 adapter->rx_ring->itr_val = new_itr;
2592 if (adapter->msix_entries)
2593 adapter->rx_ring->set_itr = 1;
2594 else
2595 e1000e_write_itr(adapter, new_itr);
2600 * e1000e_write_itr - write the ITR value to the appropriate registers
2601 * @adapter: address of board private structure
2602 * @itr: new ITR value to program
2604 * e1000e_write_itr determines if the adapter is in MSI-X mode
2605 * and, if so, writes the EITR registers with the ITR value.
2606 * Otherwise, it writes the ITR value into the ITR register.
2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2610 struct e1000_hw *hw = &adapter->hw;
2611 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2613 if (adapter->msix_entries) {
2614 int vector;
2616 for (vector = 0; vector < adapter->num_vectors; vector++)
2617 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2618 } else {
2619 ew32(ITR, new_itr);
2624 * e1000_alloc_queues - Allocate memory for all rings
2625 * @adapter: board private structure to initialize
2627 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2629 int size = sizeof(struct e1000_ring);
2631 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2632 if (!adapter->tx_ring)
2633 goto err;
2634 adapter->tx_ring->count = adapter->tx_ring_count;
2635 adapter->tx_ring->adapter = adapter;
2637 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2638 if (!adapter->rx_ring)
2639 goto err;
2640 adapter->rx_ring->count = adapter->rx_ring_count;
2641 adapter->rx_ring->adapter = adapter;
2643 return 0;
2644 err:
2645 e_err("Unable to allocate memory for queues\n");
2646 kfree(adapter->rx_ring);
2647 kfree(adapter->tx_ring);
2648 return -ENOMEM;
2652 * e1000e_poll - NAPI Rx polling callback
2653 * @napi: struct associated with this polling callback
2654 * @budget: number of packets driver is allowed to process this poll
2656 static int e1000e_poll(struct napi_struct *napi, int budget)
2658 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2659 napi);
2660 struct e1000_hw *hw = &adapter->hw;
2661 struct net_device *poll_dev = adapter->netdev;
2662 int tx_cleaned = 1, work_done = 0;
2664 adapter = netdev_priv(poll_dev);
2666 if (!adapter->msix_entries ||
2667 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2668 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2670 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2672 if (!tx_cleaned || work_done == budget)
2673 return budget;
2675 /* Exit the polling mode, but don't re-enable interrupts if stack might
2676 * poll us due to busy-polling
2678 if (likely(napi_complete_done(napi, work_done))) {
2679 if (adapter->itr_setting & 3)
2680 e1000_set_itr(adapter);
2681 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2682 if (adapter->msix_entries)
2683 ew32(IMS, adapter->rx_ring->ims_val);
2684 else
2685 e1000_irq_enable(adapter);
2689 return work_done;
2692 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2693 __always_unused __be16 proto, u16 vid)
2695 struct e1000_adapter *adapter = netdev_priv(netdev);
2696 struct e1000_hw *hw = &adapter->hw;
2697 u32 vfta, index;
2699 /* don't update vlan cookie if already programmed */
2700 if ((adapter->hw.mng_cookie.status &
2701 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2702 (vid == adapter->mng_vlan_id))
2703 return 0;
2705 /* add VID to filter table */
2706 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2707 index = (vid >> 5) & 0x7F;
2708 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2709 vfta |= BIT((vid & 0x1F));
2710 hw->mac.ops.write_vfta(hw, index, vfta);
2713 set_bit(vid, adapter->active_vlans);
2715 return 0;
2718 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2719 __always_unused __be16 proto, u16 vid)
2721 struct e1000_adapter *adapter = netdev_priv(netdev);
2722 struct e1000_hw *hw = &adapter->hw;
2723 u32 vfta, index;
2725 if ((adapter->hw.mng_cookie.status &
2726 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2727 (vid == adapter->mng_vlan_id)) {
2728 /* release control to f/w */
2729 e1000e_release_hw_control(adapter);
2730 return 0;
2733 /* remove VID from filter table */
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta &= ~BIT((vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2741 clear_bit(vid, adapter->active_vlans);
2743 return 0;
2747 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2748 * @adapter: board private structure to initialize
2750 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2752 struct net_device *netdev = adapter->netdev;
2753 struct e1000_hw *hw = &adapter->hw;
2754 u32 rctl;
2756 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2757 /* disable VLAN receive filtering */
2758 rctl = er32(RCTL);
2759 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2760 ew32(RCTL, rctl);
2762 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2763 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2764 adapter->mng_vlan_id);
2765 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2771 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2772 * @adapter: board private structure to initialize
2774 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2776 struct e1000_hw *hw = &adapter->hw;
2777 u32 rctl;
2779 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2780 /* enable VLAN receive filtering */
2781 rctl = er32(RCTL);
2782 rctl |= E1000_RCTL_VFE;
2783 rctl &= ~E1000_RCTL_CFIEN;
2784 ew32(RCTL, rctl);
2789 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2790 * @adapter: board private structure to initialize
2792 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2794 struct e1000_hw *hw = &adapter->hw;
2795 u32 ctrl;
2797 /* disable VLAN tag insert/strip */
2798 ctrl = er32(CTRL);
2799 ctrl &= ~E1000_CTRL_VME;
2800 ew32(CTRL, ctrl);
2804 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2805 * @adapter: board private structure to initialize
2807 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2809 struct e1000_hw *hw = &adapter->hw;
2810 u32 ctrl;
2812 /* enable VLAN tag insert/strip */
2813 ctrl = er32(CTRL);
2814 ctrl |= E1000_CTRL_VME;
2815 ew32(CTRL, ctrl);
2818 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2820 struct net_device *netdev = adapter->netdev;
2821 u16 vid = adapter->hw.mng_cookie.vlan_id;
2822 u16 old_vid = adapter->mng_vlan_id;
2824 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2825 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2826 adapter->mng_vlan_id = vid;
2829 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2830 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2835 u16 vid;
2837 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2839 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2840 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2845 struct e1000_hw *hw = &adapter->hw;
2846 u32 manc, manc2h, mdef, i, j;
2848 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2849 return;
2851 manc = er32(MANC);
2853 /* enable receiving management packets to the host. this will probably
2854 * generate destination unreachable messages from the host OS, but
2855 * the packets will be handled on SMBUS
2857 manc |= E1000_MANC_EN_MNG2HOST;
2858 manc2h = er32(MANC2H);
2860 switch (hw->mac.type) {
2861 default:
2862 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2863 break;
2864 case e1000_82574:
2865 case e1000_82583:
2866 /* Check if IPMI pass-through decision filter already exists;
2867 * if so, enable it.
2869 for (i = 0, j = 0; i < 8; i++) {
2870 mdef = er32(MDEF(i));
2872 /* Ignore filters with anything other than IPMI ports */
2873 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874 continue;
2876 /* Enable this decision filter in MANC2H */
2877 if (mdef)
2878 manc2h |= BIT(i);
2880 j |= mdef;
2883 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2884 break;
2886 /* Create new decision filter in an empty filter */
2887 for (i = 0, j = 0; i < 8; i++)
2888 if (er32(MDEF(i)) == 0) {
2889 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2890 E1000_MDEF_PORT_664));
2891 manc2h |= BIT(1);
2892 j++;
2893 break;
2896 if (!j)
2897 e_warn("Unable to create IPMI pass-through filter\n");
2898 break;
2901 ew32(MANC2H, manc2h);
2902 ew32(MANC, manc);
2906 * e1000_configure_tx - Configure Transmit Unit after Reset
2907 * @adapter: board private structure
2909 * Configure the Tx unit of the MAC after a reset.
2911 static void e1000_configure_tx(struct e1000_adapter *adapter)
2913 struct e1000_hw *hw = &adapter->hw;
2914 struct e1000_ring *tx_ring = adapter->tx_ring;
2915 u64 tdba;
2916 u32 tdlen, tctl, tarc;
2918 /* Setup the HW Tx Head and Tail descriptor pointers */
2919 tdba = tx_ring->dma;
2920 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2921 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2922 ew32(TDBAH(0), (tdba >> 32));
2923 ew32(TDLEN(0), tdlen);
2924 ew32(TDH(0), 0);
2925 ew32(TDT(0), 0);
2926 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2927 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2929 writel(0, tx_ring->head);
2930 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2931 e1000e_update_tdt_wa(tx_ring, 0);
2932 else
2933 writel(0, tx_ring->tail);
2935 /* Set the Tx Interrupt Delay register */
2936 ew32(TIDV, adapter->tx_int_delay);
2937 /* Tx irq moderation */
2938 ew32(TADV, adapter->tx_abs_int_delay);
2940 if (adapter->flags2 & FLAG2_DMA_BURST) {
2941 u32 txdctl = er32(TXDCTL(0));
2943 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2944 E1000_TXDCTL_WTHRESH);
2945 /* set up some performance related parameters to encourage the
2946 * hardware to use the bus more efficiently in bursts, depends
2947 * on the tx_int_delay to be enabled,
2948 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2949 * hthresh = 1 ==> prefetch when one or more available
2950 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2951 * BEWARE: this seems to work but should be considered first if
2952 * there are Tx hangs or other Tx related bugs
2954 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2955 ew32(TXDCTL(0), txdctl);
2957 /* erratum work around: set txdctl the same for both queues */
2958 ew32(TXDCTL(1), er32(TXDCTL(0)));
2960 /* Program the Transmit Control Register */
2961 tctl = er32(TCTL);
2962 tctl &= ~E1000_TCTL_CT;
2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2966 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2967 tarc = er32(TARC(0));
2968 /* set the speed mode bit, we'll clear it if we're not at
2969 * gigabit link later
2971 #define SPEED_MODE_BIT BIT(21)
2972 tarc |= SPEED_MODE_BIT;
2973 ew32(TARC(0), tarc);
2976 /* errata: program both queues to unweighted RR */
2977 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2978 tarc = er32(TARC(0));
2979 tarc |= 1;
2980 ew32(TARC(0), tarc);
2981 tarc = er32(TARC(1));
2982 tarc |= 1;
2983 ew32(TARC(1), tarc);
2986 /* Setup Transmit Descriptor Settings for eop descriptor */
2987 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2989 /* only set IDE if we are delaying interrupts using the timers */
2990 if (adapter->tx_int_delay)
2991 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2993 /* enable Report Status bit */
2994 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2996 ew32(TCTL, tctl);
2998 hw->mac.ops.config_collision_dist(hw);
3000 /* SPT and KBL Si errata workaround to avoid data corruption */
3001 if (hw->mac.type == e1000_pch_spt) {
3002 u32 reg_val;
3004 reg_val = er32(IOSFPC);
3005 reg_val |= E1000_RCTL_RDMTS_HEX;
3006 ew32(IOSFPC, reg_val);
3008 reg_val = er32(TARC(0));
3009 /* SPT and KBL Si errata workaround to avoid Tx hang.
3010 * Dropping the number of outstanding requests from
3011 * 3 to 2 in order to avoid a buffer overrun.
3013 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3014 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3015 ew32(TARC(0), reg_val);
3020 * e1000_setup_rctl - configure the receive control registers
3021 * @adapter: Board private structure
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3027 struct e1000_hw *hw = &adapter->hw;
3028 u32 rctl, rfctl;
3029 u32 pages = 0;
3031 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 * If jumbo frames not set, program related MAC/PHY registers
3033 * to h/w defaults
3035 if (hw->mac.type >= e1000_pch2lan) {
3036 s32 ret_val;
3038 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040 else
3041 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3043 if (ret_val)
3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3047 /* Program MC offset vector base */
3048 rctl = er32(RCTL);
3049 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3054 /* Do not Store bad packets */
3055 rctl &= ~E1000_RCTL_SBP;
3057 /* Enable Long Packet receive */
3058 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059 rctl &= ~E1000_RCTL_LPE;
3060 else
3061 rctl |= E1000_RCTL_LPE;
3063 /* Some systems expect that the CRC is included in SMBUS traffic. The
3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 * host memory when this is enabled
3067 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068 rctl |= E1000_RCTL_SECRC;
3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072 u16 phy_data;
3074 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075 phy_data &= 0xfff8;
3076 phy_data |= BIT(2);
3077 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3079 e1e_rphy(hw, 22, &phy_data);
3080 phy_data &= 0x0fff;
3081 phy_data |= BIT(14);
3082 e1e_wphy(hw, 0x10, 0x2823);
3083 e1e_wphy(hw, 0x11, 0x0003);
3084 e1e_wphy(hw, 22, phy_data);
3087 /* Setup buffer sizes */
3088 rctl &= ~E1000_RCTL_SZ_4096;
3089 rctl |= E1000_RCTL_BSEX;
3090 switch (adapter->rx_buffer_len) {
3091 case 2048:
3092 default:
3093 rctl |= E1000_RCTL_SZ_2048;
3094 rctl &= ~E1000_RCTL_BSEX;
3095 break;
3096 case 4096:
3097 rctl |= E1000_RCTL_SZ_4096;
3098 break;
3099 case 8192:
3100 rctl |= E1000_RCTL_SZ_8192;
3101 break;
3102 case 16384:
3103 rctl |= E1000_RCTL_SZ_16384;
3104 break;
3107 /* Enable Extended Status in all Receive Descriptors */
3108 rfctl = er32(RFCTL);
3109 rfctl |= E1000_RFCTL_EXTEN;
3110 ew32(RFCTL, rfctl);
3112 /* 82571 and greater support packet-split where the protocol
3113 * header is placed in skb->data and the packet data is
3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 * In the case of a non-split, skb->data is linearly filled,
3116 * followed by the page buffers. Therefore, skb->data is
3117 * sized to hold the largest protocol header.
3119 * allocations using alloc_page take too long for regular MTU
3120 * so only enable packet split for jumbo frames
3122 * Using pages when the page size is greater than 16k wastes
3123 * a lot of memory, since we allocate 3 pages at all times
3124 * per packet.
3126 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128 adapter->rx_ps_pages = pages;
3129 else
3130 adapter->rx_ps_pages = 0;
3132 if (adapter->rx_ps_pages) {
3133 u32 psrctl = 0;
3135 /* Enable Packet split descriptors */
3136 rctl |= E1000_RCTL_DTYP_PS;
3138 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3140 switch (adapter->rx_ps_pages) {
3141 case 3:
3142 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143 /* fall-through */
3144 case 2:
3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146 /* fall-through */
3147 case 1:
3148 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149 break;
3152 ew32(PSRCTL, psrctl);
3155 /* This is useful for sniffing bad packets. */
3156 if (adapter->netdev->features & NETIF_F_RXALL) {
3157 /* UPE and MPE will be handled by normal PROMISC logic
3158 * in e1000e_set_rx_mode
3160 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3161 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3162 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3164 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3165 E1000_RCTL_DPF | /* Allow filtered pause */
3166 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 * and that breaks VLANs.
3172 ew32(RCTL, rctl);
3173 /* just started the receive unit, no need to restart */
3174 adapter->flags &= ~FLAG_RESTART_NOW;
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3181 * Configure the Rx unit of the MAC after a reset.
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3185 struct e1000_hw *hw = &adapter->hw;
3186 struct e1000_ring *rx_ring = adapter->rx_ring;
3187 u64 rdba;
3188 u32 rdlen, rctl, rxcsum, ctrl_ext;
3190 if (adapter->rx_ps_pages) {
3191 /* this is a 32 byte descriptor */
3192 rdlen = rx_ring->count *
3193 sizeof(union e1000_rx_desc_packet_split);
3194 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200 } else {
3201 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202 adapter->clean_rx = e1000_clean_rx_irq;
3203 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3206 /* disable receives while setting up the descriptors */
3207 rctl = er32(RCTL);
3208 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210 e1e_flush();
3211 usleep_range(10000, 11000);
3213 if (adapter->flags2 & FLAG2_DMA_BURST) {
3214 /* set the writeback threshold (only takes effect if the RDTR
3215 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 * enable prefetching of 0x20 Rx descriptors
3217 * granularity = 01
3218 * wthresh = 04,
3219 * hthresh = 04,
3220 * pthresh = 0x20
3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3226 /* set the Receive Delay Timer Register */
3227 ew32(RDTR, adapter->rx_int_delay);
3229 /* irq moderation */
3230 ew32(RADV, adapter->rx_abs_int_delay);
3231 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232 e1000e_write_itr(adapter, adapter->itr);
3234 ctrl_ext = er32(CTRL_EXT);
3235 /* Auto-Mask interrupts upon ICR access */
3236 ctrl_ext |= E1000_CTRL_EXT_IAME;
3237 ew32(IAM, 0xffffffff);
3238 ew32(CTRL_EXT, ctrl_ext);
3239 e1e_flush();
3241 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242 * the Base and Length of the Rx Descriptor Ring
3244 rdba = rx_ring->dma;
3245 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246 ew32(RDBAH(0), (rdba >> 32));
3247 ew32(RDLEN(0), rdlen);
3248 ew32(RDH(0), 0);
3249 ew32(RDT(0), 0);
3250 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3253 writel(0, rx_ring->head);
3254 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3255 e1000e_update_rdt_wa(rx_ring, 0);
3256 else
3257 writel(0, rx_ring->tail);
3259 /* Enable Receive Checksum Offload for TCP and UDP */
3260 rxcsum = er32(RXCSUM);
3261 if (adapter->netdev->features & NETIF_F_RXCSUM)
3262 rxcsum |= E1000_RXCSUM_TUOFL;
3263 else
3264 rxcsum &= ~E1000_RXCSUM_TUOFL;
3265 ew32(RXCSUM, rxcsum);
3267 /* With jumbo frames, excessive C-state transition latencies result
3268 * in dropped transactions.
3270 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3271 u32 lat =
3272 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3273 adapter->max_frame_size) * 8 / 1000;
3275 if (adapter->flags & FLAG_IS_ICH) {
3276 u32 rxdctl = er32(RXDCTL(0));
3278 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3281 dev_info(&adapter->pdev->dev,
3282 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3283 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3284 } else {
3285 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3286 PM_QOS_DEFAULT_VALUE);
3289 /* Enable Receives */
3290 ew32(RCTL, rctl);
3294 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295 * @netdev: network interface device structure
3297 * Writes multicast address list to the MTA hash table.
3298 * Returns: -ENOMEM on failure
3299 * 0 on no addresses written
3300 * X on writing X addresses to MTA
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3304 struct e1000_adapter *adapter = netdev_priv(netdev);
3305 struct e1000_hw *hw = &adapter->hw;
3306 struct netdev_hw_addr *ha;
3307 u8 *mta_list;
3308 int i;
3310 if (netdev_mc_empty(netdev)) {
3311 /* nothing to program, so clear mc list */
3312 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313 return 0;
3316 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3317 if (!mta_list)
3318 return -ENOMEM;
3320 /* update_mc_addr_list expects a packed array of only addresses. */
3321 i = 0;
3322 netdev_for_each_mc_addr(ha, netdev)
3323 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3325 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326 kfree(mta_list);
3328 return netdev_mc_count(netdev);
3332 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333 * @netdev: network interface device structure
3335 * Writes unicast address list to the RAR table.
3336 * Returns: -ENOMEM on failure/insufficient address space
3337 * 0 on no addresses written
3338 * X on writing X addresses to the RAR table
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3342 struct e1000_adapter *adapter = netdev_priv(netdev);
3343 struct e1000_hw *hw = &adapter->hw;
3344 unsigned int rar_entries;
3345 int count = 0;
3347 rar_entries = hw->mac.ops.rar_get_count(hw);
3349 /* save a rar entry for our hardware address */
3350 rar_entries--;
3352 /* save a rar entry for the LAA workaround */
3353 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354 rar_entries--;
3356 /* return ENOMEM indicating insufficient memory for addresses */
3357 if (netdev_uc_count(netdev) > rar_entries)
3358 return -ENOMEM;
3360 if (!netdev_uc_empty(netdev) && rar_entries) {
3361 struct netdev_hw_addr *ha;
3363 /* write the addresses in reverse order to avoid write
3364 * combining
3366 netdev_for_each_uc_addr(ha, netdev) {
3367 int ret_val;
3369 if (!rar_entries)
3370 break;
3371 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372 if (ret_val < 0)
3373 return -ENOMEM;
3374 count++;
3378 /* zero out the remaining RAR entries not used above */
3379 for (; rar_entries > 0; rar_entries--) {
3380 ew32(RAH(rar_entries), 0);
3381 ew32(RAL(rar_entries), 0);
3383 e1e_flush();
3385 return count;
3389 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390 * @netdev: network interface device structure
3392 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393 * address list or the network interface flags are updated. This routine is
3394 * responsible for configuring the hardware for proper unicast, multicast,
3395 * promiscuous mode, and all-multi behavior.
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3399 struct e1000_adapter *adapter = netdev_priv(netdev);
3400 struct e1000_hw *hw = &adapter->hw;
3401 u32 rctl;
3403 if (pm_runtime_suspended(netdev->dev.parent))
3404 return;
3406 /* Check for Promiscuous and All Multicast modes */
3407 rctl = er32(RCTL);
3409 /* clear the affected bits */
3410 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3412 if (netdev->flags & IFF_PROMISC) {
3413 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414 /* Do not hardware filter VLANs in promisc mode */
3415 e1000e_vlan_filter_disable(adapter);
3416 } else {
3417 int count;
3419 if (netdev->flags & IFF_ALLMULTI) {
3420 rctl |= E1000_RCTL_MPE;
3421 } else {
3422 /* Write addresses to the MTA, if the attempt fails
3423 * then we should just turn on promiscuous mode so
3424 * that we can at least receive multicast traffic
3426 count = e1000e_write_mc_addr_list(netdev);
3427 if (count < 0)
3428 rctl |= E1000_RCTL_MPE;
3430 e1000e_vlan_filter_enable(adapter);
3431 /* Write addresses to available RAR registers, if there is not
3432 * sufficient space to store all the addresses then enable
3433 * unicast promiscuous mode
3435 count = e1000e_write_uc_addr_list(netdev);
3436 if (count < 0)
3437 rctl |= E1000_RCTL_UPE;
3440 ew32(RCTL, rctl);
3442 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443 e1000e_vlan_strip_enable(adapter);
3444 else
3445 e1000e_vlan_strip_disable(adapter);
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3450 struct e1000_hw *hw = &adapter->hw;
3451 u32 mrqc, rxcsum;
3452 u32 rss_key[10];
3453 int i;
3455 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3456 for (i = 0; i < 10; i++)
3457 ew32(RSSRK(i), rss_key[i]);
3459 /* Direct all traffic to queue 0 */
3460 for (i = 0; i < 32; i++)
3461 ew32(RETA(i), 0);
3463 /* Disable raw packet checksumming so that RSS hash is placed in
3464 * descriptor on writeback.
3466 rxcsum = er32(RXCSUM);
3467 rxcsum |= E1000_RXCSUM_PCSD;
3469 ew32(RXCSUM, rxcsum);
3471 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3472 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3473 E1000_MRQC_RSS_FIELD_IPV6 |
3474 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3475 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3477 ew32(MRQC, mrqc);
3481 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3482 * @adapter: board private structure
3483 * @timinca: pointer to returned time increment attributes
3485 * Get attributes for incrementing the System Time Register SYSTIML/H at
3486 * the default base frequency, and set the cyclecounter shift value.
3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3490 struct e1000_hw *hw = &adapter->hw;
3491 u32 incvalue, incperiod, shift;
3493 /* Make sure clock is enabled on I217/I218/I219 before checking
3494 * the frequency
3496 if ((hw->mac.type >= e1000_pch_lpt) &&
3497 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3498 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3499 u32 fextnvm7 = er32(FEXTNVM7);
3501 if (!(fextnvm7 & BIT(0))) {
3502 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3503 e1e_flush();
3507 switch (hw->mac.type) {
3508 case e1000_pch2lan:
3509 /* Stable 96MHz frequency */
3510 incperiod = INCPERIOD_96MHZ;
3511 incvalue = INCVALUE_96MHZ;
3512 shift = INCVALUE_SHIFT_96MHZ;
3513 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3514 break;
3515 case e1000_pch_lpt:
3516 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3517 /* Stable 96MHz frequency */
3518 incperiod = INCPERIOD_96MHZ;
3519 incvalue = INCVALUE_96MHZ;
3520 shift = INCVALUE_SHIFT_96MHZ;
3521 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3522 } else {
3523 /* Stable 25MHz frequency */
3524 incperiod = INCPERIOD_25MHZ;
3525 incvalue = INCVALUE_25MHZ;
3526 shift = INCVALUE_SHIFT_25MHZ;
3527 adapter->cc.shift = shift;
3529 break;
3530 case e1000_pch_spt:
3531 /* Stable 24MHz frequency */
3532 incperiod = INCPERIOD_24MHZ;
3533 incvalue = INCVALUE_24MHZ;
3534 shift = INCVALUE_SHIFT_24MHZ;
3535 adapter->cc.shift = shift;
3536 break;
3537 case e1000_pch_cnp:
3538 case e1000_pch_tgp:
3539 case e1000_pch_adp:
3540 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3541 /* Stable 24MHz frequency */
3542 incperiod = INCPERIOD_24MHZ;
3543 incvalue = INCVALUE_24MHZ;
3544 shift = INCVALUE_SHIFT_24MHZ;
3545 adapter->cc.shift = shift;
3546 } else {
3547 /* Stable 38400KHz frequency */
3548 incperiod = INCPERIOD_38400KHZ;
3549 incvalue = INCVALUE_38400KHZ;
3550 shift = INCVALUE_SHIFT_38400KHZ;
3551 adapter->cc.shift = shift;
3553 break;
3554 case e1000_82574:
3555 case e1000_82583:
3556 /* Stable 25MHz frequency */
3557 incperiod = INCPERIOD_25MHZ;
3558 incvalue = INCVALUE_25MHZ;
3559 shift = INCVALUE_SHIFT_25MHZ;
3560 adapter->cc.shift = shift;
3561 break;
3562 default:
3563 return -EINVAL;
3566 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3567 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569 return 0;
3573 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3574 * @adapter: board private structure
3576 * Outgoing time stamping can be enabled and disabled. Play nice and
3577 * disable it when requested, although it shouldn't cause any overhead
3578 * when no packet needs it. At most one packet in the queue may be
3579 * marked for time stamping, otherwise it would be impossible to tell
3580 * for sure to which packet the hardware time stamp belongs.
3582 * Incoming time stamping has to be configured via the hardware filters.
3583 * Not all combinations are supported, in particular event type has to be
3584 * specified. Matching the kind of event packet is not supported, with the
3585 * exception of "all V2 events regardless of level 2 or 4".
3587 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3588 struct hwtstamp_config *config)
3590 struct e1000_hw *hw = &adapter->hw;
3591 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3592 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3593 u32 rxmtrl = 0;
3594 u16 rxudp = 0;
3595 bool is_l4 = false;
3596 bool is_l2 = false;
3597 u32 regval;
3599 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3600 return -EINVAL;
3602 /* flags reserved for future extensions - must be zero */
3603 if (config->flags)
3604 return -EINVAL;
3606 switch (config->tx_type) {
3607 case HWTSTAMP_TX_OFF:
3608 tsync_tx_ctl = 0;
3609 break;
3610 case HWTSTAMP_TX_ON:
3611 break;
3612 default:
3613 return -ERANGE;
3616 switch (config->rx_filter) {
3617 case HWTSTAMP_FILTER_NONE:
3618 tsync_rx_ctl = 0;
3619 break;
3620 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3621 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3622 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3623 is_l4 = true;
3624 break;
3625 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3626 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3627 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3628 is_l4 = true;
3629 break;
3630 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3631 /* Also time stamps V2 L2 Path Delay Request/Response */
3632 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3633 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3634 is_l2 = true;
3635 break;
3636 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3637 /* Also time stamps V2 L2 Path Delay Request/Response. */
3638 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3639 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3640 is_l2 = true;
3641 break;
3642 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3643 /* Hardware cannot filter just V2 L4 Sync messages;
3644 * fall-through to V2 (both L2 and L4) Sync.
3646 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3647 /* Also time stamps V2 Path Delay Request/Response. */
3648 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3649 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3650 is_l2 = true;
3651 is_l4 = true;
3652 break;
3653 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3654 /* Hardware cannot filter just V2 L4 Delay Request messages;
3655 * fall-through to V2 (both L2 and L4) Delay Request.
3657 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3658 /* Also time stamps V2 Path Delay Request/Response. */
3659 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3660 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3661 is_l2 = true;
3662 is_l4 = true;
3663 break;
3664 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3665 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3666 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3667 * fall-through to all V2 (both L2 and L4) Events.
3669 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3670 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3671 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3672 is_l2 = true;
3673 is_l4 = true;
3674 break;
3675 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3676 /* For V1, the hardware can only filter Sync messages or
3677 * Delay Request messages but not both so fall-through to
3678 * time stamp all packets.
3680 case HWTSTAMP_FILTER_NTP_ALL:
3681 case HWTSTAMP_FILTER_ALL:
3682 is_l2 = true;
3683 is_l4 = true;
3684 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3685 config->rx_filter = HWTSTAMP_FILTER_ALL;
3686 break;
3687 default:
3688 return -ERANGE;
3691 adapter->hwtstamp_config = *config;
3693 /* enable/disable Tx h/w time stamping */
3694 regval = er32(TSYNCTXCTL);
3695 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3696 regval |= tsync_tx_ctl;
3697 ew32(TSYNCTXCTL, regval);
3698 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3699 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3700 e_err("Timesync Tx Control register not set as expected\n");
3701 return -EAGAIN;
3704 /* enable/disable Rx h/w time stamping */
3705 regval = er32(TSYNCRXCTL);
3706 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3707 regval |= tsync_rx_ctl;
3708 ew32(TSYNCRXCTL, regval);
3709 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3710 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3711 (regval & (E1000_TSYNCRXCTL_ENABLED |
3712 E1000_TSYNCRXCTL_TYPE_MASK))) {
3713 e_err("Timesync Rx Control register not set as expected\n");
3714 return -EAGAIN;
3717 /* L2: define ethertype filter for time stamped packets */
3718 if (is_l2)
3719 rxmtrl |= ETH_P_1588;
3721 /* define which PTP packets get time stamped */
3722 ew32(RXMTRL, rxmtrl);
3724 /* Filter by destination port */
3725 if (is_l4) {
3726 rxudp = PTP_EV_PORT;
3727 cpu_to_be16s(&rxudp);
3729 ew32(RXUDP, rxudp);
3731 e1e_flush();
3733 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3734 er32(RXSTMPH);
3735 er32(TXSTMPH);
3737 return 0;
3741 * e1000_configure - configure the hardware for Rx and Tx
3742 * @adapter: private board structure
3744 static void e1000_configure(struct e1000_adapter *adapter)
3746 struct e1000_ring *rx_ring = adapter->rx_ring;
3748 e1000e_set_rx_mode(adapter->netdev);
3750 e1000_restore_vlan(adapter);
3751 e1000_init_manageability_pt(adapter);
3753 e1000_configure_tx(adapter);
3755 if (adapter->netdev->features & NETIF_F_RXHASH)
3756 e1000e_setup_rss_hash(adapter);
3757 e1000_setup_rctl(adapter);
3758 e1000_configure_rx(adapter);
3759 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3763 * e1000e_power_up_phy - restore link in case the phy was powered down
3764 * @adapter: address of board private structure
3766 * The phy may be powered down to save power and turn off link when the
3767 * driver is unloaded and wake on lan is not enabled (among others)
3768 * *** this routine MUST be followed by a call to e1000e_reset ***
3770 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3772 if (adapter->hw.phy.ops.power_up)
3773 adapter->hw.phy.ops.power_up(&adapter->hw);
3775 adapter->hw.mac.ops.setup_link(&adapter->hw);
3779 * e1000_power_down_phy - Power down the PHY
3781 * Power down the PHY so no link is implied when interface is down.
3782 * The PHY cannot be powered down if management or WoL is active.
3784 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3786 if (adapter->hw.phy.ops.power_down)
3787 adapter->hw.phy.ops.power_down(&adapter->hw);
3791 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3793 * We want to clear all pending descriptors from the TX ring.
3794 * zeroing happens when the HW reads the regs. We assign the ring itself as
3795 * the data of the next descriptor. We don't care about the data we are about
3796 * to reset the HW.
3798 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3800 struct e1000_hw *hw = &adapter->hw;
3801 struct e1000_ring *tx_ring = adapter->tx_ring;
3802 struct e1000_tx_desc *tx_desc = NULL;
3803 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3804 u16 size = 512;
3806 tctl = er32(TCTL);
3807 ew32(TCTL, tctl | E1000_TCTL_EN);
3808 tdt = er32(TDT(0));
3809 BUG_ON(tdt != tx_ring->next_to_use);
3810 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3811 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3813 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3814 tx_desc->upper.data = 0;
3815 /* flush descriptors to memory before notifying the HW */
3816 wmb();
3817 tx_ring->next_to_use++;
3818 if (tx_ring->next_to_use == tx_ring->count)
3819 tx_ring->next_to_use = 0;
3820 ew32(TDT(0), tx_ring->next_to_use);
3821 usleep_range(200, 250);
3825 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3827 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3829 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3831 u32 rctl, rxdctl;
3832 struct e1000_hw *hw = &adapter->hw;
3834 rctl = er32(RCTL);
3835 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3836 e1e_flush();
3837 usleep_range(100, 150);
3839 rxdctl = er32(RXDCTL(0));
3840 /* zero the lower 14 bits (prefetch and host thresholds) */
3841 rxdctl &= 0xffffc000;
3843 /* update thresholds: prefetch threshold to 31, host threshold to 1
3844 * and make sure the granularity is "descriptors" and not "cache lines"
3846 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3848 ew32(RXDCTL(0), rxdctl);
3849 /* momentarily enable the RX ring for the changes to take effect */
3850 ew32(RCTL, rctl | E1000_RCTL_EN);
3851 e1e_flush();
3852 usleep_range(100, 150);
3853 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3857 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3867 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3869 u16 hang_state;
3870 u32 fext_nvm11, tdlen;
3871 struct e1000_hw *hw = &adapter->hw;
3873 /* First, disable MULR fix in FEXTNVM11 */
3874 fext_nvm11 = er32(FEXTNVM11);
3875 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876 ew32(FEXTNVM11, fext_nvm11);
3877 /* do nothing if we're not in faulty state, or if the queue is empty */
3878 tdlen = er32(TDLEN(0));
3879 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880 &hang_state);
3881 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882 return;
3883 e1000_flush_tx_ring(adapter);
3884 /* recheck, maybe the fault is caused by the rx ring */
3885 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886 &hang_state);
3887 if (hang_state & FLUSH_DESC_REQUIRED)
3888 e1000_flush_rx_ring(adapter);
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3900 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3902 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903 struct e1000_hw *hw = &adapter->hw;
3904 unsigned long flags;
3905 u32 timinca;
3906 s32 ret_val;
3908 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909 return;
3911 if (info->adjfreq) {
3912 /* restore the previous ptp frequency delta */
3913 ret_val = info->adjfreq(info, adapter->ptp_delta);
3914 } else {
3915 /* set the default base frequency if no adjustment possible */
3916 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917 if (!ret_val)
3918 ew32(TIMINCA, timinca);
3921 if (ret_val) {
3922 dev_warn(&adapter->pdev->dev,
3923 "Failed to restore TIMINCA clock rate delta: %d\n",
3924 ret_val);
3925 return;
3928 /* reset the systim ns time counter */
3929 spin_lock_irqsave(&adapter->systim_lock, flags);
3930 timecounter_init(&adapter->tc, &adapter->cc,
3931 ktime_to_ns(ktime_get_real()));
3932 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3934 /* restore the previous hwtstamp configuration settings */
3935 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3939 * e1000e_reset - bring the hardware into a known good state
3941 * This function boots the hardware and enables some settings that
3942 * require a configuration cycle of the hardware - those cannot be
3943 * set/changed during runtime. After reset the device needs to be
3944 * properly configured for Rx, Tx etc.
3946 void e1000e_reset(struct e1000_adapter *adapter)
3948 struct e1000_mac_info *mac = &adapter->hw.mac;
3949 struct e1000_fc_info *fc = &adapter->hw.fc;
3950 struct e1000_hw *hw = &adapter->hw;
3951 u32 tx_space, min_tx_space, min_rx_space;
3952 u32 pba = adapter->pba;
3953 u16 hwm;
3955 /* reset Packet Buffer Allocation to default */
3956 ew32(PBA, pba);
3958 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3959 /* To maintain wire speed transmits, the Tx FIFO should be
3960 * large enough to accommodate two full transmit packets,
3961 * rounded up to the next 1KB and expressed in KB. Likewise,
3962 * the Rx FIFO should be large enough to accommodate at least
3963 * one full receive packet and is similarly rounded up and
3964 * expressed in KB.
3966 pba = er32(PBA);
3967 /* upper 16 bits has Tx packet buffer allocation size in KB */
3968 tx_space = pba >> 16;
3969 /* lower 16 bits has Rx packet buffer allocation size in KB */
3970 pba &= 0xffff;
3971 /* the Tx fifo also stores 16 bytes of information about the Tx
3972 * but don't include ethernet FCS because hardware appends it
3974 min_tx_space = (adapter->max_frame_size +
3975 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3976 min_tx_space = ALIGN(min_tx_space, 1024);
3977 min_tx_space >>= 10;
3978 /* software strips receive CRC, so leave room for it */
3979 min_rx_space = adapter->max_frame_size;
3980 min_rx_space = ALIGN(min_rx_space, 1024);
3981 min_rx_space >>= 10;
3983 /* If current Tx allocation is less than the min Tx FIFO size,
3984 * and the min Tx FIFO size is less than the current Rx FIFO
3985 * allocation, take space away from current Rx allocation
3987 if ((tx_space < min_tx_space) &&
3988 ((min_tx_space - tx_space) < pba)) {
3989 pba -= min_tx_space - tx_space;
3991 /* if short on Rx space, Rx wins and must trump Tx
3992 * adjustment
3994 if (pba < min_rx_space)
3995 pba = min_rx_space;
3998 ew32(PBA, pba);
4001 /* flow control settings
4003 * The high water mark must be low enough to fit one full frame
4004 * (or the size used for early receive) above it in the Rx FIFO.
4005 * Set it to the lower of:
4006 * - 90% of the Rx FIFO size, and
4007 * - the full Rx FIFO size minus one full frame
4009 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4010 fc->pause_time = 0xFFFF;
4011 else
4012 fc->pause_time = E1000_FC_PAUSE_TIME;
4013 fc->send_xon = true;
4014 fc->current_mode = fc->requested_mode;
4016 switch (hw->mac.type) {
4017 case e1000_ich9lan:
4018 case e1000_ich10lan:
4019 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4020 pba = 14;
4021 ew32(PBA, pba);
4022 fc->high_water = 0x2800;
4023 fc->low_water = fc->high_water - 8;
4024 break;
4026 /* fall-through */
4027 default:
4028 hwm = min(((pba << 10) * 9 / 10),
4029 ((pba << 10) - adapter->max_frame_size));
4031 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4032 fc->low_water = fc->high_water - 8;
4033 break;
4034 case e1000_pchlan:
4035 /* Workaround PCH LOM adapter hangs with certain network
4036 * loads. If hangs persist, try disabling Tx flow control.
4038 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4039 fc->high_water = 0x3500;
4040 fc->low_water = 0x1500;
4041 } else {
4042 fc->high_water = 0x5000;
4043 fc->low_water = 0x3000;
4045 fc->refresh_time = 0x1000;
4046 break;
4047 case e1000_pch2lan:
4048 case e1000_pch_lpt:
4049 case e1000_pch_spt:
4050 case e1000_pch_cnp:
4051 /* fall-through */
4052 case e1000_pch_tgp:
4053 case e1000_pch_adp:
4054 fc->refresh_time = 0xFFFF;
4055 fc->pause_time = 0xFFFF;
4057 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4058 fc->high_water = 0x05C20;
4059 fc->low_water = 0x05048;
4060 break;
4063 pba = 14;
4064 ew32(PBA, pba);
4065 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4066 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4067 break;
4070 /* Alignment of Tx data is on an arbitrary byte boundary with the
4071 * maximum size per Tx descriptor limited only to the transmit
4072 * allocation of the packet buffer minus 96 bytes with an upper
4073 * limit of 24KB due to receive synchronization limitations.
4075 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4076 24 << 10);
4078 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4079 * fit in receive buffer.
4081 if (adapter->itr_setting & 0x3) {
4082 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4083 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4084 dev_info(&adapter->pdev->dev,
4085 "Interrupt Throttle Rate off\n");
4086 adapter->flags2 |= FLAG2_DISABLE_AIM;
4087 e1000e_write_itr(adapter, 0);
4089 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4090 dev_info(&adapter->pdev->dev,
4091 "Interrupt Throttle Rate on\n");
4092 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4093 adapter->itr = 20000;
4094 e1000e_write_itr(adapter, adapter->itr);
4098 if (hw->mac.type >= e1000_pch_spt)
4099 e1000_flush_desc_rings(adapter);
4100 /* Allow time for pending master requests to run */
4101 mac->ops.reset_hw(hw);
4103 /* For parts with AMT enabled, let the firmware know
4104 * that the network interface is in control
4106 if (adapter->flags & FLAG_HAS_AMT)
4107 e1000e_get_hw_control(adapter);
4109 ew32(WUC, 0);
4111 if (mac->ops.init_hw(hw))
4112 e_err("Hardware Error\n");
4114 e1000_update_mng_vlan(adapter);
4116 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4117 ew32(VET, ETH_P_8021Q);
4119 e1000e_reset_adaptive(hw);
4121 /* restore systim and hwtstamp settings */
4122 e1000e_systim_reset(adapter);
4124 /* Set EEE advertisement as appropriate */
4125 if (adapter->flags2 & FLAG2_HAS_EEE) {
4126 s32 ret_val;
4127 u16 adv_addr;
4129 switch (hw->phy.type) {
4130 case e1000_phy_82579:
4131 adv_addr = I82579_EEE_ADVERTISEMENT;
4132 break;
4133 case e1000_phy_i217:
4134 adv_addr = I217_EEE_ADVERTISEMENT;
4135 break;
4136 default:
4137 dev_err(&adapter->pdev->dev,
4138 "Invalid PHY type setting EEE advertisement\n");
4139 return;
4142 ret_val = hw->phy.ops.acquire(hw);
4143 if (ret_val) {
4144 dev_err(&adapter->pdev->dev,
4145 "EEE advertisement - unable to acquire PHY\n");
4146 return;
4149 e1000_write_emi_reg_locked(hw, adv_addr,
4150 hw->dev_spec.ich8lan.eee_disable ?
4151 0 : adapter->eee_advert);
4153 hw->phy.ops.release(hw);
4156 if (!netif_running(adapter->netdev) &&
4157 !test_bit(__E1000_TESTING, &adapter->state))
4158 e1000_power_down_phy(adapter);
4160 e1000_get_phy_info(hw);
4162 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4163 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4164 u16 phy_data = 0;
4165 /* speed up time to link by disabling smart power down, ignore
4166 * the return value of this function because there is nothing
4167 * different we would do if it failed
4169 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4170 phy_data &= ~IGP02E1000_PM_SPD;
4171 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4173 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4174 u32 reg;
4176 /* Fextnvm7 @ 0xe4[2] = 1 */
4177 reg = er32(FEXTNVM7);
4178 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4179 ew32(FEXTNVM7, reg);
4180 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4181 reg = er32(FEXTNVM9);
4182 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4183 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4184 ew32(FEXTNVM9, reg);
4190 * e1000e_trigger_lsc - trigger an LSC interrupt
4191 * @adapter:
4193 * Fire a link status change interrupt to start the watchdog.
4195 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4197 struct e1000_hw *hw = &adapter->hw;
4199 if (adapter->msix_entries)
4200 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4201 else
4202 ew32(ICS, E1000_ICS_LSC);
4205 void e1000e_up(struct e1000_adapter *adapter)
4207 /* hardware has been reset, we need to reload some things */
4208 e1000_configure(adapter);
4210 clear_bit(__E1000_DOWN, &adapter->state);
4212 if (adapter->msix_entries)
4213 e1000_configure_msix(adapter);
4214 e1000_irq_enable(adapter);
4216 /* Tx queue started by watchdog timer when link is up */
4218 e1000e_trigger_lsc(adapter);
4221 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4223 struct e1000_hw *hw = &adapter->hw;
4225 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4226 return;
4228 /* flush pending descriptor writebacks to memory */
4229 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4230 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4232 /* execute the writes immediately */
4233 e1e_flush();
4235 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4236 * write is successful
4238 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4239 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241 /* execute the writes immediately */
4242 e1e_flush();
4245 static void e1000e_update_stats(struct e1000_adapter *adapter);
4248 * e1000e_down - quiesce the device and optionally reset the hardware
4249 * @adapter: board private structure
4250 * @reset: boolean flag to reset the hardware or not
4252 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4254 struct net_device *netdev = adapter->netdev;
4255 struct e1000_hw *hw = &adapter->hw;
4256 u32 tctl, rctl;
4258 /* signal that we're down so the interrupt handler does not
4259 * reschedule our watchdog timer
4261 set_bit(__E1000_DOWN, &adapter->state);
4263 netif_carrier_off(netdev);
4265 /* disable receives in the hardware */
4266 rctl = er32(RCTL);
4267 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4268 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4269 /* flush and sleep below */
4271 netif_stop_queue(netdev);
4273 /* disable transmits in the hardware */
4274 tctl = er32(TCTL);
4275 tctl &= ~E1000_TCTL_EN;
4276 ew32(TCTL, tctl);
4278 /* flush both disables and wait for them to finish */
4279 e1e_flush();
4280 usleep_range(10000, 11000);
4282 e1000_irq_disable(adapter);
4284 napi_synchronize(&adapter->napi);
4286 del_timer_sync(&adapter->watchdog_timer);
4287 del_timer_sync(&adapter->phy_info_timer);
4289 spin_lock(&adapter->stats64_lock);
4290 e1000e_update_stats(adapter);
4291 spin_unlock(&adapter->stats64_lock);
4293 e1000e_flush_descriptors(adapter);
4295 adapter->link_speed = 0;
4296 adapter->link_duplex = 0;
4298 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4299 if ((hw->mac.type >= e1000_pch2lan) &&
4300 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4301 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4302 e_dbg("failed to disable jumbo frame workaround mode\n");
4304 if (!pci_channel_offline(adapter->pdev)) {
4305 if (reset)
4306 e1000e_reset(adapter);
4307 else if (hw->mac.type >= e1000_pch_spt)
4308 e1000_flush_desc_rings(adapter);
4310 e1000_clean_tx_ring(adapter->tx_ring);
4311 e1000_clean_rx_ring(adapter->rx_ring);
4314 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4316 might_sleep();
4317 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4318 usleep_range(1000, 1100);
4319 e1000e_down(adapter, true);
4320 e1000e_up(adapter);
4321 clear_bit(__E1000_RESETTING, &adapter->state);
4325 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4326 * @hw: pointer to the HW structure
4327 * @systim: PHC time value read, sanitized and returned
4328 * @sts: structure to hold system time before and after reading SYSTIML,
4329 * may be NULL
4331 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4332 * check to see that the time is incrementing at a reasonable
4333 * rate and is a multiple of incvalue.
4335 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4336 struct ptp_system_timestamp *sts)
4338 u64 time_delta, rem, temp;
4339 u64 systim_next;
4340 u32 incvalue;
4341 int i;
4343 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4344 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4345 /* latch SYSTIMH on read of SYSTIML */
4346 ptp_read_system_prets(sts);
4347 systim_next = (u64)er32(SYSTIML);
4348 ptp_read_system_postts(sts);
4349 systim_next |= (u64)er32(SYSTIMH) << 32;
4351 time_delta = systim_next - systim;
4352 temp = time_delta;
4353 /* VMWare users have seen incvalue of zero, don't div / 0 */
4354 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4356 systim = systim_next;
4358 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4359 break;
4362 return systim;
4366 * e1000e_read_systim - read SYSTIM register
4367 * @adapter: board private structure
4368 * @sts: structure which will contain system time before and after reading
4369 * SYSTIML, may be NULL
4371 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4372 struct ptp_system_timestamp *sts)
4374 struct e1000_hw *hw = &adapter->hw;
4375 u32 systimel, systimel_2, systimeh;
4376 u64 systim;
4377 /* SYSTIMH latching upon SYSTIML read does not work well.
4378 * This means that if SYSTIML overflows after we read it but before
4379 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4380 * will experience a huge non linear increment in the systime value
4381 * to fix that we test for overflow and if true, we re-read systime.
4383 ptp_read_system_prets(sts);
4384 systimel = er32(SYSTIML);
4385 ptp_read_system_postts(sts);
4386 systimeh = er32(SYSTIMH);
4387 /* Is systimel is so large that overflow is possible? */
4388 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4389 ptp_read_system_prets(sts);
4390 systimel_2 = er32(SYSTIML);
4391 ptp_read_system_postts(sts);
4392 if (systimel > systimel_2) {
4393 /* There was an overflow, read again SYSTIMH, and use
4394 * systimel_2
4396 systimeh = er32(SYSTIMH);
4397 systimel = systimel_2;
4400 systim = (u64)systimel;
4401 systim |= (u64)systimeh << 32;
4403 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4404 systim = e1000e_sanitize_systim(hw, systim, sts);
4406 return systim;
4410 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4411 * @cc: cyclecounter structure
4413 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4415 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4416 cc);
4418 return e1000e_read_systim(adapter, NULL);
4422 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4423 * @adapter: board private structure to initialize
4425 * e1000_sw_init initializes the Adapter private data structure.
4426 * Fields are initialized based on PCI device information and
4427 * OS network device settings (MTU size).
4429 static int e1000_sw_init(struct e1000_adapter *adapter)
4431 struct net_device *netdev = adapter->netdev;
4433 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4434 adapter->rx_ps_bsize0 = 128;
4435 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4436 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4437 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4438 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4440 spin_lock_init(&adapter->stats64_lock);
4442 e1000e_set_interrupt_capability(adapter);
4444 if (e1000_alloc_queues(adapter))
4445 return -ENOMEM;
4447 /* Setup hardware time stamping cyclecounter */
4448 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4449 adapter->cc.read = e1000e_cyclecounter_read;
4450 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4451 adapter->cc.mult = 1;
4452 /* cc.shift set in e1000e_get_base_tininca() */
4454 spin_lock_init(&adapter->systim_lock);
4455 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4458 /* Explicitly disable IRQ since the NIC can be in any state. */
4459 e1000_irq_disable(adapter);
4461 set_bit(__E1000_DOWN, &adapter->state);
4462 return 0;
4466 * e1000_intr_msi_test - Interrupt Handler
4467 * @irq: interrupt number
4468 * @data: pointer to a network interface device structure
4470 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4472 struct net_device *netdev = data;
4473 struct e1000_adapter *adapter = netdev_priv(netdev);
4474 struct e1000_hw *hw = &adapter->hw;
4475 u32 icr = er32(ICR);
4477 e_dbg("icr is %08X\n", icr);
4478 if (icr & E1000_ICR_RXSEQ) {
4479 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4480 /* Force memory writes to complete before acknowledging the
4481 * interrupt is handled.
4483 wmb();
4486 return IRQ_HANDLED;
4490 * e1000_test_msi_interrupt - Returns 0 for successful test
4491 * @adapter: board private struct
4493 * code flow taken from tg3.c
4495 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4497 struct net_device *netdev = adapter->netdev;
4498 struct e1000_hw *hw = &adapter->hw;
4499 int err;
4501 /* poll_enable hasn't been called yet, so don't need disable */
4502 /* clear any pending events */
4503 er32(ICR);
4505 /* free the real vector and request a test handler */
4506 e1000_free_irq(adapter);
4507 e1000e_reset_interrupt_capability(adapter);
4509 /* Assume that the test fails, if it succeeds then the test
4510 * MSI irq handler will unset this flag
4512 adapter->flags |= FLAG_MSI_TEST_FAILED;
4514 err = pci_enable_msi(adapter->pdev);
4515 if (err)
4516 goto msi_test_failed;
4518 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4519 netdev->name, netdev);
4520 if (err) {
4521 pci_disable_msi(adapter->pdev);
4522 goto msi_test_failed;
4525 /* Force memory writes to complete before enabling and firing an
4526 * interrupt.
4528 wmb();
4530 e1000_irq_enable(adapter);
4532 /* fire an unusual interrupt on the test handler */
4533 ew32(ICS, E1000_ICS_RXSEQ);
4534 e1e_flush();
4535 msleep(100);
4537 e1000_irq_disable(adapter);
4539 rmb(); /* read flags after interrupt has been fired */
4541 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4542 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4543 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4544 } else {
4545 e_dbg("MSI interrupt test succeeded!\n");
4548 free_irq(adapter->pdev->irq, netdev);
4549 pci_disable_msi(adapter->pdev);
4551 msi_test_failed:
4552 e1000e_set_interrupt_capability(adapter);
4553 return e1000_request_irq(adapter);
4557 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4558 * @adapter: board private struct
4560 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4562 static int e1000_test_msi(struct e1000_adapter *adapter)
4564 int err;
4565 u16 pci_cmd;
4567 if (!(adapter->flags & FLAG_MSI_ENABLED))
4568 return 0;
4570 /* disable SERR in case the MSI write causes a master abort */
4571 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4572 if (pci_cmd & PCI_COMMAND_SERR)
4573 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4574 pci_cmd & ~PCI_COMMAND_SERR);
4576 err = e1000_test_msi_interrupt(adapter);
4578 /* re-enable SERR */
4579 if (pci_cmd & PCI_COMMAND_SERR) {
4580 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4581 pci_cmd |= PCI_COMMAND_SERR;
4582 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4585 return err;
4589 * e1000e_open - Called when a network interface is made active
4590 * @netdev: network interface device structure
4592 * Returns 0 on success, negative value on failure
4594 * The open entry point is called when a network interface is made
4595 * active by the system (IFF_UP). At this point all resources needed
4596 * for transmit and receive operations are allocated, the interrupt
4597 * handler is registered with the OS, the watchdog timer is started,
4598 * and the stack is notified that the interface is ready.
4600 int e1000e_open(struct net_device *netdev)
4602 struct e1000_adapter *adapter = netdev_priv(netdev);
4603 struct e1000_hw *hw = &adapter->hw;
4604 struct pci_dev *pdev = adapter->pdev;
4605 int err;
4607 /* disallow open during test */
4608 if (test_bit(__E1000_TESTING, &adapter->state))
4609 return -EBUSY;
4611 pm_runtime_get_sync(&pdev->dev);
4613 netif_carrier_off(netdev);
4614 netif_stop_queue(netdev);
4616 /* allocate transmit descriptors */
4617 err = e1000e_setup_tx_resources(adapter->tx_ring);
4618 if (err)
4619 goto err_setup_tx;
4621 /* allocate receive descriptors */
4622 err = e1000e_setup_rx_resources(adapter->rx_ring);
4623 if (err)
4624 goto err_setup_rx;
4626 /* If AMT is enabled, let the firmware know that the network
4627 * interface is now open and reset the part to a known state.
4629 if (adapter->flags & FLAG_HAS_AMT) {
4630 e1000e_get_hw_control(adapter);
4631 e1000e_reset(adapter);
4634 e1000e_power_up_phy(adapter);
4636 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4637 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4638 e1000_update_mng_vlan(adapter);
4640 /* DMA latency requirement to workaround jumbo issue */
4641 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4643 /* before we allocate an interrupt, we must be ready to handle it.
4644 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4645 * as soon as we call pci_request_irq, so we have to setup our
4646 * clean_rx handler before we do so.
4648 e1000_configure(adapter);
4650 err = e1000_request_irq(adapter);
4651 if (err)
4652 goto err_req_irq;
4654 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4655 * ignore e1000e MSI messages, which means we need to test our MSI
4656 * interrupt now
4658 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4659 err = e1000_test_msi(adapter);
4660 if (err) {
4661 e_err("Interrupt allocation failed\n");
4662 goto err_req_irq;
4666 /* From here on the code is the same as e1000e_up() */
4667 clear_bit(__E1000_DOWN, &adapter->state);
4669 napi_enable(&adapter->napi);
4671 e1000_irq_enable(adapter);
4673 adapter->tx_hang_recheck = false;
4675 hw->mac.get_link_status = true;
4676 pm_runtime_put(&pdev->dev);
4678 e1000e_trigger_lsc(adapter);
4680 return 0;
4682 err_req_irq:
4683 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4684 e1000e_release_hw_control(adapter);
4685 e1000_power_down_phy(adapter);
4686 e1000e_free_rx_resources(adapter->rx_ring);
4687 err_setup_rx:
4688 e1000e_free_tx_resources(adapter->tx_ring);
4689 err_setup_tx:
4690 e1000e_reset(adapter);
4691 pm_runtime_put_sync(&pdev->dev);
4693 return err;
4697 * e1000e_close - Disables a network interface
4698 * @netdev: network interface device structure
4700 * Returns 0, this is not allowed to fail
4702 * The close entry point is called when an interface is de-activated
4703 * by the OS. The hardware is still under the drivers control, but
4704 * needs to be disabled. A global MAC reset is issued to stop the
4705 * hardware, and all transmit and receive resources are freed.
4707 int e1000e_close(struct net_device *netdev)
4709 struct e1000_adapter *adapter = netdev_priv(netdev);
4710 struct pci_dev *pdev = adapter->pdev;
4711 int count = E1000_CHECK_RESET_COUNT;
4713 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4714 usleep_range(10000, 11000);
4716 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4718 pm_runtime_get_sync(&pdev->dev);
4720 if (netif_device_present(netdev)) {
4721 e1000e_down(adapter, true);
4722 e1000_free_irq(adapter);
4724 /* Link status message must follow this format */
4725 netdev_info(netdev, "NIC Link is Down\n");
4728 napi_disable(&adapter->napi);
4730 e1000e_free_tx_resources(adapter->tx_ring);
4731 e1000e_free_rx_resources(adapter->rx_ring);
4733 /* kill manageability vlan ID if supported, but not if a vlan with
4734 * the same ID is registered on the host OS (let 8021q kill it)
4736 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4737 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4738 adapter->mng_vlan_id);
4740 /* If AMT is enabled, let the firmware know that the network
4741 * interface is now closed
4743 if ((adapter->flags & FLAG_HAS_AMT) &&
4744 !test_bit(__E1000_TESTING, &adapter->state))
4745 e1000e_release_hw_control(adapter);
4747 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4749 pm_runtime_put_sync(&pdev->dev);
4751 return 0;
4755 * e1000_set_mac - Change the Ethernet Address of the NIC
4756 * @netdev: network interface device structure
4757 * @p: pointer to an address structure
4759 * Returns 0 on success, negative on failure
4761 static int e1000_set_mac(struct net_device *netdev, void *p)
4763 struct e1000_adapter *adapter = netdev_priv(netdev);
4764 struct e1000_hw *hw = &adapter->hw;
4765 struct sockaddr *addr = p;
4767 if (!is_valid_ether_addr(addr->sa_data))
4768 return -EADDRNOTAVAIL;
4770 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4771 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4773 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4775 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4776 /* activate the work around */
4777 e1000e_set_laa_state_82571(&adapter->hw, 1);
4779 /* Hold a copy of the LAA in RAR[14] This is done so that
4780 * between the time RAR[0] gets clobbered and the time it
4781 * gets fixed (in e1000_watchdog), the actual LAA is in one
4782 * of the RARs and no incoming packets directed to this port
4783 * are dropped. Eventually the LAA will be in RAR[0] and
4784 * RAR[14]
4786 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4787 adapter->hw.mac.rar_entry_count - 1);
4790 return 0;
4794 * e1000e_update_phy_task - work thread to update phy
4795 * @work: pointer to our work struct
4797 * this worker thread exists because we must acquire a
4798 * semaphore to read the phy, which we could msleep while
4799 * waiting for it, and we can't msleep in a timer.
4801 static void e1000e_update_phy_task(struct work_struct *work)
4803 struct e1000_adapter *adapter = container_of(work,
4804 struct e1000_adapter,
4805 update_phy_task);
4806 struct e1000_hw *hw = &adapter->hw;
4808 if (test_bit(__E1000_DOWN, &adapter->state))
4809 return;
4811 e1000_get_phy_info(hw);
4813 /* Enable EEE on 82579 after link up */
4814 if (hw->phy.type >= e1000_phy_82579)
4815 e1000_set_eee_pchlan(hw);
4819 * e1000_update_phy_info - timre call-back to update PHY info
4820 * @data: pointer to adapter cast into an unsigned long
4822 * Need to wait a few seconds after link up to get diagnostic information from
4823 * the phy
4825 static void e1000_update_phy_info(struct timer_list *t)
4827 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4829 if (test_bit(__E1000_DOWN, &adapter->state))
4830 return;
4832 schedule_work(&adapter->update_phy_task);
4836 * e1000e_update_phy_stats - Update the PHY statistics counters
4837 * @adapter: board private structure
4839 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4841 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4843 struct e1000_hw *hw = &adapter->hw;
4844 s32 ret_val;
4845 u16 phy_data;
4847 ret_val = hw->phy.ops.acquire(hw);
4848 if (ret_val)
4849 return;
4851 /* A page set is expensive so check if already on desired page.
4852 * If not, set to the page with the PHY status registers.
4854 hw->phy.addr = 1;
4855 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4856 &phy_data);
4857 if (ret_val)
4858 goto release;
4859 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4860 ret_val = hw->phy.ops.set_page(hw,
4861 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4862 if (ret_val)
4863 goto release;
4866 /* Single Collision Count */
4867 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4868 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4869 if (!ret_val)
4870 adapter->stats.scc += phy_data;
4872 /* Excessive Collision Count */
4873 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4874 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4875 if (!ret_val)
4876 adapter->stats.ecol += phy_data;
4878 /* Multiple Collision Count */
4879 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4880 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4881 if (!ret_val)
4882 adapter->stats.mcc += phy_data;
4884 /* Late Collision Count */
4885 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4886 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4887 if (!ret_val)
4888 adapter->stats.latecol += phy_data;
4890 /* Collision Count - also used for adaptive IFS */
4891 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4892 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4893 if (!ret_val)
4894 hw->mac.collision_delta = phy_data;
4896 /* Defer Count */
4897 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4898 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4899 if (!ret_val)
4900 adapter->stats.dc += phy_data;
4902 /* Transmit with no CRS */
4903 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4904 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4905 if (!ret_val)
4906 adapter->stats.tncrs += phy_data;
4908 release:
4909 hw->phy.ops.release(hw);
4913 * e1000e_update_stats - Update the board statistics counters
4914 * @adapter: board private structure
4916 static void e1000e_update_stats(struct e1000_adapter *adapter)
4918 struct net_device *netdev = adapter->netdev;
4919 struct e1000_hw *hw = &adapter->hw;
4920 struct pci_dev *pdev = adapter->pdev;
4922 /* Prevent stats update while adapter is being reset, or if the pci
4923 * connection is down.
4925 if (adapter->link_speed == 0)
4926 return;
4927 if (pci_channel_offline(pdev))
4928 return;
4930 adapter->stats.crcerrs += er32(CRCERRS);
4931 adapter->stats.gprc += er32(GPRC);
4932 adapter->stats.gorc += er32(GORCL);
4933 er32(GORCH); /* Clear gorc */
4934 adapter->stats.bprc += er32(BPRC);
4935 adapter->stats.mprc += er32(MPRC);
4936 adapter->stats.roc += er32(ROC);
4938 adapter->stats.mpc += er32(MPC);
4940 /* Half-duplex statistics */
4941 if (adapter->link_duplex == HALF_DUPLEX) {
4942 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4943 e1000e_update_phy_stats(adapter);
4944 } else {
4945 adapter->stats.scc += er32(SCC);
4946 adapter->stats.ecol += er32(ECOL);
4947 adapter->stats.mcc += er32(MCC);
4948 adapter->stats.latecol += er32(LATECOL);
4949 adapter->stats.dc += er32(DC);
4951 hw->mac.collision_delta = er32(COLC);
4953 if ((hw->mac.type != e1000_82574) &&
4954 (hw->mac.type != e1000_82583))
4955 adapter->stats.tncrs += er32(TNCRS);
4957 adapter->stats.colc += hw->mac.collision_delta;
4960 adapter->stats.xonrxc += er32(XONRXC);
4961 adapter->stats.xontxc += er32(XONTXC);
4962 adapter->stats.xoffrxc += er32(XOFFRXC);
4963 adapter->stats.xofftxc += er32(XOFFTXC);
4964 adapter->stats.gptc += er32(GPTC);
4965 adapter->stats.gotc += er32(GOTCL);
4966 er32(GOTCH); /* Clear gotc */
4967 adapter->stats.rnbc += er32(RNBC);
4968 adapter->stats.ruc += er32(RUC);
4970 adapter->stats.mptc += er32(MPTC);
4971 adapter->stats.bptc += er32(BPTC);
4973 /* used for adaptive IFS */
4975 hw->mac.tx_packet_delta = er32(TPT);
4976 adapter->stats.tpt += hw->mac.tx_packet_delta;
4978 adapter->stats.algnerrc += er32(ALGNERRC);
4979 adapter->stats.rxerrc += er32(RXERRC);
4980 adapter->stats.cexterr += er32(CEXTERR);
4981 adapter->stats.tsctc += er32(TSCTC);
4982 adapter->stats.tsctfc += er32(TSCTFC);
4984 /* Fill out the OS statistics structure */
4985 netdev->stats.multicast = adapter->stats.mprc;
4986 netdev->stats.collisions = adapter->stats.colc;
4988 /* Rx Errors */
4990 /* RLEC on some newer hardware can be incorrect so build
4991 * our own version based on RUC and ROC
4993 netdev->stats.rx_errors = adapter->stats.rxerrc +
4994 adapter->stats.crcerrs + adapter->stats.algnerrc +
4995 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4996 netdev->stats.rx_length_errors = adapter->stats.ruc +
4997 adapter->stats.roc;
4998 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4999 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5000 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5002 /* Tx Errors */
5003 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5004 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5005 netdev->stats.tx_window_errors = adapter->stats.latecol;
5006 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5008 /* Tx Dropped needs to be maintained elsewhere */
5010 /* Management Stats */
5011 adapter->stats.mgptc += er32(MGTPTC);
5012 adapter->stats.mgprc += er32(MGTPRC);
5013 adapter->stats.mgpdc += er32(MGTPDC);
5015 /* Correctable ECC Errors */
5016 if (hw->mac.type >= e1000_pch_lpt) {
5017 u32 pbeccsts = er32(PBECCSTS);
5019 adapter->corr_errors +=
5020 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5021 adapter->uncorr_errors +=
5022 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5023 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5028 * e1000_phy_read_status - Update the PHY register status snapshot
5029 * @adapter: board private structure
5031 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5033 struct e1000_hw *hw = &adapter->hw;
5034 struct e1000_phy_regs *phy = &adapter->phy_regs;
5036 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5037 (er32(STATUS) & E1000_STATUS_LU) &&
5038 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5039 int ret_val;
5041 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5042 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5043 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5044 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5045 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5046 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5047 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5048 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5049 if (ret_val)
5050 e_warn("Error reading PHY register\n");
5051 } else {
5052 /* Do not read PHY registers if link is not up
5053 * Set values to typical power-on defaults
5055 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5056 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5057 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5058 BMSR_ERCAP);
5059 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5060 ADVERTISE_ALL | ADVERTISE_CSMA);
5061 phy->lpa = 0;
5062 phy->expansion = EXPANSION_ENABLENPAGE;
5063 phy->ctrl1000 = ADVERTISE_1000FULL;
5064 phy->stat1000 = 0;
5065 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5069 static void e1000_print_link_info(struct e1000_adapter *adapter)
5071 struct e1000_hw *hw = &adapter->hw;
5072 u32 ctrl = er32(CTRL);
5074 /* Link status message must follow this format for user tools */
5075 netdev_info(adapter->netdev,
5076 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5077 adapter->link_speed,
5078 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5079 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5080 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5081 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5084 static bool e1000e_has_link(struct e1000_adapter *adapter)
5086 struct e1000_hw *hw = &adapter->hw;
5087 bool link_active = false;
5088 s32 ret_val = 0;
5090 /* get_link_status is set on LSC (link status) interrupt or
5091 * Rx sequence error interrupt. get_link_status will stay
5092 * true until the check_for_link establishes link
5093 * for copper adapters ONLY
5095 switch (hw->phy.media_type) {
5096 case e1000_media_type_copper:
5097 if (hw->mac.get_link_status) {
5098 ret_val = hw->mac.ops.check_for_link(hw);
5099 link_active = !hw->mac.get_link_status;
5100 } else {
5101 link_active = true;
5103 break;
5104 case e1000_media_type_fiber:
5105 ret_val = hw->mac.ops.check_for_link(hw);
5106 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5107 break;
5108 case e1000_media_type_internal_serdes:
5109 ret_val = hw->mac.ops.check_for_link(hw);
5110 link_active = hw->mac.serdes_has_link;
5111 break;
5112 default:
5113 case e1000_media_type_unknown:
5114 break;
5117 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5118 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5119 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5120 e_info("Gigabit has been disabled, downgrading speed\n");
5123 return link_active;
5126 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5128 /* make sure the receive unit is started */
5129 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5130 (adapter->flags & FLAG_RESTART_NOW)) {
5131 struct e1000_hw *hw = &adapter->hw;
5132 u32 rctl = er32(RCTL);
5134 ew32(RCTL, rctl | E1000_RCTL_EN);
5135 adapter->flags &= ~FLAG_RESTART_NOW;
5139 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5141 struct e1000_hw *hw = &adapter->hw;
5143 /* With 82574 controllers, PHY needs to be checked periodically
5144 * for hung state and reset, if two calls return true
5146 if (e1000_check_phy_82574(hw))
5147 adapter->phy_hang_count++;
5148 else
5149 adapter->phy_hang_count = 0;
5151 if (adapter->phy_hang_count > 1) {
5152 adapter->phy_hang_count = 0;
5153 e_dbg("PHY appears hung - resetting\n");
5154 schedule_work(&adapter->reset_task);
5159 * e1000_watchdog - Timer Call-back
5160 * @data: pointer to adapter cast into an unsigned long
5162 static void e1000_watchdog(struct timer_list *t)
5164 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5166 /* Do the rest outside of interrupt context */
5167 schedule_work(&adapter->watchdog_task);
5169 /* TODO: make this use queue_delayed_work() */
5172 static void e1000_watchdog_task(struct work_struct *work)
5174 struct e1000_adapter *adapter = container_of(work,
5175 struct e1000_adapter,
5176 watchdog_task);
5177 struct net_device *netdev = adapter->netdev;
5178 struct e1000_mac_info *mac = &adapter->hw.mac;
5179 struct e1000_phy_info *phy = &adapter->hw.phy;
5180 struct e1000_ring *tx_ring = adapter->tx_ring;
5181 u32 dmoff_exit_timeout = 100, tries = 0;
5182 struct e1000_hw *hw = &adapter->hw;
5183 u32 link, tctl, pcim_state;
5185 if (test_bit(__E1000_DOWN, &adapter->state))
5186 return;
5188 link = e1000e_has_link(adapter);
5189 if ((netif_carrier_ok(netdev)) && link) {
5190 /* Cancel scheduled suspend requests. */
5191 pm_runtime_resume(netdev->dev.parent);
5193 e1000e_enable_receives(adapter);
5194 goto link_up;
5197 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5198 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5199 e1000_update_mng_vlan(adapter);
5201 if (link) {
5202 if (!netif_carrier_ok(netdev)) {
5203 bool txb2b = true;
5205 /* Cancel scheduled suspend requests. */
5206 pm_runtime_resume(netdev->dev.parent);
5208 /* Checking if MAC is in DMoff state*/
5209 pcim_state = er32(STATUS);
5210 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5211 if (tries++ == dmoff_exit_timeout) {
5212 e_dbg("Error in exiting dmoff\n");
5213 break;
5215 usleep_range(10000, 20000);
5216 pcim_state = er32(STATUS);
5218 /* Checking if MAC exited DMoff state */
5219 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5220 e1000_phy_hw_reset(&adapter->hw);
5223 /* update snapshot of PHY registers on LSC */
5224 e1000_phy_read_status(adapter);
5225 mac->ops.get_link_up_info(&adapter->hw,
5226 &adapter->link_speed,
5227 &adapter->link_duplex);
5228 e1000_print_link_info(adapter);
5230 /* check if SmartSpeed worked */
5231 e1000e_check_downshift(hw);
5232 if (phy->speed_downgraded)
5233 netdev_warn(netdev,
5234 "Link Speed was downgraded by SmartSpeed\n");
5236 /* On supported PHYs, check for duplex mismatch only
5237 * if link has autonegotiated at 10/100 half
5239 if ((hw->phy.type == e1000_phy_igp_3 ||
5240 hw->phy.type == e1000_phy_bm) &&
5241 hw->mac.autoneg &&
5242 (adapter->link_speed == SPEED_10 ||
5243 adapter->link_speed == SPEED_100) &&
5244 (adapter->link_duplex == HALF_DUPLEX)) {
5245 u16 autoneg_exp;
5247 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5249 if (!(autoneg_exp & EXPANSION_NWAY))
5250 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5253 /* adjust timeout factor according to speed/duplex */
5254 adapter->tx_timeout_factor = 1;
5255 switch (adapter->link_speed) {
5256 case SPEED_10:
5257 txb2b = false;
5258 adapter->tx_timeout_factor = 16;
5259 break;
5260 case SPEED_100:
5261 txb2b = false;
5262 adapter->tx_timeout_factor = 10;
5263 break;
5266 /* workaround: re-program speed mode bit after
5267 * link-up event
5269 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5270 !txb2b) {
5271 u32 tarc0;
5273 tarc0 = er32(TARC(0));
5274 tarc0 &= ~SPEED_MODE_BIT;
5275 ew32(TARC(0), tarc0);
5278 /* disable TSO for pcie and 10/100 speeds, to avoid
5279 * some hardware issues
5281 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5282 switch (adapter->link_speed) {
5283 case SPEED_10:
5284 case SPEED_100:
5285 e_info("10/100 speed: disabling TSO\n");
5286 netdev->features &= ~NETIF_F_TSO;
5287 netdev->features &= ~NETIF_F_TSO6;
5288 break;
5289 case SPEED_1000:
5290 netdev->features |= NETIF_F_TSO;
5291 netdev->features |= NETIF_F_TSO6;
5292 break;
5293 default:
5294 /* oops */
5295 break;
5299 /* enable transmits in the hardware, need to do this
5300 * after setting TARC(0)
5302 tctl = er32(TCTL);
5303 tctl |= E1000_TCTL_EN;
5304 ew32(TCTL, tctl);
5306 /* Perform any post-link-up configuration before
5307 * reporting link up.
5309 if (phy->ops.cfg_on_link_up)
5310 phy->ops.cfg_on_link_up(hw);
5312 netif_wake_queue(netdev);
5313 netif_carrier_on(netdev);
5315 if (!test_bit(__E1000_DOWN, &adapter->state))
5316 mod_timer(&adapter->phy_info_timer,
5317 round_jiffies(jiffies + 2 * HZ));
5319 } else {
5320 if (netif_carrier_ok(netdev)) {
5321 adapter->link_speed = 0;
5322 adapter->link_duplex = 0;
5323 /* Link status message must follow this format */
5324 netdev_info(netdev, "NIC Link is Down\n");
5325 netif_carrier_off(netdev);
5326 netif_stop_queue(netdev);
5327 if (!test_bit(__E1000_DOWN, &adapter->state))
5328 mod_timer(&adapter->phy_info_timer,
5329 round_jiffies(jiffies + 2 * HZ));
5331 /* 8000ES2LAN requires a Rx packet buffer work-around
5332 * on link down event; reset the controller to flush
5333 * the Rx packet buffer.
5335 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5336 adapter->flags |= FLAG_RESTART_NOW;
5337 else
5338 pm_schedule_suspend(netdev->dev.parent,
5339 LINK_TIMEOUT);
5343 link_up:
5344 spin_lock(&adapter->stats64_lock);
5345 e1000e_update_stats(adapter);
5347 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5348 adapter->tpt_old = adapter->stats.tpt;
5349 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5350 adapter->colc_old = adapter->stats.colc;
5352 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5353 adapter->gorc_old = adapter->stats.gorc;
5354 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5355 adapter->gotc_old = adapter->stats.gotc;
5356 spin_unlock(&adapter->stats64_lock);
5358 /* If the link is lost the controller stops DMA, but
5359 * if there is queued Tx work it cannot be done. So
5360 * reset the controller to flush the Tx packet buffers.
5362 if (!netif_carrier_ok(netdev) &&
5363 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5364 adapter->flags |= FLAG_RESTART_NOW;
5366 /* If reset is necessary, do it outside of interrupt context. */
5367 if (adapter->flags & FLAG_RESTART_NOW) {
5368 schedule_work(&adapter->reset_task);
5369 /* return immediately since reset is imminent */
5370 return;
5373 e1000e_update_adaptive(&adapter->hw);
5375 /* Simple mode for Interrupt Throttle Rate (ITR) */
5376 if (adapter->itr_setting == 4) {
5377 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5378 * Total asymmetrical Tx or Rx gets ITR=8000;
5379 * everyone else is between 2000-8000.
5381 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5382 u32 dif = (adapter->gotc > adapter->gorc ?
5383 adapter->gotc - adapter->gorc :
5384 adapter->gorc - adapter->gotc) / 10000;
5385 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5387 e1000e_write_itr(adapter, itr);
5390 /* Cause software interrupt to ensure Rx ring is cleaned */
5391 if (adapter->msix_entries)
5392 ew32(ICS, adapter->rx_ring->ims_val);
5393 else
5394 ew32(ICS, E1000_ICS_RXDMT0);
5396 /* flush pending descriptors to memory before detecting Tx hang */
5397 e1000e_flush_descriptors(adapter);
5399 /* Force detection of hung controller every watchdog period */
5400 adapter->detect_tx_hung = true;
5402 /* With 82571 controllers, LAA may be overwritten due to controller
5403 * reset from the other port. Set the appropriate LAA in RAR[0]
5405 if (e1000e_get_laa_state_82571(hw))
5406 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5408 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5409 e1000e_check_82574_phy_workaround(adapter);
5411 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5412 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5413 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5414 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5415 er32(RXSTMPH);
5416 adapter->rx_hwtstamp_cleared++;
5417 } else {
5418 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5422 /* Reset the timer */
5423 if (!test_bit(__E1000_DOWN, &adapter->state))
5424 mod_timer(&adapter->watchdog_timer,
5425 round_jiffies(jiffies + 2 * HZ));
5428 #define E1000_TX_FLAGS_CSUM 0x00000001
5429 #define E1000_TX_FLAGS_VLAN 0x00000002
5430 #define E1000_TX_FLAGS_TSO 0x00000004
5431 #define E1000_TX_FLAGS_IPV4 0x00000008
5432 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5433 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5434 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5435 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5437 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5438 __be16 protocol)
5440 struct e1000_context_desc *context_desc;
5441 struct e1000_buffer *buffer_info;
5442 unsigned int i;
5443 u32 cmd_length = 0;
5444 u16 ipcse = 0, mss;
5445 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5446 int err;
5448 if (!skb_is_gso(skb))
5449 return 0;
5451 err = skb_cow_head(skb, 0);
5452 if (err < 0)
5453 return err;
5455 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5456 mss = skb_shinfo(skb)->gso_size;
5457 if (protocol == htons(ETH_P_IP)) {
5458 struct iphdr *iph = ip_hdr(skb);
5459 iph->tot_len = 0;
5460 iph->check = 0;
5461 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5462 0, IPPROTO_TCP, 0);
5463 cmd_length = E1000_TXD_CMD_IP;
5464 ipcse = skb_transport_offset(skb) - 1;
5465 } else if (skb_is_gso_v6(skb)) {
5466 tcp_v6_gso_csum_prep(skb);
5467 ipcse = 0;
5469 ipcss = skb_network_offset(skb);
5470 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5471 tucss = skb_transport_offset(skb);
5472 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5474 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5475 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5477 i = tx_ring->next_to_use;
5478 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5479 buffer_info = &tx_ring->buffer_info[i];
5481 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5482 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5483 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5484 context_desc->upper_setup.tcp_fields.tucss = tucss;
5485 context_desc->upper_setup.tcp_fields.tucso = tucso;
5486 context_desc->upper_setup.tcp_fields.tucse = 0;
5487 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5488 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5489 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5491 buffer_info->time_stamp = jiffies;
5492 buffer_info->next_to_watch = i;
5494 i++;
5495 if (i == tx_ring->count)
5496 i = 0;
5497 tx_ring->next_to_use = i;
5499 return 1;
5502 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5503 __be16 protocol)
5505 struct e1000_adapter *adapter = tx_ring->adapter;
5506 struct e1000_context_desc *context_desc;
5507 struct e1000_buffer *buffer_info;
5508 unsigned int i;
5509 u8 css;
5510 u32 cmd_len = E1000_TXD_CMD_DEXT;
5512 if (skb->ip_summed != CHECKSUM_PARTIAL)
5513 return false;
5515 switch (protocol) {
5516 case cpu_to_be16(ETH_P_IP):
5517 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5518 cmd_len |= E1000_TXD_CMD_TCP;
5519 break;
5520 case cpu_to_be16(ETH_P_IPV6):
5521 /* XXX not handling all IPV6 headers */
5522 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5523 cmd_len |= E1000_TXD_CMD_TCP;
5524 break;
5525 default:
5526 if (unlikely(net_ratelimit()))
5527 e_warn("checksum_partial proto=%x!\n",
5528 be16_to_cpu(protocol));
5529 break;
5532 css = skb_checksum_start_offset(skb);
5534 i = tx_ring->next_to_use;
5535 buffer_info = &tx_ring->buffer_info[i];
5536 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5538 context_desc->lower_setup.ip_config = 0;
5539 context_desc->upper_setup.tcp_fields.tucss = css;
5540 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5541 context_desc->upper_setup.tcp_fields.tucse = 0;
5542 context_desc->tcp_seg_setup.data = 0;
5543 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5545 buffer_info->time_stamp = jiffies;
5546 buffer_info->next_to_watch = i;
5548 i++;
5549 if (i == tx_ring->count)
5550 i = 0;
5551 tx_ring->next_to_use = i;
5553 return true;
5556 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5557 unsigned int first, unsigned int max_per_txd,
5558 unsigned int nr_frags)
5560 struct e1000_adapter *adapter = tx_ring->adapter;
5561 struct pci_dev *pdev = adapter->pdev;
5562 struct e1000_buffer *buffer_info;
5563 unsigned int len = skb_headlen(skb);
5564 unsigned int offset = 0, size, count = 0, i;
5565 unsigned int f, bytecount, segs;
5567 i = tx_ring->next_to_use;
5569 while (len) {
5570 buffer_info = &tx_ring->buffer_info[i];
5571 size = min(len, max_per_txd);
5573 buffer_info->length = size;
5574 buffer_info->time_stamp = jiffies;
5575 buffer_info->next_to_watch = i;
5576 buffer_info->dma = dma_map_single(&pdev->dev,
5577 skb->data + offset,
5578 size, DMA_TO_DEVICE);
5579 buffer_info->mapped_as_page = false;
5580 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5581 goto dma_error;
5583 len -= size;
5584 offset += size;
5585 count++;
5587 if (len) {
5588 i++;
5589 if (i == tx_ring->count)
5590 i = 0;
5594 for (f = 0; f < nr_frags; f++) {
5595 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5597 len = skb_frag_size(frag);
5598 offset = 0;
5600 while (len) {
5601 i++;
5602 if (i == tx_ring->count)
5603 i = 0;
5605 buffer_info = &tx_ring->buffer_info[i];
5606 size = min(len, max_per_txd);
5608 buffer_info->length = size;
5609 buffer_info->time_stamp = jiffies;
5610 buffer_info->next_to_watch = i;
5611 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5612 offset, size,
5613 DMA_TO_DEVICE);
5614 buffer_info->mapped_as_page = true;
5615 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5616 goto dma_error;
5618 len -= size;
5619 offset += size;
5620 count++;
5624 segs = skb_shinfo(skb)->gso_segs ? : 1;
5625 /* multiply data chunks by size of headers */
5626 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5628 tx_ring->buffer_info[i].skb = skb;
5629 tx_ring->buffer_info[i].segs = segs;
5630 tx_ring->buffer_info[i].bytecount = bytecount;
5631 tx_ring->buffer_info[first].next_to_watch = i;
5633 return count;
5635 dma_error:
5636 dev_err(&pdev->dev, "Tx DMA map failed\n");
5637 buffer_info->dma = 0;
5638 if (count)
5639 count--;
5641 while (count--) {
5642 if (i == 0)
5643 i += tx_ring->count;
5644 i--;
5645 buffer_info = &tx_ring->buffer_info[i];
5646 e1000_put_txbuf(tx_ring, buffer_info, true);
5649 return 0;
5652 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5654 struct e1000_adapter *adapter = tx_ring->adapter;
5655 struct e1000_tx_desc *tx_desc = NULL;
5656 struct e1000_buffer *buffer_info;
5657 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5658 unsigned int i;
5660 if (tx_flags & E1000_TX_FLAGS_TSO) {
5661 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5662 E1000_TXD_CMD_TSE;
5663 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5665 if (tx_flags & E1000_TX_FLAGS_IPV4)
5666 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5669 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5670 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5671 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5674 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5675 txd_lower |= E1000_TXD_CMD_VLE;
5676 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5679 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5680 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5682 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5683 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5684 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5687 i = tx_ring->next_to_use;
5689 do {
5690 buffer_info = &tx_ring->buffer_info[i];
5691 tx_desc = E1000_TX_DESC(*tx_ring, i);
5692 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5693 tx_desc->lower.data = cpu_to_le32(txd_lower |
5694 buffer_info->length);
5695 tx_desc->upper.data = cpu_to_le32(txd_upper);
5697 i++;
5698 if (i == tx_ring->count)
5699 i = 0;
5700 } while (--count > 0);
5702 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5704 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5705 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5706 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5708 /* Force memory writes to complete before letting h/w
5709 * know there are new descriptors to fetch. (Only
5710 * applicable for weak-ordered memory model archs,
5711 * such as IA-64).
5713 wmb();
5715 tx_ring->next_to_use = i;
5718 #define MINIMUM_DHCP_PACKET_SIZE 282
5719 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5720 struct sk_buff *skb)
5722 struct e1000_hw *hw = &adapter->hw;
5723 u16 length, offset;
5725 if (skb_vlan_tag_present(skb) &&
5726 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5727 (adapter->hw.mng_cookie.status &
5728 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5729 return 0;
5731 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5732 return 0;
5734 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5735 return 0;
5738 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5739 struct udphdr *udp;
5741 if (ip->protocol != IPPROTO_UDP)
5742 return 0;
5744 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5745 if (ntohs(udp->dest) != 67)
5746 return 0;
5748 offset = (u8 *)udp + 8 - skb->data;
5749 length = skb->len - offset;
5750 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5753 return 0;
5756 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5758 struct e1000_adapter *adapter = tx_ring->adapter;
5760 netif_stop_queue(adapter->netdev);
5761 /* Herbert's original patch had:
5762 * smp_mb__after_netif_stop_queue();
5763 * but since that doesn't exist yet, just open code it.
5765 smp_mb();
5767 /* We need to check again in a case another CPU has just
5768 * made room available.
5770 if (e1000_desc_unused(tx_ring) < size)
5771 return -EBUSY;
5773 /* A reprieve! */
5774 netif_start_queue(adapter->netdev);
5775 ++adapter->restart_queue;
5776 return 0;
5779 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5781 BUG_ON(size > tx_ring->count);
5783 if (e1000_desc_unused(tx_ring) >= size)
5784 return 0;
5785 return __e1000_maybe_stop_tx(tx_ring, size);
5788 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5789 struct net_device *netdev)
5791 struct e1000_adapter *adapter = netdev_priv(netdev);
5792 struct e1000_ring *tx_ring = adapter->tx_ring;
5793 unsigned int first;
5794 unsigned int tx_flags = 0;
5795 unsigned int len = skb_headlen(skb);
5796 unsigned int nr_frags;
5797 unsigned int mss;
5798 int count = 0;
5799 int tso;
5800 unsigned int f;
5801 __be16 protocol = vlan_get_protocol(skb);
5803 if (test_bit(__E1000_DOWN, &adapter->state)) {
5804 dev_kfree_skb_any(skb);
5805 return NETDEV_TX_OK;
5808 if (skb->len <= 0) {
5809 dev_kfree_skb_any(skb);
5810 return NETDEV_TX_OK;
5813 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5814 * pad skb in order to meet this minimum size requirement
5816 if (skb_put_padto(skb, 17))
5817 return NETDEV_TX_OK;
5819 mss = skb_shinfo(skb)->gso_size;
5820 if (mss) {
5821 u8 hdr_len;
5823 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5824 * points to just header, pull a few bytes of payload from
5825 * frags into skb->data
5827 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5828 /* we do this workaround for ES2LAN, but it is un-necessary,
5829 * avoiding it could save a lot of cycles
5831 if (skb->data_len && (hdr_len == len)) {
5832 unsigned int pull_size;
5834 pull_size = min_t(unsigned int, 4, skb->data_len);
5835 if (!__pskb_pull_tail(skb, pull_size)) {
5836 e_err("__pskb_pull_tail failed.\n");
5837 dev_kfree_skb_any(skb);
5838 return NETDEV_TX_OK;
5840 len = skb_headlen(skb);
5844 /* reserve a descriptor for the offload context */
5845 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5846 count++;
5847 count++;
5849 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5851 nr_frags = skb_shinfo(skb)->nr_frags;
5852 for (f = 0; f < nr_frags; f++)
5853 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5854 adapter->tx_fifo_limit);
5856 if (adapter->hw.mac.tx_pkt_filtering)
5857 e1000_transfer_dhcp_info(adapter, skb);
5859 /* need: count + 2 desc gap to keep tail from touching
5860 * head, otherwise try next time
5862 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5863 return NETDEV_TX_BUSY;
5865 if (skb_vlan_tag_present(skb)) {
5866 tx_flags |= E1000_TX_FLAGS_VLAN;
5867 tx_flags |= (skb_vlan_tag_get(skb) <<
5868 E1000_TX_FLAGS_VLAN_SHIFT);
5871 first = tx_ring->next_to_use;
5873 tso = e1000_tso(tx_ring, skb, protocol);
5874 if (tso < 0) {
5875 dev_kfree_skb_any(skb);
5876 return NETDEV_TX_OK;
5879 if (tso)
5880 tx_flags |= E1000_TX_FLAGS_TSO;
5881 else if (e1000_tx_csum(tx_ring, skb, protocol))
5882 tx_flags |= E1000_TX_FLAGS_CSUM;
5884 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5885 * 82571 hardware supports TSO capabilities for IPv6 as well...
5886 * no longer assume, we must.
5888 if (protocol == htons(ETH_P_IP))
5889 tx_flags |= E1000_TX_FLAGS_IPV4;
5891 if (unlikely(skb->no_fcs))
5892 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5894 /* if count is 0 then mapping error has occurred */
5895 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5896 nr_frags);
5897 if (count) {
5898 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5899 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5900 if (!adapter->tx_hwtstamp_skb) {
5901 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5902 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5903 adapter->tx_hwtstamp_skb = skb_get(skb);
5904 adapter->tx_hwtstamp_start = jiffies;
5905 schedule_work(&adapter->tx_hwtstamp_work);
5906 } else {
5907 adapter->tx_hwtstamp_skipped++;
5911 skb_tx_timestamp(skb);
5913 netdev_sent_queue(netdev, skb->len);
5914 e1000_tx_queue(tx_ring, tx_flags, count);
5915 /* Make sure there is space in the ring for the next send. */
5916 e1000_maybe_stop_tx(tx_ring,
5917 (MAX_SKB_FRAGS *
5918 DIV_ROUND_UP(PAGE_SIZE,
5919 adapter->tx_fifo_limit) + 2));
5921 if (!netdev_xmit_more() ||
5922 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5923 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5924 e1000e_update_tdt_wa(tx_ring,
5925 tx_ring->next_to_use);
5926 else
5927 writel(tx_ring->next_to_use, tx_ring->tail);
5929 } else {
5930 dev_kfree_skb_any(skb);
5931 tx_ring->buffer_info[first].time_stamp = 0;
5932 tx_ring->next_to_use = first;
5935 return NETDEV_TX_OK;
5939 * e1000_tx_timeout - Respond to a Tx Hang
5940 * @netdev: network interface device structure
5942 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5944 struct e1000_adapter *adapter = netdev_priv(netdev);
5946 /* Do the reset outside of interrupt context */
5947 adapter->tx_timeout_count++;
5948 schedule_work(&adapter->reset_task);
5951 static void e1000_reset_task(struct work_struct *work)
5953 struct e1000_adapter *adapter;
5954 adapter = container_of(work, struct e1000_adapter, reset_task);
5956 /* don't run the task if already down */
5957 if (test_bit(__E1000_DOWN, &adapter->state))
5958 return;
5960 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5961 e1000e_dump(adapter);
5962 e_err("Reset adapter unexpectedly\n");
5964 e1000e_reinit_locked(adapter);
5968 * e1000_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5972 * Returns the address of the device statistics structure.
5974 void e1000e_get_stats64(struct net_device *netdev,
5975 struct rtnl_link_stats64 *stats)
5977 struct e1000_adapter *adapter = netdev_priv(netdev);
5979 spin_lock(&adapter->stats64_lock);
5980 e1000e_update_stats(adapter);
5981 /* Fill out the OS statistics structure */
5982 stats->rx_bytes = adapter->stats.gorc;
5983 stats->rx_packets = adapter->stats.gprc;
5984 stats->tx_bytes = adapter->stats.gotc;
5985 stats->tx_packets = adapter->stats.gptc;
5986 stats->multicast = adapter->stats.mprc;
5987 stats->collisions = adapter->stats.colc;
5989 /* Rx Errors */
5991 /* RLEC on some newer hardware can be incorrect so build
5992 * our own version based on RUC and ROC
5994 stats->rx_errors = adapter->stats.rxerrc +
5995 adapter->stats.crcerrs + adapter->stats.algnerrc +
5996 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998 stats->rx_crc_errors = adapter->stats.crcerrs;
5999 stats->rx_frame_errors = adapter->stats.algnerrc;
6000 stats->rx_missed_errors = adapter->stats.mpc;
6002 /* Tx Errors */
6003 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004 stats->tx_aborted_errors = adapter->stats.ecol;
6005 stats->tx_window_errors = adapter->stats.latecol;
6006 stats->tx_carrier_errors = adapter->stats.tncrs;
6008 /* Tx Dropped needs to be maintained elsewhere */
6010 spin_unlock(&adapter->stats64_lock);
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6018 * Returns 0 on success, negative on failure
6020 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6022 struct e1000_adapter *adapter = netdev_priv(netdev);
6023 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6025 /* Jumbo frame support */
6026 if ((new_mtu > ETH_DATA_LEN) &&
6027 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028 e_err("Jumbo Frames not supported.\n");
6029 return -EINVAL;
6032 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035 (new_mtu > ETH_DATA_LEN)) {
6036 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037 return -EINVAL;
6040 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041 usleep_range(1000, 1100);
6042 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043 adapter->max_frame_size = max_frame;
6044 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045 netdev->mtu, new_mtu);
6046 netdev->mtu = new_mtu;
6048 pm_runtime_get_sync(netdev->dev.parent);
6050 if (netif_running(netdev))
6051 e1000e_down(adapter, true);
6053 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054 * means we reserve 2 more, this pushes us to allocate from the next
6055 * larger slab size.
6056 * i.e. RXBUFFER_2048 --> size-4096 slab
6057 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058 * fragmented skbs
6061 if (max_frame <= 2048)
6062 adapter->rx_buffer_len = 2048;
6063 else
6064 adapter->rx_buffer_len = 4096;
6066 /* adjust allocation if LPE protects us, and we aren't using SBP */
6067 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6070 if (netif_running(netdev))
6071 e1000e_up(adapter);
6072 else
6073 e1000e_reset(adapter);
6075 pm_runtime_put_sync(netdev->dev.parent);
6077 clear_bit(__E1000_RESETTING, &adapter->state);
6079 return 0;
6082 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083 int cmd)
6085 struct e1000_adapter *adapter = netdev_priv(netdev);
6086 struct mii_ioctl_data *data = if_mii(ifr);
6088 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089 return -EOPNOTSUPP;
6091 switch (cmd) {
6092 case SIOCGMIIPHY:
6093 data->phy_id = adapter->hw.phy.addr;
6094 break;
6095 case SIOCGMIIREG:
6096 e1000_phy_read_status(adapter);
6098 switch (data->reg_num & 0x1F) {
6099 case MII_BMCR:
6100 data->val_out = adapter->phy_regs.bmcr;
6101 break;
6102 case MII_BMSR:
6103 data->val_out = adapter->phy_regs.bmsr;
6104 break;
6105 case MII_PHYSID1:
6106 data->val_out = (adapter->hw.phy.id >> 16);
6107 break;
6108 case MII_PHYSID2:
6109 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110 break;
6111 case MII_ADVERTISE:
6112 data->val_out = adapter->phy_regs.advertise;
6113 break;
6114 case MII_LPA:
6115 data->val_out = adapter->phy_regs.lpa;
6116 break;
6117 case MII_EXPANSION:
6118 data->val_out = adapter->phy_regs.expansion;
6119 break;
6120 case MII_CTRL1000:
6121 data->val_out = adapter->phy_regs.ctrl1000;
6122 break;
6123 case MII_STAT1000:
6124 data->val_out = adapter->phy_regs.stat1000;
6125 break;
6126 case MII_ESTATUS:
6127 data->val_out = adapter->phy_regs.estatus;
6128 break;
6129 default:
6130 return -EIO;
6132 break;
6133 case SIOCSMIIREG:
6134 default:
6135 return -EOPNOTSUPP;
6137 return 0;
6141 * e1000e_hwtstamp_ioctl - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifreq: interface request
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6156 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6158 struct e1000_adapter *adapter = netdev_priv(netdev);
6159 struct hwtstamp_config config;
6160 int ret_val;
6162 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163 return -EFAULT;
6165 ret_val = e1000e_config_hwtstamp(adapter, &config);
6166 if (ret_val)
6167 return ret_val;
6169 switch (config.rx_filter) {
6170 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176 /* With V2 type filters which specify a Sync or Delay Request,
6177 * Path Delay Request/Response messages are also time stamped
6178 * by hardware so notify the caller the requested packets plus
6179 * some others are time stamped.
6181 config.rx_filter = HWTSTAMP_FILTER_SOME;
6182 break;
6183 default:
6184 break;
6187 return copy_to_user(ifr->ifr_data, &config,
6188 sizeof(config)) ? -EFAULT : 0;
6191 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6193 struct e1000_adapter *adapter = netdev_priv(netdev);
6195 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6199 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6201 switch (cmd) {
6202 case SIOCGMIIPHY:
6203 case SIOCGMIIREG:
6204 case SIOCSMIIREG:
6205 return e1000_mii_ioctl(netdev, ifr, cmd);
6206 case SIOCSHWTSTAMP:
6207 return e1000e_hwtstamp_set(netdev, ifr);
6208 case SIOCGHWTSTAMP:
6209 return e1000e_hwtstamp_get(netdev, ifr);
6210 default:
6211 return -EOPNOTSUPP;
6215 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6217 struct e1000_hw *hw = &adapter->hw;
6218 u32 i, mac_reg, wuc;
6219 u16 phy_reg, wuc_enable;
6220 int retval;
6222 /* copy MAC RARs to PHY RARs */
6223 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6225 retval = hw->phy.ops.acquire(hw);
6226 if (retval) {
6227 e_err("Could not acquire PHY\n");
6228 return retval;
6231 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233 if (retval)
6234 goto release;
6236 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6237 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240 (u16)(mac_reg & 0xFFFF));
6241 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242 (u16)((mac_reg >> 16) & 0xFFFF));
6245 /* configure PHY Rx Control register */
6246 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247 mac_reg = er32(RCTL);
6248 if (mac_reg & E1000_RCTL_UPE)
6249 phy_reg |= BM_RCTL_UPE;
6250 if (mac_reg & E1000_RCTL_MPE)
6251 phy_reg |= BM_RCTL_MPE;
6252 phy_reg &= ~(BM_RCTL_MO_MASK);
6253 if (mac_reg & E1000_RCTL_MO_3)
6254 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6255 << BM_RCTL_MO_SHIFT);
6256 if (mac_reg & E1000_RCTL_BAM)
6257 phy_reg |= BM_RCTL_BAM;
6258 if (mac_reg & E1000_RCTL_PMCF)
6259 phy_reg |= BM_RCTL_PMCF;
6260 mac_reg = er32(CTRL);
6261 if (mac_reg & E1000_CTRL_RFCE)
6262 phy_reg |= BM_RCTL_RFCE;
6263 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6265 wuc = E1000_WUC_PME_EN;
6266 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267 wuc |= E1000_WUC_APME;
6269 /* enable PHY wakeup in MAC register */
6270 ew32(WUFC, wufc);
6271 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272 E1000_WUC_PME_STATUS | wuc));
6274 /* configure and enable PHY wakeup in PHY registers */
6275 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6278 /* activate PHY wakeup */
6279 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281 if (retval)
6282 e_err("Could not set PHY Host Wakeup bit\n");
6283 release:
6284 hw->phy.ops.release(hw);
6286 return retval;
6289 static void e1000e_flush_lpic(struct pci_dev *pdev)
6291 struct net_device *netdev = pci_get_drvdata(pdev);
6292 struct e1000_adapter *adapter = netdev_priv(netdev);
6293 struct e1000_hw *hw = &adapter->hw;
6294 u32 ret_val;
6296 pm_runtime_get_sync(netdev->dev.parent);
6298 ret_val = hw->phy.ops.acquire(hw);
6299 if (ret_val)
6300 goto fl_out;
6302 pr_info("EEE TX LPI TIMER: %08X\n",
6303 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6305 hw->phy.ops.release(hw);
6307 fl_out:
6308 pm_runtime_put_sync(netdev->dev.parent);
6311 #ifdef CONFIG_PM_SLEEP
6312 /* S0ix implementation */
6313 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6315 struct e1000_hw *hw = &adapter->hw;
6316 u32 mac_data;
6317 u16 phy_data;
6319 /* Disable the periodic inband message,
6320 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6322 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6323 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6324 phy_data |= BIT(10);
6325 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6327 /* Make sure we don't exit K1 every time a new packet arrives
6328 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6330 e1e_rphy(hw, I217_CGFREG, &phy_data);
6331 phy_data |= BIT(5);
6332 e1e_wphy(hw, I217_CGFREG, phy_data);
6334 /* Change the MAC/PHY interface to SMBus
6335 * Force the SMBus in PHY page769_23[0] = 1
6336 * Force the SMBus in MAC CTRL_EXT[11] = 1
6338 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6339 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6340 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6341 mac_data = er32(CTRL_EXT);
6342 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6343 ew32(CTRL_EXT, mac_data);
6345 /* DFT control: PHY bit: page769_20[0] = 1
6346 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6348 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6349 phy_data |= BIT(0);
6350 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6352 mac_data = er32(EXTCNF_CTRL);
6353 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6354 ew32(EXTCNF_CTRL, mac_data);
6356 /* Check MAC Tx/Rx packet buffer pointers.
6357 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6358 * pending traffic indication that would prevent power gating.
6360 mac_data = er32(TDFH);
6361 if (mac_data)
6362 ew32(TDFH, 0);
6363 mac_data = er32(TDFT);
6364 if (mac_data)
6365 ew32(TDFT, 0);
6366 mac_data = er32(TDFHS);
6367 if (mac_data)
6368 ew32(TDFHS, 0);
6369 mac_data = er32(TDFTS);
6370 if (mac_data)
6371 ew32(TDFTS, 0);
6372 mac_data = er32(TDFPC);
6373 if (mac_data)
6374 ew32(TDFPC, 0);
6375 mac_data = er32(RDFH);
6376 if (mac_data)
6377 ew32(RDFH, 0);
6378 mac_data = er32(RDFT);
6379 if (mac_data)
6380 ew32(RDFT, 0);
6381 mac_data = er32(RDFHS);
6382 if (mac_data)
6383 ew32(RDFHS, 0);
6384 mac_data = er32(RDFTS);
6385 if (mac_data)
6386 ew32(RDFTS, 0);
6387 mac_data = er32(RDFPC);
6388 if (mac_data)
6389 ew32(RDFPC, 0);
6391 /* Enable the Dynamic Power Gating in the MAC */
6392 mac_data = er32(FEXTNVM7);
6393 mac_data |= BIT(22);
6394 ew32(FEXTNVM7, mac_data);
6396 /* Disable the time synchronization clock */
6397 mac_data = er32(FEXTNVM7);
6398 mac_data |= BIT(31);
6399 mac_data &= ~BIT(0);
6400 ew32(FEXTNVM7, mac_data);
6402 /* Dynamic Power Gating Enable */
6403 mac_data = er32(CTRL_EXT);
6404 mac_data |= BIT(3);
6405 ew32(CTRL_EXT, mac_data);
6407 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6408 mac_data = er32(CTRL_EXT);
6409 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6410 ew32(CTRL_EXT, mac_data);
6412 /* No MAC DPG gating SLP_S0 in modern standby
6413 * Switch the logic of the lanphypc to use PMC counter
6415 mac_data = er32(FEXTNVM5);
6416 mac_data |= BIT(7);
6417 ew32(FEXTNVM5, mac_data);
6420 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6422 struct e1000_hw *hw = &adapter->hw;
6423 u32 mac_data;
6424 u16 phy_data;
6426 /* Disable the Dynamic Power Gating in the MAC */
6427 mac_data = er32(FEXTNVM7);
6428 mac_data &= 0xFFBFFFFF;
6429 ew32(FEXTNVM7, mac_data);
6431 /* Enable the time synchronization clock */
6432 mac_data = er32(FEXTNVM7);
6433 mac_data |= BIT(0);
6434 ew32(FEXTNVM7, mac_data);
6436 /* Disable Dynamic Power Gating */
6437 mac_data = er32(CTRL_EXT);
6438 mac_data &= 0xFFFFFFF7;
6439 ew32(CTRL_EXT, mac_data);
6441 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6442 mac_data = er32(CTRL_EXT);
6443 mac_data &= 0xFFF7FFFF;
6444 ew32(CTRL_EXT, mac_data);
6446 /* Revert the lanphypc logic to use the internal Gbe counter
6447 * and not the PMC counter
6449 mac_data = er32(FEXTNVM5);
6450 mac_data &= 0xFFFFFF7F;
6451 ew32(FEXTNVM5, mac_data);
6453 /* Enable the periodic inband message,
6454 * Request PCIe clock in K1 page770_17[10:9] =01b
6456 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6457 phy_data &= 0xFBFF;
6458 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6459 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6461 /* Return back configuration
6462 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6464 e1e_rphy(hw, I217_CGFREG, &phy_data);
6465 phy_data &= 0xFFDF;
6466 e1e_wphy(hw, I217_CGFREG, phy_data);
6468 /* Change the MAC/PHY interface to Kumeran
6469 * Unforce the SMBus in PHY page769_23[0] = 0
6470 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6472 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6473 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6474 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6475 mac_data = er32(CTRL_EXT);
6476 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6477 ew32(CTRL_EXT, mac_data);
6479 #endif /* CONFIG_PM_SLEEP */
6481 static int e1000e_pm_freeze(struct device *dev)
6483 struct net_device *netdev = dev_get_drvdata(dev);
6484 struct e1000_adapter *adapter = netdev_priv(netdev);
6485 bool present;
6487 rtnl_lock();
6489 present = netif_device_present(netdev);
6490 netif_device_detach(netdev);
6492 if (present && netif_running(netdev)) {
6493 int count = E1000_CHECK_RESET_COUNT;
6495 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6496 usleep_range(10000, 11000);
6498 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6500 /* Quiesce the device without resetting the hardware */
6501 e1000e_down(adapter, false);
6502 e1000_free_irq(adapter);
6504 rtnl_unlock();
6506 e1000e_reset_interrupt_capability(adapter);
6508 /* Allow time for pending master requests to run */
6509 e1000e_disable_pcie_master(&adapter->hw);
6511 return 0;
6514 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6516 struct net_device *netdev = pci_get_drvdata(pdev);
6517 struct e1000_adapter *adapter = netdev_priv(netdev);
6518 struct e1000_hw *hw = &adapter->hw;
6519 u32 ctrl, ctrl_ext, rctl, status;
6520 /* Runtime suspend should only enable wakeup for link changes */
6521 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6522 int retval = 0;
6524 status = er32(STATUS);
6525 if (status & E1000_STATUS_LU)
6526 wufc &= ~E1000_WUFC_LNKC;
6528 if (wufc) {
6529 e1000_setup_rctl(adapter);
6530 e1000e_set_rx_mode(netdev);
6532 /* turn on all-multi mode if wake on multicast is enabled */
6533 if (wufc & E1000_WUFC_MC) {
6534 rctl = er32(RCTL);
6535 rctl |= E1000_RCTL_MPE;
6536 ew32(RCTL, rctl);
6539 ctrl = er32(CTRL);
6540 ctrl |= E1000_CTRL_ADVD3WUC;
6541 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6542 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6543 ew32(CTRL, ctrl);
6545 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6546 adapter->hw.phy.media_type ==
6547 e1000_media_type_internal_serdes) {
6548 /* keep the laser running in D3 */
6549 ctrl_ext = er32(CTRL_EXT);
6550 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6551 ew32(CTRL_EXT, ctrl_ext);
6554 if (!runtime)
6555 e1000e_power_up_phy(adapter);
6557 if (adapter->flags & FLAG_IS_ICH)
6558 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6560 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6561 /* enable wakeup by the PHY */
6562 retval = e1000_init_phy_wakeup(adapter, wufc);
6563 if (retval)
6564 return retval;
6565 } else {
6566 /* enable wakeup by the MAC */
6567 ew32(WUFC, wufc);
6568 ew32(WUC, E1000_WUC_PME_EN);
6570 } else {
6571 ew32(WUC, 0);
6572 ew32(WUFC, 0);
6574 e1000_power_down_phy(adapter);
6577 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6578 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6579 } else if (hw->mac.type >= e1000_pch_lpt) {
6580 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6581 /* ULP does not support wake from unicast, multicast
6582 * or broadcast.
6584 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6586 if (retval)
6587 return retval;
6590 /* Ensure that the appropriate bits are set in LPI_CTRL
6591 * for EEE in Sx
6593 if ((hw->phy.type >= e1000_phy_i217) &&
6594 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6595 u16 lpi_ctrl = 0;
6597 retval = hw->phy.ops.acquire(hw);
6598 if (!retval) {
6599 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6600 &lpi_ctrl);
6601 if (!retval) {
6602 if (adapter->eee_advert &
6603 hw->dev_spec.ich8lan.eee_lp_ability &
6604 I82579_EEE_100_SUPPORTED)
6605 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6606 if (adapter->eee_advert &
6607 hw->dev_spec.ich8lan.eee_lp_ability &
6608 I82579_EEE_1000_SUPPORTED)
6609 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6611 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6612 lpi_ctrl);
6615 hw->phy.ops.release(hw);
6618 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6619 * would have already happened in close and is redundant.
6621 e1000e_release_hw_control(adapter);
6623 pci_clear_master(pdev);
6625 /* The pci-e switch on some quad port adapters will report a
6626 * correctable error when the MAC transitions from D0 to D3. To
6627 * prevent this we need to mask off the correctable errors on the
6628 * downstream port of the pci-e switch.
6630 * We don't have the associated upstream bridge while assigning
6631 * the PCI device into guest. For example, the KVM on power is
6632 * one of the cases.
6634 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6635 struct pci_dev *us_dev = pdev->bus->self;
6636 u16 devctl;
6638 if (!us_dev)
6639 return 0;
6641 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6642 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6643 (devctl & ~PCI_EXP_DEVCTL_CERE));
6645 pci_save_state(pdev);
6646 pci_prepare_to_sleep(pdev);
6648 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6651 return 0;
6655 * __e1000e_disable_aspm - Disable ASPM states
6656 * @pdev: pointer to PCI device struct
6657 * @state: bit-mask of ASPM states to disable
6658 * @locked: indication if this context holds pci_bus_sem locked.
6660 * Some devices *must* have certain ASPM states disabled per hardware errata.
6662 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6664 struct pci_dev *parent = pdev->bus->self;
6665 u16 aspm_dis_mask = 0;
6666 u16 pdev_aspmc, parent_aspmc;
6668 switch (state) {
6669 case PCIE_LINK_STATE_L0S:
6670 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6671 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6672 /* fall-through - can't have L1 without L0s */
6673 case PCIE_LINK_STATE_L1:
6674 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6675 break;
6676 default:
6677 return;
6680 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6681 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6683 if (parent) {
6684 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6685 &parent_aspmc);
6686 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6689 /* Nothing to do if the ASPM states to be disabled already are */
6690 if (!(pdev_aspmc & aspm_dis_mask) &&
6691 (!parent || !(parent_aspmc & aspm_dis_mask)))
6692 return;
6694 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6695 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6696 "L0s" : "",
6697 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6698 "L1" : "");
6700 #ifdef CONFIG_PCIEASPM
6701 if (locked)
6702 pci_disable_link_state_locked(pdev, state);
6703 else
6704 pci_disable_link_state(pdev, state);
6706 /* Double-check ASPM control. If not disabled by the above, the
6707 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6708 * not enabled); override by writing PCI config space directly.
6710 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6711 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6713 if (!(aspm_dis_mask & pdev_aspmc))
6714 return;
6715 #endif
6717 /* Both device and parent should have the same ASPM setting.
6718 * Disable ASPM in downstream component first and then upstream.
6720 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6722 if (parent)
6723 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6724 aspm_dis_mask);
6728 * e1000e_disable_aspm - Disable ASPM states.
6729 * @pdev: pointer to PCI device struct
6730 * @state: bit-mask of ASPM states to disable
6732 * This function acquires the pci_bus_sem!
6733 * Some devices *must* have certain ASPM states disabled per hardware errata.
6735 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6737 __e1000e_disable_aspm(pdev, state, 0);
6741 * e1000e_disable_aspm_locked Disable ASPM states.
6742 * @pdev: pointer to PCI device struct
6743 * @state: bit-mask of ASPM states to disable
6745 * This function must be called with pci_bus_sem acquired!
6746 * Some devices *must* have certain ASPM states disabled per hardware errata.
6748 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6750 __e1000e_disable_aspm(pdev, state, 1);
6753 static int e1000e_pm_thaw(struct device *dev)
6755 struct net_device *netdev = dev_get_drvdata(dev);
6756 struct e1000_adapter *adapter = netdev_priv(netdev);
6757 int rc = 0;
6759 e1000e_set_interrupt_capability(adapter);
6761 rtnl_lock();
6762 if (netif_running(netdev)) {
6763 rc = e1000_request_irq(adapter);
6764 if (rc)
6765 goto err_irq;
6767 e1000e_up(adapter);
6770 netif_device_attach(netdev);
6771 err_irq:
6772 rtnl_unlock();
6774 return rc;
6777 #ifdef CONFIG_PM
6778 static int __e1000_resume(struct pci_dev *pdev)
6780 struct net_device *netdev = pci_get_drvdata(pdev);
6781 struct e1000_adapter *adapter = netdev_priv(netdev);
6782 struct e1000_hw *hw = &adapter->hw;
6783 u16 aspm_disable_flag = 0;
6785 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6786 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6787 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6788 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6789 if (aspm_disable_flag)
6790 e1000e_disable_aspm(pdev, aspm_disable_flag);
6792 pci_set_master(pdev);
6794 if (hw->mac.type >= e1000_pch2lan)
6795 e1000_resume_workarounds_pchlan(&adapter->hw);
6797 e1000e_power_up_phy(adapter);
6799 /* report the system wakeup cause from S3/S4 */
6800 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6801 u16 phy_data;
6803 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6804 if (phy_data) {
6805 e_info("PHY Wakeup cause - %s\n",
6806 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6807 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6808 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6809 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6810 phy_data & E1000_WUS_LNKC ?
6811 "Link Status Change" : "other");
6813 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6814 } else {
6815 u32 wus = er32(WUS);
6817 if (wus) {
6818 e_info("MAC Wakeup cause - %s\n",
6819 wus & E1000_WUS_EX ? "Unicast Packet" :
6820 wus & E1000_WUS_MC ? "Multicast Packet" :
6821 wus & E1000_WUS_BC ? "Broadcast Packet" :
6822 wus & E1000_WUS_MAG ? "Magic Packet" :
6823 wus & E1000_WUS_LNKC ? "Link Status Change" :
6824 "other");
6826 ew32(WUS, ~0);
6829 e1000e_reset(adapter);
6831 e1000_init_manageability_pt(adapter);
6833 /* If the controller has AMT, do not set DRV_LOAD until the interface
6834 * is up. For all other cases, let the f/w know that the h/w is now
6835 * under the control of the driver.
6837 if (!(adapter->flags & FLAG_HAS_AMT))
6838 e1000e_get_hw_control(adapter);
6840 return 0;
6843 #ifdef CONFIG_PM_SLEEP
6844 static int e1000e_pm_suspend(struct device *dev)
6846 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6847 struct e1000_adapter *adapter = netdev_priv(netdev);
6848 struct pci_dev *pdev = to_pci_dev(dev);
6849 struct e1000_hw *hw = &adapter->hw;
6850 int rc;
6852 e1000e_flush_lpic(pdev);
6854 e1000e_pm_freeze(dev);
6856 rc = __e1000_shutdown(pdev, false);
6857 if (rc)
6858 e1000e_pm_thaw(dev);
6860 /* Introduce S0ix implementation */
6861 if (hw->mac.type >= e1000_pch_cnp)
6862 e1000e_s0ix_entry_flow(adapter);
6864 return rc;
6867 static int e1000e_pm_resume(struct device *dev)
6869 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6870 struct e1000_adapter *adapter = netdev_priv(netdev);
6871 struct pci_dev *pdev = to_pci_dev(dev);
6872 struct e1000_hw *hw = &adapter->hw;
6873 int rc;
6875 /* Introduce S0ix implementation */
6876 if (hw->mac.type >= e1000_pch_cnp)
6877 e1000e_s0ix_exit_flow(adapter);
6879 rc = __e1000_resume(pdev);
6880 if (rc)
6881 return rc;
6883 return e1000e_pm_thaw(dev);
6885 #endif /* CONFIG_PM_SLEEP */
6887 static int e1000e_pm_runtime_idle(struct device *dev)
6889 struct net_device *netdev = dev_get_drvdata(dev);
6890 struct e1000_adapter *adapter = netdev_priv(netdev);
6891 u16 eee_lp;
6893 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6895 if (!e1000e_has_link(adapter)) {
6896 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6897 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6900 return -EBUSY;
6903 static int e1000e_pm_runtime_resume(struct device *dev)
6905 struct pci_dev *pdev = to_pci_dev(dev);
6906 struct net_device *netdev = pci_get_drvdata(pdev);
6907 struct e1000_adapter *adapter = netdev_priv(netdev);
6908 int rc;
6910 rc = __e1000_resume(pdev);
6911 if (rc)
6912 return rc;
6914 if (netdev->flags & IFF_UP)
6915 e1000e_up(adapter);
6917 return rc;
6920 static int e1000e_pm_runtime_suspend(struct device *dev)
6922 struct pci_dev *pdev = to_pci_dev(dev);
6923 struct net_device *netdev = pci_get_drvdata(pdev);
6924 struct e1000_adapter *adapter = netdev_priv(netdev);
6926 if (netdev->flags & IFF_UP) {
6927 int count = E1000_CHECK_RESET_COUNT;
6929 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6930 usleep_range(10000, 11000);
6932 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6934 /* Down the device without resetting the hardware */
6935 e1000e_down(adapter, false);
6938 if (__e1000_shutdown(pdev, true)) {
6939 e1000e_pm_runtime_resume(dev);
6940 return -EBUSY;
6943 return 0;
6945 #endif /* CONFIG_PM */
6947 static void e1000_shutdown(struct pci_dev *pdev)
6949 e1000e_flush_lpic(pdev);
6951 e1000e_pm_freeze(&pdev->dev);
6953 __e1000_shutdown(pdev, false);
6956 #ifdef CONFIG_NET_POLL_CONTROLLER
6958 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6960 struct net_device *netdev = data;
6961 struct e1000_adapter *adapter = netdev_priv(netdev);
6963 if (adapter->msix_entries) {
6964 int vector, msix_irq;
6966 vector = 0;
6967 msix_irq = adapter->msix_entries[vector].vector;
6968 if (disable_hardirq(msix_irq))
6969 e1000_intr_msix_rx(msix_irq, netdev);
6970 enable_irq(msix_irq);
6972 vector++;
6973 msix_irq = adapter->msix_entries[vector].vector;
6974 if (disable_hardirq(msix_irq))
6975 e1000_intr_msix_tx(msix_irq, netdev);
6976 enable_irq(msix_irq);
6978 vector++;
6979 msix_irq = adapter->msix_entries[vector].vector;
6980 if (disable_hardirq(msix_irq))
6981 e1000_msix_other(msix_irq, netdev);
6982 enable_irq(msix_irq);
6985 return IRQ_HANDLED;
6989 * e1000_netpoll
6990 * @netdev: network interface device structure
6992 * Polling 'interrupt' - used by things like netconsole to send skbs
6993 * without having to re-enable interrupts. It's not called while
6994 * the interrupt routine is executing.
6996 static void e1000_netpoll(struct net_device *netdev)
6998 struct e1000_adapter *adapter = netdev_priv(netdev);
7000 switch (adapter->int_mode) {
7001 case E1000E_INT_MODE_MSIX:
7002 e1000_intr_msix(adapter->pdev->irq, netdev);
7003 break;
7004 case E1000E_INT_MODE_MSI:
7005 if (disable_hardirq(adapter->pdev->irq))
7006 e1000_intr_msi(adapter->pdev->irq, netdev);
7007 enable_irq(adapter->pdev->irq);
7008 break;
7009 default: /* E1000E_INT_MODE_LEGACY */
7010 if (disable_hardirq(adapter->pdev->irq))
7011 e1000_intr(adapter->pdev->irq, netdev);
7012 enable_irq(adapter->pdev->irq);
7013 break;
7016 #endif
7019 * e1000_io_error_detected - called when PCI error is detected
7020 * @pdev: Pointer to PCI device
7021 * @state: The current pci connection state
7023 * This function is called after a PCI bus error affecting
7024 * this device has been detected.
7026 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7027 pci_channel_state_t state)
7029 e1000e_pm_freeze(&pdev->dev);
7031 if (state == pci_channel_io_perm_failure)
7032 return PCI_ERS_RESULT_DISCONNECT;
7034 pci_disable_device(pdev);
7036 /* Request a slot slot reset. */
7037 return PCI_ERS_RESULT_NEED_RESET;
7041 * e1000_io_slot_reset - called after the pci bus has been reset.
7042 * @pdev: Pointer to PCI device
7044 * Restart the card from scratch, as if from a cold-boot. Implementation
7045 * resembles the first-half of the e1000e_pm_resume routine.
7047 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7049 struct net_device *netdev = pci_get_drvdata(pdev);
7050 struct e1000_adapter *adapter = netdev_priv(netdev);
7051 struct e1000_hw *hw = &adapter->hw;
7052 u16 aspm_disable_flag = 0;
7053 int err;
7054 pci_ers_result_t result;
7056 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7057 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7058 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7059 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7060 if (aspm_disable_flag)
7061 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7063 err = pci_enable_device_mem(pdev);
7064 if (err) {
7065 dev_err(&pdev->dev,
7066 "Cannot re-enable PCI device after reset.\n");
7067 result = PCI_ERS_RESULT_DISCONNECT;
7068 } else {
7069 pdev->state_saved = true;
7070 pci_restore_state(pdev);
7071 pci_set_master(pdev);
7073 pci_enable_wake(pdev, PCI_D3hot, 0);
7074 pci_enable_wake(pdev, PCI_D3cold, 0);
7076 e1000e_reset(adapter);
7077 ew32(WUS, ~0);
7078 result = PCI_ERS_RESULT_RECOVERED;
7081 return result;
7085 * e1000_io_resume - called when traffic can start flowing again.
7086 * @pdev: Pointer to PCI device
7088 * This callback is called when the error recovery driver tells us that
7089 * its OK to resume normal operation. Implementation resembles the
7090 * second-half of the e1000e_pm_resume routine.
7092 static void e1000_io_resume(struct pci_dev *pdev)
7094 struct net_device *netdev = pci_get_drvdata(pdev);
7095 struct e1000_adapter *adapter = netdev_priv(netdev);
7097 e1000_init_manageability_pt(adapter);
7099 e1000e_pm_thaw(&pdev->dev);
7101 /* If the controller has AMT, do not set DRV_LOAD until the interface
7102 * is up. For all other cases, let the f/w know that the h/w is now
7103 * under the control of the driver.
7105 if (!(adapter->flags & FLAG_HAS_AMT))
7106 e1000e_get_hw_control(adapter);
7109 static void e1000_print_device_info(struct e1000_adapter *adapter)
7111 struct e1000_hw *hw = &adapter->hw;
7112 struct net_device *netdev = adapter->netdev;
7113 u32 ret_val;
7114 u8 pba_str[E1000_PBANUM_LENGTH];
7116 /* print bus type/speed/width info */
7117 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7118 /* bus width */
7119 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7120 "Width x1"),
7121 /* MAC address */
7122 netdev->dev_addr);
7123 e_info("Intel(R) PRO/%s Network Connection\n",
7124 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7125 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7126 E1000_PBANUM_LENGTH);
7127 if (ret_val)
7128 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7129 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7130 hw->mac.type, hw->phy.type, pba_str);
7133 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7135 struct e1000_hw *hw = &adapter->hw;
7136 int ret_val;
7137 u16 buf = 0;
7139 if (hw->mac.type != e1000_82573)
7140 return;
7142 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7143 le16_to_cpus(&buf);
7144 if (!ret_val && (!(buf & BIT(0)))) {
7145 /* Deep Smart Power Down (DSPD) */
7146 dev_warn(&adapter->pdev->dev,
7147 "Warning: detected DSPD enabled in EEPROM\n");
7151 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7152 netdev_features_t features)
7154 struct e1000_adapter *adapter = netdev_priv(netdev);
7155 struct e1000_hw *hw = &adapter->hw;
7157 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7158 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7159 features &= ~NETIF_F_RXFCS;
7161 /* Since there is no support for separate Rx/Tx vlan accel
7162 * enable/disable make sure Tx flag is always in same state as Rx.
7164 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7165 features |= NETIF_F_HW_VLAN_CTAG_TX;
7166 else
7167 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7169 return features;
7172 static int e1000_set_features(struct net_device *netdev,
7173 netdev_features_t features)
7175 struct e1000_adapter *adapter = netdev_priv(netdev);
7176 netdev_features_t changed = features ^ netdev->features;
7178 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7179 adapter->flags |= FLAG_TSO_FORCE;
7181 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7182 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7183 NETIF_F_RXALL)))
7184 return 0;
7186 if (changed & NETIF_F_RXFCS) {
7187 if (features & NETIF_F_RXFCS) {
7188 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7189 } else {
7190 /* We need to take it back to defaults, which might mean
7191 * stripping is still disabled at the adapter level.
7193 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7194 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7195 else
7196 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7200 netdev->features = features;
7202 if (netif_running(netdev))
7203 e1000e_reinit_locked(adapter);
7204 else
7205 e1000e_reset(adapter);
7207 return 1;
7210 static const struct net_device_ops e1000e_netdev_ops = {
7211 .ndo_open = e1000e_open,
7212 .ndo_stop = e1000e_close,
7213 .ndo_start_xmit = e1000_xmit_frame,
7214 .ndo_get_stats64 = e1000e_get_stats64,
7215 .ndo_set_rx_mode = e1000e_set_rx_mode,
7216 .ndo_set_mac_address = e1000_set_mac,
7217 .ndo_change_mtu = e1000_change_mtu,
7218 .ndo_do_ioctl = e1000_ioctl,
7219 .ndo_tx_timeout = e1000_tx_timeout,
7220 .ndo_validate_addr = eth_validate_addr,
7222 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7223 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7224 #ifdef CONFIG_NET_POLL_CONTROLLER
7225 .ndo_poll_controller = e1000_netpoll,
7226 #endif
7227 .ndo_set_features = e1000_set_features,
7228 .ndo_fix_features = e1000_fix_features,
7229 .ndo_features_check = passthru_features_check,
7233 * e1000_probe - Device Initialization Routine
7234 * @pdev: PCI device information struct
7235 * @ent: entry in e1000_pci_tbl
7237 * Returns 0 on success, negative on failure
7239 * e1000_probe initializes an adapter identified by a pci_dev structure.
7240 * The OS initialization, configuring of the adapter private structure,
7241 * and a hardware reset occur.
7243 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7245 struct net_device *netdev;
7246 struct e1000_adapter *adapter;
7247 struct e1000_hw *hw;
7248 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7249 resource_size_t mmio_start, mmio_len;
7250 resource_size_t flash_start, flash_len;
7251 static int cards_found;
7252 u16 aspm_disable_flag = 0;
7253 int bars, i, err, pci_using_dac;
7254 u16 eeprom_data = 0;
7255 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7256 s32 ret_val = 0;
7258 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7259 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7260 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7261 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7262 if (aspm_disable_flag)
7263 e1000e_disable_aspm(pdev, aspm_disable_flag);
7265 err = pci_enable_device_mem(pdev);
7266 if (err)
7267 return err;
7269 pci_using_dac = 0;
7270 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7271 if (!err) {
7272 pci_using_dac = 1;
7273 } else {
7274 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7275 if (err) {
7276 dev_err(&pdev->dev,
7277 "No usable DMA configuration, aborting\n");
7278 goto err_dma;
7282 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7283 err = pci_request_selected_regions_exclusive(pdev, bars,
7284 e1000e_driver_name);
7285 if (err)
7286 goto err_pci_reg;
7288 /* AER (Advanced Error Reporting) hooks */
7289 pci_enable_pcie_error_reporting(pdev);
7291 pci_set_master(pdev);
7292 /* PCI config space info */
7293 err = pci_save_state(pdev);
7294 if (err)
7295 goto err_alloc_etherdev;
7297 err = -ENOMEM;
7298 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7299 if (!netdev)
7300 goto err_alloc_etherdev;
7302 SET_NETDEV_DEV(netdev, &pdev->dev);
7304 netdev->irq = pdev->irq;
7306 pci_set_drvdata(pdev, netdev);
7307 adapter = netdev_priv(netdev);
7308 hw = &adapter->hw;
7309 adapter->netdev = netdev;
7310 adapter->pdev = pdev;
7311 adapter->ei = ei;
7312 adapter->pba = ei->pba;
7313 adapter->flags = ei->flags;
7314 adapter->flags2 = ei->flags2;
7315 adapter->hw.adapter = adapter;
7316 adapter->hw.mac.type = ei->mac;
7317 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7318 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7320 mmio_start = pci_resource_start(pdev, 0);
7321 mmio_len = pci_resource_len(pdev, 0);
7323 err = -EIO;
7324 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7325 if (!adapter->hw.hw_addr)
7326 goto err_ioremap;
7328 if ((adapter->flags & FLAG_HAS_FLASH) &&
7329 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7330 (hw->mac.type < e1000_pch_spt)) {
7331 flash_start = pci_resource_start(pdev, 1);
7332 flash_len = pci_resource_len(pdev, 1);
7333 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7334 if (!adapter->hw.flash_address)
7335 goto err_flashmap;
7338 /* Set default EEE advertisement */
7339 if (adapter->flags2 & FLAG2_HAS_EEE)
7340 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7342 /* construct the net_device struct */
7343 netdev->netdev_ops = &e1000e_netdev_ops;
7344 e1000e_set_ethtool_ops(netdev);
7345 netdev->watchdog_timeo = 5 * HZ;
7346 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7347 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7349 netdev->mem_start = mmio_start;
7350 netdev->mem_end = mmio_start + mmio_len;
7352 adapter->bd_number = cards_found++;
7354 e1000e_check_options(adapter);
7356 /* setup adapter struct */
7357 err = e1000_sw_init(adapter);
7358 if (err)
7359 goto err_sw_init;
7361 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7362 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7363 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7365 err = ei->get_variants(adapter);
7366 if (err)
7367 goto err_hw_init;
7369 if ((adapter->flags & FLAG_IS_ICH) &&
7370 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7371 (hw->mac.type < e1000_pch_spt))
7372 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7374 hw->mac.ops.get_bus_info(&adapter->hw);
7376 adapter->hw.phy.autoneg_wait_to_complete = 0;
7378 /* Copper options */
7379 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7380 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7381 adapter->hw.phy.disable_polarity_correction = 0;
7382 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7385 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7386 dev_info(&pdev->dev,
7387 "PHY reset is blocked due to SOL/IDER session.\n");
7389 /* Set initial default active device features */
7390 netdev->features = (NETIF_F_SG |
7391 NETIF_F_HW_VLAN_CTAG_RX |
7392 NETIF_F_HW_VLAN_CTAG_TX |
7393 NETIF_F_TSO |
7394 NETIF_F_TSO6 |
7395 NETIF_F_RXHASH |
7396 NETIF_F_RXCSUM |
7397 NETIF_F_HW_CSUM);
7399 /* Set user-changeable features (subset of all device features) */
7400 netdev->hw_features = netdev->features;
7401 netdev->hw_features |= NETIF_F_RXFCS;
7402 netdev->priv_flags |= IFF_SUPP_NOFCS;
7403 netdev->hw_features |= NETIF_F_RXALL;
7405 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7406 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7408 netdev->vlan_features |= (NETIF_F_SG |
7409 NETIF_F_TSO |
7410 NETIF_F_TSO6 |
7411 NETIF_F_HW_CSUM);
7413 netdev->priv_flags |= IFF_UNICAST_FLT;
7415 if (pci_using_dac) {
7416 netdev->features |= NETIF_F_HIGHDMA;
7417 netdev->vlan_features |= NETIF_F_HIGHDMA;
7420 /* MTU range: 68 - max_hw_frame_size */
7421 netdev->min_mtu = ETH_MIN_MTU;
7422 netdev->max_mtu = adapter->max_hw_frame_size -
7423 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7425 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7426 adapter->flags |= FLAG_MNG_PT_ENABLED;
7428 /* before reading the NVM, reset the controller to
7429 * put the device in a known good starting state
7431 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7433 /* systems with ASPM and others may see the checksum fail on the first
7434 * attempt. Let's give it a few tries
7436 for (i = 0;; i++) {
7437 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7438 break;
7439 if (i == 2) {
7440 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7441 err = -EIO;
7442 goto err_eeprom;
7446 e1000_eeprom_checks(adapter);
7448 /* copy the MAC address */
7449 if (e1000e_read_mac_addr(&adapter->hw))
7450 dev_err(&pdev->dev,
7451 "NVM Read Error while reading MAC address\n");
7453 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7455 if (!is_valid_ether_addr(netdev->dev_addr)) {
7456 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7457 netdev->dev_addr);
7458 err = -EIO;
7459 goto err_eeprom;
7462 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7463 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7465 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7466 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7467 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7468 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7469 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7471 /* Initialize link parameters. User can change them with ethtool */
7472 adapter->hw.mac.autoneg = 1;
7473 adapter->fc_autoneg = true;
7474 adapter->hw.fc.requested_mode = e1000_fc_default;
7475 adapter->hw.fc.current_mode = e1000_fc_default;
7476 adapter->hw.phy.autoneg_advertised = 0x2f;
7478 /* Initial Wake on LAN setting - If APM wake is enabled in
7479 * the EEPROM, enable the ACPI Magic Packet filter
7481 if (adapter->flags & FLAG_APME_IN_WUC) {
7482 /* APME bit in EEPROM is mapped to WUC.APME */
7483 eeprom_data = er32(WUC);
7484 eeprom_apme_mask = E1000_WUC_APME;
7485 if ((hw->mac.type > e1000_ich10lan) &&
7486 (eeprom_data & E1000_WUC_PHY_WAKE))
7487 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7488 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7489 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7490 (adapter->hw.bus.func == 1))
7491 ret_val = e1000_read_nvm(&adapter->hw,
7492 NVM_INIT_CONTROL3_PORT_B,
7493 1, &eeprom_data);
7494 else
7495 ret_val = e1000_read_nvm(&adapter->hw,
7496 NVM_INIT_CONTROL3_PORT_A,
7497 1, &eeprom_data);
7500 /* fetch WoL from EEPROM */
7501 if (ret_val)
7502 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7503 else if (eeprom_data & eeprom_apme_mask)
7504 adapter->eeprom_wol |= E1000_WUFC_MAG;
7506 /* now that we have the eeprom settings, apply the special cases
7507 * where the eeprom may be wrong or the board simply won't support
7508 * wake on lan on a particular port
7510 if (!(adapter->flags & FLAG_HAS_WOL))
7511 adapter->eeprom_wol = 0;
7513 /* initialize the wol settings based on the eeprom settings */
7514 adapter->wol = adapter->eeprom_wol;
7516 /* make sure adapter isn't asleep if manageability is enabled */
7517 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7518 (hw->mac.ops.check_mng_mode(hw)))
7519 device_wakeup_enable(&pdev->dev);
7521 /* save off EEPROM version number */
7522 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7524 if (ret_val) {
7525 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7526 adapter->eeprom_vers = 0;
7529 /* init PTP hardware clock */
7530 e1000e_ptp_init(adapter);
7532 /* reset the hardware with the new settings */
7533 e1000e_reset(adapter);
7535 /* If the controller has AMT, do not set DRV_LOAD until the interface
7536 * is up. For all other cases, let the f/w know that the h/w is now
7537 * under the control of the driver.
7539 if (!(adapter->flags & FLAG_HAS_AMT))
7540 e1000e_get_hw_control(adapter);
7542 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7543 err = register_netdev(netdev);
7544 if (err)
7545 goto err_register;
7547 /* carrier off reporting is important to ethtool even BEFORE open */
7548 netif_carrier_off(netdev);
7550 e1000_print_device_info(adapter);
7552 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7554 if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7555 pm_runtime_put_noidle(&pdev->dev);
7557 return 0;
7559 err_register:
7560 if (!(adapter->flags & FLAG_HAS_AMT))
7561 e1000e_release_hw_control(adapter);
7562 err_eeprom:
7563 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7564 e1000_phy_hw_reset(&adapter->hw);
7565 err_hw_init:
7566 kfree(adapter->tx_ring);
7567 kfree(adapter->rx_ring);
7568 err_sw_init:
7569 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7570 iounmap(adapter->hw.flash_address);
7571 e1000e_reset_interrupt_capability(adapter);
7572 err_flashmap:
7573 iounmap(adapter->hw.hw_addr);
7574 err_ioremap:
7575 free_netdev(netdev);
7576 err_alloc_etherdev:
7577 pci_release_mem_regions(pdev);
7578 err_pci_reg:
7579 err_dma:
7580 pci_disable_device(pdev);
7581 return err;
7585 * e1000_remove - Device Removal Routine
7586 * @pdev: PCI device information struct
7588 * e1000_remove is called by the PCI subsystem to alert the driver
7589 * that it should release a PCI device. The could be caused by a
7590 * Hot-Plug event, or because the driver is going to be removed from
7591 * memory.
7593 static void e1000_remove(struct pci_dev *pdev)
7595 struct net_device *netdev = pci_get_drvdata(pdev);
7596 struct e1000_adapter *adapter = netdev_priv(netdev);
7598 e1000e_ptp_remove(adapter);
7600 /* The timers may be rescheduled, so explicitly disable them
7601 * from being rescheduled.
7603 set_bit(__E1000_DOWN, &adapter->state);
7604 del_timer_sync(&adapter->watchdog_timer);
7605 del_timer_sync(&adapter->phy_info_timer);
7607 cancel_work_sync(&adapter->reset_task);
7608 cancel_work_sync(&adapter->watchdog_task);
7609 cancel_work_sync(&adapter->downshift_task);
7610 cancel_work_sync(&adapter->update_phy_task);
7611 cancel_work_sync(&adapter->print_hang_task);
7613 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7614 cancel_work_sync(&adapter->tx_hwtstamp_work);
7615 if (adapter->tx_hwtstamp_skb) {
7616 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7617 adapter->tx_hwtstamp_skb = NULL;
7621 unregister_netdev(netdev);
7623 if (pci_dev_run_wake(pdev))
7624 pm_runtime_get_noresume(&pdev->dev);
7626 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7627 * would have already happened in close and is redundant.
7629 e1000e_release_hw_control(adapter);
7631 e1000e_reset_interrupt_capability(adapter);
7632 kfree(adapter->tx_ring);
7633 kfree(adapter->rx_ring);
7635 iounmap(adapter->hw.hw_addr);
7636 if ((adapter->hw.flash_address) &&
7637 (adapter->hw.mac.type < e1000_pch_spt))
7638 iounmap(adapter->hw.flash_address);
7639 pci_release_mem_regions(pdev);
7641 free_netdev(netdev);
7643 /* AER disable */
7644 pci_disable_pcie_error_reporting(pdev);
7646 pci_disable_device(pdev);
7649 /* PCI Error Recovery (ERS) */
7650 static const struct pci_error_handlers e1000_err_handler = {
7651 .error_detected = e1000_io_error_detected,
7652 .slot_reset = e1000_io_slot_reset,
7653 .resume = e1000_io_resume,
7656 static const struct pci_device_id e1000_pci_tbl[] = {
7657 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7658 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7659 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7660 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7661 board_82571 },
7662 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7663 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7664 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7665 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7666 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7668 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7669 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7670 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7671 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7673 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7674 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7675 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7677 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7678 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7679 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7681 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7682 board_80003es2lan },
7683 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7684 board_80003es2lan },
7685 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7686 board_80003es2lan },
7687 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7688 board_80003es2lan },
7690 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7691 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7692 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7693 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7694 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7695 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7696 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7697 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7699 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7700 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7701 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7702 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7703 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7704 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7705 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7706 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7707 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7709 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7710 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7711 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7713 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7714 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7715 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7717 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7718 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7719 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7720 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7722 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7723 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7725 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7726 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7727 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7728 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7729 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7730 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7731 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7732 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7733 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7734 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7735 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7736 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7737 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7738 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7739 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7740 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7741 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7742 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7743 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7744 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7745 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7746 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7747 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7749 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7751 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7753 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7754 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7755 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7756 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7757 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7759 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7761 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7762 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7763 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7764 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7765 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7767 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7769 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7771 static const struct dev_pm_ops e1000_pm_ops = {
7772 #ifdef CONFIG_PM_SLEEP
7773 .suspend = e1000e_pm_suspend,
7774 .resume = e1000e_pm_resume,
7775 .freeze = e1000e_pm_freeze,
7776 .thaw = e1000e_pm_thaw,
7777 .poweroff = e1000e_pm_suspend,
7778 .restore = e1000e_pm_resume,
7779 #endif
7780 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7781 e1000e_pm_runtime_idle)
7784 /* PCI Device API Driver */
7785 static struct pci_driver e1000_driver = {
7786 .name = e1000e_driver_name,
7787 .id_table = e1000_pci_tbl,
7788 .probe = e1000_probe,
7789 .remove = e1000_remove,
7790 .driver = {
7791 .pm = &e1000_pm_ops,
7793 .shutdown = e1000_shutdown,
7794 .err_handler = &e1000_err_handler
7798 * e1000_init_module - Driver Registration Routine
7800 * e1000_init_module is the first routine called when the driver is
7801 * loaded. All it does is register with the PCI subsystem.
7803 static int __init e1000_init_module(void)
7805 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7806 e1000e_driver_version);
7807 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7809 return pci_register_driver(&e1000_driver);
7811 module_init(e1000_init_module);
7814 * e1000_exit_module - Driver Exit Cleanup Routine
7816 * e1000_exit_module is called just before the driver is removed
7817 * from memory.
7819 static void __exit e1000_exit_module(void)
7821 pci_unregister_driver(&e1000_driver);
7823 module_exit(e1000_exit_module);
7825 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7826 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7827 MODULE_LICENSE("GPL v2");
7828 MODULE_VERSION(DRV_VERSION);
7830 /* netdev.c */