1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include "efx_channels.h"
15 #include "efx_common.h"
16 #include "tx_common.h"
17 #include "rx_common.h"
21 /* This is the first interrupt mode to try out of:
26 static unsigned int interrupt_mode
;
27 module_param(interrupt_mode
, uint
, 0444);
28 MODULE_PARM_DESC(interrupt_mode
,
29 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
31 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
32 * i.e. the number of CPUs among which we may distribute simultaneous
35 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
36 * The default (0) means to assign an interrupt to each core.
38 static unsigned int rss_cpus
;
39 module_param(rss_cpus
, uint
, 0444);
40 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
42 static unsigned int irq_adapt_low_thresh
= 8000;
43 module_param(irq_adapt_low_thresh
, uint
, 0644);
44 MODULE_PARM_DESC(irq_adapt_low_thresh
,
45 "Threshold score for reducing IRQ moderation");
47 static unsigned int irq_adapt_high_thresh
= 16000;
48 module_param(irq_adapt_high_thresh
, uint
, 0644);
49 MODULE_PARM_DESC(irq_adapt_high_thresh
,
50 "Threshold score for increasing IRQ moderation");
52 /* This is the weight assigned to each of the (per-channel) virtual
55 static int napi_weight
= 64;
61 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
66 void efx_channel_dummy_op_void(struct efx_channel
*channel
)
70 static const struct efx_channel_type efx_default_channel_type
= {
71 .pre_probe
= efx_channel_dummy_op_int
,
72 .post_remove
= efx_channel_dummy_op_void
,
73 .get_name
= efx_get_channel_name
,
74 .copy
= efx_copy_channel
,
75 .want_txqs
= efx_default_channel_want_txqs
,
84 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
86 cpumask_var_t thread_mask
;
93 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
94 netif_warn(efx
, probe
, efx
->net_dev
,
95 "RSS disabled due to allocation failure\n");
100 for_each_online_cpu(cpu
) {
101 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
103 cpumask_or(thread_mask
, thread_mask
,
104 topology_sibling_cpumask(cpu
));
108 free_cpumask_var(thread_mask
);
111 if (count
> EFX_MAX_RX_QUEUES
) {
112 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
113 "Reducing number of rx queues from %u to %u.\n",
114 count
, EFX_MAX_RX_QUEUES
);
115 count
= EFX_MAX_RX_QUEUES
;
118 /* If RSS is requested for the PF *and* VFs then we can't write RSS
119 * table entries that are inaccessible to VFs
121 #ifdef CONFIG_SFC_SRIOV
122 if (efx
->type
->sriov_wanted
) {
123 if (efx
->type
->sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
124 count
> efx_vf_size(efx
)) {
125 netif_warn(efx
, probe
, efx
->net_dev
,
126 "Reducing number of RSS channels from %u to %u for "
127 "VF support. Increase vf-msix-limit to use more "
128 "channels on the PF.\n",
129 count
, efx_vf_size(efx
));
130 count
= efx_vf_size(efx
);
138 static int efx_allocate_msix_channels(struct efx_nic
*efx
,
139 unsigned int max_channels
,
140 unsigned int extra_channels
,
141 unsigned int parallelism
)
143 unsigned int n_channels
= parallelism
;
148 if (efx_separate_tx_channels
)
150 n_channels
+= extra_channels
;
152 /* To allow XDP transmit to happen from arbitrary NAPI contexts
153 * we allocate a TX queue per CPU. We share event queues across
154 * multiple tx queues, assuming tx and ev queues are both
158 n_xdp_tx
= num_possible_cpus();
159 n_xdp_ev
= DIV_ROUND_UP(n_xdp_tx
, EFX_TXQ_TYPES
);
161 vec_count
= pci_msix_vec_count(efx
->pci_dev
);
165 max_channels
= min_t(unsigned int, vec_count
, max_channels
);
168 * We need a channel per event queue, plus a VI per tx queue.
169 * This may be more pessimistic than it needs to be.
171 if (n_channels
+ n_xdp_ev
> max_channels
) {
172 netif_err(efx
, drv
, efx
->net_dev
,
173 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
174 n_xdp_ev
, n_channels
, max_channels
);
175 efx
->n_xdp_channels
= 0;
176 efx
->xdp_tx_per_channel
= 0;
177 efx
->xdp_tx_queue_count
= 0;
179 efx
->n_xdp_channels
= n_xdp_ev
;
180 efx
->xdp_tx_per_channel
= EFX_TXQ_TYPES
;
181 efx
->xdp_tx_queue_count
= n_xdp_tx
;
182 n_channels
+= n_xdp_ev
;
183 netif_dbg(efx
, drv
, efx
->net_dev
,
184 "Allocating %d TX and %d event queues for XDP\n",
188 if (vec_count
< n_channels
) {
189 netif_err(efx
, drv
, efx
->net_dev
,
190 "WARNING: Insufficient MSI-X vectors available (%d < %u).\n",
191 vec_count
, n_channels
);
192 netif_err(efx
, drv
, efx
->net_dev
,
193 "WARNING: Performance may be reduced.\n");
194 n_channels
= vec_count
;
197 n_channels
= min(n_channels
, max_channels
);
199 efx
->n_channels
= n_channels
;
201 /* Ignore XDP tx channels when creating rx channels. */
202 n_channels
-= efx
->n_xdp_channels
;
204 if (efx_separate_tx_channels
) {
206 min(max(n_channels
/ 2, 1U),
207 efx
->max_tx_channels
);
208 efx
->tx_channel_offset
=
209 n_channels
- efx
->n_tx_channels
;
212 efx
->n_tx_channels
, 1U);
214 efx
->n_tx_channels
= min(n_channels
, efx
->max_tx_channels
);
215 efx
->tx_channel_offset
= 0;
216 efx
->n_rx_channels
= n_channels
;
219 efx
->n_rx_channels
= min(efx
->n_rx_channels
, parallelism
);
220 efx
->n_tx_channels
= min(efx
->n_tx_channels
, parallelism
);
222 efx
->xdp_channel_offset
= n_channels
;
224 netif_dbg(efx
, drv
, efx
->net_dev
,
225 "Allocating %u RX channels\n",
228 return efx
->n_channels
;
231 /* Probe the number and type of interrupts we are able to obtain, and
232 * the resulting numbers of channels and RX queues.
234 int efx_probe_interrupts(struct efx_nic
*efx
)
236 unsigned int extra_channels
= 0;
237 unsigned int rss_spread
;
241 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
242 if (efx
->extra_channel_type
[i
])
245 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
246 unsigned int parallelism
= efx_wanted_parallelism(efx
);
247 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
248 unsigned int n_channels
;
250 rc
= efx_allocate_msix_channels(efx
, efx
->max_channels
,
251 extra_channels
, parallelism
);
254 for (i
= 0; i
< n_channels
; i
++)
255 xentries
[i
].entry
= i
;
256 rc
= pci_enable_msix_range(efx
->pci_dev
, xentries
, 1,
260 /* Fall back to single channel MSI */
261 netif_err(efx
, drv
, efx
->net_dev
,
262 "could not enable MSI-X\n");
263 if (efx
->type
->min_interrupt_mode
>= EFX_INT_MODE_MSI
)
264 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
267 } else if (rc
< n_channels
) {
268 netif_err(efx
, drv
, efx
->net_dev
,
269 "WARNING: Insufficient MSI-X vectors"
270 " available (%d < %u).\n", rc
, n_channels
);
271 netif_err(efx
, drv
, efx
->net_dev
,
272 "WARNING: Performance may be reduced.\n");
277 for (i
= 0; i
< efx
->n_channels
; i
++)
278 efx_get_channel(efx
, i
)->irq
=
283 /* Try single interrupt MSI */
284 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
286 efx
->n_rx_channels
= 1;
287 efx
->n_tx_channels
= 1;
288 efx
->n_xdp_channels
= 0;
289 efx
->xdp_channel_offset
= efx
->n_channels
;
290 rc
= pci_enable_msi(efx
->pci_dev
);
292 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
294 netif_err(efx
, drv
, efx
->net_dev
,
295 "could not enable MSI\n");
296 if (efx
->type
->min_interrupt_mode
>= EFX_INT_MODE_LEGACY
)
297 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
303 /* Assume legacy interrupts */
304 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
305 efx
->n_channels
= 1 + (efx_separate_tx_channels
? 1 : 0);
306 efx
->n_rx_channels
= 1;
307 efx
->n_tx_channels
= 1;
308 efx
->n_xdp_channels
= 0;
309 efx
->xdp_channel_offset
= efx
->n_channels
;
310 efx
->legacy_irq
= efx
->pci_dev
->irq
;
313 /* Assign extra channels if possible, before XDP channels */
314 efx
->n_extra_tx_channels
= 0;
315 j
= efx
->xdp_channel_offset
;
316 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
317 if (!efx
->extra_channel_type
[i
])
319 if (j
<= efx
->tx_channel_offset
+ efx
->n_tx_channels
) {
320 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
323 efx_get_channel(efx
, j
)->type
=
324 efx
->extra_channel_type
[i
];
325 if (efx_channel_has_tx_queues(efx_get_channel(efx
, j
)))
326 efx
->n_extra_tx_channels
++;
330 rss_spread
= efx
->n_rx_channels
;
331 /* RSS might be usable on VFs even if it is disabled on the PF */
332 #ifdef CONFIG_SFC_SRIOV
333 if (efx
->type
->sriov_wanted
) {
334 efx
->rss_spread
= ((rss_spread
> 1 ||
335 !efx
->type
->sriov_wanted(efx
)) ?
336 rss_spread
: efx_vf_size(efx
));
340 efx
->rss_spread
= rss_spread
;
345 #if defined(CONFIG_SMP)
346 void efx_set_interrupt_affinity(struct efx_nic
*efx
)
348 struct efx_channel
*channel
;
351 efx_for_each_channel(channel
, efx
) {
352 cpu
= cpumask_local_spread(channel
->channel
,
353 pcibus_to_node(efx
->pci_dev
->bus
));
354 irq_set_affinity_hint(channel
->irq
, cpumask_of(cpu
));
358 void efx_clear_interrupt_affinity(struct efx_nic
*efx
)
360 struct efx_channel
*channel
;
362 efx_for_each_channel(channel
, efx
)
363 irq_set_affinity_hint(channel
->irq
, NULL
);
367 efx_set_interrupt_affinity(struct efx_nic
*efx
__attribute__ ((unused
)))
372 efx_clear_interrupt_affinity(struct efx_nic
*efx
__attribute__ ((unused
)))
375 #endif /* CONFIG_SMP */
377 void efx_remove_interrupts(struct efx_nic
*efx
)
379 struct efx_channel
*channel
;
381 /* Remove MSI/MSI-X interrupts */
382 efx_for_each_channel(channel
, efx
)
384 pci_disable_msi(efx
->pci_dev
);
385 pci_disable_msix(efx
->pci_dev
);
387 /* Remove legacy interrupt */
395 /* Create event queue
396 * Event queue memory allocations are done only once. If the channel
397 * is reset, the memory buffer will be reused; this guards against
398 * errors during channel reset and also simplifies interrupt handling.
400 int efx_probe_eventq(struct efx_channel
*channel
)
402 struct efx_nic
*efx
= channel
->efx
;
403 unsigned long entries
;
405 netif_dbg(efx
, probe
, efx
->net_dev
,
406 "chan %d create event queue\n", channel
->channel
);
408 /* Build an event queue with room for one event per tx and rx buffer,
409 * plus some extra for link state events and MCDI completions.
411 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
412 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
413 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
415 return efx_nic_probe_eventq(channel
);
418 /* Prepare channel's event queue */
419 int efx_init_eventq(struct efx_channel
*channel
)
421 struct efx_nic
*efx
= channel
->efx
;
424 EFX_WARN_ON_PARANOID(channel
->eventq_init
);
426 netif_dbg(efx
, drv
, efx
->net_dev
,
427 "chan %d init event queue\n", channel
->channel
);
429 rc
= efx_nic_init_eventq(channel
);
431 efx
->type
->push_irq_moderation(channel
);
432 channel
->eventq_read_ptr
= 0;
433 channel
->eventq_init
= true;
438 /* Enable event queue processing and NAPI */
439 void efx_start_eventq(struct efx_channel
*channel
)
441 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
442 "chan %d start event queue\n", channel
->channel
);
444 /* Make sure the NAPI handler sees the enabled flag set */
445 channel
->enabled
= true;
448 napi_enable(&channel
->napi_str
);
449 efx_nic_eventq_read_ack(channel
);
452 /* Disable event queue processing and NAPI */
453 void efx_stop_eventq(struct efx_channel
*channel
)
455 if (!channel
->enabled
)
458 napi_disable(&channel
->napi_str
);
459 channel
->enabled
= false;
462 void efx_fini_eventq(struct efx_channel
*channel
)
464 if (!channel
->eventq_init
)
467 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
468 "chan %d fini event queue\n", channel
->channel
);
470 efx_nic_fini_eventq(channel
);
471 channel
->eventq_init
= false;
474 void efx_remove_eventq(struct efx_channel
*channel
)
476 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
477 "chan %d remove event queue\n", channel
->channel
);
479 efx_nic_remove_eventq(channel
);
482 /**************************************************************************
486 *************************************************************************/
488 #ifdef CONFIG_RFS_ACCEL
489 static void efx_filter_rfs_expire(struct work_struct
*data
)
491 struct delayed_work
*dwork
= to_delayed_work(data
);
492 struct efx_channel
*channel
;
493 unsigned int time
, quota
;
495 channel
= container_of(dwork
, struct efx_channel
, filter_work
);
496 time
= jiffies
- channel
->rfs_last_expiry
;
497 quota
= channel
->rfs_filter_count
* time
/ (30 * HZ
);
498 if (quota
>= 20 && __efx_filter_rfs_expire(channel
, min(channel
->rfs_filter_count
, quota
)))
499 channel
->rfs_last_expiry
+= time
;
500 /* Ensure we do more work eventually even if NAPI poll is not happening */
501 schedule_delayed_work(dwork
, 30 * HZ
);
505 /* Allocate and initialise a channel structure. */
507 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
509 struct efx_rx_queue
*rx_queue
;
510 struct efx_tx_queue
*tx_queue
;
511 struct efx_channel
*channel
;
514 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
519 channel
->channel
= i
;
520 channel
->type
= &efx_default_channel_type
;
522 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
523 tx_queue
= &channel
->tx_queue
[j
];
525 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
526 tx_queue
->channel
= channel
;
529 #ifdef CONFIG_RFS_ACCEL
530 INIT_DELAYED_WORK(&channel
->filter_work
, efx_filter_rfs_expire
);
533 rx_queue
= &channel
->rx_queue
;
535 timer_setup(&rx_queue
->slow_fill
, efx_rx_slow_fill
, 0);
540 int efx_init_channels(struct efx_nic
*efx
)
544 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
545 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
546 if (!efx
->channel
[i
])
548 efx
->msi_context
[i
].efx
= efx
;
549 efx
->msi_context
[i
].index
= i
;
552 /* Higher numbered interrupt modes are less capable! */
553 if (WARN_ON_ONCE(efx
->type
->max_interrupt_mode
>
554 efx
->type
->min_interrupt_mode
)) {
557 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
559 efx
->interrupt_mode
= min(efx
->type
->min_interrupt_mode
,
565 void efx_fini_channels(struct efx_nic
*efx
)
569 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
570 if (efx
->channel
[i
]) {
571 kfree(efx
->channel
[i
]);
572 efx
->channel
[i
] = NULL
;
576 /* Allocate and initialise a channel structure, copying parameters
577 * (but not resources) from an old channel structure.
579 struct efx_channel
*efx_copy_channel(const struct efx_channel
*old_channel
)
581 struct efx_rx_queue
*rx_queue
;
582 struct efx_tx_queue
*tx_queue
;
583 struct efx_channel
*channel
;
586 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
590 *channel
= *old_channel
;
592 channel
->napi_dev
= NULL
;
593 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
594 channel
->napi_str
.napi_id
= 0;
595 channel
->napi_str
.state
= 0;
596 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
598 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
599 tx_queue
= &channel
->tx_queue
[j
];
600 if (tx_queue
->channel
)
601 tx_queue
->channel
= channel
;
602 tx_queue
->buffer
= NULL
;
603 tx_queue
->cb_page
= NULL
;
604 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
607 rx_queue
= &channel
->rx_queue
;
608 rx_queue
->buffer
= NULL
;
609 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
610 timer_setup(&rx_queue
->slow_fill
, efx_rx_slow_fill
, 0);
611 #ifdef CONFIG_RFS_ACCEL
612 INIT_DELAYED_WORK(&channel
->filter_work
, efx_filter_rfs_expire
);
618 static int efx_probe_channel(struct efx_channel
*channel
)
620 struct efx_tx_queue
*tx_queue
;
621 struct efx_rx_queue
*rx_queue
;
624 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
625 "creating channel %d\n", channel
->channel
);
627 rc
= channel
->type
->pre_probe(channel
);
631 rc
= efx_probe_eventq(channel
);
635 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
636 rc
= efx_probe_tx_queue(tx_queue
);
641 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
642 rc
= efx_probe_rx_queue(rx_queue
);
647 channel
->rx_list
= NULL
;
652 efx_remove_channel(channel
);
656 void efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
658 struct efx_nic
*efx
= channel
->efx
;
662 number
= channel
->channel
;
664 if (number
>= efx
->xdp_channel_offset
&&
665 !WARN_ON_ONCE(!efx
->n_xdp_channels
)) {
667 number
-= efx
->xdp_channel_offset
;
668 } else if (efx
->tx_channel_offset
== 0) {
670 } else if (number
< efx
->tx_channel_offset
) {
674 number
-= efx
->tx_channel_offset
;
676 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
679 void efx_set_channel_names(struct efx_nic
*efx
)
681 struct efx_channel
*channel
;
683 efx_for_each_channel(channel
, efx
)
684 channel
->type
->get_name(channel
,
685 efx
->msi_context
[channel
->channel
].name
,
686 sizeof(efx
->msi_context
[0].name
));
689 int efx_probe_channels(struct efx_nic
*efx
)
691 struct efx_channel
*channel
;
694 /* Restart special buffer allocation */
695 efx
->next_buffer_table
= 0;
697 /* Probe channels in reverse, so that any 'extra' channels
698 * use the start of the buffer table. This allows the traffic
699 * channels to be resized without moving them or wasting the
700 * entries before them.
702 efx_for_each_channel_rev(channel
, efx
) {
703 rc
= efx_probe_channel(channel
);
705 netif_err(efx
, probe
, efx
->net_dev
,
706 "failed to create channel %d\n",
711 efx_set_channel_names(efx
);
716 efx_remove_channels(efx
);
720 void efx_remove_channel(struct efx_channel
*channel
)
722 struct efx_tx_queue
*tx_queue
;
723 struct efx_rx_queue
*rx_queue
;
725 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
726 "destroy chan %d\n", channel
->channel
);
728 efx_for_each_channel_rx_queue(rx_queue
, channel
)
729 efx_remove_rx_queue(rx_queue
);
730 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
731 efx_remove_tx_queue(tx_queue
);
732 efx_remove_eventq(channel
);
733 channel
->type
->post_remove(channel
);
736 void efx_remove_channels(struct efx_nic
*efx
)
738 struct efx_channel
*channel
;
740 efx_for_each_channel(channel
, efx
)
741 efx_remove_channel(channel
);
743 kfree(efx
->xdp_tx_queues
);
746 int efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
748 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
749 unsigned int i
, next_buffer_table
= 0;
750 u32 old_rxq_entries
, old_txq_entries
;
753 rc
= efx_check_disabled(efx
);
757 /* Not all channels should be reallocated. We must avoid
758 * reallocating their buffer table entries.
760 efx_for_each_channel(channel
, efx
) {
761 struct efx_rx_queue
*rx_queue
;
762 struct efx_tx_queue
*tx_queue
;
764 if (channel
->type
->copy
)
766 next_buffer_table
= max(next_buffer_table
,
767 channel
->eventq
.index
+
768 channel
->eventq
.entries
);
769 efx_for_each_channel_rx_queue(rx_queue
, channel
)
770 next_buffer_table
= max(next_buffer_table
,
771 rx_queue
->rxd
.index
+
772 rx_queue
->rxd
.entries
);
773 efx_for_each_channel_tx_queue(tx_queue
, channel
)
774 next_buffer_table
= max(next_buffer_table
,
775 tx_queue
->txd
.index
+
776 tx_queue
->txd
.entries
);
779 efx_device_detach_sync(efx
);
781 efx_soft_disable_interrupts(efx
);
783 /* Clone channels (where possible) */
784 memset(other_channel
, 0, sizeof(other_channel
));
785 for (i
= 0; i
< efx
->n_channels
; i
++) {
786 channel
= efx
->channel
[i
];
787 if (channel
->type
->copy
)
788 channel
= channel
->type
->copy(channel
);
793 other_channel
[i
] = channel
;
796 /* Swap entry counts and channel pointers */
797 old_rxq_entries
= efx
->rxq_entries
;
798 old_txq_entries
= efx
->txq_entries
;
799 efx
->rxq_entries
= rxq_entries
;
800 efx
->txq_entries
= txq_entries
;
801 for (i
= 0; i
< efx
->n_channels
; i
++) {
802 channel
= efx
->channel
[i
];
803 efx
->channel
[i
] = other_channel
[i
];
804 other_channel
[i
] = channel
;
807 /* Restart buffer table allocation */
808 efx
->next_buffer_table
= next_buffer_table
;
810 for (i
= 0; i
< efx
->n_channels
; i
++) {
811 channel
= efx
->channel
[i
];
812 if (!channel
->type
->copy
)
814 rc
= efx_probe_channel(channel
);
817 efx_init_napi_channel(efx
->channel
[i
]);
821 /* Destroy unused channel structures */
822 for (i
= 0; i
< efx
->n_channels
; i
++) {
823 channel
= other_channel
[i
];
824 if (channel
&& channel
->type
->copy
) {
825 efx_fini_napi_channel(channel
);
826 efx_remove_channel(channel
);
831 rc2
= efx_soft_enable_interrupts(efx
);
834 netif_err(efx
, drv
, efx
->net_dev
,
835 "unable to restart interrupts on channel reallocation\n");
836 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
839 efx_device_attach_if_not_resetting(efx
);
845 efx
->rxq_entries
= old_rxq_entries
;
846 efx
->txq_entries
= old_txq_entries
;
847 for (i
= 0; i
< efx
->n_channels
; i
++) {
848 channel
= efx
->channel
[i
];
849 efx
->channel
[i
] = other_channel
[i
];
850 other_channel
[i
] = channel
;
855 int efx_set_channels(struct efx_nic
*efx
)
857 struct efx_channel
*channel
;
858 struct efx_tx_queue
*tx_queue
;
859 int xdp_queue_number
;
861 efx
->tx_channel_offset
=
862 efx_separate_tx_channels
?
863 efx
->n_channels
- efx
->n_tx_channels
: 0;
865 if (efx
->xdp_tx_queue_count
) {
866 EFX_WARN_ON_PARANOID(efx
->xdp_tx_queues
);
868 /* Allocate array for XDP TX queue lookup. */
869 efx
->xdp_tx_queues
= kcalloc(efx
->xdp_tx_queue_count
,
870 sizeof(*efx
->xdp_tx_queues
),
872 if (!efx
->xdp_tx_queues
)
876 /* We need to mark which channels really have RX and TX
877 * queues, and adjust the TX queue numbers if we have separate
878 * RX-only and TX-only channels.
880 xdp_queue_number
= 0;
881 efx_for_each_channel(channel
, efx
) {
882 if (channel
->channel
< efx
->n_rx_channels
)
883 channel
->rx_queue
.core_index
= channel
->channel
;
885 channel
->rx_queue
.core_index
= -1;
887 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
888 tx_queue
->queue
-= (efx
->tx_channel_offset
*
891 if (efx_channel_is_xdp_tx(channel
) &&
892 xdp_queue_number
< efx
->xdp_tx_queue_count
) {
893 efx
->xdp_tx_queues
[xdp_queue_number
] = tx_queue
;
901 bool efx_default_channel_want_txqs(struct efx_channel
*channel
)
903 return channel
->channel
- channel
->efx
->tx_channel_offset
<
904 channel
->efx
->n_tx_channels
;
911 int efx_soft_enable_interrupts(struct efx_nic
*efx
)
913 struct efx_channel
*channel
, *end_channel
;
916 BUG_ON(efx
->state
== STATE_DISABLED
);
918 efx
->irq_soft_enabled
= true;
921 efx_for_each_channel(channel
, efx
) {
922 if (!channel
->type
->keep_eventq
) {
923 rc
= efx_init_eventq(channel
);
927 efx_start_eventq(channel
);
930 efx_mcdi_mode_event(efx
);
934 end_channel
= channel
;
935 efx_for_each_channel(channel
, efx
) {
936 if (channel
== end_channel
)
938 efx_stop_eventq(channel
);
939 if (!channel
->type
->keep_eventq
)
940 efx_fini_eventq(channel
);
946 void efx_soft_disable_interrupts(struct efx_nic
*efx
)
948 struct efx_channel
*channel
;
950 if (efx
->state
== STATE_DISABLED
)
953 efx_mcdi_mode_poll(efx
);
955 efx
->irq_soft_enabled
= false;
959 synchronize_irq(efx
->legacy_irq
);
961 efx_for_each_channel(channel
, efx
) {
963 synchronize_irq(channel
->irq
);
965 efx_stop_eventq(channel
);
966 if (!channel
->type
->keep_eventq
)
967 efx_fini_eventq(channel
);
970 /* Flush the asynchronous MCDI request queue */
971 efx_mcdi_flush_async(efx
);
974 int efx_enable_interrupts(struct efx_nic
*efx
)
976 struct efx_channel
*channel
, *end_channel
;
979 /* TODO: Is this really a bug? */
980 BUG_ON(efx
->state
== STATE_DISABLED
);
982 if (efx
->eeh_disabled_legacy_irq
) {
983 enable_irq(efx
->legacy_irq
);
984 efx
->eeh_disabled_legacy_irq
= false;
987 efx
->type
->irq_enable_master(efx
);
989 efx_for_each_channel(channel
, efx
) {
990 if (channel
->type
->keep_eventq
) {
991 rc
= efx_init_eventq(channel
);
997 rc
= efx_soft_enable_interrupts(efx
);
1004 end_channel
= channel
;
1005 efx_for_each_channel(channel
, efx
) {
1006 if (channel
== end_channel
)
1008 if (channel
->type
->keep_eventq
)
1009 efx_fini_eventq(channel
);
1012 efx
->type
->irq_disable_non_ev(efx
);
1017 void efx_disable_interrupts(struct efx_nic
*efx
)
1019 struct efx_channel
*channel
;
1021 efx_soft_disable_interrupts(efx
);
1023 efx_for_each_channel(channel
, efx
) {
1024 if (channel
->type
->keep_eventq
)
1025 efx_fini_eventq(channel
);
1028 efx
->type
->irq_disable_non_ev(efx
);
1031 void efx_start_channels(struct efx_nic
*efx
)
1033 struct efx_tx_queue
*tx_queue
;
1034 struct efx_rx_queue
*rx_queue
;
1035 struct efx_channel
*channel
;
1037 efx_for_each_channel(channel
, efx
) {
1038 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
1039 efx_init_tx_queue(tx_queue
);
1040 atomic_inc(&efx
->active_queues
);
1043 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1044 efx_init_rx_queue(rx_queue
);
1045 atomic_inc(&efx
->active_queues
);
1046 efx_stop_eventq(channel
);
1047 efx_fast_push_rx_descriptors(rx_queue
, false);
1048 efx_start_eventq(channel
);
1051 WARN_ON(channel
->rx_pkt_n_frags
);
1055 void efx_stop_channels(struct efx_nic
*efx
)
1057 struct efx_tx_queue
*tx_queue
;
1058 struct efx_rx_queue
*rx_queue
;
1059 struct efx_channel
*channel
;
1062 /* Stop RX refill */
1063 efx_for_each_channel(channel
, efx
) {
1064 efx_for_each_channel_rx_queue(rx_queue
, channel
)
1065 rx_queue
->refill_enabled
= false;
1068 efx_for_each_channel(channel
, efx
) {
1069 /* RX packet processing is pipelined, so wait for the
1070 * NAPI handler to complete. At least event queue 0
1071 * might be kept active by non-data events, so don't
1072 * use napi_synchronize() but actually disable NAPI
1075 if (efx_channel_has_rx_queue(channel
)) {
1076 efx_stop_eventq(channel
);
1077 efx_start_eventq(channel
);
1081 if (efx
->type
->fini_dmaq
)
1082 rc
= efx
->type
->fini_dmaq(efx
);
1085 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
1087 netif_dbg(efx
, drv
, efx
->net_dev
,
1088 "successfully flushed all queues\n");
1091 efx_for_each_channel(channel
, efx
) {
1092 efx_for_each_channel_rx_queue(rx_queue
, channel
)
1093 efx_fini_rx_queue(rx_queue
);
1094 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
1095 efx_fini_tx_queue(tx_queue
);
1099 /**************************************************************************
1103 *************************************************************************/
1105 /* Process channel's event queue
1107 * This function is responsible for processing the event queue of a
1108 * single channel. The caller must guarantee that this function will
1109 * never be concurrently called more than once on the same channel,
1110 * though different channels may be being processed concurrently.
1112 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
1114 struct efx_tx_queue
*tx_queue
;
1115 struct list_head rx_list
;
1118 if (unlikely(!channel
->enabled
))
1121 /* Prepare the batch receive list */
1122 EFX_WARN_ON_PARANOID(channel
->rx_list
!= NULL
);
1123 INIT_LIST_HEAD(&rx_list
);
1124 channel
->rx_list
= &rx_list
;
1126 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
1127 tx_queue
->pkts_compl
= 0;
1128 tx_queue
->bytes_compl
= 0;
1131 spent
= efx_nic_process_eventq(channel
, budget
);
1132 if (spent
&& efx_channel_has_rx_queue(channel
)) {
1133 struct efx_rx_queue
*rx_queue
=
1134 efx_channel_get_rx_queue(channel
);
1136 efx_rx_flush_packet(channel
);
1137 efx_fast_push_rx_descriptors(rx_queue
, true);
1141 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
1142 if (tx_queue
->bytes_compl
) {
1143 netdev_tx_completed_queue(tx_queue
->core_txq
,
1144 tx_queue
->pkts_compl
,
1145 tx_queue
->bytes_compl
);
1149 /* Receive any packets we queued up */
1150 netif_receive_skb_list(channel
->rx_list
);
1151 channel
->rx_list
= NULL
;
1156 static void efx_update_irq_mod(struct efx_nic
*efx
, struct efx_channel
*channel
)
1158 int step
= efx
->irq_mod_step_us
;
1160 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
1161 if (channel
->irq_moderation_us
> step
) {
1162 channel
->irq_moderation_us
-= step
;
1163 efx
->type
->push_irq_moderation(channel
);
1165 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
1166 if (channel
->irq_moderation_us
<
1167 efx
->irq_rx_moderation_us
) {
1168 channel
->irq_moderation_us
+= step
;
1169 efx
->type
->push_irq_moderation(channel
);
1173 channel
->irq_count
= 0;
1174 channel
->irq_mod_score
= 0;
1177 /* NAPI poll handler
1179 * NAPI guarantees serialisation of polls of the same device, which
1180 * provides the guarantee required by efx_process_channel().
1182 static int efx_poll(struct napi_struct
*napi
, int budget
)
1184 struct efx_channel
*channel
=
1185 container_of(napi
, struct efx_channel
, napi_str
);
1186 struct efx_nic
*efx
= channel
->efx
;
1187 #ifdef CONFIG_RFS_ACCEL
1192 netif_vdbg(efx
, intr
, efx
->net_dev
,
1193 "channel %d NAPI poll executing on CPU %d\n",
1194 channel
->channel
, raw_smp_processor_id());
1196 spent
= efx_process_channel(channel
, budget
);
1200 if (spent
< budget
) {
1201 if (efx_channel_has_rx_queue(channel
) &&
1202 efx
->irq_rx_adaptive
&&
1203 unlikely(++channel
->irq_count
== 1000)) {
1204 efx_update_irq_mod(efx
, channel
);
1207 #ifdef CONFIG_RFS_ACCEL
1208 /* Perhaps expire some ARFS filters */
1209 time
= jiffies
- channel
->rfs_last_expiry
;
1210 /* Would our quota be >= 20? */
1211 if (channel
->rfs_filter_count
* time
>= 600 * HZ
)
1212 mod_delayed_work(system_wq
, &channel
->filter_work
, 0);
1215 /* There is no race here; although napi_disable() will
1216 * only wait for napi_complete(), this isn't a problem
1217 * since efx_nic_eventq_read_ack() will have no effect if
1218 * interrupts have already been disabled.
1220 if (napi_complete_done(napi
, spent
))
1221 efx_nic_eventq_read_ack(channel
);
1227 void efx_init_napi_channel(struct efx_channel
*channel
)
1229 struct efx_nic
*efx
= channel
->efx
;
1231 channel
->napi_dev
= efx
->net_dev
;
1232 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1233 efx_poll
, napi_weight
);
1236 void efx_init_napi(struct efx_nic
*efx
)
1238 struct efx_channel
*channel
;
1240 efx_for_each_channel(channel
, efx
)
1241 efx_init_napi_channel(channel
);
1244 void efx_fini_napi_channel(struct efx_channel
*channel
)
1246 if (channel
->napi_dev
)
1247 netif_napi_del(&channel
->napi_str
);
1249 channel
->napi_dev
= NULL
;
1252 void efx_fini_napi(struct efx_nic
*efx
)
1254 struct efx_channel
*channel
;
1256 efx_for_each_channel(channel
, efx
)
1257 efx_fini_napi_channel(channel
);