1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firmware.h>
27 #include <linux/string.h>
28 #include <linux/debugfs.h>
29 #include <linux/devcoredump.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
42 #include "remoteproc_internal.h"
43 #include "remoteproc_elf_helpers.h"
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 static DEFINE_MUTEX(rproc_list_mutex
);
48 static LIST_HEAD(rproc_list
);
49 static struct notifier_block rproc_panic_nb
;
51 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
52 void *, int offset
, int avail
);
54 static int rproc_alloc_carveout(struct rproc
*rproc
,
55 struct rproc_mem_entry
*mem
);
56 static int rproc_release_carveout(struct rproc
*rproc
,
57 struct rproc_mem_entry
*mem
);
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index
);
62 static const char * const rproc_crash_names
[] = {
63 [RPROC_MMUFAULT
] = "mmufault",
64 [RPROC_WATCHDOG
] = "watchdog",
65 [RPROC_FATAL_ERROR
] = "fatal error",
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
71 if (type
< ARRAY_SIZE(rproc_crash_names
))
72 return rproc_crash_names
[type
];
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
84 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
85 unsigned long iova
, int flags
, void *token
)
87 struct rproc
*rproc
= token
;
89 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
91 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
100 static int rproc_enable_iommu(struct rproc
*rproc
)
102 struct iommu_domain
*domain
;
103 struct device
*dev
= rproc
->dev
.parent
;
106 if (!rproc
->has_iommu
) {
107 dev_dbg(dev
, "iommu not present\n");
111 domain
= iommu_domain_alloc(dev
->bus
);
113 dev_err(dev
, "can't alloc iommu domain\n");
117 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
119 ret
= iommu_attach_device(domain
, dev
);
121 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
125 rproc
->domain
= domain
;
130 iommu_domain_free(domain
);
134 static void rproc_disable_iommu(struct rproc
*rproc
)
136 struct iommu_domain
*domain
= rproc
->domain
;
137 struct device
*dev
= rproc
->dev
.parent
;
142 iommu_detach_device(domain
, dev
);
143 iommu_domain_free(domain
);
146 phys_addr_t
rproc_va_to_pa(void *cpu_addr
)
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
153 if (is_vmalloc_addr(cpu_addr
)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr
)) +
155 offset_in_page(cpu_addr
);
158 WARN_ON(!virt_addr_valid(cpu_addr
));
159 return virt_to_phys(cpu_addr
);
161 EXPORT_SYMBOL(rproc_va_to_pa
);
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
185 * The function returns a valid kernel address on success or NULL on failure.
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
192 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
)
194 struct rproc_mem_entry
*carveout
;
197 if (rproc
->ops
->da_to_va
) {
198 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
);
203 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
204 int offset
= da
- carveout
->da
;
206 /* Verify that carveout is allocated */
210 /* try next carveout if da is too small */
214 /* try next carveout if da is too large */
215 if (offset
+ len
> carveout
->len
)
218 ptr
= carveout
->va
+ offset
;
226 EXPORT_SYMBOL(rproc_da_to_va
);
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
246 struct rproc_mem_entry
*
247 rproc_find_carveout_by_name(struct rproc
*rproc
, const char *name
, ...)
251 struct rproc_mem_entry
*carveout
, *mem
= NULL
;
256 va_start(args
, name
);
257 vsnprintf(_name
, sizeof(_name
), name
, args
);
260 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
261 /* Compare carveout and requested names */
262 if (!strcmp(carveout
->name
, _name
)) {
272 * rproc_check_carveout_da() - Check specified carveout da configuration
273 * @rproc: handle of a remote processor
274 * @mem: pointer on carveout to check
275 * @da: area device address
276 * @len: associated area size
278 * This function is a helper function to verify requested device area (couple
279 * da, len) is part of specified carveout.
280 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
283 * Return: 0 if carveout matches request else error
285 static int rproc_check_carveout_da(struct rproc
*rproc
,
286 struct rproc_mem_entry
*mem
, u32 da
, u32 len
)
288 struct device
*dev
= &rproc
->dev
;
291 /* Check requested resource length */
292 if (len
> mem
->len
) {
293 dev_err(dev
, "Registered carveout doesn't fit len request\n");
297 if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
== FW_RSC_ADDR_ANY
) {
298 /* Address doesn't match registered carveout configuration */
300 } else if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
!= FW_RSC_ADDR_ANY
) {
301 delta
= da
- mem
->da
;
303 /* Check requested resource belongs to registered carveout */
306 "Registered carveout doesn't fit da request\n");
310 if (delta
+ len
> mem
->len
) {
312 "Registered carveout doesn't fit len request\n");
320 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
322 struct rproc
*rproc
= rvdev
->rproc
;
323 struct device
*dev
= &rproc
->dev
;
324 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
325 struct fw_rsc_vdev
*rsc
;
327 struct rproc_mem_entry
*mem
;
330 /* actual size of vring (in bytes) */
331 size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
333 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
335 /* Search for pre-registered carveout */
336 mem
= rproc_find_carveout_by_name(rproc
, "vdev%dvring%d", rvdev
->index
,
339 if (rproc_check_carveout_da(rproc
, mem
, rsc
->vring
[i
].da
, size
))
342 /* Register carveout in in list */
343 mem
= rproc_mem_entry_init(dev
, NULL
, 0,
344 size
, rsc
->vring
[i
].da
,
345 rproc_alloc_carveout
,
346 rproc_release_carveout
,
350 dev_err(dev
, "Can't allocate memory entry structure\n");
354 rproc_add_carveout(rproc
, mem
);
358 * Assign an rproc-wide unique index for this vring
359 * TODO: assign a notifyid for rvdev updates as well
360 * TODO: support predefined notifyids (via resource table)
362 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
364 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
369 /* Potentially bump max_notifyid */
370 if (notifyid
> rproc
->max_notifyid
)
371 rproc
->max_notifyid
= notifyid
;
373 rvring
->notifyid
= notifyid
;
375 /* Let the rproc know the notifyid of this vring.*/
376 rsc
->vring
[i
].notifyid
= notifyid
;
381 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
383 struct rproc
*rproc
= rvdev
->rproc
;
384 struct device
*dev
= &rproc
->dev
;
385 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
386 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
388 dev_dbg(dev
, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
389 i
, vring
->da
, vring
->num
, vring
->align
);
391 /* verify queue size and vring alignment are sane */
392 if (!vring
->num
|| !vring
->align
) {
393 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
394 vring
->num
, vring
->align
);
398 rvring
->len
= vring
->num
;
399 rvring
->align
= vring
->align
;
400 rvring
->rvdev
= rvdev
;
405 void rproc_free_vring(struct rproc_vring
*rvring
)
407 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
408 int idx
= rvring
- rvring
->rvdev
->vring
;
409 struct fw_rsc_vdev
*rsc
;
411 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
413 /* reset resource entry info */
414 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
415 rsc
->vring
[idx
].da
= 0;
416 rsc
->vring
[idx
].notifyid
= -1;
419 static int rproc_vdev_do_start(struct rproc_subdev
*subdev
)
421 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
423 return rproc_add_virtio_dev(rvdev
, rvdev
->id
);
426 static void rproc_vdev_do_stop(struct rproc_subdev
*subdev
, bool crashed
)
428 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
431 ret
= device_for_each_child(&rvdev
->dev
, NULL
, rproc_remove_virtio_dev
);
433 dev_warn(&rvdev
->dev
, "can't remove vdev child device: %d\n", ret
);
437 * rproc_rvdev_release() - release the existence of a rvdev
439 * @dev: the subdevice's dev
441 static void rproc_rvdev_release(struct device
*dev
)
443 struct rproc_vdev
*rvdev
= container_of(dev
, struct rproc_vdev
, dev
);
445 of_reserved_mem_device_release(dev
);
451 * rproc_handle_vdev() - handle a vdev fw resource
452 * @rproc: the remote processor
453 * @rsc: the vring resource descriptor
454 * @offset: offset of the resource entry
455 * @avail: size of available data (for sanity checking the image)
457 * This resource entry requests the host to statically register a virtio
458 * device (vdev), and setup everything needed to support it. It contains
459 * everything needed to make it possible: the virtio device id, virtio
460 * device features, vrings information, virtio config space, etc...
462 * Before registering the vdev, the vrings are allocated from non-cacheable
463 * physically contiguous memory. Currently we only support two vrings per
464 * remote processor (temporary limitation). We might also want to consider
465 * doing the vring allocation only later when ->find_vqs() is invoked, and
466 * then release them upon ->del_vqs().
468 * Note: @da is currently not really handled correctly: we dynamically
469 * allocate it using the DMA API, ignoring requested hard coded addresses,
470 * and we don't take care of any required IOMMU programming. This is all
471 * going to be taken care of when the generic iommu-based DMA API will be
472 * merged. Meanwhile, statically-addressed iommu-based firmware images should
473 * use RSC_DEVMEM resource entries to map their required @da to the physical
474 * address of their base CMA region (ouch, hacky!).
476 * Returns 0 on success, or an appropriate error code otherwise
478 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
479 int offset
, int avail
)
481 struct device
*dev
= &rproc
->dev
;
482 struct rproc_vdev
*rvdev
;
486 /* make sure resource isn't truncated */
487 if (struct_size(rsc
, vring
, rsc
->num_of_vrings
) + rsc
->config_len
>
489 dev_err(dev
, "vdev rsc is truncated\n");
493 /* make sure reserved bytes are zeroes */
494 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
495 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
499 dev_dbg(dev
, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
502 /* we currently support only two vrings per rvdev */
503 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
504 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
508 rvdev
= kzalloc(sizeof(*rvdev
), GFP_KERNEL
);
512 kref_init(&rvdev
->refcount
);
515 rvdev
->rproc
= rproc
;
516 rvdev
->index
= rproc
->nb_vdev
++;
518 /* Initialise vdev subdevice */
519 snprintf(name
, sizeof(name
), "vdev%dbuffer", rvdev
->index
);
520 rvdev
->dev
.parent
= rproc
->dev
.parent
;
521 rvdev
->dev
.dma_pfn_offset
= rproc
->dev
.parent
->dma_pfn_offset
;
522 rvdev
->dev
.release
= rproc_rvdev_release
;
523 dev_set_name(&rvdev
->dev
, "%s#%s", dev_name(rvdev
->dev
.parent
), name
);
524 dev_set_drvdata(&rvdev
->dev
, rvdev
);
526 ret
= device_register(&rvdev
->dev
);
528 put_device(&rvdev
->dev
);
531 /* Make device dma capable by inheriting from parent's capabilities */
532 set_dma_ops(&rvdev
->dev
, get_dma_ops(rproc
->dev
.parent
));
534 ret
= dma_coerce_mask_and_coherent(&rvdev
->dev
,
535 dma_get_mask(rproc
->dev
.parent
));
538 "Failed to set DMA mask %llx. Trying to continue... %x\n",
539 dma_get_mask(rproc
->dev
.parent
), ret
);
542 /* parse the vrings */
543 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
544 ret
= rproc_parse_vring(rvdev
, rsc
, i
);
549 /* remember the resource offset*/
550 rvdev
->rsc_offset
= offset
;
552 /* allocate the vring resources */
553 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
554 ret
= rproc_alloc_vring(rvdev
, i
);
556 goto unwind_vring_allocations
;
559 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
561 rvdev
->subdev
.start
= rproc_vdev_do_start
;
562 rvdev
->subdev
.stop
= rproc_vdev_do_stop
;
564 rproc_add_subdev(rproc
, &rvdev
->subdev
);
568 unwind_vring_allocations
:
569 for (i
--; i
>= 0; i
--)
570 rproc_free_vring(&rvdev
->vring
[i
]);
572 device_unregister(&rvdev
->dev
);
576 void rproc_vdev_release(struct kref
*ref
)
578 struct rproc_vdev
*rvdev
= container_of(ref
, struct rproc_vdev
, refcount
);
579 struct rproc_vring
*rvring
;
580 struct rproc
*rproc
= rvdev
->rproc
;
583 for (id
= 0; id
< ARRAY_SIZE(rvdev
->vring
); id
++) {
584 rvring
= &rvdev
->vring
[id
];
585 rproc_free_vring(rvring
);
588 rproc_remove_subdev(rproc
, &rvdev
->subdev
);
589 list_del(&rvdev
->node
);
590 device_unregister(&rvdev
->dev
);
594 * rproc_handle_trace() - handle a shared trace buffer resource
595 * @rproc: the remote processor
596 * @rsc: the trace resource descriptor
597 * @offset: offset of the resource entry
598 * @avail: size of available data (for sanity checking the image)
600 * In case the remote processor dumps trace logs into memory,
601 * export it via debugfs.
603 * Currently, the 'da' member of @rsc should contain the device address
604 * where the remote processor is dumping the traces. Later we could also
605 * support dynamically allocating this address using the generic
606 * DMA API (but currently there isn't a use case for that).
608 * Returns 0 on success, or an appropriate error code otherwise
610 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
611 int offset
, int avail
)
613 struct rproc_debug_trace
*trace
;
614 struct device
*dev
= &rproc
->dev
;
617 if (sizeof(*rsc
) > avail
) {
618 dev_err(dev
, "trace rsc is truncated\n");
622 /* make sure reserved bytes are zeroes */
624 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
628 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
632 /* set the trace buffer dma properties */
633 trace
->trace_mem
.len
= rsc
->len
;
634 trace
->trace_mem
.da
= rsc
->da
;
636 /* set pointer on rproc device */
637 trace
->rproc
= rproc
;
639 /* make sure snprintf always null terminates, even if truncating */
640 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
642 /* create the debugfs entry */
643 trace
->tfile
= rproc_create_trace_file(name
, rproc
, trace
);
649 list_add_tail(&trace
->node
, &rproc
->traces
);
653 dev_dbg(dev
, "%s added: da 0x%x, len 0x%x\n",
654 name
, rsc
->da
, rsc
->len
);
660 * rproc_handle_devmem() - handle devmem resource entry
661 * @rproc: remote processor handle
662 * @rsc: the devmem resource entry
663 * @offset: offset of the resource entry
664 * @avail: size of available data (for sanity checking the image)
666 * Remote processors commonly need to access certain on-chip peripherals.
668 * Some of these remote processors access memory via an iommu device,
669 * and might require us to configure their iommu before they can access
670 * the on-chip peripherals they need.
672 * This resource entry is a request to map such a peripheral device.
674 * These devmem entries will contain the physical address of the device in
675 * the 'pa' member. If a specific device address is expected, then 'da' will
676 * contain it (currently this is the only use case supported). 'len' will
677 * contain the size of the physical region we need to map.
679 * Currently we just "trust" those devmem entries to contain valid physical
680 * addresses, but this is going to change: we want the implementations to
681 * tell us ranges of physical addresses the firmware is allowed to request,
682 * and not allow firmwares to request access to physical addresses that
683 * are outside those ranges.
685 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
686 int offset
, int avail
)
688 struct rproc_mem_entry
*mapping
;
689 struct device
*dev
= &rproc
->dev
;
692 /* no point in handling this resource without a valid iommu domain */
696 if (sizeof(*rsc
) > avail
) {
697 dev_err(dev
, "devmem rsc is truncated\n");
701 /* make sure reserved bytes are zeroes */
703 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
707 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
711 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
713 dev_err(dev
, "failed to map devmem: %d\n", ret
);
718 * We'll need this info later when we'll want to unmap everything
719 * (e.g. on shutdown).
721 * We can't trust the remote processor not to change the resource
722 * table, so we must maintain this info independently.
724 mapping
->da
= rsc
->da
;
725 mapping
->len
= rsc
->len
;
726 list_add_tail(&mapping
->node
, &rproc
->mappings
);
728 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
729 rsc
->pa
, rsc
->da
, rsc
->len
);
739 * rproc_alloc_carveout() - allocated specified carveout
740 * @rproc: rproc handle
741 * @mem: the memory entry to allocate
743 * This function allocate specified memory entry @mem using
744 * dma_alloc_coherent() as default allocator
746 static int rproc_alloc_carveout(struct rproc
*rproc
,
747 struct rproc_mem_entry
*mem
)
749 struct rproc_mem_entry
*mapping
= NULL
;
750 struct device
*dev
= &rproc
->dev
;
755 va
= dma_alloc_coherent(dev
->parent
, mem
->len
, &dma
, GFP_KERNEL
);
758 "failed to allocate dma memory: len 0x%zx\n",
763 dev_dbg(dev
, "carveout va %pK, dma %pad, len 0x%zx\n",
766 if (mem
->da
!= FW_RSC_ADDR_ANY
&& !rproc
->domain
) {
768 * Check requested da is equal to dma address
769 * and print a warn message in case of missalignment.
770 * Don't stop rproc_start sequence as coprocessor may
771 * build pa to da translation on its side.
773 if (mem
->da
!= (u32
)dma
)
774 dev_warn(dev
->parent
,
775 "Allocated carveout doesn't fit device address request\n");
779 * Ok, this is non-standard.
781 * Sometimes we can't rely on the generic iommu-based DMA API
782 * to dynamically allocate the device address and then set the IOMMU
783 * tables accordingly, because some remote processors might
784 * _require_ us to use hard coded device addresses that their
785 * firmware was compiled with.
787 * In this case, we must use the IOMMU API directly and map
788 * the memory to the device address as expected by the remote
791 * Obviously such remote processor devices should not be configured
792 * to use the iommu-based DMA API: we expect 'dma' to contain the
793 * physical address in this case.
795 if (mem
->da
!= FW_RSC_ADDR_ANY
&& rproc
->domain
) {
796 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
802 ret
= iommu_map(rproc
->domain
, mem
->da
, dma
, mem
->len
,
805 dev_err(dev
, "iommu_map failed: %d\n", ret
);
810 * We'll need this info later when we'll want to unmap
811 * everything (e.g. on shutdown).
813 * We can't trust the remote processor not to change the
814 * resource table, so we must maintain this info independently.
816 mapping
->da
= mem
->da
;
817 mapping
->len
= mem
->len
;
818 list_add_tail(&mapping
->node
, &rproc
->mappings
);
820 dev_dbg(dev
, "carveout mapped 0x%x to %pad\n",
824 if (mem
->da
== FW_RSC_ADDR_ANY
) {
825 /* Update device address as undefined by requester */
826 if ((u64
)dma
& HIGH_BITS_MASK
)
827 dev_warn(dev
, "DMA address cast in 32bit to fit resource table format\n");
840 dma_free_coherent(dev
->parent
, mem
->len
, va
, dma
);
845 * rproc_release_carveout() - release acquired carveout
846 * @rproc: rproc handle
847 * @mem: the memory entry to release
849 * This function releases specified memory entry @mem allocated via
850 * rproc_alloc_carveout() function by @rproc.
852 static int rproc_release_carveout(struct rproc
*rproc
,
853 struct rproc_mem_entry
*mem
)
855 struct device
*dev
= &rproc
->dev
;
857 /* clean up carveout allocations */
858 dma_free_coherent(dev
->parent
, mem
->len
, mem
->va
, mem
->dma
);
863 * rproc_handle_carveout() - handle phys contig memory allocation requests
864 * @rproc: rproc handle
865 * @rsc: the resource entry
866 * @offset: offset of the resource entry
867 * @avail: size of available data (for image validation)
869 * This function will handle firmware requests for allocation of physically
870 * contiguous memory regions.
872 * These request entries should come first in the firmware's resource table,
873 * as other firmware entries might request placing other data objects inside
874 * these memory regions (e.g. data/code segments, trace resource entries, ...).
876 * Allocating memory this way helps utilizing the reserved physical memory
877 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
878 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
879 * pressure is important; it may have a substantial impact on performance.
881 static int rproc_handle_carveout(struct rproc
*rproc
,
882 struct fw_rsc_carveout
*rsc
,
883 int offset
, int avail
)
885 struct rproc_mem_entry
*carveout
;
886 struct device
*dev
= &rproc
->dev
;
888 if (sizeof(*rsc
) > avail
) {
889 dev_err(dev
, "carveout rsc is truncated\n");
893 /* make sure reserved bytes are zeroes */
895 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
899 dev_dbg(dev
, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
900 rsc
->name
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
903 * Check carveout rsc already part of a registered carveout,
904 * Search by name, then check the da and length
906 carveout
= rproc_find_carveout_by_name(rproc
, rsc
->name
);
909 if (carveout
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
911 "Carveout already associated to resource table\n");
915 if (rproc_check_carveout_da(rproc
, carveout
, rsc
->da
, rsc
->len
))
918 /* Update memory carveout with resource table info */
919 carveout
->rsc_offset
= offset
;
920 carveout
->flags
= rsc
->flags
;
925 /* Register carveout in in list */
926 carveout
= rproc_mem_entry_init(dev
, NULL
, 0, rsc
->len
, rsc
->da
,
927 rproc_alloc_carveout
,
928 rproc_release_carveout
, rsc
->name
);
930 dev_err(dev
, "Can't allocate memory entry structure\n");
934 carveout
->flags
= rsc
->flags
;
935 carveout
->rsc_offset
= offset
;
936 rproc_add_carveout(rproc
, carveout
);
942 * rproc_add_carveout() - register an allocated carveout region
943 * @rproc: rproc handle
944 * @mem: memory entry to register
946 * This function registers specified memory entry in @rproc carveouts list.
947 * Specified carveout should have been allocated before registering.
949 void rproc_add_carveout(struct rproc
*rproc
, struct rproc_mem_entry
*mem
)
951 list_add_tail(&mem
->node
, &rproc
->carveouts
);
953 EXPORT_SYMBOL(rproc_add_carveout
);
956 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
957 * @dev: pointer on device struct
958 * @va: virtual address
960 * @len: memory carveout length
961 * @da: device address
962 * @alloc: memory carveout allocation function
963 * @release: memory carveout release function
964 * @name: carveout name
966 * This function allocates a rproc_mem_entry struct and fill it with parameters
967 * provided by client.
969 struct rproc_mem_entry
*
970 rproc_mem_entry_init(struct device
*dev
,
971 void *va
, dma_addr_t dma
, size_t len
, u32 da
,
972 int (*alloc
)(struct rproc
*, struct rproc_mem_entry
*),
973 int (*release
)(struct rproc
*, struct rproc_mem_entry
*),
974 const char *name
, ...)
976 struct rproc_mem_entry
*mem
;
979 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
988 mem
->release
= release
;
989 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
990 mem
->of_resm_idx
= -1;
992 va_start(args
, name
);
993 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
998 EXPORT_SYMBOL(rproc_mem_entry_init
);
1001 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1002 * from a reserved memory phandle
1003 * @dev: pointer on device struct
1004 * @of_resm_idx: reserved memory phandle index in "memory-region"
1005 * @len: memory carveout length
1006 * @da: device address
1007 * @name: carveout name
1009 * This function allocates a rproc_mem_entry struct and fill it with parameters
1010 * provided by client.
1012 struct rproc_mem_entry
*
1013 rproc_of_resm_mem_entry_init(struct device
*dev
, u32 of_resm_idx
, size_t len
,
1014 u32 da
, const char *name
, ...)
1016 struct rproc_mem_entry
*mem
;
1019 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
1025 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
1026 mem
->of_resm_idx
= of_resm_idx
;
1028 va_start(args
, name
);
1029 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
1034 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init
);
1037 * A lookup table for resource handlers. The indices are defined in
1038 * enum fw_resource_type.
1040 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
1041 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
1042 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
1043 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
1044 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_handle_vdev
,
1047 /* handle firmware resource entries before booting the remote processor */
1048 static int rproc_handle_resources(struct rproc
*rproc
,
1049 rproc_handle_resource_t handlers
[RSC_LAST
])
1051 struct device
*dev
= &rproc
->dev
;
1052 rproc_handle_resource_t handler
;
1055 if (!rproc
->table_ptr
)
1058 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
1059 int offset
= rproc
->table_ptr
->offset
[i
];
1060 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
1061 int avail
= rproc
->table_sz
- offset
- sizeof(*hdr
);
1062 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
1064 /* make sure table isn't truncated */
1066 dev_err(dev
, "rsc table is truncated\n");
1070 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
1072 if (hdr
->type
>= RSC_VENDOR_START
&&
1073 hdr
->type
<= RSC_VENDOR_END
) {
1074 ret
= rproc_handle_rsc(rproc
, hdr
->type
, rsc
,
1075 offset
+ sizeof(*hdr
), avail
);
1076 if (ret
== RSC_HANDLED
)
1081 dev_warn(dev
, "unsupported vendor resource %d\n",
1086 if (hdr
->type
>= RSC_LAST
) {
1087 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
1091 handler
= handlers
[hdr
->type
];
1095 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
1103 static int rproc_prepare_subdevices(struct rproc
*rproc
)
1105 struct rproc_subdev
*subdev
;
1108 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1109 if (subdev
->prepare
) {
1110 ret
= subdev
->prepare(subdev
);
1112 goto unroll_preparation
;
1119 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1120 if (subdev
->unprepare
)
1121 subdev
->unprepare(subdev
);
1127 static int rproc_start_subdevices(struct rproc
*rproc
)
1129 struct rproc_subdev
*subdev
;
1132 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1133 if (subdev
->start
) {
1134 ret
= subdev
->start(subdev
);
1136 goto unroll_registration
;
1142 unroll_registration
:
1143 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1145 subdev
->stop(subdev
, true);
1151 static void rproc_stop_subdevices(struct rproc
*rproc
, bool crashed
)
1153 struct rproc_subdev
*subdev
;
1155 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1157 subdev
->stop(subdev
, crashed
);
1161 static void rproc_unprepare_subdevices(struct rproc
*rproc
)
1163 struct rproc_subdev
*subdev
;
1165 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1166 if (subdev
->unprepare
)
1167 subdev
->unprepare(subdev
);
1172 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1174 * @rproc: the remote processor handle
1176 * This function parses registered carveout list, performs allocation
1177 * if alloc() ops registered and updates resource table information
1178 * if rsc_offset set.
1180 * Return: 0 on success
1182 static int rproc_alloc_registered_carveouts(struct rproc
*rproc
)
1184 struct rproc_mem_entry
*entry
, *tmp
;
1185 struct fw_rsc_carveout
*rsc
;
1186 struct device
*dev
= &rproc
->dev
;
1190 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1192 ret
= entry
->alloc(rproc
, entry
);
1194 dev_err(dev
, "Unable to allocate carveout %s: %d\n",
1200 if (entry
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
1201 /* update resource table */
1202 rsc
= (void *)rproc
->table_ptr
+ entry
->rsc_offset
;
1205 * Some remote processors might need to know the pa
1206 * even though they are behind an IOMMU. E.g., OMAP4's
1207 * remote M3 processor needs this so it can control
1208 * on-chip hardware accelerators that are not behind
1209 * the IOMMU, and therefor must know the pa.
1211 * Generally we don't want to expose physical addresses
1212 * if we don't have to (remote processors are generally
1213 * _not_ trusted), so we might want to do this only for
1214 * remote processor that _must_ have this (e.g. OMAP4's
1215 * dual M3 subsystem).
1217 * Non-IOMMU processors might also want to have this info.
1218 * In this case, the device address and the physical address
1222 /* Use va if defined else dma to generate pa */
1224 pa
= (u64
)rproc_va_to_pa(entry
->va
);
1226 pa
= (u64
)entry
->dma
;
1228 if (((u64
)pa
) & HIGH_BITS_MASK
)
1230 "Physical address cast in 32bit to fit resource table format\n");
1233 rsc
->da
= entry
->da
;
1234 rsc
->len
= entry
->len
;
1242 * rproc_coredump_cleanup() - clean up dump_segments list
1243 * @rproc: the remote processor handle
1245 static void rproc_coredump_cleanup(struct rproc
*rproc
)
1247 struct rproc_dump_segment
*entry
, *tmp
;
1249 list_for_each_entry_safe(entry
, tmp
, &rproc
->dump_segments
, node
) {
1250 list_del(&entry
->node
);
1256 * rproc_resource_cleanup() - clean up and free all acquired resources
1257 * @rproc: rproc handle
1259 * This function will free all resources acquired for @rproc, and it
1260 * is called whenever @rproc either shuts down or fails to boot.
1262 static void rproc_resource_cleanup(struct rproc
*rproc
)
1264 struct rproc_mem_entry
*entry
, *tmp
;
1265 struct rproc_debug_trace
*trace
, *ttmp
;
1266 struct rproc_vdev
*rvdev
, *rvtmp
;
1267 struct device
*dev
= &rproc
->dev
;
1269 /* clean up debugfs trace entries */
1270 list_for_each_entry_safe(trace
, ttmp
, &rproc
->traces
, node
) {
1271 rproc_remove_trace_file(trace
->tfile
);
1272 rproc
->num_traces
--;
1273 list_del(&trace
->node
);
1277 /* clean up iommu mapping entries */
1278 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
1281 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
1282 if (unmapped
!= entry
->len
) {
1283 /* nothing much to do besides complaining */
1284 dev_err(dev
, "failed to unmap %zx/%zu\n", entry
->len
,
1288 list_del(&entry
->node
);
1292 /* clean up carveout allocations */
1293 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1295 entry
->release(rproc
, entry
);
1296 list_del(&entry
->node
);
1300 /* clean up remote vdev entries */
1301 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
1302 kref_put(&rvdev
->refcount
, rproc_vdev_release
);
1304 rproc_coredump_cleanup(rproc
);
1307 static int rproc_start(struct rproc
*rproc
, const struct firmware
*fw
)
1309 struct resource_table
*loaded_table
;
1310 struct device
*dev
= &rproc
->dev
;
1313 /* load the ELF segments to memory */
1314 ret
= rproc_load_segments(rproc
, fw
);
1316 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1321 * The starting device has been given the rproc->cached_table as the
1322 * resource table. The address of the vring along with the other
1323 * allocated resources (carveouts etc) is stored in cached_table.
1324 * In order to pass this information to the remote device we must copy
1325 * this information to device memory. We also update the table_ptr so
1326 * that any subsequent changes will be applied to the loaded version.
1328 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
1330 memcpy(loaded_table
, rproc
->cached_table
, rproc
->table_sz
);
1331 rproc
->table_ptr
= loaded_table
;
1334 ret
= rproc_prepare_subdevices(rproc
);
1336 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1338 goto reset_table_ptr
;
1341 /* power up the remote processor */
1342 ret
= rproc
->ops
->start(rproc
);
1344 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1345 goto unprepare_subdevices
;
1348 /* Start any subdevices for the remote processor */
1349 ret
= rproc_start_subdevices(rproc
);
1351 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1356 rproc
->state
= RPROC_RUNNING
;
1358 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1363 rproc
->ops
->stop(rproc
);
1364 unprepare_subdevices
:
1365 rproc_unprepare_subdevices(rproc
);
1367 rproc
->table_ptr
= rproc
->cached_table
;
1373 * take a firmware and boot a remote processor with it.
1375 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1377 struct device
*dev
= &rproc
->dev
;
1378 const char *name
= rproc
->firmware
;
1381 ret
= rproc_fw_sanity_check(rproc
, fw
);
1385 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1388 * if enabling an IOMMU isn't relevant for this rproc, this is
1391 ret
= rproc_enable_iommu(rproc
);
1393 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1397 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
1399 /* Load resource table, core dump segment list etc from the firmware */
1400 ret
= rproc_parse_fw(rproc
, fw
);
1404 /* reset max_notifyid */
1405 rproc
->max_notifyid
= -1;
1407 /* reset handled vdev */
1410 /* handle fw resources which are required to boot rproc */
1411 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1413 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1414 goto clean_up_resources
;
1417 /* Allocate carveout resources associated to rproc */
1418 ret
= rproc_alloc_registered_carveouts(rproc
);
1420 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1422 goto clean_up_resources
;
1425 ret
= rproc_start(rproc
, fw
);
1427 goto clean_up_resources
;
1432 rproc_resource_cleanup(rproc
);
1433 kfree(rproc
->cached_table
);
1434 rproc
->cached_table
= NULL
;
1435 rproc
->table_ptr
= NULL
;
1437 rproc_disable_iommu(rproc
);
1442 * take a firmware and boot it up.
1444 * Note: this function is called asynchronously upon registration of the
1445 * remote processor (so we must wait until it completes before we try
1446 * to unregister the device. one other option is just to use kref here,
1447 * that might be cleaner).
1449 static void rproc_auto_boot_callback(const struct firmware
*fw
, void *context
)
1451 struct rproc
*rproc
= context
;
1455 release_firmware(fw
);
1458 static int rproc_trigger_auto_boot(struct rproc
*rproc
)
1463 * We're initiating an asynchronous firmware loading, so we can
1464 * be built-in kernel code, without hanging the boot process.
1466 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
1467 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
1468 rproc
, rproc_auto_boot_callback
);
1470 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
1475 static int rproc_stop(struct rproc
*rproc
, bool crashed
)
1477 struct device
*dev
= &rproc
->dev
;
1480 /* Stop any subdevices for the remote processor */
1481 rproc_stop_subdevices(rproc
, crashed
);
1483 /* the installed resource table is no longer accessible */
1484 rproc
->table_ptr
= rproc
->cached_table
;
1486 /* power off the remote processor */
1487 ret
= rproc
->ops
->stop(rproc
);
1489 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1493 rproc_unprepare_subdevices(rproc
);
1495 rproc
->state
= RPROC_OFFLINE
;
1497 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1503 * rproc_coredump_add_segment() - add segment of device memory to coredump
1504 * @rproc: handle of a remote processor
1505 * @da: device address
1506 * @size: size of segment
1508 * Add device memory to the list of segments to be included in a coredump for
1511 * Return: 0 on success, negative errno on error.
1513 int rproc_coredump_add_segment(struct rproc
*rproc
, dma_addr_t da
, size_t size
)
1515 struct rproc_dump_segment
*segment
;
1517 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1522 segment
->size
= size
;
1524 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1528 EXPORT_SYMBOL(rproc_coredump_add_segment
);
1531 * rproc_coredump_add_custom_segment() - add custom coredump segment
1532 * @rproc: handle of a remote processor
1533 * @da: device address
1534 * @size: size of segment
1535 * @dumpfn: custom dump function called for each segment during coredump
1536 * @priv: private data
1538 * Add device memory to the list of segments to be included in the coredump
1539 * and associate the segment with the given custom dump function and private
1542 * Return: 0 on success, negative errno on error.
1544 int rproc_coredump_add_custom_segment(struct rproc
*rproc
,
1545 dma_addr_t da
, size_t size
,
1546 void (*dumpfn
)(struct rproc
*rproc
,
1547 struct rproc_dump_segment
*segment
,
1551 struct rproc_dump_segment
*segment
;
1553 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1558 segment
->size
= size
;
1559 segment
->priv
= priv
;
1560 segment
->dump
= dumpfn
;
1562 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1566 EXPORT_SYMBOL(rproc_coredump_add_custom_segment
);
1569 * rproc_coredump() - perform coredump
1570 * @rproc: rproc handle
1572 * This function will generate an ELF header for the registered segments
1573 * and create a devcoredump device associated with rproc.
1575 static void rproc_coredump(struct rproc
*rproc
)
1577 struct rproc_dump_segment
*segment
;
1584 u8
class = rproc
->elf_class
;
1587 if (list_empty(&rproc
->dump_segments
))
1590 data_size
= elf_size_of_hdr(class);
1591 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1592 data_size
+= elf_size_of_phdr(class) + segment
->size
;
1597 data
= vmalloc(data_size
);
1603 memset(ehdr
, 0, elf_size_of_hdr(class));
1604 /* e_ident field is common for both elf32 and elf64 */
1605 elf_hdr_init_ident(ehdr
, class);
1607 elf_hdr_set_e_type(class, ehdr
, ET_CORE
);
1608 elf_hdr_set_e_machine(class, ehdr
, EM_NONE
);
1609 elf_hdr_set_e_version(class, ehdr
, EV_CURRENT
);
1610 elf_hdr_set_e_entry(class, ehdr
, rproc
->bootaddr
);
1611 elf_hdr_set_e_phoff(class, ehdr
, elf_size_of_hdr(class));
1612 elf_hdr_set_e_ehsize(class, ehdr
, elf_size_of_hdr(class));
1613 elf_hdr_set_e_phentsize(class, ehdr
, elf_size_of_phdr(class));
1614 elf_hdr_set_e_phnum(class, ehdr
, phnum
);
1616 phdr
= data
+ elf_hdr_get_e_phoff(class, ehdr
);
1617 offset
= elf_hdr_get_e_phoff(class, ehdr
);
1618 offset
+= elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr
);
1620 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1621 memset(phdr
, 0, elf_size_of_phdr(class));
1622 elf_phdr_set_p_type(class, phdr
, PT_LOAD
);
1623 elf_phdr_set_p_offset(class, phdr
, offset
);
1624 elf_phdr_set_p_vaddr(class, phdr
, segment
->da
);
1625 elf_phdr_set_p_paddr(class, phdr
, segment
->da
);
1626 elf_phdr_set_p_filesz(class, phdr
, segment
->size
);
1627 elf_phdr_set_p_memsz(class, phdr
, segment
->size
);
1628 elf_phdr_set_p_flags(class, phdr
, PF_R
| PF_W
| PF_X
);
1629 elf_phdr_set_p_align(class, phdr
, 0);
1631 if (segment
->dump
) {
1632 segment
->dump(rproc
, segment
, data
+ offset
);
1634 ptr
= rproc_da_to_va(rproc
, segment
->da
, segment
->size
);
1636 dev_err(&rproc
->dev
,
1637 "invalid coredump segment (%pad, %zu)\n",
1638 &segment
->da
, segment
->size
);
1639 memset(data
+ offset
, 0xff, segment
->size
);
1641 memcpy(data
+ offset
, ptr
, segment
->size
);
1645 offset
+= elf_phdr_get_p_filesz(class, phdr
);
1646 phdr
+= elf_size_of_phdr(class);
1649 dev_coredumpv(&rproc
->dev
, data
, data_size
, GFP_KERNEL
);
1653 * rproc_trigger_recovery() - recover a remoteproc
1654 * @rproc: the remote processor
1656 * The recovery is done by resetting all the virtio devices, that way all the
1657 * rpmsg drivers will be reseted along with the remote processor making the
1658 * remoteproc functional again.
1660 * This function can sleep, so it cannot be called from atomic context.
1662 int rproc_trigger_recovery(struct rproc
*rproc
)
1664 const struct firmware
*firmware_p
;
1665 struct device
*dev
= &rproc
->dev
;
1668 ret
= mutex_lock_interruptible(&rproc
->lock
);
1672 /* State could have changed before we got the mutex */
1673 if (rproc
->state
!= RPROC_CRASHED
)
1676 dev_err(dev
, "recovering %s\n", rproc
->name
);
1678 ret
= rproc_stop(rproc
, true);
1682 /* generate coredump */
1683 rproc_coredump(rproc
);
1686 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1688 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1692 /* boot the remote processor up again */
1693 ret
= rproc_start(rproc
, firmware_p
);
1695 release_firmware(firmware_p
);
1698 mutex_unlock(&rproc
->lock
);
1703 * rproc_crash_handler_work() - handle a crash
1704 * @work: work treating the crash
1706 * This function needs to handle everything related to a crash, like cpu
1707 * registers and stack dump, information to help to debug the fatal error, etc.
1709 static void rproc_crash_handler_work(struct work_struct
*work
)
1711 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1712 struct device
*dev
= &rproc
->dev
;
1714 dev_dbg(dev
, "enter %s\n", __func__
);
1716 mutex_lock(&rproc
->lock
);
1718 if (rproc
->state
== RPROC_CRASHED
|| rproc
->state
== RPROC_OFFLINE
) {
1719 /* handle only the first crash detected */
1720 mutex_unlock(&rproc
->lock
);
1724 rproc
->state
= RPROC_CRASHED
;
1725 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1728 mutex_unlock(&rproc
->lock
);
1730 if (!rproc
->recovery_disabled
)
1731 rproc_trigger_recovery(rproc
);
1735 * rproc_boot() - boot a remote processor
1736 * @rproc: handle of a remote processor
1738 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1740 * If the remote processor is already powered on, this function immediately
1741 * returns (successfully).
1743 * Returns 0 on success, and an appropriate error value otherwise.
1745 int rproc_boot(struct rproc
*rproc
)
1747 const struct firmware
*firmware_p
;
1752 pr_err("invalid rproc handle\n");
1758 ret
= mutex_lock_interruptible(&rproc
->lock
);
1760 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1764 if (rproc
->state
== RPROC_DELETED
) {
1766 dev_err(dev
, "can't boot deleted rproc %s\n", rproc
->name
);
1770 /* skip the boot process if rproc is already powered up */
1771 if (atomic_inc_return(&rproc
->power
) > 1) {
1776 dev_info(dev
, "powering up %s\n", rproc
->name
);
1779 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1781 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1785 ret
= rproc_fw_boot(rproc
, firmware_p
);
1787 release_firmware(firmware_p
);
1791 atomic_dec(&rproc
->power
);
1793 mutex_unlock(&rproc
->lock
);
1796 EXPORT_SYMBOL(rproc_boot
);
1799 * rproc_shutdown() - power off the remote processor
1800 * @rproc: the remote processor
1802 * Power off a remote processor (previously booted with rproc_boot()).
1804 * In case @rproc is still being used by an additional user(s), then
1805 * this function will just decrement the power refcount and exit,
1806 * without really powering off the device.
1808 * Every call to rproc_boot() must (eventually) be accompanied by a call
1809 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1812 * - we're not decrementing the rproc's refcount, only the power refcount.
1813 * which means that the @rproc handle stays valid even after rproc_shutdown()
1814 * returns, and users can still use it with a subsequent rproc_boot(), if
1817 void rproc_shutdown(struct rproc
*rproc
)
1819 struct device
*dev
= &rproc
->dev
;
1822 ret
= mutex_lock_interruptible(&rproc
->lock
);
1824 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1828 /* if the remote proc is still needed, bail out */
1829 if (!atomic_dec_and_test(&rproc
->power
))
1832 ret
= rproc_stop(rproc
, false);
1834 atomic_inc(&rproc
->power
);
1838 /* clean up all acquired resources */
1839 rproc_resource_cleanup(rproc
);
1841 rproc_disable_iommu(rproc
);
1843 /* Free the copy of the resource table */
1844 kfree(rproc
->cached_table
);
1845 rproc
->cached_table
= NULL
;
1846 rproc
->table_ptr
= NULL
;
1848 mutex_unlock(&rproc
->lock
);
1850 EXPORT_SYMBOL(rproc_shutdown
);
1853 * rproc_get_by_phandle() - find a remote processor by phandle
1854 * @phandle: phandle to the rproc
1856 * Finds an rproc handle using the remote processor's phandle, and then
1857 * return a handle to the rproc.
1859 * This function increments the remote processor's refcount, so always
1860 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1862 * Returns the rproc handle on success, and NULL on failure.
1865 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1867 struct rproc
*rproc
= NULL
, *r
;
1868 struct device_node
*np
;
1870 np
= of_find_node_by_phandle(phandle
);
1875 list_for_each_entry_rcu(r
, &rproc_list
, node
) {
1876 if (r
->dev
.parent
&& r
->dev
.parent
->of_node
== np
) {
1877 /* prevent underlying implementation from being removed */
1878 if (!try_module_get(r
->dev
.parent
->driver
->owner
)) {
1879 dev_err(&r
->dev
, "can't get owner\n");
1884 get_device(&rproc
->dev
);
1895 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1900 EXPORT_SYMBOL(rproc_get_by_phandle
);
1903 * rproc_add() - register a remote processor
1904 * @rproc: the remote processor handle to register
1906 * Registers @rproc with the remoteproc framework, after it has been
1907 * allocated with rproc_alloc().
1909 * This is called by the platform-specific rproc implementation, whenever
1910 * a new remote processor device is probed.
1912 * Returns 0 on success and an appropriate error code otherwise.
1914 * Note: this function initiates an asynchronous firmware loading
1915 * context, which will look for virtio devices supported by the rproc's
1918 * If found, those virtio devices will be created and added, so as a result
1919 * of registering this remote processor, additional virtio drivers might be
1922 int rproc_add(struct rproc
*rproc
)
1924 struct device
*dev
= &rproc
->dev
;
1927 ret
= device_add(dev
);
1931 dev_info(dev
, "%s is available\n", rproc
->name
);
1933 /* create debugfs entries */
1934 rproc_create_debug_dir(rproc
);
1936 /* if rproc is marked always-on, request it to boot */
1937 if (rproc
->auto_boot
) {
1938 ret
= rproc_trigger_auto_boot(rproc
);
1943 /* expose to rproc_get_by_phandle users */
1944 mutex_lock(&rproc_list_mutex
);
1945 list_add_rcu(&rproc
->node
, &rproc_list
);
1946 mutex_unlock(&rproc_list_mutex
);
1950 EXPORT_SYMBOL(rproc_add
);
1953 * rproc_type_release() - release a remote processor instance
1954 * @dev: the rproc's device
1956 * This function should _never_ be called directly.
1958 * It will be called by the driver core when no one holds a valid pointer
1961 static void rproc_type_release(struct device
*dev
)
1963 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
1965 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
1967 idr_destroy(&rproc
->notifyids
);
1969 if (rproc
->index
>= 0)
1970 ida_simple_remove(&rproc_dev_index
, rproc
->index
);
1972 kfree(rproc
->firmware
);
1977 static const struct device_type rproc_type
= {
1978 .name
= "remoteproc",
1979 .release
= rproc_type_release
,
1983 * rproc_alloc() - allocate a remote processor handle
1984 * @dev: the underlying device
1985 * @name: name of this remote processor
1986 * @ops: platform-specific handlers (mainly start/stop)
1987 * @firmware: name of firmware file to load, can be NULL
1988 * @len: length of private data needed by the rproc driver (in bytes)
1990 * Allocates a new remote processor handle, but does not register
1991 * it yet. if @firmware is NULL, a default name is used.
1993 * This function should be used by rproc implementations during initialization
1994 * of the remote processor.
1996 * After creating an rproc handle using this function, and when ready,
1997 * implementations should then call rproc_add() to complete
1998 * the registration of the remote processor.
2000 * On success the new rproc is returned, and on failure, NULL.
2002 * Note: _never_ directly deallocate @rproc, even if it was not registered
2003 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2005 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
2006 const struct rproc_ops
*ops
,
2007 const char *firmware
, int len
)
2009 struct rproc
*rproc
;
2010 char *p
, *template = "rproc-%s-fw";
2013 if (!dev
|| !name
|| !ops
)
2018 * If the caller didn't pass in a firmware name then
2019 * construct a default name.
2021 name_len
= strlen(name
) + strlen(template) - 2 + 1;
2022 p
= kmalloc(name_len
, GFP_KERNEL
);
2025 snprintf(p
, name_len
, template, name
);
2027 p
= kstrdup(firmware
, GFP_KERNEL
);
2032 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
2038 rproc
->ops
= kmemdup(ops
, sizeof(*ops
), GFP_KERNEL
);
2045 rproc
->firmware
= p
;
2047 rproc
->priv
= &rproc
[1];
2048 rproc
->auto_boot
= true;
2049 rproc
->elf_class
= ELFCLASS32
;
2051 device_initialize(&rproc
->dev
);
2052 rproc
->dev
.parent
= dev
;
2053 rproc
->dev
.type
= &rproc_type
;
2054 rproc
->dev
.class = &rproc_class
;
2055 rproc
->dev
.driver_data
= rproc
;
2057 /* Assign a unique device index and name */
2058 rproc
->index
= ida_simple_get(&rproc_dev_index
, 0, 0, GFP_KERNEL
);
2059 if (rproc
->index
< 0) {
2060 dev_err(dev
, "ida_simple_get failed: %d\n", rproc
->index
);
2061 put_device(&rproc
->dev
);
2065 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
2067 atomic_set(&rproc
->power
, 0);
2069 /* Default to ELF loader if no load function is specified */
2070 if (!rproc
->ops
->load
) {
2071 rproc
->ops
->load
= rproc_elf_load_segments
;
2072 rproc
->ops
->parse_fw
= rproc_elf_load_rsc_table
;
2073 rproc
->ops
->find_loaded_rsc_table
= rproc_elf_find_loaded_rsc_table
;
2074 if (!rproc
->ops
->sanity_check
)
2075 rproc
->ops
->sanity_check
= rproc_elf32_sanity_check
;
2076 rproc
->ops
->get_boot_addr
= rproc_elf_get_boot_addr
;
2079 mutex_init(&rproc
->lock
);
2081 idr_init(&rproc
->notifyids
);
2083 INIT_LIST_HEAD(&rproc
->carveouts
);
2084 INIT_LIST_HEAD(&rproc
->mappings
);
2085 INIT_LIST_HEAD(&rproc
->traces
);
2086 INIT_LIST_HEAD(&rproc
->rvdevs
);
2087 INIT_LIST_HEAD(&rproc
->subdevs
);
2088 INIT_LIST_HEAD(&rproc
->dump_segments
);
2090 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
2092 rproc
->state
= RPROC_OFFLINE
;
2096 EXPORT_SYMBOL(rproc_alloc
);
2099 * rproc_free() - unroll rproc_alloc()
2100 * @rproc: the remote processor handle
2102 * This function decrements the rproc dev refcount.
2104 * If no one holds any reference to rproc anymore, then its refcount would
2105 * now drop to zero, and it would be freed.
2107 void rproc_free(struct rproc
*rproc
)
2109 put_device(&rproc
->dev
);
2111 EXPORT_SYMBOL(rproc_free
);
2114 * rproc_put() - release rproc reference
2115 * @rproc: the remote processor handle
2117 * This function decrements the rproc dev refcount.
2119 * If no one holds any reference to rproc anymore, then its refcount would
2120 * now drop to zero, and it would be freed.
2122 void rproc_put(struct rproc
*rproc
)
2124 module_put(rproc
->dev
.parent
->driver
->owner
);
2125 put_device(&rproc
->dev
);
2127 EXPORT_SYMBOL(rproc_put
);
2130 * rproc_del() - unregister a remote processor
2131 * @rproc: rproc handle to unregister
2133 * This function should be called when the platform specific rproc
2134 * implementation decides to remove the rproc device. it should
2135 * _only_ be called if a previous invocation of rproc_add()
2136 * has completed successfully.
2138 * After rproc_del() returns, @rproc isn't freed yet, because
2139 * of the outstanding reference created by rproc_alloc. To decrement that
2140 * one last refcount, one still needs to call rproc_free().
2142 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2144 int rproc_del(struct rproc
*rproc
)
2149 /* if rproc is marked always-on, rproc_add() booted it */
2150 /* TODO: make sure this works with rproc->power > 1 */
2151 if (rproc
->auto_boot
)
2152 rproc_shutdown(rproc
);
2154 mutex_lock(&rproc
->lock
);
2155 rproc
->state
= RPROC_DELETED
;
2156 mutex_unlock(&rproc
->lock
);
2158 rproc_delete_debug_dir(rproc
);
2160 /* the rproc is downref'ed as soon as it's removed from the klist */
2161 mutex_lock(&rproc_list_mutex
);
2162 list_del_rcu(&rproc
->node
);
2163 mutex_unlock(&rproc_list_mutex
);
2165 /* Ensure that no readers of rproc_list are still active */
2168 device_del(&rproc
->dev
);
2172 EXPORT_SYMBOL(rproc_del
);
2175 * rproc_add_subdev() - add a subdevice to a remoteproc
2176 * @rproc: rproc handle to add the subdevice to
2177 * @subdev: subdev handle to register
2179 * Caller is responsible for populating optional subdevice function pointers.
2181 void rproc_add_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2183 list_add_tail(&subdev
->node
, &rproc
->subdevs
);
2185 EXPORT_SYMBOL(rproc_add_subdev
);
2188 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2189 * @rproc: rproc handle to remove the subdevice from
2190 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2192 void rproc_remove_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2194 list_del(&subdev
->node
);
2196 EXPORT_SYMBOL(rproc_remove_subdev
);
2199 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2200 * @dev: child device to find ancestor of
2202 * Returns the ancestor rproc instance, or NULL if not found.
2204 struct rproc
*rproc_get_by_child(struct device
*dev
)
2206 for (dev
= dev
->parent
; dev
; dev
= dev
->parent
) {
2207 if (dev
->type
== &rproc_type
)
2208 return dev
->driver_data
;
2213 EXPORT_SYMBOL(rproc_get_by_child
);
2216 * rproc_report_crash() - rproc crash reporter function
2217 * @rproc: remote processor
2220 * This function must be called every time a crash is detected by the low-level
2221 * drivers implementing a specific remoteproc. This should not be called from a
2222 * non-remoteproc driver.
2224 * This function can be called from atomic/interrupt context.
2226 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
2229 pr_err("NULL rproc pointer\n");
2233 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
2234 rproc
->name
, rproc_crash_to_string(type
));
2236 /* create a new task to handle the error */
2237 schedule_work(&rproc
->crash_handler
);
2239 EXPORT_SYMBOL(rproc_report_crash
);
2241 static int rproc_panic_handler(struct notifier_block
*nb
, unsigned long event
,
2244 unsigned int longest
= 0;
2245 struct rproc
*rproc
;
2249 list_for_each_entry_rcu(rproc
, &rproc_list
, node
) {
2250 if (!rproc
->ops
->panic
|| rproc
->state
!= RPROC_RUNNING
)
2253 d
= rproc
->ops
->panic(rproc
);
2254 longest
= max(longest
, d
);
2259 * Delay for the longest requested duration before returning. This can
2260 * be used by the remoteproc drivers to give the remote processor time
2261 * to perform any requested operations (such as flush caches), when
2262 * it's not possible to signal the Linux side due to the panic.
2269 static void __init
rproc_init_panic(void)
2271 rproc_panic_nb
.notifier_call
= rproc_panic_handler
;
2272 atomic_notifier_chain_register(&panic_notifier_list
, &rproc_panic_nb
);
2275 static void __exit
rproc_exit_panic(void)
2277 atomic_notifier_chain_unregister(&panic_notifier_list
, &rproc_panic_nb
);
2280 static int __init
remoteproc_init(void)
2283 rproc_init_debugfs();
2288 subsys_initcall(remoteproc_init
);
2290 static void __exit
remoteproc_exit(void)
2292 ida_destroy(&rproc_dev_index
);
2295 rproc_exit_debugfs();
2298 module_exit(remoteproc_exit
);
2300 MODULE_LICENSE("GPL v2");
2301 MODULE_DESCRIPTION("Generic Remote Processor Framework");