gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blobe12a54e67588c3b52634ee69d39bc986033b1b5e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firmware.h>
27 #include <linux/string.h>
28 #include <linux/debugfs.h>
29 #include <linux/devcoredump.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
42 #include "remoteproc_internal.h"
43 #include "remoteproc_elf_helpers.h"
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
87 struct rproc *rproc = token;
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
97 return -ENOSYS;
100 static int rproc_enable_iommu(struct rproc *rproc)
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
125 rproc->domain = domain;
127 return 0;
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
134 static void rproc_disable_iommu(struct rproc *rproc)
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
139 if (!domain)
140 return;
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
161 EXPORT_SYMBOL(rproc_va_to_pa);
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
185 * The function returns a valid kernel address on success or NULL on failure.
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
194 struct rproc_mem_entry *carveout;
195 void *ptr = NULL;
197 if (rproc->ops->da_to_va) {
198 ptr = rproc->ops->da_to_va(rproc, da, len);
199 if (ptr)
200 goto out;
203 list_for_each_entry(carveout, &rproc->carveouts, node) {
204 int offset = da - carveout->da;
206 /* Verify that carveout is allocated */
207 if (!carveout->va)
208 continue;
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
218 ptr = carveout->va + offset;
220 break;
223 out:
224 return ptr;
226 EXPORT_SYMBOL(rproc_da_to_va);
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
246 struct rproc_mem_entry *
247 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 va_list args;
250 char _name[32];
251 struct rproc_mem_entry *carveout, *mem = NULL;
253 if (!name)
254 return NULL;
256 va_start(args, name);
257 vsnprintf(_name, sizeof(_name), name, args);
258 va_end(args);
260 list_for_each_entry(carveout, &rproc->carveouts, node) {
261 /* Compare carveout and requested names */
262 if (!strcmp(carveout->name, _name)) {
263 mem = carveout;
264 break;
268 return mem;
272 * rproc_check_carveout_da() - Check specified carveout da configuration
273 * @rproc: handle of a remote processor
274 * @mem: pointer on carveout to check
275 * @da: area device address
276 * @len: associated area size
278 * This function is a helper function to verify requested device area (couple
279 * da, len) is part of specified carveout.
280 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
281 * checked.
283 * Return: 0 if carveout matches request else error
285 static int rproc_check_carveout_da(struct rproc *rproc,
286 struct rproc_mem_entry *mem, u32 da, u32 len)
288 struct device *dev = &rproc->dev;
289 int delta;
291 /* Check requested resource length */
292 if (len > mem->len) {
293 dev_err(dev, "Registered carveout doesn't fit len request\n");
294 return -EINVAL;
297 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
298 /* Address doesn't match registered carveout configuration */
299 return -EINVAL;
300 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
301 delta = da - mem->da;
303 /* Check requested resource belongs to registered carveout */
304 if (delta < 0) {
305 dev_err(dev,
306 "Registered carveout doesn't fit da request\n");
307 return -EINVAL;
310 if (delta + len > mem->len) {
311 dev_err(dev,
312 "Registered carveout doesn't fit len request\n");
313 return -EINVAL;
317 return 0;
320 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 struct rproc *rproc = rvdev->rproc;
323 struct device *dev = &rproc->dev;
324 struct rproc_vring *rvring = &rvdev->vring[i];
325 struct fw_rsc_vdev *rsc;
326 int ret, notifyid;
327 struct rproc_mem_entry *mem;
328 size_t size;
330 /* actual size of vring (in bytes) */
331 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335 /* Search for pre-registered carveout */
336 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 if (mem) {
339 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
340 return -ENOMEM;
341 } else {
342 /* Register carveout in in list */
343 mem = rproc_mem_entry_init(dev, NULL, 0,
344 size, rsc->vring[i].da,
345 rproc_alloc_carveout,
346 rproc_release_carveout,
347 "vdev%dvring%d",
348 rvdev->index, i);
349 if (!mem) {
350 dev_err(dev, "Can't allocate memory entry structure\n");
351 return -ENOMEM;
354 rproc_add_carveout(rproc, mem);
358 * Assign an rproc-wide unique index for this vring
359 * TODO: assign a notifyid for rvdev updates as well
360 * TODO: support predefined notifyids (via resource table)
362 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
363 if (ret < 0) {
364 dev_err(dev, "idr_alloc failed: %d\n", ret);
365 return ret;
367 notifyid = ret;
369 /* Potentially bump max_notifyid */
370 if (notifyid > rproc->max_notifyid)
371 rproc->max_notifyid = notifyid;
373 rvring->notifyid = notifyid;
375 /* Let the rproc know the notifyid of this vring.*/
376 rsc->vring[i].notifyid = notifyid;
377 return 0;
380 static int
381 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 struct rproc *rproc = rvdev->rproc;
384 struct device *dev = &rproc->dev;
385 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
386 struct rproc_vring *rvring = &rvdev->vring[i];
388 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
389 i, vring->da, vring->num, vring->align);
391 /* verify queue size and vring alignment are sane */
392 if (!vring->num || !vring->align) {
393 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
394 vring->num, vring->align);
395 return -EINVAL;
398 rvring->len = vring->num;
399 rvring->align = vring->align;
400 rvring->rvdev = rvdev;
402 return 0;
405 void rproc_free_vring(struct rproc_vring *rvring)
407 struct rproc *rproc = rvring->rvdev->rproc;
408 int idx = rvring - rvring->rvdev->vring;
409 struct fw_rsc_vdev *rsc;
411 idr_remove(&rproc->notifyids, rvring->notifyid);
413 /* reset resource entry info */
414 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
415 rsc->vring[idx].da = 0;
416 rsc->vring[idx].notifyid = -1;
419 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
421 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
423 return rproc_add_virtio_dev(rvdev, rvdev->id);
426 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
428 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
429 int ret;
431 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
432 if (ret)
433 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
437 * rproc_rvdev_release() - release the existence of a rvdev
439 * @dev: the subdevice's dev
441 static void rproc_rvdev_release(struct device *dev)
443 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
445 of_reserved_mem_device_release(dev);
447 kfree(rvdev);
451 * rproc_handle_vdev() - handle a vdev fw resource
452 * @rproc: the remote processor
453 * @rsc: the vring resource descriptor
454 * @offset: offset of the resource entry
455 * @avail: size of available data (for sanity checking the image)
457 * This resource entry requests the host to statically register a virtio
458 * device (vdev), and setup everything needed to support it. It contains
459 * everything needed to make it possible: the virtio device id, virtio
460 * device features, vrings information, virtio config space, etc...
462 * Before registering the vdev, the vrings are allocated from non-cacheable
463 * physically contiguous memory. Currently we only support two vrings per
464 * remote processor (temporary limitation). We might also want to consider
465 * doing the vring allocation only later when ->find_vqs() is invoked, and
466 * then release them upon ->del_vqs().
468 * Note: @da is currently not really handled correctly: we dynamically
469 * allocate it using the DMA API, ignoring requested hard coded addresses,
470 * and we don't take care of any required IOMMU programming. This is all
471 * going to be taken care of when the generic iommu-based DMA API will be
472 * merged. Meanwhile, statically-addressed iommu-based firmware images should
473 * use RSC_DEVMEM resource entries to map their required @da to the physical
474 * address of their base CMA region (ouch, hacky!).
476 * Returns 0 on success, or an appropriate error code otherwise
478 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
479 int offset, int avail)
481 struct device *dev = &rproc->dev;
482 struct rproc_vdev *rvdev;
483 int i, ret;
484 char name[16];
486 /* make sure resource isn't truncated */
487 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
488 avail) {
489 dev_err(dev, "vdev rsc is truncated\n");
490 return -EINVAL;
493 /* make sure reserved bytes are zeroes */
494 if (rsc->reserved[0] || rsc->reserved[1]) {
495 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496 return -EINVAL;
499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
502 /* we currently support only two vrings per rvdev */
503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505 return -EINVAL;
508 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
509 if (!rvdev)
510 return -ENOMEM;
512 kref_init(&rvdev->refcount);
514 rvdev->id = rsc->id;
515 rvdev->rproc = rproc;
516 rvdev->index = rproc->nb_vdev++;
518 /* Initialise vdev subdevice */
519 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
520 rvdev->dev.parent = rproc->dev.parent;
521 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
522 rvdev->dev.release = rproc_rvdev_release;
523 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
524 dev_set_drvdata(&rvdev->dev, rvdev);
526 ret = device_register(&rvdev->dev);
527 if (ret) {
528 put_device(&rvdev->dev);
529 return ret;
531 /* Make device dma capable by inheriting from parent's capabilities */
532 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
534 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
535 dma_get_mask(rproc->dev.parent));
536 if (ret) {
537 dev_warn(dev,
538 "Failed to set DMA mask %llx. Trying to continue... %x\n",
539 dma_get_mask(rproc->dev.parent), ret);
542 /* parse the vrings */
543 for (i = 0; i < rsc->num_of_vrings; i++) {
544 ret = rproc_parse_vring(rvdev, rsc, i);
545 if (ret)
546 goto free_rvdev;
549 /* remember the resource offset*/
550 rvdev->rsc_offset = offset;
552 /* allocate the vring resources */
553 for (i = 0; i < rsc->num_of_vrings; i++) {
554 ret = rproc_alloc_vring(rvdev, i);
555 if (ret)
556 goto unwind_vring_allocations;
559 list_add_tail(&rvdev->node, &rproc->rvdevs);
561 rvdev->subdev.start = rproc_vdev_do_start;
562 rvdev->subdev.stop = rproc_vdev_do_stop;
564 rproc_add_subdev(rproc, &rvdev->subdev);
566 return 0;
568 unwind_vring_allocations:
569 for (i--; i >= 0; i--)
570 rproc_free_vring(&rvdev->vring[i]);
571 free_rvdev:
572 device_unregister(&rvdev->dev);
573 return ret;
576 void rproc_vdev_release(struct kref *ref)
578 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
579 struct rproc_vring *rvring;
580 struct rproc *rproc = rvdev->rproc;
581 int id;
583 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
584 rvring = &rvdev->vring[id];
585 rproc_free_vring(rvring);
588 rproc_remove_subdev(rproc, &rvdev->subdev);
589 list_del(&rvdev->node);
590 device_unregister(&rvdev->dev);
594 * rproc_handle_trace() - handle a shared trace buffer resource
595 * @rproc: the remote processor
596 * @rsc: the trace resource descriptor
597 * @offset: offset of the resource entry
598 * @avail: size of available data (for sanity checking the image)
600 * In case the remote processor dumps trace logs into memory,
601 * export it via debugfs.
603 * Currently, the 'da' member of @rsc should contain the device address
604 * where the remote processor is dumping the traces. Later we could also
605 * support dynamically allocating this address using the generic
606 * DMA API (but currently there isn't a use case for that).
608 * Returns 0 on success, or an appropriate error code otherwise
610 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
611 int offset, int avail)
613 struct rproc_debug_trace *trace;
614 struct device *dev = &rproc->dev;
615 char name[15];
617 if (sizeof(*rsc) > avail) {
618 dev_err(dev, "trace rsc is truncated\n");
619 return -EINVAL;
622 /* make sure reserved bytes are zeroes */
623 if (rsc->reserved) {
624 dev_err(dev, "trace rsc has non zero reserved bytes\n");
625 return -EINVAL;
628 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
629 if (!trace)
630 return -ENOMEM;
632 /* set the trace buffer dma properties */
633 trace->trace_mem.len = rsc->len;
634 trace->trace_mem.da = rsc->da;
636 /* set pointer on rproc device */
637 trace->rproc = rproc;
639 /* make sure snprintf always null terminates, even if truncating */
640 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
642 /* create the debugfs entry */
643 trace->tfile = rproc_create_trace_file(name, rproc, trace);
644 if (!trace->tfile) {
645 kfree(trace);
646 return -EINVAL;
649 list_add_tail(&trace->node, &rproc->traces);
651 rproc->num_traces++;
653 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
654 name, rsc->da, rsc->len);
656 return 0;
660 * rproc_handle_devmem() - handle devmem resource entry
661 * @rproc: remote processor handle
662 * @rsc: the devmem resource entry
663 * @offset: offset of the resource entry
664 * @avail: size of available data (for sanity checking the image)
666 * Remote processors commonly need to access certain on-chip peripherals.
668 * Some of these remote processors access memory via an iommu device,
669 * and might require us to configure their iommu before they can access
670 * the on-chip peripherals they need.
672 * This resource entry is a request to map such a peripheral device.
674 * These devmem entries will contain the physical address of the device in
675 * the 'pa' member. If a specific device address is expected, then 'da' will
676 * contain it (currently this is the only use case supported). 'len' will
677 * contain the size of the physical region we need to map.
679 * Currently we just "trust" those devmem entries to contain valid physical
680 * addresses, but this is going to change: we want the implementations to
681 * tell us ranges of physical addresses the firmware is allowed to request,
682 * and not allow firmwares to request access to physical addresses that
683 * are outside those ranges.
685 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
686 int offset, int avail)
688 struct rproc_mem_entry *mapping;
689 struct device *dev = &rproc->dev;
690 int ret;
692 /* no point in handling this resource without a valid iommu domain */
693 if (!rproc->domain)
694 return -EINVAL;
696 if (sizeof(*rsc) > avail) {
697 dev_err(dev, "devmem rsc is truncated\n");
698 return -EINVAL;
701 /* make sure reserved bytes are zeroes */
702 if (rsc->reserved) {
703 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
704 return -EINVAL;
707 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
708 if (!mapping)
709 return -ENOMEM;
711 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
712 if (ret) {
713 dev_err(dev, "failed to map devmem: %d\n", ret);
714 goto out;
718 * We'll need this info later when we'll want to unmap everything
719 * (e.g. on shutdown).
721 * We can't trust the remote processor not to change the resource
722 * table, so we must maintain this info independently.
724 mapping->da = rsc->da;
725 mapping->len = rsc->len;
726 list_add_tail(&mapping->node, &rproc->mappings);
728 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
729 rsc->pa, rsc->da, rsc->len);
731 return 0;
733 out:
734 kfree(mapping);
735 return ret;
739 * rproc_alloc_carveout() - allocated specified carveout
740 * @rproc: rproc handle
741 * @mem: the memory entry to allocate
743 * This function allocate specified memory entry @mem using
744 * dma_alloc_coherent() as default allocator
746 static int rproc_alloc_carveout(struct rproc *rproc,
747 struct rproc_mem_entry *mem)
749 struct rproc_mem_entry *mapping = NULL;
750 struct device *dev = &rproc->dev;
751 dma_addr_t dma;
752 void *va;
753 int ret;
755 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
756 if (!va) {
757 dev_err(dev->parent,
758 "failed to allocate dma memory: len 0x%zx\n",
759 mem->len);
760 return -ENOMEM;
763 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
764 va, &dma, mem->len);
766 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
768 * Check requested da is equal to dma address
769 * and print a warn message in case of missalignment.
770 * Don't stop rproc_start sequence as coprocessor may
771 * build pa to da translation on its side.
773 if (mem->da != (u32)dma)
774 dev_warn(dev->parent,
775 "Allocated carveout doesn't fit device address request\n");
779 * Ok, this is non-standard.
781 * Sometimes we can't rely on the generic iommu-based DMA API
782 * to dynamically allocate the device address and then set the IOMMU
783 * tables accordingly, because some remote processors might
784 * _require_ us to use hard coded device addresses that their
785 * firmware was compiled with.
787 * In this case, we must use the IOMMU API directly and map
788 * the memory to the device address as expected by the remote
789 * processor.
791 * Obviously such remote processor devices should not be configured
792 * to use the iommu-based DMA API: we expect 'dma' to contain the
793 * physical address in this case.
795 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
796 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
797 if (!mapping) {
798 ret = -ENOMEM;
799 goto dma_free;
802 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
803 mem->flags);
804 if (ret) {
805 dev_err(dev, "iommu_map failed: %d\n", ret);
806 goto free_mapping;
810 * We'll need this info later when we'll want to unmap
811 * everything (e.g. on shutdown).
813 * We can't trust the remote processor not to change the
814 * resource table, so we must maintain this info independently.
816 mapping->da = mem->da;
817 mapping->len = mem->len;
818 list_add_tail(&mapping->node, &rproc->mappings);
820 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
821 mem->da, &dma);
824 if (mem->da == FW_RSC_ADDR_ANY) {
825 /* Update device address as undefined by requester */
826 if ((u64)dma & HIGH_BITS_MASK)
827 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
829 mem->da = (u32)dma;
832 mem->dma = dma;
833 mem->va = va;
835 return 0;
837 free_mapping:
838 kfree(mapping);
839 dma_free:
840 dma_free_coherent(dev->parent, mem->len, va, dma);
841 return ret;
845 * rproc_release_carveout() - release acquired carveout
846 * @rproc: rproc handle
847 * @mem: the memory entry to release
849 * This function releases specified memory entry @mem allocated via
850 * rproc_alloc_carveout() function by @rproc.
852 static int rproc_release_carveout(struct rproc *rproc,
853 struct rproc_mem_entry *mem)
855 struct device *dev = &rproc->dev;
857 /* clean up carveout allocations */
858 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
859 return 0;
863 * rproc_handle_carveout() - handle phys contig memory allocation requests
864 * @rproc: rproc handle
865 * @rsc: the resource entry
866 * @offset: offset of the resource entry
867 * @avail: size of available data (for image validation)
869 * This function will handle firmware requests for allocation of physically
870 * contiguous memory regions.
872 * These request entries should come first in the firmware's resource table,
873 * as other firmware entries might request placing other data objects inside
874 * these memory regions (e.g. data/code segments, trace resource entries, ...).
876 * Allocating memory this way helps utilizing the reserved physical memory
877 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
878 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
879 * pressure is important; it may have a substantial impact on performance.
881 static int rproc_handle_carveout(struct rproc *rproc,
882 struct fw_rsc_carveout *rsc,
883 int offset, int avail)
885 struct rproc_mem_entry *carveout;
886 struct device *dev = &rproc->dev;
888 if (sizeof(*rsc) > avail) {
889 dev_err(dev, "carveout rsc is truncated\n");
890 return -EINVAL;
893 /* make sure reserved bytes are zeroes */
894 if (rsc->reserved) {
895 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
896 return -EINVAL;
899 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
900 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
903 * Check carveout rsc already part of a registered carveout,
904 * Search by name, then check the da and length
906 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
908 if (carveout) {
909 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
910 dev_err(dev,
911 "Carveout already associated to resource table\n");
912 return -ENOMEM;
915 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
916 return -ENOMEM;
918 /* Update memory carveout with resource table info */
919 carveout->rsc_offset = offset;
920 carveout->flags = rsc->flags;
922 return 0;
925 /* Register carveout in in list */
926 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
927 rproc_alloc_carveout,
928 rproc_release_carveout, rsc->name);
929 if (!carveout) {
930 dev_err(dev, "Can't allocate memory entry structure\n");
931 return -ENOMEM;
934 carveout->flags = rsc->flags;
935 carveout->rsc_offset = offset;
936 rproc_add_carveout(rproc, carveout);
938 return 0;
942 * rproc_add_carveout() - register an allocated carveout region
943 * @rproc: rproc handle
944 * @mem: memory entry to register
946 * This function registers specified memory entry in @rproc carveouts list.
947 * Specified carveout should have been allocated before registering.
949 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
951 list_add_tail(&mem->node, &rproc->carveouts);
953 EXPORT_SYMBOL(rproc_add_carveout);
956 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
957 * @dev: pointer on device struct
958 * @va: virtual address
959 * @dma: dma address
960 * @len: memory carveout length
961 * @da: device address
962 * @alloc: memory carveout allocation function
963 * @release: memory carveout release function
964 * @name: carveout name
966 * This function allocates a rproc_mem_entry struct and fill it with parameters
967 * provided by client.
969 struct rproc_mem_entry *
970 rproc_mem_entry_init(struct device *dev,
971 void *va, dma_addr_t dma, size_t len, u32 da,
972 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
973 int (*release)(struct rproc *, struct rproc_mem_entry *),
974 const char *name, ...)
976 struct rproc_mem_entry *mem;
977 va_list args;
979 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
980 if (!mem)
981 return mem;
983 mem->va = va;
984 mem->dma = dma;
985 mem->da = da;
986 mem->len = len;
987 mem->alloc = alloc;
988 mem->release = release;
989 mem->rsc_offset = FW_RSC_ADDR_ANY;
990 mem->of_resm_idx = -1;
992 va_start(args, name);
993 vsnprintf(mem->name, sizeof(mem->name), name, args);
994 va_end(args);
996 return mem;
998 EXPORT_SYMBOL(rproc_mem_entry_init);
1001 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1002 * from a reserved memory phandle
1003 * @dev: pointer on device struct
1004 * @of_resm_idx: reserved memory phandle index in "memory-region"
1005 * @len: memory carveout length
1006 * @da: device address
1007 * @name: carveout name
1009 * This function allocates a rproc_mem_entry struct and fill it with parameters
1010 * provided by client.
1012 struct rproc_mem_entry *
1013 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1014 u32 da, const char *name, ...)
1016 struct rproc_mem_entry *mem;
1017 va_list args;
1019 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1020 if (!mem)
1021 return mem;
1023 mem->da = da;
1024 mem->len = len;
1025 mem->rsc_offset = FW_RSC_ADDR_ANY;
1026 mem->of_resm_idx = of_resm_idx;
1028 va_start(args, name);
1029 vsnprintf(mem->name, sizeof(mem->name), name, args);
1030 va_end(args);
1032 return mem;
1034 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1037 * A lookup table for resource handlers. The indices are defined in
1038 * enum fw_resource_type.
1040 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1041 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1042 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1043 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1044 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1047 /* handle firmware resource entries before booting the remote processor */
1048 static int rproc_handle_resources(struct rproc *rproc,
1049 rproc_handle_resource_t handlers[RSC_LAST])
1051 struct device *dev = &rproc->dev;
1052 rproc_handle_resource_t handler;
1053 int ret = 0, i;
1055 if (!rproc->table_ptr)
1056 return 0;
1058 for (i = 0; i < rproc->table_ptr->num; i++) {
1059 int offset = rproc->table_ptr->offset[i];
1060 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1061 int avail = rproc->table_sz - offset - sizeof(*hdr);
1062 void *rsc = (void *)hdr + sizeof(*hdr);
1064 /* make sure table isn't truncated */
1065 if (avail < 0) {
1066 dev_err(dev, "rsc table is truncated\n");
1067 return -EINVAL;
1070 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1072 if (hdr->type >= RSC_VENDOR_START &&
1073 hdr->type <= RSC_VENDOR_END) {
1074 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1075 offset + sizeof(*hdr), avail);
1076 if (ret == RSC_HANDLED)
1077 continue;
1078 else if (ret < 0)
1079 break;
1081 dev_warn(dev, "unsupported vendor resource %d\n",
1082 hdr->type);
1083 continue;
1086 if (hdr->type >= RSC_LAST) {
1087 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1088 continue;
1091 handler = handlers[hdr->type];
1092 if (!handler)
1093 continue;
1095 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1096 if (ret)
1097 break;
1100 return ret;
1103 static int rproc_prepare_subdevices(struct rproc *rproc)
1105 struct rproc_subdev *subdev;
1106 int ret;
1108 list_for_each_entry(subdev, &rproc->subdevs, node) {
1109 if (subdev->prepare) {
1110 ret = subdev->prepare(subdev);
1111 if (ret)
1112 goto unroll_preparation;
1116 return 0;
1118 unroll_preparation:
1119 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1120 if (subdev->unprepare)
1121 subdev->unprepare(subdev);
1124 return ret;
1127 static int rproc_start_subdevices(struct rproc *rproc)
1129 struct rproc_subdev *subdev;
1130 int ret;
1132 list_for_each_entry(subdev, &rproc->subdevs, node) {
1133 if (subdev->start) {
1134 ret = subdev->start(subdev);
1135 if (ret)
1136 goto unroll_registration;
1140 return 0;
1142 unroll_registration:
1143 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1144 if (subdev->stop)
1145 subdev->stop(subdev, true);
1148 return ret;
1151 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1153 struct rproc_subdev *subdev;
1155 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156 if (subdev->stop)
1157 subdev->stop(subdev, crashed);
1161 static void rproc_unprepare_subdevices(struct rproc *rproc)
1163 struct rproc_subdev *subdev;
1165 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1166 if (subdev->unprepare)
1167 subdev->unprepare(subdev);
1172 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1173 * in the list
1174 * @rproc: the remote processor handle
1176 * This function parses registered carveout list, performs allocation
1177 * if alloc() ops registered and updates resource table information
1178 * if rsc_offset set.
1180 * Return: 0 on success
1182 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1184 struct rproc_mem_entry *entry, *tmp;
1185 struct fw_rsc_carveout *rsc;
1186 struct device *dev = &rproc->dev;
1187 u64 pa;
1188 int ret;
1190 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1191 if (entry->alloc) {
1192 ret = entry->alloc(rproc, entry);
1193 if (ret) {
1194 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1195 entry->name, ret);
1196 return -ENOMEM;
1200 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1201 /* update resource table */
1202 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1205 * Some remote processors might need to know the pa
1206 * even though they are behind an IOMMU. E.g., OMAP4's
1207 * remote M3 processor needs this so it can control
1208 * on-chip hardware accelerators that are not behind
1209 * the IOMMU, and therefor must know the pa.
1211 * Generally we don't want to expose physical addresses
1212 * if we don't have to (remote processors are generally
1213 * _not_ trusted), so we might want to do this only for
1214 * remote processor that _must_ have this (e.g. OMAP4's
1215 * dual M3 subsystem).
1217 * Non-IOMMU processors might also want to have this info.
1218 * In this case, the device address and the physical address
1219 * are the same.
1222 /* Use va if defined else dma to generate pa */
1223 if (entry->va)
1224 pa = (u64)rproc_va_to_pa(entry->va);
1225 else
1226 pa = (u64)entry->dma;
1228 if (((u64)pa) & HIGH_BITS_MASK)
1229 dev_warn(dev,
1230 "Physical address cast in 32bit to fit resource table format\n");
1232 rsc->pa = (u32)pa;
1233 rsc->da = entry->da;
1234 rsc->len = entry->len;
1238 return 0;
1242 * rproc_coredump_cleanup() - clean up dump_segments list
1243 * @rproc: the remote processor handle
1245 static void rproc_coredump_cleanup(struct rproc *rproc)
1247 struct rproc_dump_segment *entry, *tmp;
1249 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1250 list_del(&entry->node);
1251 kfree(entry);
1256 * rproc_resource_cleanup() - clean up and free all acquired resources
1257 * @rproc: rproc handle
1259 * This function will free all resources acquired for @rproc, and it
1260 * is called whenever @rproc either shuts down or fails to boot.
1262 static void rproc_resource_cleanup(struct rproc *rproc)
1264 struct rproc_mem_entry *entry, *tmp;
1265 struct rproc_debug_trace *trace, *ttmp;
1266 struct rproc_vdev *rvdev, *rvtmp;
1267 struct device *dev = &rproc->dev;
1269 /* clean up debugfs trace entries */
1270 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1271 rproc_remove_trace_file(trace->tfile);
1272 rproc->num_traces--;
1273 list_del(&trace->node);
1274 kfree(trace);
1277 /* clean up iommu mapping entries */
1278 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1279 size_t unmapped;
1281 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1282 if (unmapped != entry->len) {
1283 /* nothing much to do besides complaining */
1284 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1285 unmapped);
1288 list_del(&entry->node);
1289 kfree(entry);
1292 /* clean up carveout allocations */
1293 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1294 if (entry->release)
1295 entry->release(rproc, entry);
1296 list_del(&entry->node);
1297 kfree(entry);
1300 /* clean up remote vdev entries */
1301 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1302 kref_put(&rvdev->refcount, rproc_vdev_release);
1304 rproc_coredump_cleanup(rproc);
1307 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1309 struct resource_table *loaded_table;
1310 struct device *dev = &rproc->dev;
1311 int ret;
1313 /* load the ELF segments to memory */
1314 ret = rproc_load_segments(rproc, fw);
1315 if (ret) {
1316 dev_err(dev, "Failed to load program segments: %d\n", ret);
1317 return ret;
1321 * The starting device has been given the rproc->cached_table as the
1322 * resource table. The address of the vring along with the other
1323 * allocated resources (carveouts etc) is stored in cached_table.
1324 * In order to pass this information to the remote device we must copy
1325 * this information to device memory. We also update the table_ptr so
1326 * that any subsequent changes will be applied to the loaded version.
1328 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1329 if (loaded_table) {
1330 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1331 rproc->table_ptr = loaded_table;
1334 ret = rproc_prepare_subdevices(rproc);
1335 if (ret) {
1336 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1337 rproc->name, ret);
1338 goto reset_table_ptr;
1341 /* power up the remote processor */
1342 ret = rproc->ops->start(rproc);
1343 if (ret) {
1344 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1345 goto unprepare_subdevices;
1348 /* Start any subdevices for the remote processor */
1349 ret = rproc_start_subdevices(rproc);
1350 if (ret) {
1351 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1352 rproc->name, ret);
1353 goto stop_rproc;
1356 rproc->state = RPROC_RUNNING;
1358 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1360 return 0;
1362 stop_rproc:
1363 rproc->ops->stop(rproc);
1364 unprepare_subdevices:
1365 rproc_unprepare_subdevices(rproc);
1366 reset_table_ptr:
1367 rproc->table_ptr = rproc->cached_table;
1369 return ret;
1373 * take a firmware and boot a remote processor with it.
1375 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377 struct device *dev = &rproc->dev;
1378 const char *name = rproc->firmware;
1379 int ret;
1381 ret = rproc_fw_sanity_check(rproc, fw);
1382 if (ret)
1383 return ret;
1385 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388 * if enabling an IOMMU isn't relevant for this rproc, this is
1389 * just a nop
1391 ret = rproc_enable_iommu(rproc);
1392 if (ret) {
1393 dev_err(dev, "can't enable iommu: %d\n", ret);
1394 return ret;
1397 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1399 /* Load resource table, core dump segment list etc from the firmware */
1400 ret = rproc_parse_fw(rproc, fw);
1401 if (ret)
1402 goto disable_iommu;
1404 /* reset max_notifyid */
1405 rproc->max_notifyid = -1;
1407 /* reset handled vdev */
1408 rproc->nb_vdev = 0;
1410 /* handle fw resources which are required to boot rproc */
1411 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1412 if (ret) {
1413 dev_err(dev, "Failed to process resources: %d\n", ret);
1414 goto clean_up_resources;
1417 /* Allocate carveout resources associated to rproc */
1418 ret = rproc_alloc_registered_carveouts(rproc);
1419 if (ret) {
1420 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1421 ret);
1422 goto clean_up_resources;
1425 ret = rproc_start(rproc, fw);
1426 if (ret)
1427 goto clean_up_resources;
1429 return 0;
1431 clean_up_resources:
1432 rproc_resource_cleanup(rproc);
1433 kfree(rproc->cached_table);
1434 rproc->cached_table = NULL;
1435 rproc->table_ptr = NULL;
1436 disable_iommu:
1437 rproc_disable_iommu(rproc);
1438 return ret;
1442 * take a firmware and boot it up.
1444 * Note: this function is called asynchronously upon registration of the
1445 * remote processor (so we must wait until it completes before we try
1446 * to unregister the device. one other option is just to use kref here,
1447 * that might be cleaner).
1449 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1451 struct rproc *rproc = context;
1453 rproc_boot(rproc);
1455 release_firmware(fw);
1458 static int rproc_trigger_auto_boot(struct rproc *rproc)
1460 int ret;
1463 * We're initiating an asynchronous firmware loading, so we can
1464 * be built-in kernel code, without hanging the boot process.
1466 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1467 rproc->firmware, &rproc->dev, GFP_KERNEL,
1468 rproc, rproc_auto_boot_callback);
1469 if (ret < 0)
1470 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1472 return ret;
1475 static int rproc_stop(struct rproc *rproc, bool crashed)
1477 struct device *dev = &rproc->dev;
1478 int ret;
1480 /* Stop any subdevices for the remote processor */
1481 rproc_stop_subdevices(rproc, crashed);
1483 /* the installed resource table is no longer accessible */
1484 rproc->table_ptr = rproc->cached_table;
1486 /* power off the remote processor */
1487 ret = rproc->ops->stop(rproc);
1488 if (ret) {
1489 dev_err(dev, "can't stop rproc: %d\n", ret);
1490 return ret;
1493 rproc_unprepare_subdevices(rproc);
1495 rproc->state = RPROC_OFFLINE;
1497 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1499 return 0;
1503 * rproc_coredump_add_segment() - add segment of device memory to coredump
1504 * @rproc: handle of a remote processor
1505 * @da: device address
1506 * @size: size of segment
1508 * Add device memory to the list of segments to be included in a coredump for
1509 * the remoteproc.
1511 * Return: 0 on success, negative errno on error.
1513 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1515 struct rproc_dump_segment *segment;
1517 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1518 if (!segment)
1519 return -ENOMEM;
1521 segment->da = da;
1522 segment->size = size;
1524 list_add_tail(&segment->node, &rproc->dump_segments);
1526 return 0;
1528 EXPORT_SYMBOL(rproc_coredump_add_segment);
1531 * rproc_coredump_add_custom_segment() - add custom coredump segment
1532 * @rproc: handle of a remote processor
1533 * @da: device address
1534 * @size: size of segment
1535 * @dumpfn: custom dump function called for each segment during coredump
1536 * @priv: private data
1538 * Add device memory to the list of segments to be included in the coredump
1539 * and associate the segment with the given custom dump function and private
1540 * data.
1542 * Return: 0 on success, negative errno on error.
1544 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1545 dma_addr_t da, size_t size,
1546 void (*dumpfn)(struct rproc *rproc,
1547 struct rproc_dump_segment *segment,
1548 void *dest),
1549 void *priv)
1551 struct rproc_dump_segment *segment;
1553 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1554 if (!segment)
1555 return -ENOMEM;
1557 segment->da = da;
1558 segment->size = size;
1559 segment->priv = priv;
1560 segment->dump = dumpfn;
1562 list_add_tail(&segment->node, &rproc->dump_segments);
1564 return 0;
1566 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1569 * rproc_coredump() - perform coredump
1570 * @rproc: rproc handle
1572 * This function will generate an ELF header for the registered segments
1573 * and create a devcoredump device associated with rproc.
1575 static void rproc_coredump(struct rproc *rproc)
1577 struct rproc_dump_segment *segment;
1578 void *phdr;
1579 void *ehdr;
1580 size_t data_size;
1581 size_t offset;
1582 void *data;
1583 void *ptr;
1584 u8 class = rproc->elf_class;
1585 int phnum = 0;
1587 if (list_empty(&rproc->dump_segments))
1588 return;
1590 data_size = elf_size_of_hdr(class);
1591 list_for_each_entry(segment, &rproc->dump_segments, node) {
1592 data_size += elf_size_of_phdr(class) + segment->size;
1594 phnum++;
1597 data = vmalloc(data_size);
1598 if (!data)
1599 return;
1601 ehdr = data;
1603 memset(ehdr, 0, elf_size_of_hdr(class));
1604 /* e_ident field is common for both elf32 and elf64 */
1605 elf_hdr_init_ident(ehdr, class);
1607 elf_hdr_set_e_type(class, ehdr, ET_CORE);
1608 elf_hdr_set_e_machine(class, ehdr, EM_NONE);
1609 elf_hdr_set_e_version(class, ehdr, EV_CURRENT);
1610 elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr);
1611 elf_hdr_set_e_phoff(class, ehdr, elf_size_of_hdr(class));
1612 elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class));
1613 elf_hdr_set_e_phentsize(class, ehdr, elf_size_of_phdr(class));
1614 elf_hdr_set_e_phnum(class, ehdr, phnum);
1616 phdr = data + elf_hdr_get_e_phoff(class, ehdr);
1617 offset = elf_hdr_get_e_phoff(class, ehdr);
1618 offset += elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr);
1620 list_for_each_entry(segment, &rproc->dump_segments, node) {
1621 memset(phdr, 0, elf_size_of_phdr(class));
1622 elf_phdr_set_p_type(class, phdr, PT_LOAD);
1623 elf_phdr_set_p_offset(class, phdr, offset);
1624 elf_phdr_set_p_vaddr(class, phdr, segment->da);
1625 elf_phdr_set_p_paddr(class, phdr, segment->da);
1626 elf_phdr_set_p_filesz(class, phdr, segment->size);
1627 elf_phdr_set_p_memsz(class, phdr, segment->size);
1628 elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X);
1629 elf_phdr_set_p_align(class, phdr, 0);
1631 if (segment->dump) {
1632 segment->dump(rproc, segment, data + offset);
1633 } else {
1634 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1635 if (!ptr) {
1636 dev_err(&rproc->dev,
1637 "invalid coredump segment (%pad, %zu)\n",
1638 &segment->da, segment->size);
1639 memset(data + offset, 0xff, segment->size);
1640 } else {
1641 memcpy(data + offset, ptr, segment->size);
1645 offset += elf_phdr_get_p_filesz(class, phdr);
1646 phdr += elf_size_of_phdr(class);
1649 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1653 * rproc_trigger_recovery() - recover a remoteproc
1654 * @rproc: the remote processor
1656 * The recovery is done by resetting all the virtio devices, that way all the
1657 * rpmsg drivers will be reseted along with the remote processor making the
1658 * remoteproc functional again.
1660 * This function can sleep, so it cannot be called from atomic context.
1662 int rproc_trigger_recovery(struct rproc *rproc)
1664 const struct firmware *firmware_p;
1665 struct device *dev = &rproc->dev;
1666 int ret;
1668 ret = mutex_lock_interruptible(&rproc->lock);
1669 if (ret)
1670 return ret;
1672 /* State could have changed before we got the mutex */
1673 if (rproc->state != RPROC_CRASHED)
1674 goto unlock_mutex;
1676 dev_err(dev, "recovering %s\n", rproc->name);
1678 ret = rproc_stop(rproc, true);
1679 if (ret)
1680 goto unlock_mutex;
1682 /* generate coredump */
1683 rproc_coredump(rproc);
1685 /* load firmware */
1686 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1687 if (ret < 0) {
1688 dev_err(dev, "request_firmware failed: %d\n", ret);
1689 goto unlock_mutex;
1692 /* boot the remote processor up again */
1693 ret = rproc_start(rproc, firmware_p);
1695 release_firmware(firmware_p);
1697 unlock_mutex:
1698 mutex_unlock(&rproc->lock);
1699 return ret;
1703 * rproc_crash_handler_work() - handle a crash
1704 * @work: work treating the crash
1706 * This function needs to handle everything related to a crash, like cpu
1707 * registers and stack dump, information to help to debug the fatal error, etc.
1709 static void rproc_crash_handler_work(struct work_struct *work)
1711 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1712 struct device *dev = &rproc->dev;
1714 dev_dbg(dev, "enter %s\n", __func__);
1716 mutex_lock(&rproc->lock);
1718 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1719 /* handle only the first crash detected */
1720 mutex_unlock(&rproc->lock);
1721 return;
1724 rproc->state = RPROC_CRASHED;
1725 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1726 rproc->name);
1728 mutex_unlock(&rproc->lock);
1730 if (!rproc->recovery_disabled)
1731 rproc_trigger_recovery(rproc);
1735 * rproc_boot() - boot a remote processor
1736 * @rproc: handle of a remote processor
1738 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1740 * If the remote processor is already powered on, this function immediately
1741 * returns (successfully).
1743 * Returns 0 on success, and an appropriate error value otherwise.
1745 int rproc_boot(struct rproc *rproc)
1747 const struct firmware *firmware_p;
1748 struct device *dev;
1749 int ret;
1751 if (!rproc) {
1752 pr_err("invalid rproc handle\n");
1753 return -EINVAL;
1756 dev = &rproc->dev;
1758 ret = mutex_lock_interruptible(&rproc->lock);
1759 if (ret) {
1760 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1761 return ret;
1764 if (rproc->state == RPROC_DELETED) {
1765 ret = -ENODEV;
1766 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1767 goto unlock_mutex;
1770 /* skip the boot process if rproc is already powered up */
1771 if (atomic_inc_return(&rproc->power) > 1) {
1772 ret = 0;
1773 goto unlock_mutex;
1776 dev_info(dev, "powering up %s\n", rproc->name);
1778 /* load firmware */
1779 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1780 if (ret < 0) {
1781 dev_err(dev, "request_firmware failed: %d\n", ret);
1782 goto downref_rproc;
1785 ret = rproc_fw_boot(rproc, firmware_p);
1787 release_firmware(firmware_p);
1789 downref_rproc:
1790 if (ret)
1791 atomic_dec(&rproc->power);
1792 unlock_mutex:
1793 mutex_unlock(&rproc->lock);
1794 return ret;
1796 EXPORT_SYMBOL(rproc_boot);
1799 * rproc_shutdown() - power off the remote processor
1800 * @rproc: the remote processor
1802 * Power off a remote processor (previously booted with rproc_boot()).
1804 * In case @rproc is still being used by an additional user(s), then
1805 * this function will just decrement the power refcount and exit,
1806 * without really powering off the device.
1808 * Every call to rproc_boot() must (eventually) be accompanied by a call
1809 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1811 * Notes:
1812 * - we're not decrementing the rproc's refcount, only the power refcount.
1813 * which means that the @rproc handle stays valid even after rproc_shutdown()
1814 * returns, and users can still use it with a subsequent rproc_boot(), if
1815 * needed.
1817 void rproc_shutdown(struct rproc *rproc)
1819 struct device *dev = &rproc->dev;
1820 int ret;
1822 ret = mutex_lock_interruptible(&rproc->lock);
1823 if (ret) {
1824 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1825 return;
1828 /* if the remote proc is still needed, bail out */
1829 if (!atomic_dec_and_test(&rproc->power))
1830 goto out;
1832 ret = rproc_stop(rproc, false);
1833 if (ret) {
1834 atomic_inc(&rproc->power);
1835 goto out;
1838 /* clean up all acquired resources */
1839 rproc_resource_cleanup(rproc);
1841 rproc_disable_iommu(rproc);
1843 /* Free the copy of the resource table */
1844 kfree(rproc->cached_table);
1845 rproc->cached_table = NULL;
1846 rproc->table_ptr = NULL;
1847 out:
1848 mutex_unlock(&rproc->lock);
1850 EXPORT_SYMBOL(rproc_shutdown);
1853 * rproc_get_by_phandle() - find a remote processor by phandle
1854 * @phandle: phandle to the rproc
1856 * Finds an rproc handle using the remote processor's phandle, and then
1857 * return a handle to the rproc.
1859 * This function increments the remote processor's refcount, so always
1860 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1862 * Returns the rproc handle on success, and NULL on failure.
1864 #ifdef CONFIG_OF
1865 struct rproc *rproc_get_by_phandle(phandle phandle)
1867 struct rproc *rproc = NULL, *r;
1868 struct device_node *np;
1870 np = of_find_node_by_phandle(phandle);
1871 if (!np)
1872 return NULL;
1874 rcu_read_lock();
1875 list_for_each_entry_rcu(r, &rproc_list, node) {
1876 if (r->dev.parent && r->dev.parent->of_node == np) {
1877 /* prevent underlying implementation from being removed */
1878 if (!try_module_get(r->dev.parent->driver->owner)) {
1879 dev_err(&r->dev, "can't get owner\n");
1880 break;
1883 rproc = r;
1884 get_device(&rproc->dev);
1885 break;
1888 rcu_read_unlock();
1890 of_node_put(np);
1892 return rproc;
1894 #else
1895 struct rproc *rproc_get_by_phandle(phandle phandle)
1897 return NULL;
1899 #endif
1900 EXPORT_SYMBOL(rproc_get_by_phandle);
1903 * rproc_add() - register a remote processor
1904 * @rproc: the remote processor handle to register
1906 * Registers @rproc with the remoteproc framework, after it has been
1907 * allocated with rproc_alloc().
1909 * This is called by the platform-specific rproc implementation, whenever
1910 * a new remote processor device is probed.
1912 * Returns 0 on success and an appropriate error code otherwise.
1914 * Note: this function initiates an asynchronous firmware loading
1915 * context, which will look for virtio devices supported by the rproc's
1916 * firmware.
1918 * If found, those virtio devices will be created and added, so as a result
1919 * of registering this remote processor, additional virtio drivers might be
1920 * probed.
1922 int rproc_add(struct rproc *rproc)
1924 struct device *dev = &rproc->dev;
1925 int ret;
1927 ret = device_add(dev);
1928 if (ret < 0)
1929 return ret;
1931 dev_info(dev, "%s is available\n", rproc->name);
1933 /* create debugfs entries */
1934 rproc_create_debug_dir(rproc);
1936 /* if rproc is marked always-on, request it to boot */
1937 if (rproc->auto_boot) {
1938 ret = rproc_trigger_auto_boot(rproc);
1939 if (ret < 0)
1940 return ret;
1943 /* expose to rproc_get_by_phandle users */
1944 mutex_lock(&rproc_list_mutex);
1945 list_add_rcu(&rproc->node, &rproc_list);
1946 mutex_unlock(&rproc_list_mutex);
1948 return 0;
1950 EXPORT_SYMBOL(rproc_add);
1953 * rproc_type_release() - release a remote processor instance
1954 * @dev: the rproc's device
1956 * This function should _never_ be called directly.
1958 * It will be called by the driver core when no one holds a valid pointer
1959 * to @dev anymore.
1961 static void rproc_type_release(struct device *dev)
1963 struct rproc *rproc = container_of(dev, struct rproc, dev);
1965 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1967 idr_destroy(&rproc->notifyids);
1969 if (rproc->index >= 0)
1970 ida_simple_remove(&rproc_dev_index, rproc->index);
1972 kfree(rproc->firmware);
1973 kfree(rproc->ops);
1974 kfree(rproc);
1977 static const struct device_type rproc_type = {
1978 .name = "remoteproc",
1979 .release = rproc_type_release,
1983 * rproc_alloc() - allocate a remote processor handle
1984 * @dev: the underlying device
1985 * @name: name of this remote processor
1986 * @ops: platform-specific handlers (mainly start/stop)
1987 * @firmware: name of firmware file to load, can be NULL
1988 * @len: length of private data needed by the rproc driver (in bytes)
1990 * Allocates a new remote processor handle, but does not register
1991 * it yet. if @firmware is NULL, a default name is used.
1993 * This function should be used by rproc implementations during initialization
1994 * of the remote processor.
1996 * After creating an rproc handle using this function, and when ready,
1997 * implementations should then call rproc_add() to complete
1998 * the registration of the remote processor.
2000 * On success the new rproc is returned, and on failure, NULL.
2002 * Note: _never_ directly deallocate @rproc, even if it was not registered
2003 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2005 struct rproc *rproc_alloc(struct device *dev, const char *name,
2006 const struct rproc_ops *ops,
2007 const char *firmware, int len)
2009 struct rproc *rproc;
2010 char *p, *template = "rproc-%s-fw";
2011 int name_len;
2013 if (!dev || !name || !ops)
2014 return NULL;
2016 if (!firmware) {
2018 * If the caller didn't pass in a firmware name then
2019 * construct a default name.
2021 name_len = strlen(name) + strlen(template) - 2 + 1;
2022 p = kmalloc(name_len, GFP_KERNEL);
2023 if (!p)
2024 return NULL;
2025 snprintf(p, name_len, template, name);
2026 } else {
2027 p = kstrdup(firmware, GFP_KERNEL);
2028 if (!p)
2029 return NULL;
2032 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2033 if (!rproc) {
2034 kfree(p);
2035 return NULL;
2038 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2039 if (!rproc->ops) {
2040 kfree(p);
2041 kfree(rproc);
2042 return NULL;
2045 rproc->firmware = p;
2046 rproc->name = name;
2047 rproc->priv = &rproc[1];
2048 rproc->auto_boot = true;
2049 rproc->elf_class = ELFCLASS32;
2051 device_initialize(&rproc->dev);
2052 rproc->dev.parent = dev;
2053 rproc->dev.type = &rproc_type;
2054 rproc->dev.class = &rproc_class;
2055 rproc->dev.driver_data = rproc;
2057 /* Assign a unique device index and name */
2058 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2059 if (rproc->index < 0) {
2060 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2061 put_device(&rproc->dev);
2062 return NULL;
2065 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2067 atomic_set(&rproc->power, 0);
2069 /* Default to ELF loader if no load function is specified */
2070 if (!rproc->ops->load) {
2071 rproc->ops->load = rproc_elf_load_segments;
2072 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2073 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2074 if (!rproc->ops->sanity_check)
2075 rproc->ops->sanity_check = rproc_elf32_sanity_check;
2076 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2079 mutex_init(&rproc->lock);
2081 idr_init(&rproc->notifyids);
2083 INIT_LIST_HEAD(&rproc->carveouts);
2084 INIT_LIST_HEAD(&rproc->mappings);
2085 INIT_LIST_HEAD(&rproc->traces);
2086 INIT_LIST_HEAD(&rproc->rvdevs);
2087 INIT_LIST_HEAD(&rproc->subdevs);
2088 INIT_LIST_HEAD(&rproc->dump_segments);
2090 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2092 rproc->state = RPROC_OFFLINE;
2094 return rproc;
2096 EXPORT_SYMBOL(rproc_alloc);
2099 * rproc_free() - unroll rproc_alloc()
2100 * @rproc: the remote processor handle
2102 * This function decrements the rproc dev refcount.
2104 * If no one holds any reference to rproc anymore, then its refcount would
2105 * now drop to zero, and it would be freed.
2107 void rproc_free(struct rproc *rproc)
2109 put_device(&rproc->dev);
2111 EXPORT_SYMBOL(rproc_free);
2114 * rproc_put() - release rproc reference
2115 * @rproc: the remote processor handle
2117 * This function decrements the rproc dev refcount.
2119 * If no one holds any reference to rproc anymore, then its refcount would
2120 * now drop to zero, and it would be freed.
2122 void rproc_put(struct rproc *rproc)
2124 module_put(rproc->dev.parent->driver->owner);
2125 put_device(&rproc->dev);
2127 EXPORT_SYMBOL(rproc_put);
2130 * rproc_del() - unregister a remote processor
2131 * @rproc: rproc handle to unregister
2133 * This function should be called when the platform specific rproc
2134 * implementation decides to remove the rproc device. it should
2135 * _only_ be called if a previous invocation of rproc_add()
2136 * has completed successfully.
2138 * After rproc_del() returns, @rproc isn't freed yet, because
2139 * of the outstanding reference created by rproc_alloc. To decrement that
2140 * one last refcount, one still needs to call rproc_free().
2142 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2144 int rproc_del(struct rproc *rproc)
2146 if (!rproc)
2147 return -EINVAL;
2149 /* if rproc is marked always-on, rproc_add() booted it */
2150 /* TODO: make sure this works with rproc->power > 1 */
2151 if (rproc->auto_boot)
2152 rproc_shutdown(rproc);
2154 mutex_lock(&rproc->lock);
2155 rproc->state = RPROC_DELETED;
2156 mutex_unlock(&rproc->lock);
2158 rproc_delete_debug_dir(rproc);
2160 /* the rproc is downref'ed as soon as it's removed from the klist */
2161 mutex_lock(&rproc_list_mutex);
2162 list_del_rcu(&rproc->node);
2163 mutex_unlock(&rproc_list_mutex);
2165 /* Ensure that no readers of rproc_list are still active */
2166 synchronize_rcu();
2168 device_del(&rproc->dev);
2170 return 0;
2172 EXPORT_SYMBOL(rproc_del);
2175 * rproc_add_subdev() - add a subdevice to a remoteproc
2176 * @rproc: rproc handle to add the subdevice to
2177 * @subdev: subdev handle to register
2179 * Caller is responsible for populating optional subdevice function pointers.
2181 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2183 list_add_tail(&subdev->node, &rproc->subdevs);
2185 EXPORT_SYMBOL(rproc_add_subdev);
2188 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2189 * @rproc: rproc handle to remove the subdevice from
2190 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2192 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2194 list_del(&subdev->node);
2196 EXPORT_SYMBOL(rproc_remove_subdev);
2199 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2200 * @dev: child device to find ancestor of
2202 * Returns the ancestor rproc instance, or NULL if not found.
2204 struct rproc *rproc_get_by_child(struct device *dev)
2206 for (dev = dev->parent; dev; dev = dev->parent) {
2207 if (dev->type == &rproc_type)
2208 return dev->driver_data;
2211 return NULL;
2213 EXPORT_SYMBOL(rproc_get_by_child);
2216 * rproc_report_crash() - rproc crash reporter function
2217 * @rproc: remote processor
2218 * @type: crash type
2220 * This function must be called every time a crash is detected by the low-level
2221 * drivers implementing a specific remoteproc. This should not be called from a
2222 * non-remoteproc driver.
2224 * This function can be called from atomic/interrupt context.
2226 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2228 if (!rproc) {
2229 pr_err("NULL rproc pointer\n");
2230 return;
2233 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2234 rproc->name, rproc_crash_to_string(type));
2236 /* create a new task to handle the error */
2237 schedule_work(&rproc->crash_handler);
2239 EXPORT_SYMBOL(rproc_report_crash);
2241 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2242 void *ptr)
2244 unsigned int longest = 0;
2245 struct rproc *rproc;
2246 unsigned int d;
2248 rcu_read_lock();
2249 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2250 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2251 continue;
2253 d = rproc->ops->panic(rproc);
2254 longest = max(longest, d);
2256 rcu_read_unlock();
2259 * Delay for the longest requested duration before returning. This can
2260 * be used by the remoteproc drivers to give the remote processor time
2261 * to perform any requested operations (such as flush caches), when
2262 * it's not possible to signal the Linux side due to the panic.
2264 mdelay(longest);
2266 return NOTIFY_DONE;
2269 static void __init rproc_init_panic(void)
2271 rproc_panic_nb.notifier_call = rproc_panic_handler;
2272 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2275 static void __exit rproc_exit_panic(void)
2277 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2280 static int __init remoteproc_init(void)
2282 rproc_init_sysfs();
2283 rproc_init_debugfs();
2284 rproc_init_panic();
2286 return 0;
2288 subsys_initcall(remoteproc_init);
2290 static void __exit remoteproc_exit(void)
2292 ida_destroy(&rproc_dev_index);
2294 rproc_exit_panic();
2295 rproc_exit_debugfs();
2296 rproc_exit_sysfs();
2298 module_exit(remoteproc_exit);
2300 MODULE_LICENSE("GPL v2");
2301 MODULE_DESCRIPTION("Generic Remote Processor Framework");