gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob1e9302e99d0522c1873be33ed83720ec90820967
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 {0,}
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
160 static struct board_type products[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access},
162 {0x40800E11, "Smart Array 5i", &SA5B_access},
163 {0x40820E11, "Smart Array 532", &SA5B_access},
164 {0x40830E11, "Smart Array 5312", &SA5B_access},
165 {0x409A0E11, "Smart Array 641", &SA5A_access},
166 {0x409B0E11, "Smart Array 642", &SA5A_access},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 {0x40910E11, "Smart Array 6i", &SA5A_access},
170 {0x3225103C, "Smart Array P600", &SA5A_access},
171 {0x3223103C, "Smart Array P800", &SA5A_access},
172 {0x3234103C, "Smart Array P400", &SA5A_access},
173 {0x3235103C, "Smart Array P400i", &SA5A_access},
174 {0x3211103C, "Smart Array E200i", &SA5A_access},
175 {0x3212103C, "Smart Array E200", &SA5A_access},
176 {0x3213103C, "Smart Array E200i", &SA5A_access},
177 {0x3214103C, "Smart Array E200i", &SA5A_access},
178 {0x3215103C, "Smart Array E200i", &SA5A_access},
179 {0x3237103C, "Smart Array E500", &SA5A_access},
180 {0x323D103C, "Smart Array P700m", &SA5A_access},
181 {0x3241103C, "Smart Array P212", &SA5_access},
182 {0x3243103C, "Smart Array P410", &SA5_access},
183 {0x3245103C, "Smart Array P410i", &SA5_access},
184 {0x3247103C, "Smart Array P411", &SA5_access},
185 {0x3249103C, "Smart Array P812", &SA5_access},
186 {0x324A103C, "Smart Array P712m", &SA5_access},
187 {0x324B103C, "Smart Array P711m", &SA5_access},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access},
190 {0x3351103C, "Smart Array P420", &SA5_access},
191 {0x3352103C, "Smart Array P421", &SA5_access},
192 {0x3353103C, "Smart Array P822", &SA5_access},
193 {0x3354103C, "Smart Array P420i", &SA5_access},
194 {0x3355103C, "Smart Array P220i", &SA5_access},
195 {0x3356103C, "Smart Array P721m", &SA5_access},
196 {0x1920103C, "Smart Array P430i", &SA5_access},
197 {0x1921103C, "Smart Array P830i", &SA5_access},
198 {0x1922103C, "Smart Array P430", &SA5_access},
199 {0x1923103C, "Smart Array P431", &SA5_access},
200 {0x1924103C, "Smart Array P830", &SA5_access},
201 {0x1925103C, "Smart Array P831", &SA5_access},
202 {0x1926103C, "Smart Array P731m", &SA5_access},
203 {0x1928103C, "Smart Array P230i", &SA5_access},
204 {0x1929103C, "Smart Array P530", &SA5_access},
205 {0x21BD103C, "Smart Array P244br", &SA5_access},
206 {0x21BE103C, "Smart Array P741m", &SA5_access},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access},
210 {0x21C2103C, "Smart Array P440", &SA5_access},
211 {0x21C3103C, "Smart Array P441", &SA5_access},
212 {0x21C4103C, "Smart Array", &SA5_access},
213 {0x21C5103C, "Smart Array P841", &SA5_access},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access},
215 {0x21C7103C, "Smart HBA H240", &SA5_access},
216 {0x21C8103C, "Smart HBA H241", &SA5_access},
217 {0x21C9103C, "Smart Array", &SA5_access},
218 {0x21CA103C, "Smart Array P246br", &SA5_access},
219 {0x21CB103C, "Smart Array P840", &SA5_access},
220 {0x21CC103C, "Smart Array", &SA5_access},
221 {0x21CD103C, "Smart Array", &SA5_access},
222 {0x21CE103C, "Smart HBA", &SA5_access},
223 {0x05809005, "SmartHBA-SA", &SA5_access},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 struct sas_rphy *rphy);
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 void __user *arg);
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260 void __user *arg);
261 #endif
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267 struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270 int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278 unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290 struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293 int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299 u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301 unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303 bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305 unsigned char lunaddr[],
306 int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308 int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323 struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325 unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328 struct hpsa_scsi_dev_t *dev,
329 unsigned char *scsi3addr);
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 unsigned long *priv = shost_priv(sdev->host);
334 return (struct ctlr_info *) *priv;
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 unsigned long *priv = shost_priv(sh);
340 return (struct ctlr_info *) *priv;
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 return c->scsi_cmd == SCSI_CMD_IDLE;
348 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350 u8 *sense_key, u8 *asc, u8 *ascq)
352 struct scsi_sense_hdr sshdr;
353 bool rc;
355 *sense_key = -1;
356 *asc = -1;
357 *ascq = -1;
359 if (sense_data_len < 1)
360 return;
362 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363 if (rc) {
364 *sense_key = sshdr.sense_key;
365 *asc = sshdr.asc;
366 *ascq = sshdr.ascq;
370 static int check_for_unit_attention(struct ctlr_info *h,
371 struct CommandList *c)
373 u8 sense_key, asc, ascq;
374 int sense_len;
376 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377 sense_len = sizeof(c->err_info->SenseInfo);
378 else
379 sense_len = c->err_info->SenseLen;
381 decode_sense_data(c->err_info->SenseInfo, sense_len,
382 &sense_key, &asc, &ascq);
383 if (sense_key != UNIT_ATTENTION || asc == 0xff)
384 return 0;
386 switch (asc) {
387 case STATE_CHANGED:
388 dev_warn(&h->pdev->dev,
389 "%s: a state change detected, command retried\n",
390 h->devname);
391 break;
392 case LUN_FAILED:
393 dev_warn(&h->pdev->dev,
394 "%s: LUN failure detected\n", h->devname);
395 break;
396 case REPORT_LUNS_CHANGED:
397 dev_warn(&h->pdev->dev,
398 "%s: report LUN data changed\n", h->devname);
400 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401 * target (array) devices.
403 break;
404 case POWER_OR_RESET:
405 dev_warn(&h->pdev->dev,
406 "%s: a power on or device reset detected\n",
407 h->devname);
408 break;
409 case UNIT_ATTENTION_CLEARED:
410 dev_warn(&h->pdev->dev,
411 "%s: unit attention cleared by another initiator\n",
412 h->devname);
413 break;
414 default:
415 dev_warn(&h->pdev->dev,
416 "%s: unknown unit attention detected\n",
417 h->devname);
418 break;
420 return 1;
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
425 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428 return 0;
429 dev_warn(&h->pdev->dev, HPSA "device busy");
430 return 1;
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 int ld;
438 struct ctlr_info *h;
439 struct Scsi_Host *shost = class_to_shost(dev);
441 h = shost_to_hba(shost);
442 ld = lockup_detected(h);
444 return sprintf(buf, "ld=%d\n", ld);
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448 struct device_attribute *attr,
449 const char *buf, size_t count)
451 int status, len;
452 struct ctlr_info *h;
453 struct Scsi_Host *shost = class_to_shost(dev);
454 char tmpbuf[10];
456 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457 return -EACCES;
458 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459 strncpy(tmpbuf, buf, len);
460 tmpbuf[len] = '\0';
461 if (sscanf(tmpbuf, "%d", &status) != 1)
462 return -EINVAL;
463 h = shost_to_hba(shost);
464 h->acciopath_status = !!status;
465 dev_warn(&h->pdev->dev,
466 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467 h->acciopath_status ? "enabled" : "disabled");
468 return count;
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
475 int debug_level, len;
476 struct ctlr_info *h;
477 struct Scsi_Host *shost = class_to_shost(dev);
478 char tmpbuf[10];
480 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 return -EACCES;
482 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483 strncpy(tmpbuf, buf, len);
484 tmpbuf[len] = '\0';
485 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486 return -EINVAL;
487 if (debug_level < 0)
488 debug_level = 0;
489 h = shost_to_hba(shost);
490 h->raid_offload_debug = debug_level;
491 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492 h->raid_offload_debug);
493 return count;
496 static ssize_t host_store_rescan(struct device *dev,
497 struct device_attribute *attr,
498 const char *buf, size_t count)
500 struct ctlr_info *h;
501 struct Scsi_Host *shost = class_to_shost(dev);
502 h = shost_to_hba(shost);
503 hpsa_scan_start(h->scsi_host);
504 return count;
507 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
509 device->offload_enabled = 0;
510 device->offload_to_be_enabled = 0;
513 static ssize_t host_show_firmware_revision(struct device *dev,
514 struct device_attribute *attr, char *buf)
516 struct ctlr_info *h;
517 struct Scsi_Host *shost = class_to_shost(dev);
518 unsigned char *fwrev;
520 h = shost_to_hba(shost);
521 if (!h->hba_inquiry_data)
522 return 0;
523 fwrev = &h->hba_inquiry_data[32];
524 return snprintf(buf, 20, "%c%c%c%c\n",
525 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
528 static ssize_t host_show_commands_outstanding(struct device *dev,
529 struct device_attribute *attr, char *buf)
531 struct Scsi_Host *shost = class_to_shost(dev);
532 struct ctlr_info *h = shost_to_hba(shost);
534 return snprintf(buf, 20, "%d\n",
535 atomic_read(&h->commands_outstanding));
538 static ssize_t host_show_transport_mode(struct device *dev,
539 struct device_attribute *attr, char *buf)
541 struct ctlr_info *h;
542 struct Scsi_Host *shost = class_to_shost(dev);
544 h = shost_to_hba(shost);
545 return snprintf(buf, 20, "%s\n",
546 h->transMethod & CFGTBL_Trans_Performant ?
547 "performant" : "simple");
550 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
551 struct device_attribute *attr, char *buf)
553 struct ctlr_info *h;
554 struct Scsi_Host *shost = class_to_shost(dev);
556 h = shost_to_hba(shost);
557 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
558 (h->acciopath_status == 1) ? "enabled" : "disabled");
561 /* List of controllers which cannot be hard reset on kexec with reset_devices */
562 static u32 unresettable_controller[] = {
563 0x324a103C, /* Smart Array P712m */
564 0x324b103C, /* Smart Array P711m */
565 0x3223103C, /* Smart Array P800 */
566 0x3234103C, /* Smart Array P400 */
567 0x3235103C, /* Smart Array P400i */
568 0x3211103C, /* Smart Array E200i */
569 0x3212103C, /* Smart Array E200 */
570 0x3213103C, /* Smart Array E200i */
571 0x3214103C, /* Smart Array E200i */
572 0x3215103C, /* Smart Array E200i */
573 0x3237103C, /* Smart Array E500 */
574 0x323D103C, /* Smart Array P700m */
575 0x40800E11, /* Smart Array 5i */
576 0x409C0E11, /* Smart Array 6400 */
577 0x409D0E11, /* Smart Array 6400 EM */
578 0x40700E11, /* Smart Array 5300 */
579 0x40820E11, /* Smart Array 532 */
580 0x40830E11, /* Smart Array 5312 */
581 0x409A0E11, /* Smart Array 641 */
582 0x409B0E11, /* Smart Array 642 */
583 0x40910E11, /* Smart Array 6i */
586 /* List of controllers which cannot even be soft reset */
587 static u32 soft_unresettable_controller[] = {
588 0x40800E11, /* Smart Array 5i */
589 0x40700E11, /* Smart Array 5300 */
590 0x40820E11, /* Smart Array 532 */
591 0x40830E11, /* Smart Array 5312 */
592 0x409A0E11, /* Smart Array 641 */
593 0x409B0E11, /* Smart Array 642 */
594 0x40910E11, /* Smart Array 6i */
595 /* Exclude 640x boards. These are two pci devices in one slot
596 * which share a battery backed cache module. One controls the
597 * cache, the other accesses the cache through the one that controls
598 * it. If we reset the one controlling the cache, the other will
599 * likely not be happy. Just forbid resetting this conjoined mess.
600 * The 640x isn't really supported by hpsa anyway.
602 0x409C0E11, /* Smart Array 6400 */
603 0x409D0E11, /* Smart Array 6400 EM */
606 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
608 int i;
610 for (i = 0; i < nelems; i++)
611 if (a[i] == board_id)
612 return 1;
613 return 0;
616 static int ctlr_is_hard_resettable(u32 board_id)
618 return !board_id_in_array(unresettable_controller,
619 ARRAY_SIZE(unresettable_controller), board_id);
622 static int ctlr_is_soft_resettable(u32 board_id)
624 return !board_id_in_array(soft_unresettable_controller,
625 ARRAY_SIZE(soft_unresettable_controller), board_id);
628 static int ctlr_is_resettable(u32 board_id)
630 return ctlr_is_hard_resettable(board_id) ||
631 ctlr_is_soft_resettable(board_id);
634 static ssize_t host_show_resettable(struct device *dev,
635 struct device_attribute *attr, char *buf)
637 struct ctlr_info *h;
638 struct Scsi_Host *shost = class_to_shost(dev);
640 h = shost_to_hba(shost);
641 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
644 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
646 return (scsi3addr[3] & 0xC0) == 0x40;
649 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
650 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
652 #define HPSA_RAID_0 0
653 #define HPSA_RAID_4 1
654 #define HPSA_RAID_1 2 /* also used for RAID 10 */
655 #define HPSA_RAID_5 3 /* also used for RAID 50 */
656 #define HPSA_RAID_51 4
657 #define HPSA_RAID_6 5 /* also used for RAID 60 */
658 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
659 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
660 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
662 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
664 return !device->physical_device;
667 static ssize_t raid_level_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
670 ssize_t l = 0;
671 unsigned char rlevel;
672 struct ctlr_info *h;
673 struct scsi_device *sdev;
674 struct hpsa_scsi_dev_t *hdev;
675 unsigned long flags;
677 sdev = to_scsi_device(dev);
678 h = sdev_to_hba(sdev);
679 spin_lock_irqsave(&h->lock, flags);
680 hdev = sdev->hostdata;
681 if (!hdev) {
682 spin_unlock_irqrestore(&h->lock, flags);
683 return -ENODEV;
686 /* Is this even a logical drive? */
687 if (!is_logical_device(hdev)) {
688 spin_unlock_irqrestore(&h->lock, flags);
689 l = snprintf(buf, PAGE_SIZE, "N/A\n");
690 return l;
693 rlevel = hdev->raid_level;
694 spin_unlock_irqrestore(&h->lock, flags);
695 if (rlevel > RAID_UNKNOWN)
696 rlevel = RAID_UNKNOWN;
697 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
698 return l;
701 static ssize_t lunid_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
704 struct ctlr_info *h;
705 struct scsi_device *sdev;
706 struct hpsa_scsi_dev_t *hdev;
707 unsigned long flags;
708 unsigned char lunid[8];
710 sdev = to_scsi_device(dev);
711 h = sdev_to_hba(sdev);
712 spin_lock_irqsave(&h->lock, flags);
713 hdev = sdev->hostdata;
714 if (!hdev) {
715 spin_unlock_irqrestore(&h->lock, flags);
716 return -ENODEV;
718 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
719 spin_unlock_irqrestore(&h->lock, flags);
720 return snprintf(buf, 20, "0x%8phN\n", lunid);
723 static ssize_t unique_id_show(struct device *dev,
724 struct device_attribute *attr, char *buf)
726 struct ctlr_info *h;
727 struct scsi_device *sdev;
728 struct hpsa_scsi_dev_t *hdev;
729 unsigned long flags;
730 unsigned char sn[16];
732 sdev = to_scsi_device(dev);
733 h = sdev_to_hba(sdev);
734 spin_lock_irqsave(&h->lock, flags);
735 hdev = sdev->hostdata;
736 if (!hdev) {
737 spin_unlock_irqrestore(&h->lock, flags);
738 return -ENODEV;
740 memcpy(sn, hdev->device_id, sizeof(sn));
741 spin_unlock_irqrestore(&h->lock, flags);
742 return snprintf(buf, 16 * 2 + 2,
743 "%02X%02X%02X%02X%02X%02X%02X%02X"
744 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
745 sn[0], sn[1], sn[2], sn[3],
746 sn[4], sn[5], sn[6], sn[7],
747 sn[8], sn[9], sn[10], sn[11],
748 sn[12], sn[13], sn[14], sn[15]);
751 static ssize_t sas_address_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
754 struct ctlr_info *h;
755 struct scsi_device *sdev;
756 struct hpsa_scsi_dev_t *hdev;
757 unsigned long flags;
758 u64 sas_address;
760 sdev = to_scsi_device(dev);
761 h = sdev_to_hba(sdev);
762 spin_lock_irqsave(&h->lock, flags);
763 hdev = sdev->hostdata;
764 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
765 spin_unlock_irqrestore(&h->lock, flags);
766 return -ENODEV;
768 sas_address = hdev->sas_address;
769 spin_unlock_irqrestore(&h->lock, flags);
771 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
774 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
775 struct device_attribute *attr, char *buf)
777 struct ctlr_info *h;
778 struct scsi_device *sdev;
779 struct hpsa_scsi_dev_t *hdev;
780 unsigned long flags;
781 int offload_enabled;
783 sdev = to_scsi_device(dev);
784 h = sdev_to_hba(sdev);
785 spin_lock_irqsave(&h->lock, flags);
786 hdev = sdev->hostdata;
787 if (!hdev) {
788 spin_unlock_irqrestore(&h->lock, flags);
789 return -ENODEV;
791 offload_enabled = hdev->offload_enabled;
792 spin_unlock_irqrestore(&h->lock, flags);
794 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
795 return snprintf(buf, 20, "%d\n", offload_enabled);
796 else
797 return snprintf(buf, 40, "%s\n",
798 "Not applicable for a controller");
801 #define MAX_PATHS 8
802 static ssize_t path_info_show(struct device *dev,
803 struct device_attribute *attr, char *buf)
805 struct ctlr_info *h;
806 struct scsi_device *sdev;
807 struct hpsa_scsi_dev_t *hdev;
808 unsigned long flags;
809 int i;
810 int output_len = 0;
811 u8 box;
812 u8 bay;
813 u8 path_map_index = 0;
814 char *active;
815 unsigned char phys_connector[2];
817 sdev = to_scsi_device(dev);
818 h = sdev_to_hba(sdev);
819 spin_lock_irqsave(&h->devlock, flags);
820 hdev = sdev->hostdata;
821 if (!hdev) {
822 spin_unlock_irqrestore(&h->devlock, flags);
823 return -ENODEV;
826 bay = hdev->bay;
827 for (i = 0; i < MAX_PATHS; i++) {
828 path_map_index = 1<<i;
829 if (i == hdev->active_path_index)
830 active = "Active";
831 else if (hdev->path_map & path_map_index)
832 active = "Inactive";
833 else
834 continue;
836 output_len += scnprintf(buf + output_len,
837 PAGE_SIZE - output_len,
838 "[%d:%d:%d:%d] %20.20s ",
839 h->scsi_host->host_no,
840 hdev->bus, hdev->target, hdev->lun,
841 scsi_device_type(hdev->devtype));
843 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
844 output_len += scnprintf(buf + output_len,
845 PAGE_SIZE - output_len,
846 "%s\n", active);
847 continue;
850 box = hdev->box[i];
851 memcpy(&phys_connector, &hdev->phys_connector[i],
852 sizeof(phys_connector));
853 if (phys_connector[0] < '0')
854 phys_connector[0] = '0';
855 if (phys_connector[1] < '0')
856 phys_connector[1] = '0';
857 output_len += scnprintf(buf + output_len,
858 PAGE_SIZE - output_len,
859 "PORT: %.2s ",
860 phys_connector);
861 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
862 hdev->expose_device) {
863 if (box == 0 || box == 0xFF) {
864 output_len += scnprintf(buf + output_len,
865 PAGE_SIZE - output_len,
866 "BAY: %hhu %s\n",
867 bay, active);
868 } else {
869 output_len += scnprintf(buf + output_len,
870 PAGE_SIZE - output_len,
871 "BOX: %hhu BAY: %hhu %s\n",
872 box, bay, active);
874 } else if (box != 0 && box != 0xFF) {
875 output_len += scnprintf(buf + output_len,
876 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
877 box, active);
878 } else
879 output_len += scnprintf(buf + output_len,
880 PAGE_SIZE - output_len, "%s\n", active);
883 spin_unlock_irqrestore(&h->devlock, flags);
884 return output_len;
887 static ssize_t host_show_ctlr_num(struct device *dev,
888 struct device_attribute *attr, char *buf)
890 struct ctlr_info *h;
891 struct Scsi_Host *shost = class_to_shost(dev);
893 h = shost_to_hba(shost);
894 return snprintf(buf, 20, "%d\n", h->ctlr);
897 static ssize_t host_show_legacy_board(struct device *dev,
898 struct device_attribute *attr, char *buf)
900 struct ctlr_info *h;
901 struct Scsi_Host *shost = class_to_shost(dev);
903 h = shost_to_hba(shost);
904 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
907 static DEVICE_ATTR_RO(raid_level);
908 static DEVICE_ATTR_RO(lunid);
909 static DEVICE_ATTR_RO(unique_id);
910 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
911 static DEVICE_ATTR_RO(sas_address);
912 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
913 host_show_hp_ssd_smart_path_enabled, NULL);
914 static DEVICE_ATTR_RO(path_info);
915 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
916 host_show_hp_ssd_smart_path_status,
917 host_store_hp_ssd_smart_path_status);
918 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
919 host_store_raid_offload_debug);
920 static DEVICE_ATTR(firmware_revision, S_IRUGO,
921 host_show_firmware_revision, NULL);
922 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
923 host_show_commands_outstanding, NULL);
924 static DEVICE_ATTR(transport_mode, S_IRUGO,
925 host_show_transport_mode, NULL);
926 static DEVICE_ATTR(resettable, S_IRUGO,
927 host_show_resettable, NULL);
928 static DEVICE_ATTR(lockup_detected, S_IRUGO,
929 host_show_lockup_detected, NULL);
930 static DEVICE_ATTR(ctlr_num, S_IRUGO,
931 host_show_ctlr_num, NULL);
932 static DEVICE_ATTR(legacy_board, S_IRUGO,
933 host_show_legacy_board, NULL);
935 static struct device_attribute *hpsa_sdev_attrs[] = {
936 &dev_attr_raid_level,
937 &dev_attr_lunid,
938 &dev_attr_unique_id,
939 &dev_attr_hp_ssd_smart_path_enabled,
940 &dev_attr_path_info,
941 &dev_attr_sas_address,
942 NULL,
945 static struct device_attribute *hpsa_shost_attrs[] = {
946 &dev_attr_rescan,
947 &dev_attr_firmware_revision,
948 &dev_attr_commands_outstanding,
949 &dev_attr_transport_mode,
950 &dev_attr_resettable,
951 &dev_attr_hp_ssd_smart_path_status,
952 &dev_attr_raid_offload_debug,
953 &dev_attr_lockup_detected,
954 &dev_attr_ctlr_num,
955 &dev_attr_legacy_board,
956 NULL,
959 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
960 HPSA_MAX_CONCURRENT_PASSTHRUS)
962 static struct scsi_host_template hpsa_driver_template = {
963 .module = THIS_MODULE,
964 .name = HPSA,
965 .proc_name = HPSA,
966 .queuecommand = hpsa_scsi_queue_command,
967 .scan_start = hpsa_scan_start,
968 .scan_finished = hpsa_scan_finished,
969 .change_queue_depth = hpsa_change_queue_depth,
970 .this_id = -1,
971 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
972 .ioctl = hpsa_ioctl,
973 .slave_alloc = hpsa_slave_alloc,
974 .slave_configure = hpsa_slave_configure,
975 .slave_destroy = hpsa_slave_destroy,
976 #ifdef CONFIG_COMPAT
977 .compat_ioctl = hpsa_compat_ioctl,
978 #endif
979 .sdev_attrs = hpsa_sdev_attrs,
980 .shost_attrs = hpsa_shost_attrs,
981 .max_sectors = 2048,
982 .no_write_same = 1,
985 static inline u32 next_command(struct ctlr_info *h, u8 q)
987 u32 a;
988 struct reply_queue_buffer *rq = &h->reply_queue[q];
990 if (h->transMethod & CFGTBL_Trans_io_accel1)
991 return h->access.command_completed(h, q);
993 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
994 return h->access.command_completed(h, q);
996 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
997 a = rq->head[rq->current_entry];
998 rq->current_entry++;
999 atomic_dec(&h->commands_outstanding);
1000 } else {
1001 a = FIFO_EMPTY;
1003 /* Check for wraparound */
1004 if (rq->current_entry == h->max_commands) {
1005 rq->current_entry = 0;
1006 rq->wraparound ^= 1;
1008 return a;
1012 * There are some special bits in the bus address of the
1013 * command that we have to set for the controller to know
1014 * how to process the command:
1016 * Normal performant mode:
1017 * bit 0: 1 means performant mode, 0 means simple mode.
1018 * bits 1-3 = block fetch table entry
1019 * bits 4-6 = command type (== 0)
1021 * ioaccel1 mode:
1022 * bit 0 = "performant mode" bit.
1023 * bits 1-3 = block fetch table entry
1024 * bits 4-6 = command type (== 110)
1025 * (command type is needed because ioaccel1 mode
1026 * commands are submitted through the same register as normal
1027 * mode commands, so this is how the controller knows whether
1028 * the command is normal mode or ioaccel1 mode.)
1030 * ioaccel2 mode:
1031 * bit 0 = "performant mode" bit.
1032 * bits 1-4 = block fetch table entry (note extra bit)
1033 * bits 4-6 = not needed, because ioaccel2 mode has
1034 * a separate special register for submitting commands.
1038 * set_performant_mode: Modify the tag for cciss performant
1039 * set bit 0 for pull model, bits 3-1 for block fetch
1040 * register number
1042 #define DEFAULT_REPLY_QUEUE (-1)
1043 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1044 int reply_queue)
1046 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1047 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1048 if (unlikely(!h->msix_vectors))
1049 return;
1050 c->Header.ReplyQueue = reply_queue;
1054 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1055 struct CommandList *c,
1056 int reply_queue)
1058 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061 * Tell the controller to post the reply to the queue for this
1062 * processor. This seems to give the best I/O throughput.
1064 cp->ReplyQueue = reply_queue;
1066 * Set the bits in the address sent down to include:
1067 * - performant mode bit (bit 0)
1068 * - pull count (bits 1-3)
1069 * - command type (bits 4-6)
1071 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072 IOACCEL1_BUSADDR_CMDTYPE;
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076 struct CommandList *c,
1077 int reply_queue)
1079 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080 &h->ioaccel2_cmd_pool[c->cmdindex];
1082 /* Tell the controller to post the reply to the queue for this
1083 * processor. This seems to give the best I/O throughput.
1085 cp->reply_queue = reply_queue;
1086 /* Set the bits in the address sent down to include:
1087 * - performant mode bit not used in ioaccel mode 2
1088 * - pull count (bits 0-3)
1089 * - command type isn't needed for ioaccel2
1091 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1094 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1095 struct CommandList *c,
1096 int reply_queue)
1098 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1101 * Tell the controller to post the reply to the queue for this
1102 * processor. This seems to give the best I/O throughput.
1104 cp->reply_queue = reply_queue;
1106 * Set the bits in the address sent down to include:
1107 * - performant mode bit not used in ioaccel mode 2
1108 * - pull count (bits 0-3)
1109 * - command type isn't needed for ioaccel2
1111 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1114 static int is_firmware_flash_cmd(u8 *cdb)
1116 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1120 * During firmware flash, the heartbeat register may not update as frequently
1121 * as it should. So we dial down lockup detection during firmware flash. and
1122 * dial it back up when firmware flash completes.
1124 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1125 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1126 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1127 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1128 struct CommandList *c)
1130 if (!is_firmware_flash_cmd(c->Request.CDB))
1131 return;
1132 atomic_inc(&h->firmware_flash_in_progress);
1133 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1136 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1137 struct CommandList *c)
1139 if (is_firmware_flash_cmd(c->Request.CDB) &&
1140 atomic_dec_and_test(&h->firmware_flash_in_progress))
1141 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1144 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1145 struct CommandList *c, int reply_queue)
1147 dial_down_lockup_detection_during_fw_flash(h, c);
1148 atomic_inc(&h->commands_outstanding);
1149 if (c->device)
1150 atomic_inc(&c->device->commands_outstanding);
1152 reply_queue = h->reply_map[raw_smp_processor_id()];
1153 switch (c->cmd_type) {
1154 case CMD_IOACCEL1:
1155 set_ioaccel1_performant_mode(h, c, reply_queue);
1156 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1157 break;
1158 case CMD_IOACCEL2:
1159 set_ioaccel2_performant_mode(h, c, reply_queue);
1160 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 break;
1162 case IOACCEL2_TMF:
1163 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1164 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 break;
1166 default:
1167 set_performant_mode(h, c, reply_queue);
1168 h->access.submit_command(h, c);
1172 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1174 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1177 static inline int is_hba_lunid(unsigned char scsi3addr[])
1179 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1182 static inline int is_scsi_rev_5(struct ctlr_info *h)
1184 if (!h->hba_inquiry_data)
1185 return 0;
1186 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1187 return 1;
1188 return 0;
1191 static int hpsa_find_target_lun(struct ctlr_info *h,
1192 unsigned char scsi3addr[], int bus, int *target, int *lun)
1194 /* finds an unused bus, target, lun for a new physical device
1195 * assumes h->devlock is held
1197 int i, found = 0;
1198 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1200 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1202 for (i = 0; i < h->ndevices; i++) {
1203 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1204 __set_bit(h->dev[i]->target, lun_taken);
1207 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1208 if (i < HPSA_MAX_DEVICES) {
1209 /* *bus = 1; */
1210 *target = i;
1211 *lun = 0;
1212 found = 1;
1214 return !found;
1217 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1218 struct hpsa_scsi_dev_t *dev, char *description)
1220 #define LABEL_SIZE 25
1221 char label[LABEL_SIZE];
1223 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1224 return;
1226 switch (dev->devtype) {
1227 case TYPE_RAID:
1228 snprintf(label, LABEL_SIZE, "controller");
1229 break;
1230 case TYPE_ENCLOSURE:
1231 snprintf(label, LABEL_SIZE, "enclosure");
1232 break;
1233 case TYPE_DISK:
1234 case TYPE_ZBC:
1235 if (dev->external)
1236 snprintf(label, LABEL_SIZE, "external");
1237 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1238 snprintf(label, LABEL_SIZE, "%s",
1239 raid_label[PHYSICAL_DRIVE]);
1240 else
1241 snprintf(label, LABEL_SIZE, "RAID-%s",
1242 dev->raid_level > RAID_UNKNOWN ? "?" :
1243 raid_label[dev->raid_level]);
1244 break;
1245 case TYPE_ROM:
1246 snprintf(label, LABEL_SIZE, "rom");
1247 break;
1248 case TYPE_TAPE:
1249 snprintf(label, LABEL_SIZE, "tape");
1250 break;
1251 case TYPE_MEDIUM_CHANGER:
1252 snprintf(label, LABEL_SIZE, "changer");
1253 break;
1254 default:
1255 snprintf(label, LABEL_SIZE, "UNKNOWN");
1256 break;
1259 dev_printk(level, &h->pdev->dev,
1260 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1261 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1262 description,
1263 scsi_device_type(dev->devtype),
1264 dev->vendor,
1265 dev->model,
1266 label,
1267 dev->offload_config ? '+' : '-',
1268 dev->offload_to_be_enabled ? '+' : '-',
1269 dev->expose_device);
1272 /* Add an entry into h->dev[] array. */
1273 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1274 struct hpsa_scsi_dev_t *device,
1275 struct hpsa_scsi_dev_t *added[], int *nadded)
1277 /* assumes h->devlock is held */
1278 int n = h->ndevices;
1279 int i;
1280 unsigned char addr1[8], addr2[8];
1281 struct hpsa_scsi_dev_t *sd;
1283 if (n >= HPSA_MAX_DEVICES) {
1284 dev_err(&h->pdev->dev, "too many devices, some will be "
1285 "inaccessible.\n");
1286 return -1;
1289 /* physical devices do not have lun or target assigned until now. */
1290 if (device->lun != -1)
1291 /* Logical device, lun is already assigned. */
1292 goto lun_assigned;
1294 /* If this device a non-zero lun of a multi-lun device
1295 * byte 4 of the 8-byte LUN addr will contain the logical
1296 * unit no, zero otherwise.
1298 if (device->scsi3addr[4] == 0) {
1299 /* This is not a non-zero lun of a multi-lun device */
1300 if (hpsa_find_target_lun(h, device->scsi3addr,
1301 device->bus, &device->target, &device->lun) != 0)
1302 return -1;
1303 goto lun_assigned;
1306 /* This is a non-zero lun of a multi-lun device.
1307 * Search through our list and find the device which
1308 * has the same 8 byte LUN address, excepting byte 4 and 5.
1309 * Assign the same bus and target for this new LUN.
1310 * Use the logical unit number from the firmware.
1312 memcpy(addr1, device->scsi3addr, 8);
1313 addr1[4] = 0;
1314 addr1[5] = 0;
1315 for (i = 0; i < n; i++) {
1316 sd = h->dev[i];
1317 memcpy(addr2, sd->scsi3addr, 8);
1318 addr2[4] = 0;
1319 addr2[5] = 0;
1320 /* differ only in byte 4 and 5? */
1321 if (memcmp(addr1, addr2, 8) == 0) {
1322 device->bus = sd->bus;
1323 device->target = sd->target;
1324 device->lun = device->scsi3addr[4];
1325 break;
1328 if (device->lun == -1) {
1329 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1330 " suspect firmware bug or unsupported hardware "
1331 "configuration.\n");
1332 return -1;
1335 lun_assigned:
1337 h->dev[n] = device;
1338 h->ndevices++;
1339 added[*nadded] = device;
1340 (*nadded)++;
1341 hpsa_show_dev_msg(KERN_INFO, h, device,
1342 device->expose_device ? "added" : "masked");
1343 return 0;
1347 * Called during a scan operation.
1349 * Update an entry in h->dev[] array.
1351 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1352 int entry, struct hpsa_scsi_dev_t *new_entry)
1354 /* assumes h->devlock is held */
1355 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1357 /* Raid level changed. */
1358 h->dev[entry]->raid_level = new_entry->raid_level;
1361 * ioacccel_handle may have changed for a dual domain disk
1363 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1365 /* Raid offload parameters changed. Careful about the ordering. */
1366 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1368 * if drive is newly offload_enabled, we want to copy the
1369 * raid map data first. If previously offload_enabled and
1370 * offload_config were set, raid map data had better be
1371 * the same as it was before. If raid map data has changed
1372 * then it had better be the case that
1373 * h->dev[entry]->offload_enabled is currently 0.
1375 h->dev[entry]->raid_map = new_entry->raid_map;
1376 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1378 if (new_entry->offload_to_be_enabled) {
1379 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1380 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1382 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1383 h->dev[entry]->offload_config = new_entry->offload_config;
1384 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1385 h->dev[entry]->queue_depth = new_entry->queue_depth;
1388 * We can turn off ioaccel offload now, but need to delay turning
1389 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1390 * can't do that until all the devices are updated.
1392 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1395 * turn ioaccel off immediately if told to do so.
1397 if (!new_entry->offload_to_be_enabled)
1398 h->dev[entry]->offload_enabled = 0;
1400 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1403 /* Replace an entry from h->dev[] array. */
1404 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1405 int entry, struct hpsa_scsi_dev_t *new_entry,
1406 struct hpsa_scsi_dev_t *added[], int *nadded,
1407 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1409 /* assumes h->devlock is held */
1410 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1411 removed[*nremoved] = h->dev[entry];
1412 (*nremoved)++;
1415 * New physical devices won't have target/lun assigned yet
1416 * so we need to preserve the values in the slot we are replacing.
1418 if (new_entry->target == -1) {
1419 new_entry->target = h->dev[entry]->target;
1420 new_entry->lun = h->dev[entry]->lun;
1423 h->dev[entry] = new_entry;
1424 added[*nadded] = new_entry;
1425 (*nadded)++;
1427 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1430 /* Remove an entry from h->dev[] array. */
1431 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1432 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1434 /* assumes h->devlock is held */
1435 int i;
1436 struct hpsa_scsi_dev_t *sd;
1438 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1440 sd = h->dev[entry];
1441 removed[*nremoved] = h->dev[entry];
1442 (*nremoved)++;
1444 for (i = entry; i < h->ndevices-1; i++)
1445 h->dev[i] = h->dev[i+1];
1446 h->ndevices--;
1447 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1450 #define SCSI3ADDR_EQ(a, b) ( \
1451 (a)[7] == (b)[7] && \
1452 (a)[6] == (b)[6] && \
1453 (a)[5] == (b)[5] && \
1454 (a)[4] == (b)[4] && \
1455 (a)[3] == (b)[3] && \
1456 (a)[2] == (b)[2] && \
1457 (a)[1] == (b)[1] && \
1458 (a)[0] == (b)[0])
1460 static void fixup_botched_add(struct ctlr_info *h,
1461 struct hpsa_scsi_dev_t *added)
1463 /* called when scsi_add_device fails in order to re-adjust
1464 * h->dev[] to match the mid layer's view.
1466 unsigned long flags;
1467 int i, j;
1469 spin_lock_irqsave(&h->lock, flags);
1470 for (i = 0; i < h->ndevices; i++) {
1471 if (h->dev[i] == added) {
1472 for (j = i; j < h->ndevices-1; j++)
1473 h->dev[j] = h->dev[j+1];
1474 h->ndevices--;
1475 break;
1478 spin_unlock_irqrestore(&h->lock, flags);
1479 kfree(added);
1482 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1483 struct hpsa_scsi_dev_t *dev2)
1485 /* we compare everything except lun and target as these
1486 * are not yet assigned. Compare parts likely
1487 * to differ first
1489 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1490 sizeof(dev1->scsi3addr)) != 0)
1491 return 0;
1492 if (memcmp(dev1->device_id, dev2->device_id,
1493 sizeof(dev1->device_id)) != 0)
1494 return 0;
1495 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1496 return 0;
1497 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1498 return 0;
1499 if (dev1->devtype != dev2->devtype)
1500 return 0;
1501 if (dev1->bus != dev2->bus)
1502 return 0;
1503 return 1;
1506 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1507 struct hpsa_scsi_dev_t *dev2)
1509 /* Device attributes that can change, but don't mean
1510 * that the device is a different device, nor that the OS
1511 * needs to be told anything about the change.
1513 if (dev1->raid_level != dev2->raid_level)
1514 return 1;
1515 if (dev1->offload_config != dev2->offload_config)
1516 return 1;
1517 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1518 return 1;
1519 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1520 if (dev1->queue_depth != dev2->queue_depth)
1521 return 1;
1523 * This can happen for dual domain devices. An active
1524 * path change causes the ioaccel handle to change
1526 * for example note the handle differences between p0 and p1
1527 * Device WWN ,WWN hash,Handle
1528 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1529 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1531 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1532 return 1;
1533 return 0;
1536 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1537 * and return needle location in *index. If scsi3addr matches, but not
1538 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1539 * location in *index.
1540 * In the case of a minor device attribute change, such as RAID level, just
1541 * return DEVICE_UPDATED, along with the updated device's location in index.
1542 * If needle not found, return DEVICE_NOT_FOUND.
1544 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1545 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1546 int *index)
1548 int i;
1549 #define DEVICE_NOT_FOUND 0
1550 #define DEVICE_CHANGED 1
1551 #define DEVICE_SAME 2
1552 #define DEVICE_UPDATED 3
1553 if (needle == NULL)
1554 return DEVICE_NOT_FOUND;
1556 for (i = 0; i < haystack_size; i++) {
1557 if (haystack[i] == NULL) /* previously removed. */
1558 continue;
1559 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1560 *index = i;
1561 if (device_is_the_same(needle, haystack[i])) {
1562 if (device_updated(needle, haystack[i]))
1563 return DEVICE_UPDATED;
1564 return DEVICE_SAME;
1565 } else {
1566 /* Keep offline devices offline */
1567 if (needle->volume_offline)
1568 return DEVICE_NOT_FOUND;
1569 return DEVICE_CHANGED;
1573 *index = -1;
1574 return DEVICE_NOT_FOUND;
1577 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1578 unsigned char scsi3addr[])
1580 struct offline_device_entry *device;
1581 unsigned long flags;
1583 /* Check to see if device is already on the list */
1584 spin_lock_irqsave(&h->offline_device_lock, flags);
1585 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1586 if (memcmp(device->scsi3addr, scsi3addr,
1587 sizeof(device->scsi3addr)) == 0) {
1588 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1589 return;
1592 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594 /* Device is not on the list, add it. */
1595 device = kmalloc(sizeof(*device), GFP_KERNEL);
1596 if (!device)
1597 return;
1599 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1600 spin_lock_irqsave(&h->offline_device_lock, flags);
1601 list_add_tail(&device->offline_list, &h->offline_device_list);
1602 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1605 /* Print a message explaining various offline volume states */
1606 static void hpsa_show_volume_status(struct ctlr_info *h,
1607 struct hpsa_scsi_dev_t *sd)
1609 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1610 dev_info(&h->pdev->dev,
1611 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1612 h->scsi_host->host_no,
1613 sd->bus, sd->target, sd->lun);
1614 switch (sd->volume_offline) {
1615 case HPSA_LV_OK:
1616 break;
1617 case HPSA_LV_UNDERGOING_ERASE:
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 break;
1623 case HPSA_LV_NOT_AVAILABLE:
1624 dev_info(&h->pdev->dev,
1625 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1626 h->scsi_host->host_no,
1627 sd->bus, sd->target, sd->lun);
1628 break;
1629 case HPSA_LV_UNDERGOING_RPI:
1630 dev_info(&h->pdev->dev,
1631 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1632 h->scsi_host->host_no,
1633 sd->bus, sd->target, sd->lun);
1634 break;
1635 case HPSA_LV_PENDING_RPI:
1636 dev_info(&h->pdev->dev,
1637 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1638 h->scsi_host->host_no,
1639 sd->bus, sd->target, sd->lun);
1640 break;
1641 case HPSA_LV_ENCRYPTED_NO_KEY:
1642 dev_info(&h->pdev->dev,
1643 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1644 h->scsi_host->host_no,
1645 sd->bus, sd->target, sd->lun);
1646 break;
1647 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1648 dev_info(&h->pdev->dev,
1649 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1650 h->scsi_host->host_no,
1651 sd->bus, sd->target, sd->lun);
1652 break;
1653 case HPSA_LV_UNDERGOING_ENCRYPTION:
1654 dev_info(&h->pdev->dev,
1655 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1656 h->scsi_host->host_no,
1657 sd->bus, sd->target, sd->lun);
1658 break;
1659 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1660 dev_info(&h->pdev->dev,
1661 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1662 h->scsi_host->host_no,
1663 sd->bus, sd->target, sd->lun);
1664 break;
1665 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1666 dev_info(&h->pdev->dev,
1667 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1668 h->scsi_host->host_no,
1669 sd->bus, sd->target, sd->lun);
1670 break;
1671 case HPSA_LV_PENDING_ENCRYPTION:
1672 dev_info(&h->pdev->dev,
1673 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1674 h->scsi_host->host_no,
1675 sd->bus, sd->target, sd->lun);
1676 break;
1677 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1678 dev_info(&h->pdev->dev,
1679 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1680 h->scsi_host->host_no,
1681 sd->bus, sd->target, sd->lun);
1682 break;
1687 * Figure the list of physical drive pointers for a logical drive with
1688 * raid offload configured.
1690 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1691 struct hpsa_scsi_dev_t *dev[], int ndevices,
1692 struct hpsa_scsi_dev_t *logical_drive)
1694 struct raid_map_data *map = &logical_drive->raid_map;
1695 struct raid_map_disk_data *dd = &map->data[0];
1696 int i, j;
1697 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1698 le16_to_cpu(map->metadata_disks_per_row);
1699 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1700 le16_to_cpu(map->layout_map_count) *
1701 total_disks_per_row;
1702 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1703 total_disks_per_row;
1704 int qdepth;
1706 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1707 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1709 logical_drive->nphysical_disks = nraid_map_entries;
1711 qdepth = 0;
1712 for (i = 0; i < nraid_map_entries; i++) {
1713 logical_drive->phys_disk[i] = NULL;
1714 if (!logical_drive->offload_config)
1715 continue;
1716 for (j = 0; j < ndevices; j++) {
1717 if (dev[j] == NULL)
1718 continue;
1719 if (dev[j]->devtype != TYPE_DISK &&
1720 dev[j]->devtype != TYPE_ZBC)
1721 continue;
1722 if (is_logical_device(dev[j]))
1723 continue;
1724 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1725 continue;
1727 logical_drive->phys_disk[i] = dev[j];
1728 if (i < nphys_disk)
1729 qdepth = min(h->nr_cmds, qdepth +
1730 logical_drive->phys_disk[i]->queue_depth);
1731 break;
1735 * This can happen if a physical drive is removed and
1736 * the logical drive is degraded. In that case, the RAID
1737 * map data will refer to a physical disk which isn't actually
1738 * present. And in that case offload_enabled should already
1739 * be 0, but we'll turn it off here just in case
1741 if (!logical_drive->phys_disk[i]) {
1742 dev_warn(&h->pdev->dev,
1743 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1744 __func__,
1745 h->scsi_host->host_no, logical_drive->bus,
1746 logical_drive->target, logical_drive->lun);
1747 hpsa_turn_off_ioaccel_for_device(logical_drive);
1748 logical_drive->queue_depth = 8;
1751 if (nraid_map_entries)
1753 * This is correct for reads, too high for full stripe writes,
1754 * way too high for partial stripe writes
1756 logical_drive->queue_depth = qdepth;
1757 else {
1758 if (logical_drive->external)
1759 logical_drive->queue_depth = EXTERNAL_QD;
1760 else
1761 logical_drive->queue_depth = h->nr_cmds;
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 struct hpsa_scsi_dev_t *dev[], int ndevices)
1768 int i;
1770 for (i = 0; i < ndevices; i++) {
1771 if (dev[i] == NULL)
1772 continue;
1773 if (dev[i]->devtype != TYPE_DISK &&
1774 dev[i]->devtype != TYPE_ZBC)
1775 continue;
1776 if (!is_logical_device(dev[i]))
1777 continue;
1780 * If offload is currently enabled, the RAID map and
1781 * phys_disk[] assignment *better* not be changing
1782 * because we would be changing ioaccel phsy_disk[] pointers
1783 * on a ioaccel volume processing I/O requests.
1785 * If an ioaccel volume status changed, initially because it was
1786 * re-configured and thus underwent a transformation, or
1787 * a drive failed, we would have received a state change
1788 * request and ioaccel should have been turned off. When the
1789 * transformation completes, we get another state change
1790 * request to turn ioaccel back on. In this case, we need
1791 * to update the ioaccel information.
1793 * Thus: If it is not currently enabled, but will be after
1794 * the scan completes, make sure the ioaccel pointers
1795 * are up to date.
1798 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1805 int rc = 0;
1807 if (!h->scsi_host)
1808 return 1;
1810 if (is_logical_device(device)) /* RAID */
1811 rc = scsi_add_device(h->scsi_host, device->bus,
1812 device->target, device->lun);
1813 else /* HBA */
1814 rc = hpsa_add_sas_device(h->sas_host, device);
1816 return rc;
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 struct hpsa_scsi_dev_t *dev)
1822 int i;
1823 int count = 0;
1825 for (i = 0; i < h->nr_cmds; i++) {
1826 struct CommandList *c = h->cmd_pool + i;
1827 int refcount = atomic_inc_return(&c->refcount);
1829 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 dev->scsi3addr)) {
1831 unsigned long flags;
1833 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1834 if (!hpsa_is_cmd_idle(c))
1835 ++count;
1836 spin_unlock_irqrestore(&h->lock, flags);
1839 cmd_free(h, c);
1842 return count;
1845 #define NUM_WAIT 20
1846 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1847 struct hpsa_scsi_dev_t *device)
1849 int cmds = 0;
1850 int waits = 0;
1851 int num_wait = NUM_WAIT;
1853 if (device->external)
1854 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1856 while (1) {
1857 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1858 if (cmds == 0)
1859 break;
1860 if (++waits > num_wait)
1861 break;
1862 msleep(1000);
1865 if (waits > num_wait) {
1866 dev_warn(&h->pdev->dev,
1867 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1868 __func__,
1869 h->scsi_host->host_no,
1870 device->bus, device->target, device->lun, cmds);
1874 static void hpsa_remove_device(struct ctlr_info *h,
1875 struct hpsa_scsi_dev_t *device)
1877 struct scsi_device *sdev = NULL;
1879 if (!h->scsi_host)
1880 return;
1883 * Allow for commands to drain
1885 device->removed = 1;
1886 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1888 if (is_logical_device(device)) { /* RAID */
1889 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1890 device->target, device->lun);
1891 if (sdev) {
1892 scsi_remove_device(sdev);
1893 scsi_device_put(sdev);
1894 } else {
1896 * We don't expect to get here. Future commands
1897 * to this device will get a selection timeout as
1898 * if the device were gone.
1900 hpsa_show_dev_msg(KERN_WARNING, h, device,
1901 "didn't find device for removal.");
1903 } else { /* HBA */
1905 hpsa_remove_sas_device(device);
1909 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1910 struct hpsa_scsi_dev_t *sd[], int nsds)
1912 /* sd contains scsi3 addresses and devtypes, and inquiry
1913 * data. This function takes what's in sd to be the current
1914 * reality and updates h->dev[] to reflect that reality.
1916 int i, entry, device_change, changes = 0;
1917 struct hpsa_scsi_dev_t *csd;
1918 unsigned long flags;
1919 struct hpsa_scsi_dev_t **added, **removed;
1920 int nadded, nremoved;
1923 * A reset can cause a device status to change
1924 * re-schedule the scan to see what happened.
1926 spin_lock_irqsave(&h->reset_lock, flags);
1927 if (h->reset_in_progress) {
1928 h->drv_req_rescan = 1;
1929 spin_unlock_irqrestore(&h->reset_lock, flags);
1930 return;
1932 spin_unlock_irqrestore(&h->reset_lock, flags);
1934 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1935 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1937 if (!added || !removed) {
1938 dev_warn(&h->pdev->dev, "out of memory in "
1939 "adjust_hpsa_scsi_table\n");
1940 goto free_and_out;
1943 spin_lock_irqsave(&h->devlock, flags);
1945 /* find any devices in h->dev[] that are not in
1946 * sd[] and remove them from h->dev[], and for any
1947 * devices which have changed, remove the old device
1948 * info and add the new device info.
1949 * If minor device attributes change, just update
1950 * the existing device structure.
1952 i = 0;
1953 nremoved = 0;
1954 nadded = 0;
1955 while (i < h->ndevices) {
1956 csd = h->dev[i];
1957 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1958 if (device_change == DEVICE_NOT_FOUND) {
1959 changes++;
1960 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1961 continue; /* remove ^^^, hence i not incremented */
1962 } else if (device_change == DEVICE_CHANGED) {
1963 changes++;
1964 hpsa_scsi_replace_entry(h, i, sd[entry],
1965 added, &nadded, removed, &nremoved);
1966 /* Set it to NULL to prevent it from being freed
1967 * at the bottom of hpsa_update_scsi_devices()
1969 sd[entry] = NULL;
1970 } else if (device_change == DEVICE_UPDATED) {
1971 hpsa_scsi_update_entry(h, i, sd[entry]);
1973 i++;
1976 /* Now, make sure every device listed in sd[] is also
1977 * listed in h->dev[], adding them if they aren't found
1980 for (i = 0; i < nsds; i++) {
1981 if (!sd[i]) /* if already added above. */
1982 continue;
1984 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1985 * as the SCSI mid-layer does not handle such devices well.
1986 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1987 * at 160Hz, and prevents the system from coming up.
1989 if (sd[i]->volume_offline) {
1990 hpsa_show_volume_status(h, sd[i]);
1991 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1992 continue;
1995 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1996 h->ndevices, &entry);
1997 if (device_change == DEVICE_NOT_FOUND) {
1998 changes++;
1999 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2000 break;
2001 sd[i] = NULL; /* prevent from being freed later. */
2002 } else if (device_change == DEVICE_CHANGED) {
2003 /* should never happen... */
2004 changes++;
2005 dev_warn(&h->pdev->dev,
2006 "device unexpectedly changed.\n");
2007 /* but if it does happen, we just ignore that device */
2010 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2013 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2014 * any logical drives that need it enabled.
2016 * The raid map should be current by now.
2018 * We are updating the device list used for I/O requests.
2020 for (i = 0; i < h->ndevices; i++) {
2021 if (h->dev[i] == NULL)
2022 continue;
2023 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2026 spin_unlock_irqrestore(&h->devlock, flags);
2028 /* Monitor devices which are in one of several NOT READY states to be
2029 * brought online later. This must be done without holding h->devlock,
2030 * so don't touch h->dev[]
2032 for (i = 0; i < nsds; i++) {
2033 if (!sd[i]) /* if already added above. */
2034 continue;
2035 if (sd[i]->volume_offline)
2036 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2039 /* Don't notify scsi mid layer of any changes the first time through
2040 * (or if there are no changes) scsi_scan_host will do it later the
2041 * first time through.
2043 if (!changes)
2044 goto free_and_out;
2046 /* Notify scsi mid layer of any removed devices */
2047 for (i = 0; i < nremoved; i++) {
2048 if (removed[i] == NULL)
2049 continue;
2050 if (removed[i]->expose_device)
2051 hpsa_remove_device(h, removed[i]);
2052 kfree(removed[i]);
2053 removed[i] = NULL;
2056 /* Notify scsi mid layer of any added devices */
2057 for (i = 0; i < nadded; i++) {
2058 int rc = 0;
2060 if (added[i] == NULL)
2061 continue;
2062 if (!(added[i]->expose_device))
2063 continue;
2064 rc = hpsa_add_device(h, added[i]);
2065 if (!rc)
2066 continue;
2067 dev_warn(&h->pdev->dev,
2068 "addition failed %d, device not added.", rc);
2069 /* now we have to remove it from h->dev,
2070 * since it didn't get added to scsi mid layer
2072 fixup_botched_add(h, added[i]);
2073 h->drv_req_rescan = 1;
2076 free_and_out:
2077 kfree(added);
2078 kfree(removed);
2082 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2083 * Assume's h->devlock is held.
2085 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2086 int bus, int target, int lun)
2088 int i;
2089 struct hpsa_scsi_dev_t *sd;
2091 for (i = 0; i < h->ndevices; i++) {
2092 sd = h->dev[i];
2093 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2094 return sd;
2096 return NULL;
2099 static int hpsa_slave_alloc(struct scsi_device *sdev)
2101 struct hpsa_scsi_dev_t *sd = NULL;
2102 unsigned long flags;
2103 struct ctlr_info *h;
2105 h = sdev_to_hba(sdev);
2106 spin_lock_irqsave(&h->devlock, flags);
2107 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2108 struct scsi_target *starget;
2109 struct sas_rphy *rphy;
2111 starget = scsi_target(sdev);
2112 rphy = target_to_rphy(starget);
2113 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2114 if (sd) {
2115 sd->target = sdev_id(sdev);
2116 sd->lun = sdev->lun;
2119 if (!sd)
2120 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2121 sdev_id(sdev), sdev->lun);
2123 if (sd && sd->expose_device) {
2124 atomic_set(&sd->ioaccel_cmds_out, 0);
2125 sdev->hostdata = sd;
2126 } else
2127 sdev->hostdata = NULL;
2128 spin_unlock_irqrestore(&h->devlock, flags);
2129 return 0;
2132 /* configure scsi device based on internal per-device structure */
2133 static int hpsa_slave_configure(struct scsi_device *sdev)
2135 struct hpsa_scsi_dev_t *sd;
2136 int queue_depth;
2138 sd = sdev->hostdata;
2139 sdev->no_uld_attach = !sd || !sd->expose_device;
2141 if (sd) {
2142 sd->was_removed = 0;
2143 if (sd->external) {
2144 queue_depth = EXTERNAL_QD;
2145 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2146 blk_queue_rq_timeout(sdev->request_queue,
2147 HPSA_EH_PTRAID_TIMEOUT);
2148 } else {
2149 queue_depth = sd->queue_depth != 0 ?
2150 sd->queue_depth : sdev->host->can_queue;
2152 } else
2153 queue_depth = sdev->host->can_queue;
2155 scsi_change_queue_depth(sdev, queue_depth);
2157 return 0;
2160 static void hpsa_slave_destroy(struct scsi_device *sdev)
2162 struct hpsa_scsi_dev_t *hdev = NULL;
2164 hdev = sdev->hostdata;
2166 if (hdev)
2167 hdev->was_removed = 1;
2170 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2172 int i;
2174 if (!h->ioaccel2_cmd_sg_list)
2175 return;
2176 for (i = 0; i < h->nr_cmds; i++) {
2177 kfree(h->ioaccel2_cmd_sg_list[i]);
2178 h->ioaccel2_cmd_sg_list[i] = NULL;
2180 kfree(h->ioaccel2_cmd_sg_list);
2181 h->ioaccel2_cmd_sg_list = NULL;
2184 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2186 int i;
2188 if (h->chainsize <= 0)
2189 return 0;
2191 h->ioaccel2_cmd_sg_list =
2192 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2193 GFP_KERNEL);
2194 if (!h->ioaccel2_cmd_sg_list)
2195 return -ENOMEM;
2196 for (i = 0; i < h->nr_cmds; i++) {
2197 h->ioaccel2_cmd_sg_list[i] =
2198 kmalloc_array(h->maxsgentries,
2199 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2200 GFP_KERNEL);
2201 if (!h->ioaccel2_cmd_sg_list[i])
2202 goto clean;
2204 return 0;
2206 clean:
2207 hpsa_free_ioaccel2_sg_chain_blocks(h);
2208 return -ENOMEM;
2211 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2213 int i;
2215 if (!h->cmd_sg_list)
2216 return;
2217 for (i = 0; i < h->nr_cmds; i++) {
2218 kfree(h->cmd_sg_list[i]);
2219 h->cmd_sg_list[i] = NULL;
2221 kfree(h->cmd_sg_list);
2222 h->cmd_sg_list = NULL;
2225 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2227 int i;
2229 if (h->chainsize <= 0)
2230 return 0;
2232 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2233 GFP_KERNEL);
2234 if (!h->cmd_sg_list)
2235 return -ENOMEM;
2237 for (i = 0; i < h->nr_cmds; i++) {
2238 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2239 sizeof(*h->cmd_sg_list[i]),
2240 GFP_KERNEL);
2241 if (!h->cmd_sg_list[i])
2242 goto clean;
2245 return 0;
2247 clean:
2248 hpsa_free_sg_chain_blocks(h);
2249 return -ENOMEM;
2252 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253 struct io_accel2_cmd *cp, struct CommandList *c)
2255 struct ioaccel2_sg_element *chain_block;
2256 u64 temp64;
2257 u32 chain_size;
2259 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2260 chain_size = le32_to_cpu(cp->sg[0].length);
2261 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2262 DMA_TO_DEVICE);
2263 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2264 /* prevent subsequent unmapping */
2265 cp->sg->address = 0;
2266 return -1;
2268 cp->sg->address = cpu_to_le64(temp64);
2269 return 0;
2272 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2273 struct io_accel2_cmd *cp)
2275 struct ioaccel2_sg_element *chain_sg;
2276 u64 temp64;
2277 u32 chain_size;
2279 chain_sg = cp->sg;
2280 temp64 = le64_to_cpu(chain_sg->address);
2281 chain_size = le32_to_cpu(cp->sg[0].length);
2282 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2285 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2286 struct CommandList *c)
2288 struct SGDescriptor *chain_sg, *chain_block;
2289 u64 temp64;
2290 u32 chain_len;
2292 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2293 chain_block = h->cmd_sg_list[c->cmdindex];
2294 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2295 chain_len = sizeof(*chain_sg) *
2296 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2297 chain_sg->Len = cpu_to_le32(chain_len);
2298 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2299 DMA_TO_DEVICE);
2300 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2301 /* prevent subsequent unmapping */
2302 chain_sg->Addr = cpu_to_le64(0);
2303 return -1;
2305 chain_sg->Addr = cpu_to_le64(temp64);
2306 return 0;
2309 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2310 struct CommandList *c)
2312 struct SGDescriptor *chain_sg;
2314 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2315 return;
2317 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2318 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2319 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2323 /* Decode the various types of errors on ioaccel2 path.
2324 * Return 1 for any error that should generate a RAID path retry.
2325 * Return 0 for errors that don't require a RAID path retry.
2327 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2328 struct CommandList *c,
2329 struct scsi_cmnd *cmd,
2330 struct io_accel2_cmd *c2,
2331 struct hpsa_scsi_dev_t *dev)
2333 int data_len;
2334 int retry = 0;
2335 u32 ioaccel2_resid = 0;
2337 switch (c2->error_data.serv_response) {
2338 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2339 switch (c2->error_data.status) {
2340 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2341 if (cmd)
2342 cmd->result = 0;
2343 break;
2344 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2345 cmd->result |= SAM_STAT_CHECK_CONDITION;
2346 if (c2->error_data.data_present !=
2347 IOACCEL2_SENSE_DATA_PRESENT) {
2348 memset(cmd->sense_buffer, 0,
2349 SCSI_SENSE_BUFFERSIZE);
2350 break;
2352 /* copy the sense data */
2353 data_len = c2->error_data.sense_data_len;
2354 if (data_len > SCSI_SENSE_BUFFERSIZE)
2355 data_len = SCSI_SENSE_BUFFERSIZE;
2356 if (data_len > sizeof(c2->error_data.sense_data_buff))
2357 data_len =
2358 sizeof(c2->error_data.sense_data_buff);
2359 memcpy(cmd->sense_buffer,
2360 c2->error_data.sense_data_buff, data_len);
2361 retry = 1;
2362 break;
2363 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2364 retry = 1;
2365 break;
2366 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2367 retry = 1;
2368 break;
2369 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2370 retry = 1;
2371 break;
2372 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2373 retry = 1;
2374 break;
2375 default:
2376 retry = 1;
2377 break;
2379 break;
2380 case IOACCEL2_SERV_RESPONSE_FAILURE:
2381 switch (c2->error_data.status) {
2382 case IOACCEL2_STATUS_SR_IO_ERROR:
2383 case IOACCEL2_STATUS_SR_IO_ABORTED:
2384 case IOACCEL2_STATUS_SR_OVERRUN:
2385 retry = 1;
2386 break;
2387 case IOACCEL2_STATUS_SR_UNDERRUN:
2388 cmd->result = (DID_OK << 16); /* host byte */
2389 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2390 ioaccel2_resid = get_unaligned_le32(
2391 &c2->error_data.resid_cnt[0]);
2392 scsi_set_resid(cmd, ioaccel2_resid);
2393 break;
2394 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2395 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2396 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2398 * Did an HBA disk disappear? We will eventually
2399 * get a state change event from the controller but
2400 * in the meantime, we need to tell the OS that the
2401 * HBA disk is no longer there and stop I/O
2402 * from going down. This allows the potential re-insert
2403 * of the disk to get the same device node.
2405 if (dev->physical_device && dev->expose_device) {
2406 cmd->result = DID_NO_CONNECT << 16;
2407 dev->removed = 1;
2408 h->drv_req_rescan = 1;
2409 dev_warn(&h->pdev->dev,
2410 "%s: device is gone!\n", __func__);
2411 } else
2413 * Retry by sending down the RAID path.
2414 * We will get an event from ctlr to
2415 * trigger rescan regardless.
2417 retry = 1;
2418 break;
2419 default:
2420 retry = 1;
2422 break;
2423 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2424 break;
2425 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2426 break;
2427 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2428 retry = 1;
2429 break;
2430 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2431 break;
2432 default:
2433 retry = 1;
2434 break;
2437 if (dev->in_reset)
2438 retry = 0;
2440 return retry; /* retry on raid path? */
2443 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2444 struct CommandList *c)
2446 struct hpsa_scsi_dev_t *dev = c->device;
2449 * Reset c->scsi_cmd here so that the reset handler will know
2450 * this command has completed. Then, check to see if the handler is
2451 * waiting for this command, and, if so, wake it.
2453 c->scsi_cmd = SCSI_CMD_IDLE;
2454 mb(); /* Declare command idle before checking for pending events. */
2455 if (dev) {
2456 atomic_dec(&dev->commands_outstanding);
2457 if (dev->in_reset &&
2458 atomic_read(&dev->commands_outstanding) <= 0)
2459 wake_up_all(&h->event_sync_wait_queue);
2463 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2464 struct CommandList *c)
2466 hpsa_cmd_resolve_events(h, c);
2467 cmd_tagged_free(h, c);
2470 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2471 struct CommandList *c, struct scsi_cmnd *cmd)
2473 hpsa_cmd_resolve_and_free(h, c);
2474 if (cmd && cmd->scsi_done)
2475 cmd->scsi_done(cmd);
2478 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2480 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2481 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2484 static void process_ioaccel2_completion(struct ctlr_info *h,
2485 struct CommandList *c, struct scsi_cmnd *cmd,
2486 struct hpsa_scsi_dev_t *dev)
2488 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2490 /* check for good status */
2491 if (likely(c2->error_data.serv_response == 0 &&
2492 c2->error_data.status == 0)) {
2493 cmd->result = 0;
2494 return hpsa_cmd_free_and_done(h, c, cmd);
2498 * Any RAID offload error results in retry which will use
2499 * the normal I/O path so the controller can handle whatever is
2500 * wrong.
2502 if (is_logical_device(dev) &&
2503 c2->error_data.serv_response ==
2504 IOACCEL2_SERV_RESPONSE_FAILURE) {
2505 if (c2->error_data.status ==
2506 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2507 hpsa_turn_off_ioaccel_for_device(dev);
2510 if (dev->in_reset) {
2511 cmd->result = DID_RESET << 16;
2512 return hpsa_cmd_free_and_done(h, c, cmd);
2515 return hpsa_retry_cmd(h, c);
2518 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2519 return hpsa_retry_cmd(h, c);
2521 return hpsa_cmd_free_and_done(h, c, cmd);
2524 /* Returns 0 on success, < 0 otherwise. */
2525 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2526 struct CommandList *cp)
2528 u8 tmf_status = cp->err_info->ScsiStatus;
2530 switch (tmf_status) {
2531 case CISS_TMF_COMPLETE:
2533 * CISS_TMF_COMPLETE never happens, instead,
2534 * ei->CommandStatus == 0 for this case.
2536 case CISS_TMF_SUCCESS:
2537 return 0;
2538 case CISS_TMF_INVALID_FRAME:
2539 case CISS_TMF_NOT_SUPPORTED:
2540 case CISS_TMF_FAILED:
2541 case CISS_TMF_WRONG_LUN:
2542 case CISS_TMF_OVERLAPPED_TAG:
2543 break;
2544 default:
2545 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2546 tmf_status);
2547 break;
2549 return -tmf_status;
2552 static void complete_scsi_command(struct CommandList *cp)
2554 struct scsi_cmnd *cmd;
2555 struct ctlr_info *h;
2556 struct ErrorInfo *ei;
2557 struct hpsa_scsi_dev_t *dev;
2558 struct io_accel2_cmd *c2;
2560 u8 sense_key;
2561 u8 asc; /* additional sense code */
2562 u8 ascq; /* additional sense code qualifier */
2563 unsigned long sense_data_size;
2565 ei = cp->err_info;
2566 cmd = cp->scsi_cmd;
2567 h = cp->h;
2569 if (!cmd->device) {
2570 cmd->result = DID_NO_CONNECT << 16;
2571 return hpsa_cmd_free_and_done(h, cp, cmd);
2574 dev = cmd->device->hostdata;
2575 if (!dev) {
2576 cmd->result = DID_NO_CONNECT << 16;
2577 return hpsa_cmd_free_and_done(h, cp, cmd);
2579 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2581 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2582 if ((cp->cmd_type == CMD_SCSI) &&
2583 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2584 hpsa_unmap_sg_chain_block(h, cp);
2586 if ((cp->cmd_type == CMD_IOACCEL2) &&
2587 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2588 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2590 cmd->result = (DID_OK << 16); /* host byte */
2591 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2593 /* SCSI command has already been cleaned up in SML */
2594 if (dev->was_removed) {
2595 hpsa_cmd_resolve_and_free(h, cp);
2596 return;
2599 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2600 if (dev->physical_device && dev->expose_device &&
2601 dev->removed) {
2602 cmd->result = DID_NO_CONNECT << 16;
2603 return hpsa_cmd_free_and_done(h, cp, cmd);
2605 if (likely(cp->phys_disk != NULL))
2606 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2610 * We check for lockup status here as it may be set for
2611 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2612 * fail_all_oustanding_cmds()
2614 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2615 /* DID_NO_CONNECT will prevent a retry */
2616 cmd->result = DID_NO_CONNECT << 16;
2617 return hpsa_cmd_free_and_done(h, cp, cmd);
2620 if (cp->cmd_type == CMD_IOACCEL2)
2621 return process_ioaccel2_completion(h, cp, cmd, dev);
2623 scsi_set_resid(cmd, ei->ResidualCnt);
2624 if (ei->CommandStatus == 0)
2625 return hpsa_cmd_free_and_done(h, cp, cmd);
2627 /* For I/O accelerator commands, copy over some fields to the normal
2628 * CISS header used below for error handling.
2630 if (cp->cmd_type == CMD_IOACCEL1) {
2631 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2632 cp->Header.SGList = scsi_sg_count(cmd);
2633 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2634 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2635 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2636 cp->Header.tag = c->tag;
2637 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2638 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2640 /* Any RAID offload error results in retry which will use
2641 * the normal I/O path so the controller can handle whatever's
2642 * wrong.
2644 if (is_logical_device(dev)) {
2645 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2646 dev->offload_enabled = 0;
2647 return hpsa_retry_cmd(h, cp);
2651 /* an error has occurred */
2652 switch (ei->CommandStatus) {
2654 case CMD_TARGET_STATUS:
2655 cmd->result |= ei->ScsiStatus;
2656 /* copy the sense data */
2657 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2658 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2659 else
2660 sense_data_size = sizeof(ei->SenseInfo);
2661 if (ei->SenseLen < sense_data_size)
2662 sense_data_size = ei->SenseLen;
2663 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2664 if (ei->ScsiStatus)
2665 decode_sense_data(ei->SenseInfo, sense_data_size,
2666 &sense_key, &asc, &ascq);
2667 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2668 switch (sense_key) {
2669 case ABORTED_COMMAND:
2670 cmd->result |= DID_SOFT_ERROR << 16;
2671 break;
2672 case UNIT_ATTENTION:
2673 if (asc == 0x3F && ascq == 0x0E)
2674 h->drv_req_rescan = 1;
2675 break;
2676 case ILLEGAL_REQUEST:
2677 if (asc == 0x25 && ascq == 0x00) {
2678 dev->removed = 1;
2679 cmd->result = DID_NO_CONNECT << 16;
2681 break;
2683 break;
2685 /* Problem was not a check condition
2686 * Pass it up to the upper layers...
2688 if (ei->ScsiStatus) {
2689 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2690 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2691 "Returning result: 0x%x\n",
2692 cp, ei->ScsiStatus,
2693 sense_key, asc, ascq,
2694 cmd->result);
2695 } else { /* scsi status is zero??? How??? */
2696 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2697 "Returning no connection.\n", cp),
2699 /* Ordinarily, this case should never happen,
2700 * but there is a bug in some released firmware
2701 * revisions that allows it to happen if, for
2702 * example, a 4100 backplane loses power and
2703 * the tape drive is in it. We assume that
2704 * it's a fatal error of some kind because we
2705 * can't show that it wasn't. We will make it
2706 * look like selection timeout since that is
2707 * the most common reason for this to occur,
2708 * and it's severe enough.
2711 cmd->result = DID_NO_CONNECT << 16;
2713 break;
2715 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2716 break;
2717 case CMD_DATA_OVERRUN:
2718 dev_warn(&h->pdev->dev,
2719 "CDB %16phN data overrun\n", cp->Request.CDB);
2720 break;
2721 case CMD_INVALID: {
2722 /* print_bytes(cp, sizeof(*cp), 1, 0);
2723 print_cmd(cp); */
2724 /* We get CMD_INVALID if you address a non-existent device
2725 * instead of a selection timeout (no response). You will
2726 * see this if you yank out a drive, then try to access it.
2727 * This is kind of a shame because it means that any other
2728 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2729 * missing target. */
2730 cmd->result = DID_NO_CONNECT << 16;
2732 break;
2733 case CMD_PROTOCOL_ERR:
2734 cmd->result = DID_ERROR << 16;
2735 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2736 cp->Request.CDB);
2737 break;
2738 case CMD_HARDWARE_ERR:
2739 cmd->result = DID_ERROR << 16;
2740 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2741 cp->Request.CDB);
2742 break;
2743 case CMD_CONNECTION_LOST:
2744 cmd->result = DID_ERROR << 16;
2745 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2746 cp->Request.CDB);
2747 break;
2748 case CMD_ABORTED:
2749 cmd->result = DID_ABORT << 16;
2750 break;
2751 case CMD_ABORT_FAILED:
2752 cmd->result = DID_ERROR << 16;
2753 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2754 cp->Request.CDB);
2755 break;
2756 case CMD_UNSOLICITED_ABORT:
2757 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2758 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2759 cp->Request.CDB);
2760 break;
2761 case CMD_TIMEOUT:
2762 cmd->result = DID_TIME_OUT << 16;
2763 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2764 cp->Request.CDB);
2765 break;
2766 case CMD_UNABORTABLE:
2767 cmd->result = DID_ERROR << 16;
2768 dev_warn(&h->pdev->dev, "Command unabortable\n");
2769 break;
2770 case CMD_TMF_STATUS:
2771 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2772 cmd->result = DID_ERROR << 16;
2773 break;
2774 case CMD_IOACCEL_DISABLED:
2775 /* This only handles the direct pass-through case since RAID
2776 * offload is handled above. Just attempt a retry.
2778 cmd->result = DID_SOFT_ERROR << 16;
2779 dev_warn(&h->pdev->dev,
2780 "cp %p had HP SSD Smart Path error\n", cp);
2781 break;
2782 default:
2783 cmd->result = DID_ERROR << 16;
2784 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2785 cp, ei->CommandStatus);
2788 return hpsa_cmd_free_and_done(h, cp, cmd);
2791 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2792 int sg_used, enum dma_data_direction data_direction)
2794 int i;
2796 for (i = 0; i < sg_used; i++)
2797 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2798 le32_to_cpu(c->SG[i].Len),
2799 data_direction);
2802 static int hpsa_map_one(struct pci_dev *pdev,
2803 struct CommandList *cp,
2804 unsigned char *buf,
2805 size_t buflen,
2806 enum dma_data_direction data_direction)
2808 u64 addr64;
2810 if (buflen == 0 || data_direction == DMA_NONE) {
2811 cp->Header.SGList = 0;
2812 cp->Header.SGTotal = cpu_to_le16(0);
2813 return 0;
2816 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2817 if (dma_mapping_error(&pdev->dev, addr64)) {
2818 /* Prevent subsequent unmap of something never mapped */
2819 cp->Header.SGList = 0;
2820 cp->Header.SGTotal = cpu_to_le16(0);
2821 return -1;
2823 cp->SG[0].Addr = cpu_to_le64(addr64);
2824 cp->SG[0].Len = cpu_to_le32(buflen);
2825 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2826 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2827 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2828 return 0;
2831 #define NO_TIMEOUT ((unsigned long) -1)
2832 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2833 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2834 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2836 DECLARE_COMPLETION_ONSTACK(wait);
2838 c->waiting = &wait;
2839 __enqueue_cmd_and_start_io(h, c, reply_queue);
2840 if (timeout_msecs == NO_TIMEOUT) {
2841 /* TODO: get rid of this no-timeout thing */
2842 wait_for_completion_io(&wait);
2843 return IO_OK;
2845 if (!wait_for_completion_io_timeout(&wait,
2846 msecs_to_jiffies(timeout_msecs))) {
2847 dev_warn(&h->pdev->dev, "Command timed out.\n");
2848 return -ETIMEDOUT;
2850 return IO_OK;
2853 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2854 int reply_queue, unsigned long timeout_msecs)
2856 if (unlikely(lockup_detected(h))) {
2857 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2858 return IO_OK;
2860 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2863 static u32 lockup_detected(struct ctlr_info *h)
2865 int cpu;
2866 u32 rc, *lockup_detected;
2868 cpu = get_cpu();
2869 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2870 rc = *lockup_detected;
2871 put_cpu();
2872 return rc;
2875 #define MAX_DRIVER_CMD_RETRIES 25
2876 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2877 struct CommandList *c, enum dma_data_direction data_direction,
2878 unsigned long timeout_msecs)
2880 int backoff_time = 10, retry_count = 0;
2881 int rc;
2883 do {
2884 memset(c->err_info, 0, sizeof(*c->err_info));
2885 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2886 timeout_msecs);
2887 if (rc)
2888 break;
2889 retry_count++;
2890 if (retry_count > 3) {
2891 msleep(backoff_time);
2892 if (backoff_time < 1000)
2893 backoff_time *= 2;
2895 } while ((check_for_unit_attention(h, c) ||
2896 check_for_busy(h, c)) &&
2897 retry_count <= MAX_DRIVER_CMD_RETRIES);
2898 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2899 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2900 rc = -EIO;
2901 return rc;
2904 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2905 struct CommandList *c)
2907 const u8 *cdb = c->Request.CDB;
2908 const u8 *lun = c->Header.LUN.LunAddrBytes;
2910 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2911 txt, lun, cdb);
2914 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2915 struct CommandList *cp)
2917 const struct ErrorInfo *ei = cp->err_info;
2918 struct device *d = &cp->h->pdev->dev;
2919 u8 sense_key, asc, ascq;
2920 int sense_len;
2922 switch (ei->CommandStatus) {
2923 case CMD_TARGET_STATUS:
2924 if (ei->SenseLen > sizeof(ei->SenseInfo))
2925 sense_len = sizeof(ei->SenseInfo);
2926 else
2927 sense_len = ei->SenseLen;
2928 decode_sense_data(ei->SenseInfo, sense_len,
2929 &sense_key, &asc, &ascq);
2930 hpsa_print_cmd(h, "SCSI status", cp);
2931 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2932 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2933 sense_key, asc, ascq);
2934 else
2935 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2936 if (ei->ScsiStatus == 0)
2937 dev_warn(d, "SCSI status is abnormally zero. "
2938 "(probably indicates selection timeout "
2939 "reported incorrectly due to a known "
2940 "firmware bug, circa July, 2001.)\n");
2941 break;
2942 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2943 break;
2944 case CMD_DATA_OVERRUN:
2945 hpsa_print_cmd(h, "overrun condition", cp);
2946 break;
2947 case CMD_INVALID: {
2948 /* controller unfortunately reports SCSI passthru's
2949 * to non-existent targets as invalid commands.
2951 hpsa_print_cmd(h, "invalid command", cp);
2952 dev_warn(d, "probably means device no longer present\n");
2954 break;
2955 case CMD_PROTOCOL_ERR:
2956 hpsa_print_cmd(h, "protocol error", cp);
2957 break;
2958 case CMD_HARDWARE_ERR:
2959 hpsa_print_cmd(h, "hardware error", cp);
2960 break;
2961 case CMD_CONNECTION_LOST:
2962 hpsa_print_cmd(h, "connection lost", cp);
2963 break;
2964 case CMD_ABORTED:
2965 hpsa_print_cmd(h, "aborted", cp);
2966 break;
2967 case CMD_ABORT_FAILED:
2968 hpsa_print_cmd(h, "abort failed", cp);
2969 break;
2970 case CMD_UNSOLICITED_ABORT:
2971 hpsa_print_cmd(h, "unsolicited abort", cp);
2972 break;
2973 case CMD_TIMEOUT:
2974 hpsa_print_cmd(h, "timed out", cp);
2975 break;
2976 case CMD_UNABORTABLE:
2977 hpsa_print_cmd(h, "unabortable", cp);
2978 break;
2979 case CMD_CTLR_LOCKUP:
2980 hpsa_print_cmd(h, "controller lockup detected", cp);
2981 break;
2982 default:
2983 hpsa_print_cmd(h, "unknown status", cp);
2984 dev_warn(d, "Unknown command status %x\n",
2985 ei->CommandStatus);
2989 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2990 u8 page, u8 *buf, size_t bufsize)
2992 int rc = IO_OK;
2993 struct CommandList *c;
2994 struct ErrorInfo *ei;
2996 c = cmd_alloc(h);
2997 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2998 page, scsi3addr, TYPE_CMD)) {
2999 rc = -1;
3000 goto out;
3002 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3003 NO_TIMEOUT);
3004 if (rc)
3005 goto out;
3006 ei = c->err_info;
3007 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008 hpsa_scsi_interpret_error(h, c);
3009 rc = -1;
3011 out:
3012 cmd_free(h, c);
3013 return rc;
3016 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3017 u8 *scsi3addr)
3019 u8 *buf;
3020 u64 sa = 0;
3021 int rc = 0;
3023 buf = kzalloc(1024, GFP_KERNEL);
3024 if (!buf)
3025 return 0;
3027 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3028 buf, 1024);
3030 if (rc)
3031 goto out;
3033 sa = get_unaligned_be64(buf+12);
3035 out:
3036 kfree(buf);
3037 return sa;
3040 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3041 u16 page, unsigned char *buf,
3042 unsigned char bufsize)
3044 int rc = IO_OK;
3045 struct CommandList *c;
3046 struct ErrorInfo *ei;
3048 c = cmd_alloc(h);
3050 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3051 page, scsi3addr, TYPE_CMD)) {
3052 rc = -1;
3053 goto out;
3055 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3056 NO_TIMEOUT);
3057 if (rc)
3058 goto out;
3059 ei = c->err_info;
3060 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3061 hpsa_scsi_interpret_error(h, c);
3062 rc = -1;
3064 out:
3065 cmd_free(h, c);
3066 return rc;
3069 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3070 u8 reset_type, int reply_queue)
3072 int rc = IO_OK;
3073 struct CommandList *c;
3074 struct ErrorInfo *ei;
3076 c = cmd_alloc(h);
3077 c->device = dev;
3079 /* fill_cmd can't fail here, no data buffer to map. */
3080 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3081 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3082 if (rc) {
3083 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3084 goto out;
3086 /* no unmap needed here because no data xfer. */
3088 ei = c->err_info;
3089 if (ei->CommandStatus != 0) {
3090 hpsa_scsi_interpret_error(h, c);
3091 rc = -1;
3093 out:
3094 cmd_free(h, c);
3095 return rc;
3098 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3099 struct hpsa_scsi_dev_t *dev,
3100 unsigned char *scsi3addr)
3102 int i;
3103 bool match = false;
3104 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3105 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3107 if (hpsa_is_cmd_idle(c))
3108 return false;
3110 switch (c->cmd_type) {
3111 case CMD_SCSI:
3112 case CMD_IOCTL_PEND:
3113 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3114 sizeof(c->Header.LUN.LunAddrBytes));
3115 break;
3117 case CMD_IOACCEL1:
3118 case CMD_IOACCEL2:
3119 if (c->phys_disk == dev) {
3120 /* HBA mode match */
3121 match = true;
3122 } else {
3123 /* Possible RAID mode -- check each phys dev. */
3124 /* FIXME: Do we need to take out a lock here? If
3125 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3126 * instead. */
3127 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3128 /* FIXME: an alternate test might be
3130 * match = dev->phys_disk[i]->ioaccel_handle
3131 * == c2->scsi_nexus; */
3132 match = dev->phys_disk[i] == c->phys_disk;
3135 break;
3137 case IOACCEL2_TMF:
3138 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3139 match = dev->phys_disk[i]->ioaccel_handle ==
3140 le32_to_cpu(ac->it_nexus);
3142 break;
3144 case 0: /* The command is in the middle of being initialized. */
3145 match = false;
3146 break;
3148 default:
3149 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3150 c->cmd_type);
3151 BUG();
3154 return match;
3157 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3158 u8 reset_type, int reply_queue)
3160 int rc = 0;
3162 /* We can really only handle one reset at a time */
3163 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3164 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3165 return -EINTR;
3168 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3169 if (!rc) {
3170 /* incremented by sending the reset request */
3171 atomic_dec(&dev->commands_outstanding);
3172 wait_event(h->event_sync_wait_queue,
3173 atomic_read(&dev->commands_outstanding) <= 0 ||
3174 lockup_detected(h));
3177 if (unlikely(lockup_detected(h))) {
3178 dev_warn(&h->pdev->dev,
3179 "Controller lockup detected during reset wait\n");
3180 rc = -ENODEV;
3183 if (!rc)
3184 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3186 mutex_unlock(&h->reset_mutex);
3187 return rc;
3190 static void hpsa_get_raid_level(struct ctlr_info *h,
3191 unsigned char *scsi3addr, unsigned char *raid_level)
3193 int rc;
3194 unsigned char *buf;
3196 *raid_level = RAID_UNKNOWN;
3197 buf = kzalloc(64, GFP_KERNEL);
3198 if (!buf)
3199 return;
3201 if (!hpsa_vpd_page_supported(h, scsi3addr,
3202 HPSA_VPD_LV_DEVICE_GEOMETRY))
3203 goto exit;
3205 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3206 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3208 if (rc == 0)
3209 *raid_level = buf[8];
3210 if (*raid_level > RAID_UNKNOWN)
3211 *raid_level = RAID_UNKNOWN;
3212 exit:
3213 kfree(buf);
3214 return;
3217 #define HPSA_MAP_DEBUG
3218 #ifdef HPSA_MAP_DEBUG
3219 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3220 struct raid_map_data *map_buff)
3222 struct raid_map_disk_data *dd = &map_buff->data[0];
3223 int map, row, col;
3224 u16 map_cnt, row_cnt, disks_per_row;
3226 if (rc != 0)
3227 return;
3229 /* Show details only if debugging has been activated. */
3230 if (h->raid_offload_debug < 2)
3231 return;
3233 dev_info(&h->pdev->dev, "structure_size = %u\n",
3234 le32_to_cpu(map_buff->structure_size));
3235 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3236 le32_to_cpu(map_buff->volume_blk_size));
3237 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3238 le64_to_cpu(map_buff->volume_blk_cnt));
3239 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3240 map_buff->phys_blk_shift);
3241 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3242 map_buff->parity_rotation_shift);
3243 dev_info(&h->pdev->dev, "strip_size = %u\n",
3244 le16_to_cpu(map_buff->strip_size));
3245 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3246 le64_to_cpu(map_buff->disk_starting_blk));
3247 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3248 le64_to_cpu(map_buff->disk_blk_cnt));
3249 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3250 le16_to_cpu(map_buff->data_disks_per_row));
3251 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3252 le16_to_cpu(map_buff->metadata_disks_per_row));
3253 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3254 le16_to_cpu(map_buff->row_cnt));
3255 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3256 le16_to_cpu(map_buff->layout_map_count));
3257 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3258 le16_to_cpu(map_buff->flags));
3259 dev_info(&h->pdev->dev, "encryption = %s\n",
3260 le16_to_cpu(map_buff->flags) &
3261 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3262 dev_info(&h->pdev->dev, "dekindex = %u\n",
3263 le16_to_cpu(map_buff->dekindex));
3264 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3265 for (map = 0; map < map_cnt; map++) {
3266 dev_info(&h->pdev->dev, "Map%u:\n", map);
3267 row_cnt = le16_to_cpu(map_buff->row_cnt);
3268 for (row = 0; row < row_cnt; row++) {
3269 dev_info(&h->pdev->dev, " Row%u:\n", row);
3270 disks_per_row =
3271 le16_to_cpu(map_buff->data_disks_per_row);
3272 for (col = 0; col < disks_per_row; col++, dd++)
3273 dev_info(&h->pdev->dev,
3274 " D%02u: h=0x%04x xor=%u,%u\n",
3275 col, dd->ioaccel_handle,
3276 dd->xor_mult[0], dd->xor_mult[1]);
3277 disks_per_row =
3278 le16_to_cpu(map_buff->metadata_disks_per_row);
3279 for (col = 0; col < disks_per_row; col++, dd++)
3280 dev_info(&h->pdev->dev,
3281 " M%02u: h=0x%04x xor=%u,%u\n",
3282 col, dd->ioaccel_handle,
3283 dd->xor_mult[0], dd->xor_mult[1]);
3287 #else
3288 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3289 __attribute__((unused)) int rc,
3290 __attribute__((unused)) struct raid_map_data *map_buff)
3293 #endif
3295 static int hpsa_get_raid_map(struct ctlr_info *h,
3296 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3298 int rc = 0;
3299 struct CommandList *c;
3300 struct ErrorInfo *ei;
3302 c = cmd_alloc(h);
3304 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3305 sizeof(this_device->raid_map), 0,
3306 scsi3addr, TYPE_CMD)) {
3307 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3308 cmd_free(h, c);
3309 return -1;
3311 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3312 NO_TIMEOUT);
3313 if (rc)
3314 goto out;
3315 ei = c->err_info;
3316 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3317 hpsa_scsi_interpret_error(h, c);
3318 rc = -1;
3319 goto out;
3321 cmd_free(h, c);
3323 /* @todo in the future, dynamically allocate RAID map memory */
3324 if (le32_to_cpu(this_device->raid_map.structure_size) >
3325 sizeof(this_device->raid_map)) {
3326 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3327 rc = -1;
3329 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3330 return rc;
3331 out:
3332 cmd_free(h, c);
3333 return rc;
3336 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3337 unsigned char scsi3addr[], u16 bmic_device_index,
3338 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3340 int rc = IO_OK;
3341 struct CommandList *c;
3342 struct ErrorInfo *ei;
3344 c = cmd_alloc(h);
3346 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3347 0, RAID_CTLR_LUNID, TYPE_CMD);
3348 if (rc)
3349 goto out;
3351 c->Request.CDB[2] = bmic_device_index & 0xff;
3352 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3354 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3355 NO_TIMEOUT);
3356 if (rc)
3357 goto out;
3358 ei = c->err_info;
3359 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3360 hpsa_scsi_interpret_error(h, c);
3361 rc = -1;
3363 out:
3364 cmd_free(h, c);
3365 return rc;
3368 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3369 struct bmic_identify_controller *buf, size_t bufsize)
3371 int rc = IO_OK;
3372 struct CommandList *c;
3373 struct ErrorInfo *ei;
3375 c = cmd_alloc(h);
3377 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3378 0, RAID_CTLR_LUNID, TYPE_CMD);
3379 if (rc)
3380 goto out;
3382 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3383 NO_TIMEOUT);
3384 if (rc)
3385 goto out;
3386 ei = c->err_info;
3387 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3388 hpsa_scsi_interpret_error(h, c);
3389 rc = -1;
3391 out:
3392 cmd_free(h, c);
3393 return rc;
3396 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3397 unsigned char scsi3addr[], u16 bmic_device_index,
3398 struct bmic_identify_physical_device *buf, size_t bufsize)
3400 int rc = IO_OK;
3401 struct CommandList *c;
3402 struct ErrorInfo *ei;
3404 c = cmd_alloc(h);
3405 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3406 0, RAID_CTLR_LUNID, TYPE_CMD);
3407 if (rc)
3408 goto out;
3410 c->Request.CDB[2] = bmic_device_index & 0xff;
3411 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3413 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3414 NO_TIMEOUT);
3415 ei = c->err_info;
3416 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3417 hpsa_scsi_interpret_error(h, c);
3418 rc = -1;
3420 out:
3421 cmd_free(h, c);
3423 return rc;
3427 * get enclosure information
3428 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3429 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3430 * Uses id_physical_device to determine the box_index.
3432 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3433 unsigned char *scsi3addr,
3434 struct ReportExtendedLUNdata *rlep, int rle_index,
3435 struct hpsa_scsi_dev_t *encl_dev)
3437 int rc = -1;
3438 struct CommandList *c = NULL;
3439 struct ErrorInfo *ei = NULL;
3440 struct bmic_sense_storage_box_params *bssbp = NULL;
3441 struct bmic_identify_physical_device *id_phys = NULL;
3442 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3443 u16 bmic_device_index = 0;
3445 encl_dev->eli =
3446 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3448 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3450 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3451 rc = IO_OK;
3452 goto out;
3455 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3456 rc = IO_OK;
3457 goto out;
3460 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3461 if (!bssbp)
3462 goto out;
3464 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3465 if (!id_phys)
3466 goto out;
3468 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3469 id_phys, sizeof(*id_phys));
3470 if (rc) {
3471 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3472 __func__, encl_dev->external, bmic_device_index);
3473 goto out;
3476 c = cmd_alloc(h);
3478 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3479 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3481 if (rc)
3482 goto out;
3484 if (id_phys->phys_connector[1] == 'E')
3485 c->Request.CDB[5] = id_phys->box_index;
3486 else
3487 c->Request.CDB[5] = 0;
3489 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3490 NO_TIMEOUT);
3491 if (rc)
3492 goto out;
3494 ei = c->err_info;
3495 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3496 rc = -1;
3497 goto out;
3500 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3501 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3502 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3504 rc = IO_OK;
3505 out:
3506 kfree(bssbp);
3507 kfree(id_phys);
3509 if (c)
3510 cmd_free(h, c);
3512 if (rc != IO_OK)
3513 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3514 "Error, could not get enclosure information");
3517 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3518 unsigned char *scsi3addr)
3520 struct ReportExtendedLUNdata *physdev;
3521 u32 nphysicals;
3522 u64 sa = 0;
3523 int i;
3525 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3526 if (!physdev)
3527 return 0;
3529 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3530 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3531 kfree(physdev);
3532 return 0;
3534 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3536 for (i = 0; i < nphysicals; i++)
3537 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3538 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3539 break;
3542 kfree(physdev);
3544 return sa;
3547 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3548 struct hpsa_scsi_dev_t *dev)
3550 int rc;
3551 u64 sa = 0;
3553 if (is_hba_lunid(scsi3addr)) {
3554 struct bmic_sense_subsystem_info *ssi;
3556 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3557 if (!ssi)
3558 return;
3560 rc = hpsa_bmic_sense_subsystem_information(h,
3561 scsi3addr, 0, ssi, sizeof(*ssi));
3562 if (rc == 0) {
3563 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3564 h->sas_address = sa;
3567 kfree(ssi);
3568 } else
3569 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3571 dev->sas_address = sa;
3574 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3575 struct ReportExtendedLUNdata *physdev)
3577 u32 nphysicals;
3578 int i;
3580 if (h->discovery_polling)
3581 return;
3583 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3585 for (i = 0; i < nphysicals; i++) {
3586 if (physdev->LUN[i].device_type ==
3587 BMIC_DEVICE_TYPE_CONTROLLER
3588 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3589 dev_info(&h->pdev->dev,
3590 "External controller present, activate discovery polling and disable rld caching\n");
3591 hpsa_disable_rld_caching(h);
3592 h->discovery_polling = 1;
3593 break;
3598 /* Get a device id from inquiry page 0x83 */
3599 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3600 unsigned char scsi3addr[], u8 page)
3602 int rc;
3603 int i;
3604 int pages;
3605 unsigned char *buf, bufsize;
3607 buf = kzalloc(256, GFP_KERNEL);
3608 if (!buf)
3609 return false;
3611 /* Get the size of the page list first */
3612 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3613 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3614 buf, HPSA_VPD_HEADER_SZ);
3615 if (rc != 0)
3616 goto exit_unsupported;
3617 pages = buf[3];
3618 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3619 bufsize = pages + HPSA_VPD_HEADER_SZ;
3620 else
3621 bufsize = 255;
3623 /* Get the whole VPD page list */
3624 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3625 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3626 buf, bufsize);
3627 if (rc != 0)
3628 goto exit_unsupported;
3630 pages = buf[3];
3631 for (i = 1; i <= pages; i++)
3632 if (buf[3 + i] == page)
3633 goto exit_supported;
3634 exit_unsupported:
3635 kfree(buf);
3636 return false;
3637 exit_supported:
3638 kfree(buf);
3639 return true;
3643 * Called during a scan operation.
3644 * Sets ioaccel status on the new device list, not the existing device list
3646 * The device list used during I/O will be updated later in
3647 * adjust_hpsa_scsi_table.
3649 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3650 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3652 int rc;
3653 unsigned char *buf;
3654 u8 ioaccel_status;
3656 this_device->offload_config = 0;
3657 this_device->offload_enabled = 0;
3658 this_device->offload_to_be_enabled = 0;
3660 buf = kzalloc(64, GFP_KERNEL);
3661 if (!buf)
3662 return;
3663 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3664 goto out;
3665 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3666 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3667 if (rc != 0)
3668 goto out;
3670 #define IOACCEL_STATUS_BYTE 4
3671 #define OFFLOAD_CONFIGURED_BIT 0x01
3672 #define OFFLOAD_ENABLED_BIT 0x02
3673 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3674 this_device->offload_config =
3675 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3676 if (this_device->offload_config) {
3677 bool offload_enabled =
3678 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3680 * Check to see if offload can be enabled.
3682 if (offload_enabled) {
3683 rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3684 if (rc) /* could not load raid_map */
3685 goto out;
3686 this_device->offload_to_be_enabled = 1;
3690 out:
3691 kfree(buf);
3692 return;
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 unsigned char *device_id, int index, int buflen)
3699 int rc;
3700 unsigned char *buf;
3702 /* Does controller have VPD for device id? */
3703 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 return 1; /* not supported */
3706 buf = kzalloc(64, GFP_KERNEL);
3707 if (!buf)
3708 return -ENOMEM;
3710 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 if (rc == 0) {
3713 if (buflen > 16)
3714 buflen = 16;
3715 memcpy(device_id, &buf[8], buflen);
3718 kfree(buf);
3720 return rc; /*0 - got id, otherwise, didn't */
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 void *buf, int bufsize,
3725 int extended_response)
3727 int rc = IO_OK;
3728 struct CommandList *c;
3729 unsigned char scsi3addr[8];
3730 struct ErrorInfo *ei;
3732 c = cmd_alloc(h);
3734 /* address the controller */
3735 memset(scsi3addr, 0, sizeof(scsi3addr));
3736 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 rc = -EAGAIN;
3739 goto out;
3741 if (extended_response)
3742 c->Request.CDB[1] = extended_response;
3743 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3744 NO_TIMEOUT);
3745 if (rc)
3746 goto out;
3747 ei = c->err_info;
3748 if (ei->CommandStatus != 0 &&
3749 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 hpsa_scsi_interpret_error(h, c);
3751 rc = -EIO;
3752 } else {
3753 struct ReportLUNdata *rld = buf;
3755 if (rld->extended_response_flag != extended_response) {
3756 if (!h->legacy_board) {
3757 dev_err(&h->pdev->dev,
3758 "report luns requested format %u, got %u\n",
3759 extended_response,
3760 rld->extended_response_flag);
3761 rc = -EINVAL;
3762 } else
3763 rc = -EOPNOTSUPP;
3766 out:
3767 cmd_free(h, c);
3768 return rc;
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 struct ReportExtendedLUNdata *buf, int bufsize)
3774 int rc;
3775 struct ReportLUNdata *lbuf;
3777 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 HPSA_REPORT_PHYS_EXTENDED);
3779 if (!rc || rc != -EOPNOTSUPP)
3780 return rc;
3782 /* REPORT PHYS EXTENDED is not supported */
3783 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 if (!lbuf)
3785 return -ENOMEM;
3787 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 if (!rc) {
3789 int i;
3790 u32 nphys;
3792 /* Copy ReportLUNdata header */
3793 memcpy(buf, lbuf, 8);
3794 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 for (i = 0; i < nphys; i++)
3796 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3798 kfree(lbuf);
3799 return rc;
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 struct ReportLUNdata *buf, int bufsize)
3805 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 int bus, int target, int lun)
3811 device->bus = bus;
3812 device->target = target;
3813 device->lun = lun;
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 unsigned char scsi3addr[])
3820 int rc;
3821 int status;
3822 int size;
3823 unsigned char *buf;
3825 buf = kzalloc(64, GFP_KERNEL);
3826 if (!buf)
3827 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3829 /* Does controller have VPD for logical volume status? */
3830 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 goto exit_failed;
3833 /* Get the size of the VPD return buffer */
3834 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 buf, HPSA_VPD_HEADER_SZ);
3836 if (rc != 0)
3837 goto exit_failed;
3838 size = buf[3];
3840 /* Now get the whole VPD buffer */
3841 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 buf, size + HPSA_VPD_HEADER_SZ);
3843 if (rc != 0)
3844 goto exit_failed;
3845 status = buf[4]; /* status byte */
3847 kfree(buf);
3848 return status;
3849 exit_failed:
3850 kfree(buf);
3851 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3854 /* Determine offline status of a volume.
3855 * Return either:
3856 * 0 (not offline)
3857 * 0xff (offline for unknown reasons)
3858 * # (integer code indicating one of several NOT READY states
3859 * describing why a volume is to be kept offline)
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 unsigned char scsi3addr[])
3864 struct CommandList *c;
3865 unsigned char *sense;
3866 u8 sense_key, asc, ascq;
3867 int sense_len;
3868 int rc, ldstat = 0;
3869 u16 cmd_status;
3870 u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3875 c = cmd_alloc(h);
3877 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 NO_TIMEOUT);
3880 if (rc) {
3881 cmd_free(h, c);
3882 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3884 sense = c->err_info->SenseInfo;
3885 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 sense_len = sizeof(c->err_info->SenseInfo);
3887 else
3888 sense_len = c->err_info->SenseLen;
3889 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 cmd_status = c->err_info->CommandStatus;
3891 scsi_status = c->err_info->ScsiStatus;
3892 cmd_free(h, c);
3894 /* Determine the reason for not ready state */
3895 ldstat = hpsa_get_volume_status(h, scsi3addr);
3897 /* Keep volume offline in certain cases: */
3898 switch (ldstat) {
3899 case HPSA_LV_FAILED:
3900 case HPSA_LV_UNDERGOING_ERASE:
3901 case HPSA_LV_NOT_AVAILABLE:
3902 case HPSA_LV_UNDERGOING_RPI:
3903 case HPSA_LV_PENDING_RPI:
3904 case HPSA_LV_ENCRYPTED_NO_KEY:
3905 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 return ldstat;
3910 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 /* If VPD status page isn't available,
3912 * use ASC/ASCQ to determine state
3914 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 return ldstat;
3917 break;
3918 default:
3919 break;
3921 return HPSA_LV_OK;
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 unsigned char *is_OBDR_device)
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3934 unsigned char *inq_buff;
3935 unsigned char *obdr_sig;
3936 int rc = 0;
3938 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 if (!inq_buff) {
3940 rc = -ENOMEM;
3941 goto bail_out;
3944 /* Do an inquiry to the device to see what it is. */
3945 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 dev_err(&h->pdev->dev,
3948 "%s: inquiry failed, device will be skipped.\n",
3949 __func__);
3950 rc = HPSA_INQUIRY_FAILED;
3951 goto bail_out;
3954 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3957 this_device->devtype = (inq_buff[0] & 0x1f);
3958 memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 memcpy(this_device->vendor, &inq_buff[8],
3960 sizeof(this_device->vendor));
3961 memcpy(this_device->model, &inq_buff[16],
3962 sizeof(this_device->model));
3963 this_device->rev = inq_buff[2];
3964 memset(this_device->device_id, 0,
3965 sizeof(this_device->device_id));
3966 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 sizeof(this_device->device_id)) < 0) {
3968 dev_err(&h->pdev->dev,
3969 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3970 h->ctlr, __func__,
3971 h->scsi_host->host_no,
3972 this_device->bus, this_device->target,
3973 this_device->lun,
3974 scsi_device_type(this_device->devtype),
3975 this_device->model);
3976 rc = HPSA_LV_FAILED;
3977 goto bail_out;
3980 if ((this_device->devtype == TYPE_DISK ||
3981 this_device->devtype == TYPE_ZBC) &&
3982 is_logical_dev_addr_mode(scsi3addr)) {
3983 unsigned char volume_offline;
3985 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3986 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3987 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3988 volume_offline = hpsa_volume_offline(h, scsi3addr);
3989 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3990 h->legacy_board) {
3992 * Legacy boards might not support volume status
3994 dev_info(&h->pdev->dev,
3995 "C0:T%d:L%d Volume status not available, assuming online.\n",
3996 this_device->target, this_device->lun);
3997 volume_offline = 0;
3999 this_device->volume_offline = volume_offline;
4000 if (volume_offline == HPSA_LV_FAILED) {
4001 rc = HPSA_LV_FAILED;
4002 dev_err(&h->pdev->dev,
4003 "%s: LV failed, device will be skipped.\n",
4004 __func__);
4005 goto bail_out;
4007 } else {
4008 this_device->raid_level = RAID_UNKNOWN;
4009 this_device->offload_config = 0;
4010 hpsa_turn_off_ioaccel_for_device(this_device);
4011 this_device->hba_ioaccel_enabled = 0;
4012 this_device->volume_offline = 0;
4013 this_device->queue_depth = h->nr_cmds;
4016 if (this_device->external)
4017 this_device->queue_depth = EXTERNAL_QD;
4019 if (is_OBDR_device) {
4020 /* See if this is a One-Button-Disaster-Recovery device
4021 * by looking for "$DR-10" at offset 43 in inquiry data.
4023 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4024 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4025 strncmp(obdr_sig, OBDR_TAPE_SIG,
4026 OBDR_SIG_LEN) == 0);
4028 kfree(inq_buff);
4029 return 0;
4031 bail_out:
4032 kfree(inq_buff);
4033 return rc;
4037 * Helper function to assign bus, target, lun mapping of devices.
4038 * Logical drive target and lun are assigned at this time, but
4039 * physical device lun and target assignment are deferred (assigned
4040 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4042 static void figure_bus_target_lun(struct ctlr_info *h,
4043 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4045 u32 lunid = get_unaligned_le32(lunaddrbytes);
4047 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4048 /* physical device, target and lun filled in later */
4049 if (is_hba_lunid(lunaddrbytes)) {
4050 int bus = HPSA_HBA_BUS;
4052 if (!device->rev)
4053 bus = HPSA_LEGACY_HBA_BUS;
4054 hpsa_set_bus_target_lun(device,
4055 bus, 0, lunid & 0x3fff);
4056 } else
4057 /* defer target, lun assignment for physical devices */
4058 hpsa_set_bus_target_lun(device,
4059 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4060 return;
4062 /* It's a logical device */
4063 if (device->external) {
4064 hpsa_set_bus_target_lun(device,
4065 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4066 lunid & 0x00ff);
4067 return;
4069 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4070 0, lunid & 0x3fff);
4073 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4074 int i, int nphysicals, int nlocal_logicals)
4076 /* In report logicals, local logicals are listed first,
4077 * then any externals.
4079 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4081 if (i == raid_ctlr_position)
4082 return 0;
4084 if (i < logicals_start)
4085 return 0;
4087 /* i is in logicals range, but still within local logicals */
4088 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4089 return 0;
4091 return 1; /* it's an external lun */
4095 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4096 * logdev. The number of luns in physdev and logdev are returned in
4097 * *nphysicals and *nlogicals, respectively.
4098 * Returns 0 on success, -1 otherwise.
4100 static int hpsa_gather_lun_info(struct ctlr_info *h,
4101 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4102 struct ReportLUNdata *logdev, u32 *nlogicals)
4104 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4105 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4106 return -1;
4108 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4109 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4110 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4111 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4112 *nphysicals = HPSA_MAX_PHYS_LUN;
4114 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4115 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4116 return -1;
4118 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4119 /* Reject Logicals in excess of our max capability. */
4120 if (*nlogicals > HPSA_MAX_LUN) {
4121 dev_warn(&h->pdev->dev,
4122 "maximum logical LUNs (%d) exceeded. "
4123 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4124 *nlogicals - HPSA_MAX_LUN);
4125 *nlogicals = HPSA_MAX_LUN;
4127 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4128 dev_warn(&h->pdev->dev,
4129 "maximum logical + physical LUNs (%d) exceeded. "
4130 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4131 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4132 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4134 return 0;
4137 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4138 int i, int nphysicals, int nlogicals,
4139 struct ReportExtendedLUNdata *physdev_list,
4140 struct ReportLUNdata *logdev_list)
4142 /* Helper function, figure out where the LUN ID info is coming from
4143 * given index i, lists of physical and logical devices, where in
4144 * the list the raid controller is supposed to appear (first or last)
4147 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4148 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4150 if (i == raid_ctlr_position)
4151 return RAID_CTLR_LUNID;
4153 if (i < logicals_start)
4154 return &physdev_list->LUN[i -
4155 (raid_ctlr_position == 0)].lunid[0];
4157 if (i < last_device)
4158 return &logdev_list->LUN[i - nphysicals -
4159 (raid_ctlr_position == 0)][0];
4160 BUG();
4161 return NULL;
4164 /* get physical drive ioaccel handle and queue depth */
4165 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4166 struct hpsa_scsi_dev_t *dev,
4167 struct ReportExtendedLUNdata *rlep, int rle_index,
4168 struct bmic_identify_physical_device *id_phys)
4170 int rc;
4171 struct ext_report_lun_entry *rle;
4173 rle = &rlep->LUN[rle_index];
4175 dev->ioaccel_handle = rle->ioaccel_handle;
4176 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4177 dev->hba_ioaccel_enabled = 1;
4178 memset(id_phys, 0, sizeof(*id_phys));
4179 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4180 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4181 sizeof(*id_phys));
4182 if (!rc)
4183 /* Reserve space for FW operations */
4184 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4185 #define DRIVE_QUEUE_DEPTH 7
4186 dev->queue_depth =
4187 le16_to_cpu(id_phys->current_queue_depth_limit) -
4188 DRIVE_CMDS_RESERVED_FOR_FW;
4189 else
4190 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4193 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4194 struct ReportExtendedLUNdata *rlep, int rle_index,
4195 struct bmic_identify_physical_device *id_phys)
4197 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4199 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4200 this_device->hba_ioaccel_enabled = 1;
4202 memcpy(&this_device->active_path_index,
4203 &id_phys->active_path_number,
4204 sizeof(this_device->active_path_index));
4205 memcpy(&this_device->path_map,
4206 &id_phys->redundant_path_present_map,
4207 sizeof(this_device->path_map));
4208 memcpy(&this_device->box,
4209 &id_phys->alternate_paths_phys_box_on_port,
4210 sizeof(this_device->box));
4211 memcpy(&this_device->phys_connector,
4212 &id_phys->alternate_paths_phys_connector,
4213 sizeof(this_device->phys_connector));
4214 memcpy(&this_device->bay,
4215 &id_phys->phys_bay_in_box,
4216 sizeof(this_device->bay));
4219 /* get number of local logical disks. */
4220 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4221 struct bmic_identify_controller *id_ctlr,
4222 u32 *nlocals)
4224 int rc;
4226 if (!id_ctlr) {
4227 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4228 __func__);
4229 return -ENOMEM;
4231 memset(id_ctlr, 0, sizeof(*id_ctlr));
4232 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4233 if (!rc)
4234 if (id_ctlr->configured_logical_drive_count < 255)
4235 *nlocals = id_ctlr->configured_logical_drive_count;
4236 else
4237 *nlocals = le16_to_cpu(
4238 id_ctlr->extended_logical_unit_count);
4239 else
4240 *nlocals = -1;
4241 return rc;
4244 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4246 struct bmic_identify_physical_device *id_phys;
4247 bool is_spare = false;
4248 int rc;
4250 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4251 if (!id_phys)
4252 return false;
4254 rc = hpsa_bmic_id_physical_device(h,
4255 lunaddrbytes,
4256 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4257 id_phys, sizeof(*id_phys));
4258 if (rc == 0)
4259 is_spare = (id_phys->more_flags >> 6) & 0x01;
4261 kfree(id_phys);
4262 return is_spare;
4265 #define RPL_DEV_FLAG_NON_DISK 0x1
4266 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4267 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4269 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4271 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4272 struct ext_report_lun_entry *rle)
4274 u8 device_flags;
4275 u8 device_type;
4277 if (!MASKED_DEVICE(lunaddrbytes))
4278 return false;
4280 device_flags = rle->device_flags;
4281 device_type = rle->device_type;
4283 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4284 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4285 return false;
4286 return true;
4289 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4290 return false;
4292 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4293 return false;
4296 * Spares may be spun down, we do not want to
4297 * do an Inquiry to a RAID set spare drive as
4298 * that would have them spun up, that is a
4299 * performance hit because I/O to the RAID device
4300 * stops while the spin up occurs which can take
4301 * over 50 seconds.
4303 if (hpsa_is_disk_spare(h, lunaddrbytes))
4304 return true;
4306 return false;
4309 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4311 /* the idea here is we could get notified
4312 * that some devices have changed, so we do a report
4313 * physical luns and report logical luns cmd, and adjust
4314 * our list of devices accordingly.
4316 * The scsi3addr's of devices won't change so long as the
4317 * adapter is not reset. That means we can rescan and
4318 * tell which devices we already know about, vs. new
4319 * devices, vs. disappearing devices.
4321 struct ReportExtendedLUNdata *physdev_list = NULL;
4322 struct ReportLUNdata *logdev_list = NULL;
4323 struct bmic_identify_physical_device *id_phys = NULL;
4324 struct bmic_identify_controller *id_ctlr = NULL;
4325 u32 nphysicals = 0;
4326 u32 nlogicals = 0;
4327 u32 nlocal_logicals = 0;
4328 u32 ndev_allocated = 0;
4329 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4330 int ncurrent = 0;
4331 int i, n_ext_target_devs, ndevs_to_allocate;
4332 int raid_ctlr_position;
4333 bool physical_device;
4334 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4336 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4337 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4338 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4339 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4340 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4341 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4343 if (!currentsd || !physdev_list || !logdev_list ||
4344 !tmpdevice || !id_phys || !id_ctlr) {
4345 dev_err(&h->pdev->dev, "out of memory\n");
4346 goto out;
4348 memset(lunzerobits, 0, sizeof(lunzerobits));
4350 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4352 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4353 logdev_list, &nlogicals)) {
4354 h->drv_req_rescan = 1;
4355 goto out;
4358 /* Set number of local logicals (non PTRAID) */
4359 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4360 dev_warn(&h->pdev->dev,
4361 "%s: Can't determine number of local logical devices.\n",
4362 __func__);
4365 /* We might see up to the maximum number of logical and physical disks
4366 * plus external target devices, and a device for the local RAID
4367 * controller.
4369 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4371 hpsa_ext_ctrl_present(h, physdev_list);
4373 /* Allocate the per device structures */
4374 for (i = 0; i < ndevs_to_allocate; i++) {
4375 if (i >= HPSA_MAX_DEVICES) {
4376 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4377 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4378 ndevs_to_allocate - HPSA_MAX_DEVICES);
4379 break;
4382 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4383 if (!currentsd[i]) {
4384 h->drv_req_rescan = 1;
4385 goto out;
4387 ndev_allocated++;
4390 if (is_scsi_rev_5(h))
4391 raid_ctlr_position = 0;
4392 else
4393 raid_ctlr_position = nphysicals + nlogicals;
4395 /* adjust our table of devices */
4396 n_ext_target_devs = 0;
4397 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4398 u8 *lunaddrbytes, is_OBDR = 0;
4399 int rc = 0;
4400 int phys_dev_index = i - (raid_ctlr_position == 0);
4401 bool skip_device = false;
4403 memset(tmpdevice, 0, sizeof(*tmpdevice));
4405 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4407 /* Figure out where the LUN ID info is coming from */
4408 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4409 i, nphysicals, nlogicals, physdev_list, logdev_list);
4411 /* Determine if this is a lun from an external target array */
4412 tmpdevice->external =
4413 figure_external_status(h, raid_ctlr_position, i,
4414 nphysicals, nlocal_logicals);
4417 * Skip over some devices such as a spare.
4419 if (!tmpdevice->external && physical_device) {
4420 skip_device = hpsa_skip_device(h, lunaddrbytes,
4421 &physdev_list->LUN[phys_dev_index]);
4422 if (skip_device)
4423 continue;
4426 /* Get device type, vendor, model, device id, raid_map */
4427 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4428 &is_OBDR);
4429 if (rc == -ENOMEM) {
4430 dev_warn(&h->pdev->dev,
4431 "Out of memory, rescan deferred.\n");
4432 h->drv_req_rescan = 1;
4433 goto out;
4435 if (rc) {
4436 h->drv_req_rescan = 1;
4437 continue;
4440 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4441 this_device = currentsd[ncurrent];
4443 *this_device = *tmpdevice;
4444 this_device->physical_device = physical_device;
4447 * Expose all devices except for physical devices that
4448 * are masked.
4450 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4451 this_device->expose_device = 0;
4452 else
4453 this_device->expose_device = 1;
4457 * Get the SAS address for physical devices that are exposed.
4459 if (this_device->physical_device && this_device->expose_device)
4460 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4462 switch (this_device->devtype) {
4463 case TYPE_ROM:
4464 /* We don't *really* support actual CD-ROM devices,
4465 * just "One Button Disaster Recovery" tape drive
4466 * which temporarily pretends to be a CD-ROM drive.
4467 * So we check that the device is really an OBDR tape
4468 * device by checking for "$DR-10" in bytes 43-48 of
4469 * the inquiry data.
4471 if (is_OBDR)
4472 ncurrent++;
4473 break;
4474 case TYPE_DISK:
4475 case TYPE_ZBC:
4476 if (this_device->physical_device) {
4477 /* The disk is in HBA mode. */
4478 /* Never use RAID mapper in HBA mode. */
4479 this_device->offload_enabled = 0;
4480 hpsa_get_ioaccel_drive_info(h, this_device,
4481 physdev_list, phys_dev_index, id_phys);
4482 hpsa_get_path_info(this_device,
4483 physdev_list, phys_dev_index, id_phys);
4485 ncurrent++;
4486 break;
4487 case TYPE_TAPE:
4488 case TYPE_MEDIUM_CHANGER:
4489 ncurrent++;
4490 break;
4491 case TYPE_ENCLOSURE:
4492 if (!this_device->external)
4493 hpsa_get_enclosure_info(h, lunaddrbytes,
4494 physdev_list, phys_dev_index,
4495 this_device);
4496 ncurrent++;
4497 break;
4498 case TYPE_RAID:
4499 /* Only present the Smartarray HBA as a RAID controller.
4500 * If it's a RAID controller other than the HBA itself
4501 * (an external RAID controller, MSA500 or similar)
4502 * don't present it.
4504 if (!is_hba_lunid(lunaddrbytes))
4505 break;
4506 ncurrent++;
4507 break;
4508 default:
4509 break;
4511 if (ncurrent >= HPSA_MAX_DEVICES)
4512 break;
4515 if (h->sas_host == NULL) {
4516 int rc = 0;
4518 rc = hpsa_add_sas_host(h);
4519 if (rc) {
4520 dev_warn(&h->pdev->dev,
4521 "Could not add sas host %d\n", rc);
4522 goto out;
4526 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4527 out:
4528 kfree(tmpdevice);
4529 for (i = 0; i < ndev_allocated; i++)
4530 kfree(currentsd[i]);
4531 kfree(currentsd);
4532 kfree(physdev_list);
4533 kfree(logdev_list);
4534 kfree(id_ctlr);
4535 kfree(id_phys);
4538 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4539 struct scatterlist *sg)
4541 u64 addr64 = (u64) sg_dma_address(sg);
4542 unsigned int len = sg_dma_len(sg);
4544 desc->Addr = cpu_to_le64(addr64);
4545 desc->Len = cpu_to_le32(len);
4546 desc->Ext = 0;
4550 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4551 * dma mapping and fills in the scatter gather entries of the
4552 * hpsa command, cp.
4554 static int hpsa_scatter_gather(struct ctlr_info *h,
4555 struct CommandList *cp,
4556 struct scsi_cmnd *cmd)
4558 struct scatterlist *sg;
4559 int use_sg, i, sg_limit, chained, last_sg;
4560 struct SGDescriptor *curr_sg;
4562 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4564 use_sg = scsi_dma_map(cmd);
4565 if (use_sg < 0)
4566 return use_sg;
4568 if (!use_sg)
4569 goto sglist_finished;
4572 * If the number of entries is greater than the max for a single list,
4573 * then we have a chained list; we will set up all but one entry in the
4574 * first list (the last entry is saved for link information);
4575 * otherwise, we don't have a chained list and we'll set up at each of
4576 * the entries in the one list.
4578 curr_sg = cp->SG;
4579 chained = use_sg > h->max_cmd_sg_entries;
4580 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4581 last_sg = scsi_sg_count(cmd) - 1;
4582 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4583 hpsa_set_sg_descriptor(curr_sg, sg);
4584 curr_sg++;
4587 if (chained) {
4589 * Continue with the chained list. Set curr_sg to the chained
4590 * list. Modify the limit to the total count less the entries
4591 * we've already set up. Resume the scan at the list entry
4592 * where the previous loop left off.
4594 curr_sg = h->cmd_sg_list[cp->cmdindex];
4595 sg_limit = use_sg - sg_limit;
4596 for_each_sg(sg, sg, sg_limit, i) {
4597 hpsa_set_sg_descriptor(curr_sg, sg);
4598 curr_sg++;
4602 /* Back the pointer up to the last entry and mark it as "last". */
4603 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4605 if (use_sg + chained > h->maxSG)
4606 h->maxSG = use_sg + chained;
4608 if (chained) {
4609 cp->Header.SGList = h->max_cmd_sg_entries;
4610 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4611 if (hpsa_map_sg_chain_block(h, cp)) {
4612 scsi_dma_unmap(cmd);
4613 return -1;
4615 return 0;
4618 sglist_finished:
4620 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4621 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4622 return 0;
4625 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4626 u8 *cdb, int cdb_len,
4627 const char *func)
4629 dev_warn(&h->pdev->dev,
4630 "%s: Blocking zero-length request: CDB:%*phN\n",
4631 func, cdb_len, cdb);
4634 #define IO_ACCEL_INELIGIBLE 1
4635 /* zero-length transfers trigger hardware errors. */
4636 static bool is_zero_length_transfer(u8 *cdb)
4638 u32 block_cnt;
4640 /* Block zero-length transfer sizes on certain commands. */
4641 switch (cdb[0]) {
4642 case READ_10:
4643 case WRITE_10:
4644 case VERIFY: /* 0x2F */
4645 case WRITE_VERIFY: /* 0x2E */
4646 block_cnt = get_unaligned_be16(&cdb[7]);
4647 break;
4648 case READ_12:
4649 case WRITE_12:
4650 case VERIFY_12: /* 0xAF */
4651 case WRITE_VERIFY_12: /* 0xAE */
4652 block_cnt = get_unaligned_be32(&cdb[6]);
4653 break;
4654 case READ_16:
4655 case WRITE_16:
4656 case VERIFY_16: /* 0x8F */
4657 block_cnt = get_unaligned_be32(&cdb[10]);
4658 break;
4659 default:
4660 return false;
4663 return block_cnt == 0;
4666 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4668 int is_write = 0;
4669 u32 block;
4670 u32 block_cnt;
4672 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4673 switch (cdb[0]) {
4674 case WRITE_6:
4675 case WRITE_12:
4676 is_write = 1;
4677 /* fall through */
4678 case READ_6:
4679 case READ_12:
4680 if (*cdb_len == 6) {
4681 block = (((cdb[1] & 0x1F) << 16) |
4682 (cdb[2] << 8) |
4683 cdb[3]);
4684 block_cnt = cdb[4];
4685 if (block_cnt == 0)
4686 block_cnt = 256;
4687 } else {
4688 BUG_ON(*cdb_len != 12);
4689 block = get_unaligned_be32(&cdb[2]);
4690 block_cnt = get_unaligned_be32(&cdb[6]);
4692 if (block_cnt > 0xffff)
4693 return IO_ACCEL_INELIGIBLE;
4695 cdb[0] = is_write ? WRITE_10 : READ_10;
4696 cdb[1] = 0;
4697 cdb[2] = (u8) (block >> 24);
4698 cdb[3] = (u8) (block >> 16);
4699 cdb[4] = (u8) (block >> 8);
4700 cdb[5] = (u8) (block);
4701 cdb[6] = 0;
4702 cdb[7] = (u8) (block_cnt >> 8);
4703 cdb[8] = (u8) (block_cnt);
4704 cdb[9] = 0;
4705 *cdb_len = 10;
4706 break;
4708 return 0;
4711 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4712 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4713 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4715 struct scsi_cmnd *cmd = c->scsi_cmd;
4716 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4717 unsigned int len;
4718 unsigned int total_len = 0;
4719 struct scatterlist *sg;
4720 u64 addr64;
4721 int use_sg, i;
4722 struct SGDescriptor *curr_sg;
4723 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4725 /* TODO: implement chaining support */
4726 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4727 atomic_dec(&phys_disk->ioaccel_cmds_out);
4728 return IO_ACCEL_INELIGIBLE;
4731 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4733 if (is_zero_length_transfer(cdb)) {
4734 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4735 atomic_dec(&phys_disk->ioaccel_cmds_out);
4736 return IO_ACCEL_INELIGIBLE;
4739 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4740 atomic_dec(&phys_disk->ioaccel_cmds_out);
4741 return IO_ACCEL_INELIGIBLE;
4744 c->cmd_type = CMD_IOACCEL1;
4746 /* Adjust the DMA address to point to the accelerated command buffer */
4747 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4748 (c->cmdindex * sizeof(*cp));
4749 BUG_ON(c->busaddr & 0x0000007F);
4751 use_sg = scsi_dma_map(cmd);
4752 if (use_sg < 0) {
4753 atomic_dec(&phys_disk->ioaccel_cmds_out);
4754 return use_sg;
4757 if (use_sg) {
4758 curr_sg = cp->SG;
4759 scsi_for_each_sg(cmd, sg, use_sg, i) {
4760 addr64 = (u64) sg_dma_address(sg);
4761 len = sg_dma_len(sg);
4762 total_len += len;
4763 curr_sg->Addr = cpu_to_le64(addr64);
4764 curr_sg->Len = cpu_to_le32(len);
4765 curr_sg->Ext = cpu_to_le32(0);
4766 curr_sg++;
4768 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4770 switch (cmd->sc_data_direction) {
4771 case DMA_TO_DEVICE:
4772 control |= IOACCEL1_CONTROL_DATA_OUT;
4773 break;
4774 case DMA_FROM_DEVICE:
4775 control |= IOACCEL1_CONTROL_DATA_IN;
4776 break;
4777 case DMA_NONE:
4778 control |= IOACCEL1_CONTROL_NODATAXFER;
4779 break;
4780 default:
4781 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4782 cmd->sc_data_direction);
4783 BUG();
4784 break;
4786 } else {
4787 control |= IOACCEL1_CONTROL_NODATAXFER;
4790 c->Header.SGList = use_sg;
4791 /* Fill out the command structure to submit */
4792 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4793 cp->transfer_len = cpu_to_le32(total_len);
4794 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4795 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4796 cp->control = cpu_to_le32(control);
4797 memcpy(cp->CDB, cdb, cdb_len);
4798 memcpy(cp->CISS_LUN, scsi3addr, 8);
4799 /* Tag was already set at init time. */
4800 enqueue_cmd_and_start_io(h, c);
4801 return 0;
4805 * Queue a command directly to a device behind the controller using the
4806 * I/O accelerator path.
4808 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4809 struct CommandList *c)
4811 struct scsi_cmnd *cmd = c->scsi_cmd;
4812 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4814 if (!dev)
4815 return -1;
4817 c->phys_disk = dev;
4819 if (dev->in_reset)
4820 return -1;
4822 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4823 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4827 * Set encryption parameters for the ioaccel2 request
4829 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4830 struct CommandList *c, struct io_accel2_cmd *cp)
4832 struct scsi_cmnd *cmd = c->scsi_cmd;
4833 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4834 struct raid_map_data *map = &dev->raid_map;
4835 u64 first_block;
4837 /* Are we doing encryption on this device */
4838 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4839 return;
4840 /* Set the data encryption key index. */
4841 cp->dekindex = map->dekindex;
4843 /* Set the encryption enable flag, encoded into direction field. */
4844 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846 /* Set encryption tweak values based on logical block address
4847 * If block size is 512, tweak value is LBA.
4848 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 switch (cmd->cmnd[0]) {
4851 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4852 case READ_6:
4853 case WRITE_6:
4854 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4855 (cmd->cmnd[2] << 8) |
4856 cmd->cmnd[3]);
4857 break;
4858 case WRITE_10:
4859 case READ_10:
4860 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4861 case WRITE_12:
4862 case READ_12:
4863 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4864 break;
4865 case WRITE_16:
4866 case READ_16:
4867 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4868 break;
4869 default:
4870 dev_err(&h->pdev->dev,
4871 "ERROR: %s: size (0x%x) not supported for encryption\n",
4872 __func__, cmd->cmnd[0]);
4873 BUG();
4874 break;
4877 if (le32_to_cpu(map->volume_blk_size) != 512)
4878 first_block = first_block *
4879 le32_to_cpu(map->volume_blk_size)/512;
4881 cp->tweak_lower = cpu_to_le32(first_block);
4882 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4885 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4886 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4887 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 struct scsi_cmnd *cmd = c->scsi_cmd;
4890 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4891 struct ioaccel2_sg_element *curr_sg;
4892 int use_sg, i;
4893 struct scatterlist *sg;
4894 u64 addr64;
4895 u32 len;
4896 u32 total_len = 0;
4898 if (!cmd->device)
4899 return -1;
4901 if (!cmd->device->hostdata)
4902 return -1;
4904 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906 if (is_zero_length_transfer(cdb)) {
4907 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4908 atomic_dec(&phys_disk->ioaccel_cmds_out);
4909 return IO_ACCEL_INELIGIBLE;
4912 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4913 atomic_dec(&phys_disk->ioaccel_cmds_out);
4914 return IO_ACCEL_INELIGIBLE;
4917 c->cmd_type = CMD_IOACCEL2;
4918 /* Adjust the DMA address to point to the accelerated command buffer */
4919 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4920 (c->cmdindex * sizeof(*cp));
4921 BUG_ON(c->busaddr & 0x0000007F);
4923 memset(cp, 0, sizeof(*cp));
4924 cp->IU_type = IOACCEL2_IU_TYPE;
4926 use_sg = scsi_dma_map(cmd);
4927 if (use_sg < 0) {
4928 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929 return use_sg;
4932 if (use_sg) {
4933 curr_sg = cp->sg;
4934 if (use_sg > h->ioaccel_maxsg) {
4935 addr64 = le64_to_cpu(
4936 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4937 curr_sg->address = cpu_to_le64(addr64);
4938 curr_sg->length = 0;
4939 curr_sg->reserved[0] = 0;
4940 curr_sg->reserved[1] = 0;
4941 curr_sg->reserved[2] = 0;
4942 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4944 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 scsi_for_each_sg(cmd, sg, use_sg, i) {
4947 addr64 = (u64) sg_dma_address(sg);
4948 len = sg_dma_len(sg);
4949 total_len += len;
4950 curr_sg->address = cpu_to_le64(addr64);
4951 curr_sg->length = cpu_to_le32(len);
4952 curr_sg->reserved[0] = 0;
4953 curr_sg->reserved[1] = 0;
4954 curr_sg->reserved[2] = 0;
4955 curr_sg->chain_indicator = 0;
4956 curr_sg++;
4960 * Set the last s/g element bit
4962 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4964 switch (cmd->sc_data_direction) {
4965 case DMA_TO_DEVICE:
4966 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4968 break;
4969 case DMA_FROM_DEVICE:
4970 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 cp->direction |= IOACCEL2_DIR_DATA_IN;
4972 break;
4973 case DMA_NONE:
4974 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975 cp->direction |= IOACCEL2_DIR_NO_DATA;
4976 break;
4977 default:
4978 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4979 cmd->sc_data_direction);
4980 BUG();
4981 break;
4983 } else {
4984 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 cp->direction |= IOACCEL2_DIR_NO_DATA;
4988 /* Set encryption parameters, if necessary */
4989 set_encrypt_ioaccel2(h, c, cp);
4991 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4992 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4993 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4995 cp->data_len = cpu_to_le32(total_len);
4996 cp->err_ptr = cpu_to_le64(c->busaddr +
4997 offsetof(struct io_accel2_cmd, error_data));
4998 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5000 /* fill in sg elements */
5001 if (use_sg > h->ioaccel_maxsg) {
5002 cp->sg_count = 1;
5003 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5004 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5005 atomic_dec(&phys_disk->ioaccel_cmds_out);
5006 scsi_dma_unmap(cmd);
5007 return -1;
5009 } else
5010 cp->sg_count = (u8) use_sg;
5012 if (phys_disk->in_reset) {
5013 cmd->result = DID_RESET << 16;
5014 return -1;
5017 enqueue_cmd_and_start_io(h, c);
5018 return 0;
5022 * Queue a command to the correct I/O accelerator path.
5024 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5025 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5026 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5028 if (!c->scsi_cmd->device)
5029 return -1;
5031 if (!c->scsi_cmd->device->hostdata)
5032 return -1;
5034 if (phys_disk->in_reset)
5035 return -1;
5037 /* Try to honor the device's queue depth */
5038 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5039 phys_disk->queue_depth) {
5040 atomic_dec(&phys_disk->ioaccel_cmds_out);
5041 return IO_ACCEL_INELIGIBLE;
5043 if (h->transMethod & CFGTBL_Trans_io_accel1)
5044 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5045 cdb, cdb_len, scsi3addr,
5046 phys_disk);
5047 else
5048 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5049 cdb, cdb_len, scsi3addr,
5050 phys_disk);
5053 static void raid_map_helper(struct raid_map_data *map,
5054 int offload_to_mirror, u32 *map_index, u32 *current_group)
5056 if (offload_to_mirror == 0) {
5057 /* use physical disk in the first mirrored group. */
5058 *map_index %= le16_to_cpu(map->data_disks_per_row);
5059 return;
5061 do {
5062 /* determine mirror group that *map_index indicates */
5063 *current_group = *map_index /
5064 le16_to_cpu(map->data_disks_per_row);
5065 if (offload_to_mirror == *current_group)
5066 continue;
5067 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5068 /* select map index from next group */
5069 *map_index += le16_to_cpu(map->data_disks_per_row);
5070 (*current_group)++;
5071 } else {
5072 /* select map index from first group */
5073 *map_index %= le16_to_cpu(map->data_disks_per_row);
5074 *current_group = 0;
5076 } while (offload_to_mirror != *current_group);
5080 * Attempt to perform offload RAID mapping for a logical volume I/O.
5082 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5083 struct CommandList *c)
5085 struct scsi_cmnd *cmd = c->scsi_cmd;
5086 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5087 struct raid_map_data *map = &dev->raid_map;
5088 struct raid_map_disk_data *dd = &map->data[0];
5089 int is_write = 0;
5090 u32 map_index;
5091 u64 first_block, last_block;
5092 u32 block_cnt;
5093 u32 blocks_per_row;
5094 u64 first_row, last_row;
5095 u32 first_row_offset, last_row_offset;
5096 u32 first_column, last_column;
5097 u64 r0_first_row, r0_last_row;
5098 u32 r5or6_blocks_per_row;
5099 u64 r5or6_first_row, r5or6_last_row;
5100 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5101 u32 r5or6_first_column, r5or6_last_column;
5102 u32 total_disks_per_row;
5103 u32 stripesize;
5104 u32 first_group, last_group, current_group;
5105 u32 map_row;
5106 u32 disk_handle;
5107 u64 disk_block;
5108 u32 disk_block_cnt;
5109 u8 cdb[16];
5110 u8 cdb_len;
5111 u16 strip_size;
5112 #if BITS_PER_LONG == 32
5113 u64 tmpdiv;
5114 #endif
5115 int offload_to_mirror;
5117 if (!dev)
5118 return -1;
5120 if (dev->in_reset)
5121 return -1;
5123 /* check for valid opcode, get LBA and block count */
5124 switch (cmd->cmnd[0]) {
5125 case WRITE_6:
5126 is_write = 1;
5127 /* fall through */
5128 case READ_6:
5129 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5130 (cmd->cmnd[2] << 8) |
5131 cmd->cmnd[3]);
5132 block_cnt = cmd->cmnd[4];
5133 if (block_cnt == 0)
5134 block_cnt = 256;
5135 break;
5136 case WRITE_10:
5137 is_write = 1;
5138 /* fall through */
5139 case READ_10:
5140 first_block =
5141 (((u64) cmd->cmnd[2]) << 24) |
5142 (((u64) cmd->cmnd[3]) << 16) |
5143 (((u64) cmd->cmnd[4]) << 8) |
5144 cmd->cmnd[5];
5145 block_cnt =
5146 (((u32) cmd->cmnd[7]) << 8) |
5147 cmd->cmnd[8];
5148 break;
5149 case WRITE_12:
5150 is_write = 1;
5151 /* fall through */
5152 case READ_12:
5153 first_block =
5154 (((u64) cmd->cmnd[2]) << 24) |
5155 (((u64) cmd->cmnd[3]) << 16) |
5156 (((u64) cmd->cmnd[4]) << 8) |
5157 cmd->cmnd[5];
5158 block_cnt =
5159 (((u32) cmd->cmnd[6]) << 24) |
5160 (((u32) cmd->cmnd[7]) << 16) |
5161 (((u32) cmd->cmnd[8]) << 8) |
5162 cmd->cmnd[9];
5163 break;
5164 case WRITE_16:
5165 is_write = 1;
5166 /* fall through */
5167 case READ_16:
5168 first_block =
5169 (((u64) cmd->cmnd[2]) << 56) |
5170 (((u64) cmd->cmnd[3]) << 48) |
5171 (((u64) cmd->cmnd[4]) << 40) |
5172 (((u64) cmd->cmnd[5]) << 32) |
5173 (((u64) cmd->cmnd[6]) << 24) |
5174 (((u64) cmd->cmnd[7]) << 16) |
5175 (((u64) cmd->cmnd[8]) << 8) |
5176 cmd->cmnd[9];
5177 block_cnt =
5178 (((u32) cmd->cmnd[10]) << 24) |
5179 (((u32) cmd->cmnd[11]) << 16) |
5180 (((u32) cmd->cmnd[12]) << 8) |
5181 cmd->cmnd[13];
5182 break;
5183 default:
5184 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5186 last_block = first_block + block_cnt - 1;
5188 /* check for write to non-RAID-0 */
5189 if (is_write && dev->raid_level != 0)
5190 return IO_ACCEL_INELIGIBLE;
5192 /* check for invalid block or wraparound */
5193 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5194 last_block < first_block)
5195 return IO_ACCEL_INELIGIBLE;
5197 /* calculate stripe information for the request */
5198 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5199 le16_to_cpu(map->strip_size);
5200 strip_size = le16_to_cpu(map->strip_size);
5201 #if BITS_PER_LONG == 32
5202 tmpdiv = first_block;
5203 (void) do_div(tmpdiv, blocks_per_row);
5204 first_row = tmpdiv;
5205 tmpdiv = last_block;
5206 (void) do_div(tmpdiv, blocks_per_row);
5207 last_row = tmpdiv;
5208 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5209 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5210 tmpdiv = first_row_offset;
5211 (void) do_div(tmpdiv, strip_size);
5212 first_column = tmpdiv;
5213 tmpdiv = last_row_offset;
5214 (void) do_div(tmpdiv, strip_size);
5215 last_column = tmpdiv;
5216 #else
5217 first_row = first_block / blocks_per_row;
5218 last_row = last_block / blocks_per_row;
5219 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5220 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5221 first_column = first_row_offset / strip_size;
5222 last_column = last_row_offset / strip_size;
5223 #endif
5225 /* if this isn't a single row/column then give to the controller */
5226 if ((first_row != last_row) || (first_column != last_column))
5227 return IO_ACCEL_INELIGIBLE;
5229 /* proceeding with driver mapping */
5230 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5231 le16_to_cpu(map->metadata_disks_per_row);
5232 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5233 le16_to_cpu(map->row_cnt);
5234 map_index = (map_row * total_disks_per_row) + first_column;
5236 switch (dev->raid_level) {
5237 case HPSA_RAID_0:
5238 break; /* nothing special to do */
5239 case HPSA_RAID_1:
5240 /* Handles load balance across RAID 1 members.
5241 * (2-drive R1 and R10 with even # of drives.)
5242 * Appropriate for SSDs, not optimal for HDDs
5243 * Ensure we have the correct raid_map.
5245 if (le16_to_cpu(map->layout_map_count) != 2) {
5246 hpsa_turn_off_ioaccel_for_device(dev);
5247 return IO_ACCEL_INELIGIBLE;
5249 if (dev->offload_to_mirror)
5250 map_index += le16_to_cpu(map->data_disks_per_row);
5251 dev->offload_to_mirror = !dev->offload_to_mirror;
5252 break;
5253 case HPSA_RAID_ADM:
5254 /* Handles N-way mirrors (R1-ADM)
5255 * and R10 with # of drives divisible by 3.)
5256 * Ensure we have the correct raid_map.
5258 if (le16_to_cpu(map->layout_map_count) != 3) {
5259 hpsa_turn_off_ioaccel_for_device(dev);
5260 return IO_ACCEL_INELIGIBLE;
5263 offload_to_mirror = dev->offload_to_mirror;
5264 raid_map_helper(map, offload_to_mirror,
5265 &map_index, &current_group);
5266 /* set mirror group to use next time */
5267 offload_to_mirror =
5268 (offload_to_mirror >=
5269 le16_to_cpu(map->layout_map_count) - 1)
5270 ? 0 : offload_to_mirror + 1;
5271 dev->offload_to_mirror = offload_to_mirror;
5272 /* Avoid direct use of dev->offload_to_mirror within this
5273 * function since multiple threads might simultaneously
5274 * increment it beyond the range of dev->layout_map_count -1.
5276 break;
5277 case HPSA_RAID_5:
5278 case HPSA_RAID_6:
5279 if (le16_to_cpu(map->layout_map_count) <= 1)
5280 break;
5282 /* Verify first and last block are in same RAID group */
5283 r5or6_blocks_per_row =
5284 le16_to_cpu(map->strip_size) *
5285 le16_to_cpu(map->data_disks_per_row);
5286 if (r5or6_blocks_per_row == 0) {
5287 hpsa_turn_off_ioaccel_for_device(dev);
5288 return IO_ACCEL_INELIGIBLE;
5290 stripesize = r5or6_blocks_per_row *
5291 le16_to_cpu(map->layout_map_count);
5292 #if BITS_PER_LONG == 32
5293 tmpdiv = first_block;
5294 first_group = do_div(tmpdiv, stripesize);
5295 tmpdiv = first_group;
5296 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5297 first_group = tmpdiv;
5298 tmpdiv = last_block;
5299 last_group = do_div(tmpdiv, stripesize);
5300 tmpdiv = last_group;
5301 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5302 last_group = tmpdiv;
5303 #else
5304 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5305 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5306 #endif
5307 if (first_group != last_group)
5308 return IO_ACCEL_INELIGIBLE;
5310 /* Verify request is in a single row of RAID 5/6 */
5311 #if BITS_PER_LONG == 32
5312 tmpdiv = first_block;
5313 (void) do_div(tmpdiv, stripesize);
5314 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5315 tmpdiv = last_block;
5316 (void) do_div(tmpdiv, stripesize);
5317 r5or6_last_row = r0_last_row = tmpdiv;
5318 #else
5319 first_row = r5or6_first_row = r0_first_row =
5320 first_block / stripesize;
5321 r5or6_last_row = r0_last_row = last_block / stripesize;
5322 #endif
5323 if (r5or6_first_row != r5or6_last_row)
5324 return IO_ACCEL_INELIGIBLE;
5327 /* Verify request is in a single column */
5328 #if BITS_PER_LONG == 32
5329 tmpdiv = first_block;
5330 first_row_offset = do_div(tmpdiv, stripesize);
5331 tmpdiv = first_row_offset;
5332 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5333 r5or6_first_row_offset = first_row_offset;
5334 tmpdiv = last_block;
5335 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5336 tmpdiv = r5or6_last_row_offset;
5337 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5338 tmpdiv = r5or6_first_row_offset;
5339 (void) do_div(tmpdiv, map->strip_size);
5340 first_column = r5or6_first_column = tmpdiv;
5341 tmpdiv = r5or6_last_row_offset;
5342 (void) do_div(tmpdiv, map->strip_size);
5343 r5or6_last_column = tmpdiv;
5344 #else
5345 first_row_offset = r5or6_first_row_offset =
5346 (u32)((first_block % stripesize) %
5347 r5or6_blocks_per_row);
5349 r5or6_last_row_offset =
5350 (u32)((last_block % stripesize) %
5351 r5or6_blocks_per_row);
5353 first_column = r5or6_first_column =
5354 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5355 r5or6_last_column =
5356 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5357 #endif
5358 if (r5or6_first_column != r5or6_last_column)
5359 return IO_ACCEL_INELIGIBLE;
5361 /* Request is eligible */
5362 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5363 le16_to_cpu(map->row_cnt);
5365 map_index = (first_group *
5366 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5367 (map_row * total_disks_per_row) + first_column;
5368 break;
5369 default:
5370 return IO_ACCEL_INELIGIBLE;
5373 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5374 return IO_ACCEL_INELIGIBLE;
5376 c->phys_disk = dev->phys_disk[map_index];
5377 if (!c->phys_disk)
5378 return IO_ACCEL_INELIGIBLE;
5380 disk_handle = dd[map_index].ioaccel_handle;
5381 disk_block = le64_to_cpu(map->disk_starting_blk) +
5382 first_row * le16_to_cpu(map->strip_size) +
5383 (first_row_offset - first_column *
5384 le16_to_cpu(map->strip_size));
5385 disk_block_cnt = block_cnt;
5387 /* handle differing logical/physical block sizes */
5388 if (map->phys_blk_shift) {
5389 disk_block <<= map->phys_blk_shift;
5390 disk_block_cnt <<= map->phys_blk_shift;
5392 BUG_ON(disk_block_cnt > 0xffff);
5394 /* build the new CDB for the physical disk I/O */
5395 if (disk_block > 0xffffffff) {
5396 cdb[0] = is_write ? WRITE_16 : READ_16;
5397 cdb[1] = 0;
5398 cdb[2] = (u8) (disk_block >> 56);
5399 cdb[3] = (u8) (disk_block >> 48);
5400 cdb[4] = (u8) (disk_block >> 40);
5401 cdb[5] = (u8) (disk_block >> 32);
5402 cdb[6] = (u8) (disk_block >> 24);
5403 cdb[7] = (u8) (disk_block >> 16);
5404 cdb[8] = (u8) (disk_block >> 8);
5405 cdb[9] = (u8) (disk_block);
5406 cdb[10] = (u8) (disk_block_cnt >> 24);
5407 cdb[11] = (u8) (disk_block_cnt >> 16);
5408 cdb[12] = (u8) (disk_block_cnt >> 8);
5409 cdb[13] = (u8) (disk_block_cnt);
5410 cdb[14] = 0;
5411 cdb[15] = 0;
5412 cdb_len = 16;
5413 } else {
5414 cdb[0] = is_write ? WRITE_10 : READ_10;
5415 cdb[1] = 0;
5416 cdb[2] = (u8) (disk_block >> 24);
5417 cdb[3] = (u8) (disk_block >> 16);
5418 cdb[4] = (u8) (disk_block >> 8);
5419 cdb[5] = (u8) (disk_block);
5420 cdb[6] = 0;
5421 cdb[7] = (u8) (disk_block_cnt >> 8);
5422 cdb[8] = (u8) (disk_block_cnt);
5423 cdb[9] = 0;
5424 cdb_len = 10;
5426 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5427 dev->scsi3addr,
5428 dev->phys_disk[map_index]);
5432 * Submit commands down the "normal" RAID stack path
5433 * All callers to hpsa_ciss_submit must check lockup_detected
5434 * beforehand, before (opt.) and after calling cmd_alloc
5436 static int hpsa_ciss_submit(struct ctlr_info *h,
5437 struct CommandList *c, struct scsi_cmnd *cmd,
5438 struct hpsa_scsi_dev_t *dev)
5440 cmd->host_scribble = (unsigned char *) c;
5441 c->cmd_type = CMD_SCSI;
5442 c->scsi_cmd = cmd;
5443 c->Header.ReplyQueue = 0; /* unused in simple mode */
5444 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5445 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5447 /* Fill in the request block... */
5449 c->Request.Timeout = 0;
5450 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5451 c->Request.CDBLen = cmd->cmd_len;
5452 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5453 switch (cmd->sc_data_direction) {
5454 case DMA_TO_DEVICE:
5455 c->Request.type_attr_dir =
5456 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5457 break;
5458 case DMA_FROM_DEVICE:
5459 c->Request.type_attr_dir =
5460 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5461 break;
5462 case DMA_NONE:
5463 c->Request.type_attr_dir =
5464 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5465 break;
5466 case DMA_BIDIRECTIONAL:
5467 /* This can happen if a buggy application does a scsi passthru
5468 * and sets both inlen and outlen to non-zero. ( see
5469 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5472 c->Request.type_attr_dir =
5473 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5474 /* This is technically wrong, and hpsa controllers should
5475 * reject it with CMD_INVALID, which is the most correct
5476 * response, but non-fibre backends appear to let it
5477 * slide by, and give the same results as if this field
5478 * were set correctly. Either way is acceptable for
5479 * our purposes here.
5482 break;
5484 default:
5485 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5486 cmd->sc_data_direction);
5487 BUG();
5488 break;
5491 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5492 hpsa_cmd_resolve_and_free(h, c);
5493 return SCSI_MLQUEUE_HOST_BUSY;
5496 if (dev->in_reset) {
5497 hpsa_cmd_resolve_and_free(h, c);
5498 return SCSI_MLQUEUE_HOST_BUSY;
5501 c->device = dev;
5503 enqueue_cmd_and_start_io(h, c);
5504 /* the cmd'll come back via intr handler in complete_scsi_command() */
5505 return 0;
5508 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5509 struct CommandList *c)
5511 dma_addr_t cmd_dma_handle, err_dma_handle;
5513 /* Zero out all of commandlist except the last field, refcount */
5514 memset(c, 0, offsetof(struct CommandList, refcount));
5515 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5516 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5517 c->err_info = h->errinfo_pool + index;
5518 memset(c->err_info, 0, sizeof(*c->err_info));
5519 err_dma_handle = h->errinfo_pool_dhandle
5520 + index * sizeof(*c->err_info);
5521 c->cmdindex = index;
5522 c->busaddr = (u32) cmd_dma_handle;
5523 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5524 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5525 c->h = h;
5526 c->scsi_cmd = SCSI_CMD_IDLE;
5529 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5531 int i;
5533 for (i = 0; i < h->nr_cmds; i++) {
5534 struct CommandList *c = h->cmd_pool + i;
5536 hpsa_cmd_init(h, i, c);
5537 atomic_set(&c->refcount, 0);
5541 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5542 struct CommandList *c)
5544 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5546 BUG_ON(c->cmdindex != index);
5548 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5549 memset(c->err_info, 0, sizeof(*c->err_info));
5550 c->busaddr = (u32) cmd_dma_handle;
5553 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5554 struct CommandList *c, struct scsi_cmnd *cmd)
5556 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5557 int rc = IO_ACCEL_INELIGIBLE;
5559 if (!dev)
5560 return SCSI_MLQUEUE_HOST_BUSY;
5562 if (dev->in_reset)
5563 return SCSI_MLQUEUE_HOST_BUSY;
5565 if (hpsa_simple_mode)
5566 return IO_ACCEL_INELIGIBLE;
5568 cmd->host_scribble = (unsigned char *) c;
5570 if (dev->offload_enabled) {
5571 hpsa_cmd_init(h, c->cmdindex, c);
5572 c->cmd_type = CMD_SCSI;
5573 c->scsi_cmd = cmd;
5574 c->device = dev;
5575 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5576 if (rc < 0) /* scsi_dma_map failed. */
5577 rc = SCSI_MLQUEUE_HOST_BUSY;
5578 } else if (dev->hba_ioaccel_enabled) {
5579 hpsa_cmd_init(h, c->cmdindex, c);
5580 c->cmd_type = CMD_SCSI;
5581 c->scsi_cmd = cmd;
5582 c->device = dev;
5583 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5584 if (rc < 0) /* scsi_dma_map failed. */
5585 rc = SCSI_MLQUEUE_HOST_BUSY;
5587 return rc;
5590 static void hpsa_command_resubmit_worker(struct work_struct *work)
5592 struct scsi_cmnd *cmd;
5593 struct hpsa_scsi_dev_t *dev;
5594 struct CommandList *c = container_of(work, struct CommandList, work);
5596 cmd = c->scsi_cmd;
5597 dev = cmd->device->hostdata;
5598 if (!dev) {
5599 cmd->result = DID_NO_CONNECT << 16;
5600 return hpsa_cmd_free_and_done(c->h, c, cmd);
5603 if (dev->in_reset) {
5604 cmd->result = DID_RESET << 16;
5605 return hpsa_cmd_free_and_done(c->h, c, cmd);
5608 if (c->cmd_type == CMD_IOACCEL2) {
5609 struct ctlr_info *h = c->h;
5610 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5611 int rc;
5613 if (c2->error_data.serv_response ==
5614 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5615 rc = hpsa_ioaccel_submit(h, c, cmd);
5616 if (rc == 0)
5617 return;
5618 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5620 * If we get here, it means dma mapping failed.
5621 * Try again via scsi mid layer, which will
5622 * then get SCSI_MLQUEUE_HOST_BUSY.
5624 cmd->result = DID_IMM_RETRY << 16;
5625 return hpsa_cmd_free_and_done(h, c, cmd);
5627 /* else, fall thru and resubmit down CISS path */
5630 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5631 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5633 * If we get here, it means dma mapping failed. Try
5634 * again via scsi mid layer, which will then get
5635 * SCSI_MLQUEUE_HOST_BUSY.
5637 * hpsa_ciss_submit will have already freed c
5638 * if it encountered a dma mapping failure.
5640 cmd->result = DID_IMM_RETRY << 16;
5641 cmd->scsi_done(cmd);
5645 /* Running in struct Scsi_Host->host_lock less mode */
5646 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5648 struct ctlr_info *h;
5649 struct hpsa_scsi_dev_t *dev;
5650 struct CommandList *c;
5651 int rc = 0;
5653 /* Get the ptr to our adapter structure out of cmd->host. */
5654 h = sdev_to_hba(cmd->device);
5656 BUG_ON(cmd->request->tag < 0);
5658 dev = cmd->device->hostdata;
5659 if (!dev) {
5660 cmd->result = DID_NO_CONNECT << 16;
5661 cmd->scsi_done(cmd);
5662 return 0;
5665 if (dev->removed) {
5666 cmd->result = DID_NO_CONNECT << 16;
5667 cmd->scsi_done(cmd);
5668 return 0;
5671 if (unlikely(lockup_detected(h))) {
5672 cmd->result = DID_NO_CONNECT << 16;
5673 cmd->scsi_done(cmd);
5674 return 0;
5677 if (dev->in_reset)
5678 return SCSI_MLQUEUE_DEVICE_BUSY;
5680 c = cmd_tagged_alloc(h, cmd);
5681 if (c == NULL)
5682 return SCSI_MLQUEUE_DEVICE_BUSY;
5685 * This is necessary because the SML doesn't zero out this field during
5686 * error recovery.
5688 cmd->result = 0;
5691 * Call alternate submit routine for I/O accelerated commands.
5692 * Retries always go down the normal I/O path.
5694 if (likely(cmd->retries == 0 &&
5695 !blk_rq_is_passthrough(cmd->request) &&
5696 h->acciopath_status)) {
5697 rc = hpsa_ioaccel_submit(h, c, cmd);
5698 if (rc == 0)
5699 return 0;
5700 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5701 hpsa_cmd_resolve_and_free(h, c);
5702 return SCSI_MLQUEUE_HOST_BUSY;
5705 return hpsa_ciss_submit(h, c, cmd, dev);
5708 static void hpsa_scan_complete(struct ctlr_info *h)
5710 unsigned long flags;
5712 spin_lock_irqsave(&h->scan_lock, flags);
5713 h->scan_finished = 1;
5714 wake_up(&h->scan_wait_queue);
5715 spin_unlock_irqrestore(&h->scan_lock, flags);
5718 static void hpsa_scan_start(struct Scsi_Host *sh)
5720 struct ctlr_info *h = shost_to_hba(sh);
5721 unsigned long flags;
5724 * Don't let rescans be initiated on a controller known to be locked
5725 * up. If the controller locks up *during* a rescan, that thread is
5726 * probably hosed, but at least we can prevent new rescan threads from
5727 * piling up on a locked up controller.
5729 if (unlikely(lockup_detected(h)))
5730 return hpsa_scan_complete(h);
5733 * If a scan is already waiting to run, no need to add another
5735 spin_lock_irqsave(&h->scan_lock, flags);
5736 if (h->scan_waiting) {
5737 spin_unlock_irqrestore(&h->scan_lock, flags);
5738 return;
5741 spin_unlock_irqrestore(&h->scan_lock, flags);
5743 /* wait until any scan already in progress is finished. */
5744 while (1) {
5745 spin_lock_irqsave(&h->scan_lock, flags);
5746 if (h->scan_finished)
5747 break;
5748 h->scan_waiting = 1;
5749 spin_unlock_irqrestore(&h->scan_lock, flags);
5750 wait_event(h->scan_wait_queue, h->scan_finished);
5751 /* Note: We don't need to worry about a race between this
5752 * thread and driver unload because the midlayer will
5753 * have incremented the reference count, so unload won't
5754 * happen if we're in here.
5757 h->scan_finished = 0; /* mark scan as in progress */
5758 h->scan_waiting = 0;
5759 spin_unlock_irqrestore(&h->scan_lock, flags);
5761 if (unlikely(lockup_detected(h)))
5762 return hpsa_scan_complete(h);
5765 * Do the scan after a reset completion
5767 spin_lock_irqsave(&h->reset_lock, flags);
5768 if (h->reset_in_progress) {
5769 h->drv_req_rescan = 1;
5770 spin_unlock_irqrestore(&h->reset_lock, flags);
5771 hpsa_scan_complete(h);
5772 return;
5774 spin_unlock_irqrestore(&h->reset_lock, flags);
5776 hpsa_update_scsi_devices(h);
5778 hpsa_scan_complete(h);
5781 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5783 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5785 if (!logical_drive)
5786 return -ENODEV;
5788 if (qdepth < 1)
5789 qdepth = 1;
5790 else if (qdepth > logical_drive->queue_depth)
5791 qdepth = logical_drive->queue_depth;
5793 return scsi_change_queue_depth(sdev, qdepth);
5796 static int hpsa_scan_finished(struct Scsi_Host *sh,
5797 unsigned long elapsed_time)
5799 struct ctlr_info *h = shost_to_hba(sh);
5800 unsigned long flags;
5801 int finished;
5803 spin_lock_irqsave(&h->scan_lock, flags);
5804 finished = h->scan_finished;
5805 spin_unlock_irqrestore(&h->scan_lock, flags);
5806 return finished;
5809 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5811 struct Scsi_Host *sh;
5813 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5814 if (sh == NULL) {
5815 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5816 return -ENOMEM;
5819 sh->io_port = 0;
5820 sh->n_io_port = 0;
5821 sh->this_id = -1;
5822 sh->max_channel = 3;
5823 sh->max_cmd_len = MAX_COMMAND_SIZE;
5824 sh->max_lun = HPSA_MAX_LUN;
5825 sh->max_id = HPSA_MAX_LUN;
5826 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5827 sh->cmd_per_lun = sh->can_queue;
5828 sh->sg_tablesize = h->maxsgentries;
5829 sh->transportt = hpsa_sas_transport_template;
5830 sh->hostdata[0] = (unsigned long) h;
5831 sh->irq = pci_irq_vector(h->pdev, 0);
5832 sh->unique_id = sh->irq;
5834 h->scsi_host = sh;
5835 return 0;
5838 static int hpsa_scsi_add_host(struct ctlr_info *h)
5840 int rv;
5842 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5843 if (rv) {
5844 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5845 return rv;
5847 scsi_scan_host(h->scsi_host);
5848 return 0;
5852 * The block layer has already gone to the trouble of picking out a unique,
5853 * small-integer tag for this request. We use an offset from that value as
5854 * an index to select our command block. (The offset allows us to reserve the
5855 * low-numbered entries for our own uses.)
5857 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5859 int idx = scmd->request->tag;
5861 if (idx < 0)
5862 return idx;
5864 /* Offset to leave space for internal cmds. */
5865 return idx += HPSA_NRESERVED_CMDS;
5869 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5870 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5872 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5873 struct CommandList *c, unsigned char lunaddr[],
5874 int reply_queue)
5876 int rc;
5878 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5879 (void) fill_cmd(c, TEST_UNIT_READY, h,
5880 NULL, 0, 0, lunaddr, TYPE_CMD);
5881 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5882 if (rc)
5883 return rc;
5884 /* no unmap needed here because no data xfer. */
5886 /* Check if the unit is already ready. */
5887 if (c->err_info->CommandStatus == CMD_SUCCESS)
5888 return 0;
5891 * The first command sent after reset will receive "unit attention" to
5892 * indicate that the LUN has been reset...this is actually what we're
5893 * looking for (but, success is good too).
5895 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5896 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5897 (c->err_info->SenseInfo[2] == NO_SENSE ||
5898 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5899 return 0;
5901 return 1;
5905 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5906 * returns zero when the unit is ready, and non-zero when giving up.
5908 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5909 struct CommandList *c,
5910 unsigned char lunaddr[], int reply_queue)
5912 int rc;
5913 int count = 0;
5914 int waittime = 1; /* seconds */
5916 /* Send test unit ready until device ready, or give up. */
5917 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5920 * Wait for a bit. do this first, because if we send
5921 * the TUR right away, the reset will just abort it.
5923 msleep(1000 * waittime);
5925 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5926 if (!rc)
5927 break;
5929 /* Increase wait time with each try, up to a point. */
5930 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5931 waittime *= 2;
5933 dev_warn(&h->pdev->dev,
5934 "waiting %d secs for device to become ready.\n",
5935 waittime);
5938 return rc;
5941 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5942 unsigned char lunaddr[],
5943 int reply_queue)
5945 int first_queue;
5946 int last_queue;
5947 int rq;
5948 int rc = 0;
5949 struct CommandList *c;
5951 c = cmd_alloc(h);
5954 * If no specific reply queue was requested, then send the TUR
5955 * repeatedly, requesting a reply on each reply queue; otherwise execute
5956 * the loop exactly once using only the specified queue.
5958 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5959 first_queue = 0;
5960 last_queue = h->nreply_queues - 1;
5961 } else {
5962 first_queue = reply_queue;
5963 last_queue = reply_queue;
5966 for (rq = first_queue; rq <= last_queue; rq++) {
5967 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5968 if (rc)
5969 break;
5972 if (rc)
5973 dev_warn(&h->pdev->dev, "giving up on device.\n");
5974 else
5975 dev_warn(&h->pdev->dev, "device is ready.\n");
5977 cmd_free(h, c);
5978 return rc;
5981 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5982 * complaining. Doing a host- or bus-reset can't do anything good here.
5984 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5986 int rc = SUCCESS;
5987 int i;
5988 struct ctlr_info *h;
5989 struct hpsa_scsi_dev_t *dev = NULL;
5990 u8 reset_type;
5991 char msg[48];
5992 unsigned long flags;
5994 /* find the controller to which the command to be aborted was sent */
5995 h = sdev_to_hba(scsicmd->device);
5996 if (h == NULL) /* paranoia */
5997 return FAILED;
5999 spin_lock_irqsave(&h->reset_lock, flags);
6000 h->reset_in_progress = 1;
6001 spin_unlock_irqrestore(&h->reset_lock, flags);
6003 if (lockup_detected(h)) {
6004 rc = FAILED;
6005 goto return_reset_status;
6008 dev = scsicmd->device->hostdata;
6009 if (!dev) {
6010 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6011 rc = FAILED;
6012 goto return_reset_status;
6015 if (dev->devtype == TYPE_ENCLOSURE) {
6016 rc = SUCCESS;
6017 goto return_reset_status;
6020 /* if controller locked up, we can guarantee command won't complete */
6021 if (lockup_detected(h)) {
6022 snprintf(msg, sizeof(msg),
6023 "cmd %d RESET FAILED, lockup detected",
6024 hpsa_get_cmd_index(scsicmd));
6025 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6026 rc = FAILED;
6027 goto return_reset_status;
6030 /* this reset request might be the result of a lockup; check */
6031 if (detect_controller_lockup(h)) {
6032 snprintf(msg, sizeof(msg),
6033 "cmd %d RESET FAILED, new lockup detected",
6034 hpsa_get_cmd_index(scsicmd));
6035 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6036 rc = FAILED;
6037 goto return_reset_status;
6040 /* Do not attempt on controller */
6041 if (is_hba_lunid(dev->scsi3addr)) {
6042 rc = SUCCESS;
6043 goto return_reset_status;
6046 if (is_logical_dev_addr_mode(dev->scsi3addr))
6047 reset_type = HPSA_DEVICE_RESET_MSG;
6048 else
6049 reset_type = HPSA_PHYS_TARGET_RESET;
6051 sprintf(msg, "resetting %s",
6052 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6053 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6056 * wait to see if any commands will complete before sending reset
6058 dev->in_reset = true; /* block any new cmds from OS for this device */
6059 for (i = 0; i < 10; i++) {
6060 if (atomic_read(&dev->commands_outstanding) > 0)
6061 msleep(1000);
6062 else
6063 break;
6066 /* send a reset to the SCSI LUN which the command was sent to */
6067 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6068 if (rc == 0)
6069 rc = SUCCESS;
6070 else
6071 rc = FAILED;
6073 sprintf(msg, "reset %s %s",
6074 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6075 rc == SUCCESS ? "completed successfully" : "failed");
6076 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6078 return_reset_status:
6079 spin_lock_irqsave(&h->reset_lock, flags);
6080 h->reset_in_progress = 0;
6081 if (dev)
6082 dev->in_reset = false;
6083 spin_unlock_irqrestore(&h->reset_lock, flags);
6084 return rc;
6088 * For operations with an associated SCSI command, a command block is allocated
6089 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6090 * block request tag as an index into a table of entries. cmd_tagged_free() is
6091 * the complement, although cmd_free() may be called instead.
6093 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6094 struct scsi_cmnd *scmd)
6096 int idx = hpsa_get_cmd_index(scmd);
6097 struct CommandList *c = h->cmd_pool + idx;
6099 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6100 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6101 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6102 /* The index value comes from the block layer, so if it's out of
6103 * bounds, it's probably not our bug.
6105 BUG();
6108 if (unlikely(!hpsa_is_cmd_idle(c))) {
6110 * We expect that the SCSI layer will hand us a unique tag
6111 * value. Thus, there should never be a collision here between
6112 * two requests...because if the selected command isn't idle
6113 * then someone is going to be very disappointed.
6115 if (idx != h->last_collision_tag) { /* Print once per tag */
6116 dev_warn(&h->pdev->dev,
6117 "%s: tag collision (tag=%d)\n", __func__, idx);
6118 if (scmd)
6119 scsi_print_command(scmd);
6120 h->last_collision_tag = idx;
6122 return NULL;
6125 atomic_inc(&c->refcount);
6127 hpsa_cmd_partial_init(h, idx, c);
6128 return c;
6131 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6134 * Release our reference to the block. We don't need to do anything
6135 * else to free it, because it is accessed by index.
6137 (void)atomic_dec(&c->refcount);
6141 * For operations that cannot sleep, a command block is allocated at init,
6142 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6143 * which ones are free or in use. Lock must be held when calling this.
6144 * cmd_free() is the complement.
6145 * This function never gives up and returns NULL. If it hangs,
6146 * another thread must call cmd_free() to free some tags.
6149 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6151 struct CommandList *c;
6152 int refcount, i;
6153 int offset = 0;
6156 * There is some *extremely* small but non-zero chance that that
6157 * multiple threads could get in here, and one thread could
6158 * be scanning through the list of bits looking for a free
6159 * one, but the free ones are always behind him, and other
6160 * threads sneak in behind him and eat them before he can
6161 * get to them, so that while there is always a free one, a
6162 * very unlucky thread might be starved anyway, never able to
6163 * beat the other threads. In reality, this happens so
6164 * infrequently as to be indistinguishable from never.
6166 * Note that we start allocating commands before the SCSI host structure
6167 * is initialized. Since the search starts at bit zero, this
6168 * all works, since we have at least one command structure available;
6169 * however, it means that the structures with the low indexes have to be
6170 * reserved for driver-initiated requests, while requests from the block
6171 * layer will use the higher indexes.
6174 for (;;) {
6175 i = find_next_zero_bit(h->cmd_pool_bits,
6176 HPSA_NRESERVED_CMDS,
6177 offset);
6178 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6179 offset = 0;
6180 continue;
6182 c = h->cmd_pool + i;
6183 refcount = atomic_inc_return(&c->refcount);
6184 if (unlikely(refcount > 1)) {
6185 cmd_free(h, c); /* already in use */
6186 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6187 continue;
6189 set_bit(i & (BITS_PER_LONG - 1),
6190 h->cmd_pool_bits + (i / BITS_PER_LONG));
6191 break; /* it's ours now. */
6193 hpsa_cmd_partial_init(h, i, c);
6194 c->device = NULL;
6195 return c;
6199 * This is the complementary operation to cmd_alloc(). Note, however, in some
6200 * corner cases it may also be used to free blocks allocated by
6201 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6202 * the clear-bit is harmless.
6204 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6206 if (atomic_dec_and_test(&c->refcount)) {
6207 int i;
6209 i = c - h->cmd_pool;
6210 clear_bit(i & (BITS_PER_LONG - 1),
6211 h->cmd_pool_bits + (i / BITS_PER_LONG));
6215 #ifdef CONFIG_COMPAT
6217 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6218 void __user *arg)
6220 IOCTL32_Command_struct __user *arg32 =
6221 (IOCTL32_Command_struct __user *) arg;
6222 IOCTL_Command_struct arg64;
6223 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6224 int err;
6225 u32 cp;
6227 memset(&arg64, 0, sizeof(arg64));
6228 err = 0;
6229 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6230 sizeof(arg64.LUN_info));
6231 err |= copy_from_user(&arg64.Request, &arg32->Request,
6232 sizeof(arg64.Request));
6233 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6234 sizeof(arg64.error_info));
6235 err |= get_user(arg64.buf_size, &arg32->buf_size);
6236 err |= get_user(cp, &arg32->buf);
6237 arg64.buf = compat_ptr(cp);
6238 err |= copy_to_user(p, &arg64, sizeof(arg64));
6240 if (err)
6241 return -EFAULT;
6243 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6244 if (err)
6245 return err;
6246 err |= copy_in_user(&arg32->error_info, &p->error_info,
6247 sizeof(arg32->error_info));
6248 if (err)
6249 return -EFAULT;
6250 return err;
6253 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6254 unsigned int cmd, void __user *arg)
6256 BIG_IOCTL32_Command_struct __user *arg32 =
6257 (BIG_IOCTL32_Command_struct __user *) arg;
6258 BIG_IOCTL_Command_struct arg64;
6259 BIG_IOCTL_Command_struct __user *p =
6260 compat_alloc_user_space(sizeof(arg64));
6261 int err;
6262 u32 cp;
6264 memset(&arg64, 0, sizeof(arg64));
6265 err = 0;
6266 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6267 sizeof(arg64.LUN_info));
6268 err |= copy_from_user(&arg64.Request, &arg32->Request,
6269 sizeof(arg64.Request));
6270 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6271 sizeof(arg64.error_info));
6272 err |= get_user(arg64.buf_size, &arg32->buf_size);
6273 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6274 err |= get_user(cp, &arg32->buf);
6275 arg64.buf = compat_ptr(cp);
6276 err |= copy_to_user(p, &arg64, sizeof(arg64));
6278 if (err)
6279 return -EFAULT;
6281 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6282 if (err)
6283 return err;
6284 err |= copy_in_user(&arg32->error_info, &p->error_info,
6285 sizeof(arg32->error_info));
6286 if (err)
6287 return -EFAULT;
6288 return err;
6291 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6292 void __user *arg)
6294 switch (cmd) {
6295 case CCISS_GETPCIINFO:
6296 case CCISS_GETINTINFO:
6297 case CCISS_SETINTINFO:
6298 case CCISS_GETNODENAME:
6299 case CCISS_SETNODENAME:
6300 case CCISS_GETHEARTBEAT:
6301 case CCISS_GETBUSTYPES:
6302 case CCISS_GETFIRMVER:
6303 case CCISS_GETDRIVVER:
6304 case CCISS_REVALIDVOLS:
6305 case CCISS_DEREGDISK:
6306 case CCISS_REGNEWDISK:
6307 case CCISS_REGNEWD:
6308 case CCISS_RESCANDISK:
6309 case CCISS_GETLUNINFO:
6310 return hpsa_ioctl(dev, cmd, arg);
6312 case CCISS_PASSTHRU32:
6313 return hpsa_ioctl32_passthru(dev, cmd, arg);
6314 case CCISS_BIG_PASSTHRU32:
6315 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6317 default:
6318 return -ENOIOCTLCMD;
6321 #endif
6323 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6325 struct hpsa_pci_info pciinfo;
6327 if (!argp)
6328 return -EINVAL;
6329 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6330 pciinfo.bus = h->pdev->bus->number;
6331 pciinfo.dev_fn = h->pdev->devfn;
6332 pciinfo.board_id = h->board_id;
6333 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6334 return -EFAULT;
6335 return 0;
6338 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6340 DriverVer_type DriverVer;
6341 unsigned char vmaj, vmin, vsubmin;
6342 int rc;
6344 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6345 &vmaj, &vmin, &vsubmin);
6346 if (rc != 3) {
6347 dev_info(&h->pdev->dev, "driver version string '%s' "
6348 "unrecognized.", HPSA_DRIVER_VERSION);
6349 vmaj = 0;
6350 vmin = 0;
6351 vsubmin = 0;
6353 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6354 if (!argp)
6355 return -EINVAL;
6356 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6357 return -EFAULT;
6358 return 0;
6361 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6363 IOCTL_Command_struct iocommand;
6364 struct CommandList *c;
6365 char *buff = NULL;
6366 u64 temp64;
6367 int rc = 0;
6369 if (!argp)
6370 return -EINVAL;
6371 if (!capable(CAP_SYS_RAWIO))
6372 return -EPERM;
6373 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6374 return -EFAULT;
6375 if ((iocommand.buf_size < 1) &&
6376 (iocommand.Request.Type.Direction != XFER_NONE)) {
6377 return -EINVAL;
6379 if (iocommand.buf_size > 0) {
6380 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6381 if (buff == NULL)
6382 return -ENOMEM;
6383 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6384 /* Copy the data into the buffer we created */
6385 if (copy_from_user(buff, iocommand.buf,
6386 iocommand.buf_size)) {
6387 rc = -EFAULT;
6388 goto out_kfree;
6390 } else {
6391 memset(buff, 0, iocommand.buf_size);
6394 c = cmd_alloc(h);
6396 /* Fill in the command type */
6397 c->cmd_type = CMD_IOCTL_PEND;
6398 c->scsi_cmd = SCSI_CMD_BUSY;
6399 /* Fill in Command Header */
6400 c->Header.ReplyQueue = 0; /* unused in simple mode */
6401 if (iocommand.buf_size > 0) { /* buffer to fill */
6402 c->Header.SGList = 1;
6403 c->Header.SGTotal = cpu_to_le16(1);
6404 } else { /* no buffers to fill */
6405 c->Header.SGList = 0;
6406 c->Header.SGTotal = cpu_to_le16(0);
6408 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6410 /* Fill in Request block */
6411 memcpy(&c->Request, &iocommand.Request,
6412 sizeof(c->Request));
6414 /* Fill in the scatter gather information */
6415 if (iocommand.buf_size > 0) {
6416 temp64 = dma_map_single(&h->pdev->dev, buff,
6417 iocommand.buf_size, DMA_BIDIRECTIONAL);
6418 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6419 c->SG[0].Addr = cpu_to_le64(0);
6420 c->SG[0].Len = cpu_to_le32(0);
6421 rc = -ENOMEM;
6422 goto out;
6424 c->SG[0].Addr = cpu_to_le64(temp64);
6425 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6426 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6428 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6429 NO_TIMEOUT);
6430 if (iocommand.buf_size > 0)
6431 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6432 check_ioctl_unit_attention(h, c);
6433 if (rc) {
6434 rc = -EIO;
6435 goto out;
6438 /* Copy the error information out */
6439 memcpy(&iocommand.error_info, c->err_info,
6440 sizeof(iocommand.error_info));
6441 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6442 rc = -EFAULT;
6443 goto out;
6445 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6446 iocommand.buf_size > 0) {
6447 /* Copy the data out of the buffer we created */
6448 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6449 rc = -EFAULT;
6450 goto out;
6453 out:
6454 cmd_free(h, c);
6455 out_kfree:
6456 kfree(buff);
6457 return rc;
6460 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6462 BIG_IOCTL_Command_struct *ioc;
6463 struct CommandList *c;
6464 unsigned char **buff = NULL;
6465 int *buff_size = NULL;
6466 u64 temp64;
6467 BYTE sg_used = 0;
6468 int status = 0;
6469 u32 left;
6470 u32 sz;
6471 BYTE __user *data_ptr;
6473 if (!argp)
6474 return -EINVAL;
6475 if (!capable(CAP_SYS_RAWIO))
6476 return -EPERM;
6477 ioc = vmemdup_user(argp, sizeof(*ioc));
6478 if (IS_ERR(ioc)) {
6479 status = PTR_ERR(ioc);
6480 goto cleanup1;
6482 if ((ioc->buf_size < 1) &&
6483 (ioc->Request.Type.Direction != XFER_NONE)) {
6484 status = -EINVAL;
6485 goto cleanup1;
6487 /* Check kmalloc limits using all SGs */
6488 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6489 status = -EINVAL;
6490 goto cleanup1;
6492 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6493 status = -EINVAL;
6494 goto cleanup1;
6496 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6497 if (!buff) {
6498 status = -ENOMEM;
6499 goto cleanup1;
6501 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6502 if (!buff_size) {
6503 status = -ENOMEM;
6504 goto cleanup1;
6506 left = ioc->buf_size;
6507 data_ptr = ioc->buf;
6508 while (left) {
6509 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6510 buff_size[sg_used] = sz;
6511 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6512 if (buff[sg_used] == NULL) {
6513 status = -ENOMEM;
6514 goto cleanup1;
6516 if (ioc->Request.Type.Direction & XFER_WRITE) {
6517 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6518 status = -EFAULT;
6519 goto cleanup1;
6521 } else
6522 memset(buff[sg_used], 0, sz);
6523 left -= sz;
6524 data_ptr += sz;
6525 sg_used++;
6527 c = cmd_alloc(h);
6529 c->cmd_type = CMD_IOCTL_PEND;
6530 c->scsi_cmd = SCSI_CMD_BUSY;
6531 c->Header.ReplyQueue = 0;
6532 c->Header.SGList = (u8) sg_used;
6533 c->Header.SGTotal = cpu_to_le16(sg_used);
6534 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6535 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6536 if (ioc->buf_size > 0) {
6537 int i;
6538 for (i = 0; i < sg_used; i++) {
6539 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6540 buff_size[i], DMA_BIDIRECTIONAL);
6541 if (dma_mapping_error(&h->pdev->dev,
6542 (dma_addr_t) temp64)) {
6543 c->SG[i].Addr = cpu_to_le64(0);
6544 c->SG[i].Len = cpu_to_le32(0);
6545 hpsa_pci_unmap(h->pdev, c, i,
6546 DMA_BIDIRECTIONAL);
6547 status = -ENOMEM;
6548 goto cleanup0;
6550 c->SG[i].Addr = cpu_to_le64(temp64);
6551 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6552 c->SG[i].Ext = cpu_to_le32(0);
6554 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6556 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6557 NO_TIMEOUT);
6558 if (sg_used)
6559 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6560 check_ioctl_unit_attention(h, c);
6561 if (status) {
6562 status = -EIO;
6563 goto cleanup0;
6566 /* Copy the error information out */
6567 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6568 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6569 status = -EFAULT;
6570 goto cleanup0;
6572 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6573 int i;
6575 /* Copy the data out of the buffer we created */
6576 BYTE __user *ptr = ioc->buf;
6577 for (i = 0; i < sg_used; i++) {
6578 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6579 status = -EFAULT;
6580 goto cleanup0;
6582 ptr += buff_size[i];
6585 status = 0;
6586 cleanup0:
6587 cmd_free(h, c);
6588 cleanup1:
6589 if (buff) {
6590 int i;
6592 for (i = 0; i < sg_used; i++)
6593 kfree(buff[i]);
6594 kfree(buff);
6596 kfree(buff_size);
6597 kvfree(ioc);
6598 return status;
6601 static void check_ioctl_unit_attention(struct ctlr_info *h,
6602 struct CommandList *c)
6604 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6605 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6606 (void) check_for_unit_attention(h, c);
6610 * ioctl
6612 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6613 void __user *arg)
6615 struct ctlr_info *h;
6616 void __user *argp = (void __user *)arg;
6617 int rc;
6619 h = sdev_to_hba(dev);
6621 switch (cmd) {
6622 case CCISS_DEREGDISK:
6623 case CCISS_REGNEWDISK:
6624 case CCISS_REGNEWD:
6625 hpsa_scan_start(h->scsi_host);
6626 return 0;
6627 case CCISS_GETPCIINFO:
6628 return hpsa_getpciinfo_ioctl(h, argp);
6629 case CCISS_GETDRIVVER:
6630 return hpsa_getdrivver_ioctl(h, argp);
6631 case CCISS_PASSTHRU:
6632 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6633 return -EAGAIN;
6634 rc = hpsa_passthru_ioctl(h, argp);
6635 atomic_inc(&h->passthru_cmds_avail);
6636 return rc;
6637 case CCISS_BIG_PASSTHRU:
6638 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6639 return -EAGAIN;
6640 rc = hpsa_big_passthru_ioctl(h, argp);
6641 atomic_inc(&h->passthru_cmds_avail);
6642 return rc;
6643 default:
6644 return -ENOTTY;
6648 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6650 struct CommandList *c;
6652 c = cmd_alloc(h);
6654 /* fill_cmd can't fail here, no data buffer to map */
6655 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6656 RAID_CTLR_LUNID, TYPE_MSG);
6657 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6658 c->waiting = NULL;
6659 enqueue_cmd_and_start_io(h, c);
6660 /* Don't wait for completion, the reset won't complete. Don't free
6661 * the command either. This is the last command we will send before
6662 * re-initializing everything, so it doesn't matter and won't leak.
6664 return;
6667 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6668 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6669 int cmd_type)
6671 enum dma_data_direction dir = DMA_NONE;
6673 c->cmd_type = CMD_IOCTL_PEND;
6674 c->scsi_cmd = SCSI_CMD_BUSY;
6675 c->Header.ReplyQueue = 0;
6676 if (buff != NULL && size > 0) {
6677 c->Header.SGList = 1;
6678 c->Header.SGTotal = cpu_to_le16(1);
6679 } else {
6680 c->Header.SGList = 0;
6681 c->Header.SGTotal = cpu_to_le16(0);
6683 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6685 if (cmd_type == TYPE_CMD) {
6686 switch (cmd) {
6687 case HPSA_INQUIRY:
6688 /* are we trying to read a vital product page */
6689 if (page_code & VPD_PAGE) {
6690 c->Request.CDB[1] = 0x01;
6691 c->Request.CDB[2] = (page_code & 0xff);
6693 c->Request.CDBLen = 6;
6694 c->Request.type_attr_dir =
6695 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696 c->Request.Timeout = 0;
6697 c->Request.CDB[0] = HPSA_INQUIRY;
6698 c->Request.CDB[4] = size & 0xFF;
6699 break;
6700 case RECEIVE_DIAGNOSTIC:
6701 c->Request.CDBLen = 6;
6702 c->Request.type_attr_dir =
6703 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6704 c->Request.Timeout = 0;
6705 c->Request.CDB[0] = cmd;
6706 c->Request.CDB[1] = 1;
6707 c->Request.CDB[2] = 1;
6708 c->Request.CDB[3] = (size >> 8) & 0xFF;
6709 c->Request.CDB[4] = size & 0xFF;
6710 break;
6711 case HPSA_REPORT_LOG:
6712 case HPSA_REPORT_PHYS:
6713 /* Talking to controller so It's a physical command
6714 mode = 00 target = 0. Nothing to write.
6716 c->Request.CDBLen = 12;
6717 c->Request.type_attr_dir =
6718 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 c->Request.Timeout = 0;
6720 c->Request.CDB[0] = cmd;
6721 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6722 c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 c->Request.CDB[8] = (size >> 8) & 0xFF;
6724 c->Request.CDB[9] = size & 0xFF;
6725 break;
6726 case BMIC_SENSE_DIAG_OPTIONS:
6727 c->Request.CDBLen = 16;
6728 c->Request.type_attr_dir =
6729 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6730 c->Request.Timeout = 0;
6731 /* Spec says this should be BMIC_WRITE */
6732 c->Request.CDB[0] = BMIC_READ;
6733 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6734 break;
6735 case BMIC_SET_DIAG_OPTIONS:
6736 c->Request.CDBLen = 16;
6737 c->Request.type_attr_dir =
6738 TYPE_ATTR_DIR(cmd_type,
6739 ATTR_SIMPLE, XFER_WRITE);
6740 c->Request.Timeout = 0;
6741 c->Request.CDB[0] = BMIC_WRITE;
6742 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6743 break;
6744 case HPSA_CACHE_FLUSH:
6745 c->Request.CDBLen = 12;
6746 c->Request.type_attr_dir =
6747 TYPE_ATTR_DIR(cmd_type,
6748 ATTR_SIMPLE, XFER_WRITE);
6749 c->Request.Timeout = 0;
6750 c->Request.CDB[0] = BMIC_WRITE;
6751 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6752 c->Request.CDB[7] = (size >> 8) & 0xFF;
6753 c->Request.CDB[8] = size & 0xFF;
6754 break;
6755 case TEST_UNIT_READY:
6756 c->Request.CDBLen = 6;
6757 c->Request.type_attr_dir =
6758 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6759 c->Request.Timeout = 0;
6760 break;
6761 case HPSA_GET_RAID_MAP:
6762 c->Request.CDBLen = 12;
6763 c->Request.type_attr_dir =
6764 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765 c->Request.Timeout = 0;
6766 c->Request.CDB[0] = HPSA_CISS_READ;
6767 c->Request.CDB[1] = cmd;
6768 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6769 c->Request.CDB[7] = (size >> 16) & 0xFF;
6770 c->Request.CDB[8] = (size >> 8) & 0xFF;
6771 c->Request.CDB[9] = size & 0xFF;
6772 break;
6773 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6774 c->Request.CDBLen = 10;
6775 c->Request.type_attr_dir =
6776 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6777 c->Request.Timeout = 0;
6778 c->Request.CDB[0] = BMIC_READ;
6779 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6780 c->Request.CDB[7] = (size >> 16) & 0xFF;
6781 c->Request.CDB[8] = (size >> 8) & 0xFF;
6782 break;
6783 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6784 c->Request.CDBLen = 10;
6785 c->Request.type_attr_dir =
6786 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6787 c->Request.Timeout = 0;
6788 c->Request.CDB[0] = BMIC_READ;
6789 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6790 c->Request.CDB[7] = (size >> 16) & 0xFF;
6791 c->Request.CDB[8] = (size >> 8) & 0XFF;
6792 break;
6793 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6794 c->Request.CDBLen = 10;
6795 c->Request.type_attr_dir =
6796 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6797 c->Request.Timeout = 0;
6798 c->Request.CDB[0] = BMIC_READ;
6799 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6800 c->Request.CDB[7] = (size >> 16) & 0xFF;
6801 c->Request.CDB[8] = (size >> 8) & 0XFF;
6802 break;
6803 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6804 c->Request.CDBLen = 10;
6805 c->Request.type_attr_dir =
6806 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807 c->Request.Timeout = 0;
6808 c->Request.CDB[0] = BMIC_READ;
6809 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6810 c->Request.CDB[7] = (size >> 16) & 0xFF;
6811 c->Request.CDB[8] = (size >> 8) & 0XFF;
6812 break;
6813 case BMIC_IDENTIFY_CONTROLLER:
6814 c->Request.CDBLen = 10;
6815 c->Request.type_attr_dir =
6816 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817 c->Request.Timeout = 0;
6818 c->Request.CDB[0] = BMIC_READ;
6819 c->Request.CDB[1] = 0;
6820 c->Request.CDB[2] = 0;
6821 c->Request.CDB[3] = 0;
6822 c->Request.CDB[4] = 0;
6823 c->Request.CDB[5] = 0;
6824 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6825 c->Request.CDB[7] = (size >> 16) & 0xFF;
6826 c->Request.CDB[8] = (size >> 8) & 0XFF;
6827 c->Request.CDB[9] = 0;
6828 break;
6829 default:
6830 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6831 BUG();
6833 } else if (cmd_type == TYPE_MSG) {
6834 switch (cmd) {
6836 case HPSA_PHYS_TARGET_RESET:
6837 c->Request.CDBLen = 16;
6838 c->Request.type_attr_dir =
6839 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6840 c->Request.Timeout = 0; /* Don't time out */
6841 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6842 c->Request.CDB[0] = HPSA_RESET;
6843 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6844 /* Physical target reset needs no control bytes 4-7*/
6845 c->Request.CDB[4] = 0x00;
6846 c->Request.CDB[5] = 0x00;
6847 c->Request.CDB[6] = 0x00;
6848 c->Request.CDB[7] = 0x00;
6849 break;
6850 case HPSA_DEVICE_RESET_MSG:
6851 c->Request.CDBLen = 16;
6852 c->Request.type_attr_dir =
6853 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6854 c->Request.Timeout = 0; /* Don't time out */
6855 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6856 c->Request.CDB[0] = cmd;
6857 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6858 /* If bytes 4-7 are zero, it means reset the */
6859 /* LunID device */
6860 c->Request.CDB[4] = 0x00;
6861 c->Request.CDB[5] = 0x00;
6862 c->Request.CDB[6] = 0x00;
6863 c->Request.CDB[7] = 0x00;
6864 break;
6865 default:
6866 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6867 cmd);
6868 BUG();
6870 } else {
6871 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6872 BUG();
6875 switch (GET_DIR(c->Request.type_attr_dir)) {
6876 case XFER_READ:
6877 dir = DMA_FROM_DEVICE;
6878 break;
6879 case XFER_WRITE:
6880 dir = DMA_TO_DEVICE;
6881 break;
6882 case XFER_NONE:
6883 dir = DMA_NONE;
6884 break;
6885 default:
6886 dir = DMA_BIDIRECTIONAL;
6888 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6889 return -1;
6890 return 0;
6894 * Map (physical) PCI mem into (virtual) kernel space
6896 static void __iomem *remap_pci_mem(ulong base, ulong size)
6898 ulong page_base = ((ulong) base) & PAGE_MASK;
6899 ulong page_offs = ((ulong) base) - page_base;
6900 void __iomem *page_remapped = ioremap(page_base,
6901 page_offs + size);
6903 return page_remapped ? (page_remapped + page_offs) : NULL;
6906 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6908 return h->access.command_completed(h, q);
6911 static inline bool interrupt_pending(struct ctlr_info *h)
6913 return h->access.intr_pending(h);
6916 static inline long interrupt_not_for_us(struct ctlr_info *h)
6918 return (h->access.intr_pending(h) == 0) ||
6919 (h->interrupts_enabled == 0);
6922 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6923 u32 raw_tag)
6925 if (unlikely(tag_index >= h->nr_cmds)) {
6926 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6927 return 1;
6929 return 0;
6932 static inline void finish_cmd(struct CommandList *c)
6934 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6935 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6936 || c->cmd_type == CMD_IOACCEL2))
6937 complete_scsi_command(c);
6938 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6939 complete(c->waiting);
6942 /* process completion of an indexed ("direct lookup") command */
6943 static inline void process_indexed_cmd(struct ctlr_info *h,
6944 u32 raw_tag)
6946 u32 tag_index;
6947 struct CommandList *c;
6949 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6950 if (!bad_tag(h, tag_index, raw_tag)) {
6951 c = h->cmd_pool + tag_index;
6952 finish_cmd(c);
6956 /* Some controllers, like p400, will give us one interrupt
6957 * after a soft reset, even if we turned interrupts off.
6958 * Only need to check for this in the hpsa_xxx_discard_completions
6959 * functions.
6961 static int ignore_bogus_interrupt(struct ctlr_info *h)
6963 if (likely(!reset_devices))
6964 return 0;
6966 if (likely(h->interrupts_enabled))
6967 return 0;
6969 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6970 "(known firmware bug.) Ignoring.\n");
6972 return 1;
6976 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6977 * Relies on (h-q[x] == x) being true for x such that
6978 * 0 <= x < MAX_REPLY_QUEUES.
6980 static struct ctlr_info *queue_to_hba(u8 *queue)
6982 return container_of((queue - *queue), struct ctlr_info, q[0]);
6985 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6987 struct ctlr_info *h = queue_to_hba(queue);
6988 u8 q = *(u8 *) queue;
6989 u32 raw_tag;
6991 if (ignore_bogus_interrupt(h))
6992 return IRQ_NONE;
6994 if (interrupt_not_for_us(h))
6995 return IRQ_NONE;
6996 h->last_intr_timestamp = get_jiffies_64();
6997 while (interrupt_pending(h)) {
6998 raw_tag = get_next_completion(h, q);
6999 while (raw_tag != FIFO_EMPTY)
7000 raw_tag = next_command(h, q);
7002 return IRQ_HANDLED;
7005 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7007 struct ctlr_info *h = queue_to_hba(queue);
7008 u32 raw_tag;
7009 u8 q = *(u8 *) queue;
7011 if (ignore_bogus_interrupt(h))
7012 return IRQ_NONE;
7014 h->last_intr_timestamp = get_jiffies_64();
7015 raw_tag = get_next_completion(h, q);
7016 while (raw_tag != FIFO_EMPTY)
7017 raw_tag = next_command(h, q);
7018 return IRQ_HANDLED;
7021 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7023 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7024 u32 raw_tag;
7025 u8 q = *(u8 *) queue;
7027 if (interrupt_not_for_us(h))
7028 return IRQ_NONE;
7029 h->last_intr_timestamp = get_jiffies_64();
7030 while (interrupt_pending(h)) {
7031 raw_tag = get_next_completion(h, q);
7032 while (raw_tag != FIFO_EMPTY) {
7033 process_indexed_cmd(h, raw_tag);
7034 raw_tag = next_command(h, q);
7037 return IRQ_HANDLED;
7040 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7042 struct ctlr_info *h = queue_to_hba(queue);
7043 u32 raw_tag;
7044 u8 q = *(u8 *) queue;
7046 h->last_intr_timestamp = get_jiffies_64();
7047 raw_tag = get_next_completion(h, q);
7048 while (raw_tag != FIFO_EMPTY) {
7049 process_indexed_cmd(h, raw_tag);
7050 raw_tag = next_command(h, q);
7052 return IRQ_HANDLED;
7055 /* Send a message CDB to the firmware. Careful, this only works
7056 * in simple mode, not performant mode due to the tag lookup.
7057 * We only ever use this immediately after a controller reset.
7059 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7060 unsigned char type)
7062 struct Command {
7063 struct CommandListHeader CommandHeader;
7064 struct RequestBlock Request;
7065 struct ErrDescriptor ErrorDescriptor;
7067 struct Command *cmd;
7068 static const size_t cmd_sz = sizeof(*cmd) +
7069 sizeof(cmd->ErrorDescriptor);
7070 dma_addr_t paddr64;
7071 __le32 paddr32;
7072 u32 tag;
7073 void __iomem *vaddr;
7074 int i, err;
7076 vaddr = pci_ioremap_bar(pdev, 0);
7077 if (vaddr == NULL)
7078 return -ENOMEM;
7080 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7081 * CCISS commands, so they must be allocated from the lower 4GiB of
7082 * memory.
7084 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7085 if (err) {
7086 iounmap(vaddr);
7087 return err;
7090 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7091 if (cmd == NULL) {
7092 iounmap(vaddr);
7093 return -ENOMEM;
7096 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7097 * although there's no guarantee, we assume that the address is at
7098 * least 4-byte aligned (most likely, it's page-aligned).
7100 paddr32 = cpu_to_le32(paddr64);
7102 cmd->CommandHeader.ReplyQueue = 0;
7103 cmd->CommandHeader.SGList = 0;
7104 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7105 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7106 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7108 cmd->Request.CDBLen = 16;
7109 cmd->Request.type_attr_dir =
7110 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7111 cmd->Request.Timeout = 0; /* Don't time out */
7112 cmd->Request.CDB[0] = opcode;
7113 cmd->Request.CDB[1] = type;
7114 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7115 cmd->ErrorDescriptor.Addr =
7116 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7117 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7119 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7121 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7122 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7123 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7124 break;
7125 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7128 iounmap(vaddr);
7130 /* we leak the DMA buffer here ... no choice since the controller could
7131 * still complete the command.
7133 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7134 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7135 opcode, type);
7136 return -ETIMEDOUT;
7139 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7141 if (tag & HPSA_ERROR_BIT) {
7142 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7143 opcode, type);
7144 return -EIO;
7147 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7148 opcode, type);
7149 return 0;
7152 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7154 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7155 void __iomem *vaddr, u32 use_doorbell)
7158 if (use_doorbell) {
7159 /* For everything after the P600, the PCI power state method
7160 * of resetting the controller doesn't work, so we have this
7161 * other way using the doorbell register.
7163 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7164 writel(use_doorbell, vaddr + SA5_DOORBELL);
7166 /* PMC hardware guys tell us we need a 10 second delay after
7167 * doorbell reset and before any attempt to talk to the board
7168 * at all to ensure that this actually works and doesn't fall
7169 * over in some weird corner cases.
7171 msleep(10000);
7172 } else { /* Try to do it the PCI power state way */
7174 /* Quoting from the Open CISS Specification: "The Power
7175 * Management Control/Status Register (CSR) controls the power
7176 * state of the device. The normal operating state is D0,
7177 * CSR=00h. The software off state is D3, CSR=03h. To reset
7178 * the controller, place the interface device in D3 then to D0,
7179 * this causes a secondary PCI reset which will reset the
7180 * controller." */
7182 int rc = 0;
7184 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7186 /* enter the D3hot power management state */
7187 rc = pci_set_power_state(pdev, PCI_D3hot);
7188 if (rc)
7189 return rc;
7191 msleep(500);
7193 /* enter the D0 power management state */
7194 rc = pci_set_power_state(pdev, PCI_D0);
7195 if (rc)
7196 return rc;
7199 * The P600 requires a small delay when changing states.
7200 * Otherwise we may think the board did not reset and we bail.
7201 * This for kdump only and is particular to the P600.
7203 msleep(500);
7205 return 0;
7208 static void init_driver_version(char *driver_version, int len)
7210 memset(driver_version, 0, len);
7211 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7214 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7216 char *driver_version;
7217 int i, size = sizeof(cfgtable->driver_version);
7219 driver_version = kmalloc(size, GFP_KERNEL);
7220 if (!driver_version)
7221 return -ENOMEM;
7223 init_driver_version(driver_version, size);
7224 for (i = 0; i < size; i++)
7225 writeb(driver_version[i], &cfgtable->driver_version[i]);
7226 kfree(driver_version);
7227 return 0;
7230 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7231 unsigned char *driver_ver)
7233 int i;
7235 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7236 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7239 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7242 char *driver_ver, *old_driver_ver;
7243 int rc, size = sizeof(cfgtable->driver_version);
7245 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7246 if (!old_driver_ver)
7247 return -ENOMEM;
7248 driver_ver = old_driver_ver + size;
7250 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7251 * should have been changed, otherwise we know the reset failed.
7253 init_driver_version(old_driver_ver, size);
7254 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7255 rc = !memcmp(driver_ver, old_driver_ver, size);
7256 kfree(old_driver_ver);
7257 return rc;
7259 /* This does a hard reset of the controller using PCI power management
7260 * states or the using the doorbell register.
7262 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7264 u64 cfg_offset;
7265 u32 cfg_base_addr;
7266 u64 cfg_base_addr_index;
7267 void __iomem *vaddr;
7268 unsigned long paddr;
7269 u32 misc_fw_support;
7270 int rc;
7271 struct CfgTable __iomem *cfgtable;
7272 u32 use_doorbell;
7273 u16 command_register;
7275 /* For controllers as old as the P600, this is very nearly
7276 * the same thing as
7278 * pci_save_state(pci_dev);
7279 * pci_set_power_state(pci_dev, PCI_D3hot);
7280 * pci_set_power_state(pci_dev, PCI_D0);
7281 * pci_restore_state(pci_dev);
7283 * For controllers newer than the P600, the pci power state
7284 * method of resetting doesn't work so we have another way
7285 * using the doorbell register.
7288 if (!ctlr_is_resettable(board_id)) {
7289 dev_warn(&pdev->dev, "Controller not resettable\n");
7290 return -ENODEV;
7293 /* if controller is soft- but not hard resettable... */
7294 if (!ctlr_is_hard_resettable(board_id))
7295 return -ENOTSUPP; /* try soft reset later. */
7297 /* Save the PCI command register */
7298 pci_read_config_word(pdev, 4, &command_register);
7299 pci_save_state(pdev);
7301 /* find the first memory BAR, so we can find the cfg table */
7302 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7303 if (rc)
7304 return rc;
7305 vaddr = remap_pci_mem(paddr, 0x250);
7306 if (!vaddr)
7307 return -ENOMEM;
7309 /* find cfgtable in order to check if reset via doorbell is supported */
7310 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7311 &cfg_base_addr_index, &cfg_offset);
7312 if (rc)
7313 goto unmap_vaddr;
7314 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7315 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7316 if (!cfgtable) {
7317 rc = -ENOMEM;
7318 goto unmap_vaddr;
7320 rc = write_driver_ver_to_cfgtable(cfgtable);
7321 if (rc)
7322 goto unmap_cfgtable;
7324 /* If reset via doorbell register is supported, use that.
7325 * There are two such methods. Favor the newest method.
7327 misc_fw_support = readl(&cfgtable->misc_fw_support);
7328 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7329 if (use_doorbell) {
7330 use_doorbell = DOORBELL_CTLR_RESET2;
7331 } else {
7332 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7333 if (use_doorbell) {
7334 dev_warn(&pdev->dev,
7335 "Soft reset not supported. Firmware update is required.\n");
7336 rc = -ENOTSUPP; /* try soft reset */
7337 goto unmap_cfgtable;
7341 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7342 if (rc)
7343 goto unmap_cfgtable;
7345 pci_restore_state(pdev);
7346 pci_write_config_word(pdev, 4, command_register);
7348 /* Some devices (notably the HP Smart Array 5i Controller)
7349 need a little pause here */
7350 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7352 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7353 if (rc) {
7354 dev_warn(&pdev->dev,
7355 "Failed waiting for board to become ready after hard reset\n");
7356 goto unmap_cfgtable;
7359 rc = controller_reset_failed(vaddr);
7360 if (rc < 0)
7361 goto unmap_cfgtable;
7362 if (rc) {
7363 dev_warn(&pdev->dev, "Unable to successfully reset "
7364 "controller. Will try soft reset.\n");
7365 rc = -ENOTSUPP;
7366 } else {
7367 dev_info(&pdev->dev, "board ready after hard reset.\n");
7370 unmap_cfgtable:
7371 iounmap(cfgtable);
7373 unmap_vaddr:
7374 iounmap(vaddr);
7375 return rc;
7379 * We cannot read the structure directly, for portability we must use
7380 * the io functions.
7381 * This is for debug only.
7383 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7385 #ifdef HPSA_DEBUG
7386 int i;
7387 char temp_name[17];
7389 dev_info(dev, "Controller Configuration information\n");
7390 dev_info(dev, "------------------------------------\n");
7391 for (i = 0; i < 4; i++)
7392 temp_name[i] = readb(&(tb->Signature[i]));
7393 temp_name[4] = '\0';
7394 dev_info(dev, " Signature = %s\n", temp_name);
7395 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7396 dev_info(dev, " Transport methods supported = 0x%x\n",
7397 readl(&(tb->TransportSupport)));
7398 dev_info(dev, " Transport methods active = 0x%x\n",
7399 readl(&(tb->TransportActive)));
7400 dev_info(dev, " Requested transport Method = 0x%x\n",
7401 readl(&(tb->HostWrite.TransportRequest)));
7402 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7403 readl(&(tb->HostWrite.CoalIntDelay)));
7404 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7405 readl(&(tb->HostWrite.CoalIntCount)));
7406 dev_info(dev, " Max outstanding commands = %d\n",
7407 readl(&(tb->CmdsOutMax)));
7408 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7409 for (i = 0; i < 16; i++)
7410 temp_name[i] = readb(&(tb->ServerName[i]));
7411 temp_name[16] = '\0';
7412 dev_info(dev, " Server Name = %s\n", temp_name);
7413 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7414 readl(&(tb->HeartBeat)));
7415 #endif /* HPSA_DEBUG */
7418 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7420 int i, offset, mem_type, bar_type;
7422 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7423 return 0;
7424 offset = 0;
7425 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7426 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7427 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7428 offset += 4;
7429 else {
7430 mem_type = pci_resource_flags(pdev, i) &
7431 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7432 switch (mem_type) {
7433 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7434 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7435 offset += 4; /* 32 bit */
7436 break;
7437 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7438 offset += 8;
7439 break;
7440 default: /* reserved in PCI 2.2 */
7441 dev_warn(&pdev->dev,
7442 "base address is invalid\n");
7443 return -1;
7444 break;
7447 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7448 return i + 1;
7450 return -1;
7453 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7455 pci_free_irq_vectors(h->pdev);
7456 h->msix_vectors = 0;
7459 static void hpsa_setup_reply_map(struct ctlr_info *h)
7461 const struct cpumask *mask;
7462 unsigned int queue, cpu;
7464 for (queue = 0; queue < h->msix_vectors; queue++) {
7465 mask = pci_irq_get_affinity(h->pdev, queue);
7466 if (!mask)
7467 goto fallback;
7469 for_each_cpu(cpu, mask)
7470 h->reply_map[cpu] = queue;
7472 return;
7474 fallback:
7475 for_each_possible_cpu(cpu)
7476 h->reply_map[cpu] = 0;
7479 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7480 * controllers that are capable. If not, we use legacy INTx mode.
7482 static int hpsa_interrupt_mode(struct ctlr_info *h)
7484 unsigned int flags = PCI_IRQ_LEGACY;
7485 int ret;
7487 /* Some boards advertise MSI but don't really support it */
7488 switch (h->board_id) {
7489 case 0x40700E11:
7490 case 0x40800E11:
7491 case 0x40820E11:
7492 case 0x40830E11:
7493 break;
7494 default:
7495 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7496 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7497 if (ret > 0) {
7498 h->msix_vectors = ret;
7499 return 0;
7502 flags |= PCI_IRQ_MSI;
7503 break;
7506 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7507 if (ret < 0)
7508 return ret;
7509 return 0;
7512 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7513 bool *legacy_board)
7515 int i;
7516 u32 subsystem_vendor_id, subsystem_device_id;
7518 subsystem_vendor_id = pdev->subsystem_vendor;
7519 subsystem_device_id = pdev->subsystem_device;
7520 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7521 subsystem_vendor_id;
7523 if (legacy_board)
7524 *legacy_board = false;
7525 for (i = 0; i < ARRAY_SIZE(products); i++)
7526 if (*board_id == products[i].board_id) {
7527 if (products[i].access != &SA5A_access &&
7528 products[i].access != &SA5B_access)
7529 return i;
7530 dev_warn(&pdev->dev,
7531 "legacy board ID: 0x%08x\n",
7532 *board_id);
7533 if (legacy_board)
7534 *legacy_board = true;
7535 return i;
7538 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7539 if (legacy_board)
7540 *legacy_board = true;
7541 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7544 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7545 unsigned long *memory_bar)
7547 int i;
7549 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7550 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7551 /* addressing mode bits already removed */
7552 *memory_bar = pci_resource_start(pdev, i);
7553 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7554 *memory_bar);
7555 return 0;
7557 dev_warn(&pdev->dev, "no memory BAR found\n");
7558 return -ENODEV;
7561 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7562 int wait_for_ready)
7564 int i, iterations;
7565 u32 scratchpad;
7566 if (wait_for_ready)
7567 iterations = HPSA_BOARD_READY_ITERATIONS;
7568 else
7569 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7571 for (i = 0; i < iterations; i++) {
7572 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7573 if (wait_for_ready) {
7574 if (scratchpad == HPSA_FIRMWARE_READY)
7575 return 0;
7576 } else {
7577 if (scratchpad != HPSA_FIRMWARE_READY)
7578 return 0;
7580 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7582 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7583 return -ENODEV;
7586 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7587 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7588 u64 *cfg_offset)
7590 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7591 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7592 *cfg_base_addr &= (u32) 0x0000ffff;
7593 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7594 if (*cfg_base_addr_index == -1) {
7595 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7596 return -ENODEV;
7598 return 0;
7601 static void hpsa_free_cfgtables(struct ctlr_info *h)
7603 if (h->transtable) {
7604 iounmap(h->transtable);
7605 h->transtable = NULL;
7607 if (h->cfgtable) {
7608 iounmap(h->cfgtable);
7609 h->cfgtable = NULL;
7613 /* Find and map CISS config table and transfer table
7614 + * several items must be unmapped (freed) later
7615 + * */
7616 static int hpsa_find_cfgtables(struct ctlr_info *h)
7618 u64 cfg_offset;
7619 u32 cfg_base_addr;
7620 u64 cfg_base_addr_index;
7621 u32 trans_offset;
7622 int rc;
7624 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7625 &cfg_base_addr_index, &cfg_offset);
7626 if (rc)
7627 return rc;
7628 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7629 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7630 if (!h->cfgtable) {
7631 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7632 return -ENOMEM;
7634 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7635 if (rc)
7636 return rc;
7637 /* Find performant mode table. */
7638 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7639 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7640 cfg_base_addr_index)+cfg_offset+trans_offset,
7641 sizeof(*h->transtable));
7642 if (!h->transtable) {
7643 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7644 hpsa_free_cfgtables(h);
7645 return -ENOMEM;
7647 return 0;
7650 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7652 #define MIN_MAX_COMMANDS 16
7653 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7655 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7657 /* Limit commands in memory limited kdump scenario. */
7658 if (reset_devices && h->max_commands > 32)
7659 h->max_commands = 32;
7661 if (h->max_commands < MIN_MAX_COMMANDS) {
7662 dev_warn(&h->pdev->dev,
7663 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7664 h->max_commands,
7665 MIN_MAX_COMMANDS);
7666 h->max_commands = MIN_MAX_COMMANDS;
7670 /* If the controller reports that the total max sg entries is greater than 512,
7671 * then we know that chained SG blocks work. (Original smart arrays did not
7672 * support chained SG blocks and would return zero for max sg entries.)
7674 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7676 return h->maxsgentries > 512;
7679 /* Interrogate the hardware for some limits:
7680 * max commands, max SG elements without chaining, and with chaining,
7681 * SG chain block size, etc.
7683 static void hpsa_find_board_params(struct ctlr_info *h)
7685 hpsa_get_max_perf_mode_cmds(h);
7686 h->nr_cmds = h->max_commands;
7687 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7688 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7689 if (hpsa_supports_chained_sg_blocks(h)) {
7690 /* Limit in-command s/g elements to 32 save dma'able memory. */
7691 h->max_cmd_sg_entries = 32;
7692 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7693 h->maxsgentries--; /* save one for chain pointer */
7694 } else {
7696 * Original smart arrays supported at most 31 s/g entries
7697 * embedded inline in the command (trying to use more
7698 * would lock up the controller)
7700 h->max_cmd_sg_entries = 31;
7701 h->maxsgentries = 31; /* default to traditional values */
7702 h->chainsize = 0;
7705 /* Find out what task management functions are supported and cache */
7706 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7707 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7708 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7709 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7710 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7711 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7712 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7715 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7717 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7718 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7719 return false;
7721 return true;
7724 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7726 u32 driver_support;
7728 driver_support = readl(&(h->cfgtable->driver_support));
7729 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7730 #ifdef CONFIG_X86
7731 driver_support |= ENABLE_SCSI_PREFETCH;
7732 #endif
7733 driver_support |= ENABLE_UNIT_ATTN;
7734 writel(driver_support, &(h->cfgtable->driver_support));
7737 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7738 * in a prefetch beyond physical memory.
7740 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7742 u32 dma_prefetch;
7744 if (h->board_id != 0x3225103C)
7745 return;
7746 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7747 dma_prefetch |= 0x8000;
7748 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7751 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7753 int i;
7754 u32 doorbell_value;
7755 unsigned long flags;
7756 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7757 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7758 spin_lock_irqsave(&h->lock, flags);
7759 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7760 spin_unlock_irqrestore(&h->lock, flags);
7761 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7762 goto done;
7763 /* delay and try again */
7764 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7766 return -ENODEV;
7767 done:
7768 return 0;
7771 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7773 int i;
7774 u32 doorbell_value;
7775 unsigned long flags;
7777 /* under certain very rare conditions, this can take awhile.
7778 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7779 * as we enter this code.)
7781 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7782 if (h->remove_in_progress)
7783 goto done;
7784 spin_lock_irqsave(&h->lock, flags);
7785 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7786 spin_unlock_irqrestore(&h->lock, flags);
7787 if (!(doorbell_value & CFGTBL_ChangeReq))
7788 goto done;
7789 /* delay and try again */
7790 msleep(MODE_CHANGE_WAIT_INTERVAL);
7792 return -ENODEV;
7793 done:
7794 return 0;
7797 /* return -ENODEV or other reason on error, 0 on success */
7798 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7800 u32 trans_support;
7802 trans_support = readl(&(h->cfgtable->TransportSupport));
7803 if (!(trans_support & SIMPLE_MODE))
7804 return -ENOTSUPP;
7806 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7808 /* Update the field, and then ring the doorbell */
7809 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7810 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7811 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7812 if (hpsa_wait_for_mode_change_ack(h))
7813 goto error;
7814 print_cfg_table(&h->pdev->dev, h->cfgtable);
7815 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7816 goto error;
7817 h->transMethod = CFGTBL_Trans_Simple;
7818 return 0;
7819 error:
7820 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7821 return -ENODEV;
7824 /* free items allocated or mapped by hpsa_pci_init */
7825 static void hpsa_free_pci_init(struct ctlr_info *h)
7827 hpsa_free_cfgtables(h); /* pci_init 4 */
7828 iounmap(h->vaddr); /* pci_init 3 */
7829 h->vaddr = NULL;
7830 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7832 * call pci_disable_device before pci_release_regions per
7833 * Documentation/driver-api/pci/pci.rst
7835 pci_disable_device(h->pdev); /* pci_init 1 */
7836 pci_release_regions(h->pdev); /* pci_init 2 */
7839 /* several items must be freed later */
7840 static int hpsa_pci_init(struct ctlr_info *h)
7842 int prod_index, err;
7843 bool legacy_board;
7845 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7846 if (prod_index < 0)
7847 return prod_index;
7848 h->product_name = products[prod_index].product_name;
7849 h->access = *(products[prod_index].access);
7850 h->legacy_board = legacy_board;
7851 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7852 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7854 err = pci_enable_device(h->pdev);
7855 if (err) {
7856 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7857 pci_disable_device(h->pdev);
7858 return err;
7861 err = pci_request_regions(h->pdev, HPSA);
7862 if (err) {
7863 dev_err(&h->pdev->dev,
7864 "failed to obtain PCI resources\n");
7865 pci_disable_device(h->pdev);
7866 return err;
7869 pci_set_master(h->pdev);
7871 err = hpsa_interrupt_mode(h);
7872 if (err)
7873 goto clean1;
7875 /* setup mapping between CPU and reply queue */
7876 hpsa_setup_reply_map(h);
7878 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7879 if (err)
7880 goto clean2; /* intmode+region, pci */
7881 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7882 if (!h->vaddr) {
7883 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7884 err = -ENOMEM;
7885 goto clean2; /* intmode+region, pci */
7887 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7888 if (err)
7889 goto clean3; /* vaddr, intmode+region, pci */
7890 err = hpsa_find_cfgtables(h);
7891 if (err)
7892 goto clean3; /* vaddr, intmode+region, pci */
7893 hpsa_find_board_params(h);
7895 if (!hpsa_CISS_signature_present(h)) {
7896 err = -ENODEV;
7897 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7899 hpsa_set_driver_support_bits(h);
7900 hpsa_p600_dma_prefetch_quirk(h);
7901 err = hpsa_enter_simple_mode(h);
7902 if (err)
7903 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7904 return 0;
7906 clean4: /* cfgtables, vaddr, intmode+region, pci */
7907 hpsa_free_cfgtables(h);
7908 clean3: /* vaddr, intmode+region, pci */
7909 iounmap(h->vaddr);
7910 h->vaddr = NULL;
7911 clean2: /* intmode+region, pci */
7912 hpsa_disable_interrupt_mode(h);
7913 clean1:
7915 * call pci_disable_device before pci_release_regions per
7916 * Documentation/driver-api/pci/pci.rst
7918 pci_disable_device(h->pdev);
7919 pci_release_regions(h->pdev);
7920 return err;
7923 static void hpsa_hba_inquiry(struct ctlr_info *h)
7925 int rc;
7927 #define HBA_INQUIRY_BYTE_COUNT 64
7928 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7929 if (!h->hba_inquiry_data)
7930 return;
7931 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7932 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7933 if (rc != 0) {
7934 kfree(h->hba_inquiry_data);
7935 h->hba_inquiry_data = NULL;
7939 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7941 int rc, i;
7942 void __iomem *vaddr;
7944 if (!reset_devices)
7945 return 0;
7947 /* kdump kernel is loading, we don't know in which state is
7948 * the pci interface. The dev->enable_cnt is equal zero
7949 * so we call enable+disable, wait a while and switch it on.
7951 rc = pci_enable_device(pdev);
7952 if (rc) {
7953 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7954 return -ENODEV;
7956 pci_disable_device(pdev);
7957 msleep(260); /* a randomly chosen number */
7958 rc = pci_enable_device(pdev);
7959 if (rc) {
7960 dev_warn(&pdev->dev, "failed to enable device.\n");
7961 return -ENODEV;
7964 pci_set_master(pdev);
7966 vaddr = pci_ioremap_bar(pdev, 0);
7967 if (vaddr == NULL) {
7968 rc = -ENOMEM;
7969 goto out_disable;
7971 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7972 iounmap(vaddr);
7974 /* Reset the controller with a PCI power-cycle or via doorbell */
7975 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7977 /* -ENOTSUPP here means we cannot reset the controller
7978 * but it's already (and still) up and running in
7979 * "performant mode". Or, it might be 640x, which can't reset
7980 * due to concerns about shared bbwc between 6402/6404 pair.
7982 if (rc)
7983 goto out_disable;
7985 /* Now try to get the controller to respond to a no-op */
7986 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7987 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7988 if (hpsa_noop(pdev) == 0)
7989 break;
7990 else
7991 dev_warn(&pdev->dev, "no-op failed%s\n",
7992 (i < 11 ? "; re-trying" : ""));
7995 out_disable:
7997 pci_disable_device(pdev);
7998 return rc;
8001 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8003 kfree(h->cmd_pool_bits);
8004 h->cmd_pool_bits = NULL;
8005 if (h->cmd_pool) {
8006 dma_free_coherent(&h->pdev->dev,
8007 h->nr_cmds * sizeof(struct CommandList),
8008 h->cmd_pool,
8009 h->cmd_pool_dhandle);
8010 h->cmd_pool = NULL;
8011 h->cmd_pool_dhandle = 0;
8013 if (h->errinfo_pool) {
8014 dma_free_coherent(&h->pdev->dev,
8015 h->nr_cmds * sizeof(struct ErrorInfo),
8016 h->errinfo_pool,
8017 h->errinfo_pool_dhandle);
8018 h->errinfo_pool = NULL;
8019 h->errinfo_pool_dhandle = 0;
8023 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8025 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8026 sizeof(unsigned long),
8027 GFP_KERNEL);
8028 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8029 h->nr_cmds * sizeof(*h->cmd_pool),
8030 &h->cmd_pool_dhandle, GFP_KERNEL);
8031 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8032 h->nr_cmds * sizeof(*h->errinfo_pool),
8033 &h->errinfo_pool_dhandle, GFP_KERNEL);
8034 if ((h->cmd_pool_bits == NULL)
8035 || (h->cmd_pool == NULL)
8036 || (h->errinfo_pool == NULL)) {
8037 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8038 goto clean_up;
8040 hpsa_preinitialize_commands(h);
8041 return 0;
8042 clean_up:
8043 hpsa_free_cmd_pool(h);
8044 return -ENOMEM;
8047 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8048 static void hpsa_free_irqs(struct ctlr_info *h)
8050 int i;
8051 int irq_vector = 0;
8053 if (hpsa_simple_mode)
8054 irq_vector = h->intr_mode;
8056 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8057 /* Single reply queue, only one irq to free */
8058 free_irq(pci_irq_vector(h->pdev, irq_vector),
8059 &h->q[h->intr_mode]);
8060 h->q[h->intr_mode] = 0;
8061 return;
8064 for (i = 0; i < h->msix_vectors; i++) {
8065 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8066 h->q[i] = 0;
8068 for (; i < MAX_REPLY_QUEUES; i++)
8069 h->q[i] = 0;
8072 /* returns 0 on success; cleans up and returns -Enn on error */
8073 static int hpsa_request_irqs(struct ctlr_info *h,
8074 irqreturn_t (*msixhandler)(int, void *),
8075 irqreturn_t (*intxhandler)(int, void *))
8077 int rc, i;
8078 int irq_vector = 0;
8080 if (hpsa_simple_mode)
8081 irq_vector = h->intr_mode;
8084 * initialize h->q[x] = x so that interrupt handlers know which
8085 * queue to process.
8087 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8088 h->q[i] = (u8) i;
8090 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8091 /* If performant mode and MSI-X, use multiple reply queues */
8092 for (i = 0; i < h->msix_vectors; i++) {
8093 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8094 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8095 0, h->intrname[i],
8096 &h->q[i]);
8097 if (rc) {
8098 int j;
8100 dev_err(&h->pdev->dev,
8101 "failed to get irq %d for %s\n",
8102 pci_irq_vector(h->pdev, i), h->devname);
8103 for (j = 0; j < i; j++) {
8104 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8105 h->q[j] = 0;
8107 for (; j < MAX_REPLY_QUEUES; j++)
8108 h->q[j] = 0;
8109 return rc;
8112 } else {
8113 /* Use single reply pool */
8114 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8115 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8116 h->msix_vectors ? "x" : "");
8117 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8118 msixhandler, 0,
8119 h->intrname[0],
8120 &h->q[h->intr_mode]);
8121 } else {
8122 sprintf(h->intrname[h->intr_mode],
8123 "%s-intx", h->devname);
8124 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8125 intxhandler, IRQF_SHARED,
8126 h->intrname[0],
8127 &h->q[h->intr_mode]);
8130 if (rc) {
8131 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8132 pci_irq_vector(h->pdev, irq_vector), h->devname);
8133 hpsa_free_irqs(h);
8134 return -ENODEV;
8136 return 0;
8139 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8141 int rc;
8142 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8144 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8145 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8146 if (rc) {
8147 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8148 return rc;
8151 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8152 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8153 if (rc) {
8154 dev_warn(&h->pdev->dev, "Board failed to become ready "
8155 "after soft reset.\n");
8156 return rc;
8159 return 0;
8162 static void hpsa_free_reply_queues(struct ctlr_info *h)
8164 int i;
8166 for (i = 0; i < h->nreply_queues; i++) {
8167 if (!h->reply_queue[i].head)
8168 continue;
8169 dma_free_coherent(&h->pdev->dev,
8170 h->reply_queue_size,
8171 h->reply_queue[i].head,
8172 h->reply_queue[i].busaddr);
8173 h->reply_queue[i].head = NULL;
8174 h->reply_queue[i].busaddr = 0;
8176 h->reply_queue_size = 0;
8179 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8181 hpsa_free_performant_mode(h); /* init_one 7 */
8182 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8183 hpsa_free_cmd_pool(h); /* init_one 5 */
8184 hpsa_free_irqs(h); /* init_one 4 */
8185 scsi_host_put(h->scsi_host); /* init_one 3 */
8186 h->scsi_host = NULL; /* init_one 3 */
8187 hpsa_free_pci_init(h); /* init_one 2_5 */
8188 free_percpu(h->lockup_detected); /* init_one 2 */
8189 h->lockup_detected = NULL; /* init_one 2 */
8190 if (h->resubmit_wq) {
8191 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8192 h->resubmit_wq = NULL;
8194 if (h->rescan_ctlr_wq) {
8195 destroy_workqueue(h->rescan_ctlr_wq);
8196 h->rescan_ctlr_wq = NULL;
8198 if (h->monitor_ctlr_wq) {
8199 destroy_workqueue(h->monitor_ctlr_wq);
8200 h->monitor_ctlr_wq = NULL;
8203 kfree(h); /* init_one 1 */
8206 /* Called when controller lockup detected. */
8207 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8209 int i, refcount;
8210 struct CommandList *c;
8211 int failcount = 0;
8213 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8214 for (i = 0; i < h->nr_cmds; i++) {
8215 c = h->cmd_pool + i;
8216 refcount = atomic_inc_return(&c->refcount);
8217 if (refcount > 1) {
8218 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8219 finish_cmd(c);
8220 atomic_dec(&h->commands_outstanding);
8221 failcount++;
8223 cmd_free(h, c);
8225 dev_warn(&h->pdev->dev,
8226 "failed %d commands in fail_all\n", failcount);
8229 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8231 int cpu;
8233 for_each_online_cpu(cpu) {
8234 u32 *lockup_detected;
8235 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8236 *lockup_detected = value;
8238 wmb(); /* be sure the per-cpu variables are out to memory */
8241 static void controller_lockup_detected(struct ctlr_info *h)
8243 unsigned long flags;
8244 u32 lockup_detected;
8246 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8247 spin_lock_irqsave(&h->lock, flags);
8248 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8249 if (!lockup_detected) {
8250 /* no heartbeat, but controller gave us a zero. */
8251 dev_warn(&h->pdev->dev,
8252 "lockup detected after %d but scratchpad register is zero\n",
8253 h->heartbeat_sample_interval / HZ);
8254 lockup_detected = 0xffffffff;
8256 set_lockup_detected_for_all_cpus(h, lockup_detected);
8257 spin_unlock_irqrestore(&h->lock, flags);
8258 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8259 lockup_detected, h->heartbeat_sample_interval / HZ);
8260 if (lockup_detected == 0xffff0000) {
8261 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8262 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8264 pci_disable_device(h->pdev);
8265 fail_all_outstanding_cmds(h);
8268 static int detect_controller_lockup(struct ctlr_info *h)
8270 u64 now;
8271 u32 heartbeat;
8272 unsigned long flags;
8274 now = get_jiffies_64();
8275 /* If we've received an interrupt recently, we're ok. */
8276 if (time_after64(h->last_intr_timestamp +
8277 (h->heartbeat_sample_interval), now))
8278 return false;
8281 * If we've already checked the heartbeat recently, we're ok.
8282 * This could happen if someone sends us a signal. We
8283 * otherwise don't care about signals in this thread.
8285 if (time_after64(h->last_heartbeat_timestamp +
8286 (h->heartbeat_sample_interval), now))
8287 return false;
8289 /* If heartbeat has not changed since we last looked, we're not ok. */
8290 spin_lock_irqsave(&h->lock, flags);
8291 heartbeat = readl(&h->cfgtable->HeartBeat);
8292 spin_unlock_irqrestore(&h->lock, flags);
8293 if (h->last_heartbeat == heartbeat) {
8294 controller_lockup_detected(h);
8295 return true;
8298 /* We're ok. */
8299 h->last_heartbeat = heartbeat;
8300 h->last_heartbeat_timestamp = now;
8301 return false;
8305 * Set ioaccel status for all ioaccel volumes.
8307 * Called from monitor controller worker (hpsa_event_monitor_worker)
8309 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8310 * transformation, so we will be turning off ioaccel for all volumes that
8311 * make up the Array.
8313 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8315 int rc;
8316 int i;
8317 u8 ioaccel_status;
8318 unsigned char *buf;
8319 struct hpsa_scsi_dev_t *device;
8321 if (!h)
8322 return;
8324 buf = kmalloc(64, GFP_KERNEL);
8325 if (!buf)
8326 return;
8329 * Run through current device list used during I/O requests.
8331 for (i = 0; i < h->ndevices; i++) {
8332 int offload_to_be_enabled = 0;
8333 int offload_config = 0;
8335 device = h->dev[i];
8337 if (!device)
8338 continue;
8339 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8340 HPSA_VPD_LV_IOACCEL_STATUS))
8341 continue;
8343 memset(buf, 0, 64);
8345 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8346 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8347 buf, 64);
8348 if (rc != 0)
8349 continue;
8351 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8354 * Check if offload is still configured on
8356 offload_config =
8357 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8359 * If offload is configured on, check to see if ioaccel
8360 * needs to be enabled.
8362 if (offload_config)
8363 offload_to_be_enabled =
8364 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8367 * If ioaccel is to be re-enabled, re-enable later during the
8368 * scan operation so the driver can get a fresh raidmap
8369 * before turning ioaccel back on.
8371 if (offload_to_be_enabled)
8372 continue;
8375 * Immediately turn off ioaccel for any volume the
8376 * controller tells us to. Some of the reasons could be:
8377 * transformation - change to the LVs of an Array.
8378 * degraded volume - component failure
8380 hpsa_turn_off_ioaccel_for_device(device);
8383 kfree(buf);
8386 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8388 char *event_type;
8390 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8391 return;
8393 /* Ask the controller to clear the events we're handling. */
8394 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8395 | CFGTBL_Trans_io_accel2)) &&
8396 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8397 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8399 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8400 event_type = "state change";
8401 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8402 event_type = "configuration change";
8403 /* Stop sending new RAID offload reqs via the IO accelerator */
8404 scsi_block_requests(h->scsi_host);
8405 hpsa_set_ioaccel_status(h);
8406 hpsa_drain_accel_commands(h);
8407 /* Set 'accelerator path config change' bit */
8408 dev_warn(&h->pdev->dev,
8409 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8410 h->events, event_type);
8411 writel(h->events, &(h->cfgtable->clear_event_notify));
8412 /* Set the "clear event notify field update" bit 6 */
8413 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8414 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8415 hpsa_wait_for_clear_event_notify_ack(h);
8416 scsi_unblock_requests(h->scsi_host);
8417 } else {
8418 /* Acknowledge controller notification events. */
8419 writel(h->events, &(h->cfgtable->clear_event_notify));
8420 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8421 hpsa_wait_for_clear_event_notify_ack(h);
8423 return;
8426 /* Check a register on the controller to see if there are configuration
8427 * changes (added/changed/removed logical drives, etc.) which mean that
8428 * we should rescan the controller for devices.
8429 * Also check flag for driver-initiated rescan.
8431 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8433 if (h->drv_req_rescan) {
8434 h->drv_req_rescan = 0;
8435 return 1;
8438 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8439 return 0;
8441 h->events = readl(&(h->cfgtable->event_notify));
8442 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8446 * Check if any of the offline devices have become ready
8448 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8450 unsigned long flags;
8451 struct offline_device_entry *d;
8452 struct list_head *this, *tmp;
8454 spin_lock_irqsave(&h->offline_device_lock, flags);
8455 list_for_each_safe(this, tmp, &h->offline_device_list) {
8456 d = list_entry(this, struct offline_device_entry,
8457 offline_list);
8458 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8459 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8460 spin_lock_irqsave(&h->offline_device_lock, flags);
8461 list_del(&d->offline_list);
8462 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8463 return 1;
8465 spin_lock_irqsave(&h->offline_device_lock, flags);
8467 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8468 return 0;
8471 static int hpsa_luns_changed(struct ctlr_info *h)
8473 int rc = 1; /* assume there are changes */
8474 struct ReportLUNdata *logdev = NULL;
8476 /* if we can't find out if lun data has changed,
8477 * assume that it has.
8480 if (!h->lastlogicals)
8481 return rc;
8483 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8484 if (!logdev)
8485 return rc;
8487 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8488 dev_warn(&h->pdev->dev,
8489 "report luns failed, can't track lun changes.\n");
8490 goto out;
8492 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8493 dev_info(&h->pdev->dev,
8494 "Lun changes detected.\n");
8495 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8496 goto out;
8497 } else
8498 rc = 0; /* no changes detected. */
8499 out:
8500 kfree(logdev);
8501 return rc;
8504 static void hpsa_perform_rescan(struct ctlr_info *h)
8506 struct Scsi_Host *sh = NULL;
8507 unsigned long flags;
8510 * Do the scan after the reset
8512 spin_lock_irqsave(&h->reset_lock, flags);
8513 if (h->reset_in_progress) {
8514 h->drv_req_rescan = 1;
8515 spin_unlock_irqrestore(&h->reset_lock, flags);
8516 return;
8518 spin_unlock_irqrestore(&h->reset_lock, flags);
8520 sh = scsi_host_get(h->scsi_host);
8521 if (sh != NULL) {
8522 hpsa_scan_start(sh);
8523 scsi_host_put(sh);
8524 h->drv_req_rescan = 0;
8529 * watch for controller events
8531 static void hpsa_event_monitor_worker(struct work_struct *work)
8533 struct ctlr_info *h = container_of(to_delayed_work(work),
8534 struct ctlr_info, event_monitor_work);
8535 unsigned long flags;
8537 spin_lock_irqsave(&h->lock, flags);
8538 if (h->remove_in_progress) {
8539 spin_unlock_irqrestore(&h->lock, flags);
8540 return;
8542 spin_unlock_irqrestore(&h->lock, flags);
8544 if (hpsa_ctlr_needs_rescan(h)) {
8545 hpsa_ack_ctlr_events(h);
8546 hpsa_perform_rescan(h);
8549 spin_lock_irqsave(&h->lock, flags);
8550 if (!h->remove_in_progress)
8551 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8552 HPSA_EVENT_MONITOR_INTERVAL);
8553 spin_unlock_irqrestore(&h->lock, flags);
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8558 unsigned long flags;
8559 struct ctlr_info *h = container_of(to_delayed_work(work),
8560 struct ctlr_info, rescan_ctlr_work);
8562 spin_lock_irqsave(&h->lock, flags);
8563 if (h->remove_in_progress) {
8564 spin_unlock_irqrestore(&h->lock, flags);
8565 return;
8567 spin_unlock_irqrestore(&h->lock, flags);
8569 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8570 hpsa_perform_rescan(h);
8571 } else if (h->discovery_polling) {
8572 if (hpsa_luns_changed(h)) {
8573 dev_info(&h->pdev->dev,
8574 "driver discovery polling rescan.\n");
8575 hpsa_perform_rescan(h);
8578 spin_lock_irqsave(&h->lock, flags);
8579 if (!h->remove_in_progress)
8580 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8581 h->heartbeat_sample_interval);
8582 spin_unlock_irqrestore(&h->lock, flags);
8585 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8587 unsigned long flags;
8588 struct ctlr_info *h = container_of(to_delayed_work(work),
8589 struct ctlr_info, monitor_ctlr_work);
8591 detect_controller_lockup(h);
8592 if (lockup_detected(h))
8593 return;
8595 spin_lock_irqsave(&h->lock, flags);
8596 if (!h->remove_in_progress)
8597 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8598 h->heartbeat_sample_interval);
8599 spin_unlock_irqrestore(&h->lock, flags);
8602 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8603 char *name)
8605 struct workqueue_struct *wq = NULL;
8607 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8608 if (!wq)
8609 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8611 return wq;
8614 static void hpda_free_ctlr_info(struct ctlr_info *h)
8616 kfree(h->reply_map);
8617 kfree(h);
8620 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8622 struct ctlr_info *h;
8624 h = kzalloc(sizeof(*h), GFP_KERNEL);
8625 if (!h)
8626 return NULL;
8628 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8629 if (!h->reply_map) {
8630 kfree(h);
8631 return NULL;
8633 return h;
8636 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8638 int dac, rc;
8639 struct ctlr_info *h;
8640 int try_soft_reset = 0;
8641 unsigned long flags;
8642 u32 board_id;
8644 if (number_of_controllers == 0)
8645 printk(KERN_INFO DRIVER_NAME "\n");
8647 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8648 if (rc < 0) {
8649 dev_warn(&pdev->dev, "Board ID not found\n");
8650 return rc;
8653 rc = hpsa_init_reset_devices(pdev, board_id);
8654 if (rc) {
8655 if (rc != -ENOTSUPP)
8656 return rc;
8657 /* If the reset fails in a particular way (it has no way to do
8658 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8659 * a soft reset once we get the controller configured up to the
8660 * point that it can accept a command.
8662 try_soft_reset = 1;
8663 rc = 0;
8666 reinit_after_soft_reset:
8668 /* Command structures must be aligned on a 32-byte boundary because
8669 * the 5 lower bits of the address are used by the hardware. and by
8670 * the driver. See comments in hpsa.h for more info.
8672 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8673 h = hpda_alloc_ctlr_info();
8674 if (!h) {
8675 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8676 return -ENOMEM;
8679 h->pdev = pdev;
8681 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8682 INIT_LIST_HEAD(&h->offline_device_list);
8683 spin_lock_init(&h->lock);
8684 spin_lock_init(&h->offline_device_lock);
8685 spin_lock_init(&h->scan_lock);
8686 spin_lock_init(&h->reset_lock);
8687 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8689 /* Allocate and clear per-cpu variable lockup_detected */
8690 h->lockup_detected = alloc_percpu(u32);
8691 if (!h->lockup_detected) {
8692 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8693 rc = -ENOMEM;
8694 goto clean1; /* aer/h */
8696 set_lockup_detected_for_all_cpus(h, 0);
8698 rc = hpsa_pci_init(h);
8699 if (rc)
8700 goto clean2; /* lu, aer/h */
8702 /* relies on h-> settings made by hpsa_pci_init, including
8703 * interrupt_mode h->intr */
8704 rc = hpsa_scsi_host_alloc(h);
8705 if (rc)
8706 goto clean2_5; /* pci, lu, aer/h */
8708 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8709 h->ctlr = number_of_controllers;
8710 number_of_controllers++;
8712 /* configure PCI DMA stuff */
8713 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8714 if (rc == 0) {
8715 dac = 1;
8716 } else {
8717 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8718 if (rc == 0) {
8719 dac = 0;
8720 } else {
8721 dev_err(&pdev->dev, "no suitable DMA available\n");
8722 goto clean3; /* shost, pci, lu, aer/h */
8726 /* make sure the board interrupts are off */
8727 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8729 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8730 if (rc)
8731 goto clean3; /* shost, pci, lu, aer/h */
8732 rc = hpsa_alloc_cmd_pool(h);
8733 if (rc)
8734 goto clean4; /* irq, shost, pci, lu, aer/h */
8735 rc = hpsa_alloc_sg_chain_blocks(h);
8736 if (rc)
8737 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8738 init_waitqueue_head(&h->scan_wait_queue);
8739 init_waitqueue_head(&h->event_sync_wait_queue);
8740 mutex_init(&h->reset_mutex);
8741 h->scan_finished = 1; /* no scan currently in progress */
8742 h->scan_waiting = 0;
8744 pci_set_drvdata(pdev, h);
8745 h->ndevices = 0;
8747 spin_lock_init(&h->devlock);
8748 rc = hpsa_put_ctlr_into_performant_mode(h);
8749 if (rc)
8750 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8752 /* create the resubmit workqueue */
8753 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8754 if (!h->rescan_ctlr_wq) {
8755 rc = -ENOMEM;
8756 goto clean7;
8759 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8760 if (!h->resubmit_wq) {
8761 rc = -ENOMEM;
8762 goto clean7; /* aer/h */
8765 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8766 if (!h->monitor_ctlr_wq) {
8767 rc = -ENOMEM;
8768 goto clean7;
8772 * At this point, the controller is ready to take commands.
8773 * Now, if reset_devices and the hard reset didn't work, try
8774 * the soft reset and see if that works.
8776 if (try_soft_reset) {
8778 /* This is kind of gross. We may or may not get a completion
8779 * from the soft reset command, and if we do, then the value
8780 * from the fifo may or may not be valid. So, we wait 10 secs
8781 * after the reset throwing away any completions we get during
8782 * that time. Unregister the interrupt handler and register
8783 * fake ones to scoop up any residual completions.
8785 spin_lock_irqsave(&h->lock, flags);
8786 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8787 spin_unlock_irqrestore(&h->lock, flags);
8788 hpsa_free_irqs(h);
8789 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8790 hpsa_intx_discard_completions);
8791 if (rc) {
8792 dev_warn(&h->pdev->dev,
8793 "Failed to request_irq after soft reset.\n");
8795 * cannot goto clean7 or free_irqs will be called
8796 * again. Instead, do its work
8798 hpsa_free_performant_mode(h); /* clean7 */
8799 hpsa_free_sg_chain_blocks(h); /* clean6 */
8800 hpsa_free_cmd_pool(h); /* clean5 */
8802 * skip hpsa_free_irqs(h) clean4 since that
8803 * was just called before request_irqs failed
8805 goto clean3;
8808 rc = hpsa_kdump_soft_reset(h);
8809 if (rc)
8810 /* Neither hard nor soft reset worked, we're hosed. */
8811 goto clean7;
8813 dev_info(&h->pdev->dev, "Board READY.\n");
8814 dev_info(&h->pdev->dev,
8815 "Waiting for stale completions to drain.\n");
8816 h->access.set_intr_mask(h, HPSA_INTR_ON);
8817 msleep(10000);
8818 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8820 rc = controller_reset_failed(h->cfgtable);
8821 if (rc)
8822 dev_info(&h->pdev->dev,
8823 "Soft reset appears to have failed.\n");
8825 /* since the controller's reset, we have to go back and re-init
8826 * everything. Easiest to just forget what we've done and do it
8827 * all over again.
8829 hpsa_undo_allocations_after_kdump_soft_reset(h);
8830 try_soft_reset = 0;
8831 if (rc)
8832 /* don't goto clean, we already unallocated */
8833 return -ENODEV;
8835 goto reinit_after_soft_reset;
8838 /* Enable Accelerated IO path at driver layer */
8839 h->acciopath_status = 1;
8840 /* Disable discovery polling.*/
8841 h->discovery_polling = 0;
8844 /* Turn the interrupts on so we can service requests */
8845 h->access.set_intr_mask(h, HPSA_INTR_ON);
8847 hpsa_hba_inquiry(h);
8849 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8850 if (!h->lastlogicals)
8851 dev_info(&h->pdev->dev,
8852 "Can't track change to report lun data\n");
8854 /* hook into SCSI subsystem */
8855 rc = hpsa_scsi_add_host(h);
8856 if (rc)
8857 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8859 /* Monitor the controller for firmware lockups */
8860 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8861 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8862 schedule_delayed_work(&h->monitor_ctlr_work,
8863 h->heartbeat_sample_interval);
8864 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8865 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8866 h->heartbeat_sample_interval);
8867 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8868 schedule_delayed_work(&h->event_monitor_work,
8869 HPSA_EVENT_MONITOR_INTERVAL);
8870 return 0;
8872 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873 hpsa_free_performant_mode(h);
8874 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8876 hpsa_free_sg_chain_blocks(h);
8877 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8878 hpsa_free_cmd_pool(h);
8879 clean4: /* irq, shost, pci, lu, aer/h */
8880 hpsa_free_irqs(h);
8881 clean3: /* shost, pci, lu, aer/h */
8882 scsi_host_put(h->scsi_host);
8883 h->scsi_host = NULL;
8884 clean2_5: /* pci, lu, aer/h */
8885 hpsa_free_pci_init(h);
8886 clean2: /* lu, aer/h */
8887 if (h->lockup_detected) {
8888 free_percpu(h->lockup_detected);
8889 h->lockup_detected = NULL;
8891 clean1: /* wq/aer/h */
8892 if (h->resubmit_wq) {
8893 destroy_workqueue(h->resubmit_wq);
8894 h->resubmit_wq = NULL;
8896 if (h->rescan_ctlr_wq) {
8897 destroy_workqueue(h->rescan_ctlr_wq);
8898 h->rescan_ctlr_wq = NULL;
8900 if (h->monitor_ctlr_wq) {
8901 destroy_workqueue(h->monitor_ctlr_wq);
8902 h->monitor_ctlr_wq = NULL;
8904 kfree(h);
8905 return rc;
8908 static void hpsa_flush_cache(struct ctlr_info *h)
8910 char *flush_buf;
8911 struct CommandList *c;
8912 int rc;
8914 if (unlikely(lockup_detected(h)))
8915 return;
8916 flush_buf = kzalloc(4, GFP_KERNEL);
8917 if (!flush_buf)
8918 return;
8920 c = cmd_alloc(h);
8922 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8923 RAID_CTLR_LUNID, TYPE_CMD)) {
8924 goto out;
8926 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8927 DEFAULT_TIMEOUT);
8928 if (rc)
8929 goto out;
8930 if (c->err_info->CommandStatus != 0)
8931 out:
8932 dev_warn(&h->pdev->dev,
8933 "error flushing cache on controller\n");
8934 cmd_free(h, c);
8935 kfree(flush_buf);
8938 /* Make controller gather fresh report lun data each time we
8939 * send down a report luns request
8941 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8943 u32 *options;
8944 struct CommandList *c;
8945 int rc;
8947 /* Don't bother trying to set diag options if locked up */
8948 if (unlikely(h->lockup_detected))
8949 return;
8951 options = kzalloc(sizeof(*options), GFP_KERNEL);
8952 if (!options)
8953 return;
8955 c = cmd_alloc(h);
8957 /* first, get the current diag options settings */
8958 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8959 RAID_CTLR_LUNID, TYPE_CMD))
8960 goto errout;
8962 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8963 NO_TIMEOUT);
8964 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8965 goto errout;
8967 /* Now, set the bit for disabling the RLD caching */
8968 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8970 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8971 RAID_CTLR_LUNID, TYPE_CMD))
8972 goto errout;
8974 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8975 NO_TIMEOUT);
8976 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8977 goto errout;
8979 /* Now verify that it got set: */
8980 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8981 RAID_CTLR_LUNID, TYPE_CMD))
8982 goto errout;
8984 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8985 NO_TIMEOUT);
8986 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8987 goto errout;
8989 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8990 goto out;
8992 errout:
8993 dev_err(&h->pdev->dev,
8994 "Error: failed to disable report lun data caching.\n");
8995 out:
8996 cmd_free(h, c);
8997 kfree(options);
9000 static void __hpsa_shutdown(struct pci_dev *pdev)
9002 struct ctlr_info *h;
9004 h = pci_get_drvdata(pdev);
9005 /* Turn board interrupts off and send the flush cache command
9006 * sendcmd will turn off interrupt, and send the flush...
9007 * To write all data in the battery backed cache to disks
9009 hpsa_flush_cache(h);
9010 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011 hpsa_free_irqs(h); /* init_one 4 */
9012 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9015 static void hpsa_shutdown(struct pci_dev *pdev)
9017 __hpsa_shutdown(pdev);
9018 pci_disable_device(pdev);
9021 static void hpsa_free_device_info(struct ctlr_info *h)
9023 int i;
9025 for (i = 0; i < h->ndevices; i++) {
9026 kfree(h->dev[i]);
9027 h->dev[i] = NULL;
9031 static void hpsa_remove_one(struct pci_dev *pdev)
9033 struct ctlr_info *h;
9034 unsigned long flags;
9036 if (pci_get_drvdata(pdev) == NULL) {
9037 dev_err(&pdev->dev, "unable to remove device\n");
9038 return;
9040 h = pci_get_drvdata(pdev);
9042 /* Get rid of any controller monitoring work items */
9043 spin_lock_irqsave(&h->lock, flags);
9044 h->remove_in_progress = 1;
9045 spin_unlock_irqrestore(&h->lock, flags);
9046 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9047 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9048 cancel_delayed_work_sync(&h->event_monitor_work);
9049 destroy_workqueue(h->rescan_ctlr_wq);
9050 destroy_workqueue(h->resubmit_wq);
9051 destroy_workqueue(h->monitor_ctlr_wq);
9053 hpsa_delete_sas_host(h);
9056 * Call before disabling interrupts.
9057 * scsi_remove_host can trigger I/O operations especially
9058 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9059 * operations which cannot complete and will hang the system.
9061 if (h->scsi_host)
9062 scsi_remove_host(h->scsi_host); /* init_one 8 */
9063 /* includes hpsa_free_irqs - init_one 4 */
9064 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9065 __hpsa_shutdown(pdev);
9067 hpsa_free_device_info(h); /* scan */
9069 kfree(h->hba_inquiry_data); /* init_one 10 */
9070 h->hba_inquiry_data = NULL; /* init_one 10 */
9071 hpsa_free_ioaccel2_sg_chain_blocks(h);
9072 hpsa_free_performant_mode(h); /* init_one 7 */
9073 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9074 hpsa_free_cmd_pool(h); /* init_one 5 */
9075 kfree(h->lastlogicals);
9077 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9079 scsi_host_put(h->scsi_host); /* init_one 3 */
9080 h->scsi_host = NULL; /* init_one 3 */
9082 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9083 hpsa_free_pci_init(h); /* init_one 2.5 */
9085 free_percpu(h->lockup_detected); /* init_one 2 */
9086 h->lockup_detected = NULL; /* init_one 2 */
9087 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9089 hpda_free_ctlr_info(h); /* init_one 1 */
9092 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9093 __attribute__((unused)) pm_message_t state)
9095 return -ENOSYS;
9098 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9100 return -ENOSYS;
9103 static struct pci_driver hpsa_pci_driver = {
9104 .name = HPSA,
9105 .probe = hpsa_init_one,
9106 .remove = hpsa_remove_one,
9107 .id_table = hpsa_pci_device_id, /* id_table */
9108 .shutdown = hpsa_shutdown,
9109 .suspend = hpsa_suspend,
9110 .resume = hpsa_resume,
9113 /* Fill in bucket_map[], given nsgs (the max number of
9114 * scatter gather elements supported) and bucket[],
9115 * which is an array of 8 integers. The bucket[] array
9116 * contains 8 different DMA transfer sizes (in 16
9117 * byte increments) which the controller uses to fetch
9118 * commands. This function fills in bucket_map[], which
9119 * maps a given number of scatter gather elements to one of
9120 * the 8 DMA transfer sizes. The point of it is to allow the
9121 * controller to only do as much DMA as needed to fetch the
9122 * command, with the DMA transfer size encoded in the lower
9123 * bits of the command address.
9125 static void calc_bucket_map(int bucket[], int num_buckets,
9126 int nsgs, int min_blocks, u32 *bucket_map)
9128 int i, j, b, size;
9130 /* Note, bucket_map must have nsgs+1 entries. */
9131 for (i = 0; i <= nsgs; i++) {
9132 /* Compute size of a command with i SG entries */
9133 size = i + min_blocks;
9134 b = num_buckets; /* Assume the biggest bucket */
9135 /* Find the bucket that is just big enough */
9136 for (j = 0; j < num_buckets; j++) {
9137 if (bucket[j] >= size) {
9138 b = j;
9139 break;
9142 /* for a command with i SG entries, use bucket b. */
9143 bucket_map[i] = b;
9148 * return -ENODEV on err, 0 on success (or no action)
9149 * allocates numerous items that must be freed later
9151 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9153 int i;
9154 unsigned long register_value;
9155 unsigned long transMethod = CFGTBL_Trans_Performant |
9156 (trans_support & CFGTBL_Trans_use_short_tags) |
9157 CFGTBL_Trans_enable_directed_msix |
9158 (trans_support & (CFGTBL_Trans_io_accel1 |
9159 CFGTBL_Trans_io_accel2));
9160 struct access_method access = SA5_performant_access;
9162 /* This is a bit complicated. There are 8 registers on
9163 * the controller which we write to to tell it 8 different
9164 * sizes of commands which there may be. It's a way of
9165 * reducing the DMA done to fetch each command. Encoded into
9166 * each command's tag are 3 bits which communicate to the controller
9167 * which of the eight sizes that command fits within. The size of
9168 * each command depends on how many scatter gather entries there are.
9169 * Each SG entry requires 16 bytes. The eight registers are programmed
9170 * with the number of 16-byte blocks a command of that size requires.
9171 * The smallest command possible requires 5 such 16 byte blocks.
9172 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9173 * blocks. Note, this only extends to the SG entries contained
9174 * within the command block, and does not extend to chained blocks
9175 * of SG elements. bft[] contains the eight values we write to
9176 * the registers. They are not evenly distributed, but have more
9177 * sizes for small commands, and fewer sizes for larger commands.
9179 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9180 #define MIN_IOACCEL2_BFT_ENTRY 5
9181 #define HPSA_IOACCEL2_HEADER_SZ 4
9182 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9183 13, 14, 15, 16, 17, 18, 19,
9184 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9185 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9186 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9187 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9188 16 * MIN_IOACCEL2_BFT_ENTRY);
9189 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9190 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9191 /* 5 = 1 s/g entry or 4k
9192 * 6 = 2 s/g entry or 8k
9193 * 8 = 4 s/g entry or 16k
9194 * 10 = 6 s/g entry or 24k
9197 /* If the controller supports either ioaccel method then
9198 * we can also use the RAID stack submit path that does not
9199 * perform the superfluous readl() after each command submission.
9201 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9202 access = SA5_performant_access_no_read;
9204 /* Controller spec: zero out this buffer. */
9205 for (i = 0; i < h->nreply_queues; i++)
9206 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9208 bft[7] = SG_ENTRIES_IN_CMD + 4;
9209 calc_bucket_map(bft, ARRAY_SIZE(bft),
9210 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9211 for (i = 0; i < 8; i++)
9212 writel(bft[i], &h->transtable->BlockFetch[i]);
9214 /* size of controller ring buffer */
9215 writel(h->max_commands, &h->transtable->RepQSize);
9216 writel(h->nreply_queues, &h->transtable->RepQCount);
9217 writel(0, &h->transtable->RepQCtrAddrLow32);
9218 writel(0, &h->transtable->RepQCtrAddrHigh32);
9220 for (i = 0; i < h->nreply_queues; i++) {
9221 writel(0, &h->transtable->RepQAddr[i].upper);
9222 writel(h->reply_queue[i].busaddr,
9223 &h->transtable->RepQAddr[i].lower);
9226 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9227 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9229 * enable outbound interrupt coalescing in accelerator mode;
9231 if (trans_support & CFGTBL_Trans_io_accel1) {
9232 access = SA5_ioaccel_mode1_access;
9233 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9234 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9235 } else
9236 if (trans_support & CFGTBL_Trans_io_accel2)
9237 access = SA5_ioaccel_mode2_access;
9238 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9239 if (hpsa_wait_for_mode_change_ack(h)) {
9240 dev_err(&h->pdev->dev,
9241 "performant mode problem - doorbell timeout\n");
9242 return -ENODEV;
9244 register_value = readl(&(h->cfgtable->TransportActive));
9245 if (!(register_value & CFGTBL_Trans_Performant)) {
9246 dev_err(&h->pdev->dev,
9247 "performant mode problem - transport not active\n");
9248 return -ENODEV;
9250 /* Change the access methods to the performant access methods */
9251 h->access = access;
9252 h->transMethod = transMethod;
9254 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9255 (trans_support & CFGTBL_Trans_io_accel2)))
9256 return 0;
9258 if (trans_support & CFGTBL_Trans_io_accel1) {
9259 /* Set up I/O accelerator mode */
9260 for (i = 0; i < h->nreply_queues; i++) {
9261 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9262 h->reply_queue[i].current_entry =
9263 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9265 bft[7] = h->ioaccel_maxsg + 8;
9266 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9267 h->ioaccel1_blockFetchTable);
9269 /* initialize all reply queue entries to unused */
9270 for (i = 0; i < h->nreply_queues; i++)
9271 memset(h->reply_queue[i].head,
9272 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9273 h->reply_queue_size);
9275 /* set all the constant fields in the accelerator command
9276 * frames once at init time to save CPU cycles later.
9278 for (i = 0; i < h->nr_cmds; i++) {
9279 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9281 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9282 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9283 (i * sizeof(struct ErrorInfo)));
9284 cp->err_info_len = sizeof(struct ErrorInfo);
9285 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9286 cp->host_context_flags =
9287 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9288 cp->timeout_sec = 0;
9289 cp->ReplyQueue = 0;
9290 cp->tag =
9291 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9292 cp->host_addr =
9293 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9294 (i * sizeof(struct io_accel1_cmd)));
9296 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9297 u64 cfg_offset, cfg_base_addr_index;
9298 u32 bft2_offset, cfg_base_addr;
9299 int rc;
9301 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9302 &cfg_base_addr_index, &cfg_offset);
9303 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9304 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9305 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9306 4, h->ioaccel2_blockFetchTable);
9307 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9308 BUILD_BUG_ON(offsetof(struct CfgTable,
9309 io_accel_request_size_offset) != 0xb8);
9310 h->ioaccel2_bft2_regs =
9311 remap_pci_mem(pci_resource_start(h->pdev,
9312 cfg_base_addr_index) +
9313 cfg_offset + bft2_offset,
9314 ARRAY_SIZE(bft2) *
9315 sizeof(*h->ioaccel2_bft2_regs));
9316 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9317 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9319 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9320 if (hpsa_wait_for_mode_change_ack(h)) {
9321 dev_err(&h->pdev->dev,
9322 "performant mode problem - enabling ioaccel mode\n");
9323 return -ENODEV;
9325 return 0;
9328 /* Free ioaccel1 mode command blocks and block fetch table */
9329 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9331 if (h->ioaccel_cmd_pool) {
9332 pci_free_consistent(h->pdev,
9333 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9334 h->ioaccel_cmd_pool,
9335 h->ioaccel_cmd_pool_dhandle);
9336 h->ioaccel_cmd_pool = NULL;
9337 h->ioaccel_cmd_pool_dhandle = 0;
9339 kfree(h->ioaccel1_blockFetchTable);
9340 h->ioaccel1_blockFetchTable = NULL;
9343 /* Allocate ioaccel1 mode command blocks and block fetch table */
9344 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9346 h->ioaccel_maxsg =
9347 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9348 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9349 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9351 /* Command structures must be aligned on a 128-byte boundary
9352 * because the 7 lower bits of the address are used by the
9353 * hardware.
9355 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9356 IOACCEL1_COMMANDLIST_ALIGNMENT);
9357 h->ioaccel_cmd_pool =
9358 dma_alloc_coherent(&h->pdev->dev,
9359 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9362 h->ioaccel1_blockFetchTable =
9363 kmalloc(((h->ioaccel_maxsg + 1) *
9364 sizeof(u32)), GFP_KERNEL);
9366 if ((h->ioaccel_cmd_pool == NULL) ||
9367 (h->ioaccel1_blockFetchTable == NULL))
9368 goto clean_up;
9370 memset(h->ioaccel_cmd_pool, 0,
9371 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9372 return 0;
9374 clean_up:
9375 hpsa_free_ioaccel1_cmd_and_bft(h);
9376 return -ENOMEM;
9379 /* Free ioaccel2 mode command blocks and block fetch table */
9380 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9382 hpsa_free_ioaccel2_sg_chain_blocks(h);
9384 if (h->ioaccel2_cmd_pool) {
9385 pci_free_consistent(h->pdev,
9386 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9387 h->ioaccel2_cmd_pool,
9388 h->ioaccel2_cmd_pool_dhandle);
9389 h->ioaccel2_cmd_pool = NULL;
9390 h->ioaccel2_cmd_pool_dhandle = 0;
9392 kfree(h->ioaccel2_blockFetchTable);
9393 h->ioaccel2_blockFetchTable = NULL;
9396 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9399 int rc;
9401 /* Allocate ioaccel2 mode command blocks and block fetch table */
9403 h->ioaccel_maxsg =
9404 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9405 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9406 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9408 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9409 IOACCEL2_COMMANDLIST_ALIGNMENT);
9410 h->ioaccel2_cmd_pool =
9411 dma_alloc_coherent(&h->pdev->dev,
9412 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9415 h->ioaccel2_blockFetchTable =
9416 kmalloc(((h->ioaccel_maxsg + 1) *
9417 sizeof(u32)), GFP_KERNEL);
9419 if ((h->ioaccel2_cmd_pool == NULL) ||
9420 (h->ioaccel2_blockFetchTable == NULL)) {
9421 rc = -ENOMEM;
9422 goto clean_up;
9425 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9426 if (rc)
9427 goto clean_up;
9429 memset(h->ioaccel2_cmd_pool, 0,
9430 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9431 return 0;
9433 clean_up:
9434 hpsa_free_ioaccel2_cmd_and_bft(h);
9435 return rc;
9438 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9439 static void hpsa_free_performant_mode(struct ctlr_info *h)
9441 kfree(h->blockFetchTable);
9442 h->blockFetchTable = NULL;
9443 hpsa_free_reply_queues(h);
9444 hpsa_free_ioaccel1_cmd_and_bft(h);
9445 hpsa_free_ioaccel2_cmd_and_bft(h);
9448 /* return -ENODEV on error, 0 on success (or no action)
9449 * allocates numerous items that must be freed later
9451 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9453 u32 trans_support;
9454 unsigned long transMethod = CFGTBL_Trans_Performant |
9455 CFGTBL_Trans_use_short_tags;
9456 int i, rc;
9458 if (hpsa_simple_mode)
9459 return 0;
9461 trans_support = readl(&(h->cfgtable->TransportSupport));
9462 if (!(trans_support & PERFORMANT_MODE))
9463 return 0;
9465 /* Check for I/O accelerator mode support */
9466 if (trans_support & CFGTBL_Trans_io_accel1) {
9467 transMethod |= CFGTBL_Trans_io_accel1 |
9468 CFGTBL_Trans_enable_directed_msix;
9469 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9470 if (rc)
9471 return rc;
9472 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9473 transMethod |= CFGTBL_Trans_io_accel2 |
9474 CFGTBL_Trans_enable_directed_msix;
9475 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9476 if (rc)
9477 return rc;
9480 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9481 hpsa_get_max_perf_mode_cmds(h);
9482 /* Performant mode ring buffer and supporting data structures */
9483 h->reply_queue_size = h->max_commands * sizeof(u64);
9485 for (i = 0; i < h->nreply_queues; i++) {
9486 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9487 h->reply_queue_size,
9488 &h->reply_queue[i].busaddr,
9489 GFP_KERNEL);
9490 if (!h->reply_queue[i].head) {
9491 rc = -ENOMEM;
9492 goto clean1; /* rq, ioaccel */
9494 h->reply_queue[i].size = h->max_commands;
9495 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9496 h->reply_queue[i].current_entry = 0;
9499 /* Need a block fetch table for performant mode */
9500 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9501 sizeof(u32)), GFP_KERNEL);
9502 if (!h->blockFetchTable) {
9503 rc = -ENOMEM;
9504 goto clean1; /* rq, ioaccel */
9507 rc = hpsa_enter_performant_mode(h, trans_support);
9508 if (rc)
9509 goto clean2; /* bft, rq, ioaccel */
9510 return 0;
9512 clean2: /* bft, rq, ioaccel */
9513 kfree(h->blockFetchTable);
9514 h->blockFetchTable = NULL;
9515 clean1: /* rq, ioaccel */
9516 hpsa_free_reply_queues(h);
9517 hpsa_free_ioaccel1_cmd_and_bft(h);
9518 hpsa_free_ioaccel2_cmd_and_bft(h);
9519 return rc;
9522 static int is_accelerated_cmd(struct CommandList *c)
9524 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9527 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9529 struct CommandList *c = NULL;
9530 int i, accel_cmds_out;
9531 int refcount;
9533 do { /* wait for all outstanding ioaccel commands to drain out */
9534 accel_cmds_out = 0;
9535 for (i = 0; i < h->nr_cmds; i++) {
9536 c = h->cmd_pool + i;
9537 refcount = atomic_inc_return(&c->refcount);
9538 if (refcount > 1) /* Command is allocated */
9539 accel_cmds_out += is_accelerated_cmd(c);
9540 cmd_free(h, c);
9542 if (accel_cmds_out <= 0)
9543 break;
9544 msleep(100);
9545 } while (1);
9548 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9549 struct hpsa_sas_port *hpsa_sas_port)
9551 struct hpsa_sas_phy *hpsa_sas_phy;
9552 struct sas_phy *phy;
9554 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9555 if (!hpsa_sas_phy)
9556 return NULL;
9558 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9559 hpsa_sas_port->next_phy_index);
9560 if (!phy) {
9561 kfree(hpsa_sas_phy);
9562 return NULL;
9565 hpsa_sas_port->next_phy_index++;
9566 hpsa_sas_phy->phy = phy;
9567 hpsa_sas_phy->parent_port = hpsa_sas_port;
9569 return hpsa_sas_phy;
9572 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9574 struct sas_phy *phy = hpsa_sas_phy->phy;
9576 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9577 if (hpsa_sas_phy->added_to_port)
9578 list_del(&hpsa_sas_phy->phy_list_entry);
9579 sas_phy_delete(phy);
9580 kfree(hpsa_sas_phy);
9583 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9585 int rc;
9586 struct hpsa_sas_port *hpsa_sas_port;
9587 struct sas_phy *phy;
9588 struct sas_identify *identify;
9590 hpsa_sas_port = hpsa_sas_phy->parent_port;
9591 phy = hpsa_sas_phy->phy;
9593 identify = &phy->identify;
9594 memset(identify, 0, sizeof(*identify));
9595 identify->sas_address = hpsa_sas_port->sas_address;
9596 identify->device_type = SAS_END_DEVICE;
9597 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9598 identify->target_port_protocols = SAS_PROTOCOL_STP;
9599 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9600 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9601 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9602 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9603 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9605 rc = sas_phy_add(hpsa_sas_phy->phy);
9606 if (rc)
9607 return rc;
9609 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9610 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9611 &hpsa_sas_port->phy_list_head);
9612 hpsa_sas_phy->added_to_port = true;
9614 return 0;
9617 static int
9618 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9619 struct sas_rphy *rphy)
9621 struct sas_identify *identify;
9623 identify = &rphy->identify;
9624 identify->sas_address = hpsa_sas_port->sas_address;
9625 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626 identify->target_port_protocols = SAS_PROTOCOL_STP;
9628 return sas_rphy_add(rphy);
9631 static struct hpsa_sas_port
9632 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9633 u64 sas_address)
9635 int rc;
9636 struct hpsa_sas_port *hpsa_sas_port;
9637 struct sas_port *port;
9639 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9640 if (!hpsa_sas_port)
9641 return NULL;
9643 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9644 hpsa_sas_port->parent_node = hpsa_sas_node;
9646 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9647 if (!port)
9648 goto free_hpsa_port;
9650 rc = sas_port_add(port);
9651 if (rc)
9652 goto free_sas_port;
9654 hpsa_sas_port->port = port;
9655 hpsa_sas_port->sas_address = sas_address;
9656 list_add_tail(&hpsa_sas_port->port_list_entry,
9657 &hpsa_sas_node->port_list_head);
9659 return hpsa_sas_port;
9661 free_sas_port:
9662 sas_port_free(port);
9663 free_hpsa_port:
9664 kfree(hpsa_sas_port);
9666 return NULL;
9669 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9671 struct hpsa_sas_phy *hpsa_sas_phy;
9672 struct hpsa_sas_phy *next;
9674 list_for_each_entry_safe(hpsa_sas_phy, next,
9675 &hpsa_sas_port->phy_list_head, phy_list_entry)
9676 hpsa_free_sas_phy(hpsa_sas_phy);
9678 sas_port_delete(hpsa_sas_port->port);
9679 list_del(&hpsa_sas_port->port_list_entry);
9680 kfree(hpsa_sas_port);
9683 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9685 struct hpsa_sas_node *hpsa_sas_node;
9687 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9688 if (hpsa_sas_node) {
9689 hpsa_sas_node->parent_dev = parent_dev;
9690 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9693 return hpsa_sas_node;
9696 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9698 struct hpsa_sas_port *hpsa_sas_port;
9699 struct hpsa_sas_port *next;
9701 if (!hpsa_sas_node)
9702 return;
9704 list_for_each_entry_safe(hpsa_sas_port, next,
9705 &hpsa_sas_node->port_list_head, port_list_entry)
9706 hpsa_free_sas_port(hpsa_sas_port);
9708 kfree(hpsa_sas_node);
9711 static struct hpsa_scsi_dev_t
9712 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9713 struct sas_rphy *rphy)
9715 int i;
9716 struct hpsa_scsi_dev_t *device;
9718 for (i = 0; i < h->ndevices; i++) {
9719 device = h->dev[i];
9720 if (!device->sas_port)
9721 continue;
9722 if (device->sas_port->rphy == rphy)
9723 return device;
9726 return NULL;
9729 static int hpsa_add_sas_host(struct ctlr_info *h)
9731 int rc;
9732 struct device *parent_dev;
9733 struct hpsa_sas_node *hpsa_sas_node;
9734 struct hpsa_sas_port *hpsa_sas_port;
9735 struct hpsa_sas_phy *hpsa_sas_phy;
9737 parent_dev = &h->scsi_host->shost_dev;
9739 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9740 if (!hpsa_sas_node)
9741 return -ENOMEM;
9743 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9744 if (!hpsa_sas_port) {
9745 rc = -ENODEV;
9746 goto free_sas_node;
9749 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9750 if (!hpsa_sas_phy) {
9751 rc = -ENODEV;
9752 goto free_sas_port;
9755 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9756 if (rc)
9757 goto free_sas_phy;
9759 h->sas_host = hpsa_sas_node;
9761 return 0;
9763 free_sas_phy:
9764 hpsa_free_sas_phy(hpsa_sas_phy);
9765 free_sas_port:
9766 hpsa_free_sas_port(hpsa_sas_port);
9767 free_sas_node:
9768 hpsa_free_sas_node(hpsa_sas_node);
9770 return rc;
9773 static void hpsa_delete_sas_host(struct ctlr_info *h)
9775 hpsa_free_sas_node(h->sas_host);
9778 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9779 struct hpsa_scsi_dev_t *device)
9781 int rc;
9782 struct hpsa_sas_port *hpsa_sas_port;
9783 struct sas_rphy *rphy;
9785 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9786 if (!hpsa_sas_port)
9787 return -ENOMEM;
9789 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9790 if (!rphy) {
9791 rc = -ENODEV;
9792 goto free_sas_port;
9795 hpsa_sas_port->rphy = rphy;
9796 device->sas_port = hpsa_sas_port;
9798 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9799 if (rc)
9800 goto free_sas_port;
9802 return 0;
9804 free_sas_port:
9805 hpsa_free_sas_port(hpsa_sas_port);
9806 device->sas_port = NULL;
9808 return rc;
9811 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9813 if (device->sas_port) {
9814 hpsa_free_sas_port(device->sas_port);
9815 device->sas_port = NULL;
9819 static int
9820 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9822 return 0;
9825 static int
9826 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9828 struct Scsi_Host *shost = phy_to_shost(rphy);
9829 struct ctlr_info *h;
9830 struct hpsa_scsi_dev_t *sd;
9832 if (!shost)
9833 return -ENXIO;
9835 h = shost_to_hba(shost);
9837 if (!h)
9838 return -ENXIO;
9840 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9841 if (!sd)
9842 return -ENXIO;
9844 *identifier = sd->eli;
9846 return 0;
9849 static int
9850 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9852 return -ENXIO;
9855 static int
9856 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9858 return 0;
9861 static int
9862 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9864 return 0;
9867 static int
9868 hpsa_sas_phy_setup(struct sas_phy *phy)
9870 return 0;
9873 static void
9874 hpsa_sas_phy_release(struct sas_phy *phy)
9878 static int
9879 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9881 return -EINVAL;
9884 static struct sas_function_template hpsa_sas_transport_functions = {
9885 .get_linkerrors = hpsa_sas_get_linkerrors,
9886 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9887 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9888 .phy_reset = hpsa_sas_phy_reset,
9889 .phy_enable = hpsa_sas_phy_enable,
9890 .phy_setup = hpsa_sas_phy_setup,
9891 .phy_release = hpsa_sas_phy_release,
9892 .set_phy_speed = hpsa_sas_phy_speed,
9896 * This is it. Register the PCI driver information for the cards we control
9897 * the OS will call our registered routines when it finds one of our cards.
9899 static int __init hpsa_init(void)
9901 int rc;
9903 hpsa_sas_transport_template =
9904 sas_attach_transport(&hpsa_sas_transport_functions);
9905 if (!hpsa_sas_transport_template)
9906 return -ENODEV;
9908 rc = pci_register_driver(&hpsa_pci_driver);
9910 if (rc)
9911 sas_release_transport(hpsa_sas_transport_template);
9913 return rc;
9916 static void __exit hpsa_cleanup(void)
9918 pci_unregister_driver(&hpsa_pci_driver);
9919 sas_release_transport(hpsa_sas_transport_template);
9922 static void __attribute__((unused)) verify_offsets(void)
9924 #define VERIFY_OFFSET(member, offset) \
9925 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9927 VERIFY_OFFSET(structure_size, 0);
9928 VERIFY_OFFSET(volume_blk_size, 4);
9929 VERIFY_OFFSET(volume_blk_cnt, 8);
9930 VERIFY_OFFSET(phys_blk_shift, 16);
9931 VERIFY_OFFSET(parity_rotation_shift, 17);
9932 VERIFY_OFFSET(strip_size, 18);
9933 VERIFY_OFFSET(disk_starting_blk, 20);
9934 VERIFY_OFFSET(disk_blk_cnt, 28);
9935 VERIFY_OFFSET(data_disks_per_row, 36);
9936 VERIFY_OFFSET(metadata_disks_per_row, 38);
9937 VERIFY_OFFSET(row_cnt, 40);
9938 VERIFY_OFFSET(layout_map_count, 42);
9939 VERIFY_OFFSET(flags, 44);
9940 VERIFY_OFFSET(dekindex, 46);
9941 /* VERIFY_OFFSET(reserved, 48 */
9942 VERIFY_OFFSET(data, 64);
9944 #undef VERIFY_OFFSET
9946 #define VERIFY_OFFSET(member, offset) \
9947 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9949 VERIFY_OFFSET(IU_type, 0);
9950 VERIFY_OFFSET(direction, 1);
9951 VERIFY_OFFSET(reply_queue, 2);
9952 /* VERIFY_OFFSET(reserved1, 3); */
9953 VERIFY_OFFSET(scsi_nexus, 4);
9954 VERIFY_OFFSET(Tag, 8);
9955 VERIFY_OFFSET(cdb, 16);
9956 VERIFY_OFFSET(cciss_lun, 32);
9957 VERIFY_OFFSET(data_len, 40);
9958 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9959 VERIFY_OFFSET(sg_count, 45);
9960 /* VERIFY_OFFSET(reserved3 */
9961 VERIFY_OFFSET(err_ptr, 48);
9962 VERIFY_OFFSET(err_len, 56);
9963 /* VERIFY_OFFSET(reserved4 */
9964 VERIFY_OFFSET(sg, 64);
9966 #undef VERIFY_OFFSET
9968 #define VERIFY_OFFSET(member, offset) \
9969 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9971 VERIFY_OFFSET(dev_handle, 0x00);
9972 VERIFY_OFFSET(reserved1, 0x02);
9973 VERIFY_OFFSET(function, 0x03);
9974 VERIFY_OFFSET(reserved2, 0x04);
9975 VERIFY_OFFSET(err_info, 0x0C);
9976 VERIFY_OFFSET(reserved3, 0x10);
9977 VERIFY_OFFSET(err_info_len, 0x12);
9978 VERIFY_OFFSET(reserved4, 0x13);
9979 VERIFY_OFFSET(sgl_offset, 0x14);
9980 VERIFY_OFFSET(reserved5, 0x15);
9981 VERIFY_OFFSET(transfer_len, 0x1C);
9982 VERIFY_OFFSET(reserved6, 0x20);
9983 VERIFY_OFFSET(io_flags, 0x24);
9984 VERIFY_OFFSET(reserved7, 0x26);
9985 VERIFY_OFFSET(LUN, 0x34);
9986 VERIFY_OFFSET(control, 0x3C);
9987 VERIFY_OFFSET(CDB, 0x40);
9988 VERIFY_OFFSET(reserved8, 0x50);
9989 VERIFY_OFFSET(host_context_flags, 0x60);
9990 VERIFY_OFFSET(timeout_sec, 0x62);
9991 VERIFY_OFFSET(ReplyQueue, 0x64);
9992 VERIFY_OFFSET(reserved9, 0x65);
9993 VERIFY_OFFSET(tag, 0x68);
9994 VERIFY_OFFSET(host_addr, 0x70);
9995 VERIFY_OFFSET(CISS_LUN, 0x78);
9996 VERIFY_OFFSET(SG, 0x78 + 8);
9997 #undef VERIFY_OFFSET
10000 module_init(hpsa_init);
10001 module_exit(hpsa_cleanup);