1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
77 #include "page_reporting.h"
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock
);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node
);
85 EXPORT_PER_CPU_SYMBOL(numa_node
);
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
97 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
101 /* work_structs for global per-cpu drains */
104 struct work_struct work
;
106 static DEFINE_MUTEX(pcpu_drain_mutex
);
107 static DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy
;
111 EXPORT_SYMBOL(latent_entropy
);
115 * Array of node states.
117 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
118 [N_POSSIBLE
] = NODE_MASK_ALL
,
119 [N_ONLINE
] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
125 [N_MEMORY
] = { { [0] = 1UL } },
126 [N_CPU
] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states
);
131 atomic_long_t _totalram_pages __read_mostly
;
132 EXPORT_SYMBOL(_totalram_pages
);
133 unsigned long totalreserve_pages __read_mostly
;
134 unsigned long totalcma_pages __read_mostly
;
136 int percpu_pagelist_fraction
;
137 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc
);
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
143 EXPORT_SYMBOL(init_on_alloc
);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free
);
148 DEFINE_STATIC_KEY_FALSE(init_on_free
);
150 EXPORT_SYMBOL(init_on_free
);
152 static int __init
early_init_on_alloc(char *buf
)
159 ret
= kstrtobool(buf
, &bool_result
);
160 if (bool_result
&& page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 static_branch_enable(&init_on_alloc
);
165 static_branch_disable(&init_on_alloc
);
168 early_param("init_on_alloc", early_init_on_alloc
);
170 static int __init
early_init_on_free(char *buf
)
177 ret
= kstrtobool(buf
, &bool_result
);
178 if (bool_result
&& page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 static_branch_enable(&init_on_free
);
183 static_branch_disable(&init_on_free
);
186 early_param("init_on_free", early_init_on_free
);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page
*page
)
201 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
203 page
->index
= migratetype
;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask
;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
222 if (saved_gfp_mask
) {
223 gfp_allowed_mask
= saved_gfp_mask
;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
231 WARN_ON(saved_gfp_mask
);
232 saved_gfp_mask
= gfp_allowed_mask
;
233 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly
;
248 static void __free_pages_ok(struct page
*page
, unsigned int order
);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
262 #ifdef CONFIG_ZONE_DMA
265 #ifdef CONFIG_ZONE_DMA32
269 #ifdef CONFIG_HIGHMEM
275 static char * const zone_names
[MAX_NR_ZONES
] = {
276 #ifdef CONFIG_ZONE_DMA
279 #ifdef CONFIG_ZONE_DMA32
283 #ifdef CONFIG_HIGHMEM
287 #ifdef CONFIG_ZONE_DEVICE
292 const char * const migratetype_names
[MIGRATE_TYPES
] = {
300 #ifdef CONFIG_MEMORY_ISOLATION
305 compound_page_dtor
* const compound_page_dtors
[] = {
308 #ifdef CONFIG_HUGETLB_PAGE
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 int min_free_kbytes
= 1024;
317 int user_min_free_kbytes
= -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly
;
330 int watermark_boost_factor __read_mostly
= 15000;
332 int watermark_scale_factor
= 10;
334 static unsigned long nr_kernel_pages __initdata
;
335 static unsigned long nr_all_pages __initdata
;
336 static unsigned long dma_reserve __initdata
;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
340 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
341 static unsigned long required_kernelcore __initdata
;
342 static unsigned long required_kernelcore_percent __initdata
;
343 static unsigned long required_movablecore __initdata
;
344 static unsigned long required_movablecore_percent __initdata
;
345 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
346 static bool mirrored_kernelcore __meminitdata
;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone
);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
354 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
355 unsigned int nr_online_nodes __read_mostly
= 1;
356 EXPORT_SYMBOL(nr_node_ids
);
357 EXPORT_SYMBOL(nr_online_nodes
);
360 int page_group_by_mobility_disabled __read_mostly
;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
385 if (!static_branch_unlikely(&deferred_pages
))
386 kasan_free_pages(page
, order
);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
392 int nid
= early_pfn_to_nid(pfn
);
394 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
407 static unsigned long prev_end_pfn
, nr_initialised
;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn
!= end_pfn
) {
414 prev_end_pfn
= end_pfn
;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised
> PAGES_PER_SECTION
) &&
428 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
429 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn
)
442 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn
));
455 return page_zone(page
)->pageblock_flags
;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
461 #ifdef CONFIG_SPARSEMEM
462 pfn
&= (PAGES_PER_SECTION
-1);
463 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
465 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
466 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
481 unsigned long end_bitidx
,
484 unsigned long *bitmap
;
485 unsigned long bitidx
, word_bitidx
;
488 bitmap
= get_pageblock_bitmap(page
, pfn
);
489 bitidx
= pfn_to_bitidx(page
, pfn
);
490 word_bitidx
= bitidx
/ BITS_PER_LONG
;
491 bitidx
&= (BITS_PER_LONG
-1);
493 word
= bitmap
[word_bitidx
];
494 bitidx
+= end_bitidx
;
495 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
498 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
499 unsigned long end_bitidx
,
502 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
505 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
507 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
520 unsigned long end_bitidx
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
537 bitidx
+= end_bitidx
;
538 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
539 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
541 word
= READ_ONCE(bitmap
[word_bitidx
]);
543 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
544 if (word
== old_word
)
550 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
552 if (unlikely(page_group_by_mobility_disabled
&&
553 migratetype
< MIGRATE_PCPTYPES
))
554 migratetype
= MIGRATE_UNMOVABLE
;
556 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
557 PB_migrate
, PB_migrate_end
);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
565 unsigned long pfn
= page_to_pfn(page
);
566 unsigned long sp
, start_pfn
;
569 seq
= zone_span_seqbegin(zone
);
570 start_pfn
= zone
->zone_start_pfn
;
571 sp
= zone
->spanned_pages
;
572 if (!zone_spans_pfn(zone
, pfn
))
574 } while (zone_span_seqretry(zone
, seq
));
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn
, zone_to_nid(zone
), zone
->name
,
579 start_pfn
, start_pfn
+ sp
);
584 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
586 if (!pfn_valid_within(page_to_pfn(page
)))
588 if (zone
!= page_zone(page
))
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
598 if (page_outside_zone_boundaries(zone
, page
))
600 if (!page_is_consistent(zone
, page
))
606 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
612 static void bad_page(struct page
*page
, const char *reason
,
613 unsigned long bad_flags
)
615 static unsigned long resume
;
616 static unsigned long nr_shown
;
617 static unsigned long nr_unshown
;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown
== 60) {
624 if (time_before(jiffies
, resume
)) {
630 "BUG: Bad page state: %lu messages suppressed\n",
637 resume
= jiffies
+ 60 * HZ
;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current
->comm
, page_to_pfn(page
));
641 __dump_page(page
, reason
);
642 bad_flags
&= page
->flags
;
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags
, &bad_flags
);
646 dump_page_owner(page
);
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page
); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page
*page
)
673 mem_cgroup_uncharge(page
);
674 __free_pages_ok(page
, compound_order(page
));
677 void prep_compound_page(struct page
*page
, unsigned int order
)
680 int nr_pages
= 1 << order
;
682 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
683 set_compound_order(page
, order
);
685 for (i
= 1; i
< nr_pages
; i
++) {
686 struct page
*p
= page
+ i
;
687 set_page_count(p
, 0);
688 p
->mapping
= TAIL_MAPPING
;
689 set_compound_head(p
, page
);
691 atomic_set(compound_mapcount_ptr(page
), -1);
692 if (hpage_pincount_available(page
))
693 atomic_set(compound_pincount_ptr(page
), 0);
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder
;
699 bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
707 static int __init
early_debug_pagealloc(char *buf
)
709 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
711 early_param("debug_pagealloc", early_debug_pagealloc
);
713 void init_debug_pagealloc(void)
715 if (!debug_pagealloc_enabled())
718 static_branch_enable(&_debug_pagealloc_enabled
);
720 if (!debug_guardpage_minorder())
723 static_branch_enable(&_debug_guardpage_enabled
);
726 static int __init
debug_guardpage_minorder_setup(char *buf
)
730 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
731 pr_err("Bad debug_guardpage_minorder value\n");
734 _debug_guardpage_minorder
= res
;
735 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
740 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
741 unsigned int order
, int migratetype
)
743 if (!debug_guardpage_enabled())
746 if (order
>= debug_guardpage_minorder())
749 __SetPageGuard(page
);
750 INIT_LIST_HEAD(&page
->lru
);
751 set_page_private(page
, order
);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
758 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
759 unsigned int order
, int migratetype
)
761 if (!debug_guardpage_enabled())
764 __ClearPageGuard(page
);
766 set_page_private(page
, 0);
767 if (!is_migrate_isolate(migratetype
))
768 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
771 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
772 unsigned int order
, int migratetype
) { return false; }
773 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
774 unsigned int order
, int migratetype
) {}
777 static inline void set_page_order(struct page
*page
, unsigned int order
)
779 set_page_private(page
, order
);
780 __SetPageBuddy(page
);
784 * This function checks whether a page is free && is the buddy
785 * we can coalesce a page and its buddy if
786 * (a) the buddy is not in a hole (check before calling!) &&
787 * (b) the buddy is in the buddy system &&
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
794 * For recording page's order, we use page_private(page).
796 static inline bool page_is_buddy(struct page
*page
, struct page
*buddy
,
799 if (!page_is_guard(buddy
) && !PageBuddy(buddy
))
802 if (page_order(buddy
) != order
)
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
809 if (page_zone_id(page
) != page_zone_id(buddy
))
812 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control
*task_capc(struct zone
*zone
)
820 struct capture_control
*capc
= current
->capture_control
;
823 !(current
->flags
& PF_KTHREAD
) &&
825 capc
->cc
->zone
== zone
&&
826 capc
->cc
->direct_compaction
? capc
: NULL
;
830 compaction_capture(struct capture_control
*capc
, struct page
*page
,
831 int order
, int migratetype
)
833 if (!capc
|| order
!= capc
->cc
->order
)
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype
) ||
838 is_migrate_isolate(migratetype
))
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
847 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
855 static inline struct capture_control
*task_capc(struct zone
*zone
)
861 compaction_capture(struct capture_control
*capc
, struct page
*page
,
862 int order
, int migratetype
)
866 #endif /* CONFIG_COMPACTION */
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
870 unsigned int order
, int migratetype
)
872 struct free_area
*area
= &zone
->free_area
[order
];
874 list_add(&page
->lru
, &area
->free_list
[migratetype
]);
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page
*page
, struct zone
*zone
,
880 unsigned int order
, int migratetype
)
882 struct free_area
*area
= &zone
->free_area
[order
];
884 list_add_tail(&page
->lru
, &area
->free_list
[migratetype
]);
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
890 unsigned int order
, int migratetype
)
892 struct free_area
*area
= &zone
->free_area
[order
];
894 list_move(&page
->lru
, &area
->free_list
[migratetype
]);
897 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
900 /* clear reported state and update reported page count */
901 if (page_reported(page
))
902 __ClearPageReported(page
);
904 list_del(&page
->lru
);
905 __ClearPageBuddy(page
);
906 set_page_private(page
, 0);
907 zone
->free_area
[order
].nr_free
--;
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
919 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
920 struct page
*page
, unsigned int order
)
922 struct page
*higher_page
, *higher_buddy
;
923 unsigned long combined_pfn
;
925 if (order
>= MAX_ORDER
- 2)
928 if (!pfn_valid_within(buddy_pfn
))
931 combined_pfn
= buddy_pfn
& pfn
;
932 higher_page
= page
+ (combined_pfn
- pfn
);
933 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
934 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
936 return pfn_valid_within(buddy_pfn
) &&
937 page_is_buddy(higher_page
, higher_buddy
, order
+ 1);
941 * Freeing function for a buddy system allocator.
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
955 * So when we are allocating or freeing one, we can derive the state of the
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
958 * If a block is freed, and its buddy is also free, then this
959 * triggers coalescing into a block of larger size.
964 static inline void __free_one_page(struct page
*page
,
966 struct zone
*zone
, unsigned int order
,
967 int migratetype
, bool report
)
969 struct capture_control
*capc
= task_capc(zone
);
970 unsigned long uninitialized_var(buddy_pfn
);
971 unsigned long combined_pfn
;
972 unsigned int max_order
;
976 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
978 VM_BUG_ON(!zone_is_initialized(zone
));
979 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
981 VM_BUG_ON(migratetype
== -1);
982 if (likely(!is_migrate_isolate(migratetype
)))
983 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
985 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
986 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
989 while (order
< max_order
- 1) {
990 if (compaction_capture(capc
, page
, order
, migratetype
)) {
991 __mod_zone_freepage_state(zone
, -(1 << order
),
995 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
996 buddy
= page
+ (buddy_pfn
- pfn
);
998 if (!pfn_valid_within(buddy_pfn
))
1000 if (!page_is_buddy(page
, buddy
, order
))
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1006 if (page_is_guard(buddy
))
1007 clear_page_guard(zone
, buddy
, order
, migratetype
);
1009 del_page_from_free_list(buddy
, zone
, order
);
1010 combined_pfn
= buddy_pfn
& pfn
;
1011 page
= page
+ (combined_pfn
- pfn
);
1015 if (max_order
< MAX_ORDER
) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1024 if (unlikely(has_isolate_pageblock(zone
))) {
1027 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1028 buddy
= page
+ (buddy_pfn
- pfn
);
1029 buddy_mt
= get_pageblock_migratetype(buddy
);
1031 if (migratetype
!= buddy_mt
1032 && (is_migrate_isolate(migratetype
) ||
1033 is_migrate_isolate(buddy_mt
)))
1037 goto continue_merging
;
1041 set_page_order(page
, order
);
1043 if (is_shuffle_order(order
))
1044 to_tail
= shuffle_pick_tail();
1046 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
1049 add_to_free_list_tail(page
, zone
, order
, migratetype
);
1051 add_to_free_list(page
, zone
, order
, migratetype
);
1053 /* Notify page reporting subsystem of freed page */
1055 page_reporting_notify_free(order
);
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1063 static inline bool page_expected_state(struct page
*page
,
1064 unsigned long check_flags
)
1066 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1069 if (unlikely((unsigned long)page
->mapping
|
1070 page_ref_count(page
) |
1072 (unsigned long)page
->mem_cgroup
|
1074 (page
->flags
& check_flags
)))
1080 static void free_pages_check_bad(struct page
*page
)
1082 const char *bad_reason
;
1083 unsigned long bad_flags
;
1088 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1089 bad_reason
= "nonzero mapcount";
1090 if (unlikely(page
->mapping
!= NULL
))
1091 bad_reason
= "non-NULL mapping";
1092 if (unlikely(page_ref_count(page
) != 0))
1093 bad_reason
= "nonzero _refcount";
1094 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
1095 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
1099 if (unlikely(page
->mem_cgroup
))
1100 bad_reason
= "page still charged to cgroup";
1102 bad_page(page
, bad_reason
, bad_flags
);
1105 static inline int free_pages_check(struct page
*page
)
1107 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page
);
1115 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1129 switch (page
- head_page
) {
1131 /* the first tail page: ->mapping may be compound_mapcount() */
1132 if (unlikely(compound_mapcount(page
))) {
1133 bad_page(page
, "nonzero compound_mapcount", 0);
1139 * the second tail page: ->mapping is
1140 * deferred_list.next -- ignore value.
1144 if (page
->mapping
!= TAIL_MAPPING
) {
1145 bad_page(page
, "corrupted mapping in tail page", 0);
1150 if (unlikely(!PageTail(page
))) {
1151 bad_page(page
, "PageTail not set", 0);
1154 if (unlikely(compound_head(page
) != head_page
)) {
1155 bad_page(page
, "compound_head not consistent", 0);
1160 page
->mapping
= NULL
;
1161 clear_compound_head(page
);
1165 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1169 for (i
= 0; i
< numpages
; i
++)
1170 clear_highpage(page
+ i
);
1173 static __always_inline
bool free_pages_prepare(struct page
*page
,
1174 unsigned int order
, bool check_free
)
1178 VM_BUG_ON_PAGE(PageTail(page
), page
);
1180 trace_mm_page_free(page
, order
);
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1186 if (unlikely(order
)) {
1187 bool compound
= PageCompound(page
);
1190 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1193 ClearPageDoubleMap(page
);
1194 for (i
= 1; i
< (1 << order
); i
++) {
1196 bad
+= free_tail_pages_check(page
, page
+ i
);
1197 if (unlikely(free_pages_check(page
+ i
))) {
1201 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1204 if (PageMappingFlags(page
))
1205 page
->mapping
= NULL
;
1206 if (memcg_kmem_enabled() && PageKmemcg(page
))
1207 __memcg_kmem_uncharge_page(page
, order
);
1209 bad
+= free_pages_check(page
);
1213 page_cpupid_reset_last(page
);
1214 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1215 reset_page_owner(page
, order
);
1217 if (!PageHighMem(page
)) {
1218 debug_check_no_locks_freed(page_address(page
),
1219 PAGE_SIZE
<< order
);
1220 debug_check_no_obj_freed(page_address(page
),
1221 PAGE_SIZE
<< order
);
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page
, 1 << order
);
1226 kernel_poison_pages(page
, 1 << order
, 0);
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1232 arch_free_page(page
, order
);
1234 if (debug_pagealloc_enabled_static())
1235 kernel_map_pages(page
, 1 << order
, 0);
1237 kasan_free_nondeferred_pages(page
, order
);
1242 #ifdef CONFIG_DEBUG_VM
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1248 static bool free_pcp_prepare(struct page
*page
)
1250 return free_pages_prepare(page
, 0, true);
1253 static bool bulkfree_pcp_prepare(struct page
*page
)
1255 if (debug_pagealloc_enabled_static())
1256 return free_pages_check(page
);
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1267 static bool free_pcp_prepare(struct page
*page
)
1269 if (debug_pagealloc_enabled_static())
1270 return free_pages_prepare(page
, 0, true);
1272 return free_pages_prepare(page
, 0, false);
1275 static bool bulkfree_pcp_prepare(struct page
*page
)
1277 return free_pages_check(page
);
1279 #endif /* CONFIG_DEBUG_VM */
1281 static inline void prefetch_buddy(struct page
*page
)
1283 unsigned long pfn
= page_to_pfn(page
);
1284 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1285 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1291 * Frees a number of pages from the PCP lists
1292 * Assumes all pages on list are in same zone, and of same order.
1293 * count is the number of pages to free.
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1301 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1302 struct per_cpu_pages
*pcp
)
1304 int migratetype
= 0;
1306 int prefetch_nr
= 0;
1307 bool isolated_pageblocks
;
1308 struct page
*page
, *tmp
;
1312 struct list_head
*list
;
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1323 if (++migratetype
== MIGRATE_PCPTYPES
)
1325 list
= &pcp
->lists
[migratetype
];
1326 } while (list_empty(list
));
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free
== MIGRATE_PCPTYPES
)
1333 page
= list_last_entry(list
, struct page
, lru
);
1334 /* must delete to avoid corrupting pcp list */
1335 list_del(&page
->lru
);
1338 if (bulkfree_pcp_prepare(page
))
1341 list_add_tail(&page
->lru
, &head
);
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1352 if (prefetch_nr
++ < pcp
->batch
)
1353 prefetch_buddy(page
);
1354 } while (--count
&& --batch_free
&& !list_empty(list
));
1357 spin_lock(&zone
->lock
);
1358 isolated_pageblocks
= has_isolate_pageblock(zone
);
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1364 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1365 int mt
= get_pcppage_migratetype(page
);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks
))
1370 mt
= get_pageblock_migratetype(page
);
1372 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
, true);
1373 trace_mm_page_pcpu_drain(page
, 0, mt
);
1375 spin_unlock(&zone
->lock
);
1378 static void free_one_page(struct zone
*zone
,
1379 struct page
*page
, unsigned long pfn
,
1383 spin_lock(&zone
->lock
);
1384 if (unlikely(has_isolate_pageblock(zone
) ||
1385 is_migrate_isolate(migratetype
))) {
1386 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1388 __free_one_page(page
, pfn
, zone
, order
, migratetype
, true);
1389 spin_unlock(&zone
->lock
);
1392 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1393 unsigned long zone
, int nid
)
1395 mm_zero_struct_page(page
);
1396 set_page_links(page
, zone
, nid
, pfn
);
1397 init_page_count(page
);
1398 page_mapcount_reset(page
);
1399 page_cpupid_reset_last(page
);
1400 page_kasan_tag_reset(page
);
1402 INIT_LIST_HEAD(&page
->lru
);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone
))
1406 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit
init_reserved_page(unsigned long pfn
)
1416 if (!early_page_uninitialised(pfn
))
1419 nid
= early_pfn_to_nid(pfn
);
1420 pgdat
= NODE_DATA(nid
);
1422 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1423 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1425 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1428 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1431 static inline void init_reserved_page(unsigned long pfn
)
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1442 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1444 unsigned long start_pfn
= PFN_DOWN(start
);
1445 unsigned long end_pfn
= PFN_UP(end
);
1447 for (; start_pfn
< end_pfn
; start_pfn
++) {
1448 if (pfn_valid(start_pfn
)) {
1449 struct page
*page
= pfn_to_page(start_pfn
);
1451 init_reserved_page(start_pfn
);
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page
->lru
);
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1461 __SetPageReserved(page
);
1466 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1468 unsigned long flags
;
1470 unsigned long pfn
= page_to_pfn(page
);
1472 if (!free_pages_prepare(page
, order
, true))
1475 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1476 local_irq_save(flags
);
1477 __count_vm_events(PGFREE
, 1 << order
);
1478 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1479 local_irq_restore(flags
);
1482 void __free_pages_core(struct page
*page
, unsigned int order
)
1484 unsigned int nr_pages
= 1 << order
;
1485 struct page
*p
= page
;
1489 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1491 __ClearPageReserved(p
);
1492 set_page_count(p
, 0);
1494 __ClearPageReserved(p
);
1495 set_page_count(p
, 0);
1497 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1498 set_page_refcounted(page
);
1499 __free_pages(page
, order
);
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1507 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1509 static DEFINE_SPINLOCK(early_pfn_lock
);
1512 spin_lock(&early_pfn_lock
);
1513 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1515 nid
= first_online_node
;
1516 spin_unlock(&early_pfn_lock
);
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1528 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1529 if (nid
>= 0 && nid
!= node
)
1535 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1542 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1545 if (early_page_uninitialised(pfn
))
1547 __free_pages_core(page
, order
);
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1567 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1568 unsigned long end_pfn
, struct zone
*zone
)
1570 struct page
*start_page
;
1571 struct page
*end_page
;
1573 /* end_pfn is one past the range we are checking */
1576 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1579 start_page
= pfn_to_online_page(start_pfn
);
1583 if (page_zone(start_page
) != zone
)
1586 end_page
= pfn_to_page(end_pfn
);
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1595 void set_zone_contiguous(struct zone
*zone
)
1597 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1598 unsigned long block_end_pfn
;
1600 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1601 for (; block_start_pfn
< zone_end_pfn(zone
);
1602 block_start_pfn
= block_end_pfn
,
1603 block_end_pfn
+= pageblock_nr_pages
) {
1605 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1607 if (!__pageblock_pfn_to_page(block_start_pfn
,
1608 block_end_pfn
, zone
))
1612 /* We confirm that there is no hole */
1613 zone
->contiguous
= true;
1616 void clear_zone_contiguous(struct zone
*zone
)
1618 zone
->contiguous
= false;
1621 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1622 static void __init
deferred_free_range(unsigned long pfn
,
1623 unsigned long nr_pages
)
1631 page
= pfn_to_page(pfn
);
1633 /* Free a large naturally-aligned chunk if possible */
1634 if (nr_pages
== pageblock_nr_pages
&&
1635 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1636 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1637 __free_pages_core(page
, pageblock_order
);
1641 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1642 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1643 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1644 __free_pages_core(page
, 0);
1648 /* Completion tracking for deferred_init_memmap() threads */
1649 static atomic_t pgdat_init_n_undone __initdata
;
1650 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1652 static inline void __init
pgdat_init_report_one_done(void)
1654 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1655 complete(&pgdat_init_all_done_comp
);
1659 * Returns true if page needs to be initialized or freed to buddy allocator.
1661 * First we check if pfn is valid on architectures where it is possible to have
1662 * holes within pageblock_nr_pages. On systems where it is not possible, this
1663 * function is optimized out.
1665 * Then, we check if a current large page is valid by only checking the validity
1668 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1670 if (!pfn_valid_within(pfn
))
1672 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1678 * Free pages to buddy allocator. Try to free aligned pages in
1679 * pageblock_nr_pages sizes.
1681 static void __init
deferred_free_pages(unsigned long pfn
,
1682 unsigned long end_pfn
)
1684 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1685 unsigned long nr_free
= 0;
1687 for (; pfn
< end_pfn
; pfn
++) {
1688 if (!deferred_pfn_valid(pfn
)) {
1689 deferred_free_range(pfn
- nr_free
, nr_free
);
1691 } else if (!(pfn
& nr_pgmask
)) {
1692 deferred_free_range(pfn
- nr_free
, nr_free
);
1694 touch_nmi_watchdog();
1699 /* Free the last block of pages to allocator */
1700 deferred_free_range(pfn
- nr_free
, nr_free
);
1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1705 * by performing it only once every pageblock_nr_pages.
1706 * Return number of pages initialized.
1708 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1710 unsigned long end_pfn
)
1712 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1713 int nid
= zone_to_nid(zone
);
1714 unsigned long nr_pages
= 0;
1715 int zid
= zone_idx(zone
);
1716 struct page
*page
= NULL
;
1718 for (; pfn
< end_pfn
; pfn
++) {
1719 if (!deferred_pfn_valid(pfn
)) {
1722 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1723 page
= pfn_to_page(pfn
);
1724 touch_nmi_watchdog();
1728 __init_single_page(page
, pfn
, zid
, nid
);
1735 * This function is meant to pre-load the iterator for the zone init.
1736 * Specifically it walks through the ranges until we are caught up to the
1737 * first_init_pfn value and exits there. If we never encounter the value we
1738 * return false indicating there are no valid ranges left.
1741 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1742 unsigned long *spfn
, unsigned long *epfn
,
1743 unsigned long first_init_pfn
)
1748 * Start out by walking through the ranges in this zone that have
1749 * already been initialized. We don't need to do anything with them
1750 * so we just need to flush them out of the system.
1752 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1753 if (*epfn
<= first_init_pfn
)
1755 if (*spfn
< first_init_pfn
)
1756 *spfn
= first_init_pfn
;
1765 * Initialize and free pages. We do it in two loops: first we initialize
1766 * struct page, then free to buddy allocator, because while we are
1767 * freeing pages we can access pages that are ahead (computing buddy
1768 * page in __free_one_page()).
1770 * In order to try and keep some memory in the cache we have the loop
1771 * broken along max page order boundaries. This way we will not cause
1772 * any issues with the buddy page computation.
1774 static unsigned long __init
1775 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1776 unsigned long *end_pfn
)
1778 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1779 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1780 unsigned long nr_pages
= 0;
1783 /* First we loop through and initialize the page values */
1784 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1787 if (mo_pfn
<= *start_pfn
)
1790 t
= min(mo_pfn
, *end_pfn
);
1791 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1793 if (mo_pfn
< *end_pfn
) {
1794 *start_pfn
= mo_pfn
;
1799 /* Reset values and now loop through freeing pages as needed */
1802 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1808 t
= min(mo_pfn
, epfn
);
1809 deferred_free_pages(spfn
, t
);
1818 /* Initialise remaining memory on a node */
1819 static int __init
deferred_init_memmap(void *data
)
1821 pg_data_t
*pgdat
= data
;
1822 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1823 unsigned long spfn
= 0, epfn
= 0, nr_pages
= 0;
1824 unsigned long first_init_pfn
, flags
;
1825 unsigned long start
= jiffies
;
1830 /* Bind memory initialisation thread to a local node if possible */
1831 if (!cpumask_empty(cpumask
))
1832 set_cpus_allowed_ptr(current
, cpumask
);
1834 pgdat_resize_lock(pgdat
, &flags
);
1835 first_init_pfn
= pgdat
->first_deferred_pfn
;
1836 if (first_init_pfn
== ULONG_MAX
) {
1837 pgdat_resize_unlock(pgdat
, &flags
);
1838 pgdat_init_report_one_done();
1842 /* Sanity check boundaries */
1843 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1844 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1845 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1847 /* Only the highest zone is deferred so find it */
1848 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1849 zone
= pgdat
->node_zones
+ zid
;
1850 if (first_init_pfn
< zone_end_pfn(zone
))
1854 /* If the zone is empty somebody else may have cleared out the zone */
1855 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1860 * Initialize and free pages in MAX_ORDER sized increments so
1861 * that we can avoid introducing any issues with the buddy
1865 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1867 pgdat_resize_unlock(pgdat
, &flags
);
1869 /* Sanity check that the next zone really is unpopulated */
1870 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1872 pr_info("node %d initialised, %lu pages in %ums\n",
1873 pgdat
->node_id
, nr_pages
, jiffies_to_msecs(jiffies
- start
));
1875 pgdat_init_report_one_done();
1880 * If this zone has deferred pages, try to grow it by initializing enough
1881 * deferred pages to satisfy the allocation specified by order, rounded up to
1882 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1883 * of SECTION_SIZE bytes by initializing struct pages in increments of
1884 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1886 * Return true when zone was grown, otherwise return false. We return true even
1887 * when we grow less than requested, to let the caller decide if there are
1888 * enough pages to satisfy the allocation.
1890 * Note: We use noinline because this function is needed only during boot, and
1891 * it is called from a __ref function _deferred_grow_zone. This way we are
1892 * making sure that it is not inlined into permanent text section.
1894 static noinline
bool __init
1895 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1897 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1898 pg_data_t
*pgdat
= zone
->zone_pgdat
;
1899 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1900 unsigned long spfn
, epfn
, flags
;
1901 unsigned long nr_pages
= 0;
1904 /* Only the last zone may have deferred pages */
1905 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1908 pgdat_resize_lock(pgdat
, &flags
);
1911 * If deferred pages have been initialized while we were waiting for
1912 * the lock, return true, as the zone was grown. The caller will retry
1913 * this zone. We won't return to this function since the caller also
1914 * has this static branch.
1916 if (!static_branch_unlikely(&deferred_pages
)) {
1917 pgdat_resize_unlock(pgdat
, &flags
);
1922 * If someone grew this zone while we were waiting for spinlock, return
1923 * true, as there might be enough pages already.
1925 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1926 pgdat_resize_unlock(pgdat
, &flags
);
1930 /* If the zone is empty somebody else may have cleared out the zone */
1931 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1932 first_deferred_pfn
)) {
1933 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1934 pgdat_resize_unlock(pgdat
, &flags
);
1935 /* Retry only once. */
1936 return first_deferred_pfn
!= ULONG_MAX
;
1940 * Initialize and free pages in MAX_ORDER sized increments so
1941 * that we can avoid introducing any issues with the buddy
1944 while (spfn
< epfn
) {
1945 /* update our first deferred PFN for this section */
1946 first_deferred_pfn
= spfn
;
1948 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1950 /* We should only stop along section boundaries */
1951 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
1954 /* If our quota has been met we can stop here */
1955 if (nr_pages
>= nr_pages_needed
)
1959 pgdat
->first_deferred_pfn
= spfn
;
1960 pgdat_resize_unlock(pgdat
, &flags
);
1962 return nr_pages
> 0;
1966 * deferred_grow_zone() is __init, but it is called from
1967 * get_page_from_freelist() during early boot until deferred_pages permanently
1968 * disables this call. This is why we have refdata wrapper to avoid warning,
1969 * and to ensure that the function body gets unloaded.
1972 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1974 return deferred_grow_zone(zone
, order
);
1977 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1979 void __init
page_alloc_init_late(void)
1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1986 /* There will be num_node_state(N_MEMORY) threads */
1987 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1988 for_each_node_state(nid
, N_MEMORY
) {
1989 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1992 /* Block until all are initialised */
1993 wait_for_completion(&pgdat_init_all_done_comp
);
1996 * The number of managed pages has changed due to the initialisation
1997 * so the pcpu batch and high limits needs to be updated or the limits
1998 * will be artificially small.
2000 for_each_populated_zone(zone
)
2001 zone_pcp_update(zone
);
2004 * We initialized the rest of the deferred pages. Permanently disable
2005 * on-demand struct page initialization.
2007 static_branch_disable(&deferred_pages
);
2009 /* Reinit limits that are based on free pages after the kernel is up */
2010 files_maxfiles_init();
2013 /* Discard memblock private memory */
2016 for_each_node_state(nid
, N_MEMORY
)
2017 shuffle_free_memory(NODE_DATA(nid
));
2019 for_each_populated_zone(zone
)
2020 set_zone_contiguous(zone
);
2024 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2025 void __init
init_cma_reserved_pageblock(struct page
*page
)
2027 unsigned i
= pageblock_nr_pages
;
2028 struct page
*p
= page
;
2031 __ClearPageReserved(p
);
2032 set_page_count(p
, 0);
2035 set_pageblock_migratetype(page
, MIGRATE_CMA
);
2037 if (pageblock_order
>= MAX_ORDER
) {
2038 i
= pageblock_nr_pages
;
2041 set_page_refcounted(p
);
2042 __free_pages(p
, MAX_ORDER
- 1);
2043 p
+= MAX_ORDER_NR_PAGES
;
2044 } while (i
-= MAX_ORDER_NR_PAGES
);
2046 set_page_refcounted(page
);
2047 __free_pages(page
, pageblock_order
);
2050 adjust_managed_page_count(page
, pageblock_nr_pages
);
2055 * The order of subdivision here is critical for the IO subsystem.
2056 * Please do not alter this order without good reasons and regression
2057 * testing. Specifically, as large blocks of memory are subdivided,
2058 * the order in which smaller blocks are delivered depends on the order
2059 * they're subdivided in this function. This is the primary factor
2060 * influencing the order in which pages are delivered to the IO
2061 * subsystem according to empirical testing, and this is also justified
2062 * by considering the behavior of a buddy system containing a single
2063 * large block of memory acted on by a series of small allocations.
2064 * This behavior is a critical factor in sglist merging's success.
2068 static inline void expand(struct zone
*zone
, struct page
*page
,
2069 int low
, int high
, int migratetype
)
2071 unsigned long size
= 1 << high
;
2073 while (high
> low
) {
2076 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2079 * Mark as guard pages (or page), that will allow to
2080 * merge back to allocator when buddy will be freed.
2081 * Corresponding page table entries will not be touched,
2082 * pages will stay not present in virtual address space
2084 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2087 add_to_free_list(&page
[size
], zone
, high
, migratetype
);
2088 set_page_order(&page
[size
], high
);
2092 static void check_new_page_bad(struct page
*page
)
2094 const char *bad_reason
= NULL
;
2095 unsigned long bad_flags
= 0;
2097 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
2098 bad_reason
= "nonzero mapcount";
2099 if (unlikely(page
->mapping
!= NULL
))
2100 bad_reason
= "non-NULL mapping";
2101 if (unlikely(page_ref_count(page
) != 0))
2102 bad_reason
= "nonzero _refcount";
2103 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2104 bad_reason
= "HWPoisoned (hardware-corrupted)";
2105 bad_flags
= __PG_HWPOISON
;
2106 /* Don't complain about hwpoisoned pages */
2107 page_mapcount_reset(page
); /* remove PageBuddy */
2110 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
2111 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
2112 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
2115 if (unlikely(page
->mem_cgroup
))
2116 bad_reason
= "page still charged to cgroup";
2118 bad_page(page
, bad_reason
, bad_flags
);
2122 * This page is about to be returned from the page allocator
2124 static inline int check_new_page(struct page
*page
)
2126 if (likely(page_expected_state(page
,
2127 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2130 check_new_page_bad(page
);
2134 static inline bool free_pages_prezeroed(void)
2136 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
2137 page_poisoning_enabled()) || want_init_on_free();
2140 #ifdef CONFIG_DEBUG_VM
2142 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2143 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2144 * also checked when pcp lists are refilled from the free lists.
2146 static inline bool check_pcp_refill(struct page
*page
)
2148 if (debug_pagealloc_enabled_static())
2149 return check_new_page(page
);
2154 static inline bool check_new_pcp(struct page
*page
)
2156 return check_new_page(page
);
2160 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2161 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2162 * enabled, they are also checked when being allocated from the pcp lists.
2164 static inline bool check_pcp_refill(struct page
*page
)
2166 return check_new_page(page
);
2168 static inline bool check_new_pcp(struct page
*page
)
2170 if (debug_pagealloc_enabled_static())
2171 return check_new_page(page
);
2175 #endif /* CONFIG_DEBUG_VM */
2177 static bool check_new_pages(struct page
*page
, unsigned int order
)
2180 for (i
= 0; i
< (1 << order
); i
++) {
2181 struct page
*p
= page
+ i
;
2183 if (unlikely(check_new_page(p
)))
2190 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2193 set_page_private(page
, 0);
2194 set_page_refcounted(page
);
2196 arch_alloc_page(page
, order
);
2197 if (debug_pagealloc_enabled_static())
2198 kernel_map_pages(page
, 1 << order
, 1);
2199 kasan_alloc_pages(page
, order
);
2200 kernel_poison_pages(page
, 1 << order
, 1);
2201 set_page_owner(page
, order
, gfp_flags
);
2204 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2205 unsigned int alloc_flags
)
2207 post_alloc_hook(page
, order
, gfp_flags
);
2209 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags
))
2210 kernel_init_free_pages(page
, 1 << order
);
2212 if (order
&& (gfp_flags
& __GFP_COMP
))
2213 prep_compound_page(page
, order
);
2216 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2217 * allocate the page. The expectation is that the caller is taking
2218 * steps that will free more memory. The caller should avoid the page
2219 * being used for !PFMEMALLOC purposes.
2221 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2222 set_page_pfmemalloc(page
);
2224 clear_page_pfmemalloc(page
);
2228 * Go through the free lists for the given migratetype and remove
2229 * the smallest available page from the freelists
2231 static __always_inline
2232 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2235 unsigned int current_order
;
2236 struct free_area
*area
;
2239 /* Find a page of the appropriate size in the preferred list */
2240 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2241 area
= &(zone
->free_area
[current_order
]);
2242 page
= get_page_from_free_area(area
, migratetype
);
2245 del_page_from_free_list(page
, zone
, current_order
);
2246 expand(zone
, page
, order
, current_order
, migratetype
);
2247 set_pcppage_migratetype(page
, migratetype
);
2256 * This array describes the order lists are fallen back to when
2257 * the free lists for the desirable migrate type are depleted
2259 static int fallbacks
[MIGRATE_TYPES
][4] = {
2260 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2261 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2262 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2264 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2266 #ifdef CONFIG_MEMORY_ISOLATION
2267 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2272 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2275 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2278 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2279 unsigned int order
) { return NULL
; }
2283 * Move the free pages in a range to the free lists of the requested type.
2284 * Note that start_page and end_pages are not aligned on a pageblock
2285 * boundary. If alignment is required, use move_freepages_block()
2287 static int move_freepages(struct zone
*zone
,
2288 struct page
*start_page
, struct page
*end_page
,
2289 int migratetype
, int *num_movable
)
2293 int pages_moved
= 0;
2295 for (page
= start_page
; page
<= end_page
;) {
2296 if (!pfn_valid_within(page_to_pfn(page
))) {
2301 if (!PageBuddy(page
)) {
2303 * We assume that pages that could be isolated for
2304 * migration are movable. But we don't actually try
2305 * isolating, as that would be expensive.
2308 (PageLRU(page
) || __PageMovable(page
)))
2315 /* Make sure we are not inadvertently changing nodes */
2316 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2317 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2319 order
= page_order(page
);
2320 move_to_free_list(page
, zone
, order
, migratetype
);
2322 pages_moved
+= 1 << order
;
2328 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2329 int migratetype
, int *num_movable
)
2331 unsigned long start_pfn
, end_pfn
;
2332 struct page
*start_page
, *end_page
;
2337 start_pfn
= page_to_pfn(page
);
2338 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2339 start_page
= pfn_to_page(start_pfn
);
2340 end_page
= start_page
+ pageblock_nr_pages
- 1;
2341 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2343 /* Do not cross zone boundaries */
2344 if (!zone_spans_pfn(zone
, start_pfn
))
2346 if (!zone_spans_pfn(zone
, end_pfn
))
2349 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2353 static void change_pageblock_range(struct page
*pageblock_page
,
2354 int start_order
, int migratetype
)
2356 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2358 while (nr_pageblocks
--) {
2359 set_pageblock_migratetype(pageblock_page
, migratetype
);
2360 pageblock_page
+= pageblock_nr_pages
;
2365 * When we are falling back to another migratetype during allocation, try to
2366 * steal extra free pages from the same pageblocks to satisfy further
2367 * allocations, instead of polluting multiple pageblocks.
2369 * If we are stealing a relatively large buddy page, it is likely there will
2370 * be more free pages in the pageblock, so try to steal them all. For
2371 * reclaimable and unmovable allocations, we steal regardless of page size,
2372 * as fragmentation caused by those allocations polluting movable pageblocks
2373 * is worse than movable allocations stealing from unmovable and reclaimable
2376 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2379 * Leaving this order check is intended, although there is
2380 * relaxed order check in next check. The reason is that
2381 * we can actually steal whole pageblock if this condition met,
2382 * but, below check doesn't guarantee it and that is just heuristic
2383 * so could be changed anytime.
2385 if (order
>= pageblock_order
)
2388 if (order
>= pageblock_order
/ 2 ||
2389 start_mt
== MIGRATE_RECLAIMABLE
||
2390 start_mt
== MIGRATE_UNMOVABLE
||
2391 page_group_by_mobility_disabled
)
2397 static inline void boost_watermark(struct zone
*zone
)
2399 unsigned long max_boost
;
2401 if (!watermark_boost_factor
)
2404 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2405 watermark_boost_factor
, 10000);
2408 * high watermark may be uninitialised if fragmentation occurs
2409 * very early in boot so do not boost. We do not fall
2410 * through and boost by pageblock_nr_pages as failing
2411 * allocations that early means that reclaim is not going
2412 * to help and it may even be impossible to reclaim the
2413 * boosted watermark resulting in a hang.
2418 max_boost
= max(pageblock_nr_pages
, max_boost
);
2420 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2425 * This function implements actual steal behaviour. If order is large enough,
2426 * we can steal whole pageblock. If not, we first move freepages in this
2427 * pageblock to our migratetype and determine how many already-allocated pages
2428 * are there in the pageblock with a compatible migratetype. If at least half
2429 * of pages are free or compatible, we can change migratetype of the pageblock
2430 * itself, so pages freed in the future will be put on the correct free list.
2432 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2433 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2435 unsigned int current_order
= page_order(page
);
2436 int free_pages
, movable_pages
, alike_pages
;
2439 old_block_type
= get_pageblock_migratetype(page
);
2442 * This can happen due to races and we want to prevent broken
2443 * highatomic accounting.
2445 if (is_migrate_highatomic(old_block_type
))
2448 /* Take ownership for orders >= pageblock_order */
2449 if (current_order
>= pageblock_order
) {
2450 change_pageblock_range(page
, current_order
, start_type
);
2455 * Boost watermarks to increase reclaim pressure to reduce the
2456 * likelihood of future fallbacks. Wake kswapd now as the node
2457 * may be balanced overall and kswapd will not wake naturally.
2459 boost_watermark(zone
);
2460 if (alloc_flags
& ALLOC_KSWAPD
)
2461 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2463 /* We are not allowed to try stealing from the whole block */
2467 free_pages
= move_freepages_block(zone
, page
, start_type
,
2470 * Determine how many pages are compatible with our allocation.
2471 * For movable allocation, it's the number of movable pages which
2472 * we just obtained. For other types it's a bit more tricky.
2474 if (start_type
== MIGRATE_MOVABLE
) {
2475 alike_pages
= movable_pages
;
2478 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2479 * to MOVABLE pageblock, consider all non-movable pages as
2480 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2481 * vice versa, be conservative since we can't distinguish the
2482 * exact migratetype of non-movable pages.
2484 if (old_block_type
== MIGRATE_MOVABLE
)
2485 alike_pages
= pageblock_nr_pages
2486 - (free_pages
+ movable_pages
);
2491 /* moving whole block can fail due to zone boundary conditions */
2496 * If a sufficient number of pages in the block are either free or of
2497 * comparable migratability as our allocation, claim the whole block.
2499 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2500 page_group_by_mobility_disabled
)
2501 set_pageblock_migratetype(page
, start_type
);
2506 move_to_free_list(page
, zone
, current_order
, start_type
);
2510 * Check whether there is a suitable fallback freepage with requested order.
2511 * If only_stealable is true, this function returns fallback_mt only if
2512 * we can steal other freepages all together. This would help to reduce
2513 * fragmentation due to mixed migratetype pages in one pageblock.
2515 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2516 int migratetype
, bool only_stealable
, bool *can_steal
)
2521 if (area
->nr_free
== 0)
2526 fallback_mt
= fallbacks
[migratetype
][i
];
2527 if (fallback_mt
== MIGRATE_TYPES
)
2530 if (free_area_empty(area
, fallback_mt
))
2533 if (can_steal_fallback(order
, migratetype
))
2536 if (!only_stealable
)
2547 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2548 * there are no empty page blocks that contain a page with a suitable order
2550 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2551 unsigned int alloc_order
)
2554 unsigned long max_managed
, flags
;
2557 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2558 * Check is race-prone but harmless.
2560 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2561 if (zone
->nr_reserved_highatomic
>= max_managed
)
2564 spin_lock_irqsave(&zone
->lock
, flags
);
2566 /* Recheck the nr_reserved_highatomic limit under the lock */
2567 if (zone
->nr_reserved_highatomic
>= max_managed
)
2571 mt
= get_pageblock_migratetype(page
);
2572 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2573 && !is_migrate_cma(mt
)) {
2574 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2575 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2576 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2580 spin_unlock_irqrestore(&zone
->lock
, flags
);
2584 * Used when an allocation is about to fail under memory pressure. This
2585 * potentially hurts the reliability of high-order allocations when under
2586 * intense memory pressure but failed atomic allocations should be easier
2587 * to recover from than an OOM.
2589 * If @force is true, try to unreserve a pageblock even though highatomic
2590 * pageblock is exhausted.
2592 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2595 struct zonelist
*zonelist
= ac
->zonelist
;
2596 unsigned long flags
;
2603 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2606 * Preserve at least one pageblock unless memory pressure
2609 if (!force
&& zone
->nr_reserved_highatomic
<=
2613 spin_lock_irqsave(&zone
->lock
, flags
);
2614 for (order
= 0; order
< MAX_ORDER
; order
++) {
2615 struct free_area
*area
= &(zone
->free_area
[order
]);
2617 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2622 * In page freeing path, migratetype change is racy so
2623 * we can counter several free pages in a pageblock
2624 * in this loop althoug we changed the pageblock type
2625 * from highatomic to ac->migratetype. So we should
2626 * adjust the count once.
2628 if (is_migrate_highatomic_page(page
)) {
2630 * It should never happen but changes to
2631 * locking could inadvertently allow a per-cpu
2632 * drain to add pages to MIGRATE_HIGHATOMIC
2633 * while unreserving so be safe and watch for
2636 zone
->nr_reserved_highatomic
-= min(
2638 zone
->nr_reserved_highatomic
);
2642 * Convert to ac->migratetype and avoid the normal
2643 * pageblock stealing heuristics. Minimally, the caller
2644 * is doing the work and needs the pages. More
2645 * importantly, if the block was always converted to
2646 * MIGRATE_UNMOVABLE or another type then the number
2647 * of pageblocks that cannot be completely freed
2650 set_pageblock_migratetype(page
, ac
->migratetype
);
2651 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2654 spin_unlock_irqrestore(&zone
->lock
, flags
);
2658 spin_unlock_irqrestore(&zone
->lock
, flags
);
2665 * Try finding a free buddy page on the fallback list and put it on the free
2666 * list of requested migratetype, possibly along with other pages from the same
2667 * block, depending on fragmentation avoidance heuristics. Returns true if
2668 * fallback was found so that __rmqueue_smallest() can grab it.
2670 * The use of signed ints for order and current_order is a deliberate
2671 * deviation from the rest of this file, to make the for loop
2672 * condition simpler.
2674 static __always_inline
bool
2675 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2676 unsigned int alloc_flags
)
2678 struct free_area
*area
;
2680 int min_order
= order
;
2686 * Do not steal pages from freelists belonging to other pageblocks
2687 * i.e. orders < pageblock_order. If there are no local zones free,
2688 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2690 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2691 min_order
= pageblock_order
;
2694 * Find the largest available free page in the other list. This roughly
2695 * approximates finding the pageblock with the most free pages, which
2696 * would be too costly to do exactly.
2698 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2700 area
= &(zone
->free_area
[current_order
]);
2701 fallback_mt
= find_suitable_fallback(area
, current_order
,
2702 start_migratetype
, false, &can_steal
);
2703 if (fallback_mt
== -1)
2707 * We cannot steal all free pages from the pageblock and the
2708 * requested migratetype is movable. In that case it's better to
2709 * steal and split the smallest available page instead of the
2710 * largest available page, because even if the next movable
2711 * allocation falls back into a different pageblock than this
2712 * one, it won't cause permanent fragmentation.
2714 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2715 && current_order
> order
)
2724 for (current_order
= order
; current_order
< MAX_ORDER
;
2726 area
= &(zone
->free_area
[current_order
]);
2727 fallback_mt
= find_suitable_fallback(area
, current_order
,
2728 start_migratetype
, false, &can_steal
);
2729 if (fallback_mt
!= -1)
2734 * This should not happen - we already found a suitable fallback
2735 * when looking for the largest page.
2737 VM_BUG_ON(current_order
== MAX_ORDER
);
2740 page
= get_page_from_free_area(area
, fallback_mt
);
2742 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2745 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2746 start_migratetype
, fallback_mt
);
2753 * Do the hard work of removing an element from the buddy allocator.
2754 * Call me with the zone->lock already held.
2756 static __always_inline
struct page
*
2757 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2758 unsigned int alloc_flags
)
2763 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2764 if (unlikely(!page
)) {
2765 if (migratetype
== MIGRATE_MOVABLE
)
2766 page
= __rmqueue_cma_fallback(zone
, order
);
2768 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2773 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2778 * Obtain a specified number of elements from the buddy allocator, all under
2779 * a single hold of the lock, for efficiency. Add them to the supplied list.
2780 * Returns the number of new pages which were placed at *list.
2782 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2783 unsigned long count
, struct list_head
*list
,
2784 int migratetype
, unsigned int alloc_flags
)
2788 spin_lock(&zone
->lock
);
2789 for (i
= 0; i
< count
; ++i
) {
2790 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2792 if (unlikely(page
== NULL
))
2795 if (unlikely(check_pcp_refill(page
)))
2799 * Split buddy pages returned by expand() are received here in
2800 * physical page order. The page is added to the tail of
2801 * caller's list. From the callers perspective, the linked list
2802 * is ordered by page number under some conditions. This is
2803 * useful for IO devices that can forward direction from the
2804 * head, thus also in the physical page order. This is useful
2805 * for IO devices that can merge IO requests if the physical
2806 * pages are ordered properly.
2808 list_add_tail(&page
->lru
, list
);
2810 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2811 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2816 * i pages were removed from the buddy list even if some leak due
2817 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2818 * on i. Do not confuse with 'alloced' which is the number of
2819 * pages added to the pcp list.
2821 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2822 spin_unlock(&zone
->lock
);
2828 * Called from the vmstat counter updater to drain pagesets of this
2829 * currently executing processor on remote nodes after they have
2832 * Note that this function must be called with the thread pinned to
2833 * a single processor.
2835 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2837 unsigned long flags
;
2838 int to_drain
, batch
;
2840 local_irq_save(flags
);
2841 batch
= READ_ONCE(pcp
->batch
);
2842 to_drain
= min(pcp
->count
, batch
);
2844 free_pcppages_bulk(zone
, to_drain
, pcp
);
2845 local_irq_restore(flags
);
2850 * Drain pcplists of the indicated processor and zone.
2852 * The processor must either be the current processor and the
2853 * thread pinned to the current processor or a processor that
2856 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2858 unsigned long flags
;
2859 struct per_cpu_pageset
*pset
;
2860 struct per_cpu_pages
*pcp
;
2862 local_irq_save(flags
);
2863 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2867 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2868 local_irq_restore(flags
);
2872 * Drain pcplists of all zones on the indicated processor.
2874 * The processor must either be the current processor and the
2875 * thread pinned to the current processor or a processor that
2878 static void drain_pages(unsigned int cpu
)
2882 for_each_populated_zone(zone
) {
2883 drain_pages_zone(cpu
, zone
);
2888 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2890 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2891 * the single zone's pages.
2893 void drain_local_pages(struct zone
*zone
)
2895 int cpu
= smp_processor_id();
2898 drain_pages_zone(cpu
, zone
);
2903 static void drain_local_pages_wq(struct work_struct
*work
)
2905 struct pcpu_drain
*drain
;
2907 drain
= container_of(work
, struct pcpu_drain
, work
);
2910 * drain_all_pages doesn't use proper cpu hotplug protection so
2911 * we can race with cpu offline when the WQ can move this from
2912 * a cpu pinned worker to an unbound one. We can operate on a different
2913 * cpu which is allright but we also have to make sure to not move to
2917 drain_local_pages(drain
->zone
);
2922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2924 * When zone parameter is non-NULL, spill just the single zone's pages.
2926 * Note that this can be extremely slow as the draining happens in a workqueue.
2928 void drain_all_pages(struct zone
*zone
)
2933 * Allocate in the BSS so we wont require allocation in
2934 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2936 static cpumask_t cpus_with_pcps
;
2939 * Make sure nobody triggers this path before mm_percpu_wq is fully
2942 if (WARN_ON_ONCE(!mm_percpu_wq
))
2946 * Do not drain if one is already in progress unless it's specific to
2947 * a zone. Such callers are primarily CMA and memory hotplug and need
2948 * the drain to be complete when the call returns.
2950 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2953 mutex_lock(&pcpu_drain_mutex
);
2957 * We don't care about racing with CPU hotplug event
2958 * as offline notification will cause the notified
2959 * cpu to drain that CPU pcps and on_each_cpu_mask
2960 * disables preemption as part of its processing
2962 for_each_online_cpu(cpu
) {
2963 struct per_cpu_pageset
*pcp
;
2965 bool has_pcps
= false;
2968 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2972 for_each_populated_zone(z
) {
2973 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2974 if (pcp
->pcp
.count
) {
2982 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2984 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2987 for_each_cpu(cpu
, &cpus_with_pcps
) {
2988 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
2991 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
2992 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
2994 for_each_cpu(cpu
, &cpus_with_pcps
)
2995 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
2997 mutex_unlock(&pcpu_drain_mutex
);
3000 #ifdef CONFIG_HIBERNATION
3003 * Touch the watchdog for every WD_PAGE_COUNT pages.
3005 #define WD_PAGE_COUNT (128*1024)
3007 void mark_free_pages(struct zone
*zone
)
3009 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
3010 unsigned long flags
;
3011 unsigned int order
, t
;
3014 if (zone_is_empty(zone
))
3017 spin_lock_irqsave(&zone
->lock
, flags
);
3019 max_zone_pfn
= zone_end_pfn(zone
);
3020 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
3021 if (pfn_valid(pfn
)) {
3022 page
= pfn_to_page(pfn
);
3024 if (!--page_count
) {
3025 touch_nmi_watchdog();
3026 page_count
= WD_PAGE_COUNT
;
3029 if (page_zone(page
) != zone
)
3032 if (!swsusp_page_is_forbidden(page
))
3033 swsusp_unset_page_free(page
);
3036 for_each_migratetype_order(order
, t
) {
3037 list_for_each_entry(page
,
3038 &zone
->free_area
[order
].free_list
[t
], lru
) {
3041 pfn
= page_to_pfn(page
);
3042 for (i
= 0; i
< (1UL << order
); i
++) {
3043 if (!--page_count
) {
3044 touch_nmi_watchdog();
3045 page_count
= WD_PAGE_COUNT
;
3047 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3051 spin_unlock_irqrestore(&zone
->lock
, flags
);
3053 #endif /* CONFIG_PM */
3055 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3059 if (!free_pcp_prepare(page
))
3062 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3063 set_pcppage_migratetype(page
, migratetype
);
3067 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3069 struct zone
*zone
= page_zone(page
);
3070 struct per_cpu_pages
*pcp
;
3073 migratetype
= get_pcppage_migratetype(page
);
3074 __count_vm_event(PGFREE
);
3077 * We only track unmovable, reclaimable and movable on pcp lists.
3078 * Free ISOLATE pages back to the allocator because they are being
3079 * offlined but treat HIGHATOMIC as movable pages so we can get those
3080 * areas back if necessary. Otherwise, we may have to free
3081 * excessively into the page allocator
3083 if (migratetype
>= MIGRATE_PCPTYPES
) {
3084 if (unlikely(is_migrate_isolate(migratetype
))) {
3085 free_one_page(zone
, page
, pfn
, 0, migratetype
);
3088 migratetype
= MIGRATE_MOVABLE
;
3091 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3092 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3094 if (pcp
->count
>= pcp
->high
) {
3095 unsigned long batch
= READ_ONCE(pcp
->batch
);
3096 free_pcppages_bulk(zone
, batch
, pcp
);
3101 * Free a 0-order page
3103 void free_unref_page(struct page
*page
)
3105 unsigned long flags
;
3106 unsigned long pfn
= page_to_pfn(page
);
3108 if (!free_unref_page_prepare(page
, pfn
))
3111 local_irq_save(flags
);
3112 free_unref_page_commit(page
, pfn
);
3113 local_irq_restore(flags
);
3117 * Free a list of 0-order pages
3119 void free_unref_page_list(struct list_head
*list
)
3121 struct page
*page
, *next
;
3122 unsigned long flags
, pfn
;
3123 int batch_count
= 0;
3125 /* Prepare pages for freeing */
3126 list_for_each_entry_safe(page
, next
, list
, lru
) {
3127 pfn
= page_to_pfn(page
);
3128 if (!free_unref_page_prepare(page
, pfn
))
3129 list_del(&page
->lru
);
3130 set_page_private(page
, pfn
);
3133 local_irq_save(flags
);
3134 list_for_each_entry_safe(page
, next
, list
, lru
) {
3135 unsigned long pfn
= page_private(page
);
3137 set_page_private(page
, 0);
3138 trace_mm_page_free_batched(page
);
3139 free_unref_page_commit(page
, pfn
);
3142 * Guard against excessive IRQ disabled times when we get
3143 * a large list of pages to free.
3145 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3146 local_irq_restore(flags
);
3148 local_irq_save(flags
);
3151 local_irq_restore(flags
);
3155 * split_page takes a non-compound higher-order page, and splits it into
3156 * n (1<<order) sub-pages: page[0..n]
3157 * Each sub-page must be freed individually.
3159 * Note: this is probably too low level an operation for use in drivers.
3160 * Please consult with lkml before using this in your driver.
3162 void split_page(struct page
*page
, unsigned int order
)
3166 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3167 VM_BUG_ON_PAGE(!page_count(page
), page
);
3169 for (i
= 1; i
< (1 << order
); i
++)
3170 set_page_refcounted(page
+ i
);
3171 split_page_owner(page
, order
);
3173 EXPORT_SYMBOL_GPL(split_page
);
3175 int __isolate_free_page(struct page
*page
, unsigned int order
)
3177 unsigned long watermark
;
3181 BUG_ON(!PageBuddy(page
));
3183 zone
= page_zone(page
);
3184 mt
= get_pageblock_migratetype(page
);
3186 if (!is_migrate_isolate(mt
)) {
3188 * Obey watermarks as if the page was being allocated. We can
3189 * emulate a high-order watermark check with a raised order-0
3190 * watermark, because we already know our high-order page
3193 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3194 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3197 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3200 /* Remove page from free list */
3202 del_page_from_free_list(page
, zone
, order
);
3205 * Set the pageblock if the isolated page is at least half of a
3208 if (order
>= pageblock_order
- 1) {
3209 struct page
*endpage
= page
+ (1 << order
) - 1;
3210 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3211 int mt
= get_pageblock_migratetype(page
);
3212 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3213 && !is_migrate_highatomic(mt
))
3214 set_pageblock_migratetype(page
,
3220 return 1UL << order
;
3224 * __putback_isolated_page - Return a now-isolated page back where we got it
3225 * @page: Page that was isolated
3226 * @order: Order of the isolated page
3227 * @mt: The page's pageblock's migratetype
3229 * This function is meant to return a page pulled from the free lists via
3230 * __isolate_free_page back to the free lists they were pulled from.
3232 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
3234 struct zone
*zone
= page_zone(page
);
3236 /* zone lock should be held when this function is called */
3237 lockdep_assert_held(&zone
->lock
);
3239 /* Return isolated page to tail of freelist. */
3240 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
, false);
3244 * Update NUMA hit/miss statistics
3246 * Must be called with interrupts disabled.
3248 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3251 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3253 /* skip numa counters update if numa stats is disabled */
3254 if (!static_branch_likely(&vm_numa_stat_key
))
3257 if (zone_to_nid(z
) != numa_node_id())
3258 local_stat
= NUMA_OTHER
;
3260 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3261 __inc_numa_state(z
, NUMA_HIT
);
3263 __inc_numa_state(z
, NUMA_MISS
);
3264 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3266 __inc_numa_state(z
, local_stat
);
3270 /* Remove page from the per-cpu list, caller must protect the list */
3271 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3272 unsigned int alloc_flags
,
3273 struct per_cpu_pages
*pcp
,
3274 struct list_head
*list
)
3279 if (list_empty(list
)) {
3280 pcp
->count
+= rmqueue_bulk(zone
, 0,
3282 migratetype
, alloc_flags
);
3283 if (unlikely(list_empty(list
)))
3287 page
= list_first_entry(list
, struct page
, lru
);
3288 list_del(&page
->lru
);
3290 } while (check_new_pcp(page
));
3295 /* Lock and remove page from the per-cpu list */
3296 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3297 struct zone
*zone
, gfp_t gfp_flags
,
3298 int migratetype
, unsigned int alloc_flags
)
3300 struct per_cpu_pages
*pcp
;
3301 struct list_head
*list
;
3303 unsigned long flags
;
3305 local_irq_save(flags
);
3306 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3307 list
= &pcp
->lists
[migratetype
];
3308 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3310 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3311 zone_statistics(preferred_zone
, zone
);
3313 local_irq_restore(flags
);
3318 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3321 struct page
*rmqueue(struct zone
*preferred_zone
,
3322 struct zone
*zone
, unsigned int order
,
3323 gfp_t gfp_flags
, unsigned int alloc_flags
,
3326 unsigned long flags
;
3329 if (likely(order
== 0)) {
3330 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3331 migratetype
, alloc_flags
);
3336 * We most definitely don't want callers attempting to
3337 * allocate greater than order-1 page units with __GFP_NOFAIL.
3339 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3340 spin_lock_irqsave(&zone
->lock
, flags
);
3344 if (alloc_flags
& ALLOC_HARDER
) {
3345 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3347 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3350 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3351 } while (page
&& check_new_pages(page
, order
));
3352 spin_unlock(&zone
->lock
);
3355 __mod_zone_freepage_state(zone
, -(1 << order
),
3356 get_pcppage_migratetype(page
));
3358 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3359 zone_statistics(preferred_zone
, zone
);
3360 local_irq_restore(flags
);
3363 /* Separate test+clear to avoid unnecessary atomics */
3364 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3365 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3366 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3369 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3373 local_irq_restore(flags
);
3377 #ifdef CONFIG_FAIL_PAGE_ALLOC
3380 struct fault_attr attr
;
3382 bool ignore_gfp_highmem
;
3383 bool ignore_gfp_reclaim
;
3385 } fail_page_alloc
= {
3386 .attr
= FAULT_ATTR_INITIALIZER
,
3387 .ignore_gfp_reclaim
= true,
3388 .ignore_gfp_highmem
= true,
3392 static int __init
setup_fail_page_alloc(char *str
)
3394 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3396 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3398 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3400 if (order
< fail_page_alloc
.min_order
)
3402 if (gfp_mask
& __GFP_NOFAIL
)
3404 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3406 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3407 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3410 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3415 static int __init
fail_page_alloc_debugfs(void)
3417 umode_t mode
= S_IFREG
| 0600;
3420 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3421 &fail_page_alloc
.attr
);
3423 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3424 &fail_page_alloc
.ignore_gfp_reclaim
);
3425 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3426 &fail_page_alloc
.ignore_gfp_highmem
);
3427 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3432 late_initcall(fail_page_alloc_debugfs
);
3434 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3436 #else /* CONFIG_FAIL_PAGE_ALLOC */
3438 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3443 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3445 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3447 return __should_fail_alloc_page(gfp_mask
, order
);
3449 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3452 * Return true if free base pages are above 'mark'. For high-order checks it
3453 * will return true of the order-0 watermark is reached and there is at least
3454 * one free page of a suitable size. Checking now avoids taking the zone lock
3455 * to check in the allocation paths if no pages are free.
3457 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3458 int classzone_idx
, unsigned int alloc_flags
,
3463 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3465 /* free_pages may go negative - that's OK */
3466 free_pages
-= (1 << order
) - 1;
3468 if (alloc_flags
& ALLOC_HIGH
)
3472 * If the caller does not have rights to ALLOC_HARDER then subtract
3473 * the high-atomic reserves. This will over-estimate the size of the
3474 * atomic reserve but it avoids a search.
3476 if (likely(!alloc_harder
)) {
3477 free_pages
-= z
->nr_reserved_highatomic
;
3480 * OOM victims can try even harder than normal ALLOC_HARDER
3481 * users on the grounds that it's definitely going to be in
3482 * the exit path shortly and free memory. Any allocation it
3483 * makes during the free path will be small and short-lived.
3485 if (alloc_flags
& ALLOC_OOM
)
3493 /* If allocation can't use CMA areas don't use free CMA pages */
3494 if (!(alloc_flags
& ALLOC_CMA
))
3495 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3499 * Check watermarks for an order-0 allocation request. If these
3500 * are not met, then a high-order request also cannot go ahead
3501 * even if a suitable page happened to be free.
3503 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3506 /* If this is an order-0 request then the watermark is fine */
3510 /* For a high-order request, check at least one suitable page is free */
3511 for (o
= order
; o
< MAX_ORDER
; o
++) {
3512 struct free_area
*area
= &z
->free_area
[o
];
3518 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3519 if (!free_area_empty(area
, mt
))
3524 if ((alloc_flags
& ALLOC_CMA
) &&
3525 !free_area_empty(area
, MIGRATE_CMA
)) {
3529 if (alloc_harder
&& !free_area_empty(area
, MIGRATE_HIGHATOMIC
))
3535 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3536 int classzone_idx
, unsigned int alloc_flags
)
3538 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3539 zone_page_state(z
, NR_FREE_PAGES
));
3542 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3543 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3545 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3549 /* If allocation can't use CMA areas don't use free CMA pages */
3550 if (!(alloc_flags
& ALLOC_CMA
))
3551 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3555 * Fast check for order-0 only. If this fails then the reserves
3556 * need to be calculated. There is a corner case where the check
3557 * passes but only the high-order atomic reserve are free. If
3558 * the caller is !atomic then it'll uselessly search the free
3559 * list. That corner case is then slower but it is harmless.
3561 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3564 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3568 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3569 unsigned long mark
, int classzone_idx
)
3571 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3573 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3574 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3576 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3581 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3583 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3584 node_reclaim_distance
;
3586 #else /* CONFIG_NUMA */
3587 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3591 #endif /* CONFIG_NUMA */
3594 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3595 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3596 * premature use of a lower zone may cause lowmem pressure problems that
3597 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3598 * probably too small. It only makes sense to spread allocations to avoid
3599 * fragmentation between the Normal and DMA32 zones.
3601 static inline unsigned int
3602 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3604 unsigned int alloc_flags
;
3607 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3610 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3612 #ifdef CONFIG_ZONE_DMA32
3616 if (zone_idx(zone
) != ZONE_NORMAL
)
3620 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3621 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3622 * on UMA that if Normal is populated then so is DMA32.
3624 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3625 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3628 alloc_flags
|= ALLOC_NOFRAGMENT
;
3629 #endif /* CONFIG_ZONE_DMA32 */
3634 * get_page_from_freelist goes through the zonelist trying to allocate
3637 static struct page
*
3638 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3639 const struct alloc_context
*ac
)
3643 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3648 * Scan zonelist, looking for a zone with enough free.
3649 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3651 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3652 z
= ac
->preferred_zoneref
;
3653 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3658 if (cpusets_enabled() &&
3659 (alloc_flags
& ALLOC_CPUSET
) &&
3660 !__cpuset_zone_allowed(zone
, gfp_mask
))
3663 * When allocating a page cache page for writing, we
3664 * want to get it from a node that is within its dirty
3665 * limit, such that no single node holds more than its
3666 * proportional share of globally allowed dirty pages.
3667 * The dirty limits take into account the node's
3668 * lowmem reserves and high watermark so that kswapd
3669 * should be able to balance it without having to
3670 * write pages from its LRU list.
3672 * XXX: For now, allow allocations to potentially
3673 * exceed the per-node dirty limit in the slowpath
3674 * (spread_dirty_pages unset) before going into reclaim,
3675 * which is important when on a NUMA setup the allowed
3676 * nodes are together not big enough to reach the
3677 * global limit. The proper fix for these situations
3678 * will require awareness of nodes in the
3679 * dirty-throttling and the flusher threads.
3681 if (ac
->spread_dirty_pages
) {
3682 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3685 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3686 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3691 if (no_fallback
&& nr_online_nodes
> 1 &&
3692 zone
!= ac
->preferred_zoneref
->zone
) {
3696 * If moving to a remote node, retry but allow
3697 * fragmenting fallbacks. Locality is more important
3698 * than fragmentation avoidance.
3700 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3701 if (zone_to_nid(zone
) != local_nid
) {
3702 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3707 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3708 if (!zone_watermark_fast(zone
, order
, mark
,
3709 ac_classzone_idx(ac
), alloc_flags
)) {
3712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3714 * Watermark failed for this zone, but see if we can
3715 * grow this zone if it contains deferred pages.
3717 if (static_branch_unlikely(&deferred_pages
)) {
3718 if (_deferred_grow_zone(zone
, order
))
3722 /* Checked here to keep the fast path fast */
3723 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3724 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3727 if (node_reclaim_mode
== 0 ||
3728 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3731 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3733 case NODE_RECLAIM_NOSCAN
:
3736 case NODE_RECLAIM_FULL
:
3737 /* scanned but unreclaimable */
3740 /* did we reclaim enough */
3741 if (zone_watermark_ok(zone
, order
, mark
,
3742 ac_classzone_idx(ac
), alloc_flags
))
3750 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3751 gfp_mask
, alloc_flags
, ac
->migratetype
);
3753 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3756 * If this is a high-order atomic allocation then check
3757 * if the pageblock should be reserved for the future
3759 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3760 reserve_highatomic_pageblock(page
, zone
, order
);
3764 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3765 /* Try again if zone has deferred pages */
3766 if (static_branch_unlikely(&deferred_pages
)) {
3767 if (_deferred_grow_zone(zone
, order
))
3775 * It's possible on a UMA machine to get through all zones that are
3776 * fragmented. If avoiding fragmentation, reset and try again.
3779 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3786 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3788 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3791 * This documents exceptions given to allocations in certain
3792 * contexts that are allowed to allocate outside current's set
3795 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3796 if (tsk_is_oom_victim(current
) ||
3797 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3798 filter
&= ~SHOW_MEM_FILTER_NODES
;
3799 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3800 filter
&= ~SHOW_MEM_FILTER_NODES
;
3802 show_mem(filter
, nodemask
);
3805 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3807 struct va_format vaf
;
3809 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3811 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3814 va_start(args
, fmt
);
3817 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3818 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3819 nodemask_pr_args(nodemask
));
3822 cpuset_print_current_mems_allowed();
3825 warn_alloc_show_mem(gfp_mask
, nodemask
);
3828 static inline struct page
*
3829 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3830 unsigned int alloc_flags
,
3831 const struct alloc_context
*ac
)
3835 page
= get_page_from_freelist(gfp_mask
, order
,
3836 alloc_flags
|ALLOC_CPUSET
, ac
);
3838 * fallback to ignore cpuset restriction if our nodes
3842 page
= get_page_from_freelist(gfp_mask
, order
,
3848 static inline struct page
*
3849 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3850 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3852 struct oom_control oc
= {
3853 .zonelist
= ac
->zonelist
,
3854 .nodemask
= ac
->nodemask
,
3856 .gfp_mask
= gfp_mask
,
3861 *did_some_progress
= 0;
3864 * Acquire the oom lock. If that fails, somebody else is
3865 * making progress for us.
3867 if (!mutex_trylock(&oom_lock
)) {
3868 *did_some_progress
= 1;
3869 schedule_timeout_uninterruptible(1);
3874 * Go through the zonelist yet one more time, keep very high watermark
3875 * here, this is only to catch a parallel oom killing, we must fail if
3876 * we're still under heavy pressure. But make sure that this reclaim
3877 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3878 * allocation which will never fail due to oom_lock already held.
3880 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3881 ~__GFP_DIRECT_RECLAIM
, order
,
3882 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3886 /* Coredumps can quickly deplete all memory reserves */
3887 if (current
->flags
& PF_DUMPCORE
)
3889 /* The OOM killer will not help higher order allocs */
3890 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3893 * We have already exhausted all our reclaim opportunities without any
3894 * success so it is time to admit defeat. We will skip the OOM killer
3895 * because it is very likely that the caller has a more reasonable
3896 * fallback than shooting a random task.
3898 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3900 /* The OOM killer does not needlessly kill tasks for lowmem */
3901 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3903 if (pm_suspended_storage())
3906 * XXX: GFP_NOFS allocations should rather fail than rely on
3907 * other request to make a forward progress.
3908 * We are in an unfortunate situation where out_of_memory cannot
3909 * do much for this context but let's try it to at least get
3910 * access to memory reserved if the current task is killed (see
3911 * out_of_memory). Once filesystems are ready to handle allocation
3912 * failures more gracefully we should just bail out here.
3915 /* The OOM killer may not free memory on a specific node */
3916 if (gfp_mask
& __GFP_THISNODE
)
3919 /* Exhausted what can be done so it's blame time */
3920 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3921 *did_some_progress
= 1;
3924 * Help non-failing allocations by giving them access to memory
3927 if (gfp_mask
& __GFP_NOFAIL
)
3928 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3929 ALLOC_NO_WATERMARKS
, ac
);
3932 mutex_unlock(&oom_lock
);
3937 * Maximum number of compaction retries wit a progress before OOM
3938 * killer is consider as the only way to move forward.
3940 #define MAX_COMPACT_RETRIES 16
3942 #ifdef CONFIG_COMPACTION
3943 /* Try memory compaction for high-order allocations before reclaim */
3944 static struct page
*
3945 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3946 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3947 enum compact_priority prio
, enum compact_result
*compact_result
)
3949 struct page
*page
= NULL
;
3950 unsigned long pflags
;
3951 unsigned int noreclaim_flag
;
3956 psi_memstall_enter(&pflags
);
3957 noreclaim_flag
= memalloc_noreclaim_save();
3959 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3962 memalloc_noreclaim_restore(noreclaim_flag
);
3963 psi_memstall_leave(&pflags
);
3966 * At least in one zone compaction wasn't deferred or skipped, so let's
3967 * count a compaction stall
3969 count_vm_event(COMPACTSTALL
);
3971 /* Prep a captured page if available */
3973 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3975 /* Try get a page from the freelist if available */
3977 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3980 struct zone
*zone
= page_zone(page
);
3982 zone
->compact_blockskip_flush
= false;
3983 compaction_defer_reset(zone
, order
, true);
3984 count_vm_event(COMPACTSUCCESS
);
3989 * It's bad if compaction run occurs and fails. The most likely reason
3990 * is that pages exist, but not enough to satisfy watermarks.
3992 count_vm_event(COMPACTFAIL
);
4000 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
4001 enum compact_result compact_result
,
4002 enum compact_priority
*compact_priority
,
4003 int *compaction_retries
)
4005 int max_retries
= MAX_COMPACT_RETRIES
;
4008 int retries
= *compaction_retries
;
4009 enum compact_priority priority
= *compact_priority
;
4014 if (compaction_made_progress(compact_result
))
4015 (*compaction_retries
)++;
4018 * compaction considers all the zone as desperately out of memory
4019 * so it doesn't really make much sense to retry except when the
4020 * failure could be caused by insufficient priority
4022 if (compaction_failed(compact_result
))
4023 goto check_priority
;
4026 * compaction was skipped because there are not enough order-0 pages
4027 * to work with, so we retry only if it looks like reclaim can help.
4029 if (compaction_needs_reclaim(compact_result
)) {
4030 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
4035 * make sure the compaction wasn't deferred or didn't bail out early
4036 * due to locks contention before we declare that we should give up.
4037 * But the next retry should use a higher priority if allowed, so
4038 * we don't just keep bailing out endlessly.
4040 if (compaction_withdrawn(compact_result
)) {
4041 goto check_priority
;
4045 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4046 * costly ones because they are de facto nofail and invoke OOM
4047 * killer to move on while costly can fail and users are ready
4048 * to cope with that. 1/4 retries is rather arbitrary but we
4049 * would need much more detailed feedback from compaction to
4050 * make a better decision.
4052 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4054 if (*compaction_retries
<= max_retries
) {
4060 * Make sure there are attempts at the highest priority if we exhausted
4061 * all retries or failed at the lower priorities.
4064 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4065 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4067 if (*compact_priority
> min_priority
) {
4068 (*compact_priority
)--;
4069 *compaction_retries
= 0;
4073 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4077 static inline struct page
*
4078 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4079 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4080 enum compact_priority prio
, enum compact_result
*compact_result
)
4082 *compact_result
= COMPACT_SKIPPED
;
4087 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4088 enum compact_result compact_result
,
4089 enum compact_priority
*compact_priority
,
4090 int *compaction_retries
)
4095 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4099 * There are setups with compaction disabled which would prefer to loop
4100 * inside the allocator rather than hit the oom killer prematurely.
4101 * Let's give them a good hope and keep retrying while the order-0
4102 * watermarks are OK.
4104 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4106 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4107 ac_classzone_idx(ac
), alloc_flags
))
4112 #endif /* CONFIG_COMPACTION */
4114 #ifdef CONFIG_LOCKDEP
4115 static struct lockdep_map __fs_reclaim_map
=
4116 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4118 static bool __need_fs_reclaim(gfp_t gfp_mask
)
4120 gfp_mask
= current_gfp_context(gfp_mask
);
4122 /* no reclaim without waiting on it */
4123 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4126 /* this guy won't enter reclaim */
4127 if (current
->flags
& PF_MEMALLOC
)
4130 /* We're only interested __GFP_FS allocations for now */
4131 if (!(gfp_mask
& __GFP_FS
))
4134 if (gfp_mask
& __GFP_NOLOCKDEP
)
4140 void __fs_reclaim_acquire(void)
4142 lock_map_acquire(&__fs_reclaim_map
);
4145 void __fs_reclaim_release(void)
4147 lock_map_release(&__fs_reclaim_map
);
4150 void fs_reclaim_acquire(gfp_t gfp_mask
)
4152 if (__need_fs_reclaim(gfp_mask
))
4153 __fs_reclaim_acquire();
4155 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4157 void fs_reclaim_release(gfp_t gfp_mask
)
4159 if (__need_fs_reclaim(gfp_mask
))
4160 __fs_reclaim_release();
4162 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4165 /* Perform direct synchronous page reclaim */
4167 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4168 const struct alloc_context
*ac
)
4171 unsigned int noreclaim_flag
;
4172 unsigned long pflags
;
4176 /* We now go into synchronous reclaim */
4177 cpuset_memory_pressure_bump();
4178 psi_memstall_enter(&pflags
);
4179 fs_reclaim_acquire(gfp_mask
);
4180 noreclaim_flag
= memalloc_noreclaim_save();
4182 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4185 memalloc_noreclaim_restore(noreclaim_flag
);
4186 fs_reclaim_release(gfp_mask
);
4187 psi_memstall_leave(&pflags
);
4194 /* The really slow allocator path where we enter direct reclaim */
4195 static inline struct page
*
4196 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4197 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4198 unsigned long *did_some_progress
)
4200 struct page
*page
= NULL
;
4201 bool drained
= false;
4203 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4204 if (unlikely(!(*did_some_progress
)))
4208 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4211 * If an allocation failed after direct reclaim, it could be because
4212 * pages are pinned on the per-cpu lists or in high alloc reserves.
4213 * Shrink them them and try again
4215 if (!page
&& !drained
) {
4216 unreserve_highatomic_pageblock(ac
, false);
4217 drain_all_pages(NULL
);
4225 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4226 const struct alloc_context
*ac
)
4230 pg_data_t
*last_pgdat
= NULL
;
4231 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
4233 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
4235 if (last_pgdat
!= zone
->zone_pgdat
)
4236 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
4237 last_pgdat
= zone
->zone_pgdat
;
4241 static inline unsigned int
4242 gfp_to_alloc_flags(gfp_t gfp_mask
)
4244 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4247 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4248 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4249 * to save two branches.
4251 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4252 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4255 * The caller may dip into page reserves a bit more if the caller
4256 * cannot run direct reclaim, or if the caller has realtime scheduling
4257 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4258 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4260 alloc_flags
|= (__force
int)
4261 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4263 if (gfp_mask
& __GFP_ATOMIC
) {
4265 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4266 * if it can't schedule.
4268 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4269 alloc_flags
|= ALLOC_HARDER
;
4271 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4272 * comment for __cpuset_node_allowed().
4274 alloc_flags
&= ~ALLOC_CPUSET
;
4275 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4276 alloc_flags
|= ALLOC_HARDER
;
4279 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
4280 alloc_flags
|= ALLOC_CMA
;
4285 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4287 if (!tsk_is_oom_victim(tsk
))
4291 * !MMU doesn't have oom reaper so give access to memory reserves
4292 * only to the thread with TIF_MEMDIE set
4294 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4301 * Distinguish requests which really need access to full memory
4302 * reserves from oom victims which can live with a portion of it
4304 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4306 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4308 if (gfp_mask
& __GFP_MEMALLOC
)
4309 return ALLOC_NO_WATERMARKS
;
4310 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4311 return ALLOC_NO_WATERMARKS
;
4312 if (!in_interrupt()) {
4313 if (current
->flags
& PF_MEMALLOC
)
4314 return ALLOC_NO_WATERMARKS
;
4315 else if (oom_reserves_allowed(current
))
4322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4324 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4328 * Checks whether it makes sense to retry the reclaim to make a forward progress
4329 * for the given allocation request.
4331 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4332 * without success, or when we couldn't even meet the watermark if we
4333 * reclaimed all remaining pages on the LRU lists.
4335 * Returns true if a retry is viable or false to enter the oom path.
4338 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4339 struct alloc_context
*ac
, int alloc_flags
,
4340 bool did_some_progress
, int *no_progress_loops
)
4347 * Costly allocations might have made a progress but this doesn't mean
4348 * their order will become available due to high fragmentation so
4349 * always increment the no progress counter for them
4351 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4352 *no_progress_loops
= 0;
4354 (*no_progress_loops
)++;
4357 * Make sure we converge to OOM if we cannot make any progress
4358 * several times in the row.
4360 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4361 /* Before OOM, exhaust highatomic_reserve */
4362 return unreserve_highatomic_pageblock(ac
, true);
4366 * Keep reclaiming pages while there is a chance this will lead
4367 * somewhere. If none of the target zones can satisfy our allocation
4368 * request even if all reclaimable pages are considered then we are
4369 * screwed and have to go OOM.
4371 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4373 unsigned long available
;
4374 unsigned long reclaimable
;
4375 unsigned long min_wmark
= min_wmark_pages(zone
);
4378 available
= reclaimable
= zone_reclaimable_pages(zone
);
4379 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4382 * Would the allocation succeed if we reclaimed all
4383 * reclaimable pages?
4385 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4386 ac_classzone_idx(ac
), alloc_flags
, available
);
4387 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4388 available
, min_wmark
, *no_progress_loops
, wmark
);
4391 * If we didn't make any progress and have a lot of
4392 * dirty + writeback pages then we should wait for
4393 * an IO to complete to slow down the reclaim and
4394 * prevent from pre mature OOM
4396 if (!did_some_progress
) {
4397 unsigned long write_pending
;
4399 write_pending
= zone_page_state_snapshot(zone
,
4400 NR_ZONE_WRITE_PENDING
);
4402 if (2 * write_pending
> reclaimable
) {
4403 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4415 * Memory allocation/reclaim might be called from a WQ context and the
4416 * current implementation of the WQ concurrency control doesn't
4417 * recognize that a particular WQ is congested if the worker thread is
4418 * looping without ever sleeping. Therefore we have to do a short sleep
4419 * here rather than calling cond_resched().
4421 if (current
->flags
& PF_WQ_WORKER
)
4422 schedule_timeout_uninterruptible(1);
4429 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4432 * It's possible that cpuset's mems_allowed and the nodemask from
4433 * mempolicy don't intersect. This should be normally dealt with by
4434 * policy_nodemask(), but it's possible to race with cpuset update in
4435 * such a way the check therein was true, and then it became false
4436 * before we got our cpuset_mems_cookie here.
4437 * This assumes that for all allocations, ac->nodemask can come only
4438 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4439 * when it does not intersect with the cpuset restrictions) or the
4440 * caller can deal with a violated nodemask.
4442 if (cpusets_enabled() && ac
->nodemask
&&
4443 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4444 ac
->nodemask
= NULL
;
4449 * When updating a task's mems_allowed or mempolicy nodemask, it is
4450 * possible to race with parallel threads in such a way that our
4451 * allocation can fail while the mask is being updated. If we are about
4452 * to fail, check if the cpuset changed during allocation and if so,
4455 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4461 static inline struct page
*
4462 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4463 struct alloc_context
*ac
)
4465 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4466 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4467 struct page
*page
= NULL
;
4468 unsigned int alloc_flags
;
4469 unsigned long did_some_progress
;
4470 enum compact_priority compact_priority
;
4471 enum compact_result compact_result
;
4472 int compaction_retries
;
4473 int no_progress_loops
;
4474 unsigned int cpuset_mems_cookie
;
4478 * We also sanity check to catch abuse of atomic reserves being used by
4479 * callers that are not in atomic context.
4481 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4482 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4483 gfp_mask
&= ~__GFP_ATOMIC
;
4486 compaction_retries
= 0;
4487 no_progress_loops
= 0;
4488 compact_priority
= DEF_COMPACT_PRIORITY
;
4489 cpuset_mems_cookie
= read_mems_allowed_begin();
4492 * The fast path uses conservative alloc_flags to succeed only until
4493 * kswapd needs to be woken up, and to avoid the cost of setting up
4494 * alloc_flags precisely. So we do that now.
4496 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4499 * We need to recalculate the starting point for the zonelist iterator
4500 * because we might have used different nodemask in the fast path, or
4501 * there was a cpuset modification and we are retrying - otherwise we
4502 * could end up iterating over non-eligible zones endlessly.
4504 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4505 ac
->high_zoneidx
, ac
->nodemask
);
4506 if (!ac
->preferred_zoneref
->zone
)
4509 if (alloc_flags
& ALLOC_KSWAPD
)
4510 wake_all_kswapds(order
, gfp_mask
, ac
);
4513 * The adjusted alloc_flags might result in immediate success, so try
4516 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4521 * For costly allocations, try direct compaction first, as it's likely
4522 * that we have enough base pages and don't need to reclaim. For non-
4523 * movable high-order allocations, do that as well, as compaction will
4524 * try prevent permanent fragmentation by migrating from blocks of the
4526 * Don't try this for allocations that are allowed to ignore
4527 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4529 if (can_direct_reclaim
&&
4531 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4532 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4533 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4535 INIT_COMPACT_PRIORITY
,
4541 * Checks for costly allocations with __GFP_NORETRY, which
4542 * includes some THP page fault allocations
4544 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4546 * If allocating entire pageblock(s) and compaction
4547 * failed because all zones are below low watermarks
4548 * or is prohibited because it recently failed at this
4549 * order, fail immediately unless the allocator has
4550 * requested compaction and reclaim retry.
4553 * - potentially very expensive because zones are far
4554 * below their low watermarks or this is part of very
4555 * bursty high order allocations,
4556 * - not guaranteed to help because isolate_freepages()
4557 * may not iterate over freed pages as part of its
4559 * - unlikely to make entire pageblocks free on its
4562 if (compact_result
== COMPACT_SKIPPED
||
4563 compact_result
== COMPACT_DEFERRED
)
4567 * Looks like reclaim/compaction is worth trying, but
4568 * sync compaction could be very expensive, so keep
4569 * using async compaction.
4571 compact_priority
= INIT_COMPACT_PRIORITY
;
4576 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4577 if (alloc_flags
& ALLOC_KSWAPD
)
4578 wake_all_kswapds(order
, gfp_mask
, ac
);
4580 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4582 alloc_flags
= reserve_flags
;
4585 * Reset the nodemask and zonelist iterators if memory policies can be
4586 * ignored. These allocations are high priority and system rather than
4589 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4590 ac
->nodemask
= NULL
;
4591 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4592 ac
->high_zoneidx
, ac
->nodemask
);
4595 /* Attempt with potentially adjusted zonelist and alloc_flags */
4596 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4600 /* Caller is not willing to reclaim, we can't balance anything */
4601 if (!can_direct_reclaim
)
4604 /* Avoid recursion of direct reclaim */
4605 if (current
->flags
& PF_MEMALLOC
)
4608 /* Try direct reclaim and then allocating */
4609 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4610 &did_some_progress
);
4614 /* Try direct compaction and then allocating */
4615 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4616 compact_priority
, &compact_result
);
4620 /* Do not loop if specifically requested */
4621 if (gfp_mask
& __GFP_NORETRY
)
4625 * Do not retry costly high order allocations unless they are
4626 * __GFP_RETRY_MAYFAIL
4628 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4631 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4632 did_some_progress
> 0, &no_progress_loops
))
4636 * It doesn't make any sense to retry for the compaction if the order-0
4637 * reclaim is not able to make any progress because the current
4638 * implementation of the compaction depends on the sufficient amount
4639 * of free memory (see __compaction_suitable)
4641 if (did_some_progress
> 0 &&
4642 should_compact_retry(ac
, order
, alloc_flags
,
4643 compact_result
, &compact_priority
,
4644 &compaction_retries
))
4648 /* Deal with possible cpuset update races before we start OOM killing */
4649 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4652 /* Reclaim has failed us, start killing things */
4653 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4657 /* Avoid allocations with no watermarks from looping endlessly */
4658 if (tsk_is_oom_victim(current
) &&
4659 (alloc_flags
== ALLOC_OOM
||
4660 (gfp_mask
& __GFP_NOMEMALLOC
)))
4663 /* Retry as long as the OOM killer is making progress */
4664 if (did_some_progress
) {
4665 no_progress_loops
= 0;
4670 /* Deal with possible cpuset update races before we fail */
4671 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4675 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4678 if (gfp_mask
& __GFP_NOFAIL
) {
4680 * All existing users of the __GFP_NOFAIL are blockable, so warn
4681 * of any new users that actually require GFP_NOWAIT
4683 if (WARN_ON_ONCE(!can_direct_reclaim
))
4687 * PF_MEMALLOC request from this context is rather bizarre
4688 * because we cannot reclaim anything and only can loop waiting
4689 * for somebody to do a work for us
4691 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4694 * non failing costly orders are a hard requirement which we
4695 * are not prepared for much so let's warn about these users
4696 * so that we can identify them and convert them to something
4699 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4702 * Help non-failing allocations by giving them access to memory
4703 * reserves but do not use ALLOC_NO_WATERMARKS because this
4704 * could deplete whole memory reserves which would just make
4705 * the situation worse
4707 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4715 warn_alloc(gfp_mask
, ac
->nodemask
,
4716 "page allocation failure: order:%u", order
);
4721 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4722 int preferred_nid
, nodemask_t
*nodemask
,
4723 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4724 unsigned int *alloc_flags
)
4726 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4727 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4728 ac
->nodemask
= nodemask
;
4729 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4731 if (cpusets_enabled()) {
4732 *alloc_mask
|= __GFP_HARDWALL
;
4734 ac
->nodemask
= &cpuset_current_mems_allowed
;
4736 *alloc_flags
|= ALLOC_CPUSET
;
4739 fs_reclaim_acquire(gfp_mask
);
4740 fs_reclaim_release(gfp_mask
);
4742 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4744 if (should_fail_alloc_page(gfp_mask
, order
))
4747 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4748 *alloc_flags
|= ALLOC_CMA
;
4753 /* Determine whether to spread dirty pages and what the first usable zone */
4754 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4756 /* Dirty zone balancing only done in the fast path */
4757 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4760 * The preferred zone is used for statistics but crucially it is
4761 * also used as the starting point for the zonelist iterator. It
4762 * may get reset for allocations that ignore memory policies.
4764 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4765 ac
->high_zoneidx
, ac
->nodemask
);
4769 * This is the 'heart' of the zoned buddy allocator.
4772 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4773 nodemask_t
*nodemask
)
4776 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4777 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4778 struct alloc_context ac
= { };
4781 * There are several places where we assume that the order value is sane
4782 * so bail out early if the request is out of bound.
4784 if (unlikely(order
>= MAX_ORDER
)) {
4785 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4789 gfp_mask
&= gfp_allowed_mask
;
4790 alloc_mask
= gfp_mask
;
4791 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4794 finalise_ac(gfp_mask
, &ac
);
4797 * Forbid the first pass from falling back to types that fragment
4798 * memory until all local zones are considered.
4800 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4802 /* First allocation attempt */
4803 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4808 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4809 * resp. GFP_NOIO which has to be inherited for all allocation requests
4810 * from a particular context which has been marked by
4811 * memalloc_no{fs,io}_{save,restore}.
4813 alloc_mask
= current_gfp_context(gfp_mask
);
4814 ac
.spread_dirty_pages
= false;
4817 * Restore the original nodemask if it was potentially replaced with
4818 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4820 ac
.nodemask
= nodemask
;
4822 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4825 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4826 unlikely(__memcg_kmem_charge_page(page
, gfp_mask
, order
) != 0)) {
4827 __free_pages(page
, order
);
4831 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4835 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4838 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4839 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4840 * you need to access high mem.
4842 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4846 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4849 return (unsigned long) page_address(page
);
4851 EXPORT_SYMBOL(__get_free_pages
);
4853 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4855 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4857 EXPORT_SYMBOL(get_zeroed_page
);
4859 static inline void free_the_page(struct page
*page
, unsigned int order
)
4861 if (order
== 0) /* Via pcp? */
4862 free_unref_page(page
);
4864 __free_pages_ok(page
, order
);
4867 void __free_pages(struct page
*page
, unsigned int order
)
4869 if (put_page_testzero(page
))
4870 free_the_page(page
, order
);
4872 EXPORT_SYMBOL(__free_pages
);
4874 void free_pages(unsigned long addr
, unsigned int order
)
4877 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4878 __free_pages(virt_to_page((void *)addr
), order
);
4882 EXPORT_SYMBOL(free_pages
);
4886 * An arbitrary-length arbitrary-offset area of memory which resides
4887 * within a 0 or higher order page. Multiple fragments within that page
4888 * are individually refcounted, in the page's reference counter.
4890 * The page_frag functions below provide a simple allocation framework for
4891 * page fragments. This is used by the network stack and network device
4892 * drivers to provide a backing region of memory for use as either an
4893 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4895 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4898 struct page
*page
= NULL
;
4899 gfp_t gfp
= gfp_mask
;
4901 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4902 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4904 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4905 PAGE_FRAG_CACHE_MAX_ORDER
);
4906 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4908 if (unlikely(!page
))
4909 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4911 nc
->va
= page
? page_address(page
) : NULL
;
4916 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4918 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4920 if (page_ref_sub_and_test(page
, count
))
4921 free_the_page(page
, compound_order(page
));
4923 EXPORT_SYMBOL(__page_frag_cache_drain
);
4925 void *page_frag_alloc(struct page_frag_cache
*nc
,
4926 unsigned int fragsz
, gfp_t gfp_mask
)
4928 unsigned int size
= PAGE_SIZE
;
4932 if (unlikely(!nc
->va
)) {
4934 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4938 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4939 /* if size can vary use size else just use PAGE_SIZE */
4942 /* Even if we own the page, we do not use atomic_set().
4943 * This would break get_page_unless_zero() users.
4945 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4947 /* reset page count bias and offset to start of new frag */
4948 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4949 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4953 offset
= nc
->offset
- fragsz
;
4954 if (unlikely(offset
< 0)) {
4955 page
= virt_to_page(nc
->va
);
4957 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4960 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4961 /* if size can vary use size else just use PAGE_SIZE */
4964 /* OK, page count is 0, we can safely set it */
4965 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4967 /* reset page count bias and offset to start of new frag */
4968 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4969 offset
= size
- fragsz
;
4973 nc
->offset
= offset
;
4975 return nc
->va
+ offset
;
4977 EXPORT_SYMBOL(page_frag_alloc
);
4980 * Frees a page fragment allocated out of either a compound or order 0 page.
4982 void page_frag_free(void *addr
)
4984 struct page
*page
= virt_to_head_page(addr
);
4986 if (unlikely(put_page_testzero(page
)))
4987 free_the_page(page
, compound_order(page
));
4989 EXPORT_SYMBOL(page_frag_free
);
4991 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4995 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4996 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4998 split_page(virt_to_page((void *)addr
), order
);
4999 while (used
< alloc_end
) {
5004 return (void *)addr
;
5008 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5009 * @size: the number of bytes to allocate
5010 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5012 * This function is similar to alloc_pages(), except that it allocates the
5013 * minimum number of pages to satisfy the request. alloc_pages() can only
5014 * allocate memory in power-of-two pages.
5016 * This function is also limited by MAX_ORDER.
5018 * Memory allocated by this function must be released by free_pages_exact().
5020 * Return: pointer to the allocated area or %NULL in case of error.
5022 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
5024 unsigned int order
= get_order(size
);
5027 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5028 gfp_mask
&= ~__GFP_COMP
;
5030 addr
= __get_free_pages(gfp_mask
, order
);
5031 return make_alloc_exact(addr
, order
, size
);
5033 EXPORT_SYMBOL(alloc_pages_exact
);
5036 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5038 * @nid: the preferred node ID where memory should be allocated
5039 * @size: the number of bytes to allocate
5040 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5042 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5045 * Return: pointer to the allocated area or %NULL in case of error.
5047 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5049 unsigned int order
= get_order(size
);
5052 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5053 gfp_mask
&= ~__GFP_COMP
;
5055 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5058 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5062 * free_pages_exact - release memory allocated via alloc_pages_exact()
5063 * @virt: the value returned by alloc_pages_exact.
5064 * @size: size of allocation, same value as passed to alloc_pages_exact().
5066 * Release the memory allocated by a previous call to alloc_pages_exact.
5068 void free_pages_exact(void *virt
, size_t size
)
5070 unsigned long addr
= (unsigned long)virt
;
5071 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5073 while (addr
< end
) {
5078 EXPORT_SYMBOL(free_pages_exact
);
5081 * nr_free_zone_pages - count number of pages beyond high watermark
5082 * @offset: The zone index of the highest zone
5084 * nr_free_zone_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones at or below a given zone index. For each
5086 * zone, the number of pages is calculated as:
5088 * nr_free_zone_pages = managed_pages - high_pages
5090 * Return: number of pages beyond high watermark.
5092 static unsigned long nr_free_zone_pages(int offset
)
5097 /* Just pick one node, since fallback list is circular */
5098 unsigned long sum
= 0;
5100 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5102 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5103 unsigned long size
= zone_managed_pages(zone
);
5104 unsigned long high
= high_wmark_pages(zone
);
5113 * nr_free_buffer_pages - count number of pages beyond high watermark
5115 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5116 * watermark within ZONE_DMA and ZONE_NORMAL.
5118 * Return: number of pages beyond high watermark within ZONE_DMA and
5121 unsigned long nr_free_buffer_pages(void)
5123 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5125 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5128 * nr_free_pagecache_pages - count number of pages beyond high watermark
5130 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5131 * high watermark within all zones.
5133 * Return: number of pages beyond high watermark within all zones.
5135 unsigned long nr_free_pagecache_pages(void)
5137 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5140 static inline void show_node(struct zone
*zone
)
5142 if (IS_ENABLED(CONFIG_NUMA
))
5143 printk("Node %d ", zone_to_nid(zone
));
5146 long si_mem_available(void)
5149 unsigned long pagecache
;
5150 unsigned long wmark_low
= 0;
5151 unsigned long pages
[NR_LRU_LISTS
];
5152 unsigned long reclaimable
;
5156 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5157 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5160 wmark_low
+= low_wmark_pages(zone
);
5163 * Estimate the amount of memory available for userspace allocations,
5164 * without causing swapping.
5166 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5169 * Not all the page cache can be freed, otherwise the system will
5170 * start swapping. Assume at least half of the page cache, or the
5171 * low watermark worth of cache, needs to stay.
5173 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5174 pagecache
-= min(pagecache
/ 2, wmark_low
);
5175 available
+= pagecache
;
5178 * Part of the reclaimable slab and other kernel memory consists of
5179 * items that are in use, and cannot be freed. Cap this estimate at the
5182 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5184 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5190 EXPORT_SYMBOL_GPL(si_mem_available
);
5192 void si_meminfo(struct sysinfo
*val
)
5194 val
->totalram
= totalram_pages();
5195 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5196 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5197 val
->bufferram
= nr_blockdev_pages();
5198 val
->totalhigh
= totalhigh_pages();
5199 val
->freehigh
= nr_free_highpages();
5200 val
->mem_unit
= PAGE_SIZE
;
5203 EXPORT_SYMBOL(si_meminfo
);
5206 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5208 int zone_type
; /* needs to be signed */
5209 unsigned long managed_pages
= 0;
5210 unsigned long managed_highpages
= 0;
5211 unsigned long free_highpages
= 0;
5212 pg_data_t
*pgdat
= NODE_DATA(nid
);
5214 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5215 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5216 val
->totalram
= managed_pages
;
5217 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5218 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5219 #ifdef CONFIG_HIGHMEM
5220 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5221 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5223 if (is_highmem(zone
)) {
5224 managed_highpages
+= zone_managed_pages(zone
);
5225 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5228 val
->totalhigh
= managed_highpages
;
5229 val
->freehigh
= free_highpages
;
5231 val
->totalhigh
= managed_highpages
;
5232 val
->freehigh
= free_highpages
;
5234 val
->mem_unit
= PAGE_SIZE
;
5239 * Determine whether the node should be displayed or not, depending on whether
5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5242 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5244 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5248 * no node mask - aka implicit memory numa policy. Do not bother with
5249 * the synchronization - read_mems_allowed_begin - because we do not
5250 * have to be precise here.
5253 nodemask
= &cpuset_current_mems_allowed
;
5255 return !node_isset(nid
, *nodemask
);
5258 #define K(x) ((x) << (PAGE_SHIFT-10))
5260 static void show_migration_types(unsigned char type
)
5262 static const char types
[MIGRATE_TYPES
] = {
5263 [MIGRATE_UNMOVABLE
] = 'U',
5264 [MIGRATE_MOVABLE
] = 'M',
5265 [MIGRATE_RECLAIMABLE
] = 'E',
5266 [MIGRATE_HIGHATOMIC
] = 'H',
5268 [MIGRATE_CMA
] = 'C',
5270 #ifdef CONFIG_MEMORY_ISOLATION
5271 [MIGRATE_ISOLATE
] = 'I',
5274 char tmp
[MIGRATE_TYPES
+ 1];
5278 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5279 if (type
& (1 << i
))
5284 printk(KERN_CONT
"(%s) ", tmp
);
5288 * Show free area list (used inside shift_scroll-lock stuff)
5289 * We also calculate the percentage fragmentation. We do this by counting the
5290 * memory on each free list with the exception of the first item on the list.
5293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5296 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5298 unsigned long free_pcp
= 0;
5303 for_each_populated_zone(zone
) {
5304 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5307 for_each_online_cpu(cpu
)
5308 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5313 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5315 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5316 " free:%lu free_pcp:%lu free_cma:%lu\n",
5317 global_node_page_state(NR_ACTIVE_ANON
),
5318 global_node_page_state(NR_INACTIVE_ANON
),
5319 global_node_page_state(NR_ISOLATED_ANON
),
5320 global_node_page_state(NR_ACTIVE_FILE
),
5321 global_node_page_state(NR_INACTIVE_FILE
),
5322 global_node_page_state(NR_ISOLATED_FILE
),
5323 global_node_page_state(NR_UNEVICTABLE
),
5324 global_node_page_state(NR_FILE_DIRTY
),
5325 global_node_page_state(NR_WRITEBACK
),
5326 global_node_page_state(NR_UNSTABLE_NFS
),
5327 global_node_page_state(NR_SLAB_RECLAIMABLE
),
5328 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
5329 global_node_page_state(NR_FILE_MAPPED
),
5330 global_node_page_state(NR_SHMEM
),
5331 global_zone_page_state(NR_PAGETABLE
),
5332 global_zone_page_state(NR_BOUNCE
),
5333 global_zone_page_state(NR_FREE_PAGES
),
5335 global_zone_page_state(NR_FREE_CMA_PAGES
));
5337 for_each_online_pgdat(pgdat
) {
5338 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5342 " active_anon:%lukB"
5343 " inactive_anon:%lukB"
5344 " active_file:%lukB"
5345 " inactive_file:%lukB"
5346 " unevictable:%lukB"
5347 " isolated(anon):%lukB"
5348 " isolated(file):%lukB"
5353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5355 " shmem_pmdmapped: %lukB"
5358 " writeback_tmp:%lukB"
5360 " all_unreclaimable? %s"
5363 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5364 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5365 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5366 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5367 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5368 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5369 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5370 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5371 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5372 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5373 K(node_page_state(pgdat
, NR_SHMEM
)),
5374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5375 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5376 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5378 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5380 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5381 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
5382 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5386 for_each_populated_zone(zone
) {
5389 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5393 for_each_online_cpu(cpu
)
5394 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5403 " reserved_highatomic:%luKB"
5404 " active_anon:%lukB"
5405 " inactive_anon:%lukB"
5406 " active_file:%lukB"
5407 " inactive_file:%lukB"
5408 " unevictable:%lukB"
5409 " writepending:%lukB"
5413 " kernel_stack:%lukB"
5421 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5422 K(min_wmark_pages(zone
)),
5423 K(low_wmark_pages(zone
)),
5424 K(high_wmark_pages(zone
)),
5425 K(zone
->nr_reserved_highatomic
),
5426 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5427 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5428 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5429 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5430 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5431 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5432 K(zone
->present_pages
),
5433 K(zone_managed_pages(zone
)),
5434 K(zone_page_state(zone
, NR_MLOCK
)),
5435 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5436 K(zone_page_state(zone
, NR_PAGETABLE
)),
5437 K(zone_page_state(zone
, NR_BOUNCE
)),
5439 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5440 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5441 printk("lowmem_reserve[]:");
5442 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5443 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5444 printk(KERN_CONT
"\n");
5447 for_each_populated_zone(zone
) {
5449 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5450 unsigned char types
[MAX_ORDER
];
5452 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5455 printk(KERN_CONT
"%s: ", zone
->name
);
5457 spin_lock_irqsave(&zone
->lock
, flags
);
5458 for (order
= 0; order
< MAX_ORDER
; order
++) {
5459 struct free_area
*area
= &zone
->free_area
[order
];
5462 nr
[order
] = area
->nr_free
;
5463 total
+= nr
[order
] << order
;
5466 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5467 if (!free_area_empty(area
, type
))
5468 types
[order
] |= 1 << type
;
5471 spin_unlock_irqrestore(&zone
->lock
, flags
);
5472 for (order
= 0; order
< MAX_ORDER
; order
++) {
5473 printk(KERN_CONT
"%lu*%lukB ",
5474 nr
[order
], K(1UL) << order
);
5476 show_migration_types(types
[order
]);
5478 printk(KERN_CONT
"= %lukB\n", K(total
));
5481 hugetlb_show_meminfo();
5483 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5485 show_swap_cache_info();
5488 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5490 zoneref
->zone
= zone
;
5491 zoneref
->zone_idx
= zone_idx(zone
);
5495 * Builds allocation fallback zone lists.
5497 * Add all populated zones of a node to the zonelist.
5499 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5502 enum zone_type zone_type
= MAX_NR_ZONES
;
5507 zone
= pgdat
->node_zones
+ zone_type
;
5508 if (managed_zone(zone
)) {
5509 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5510 check_highest_zone(zone_type
);
5512 } while (zone_type
);
5519 static int __parse_numa_zonelist_order(char *s
)
5522 * We used to support different zonlists modes but they turned
5523 * out to be just not useful. Let's keep the warning in place
5524 * if somebody still use the cmd line parameter so that we do
5525 * not fail it silently
5527 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5528 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5534 static __init
int setup_numa_zonelist_order(char *s
)
5539 return __parse_numa_zonelist_order(s
);
5541 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5543 char numa_zonelist_order
[] = "Node";
5546 * sysctl handler for numa_zonelist_order
5548 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5549 void __user
*buffer
, size_t *length
,
5556 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5557 str
= memdup_user_nul(buffer
, 16);
5559 return PTR_ERR(str
);
5561 ret
= __parse_numa_zonelist_order(str
);
5567 #define MAX_NODE_LOAD (nr_online_nodes)
5568 static int node_load
[MAX_NUMNODES
];
5571 * find_next_best_node - find the next node that should appear in a given node's fallback list
5572 * @node: node whose fallback list we're appending
5573 * @used_node_mask: nodemask_t of already used nodes
5575 * We use a number of factors to determine which is the next node that should
5576 * appear on a given node's fallback list. The node should not have appeared
5577 * already in @node's fallback list, and it should be the next closest node
5578 * according to the distance array (which contains arbitrary distance values
5579 * from each node to each node in the system), and should also prefer nodes
5580 * with no CPUs, since presumably they'll have very little allocation pressure
5581 * on them otherwise.
5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5585 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5588 int min_val
= INT_MAX
;
5589 int best_node
= NUMA_NO_NODE
;
5590 const struct cpumask
*tmp
= cpumask_of_node(0);
5592 /* Use the local node if we haven't already */
5593 if (!node_isset(node
, *used_node_mask
)) {
5594 node_set(node
, *used_node_mask
);
5598 for_each_node_state(n
, N_MEMORY
) {
5600 /* Don't want a node to appear more than once */
5601 if (node_isset(n
, *used_node_mask
))
5604 /* Use the distance array to find the distance */
5605 val
= node_distance(node
, n
);
5607 /* Penalize nodes under us ("prefer the next node") */
5610 /* Give preference to headless and unused nodes */
5611 tmp
= cpumask_of_node(n
);
5612 if (!cpumask_empty(tmp
))
5613 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5615 /* Slight preference for less loaded node */
5616 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5617 val
+= node_load
[n
];
5619 if (val
< min_val
) {
5626 node_set(best_node
, *used_node_mask
);
5633 * Build zonelists ordered by node and zones within node.
5634 * This results in maximum locality--normal zone overflows into local
5635 * DMA zone, if any--but risks exhausting DMA zone.
5637 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5640 struct zoneref
*zonerefs
;
5643 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5645 for (i
= 0; i
< nr_nodes
; i
++) {
5648 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5650 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5651 zonerefs
+= nr_zones
;
5653 zonerefs
->zone
= NULL
;
5654 zonerefs
->zone_idx
= 0;
5658 * Build gfp_thisnode zonelists
5660 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5662 struct zoneref
*zonerefs
;
5665 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5666 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5667 zonerefs
+= nr_zones
;
5668 zonerefs
->zone
= NULL
;
5669 zonerefs
->zone_idx
= 0;
5673 * Build zonelists ordered by zone and nodes within zones.
5674 * This results in conserving DMA zone[s] until all Normal memory is
5675 * exhausted, but results in overflowing to remote node while memory
5676 * may still exist in local DMA zone.
5679 static void build_zonelists(pg_data_t
*pgdat
)
5681 static int node_order
[MAX_NUMNODES
];
5682 int node
, load
, nr_nodes
= 0;
5683 nodemask_t used_mask
;
5684 int local_node
, prev_node
;
5686 /* NUMA-aware ordering of nodes */
5687 local_node
= pgdat
->node_id
;
5688 load
= nr_online_nodes
;
5689 prev_node
= local_node
;
5690 nodes_clear(used_mask
);
5692 memset(node_order
, 0, sizeof(node_order
));
5693 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5695 * We don't want to pressure a particular node.
5696 * So adding penalty to the first node in same
5697 * distance group to make it round-robin.
5699 if (node_distance(local_node
, node
) !=
5700 node_distance(local_node
, prev_node
))
5701 node_load
[node
] = load
;
5703 node_order
[nr_nodes
++] = node
;
5708 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5709 build_thisnode_zonelists(pgdat
);
5712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5714 * Return node id of node used for "local" allocations.
5715 * I.e., first node id of first zone in arg node's generic zonelist.
5716 * Used for initializing percpu 'numa_mem', which is used primarily
5717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5719 int local_memory_node(int node
)
5723 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5724 gfp_zone(GFP_KERNEL
),
5726 return zone_to_nid(z
->zone
);
5730 static void setup_min_unmapped_ratio(void);
5731 static void setup_min_slab_ratio(void);
5732 #else /* CONFIG_NUMA */
5734 static void build_zonelists(pg_data_t
*pgdat
)
5736 int node
, local_node
;
5737 struct zoneref
*zonerefs
;
5740 local_node
= pgdat
->node_id
;
5742 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5743 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5744 zonerefs
+= nr_zones
;
5747 * Now we build the zonelist so that it contains the zones
5748 * of all the other nodes.
5749 * We don't want to pressure a particular node, so when
5750 * building the zones for node N, we make sure that the
5751 * zones coming right after the local ones are those from
5752 * node N+1 (modulo N)
5754 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5755 if (!node_online(node
))
5757 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5758 zonerefs
+= nr_zones
;
5760 for (node
= 0; node
< local_node
; node
++) {
5761 if (!node_online(node
))
5763 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5764 zonerefs
+= nr_zones
;
5767 zonerefs
->zone
= NULL
;
5768 zonerefs
->zone_idx
= 0;
5771 #endif /* CONFIG_NUMA */
5774 * Boot pageset table. One per cpu which is going to be used for all
5775 * zones and all nodes. The parameters will be set in such a way
5776 * that an item put on a list will immediately be handed over to
5777 * the buddy list. This is safe since pageset manipulation is done
5778 * with interrupts disabled.
5780 * The boot_pagesets must be kept even after bootup is complete for
5781 * unused processors and/or zones. They do play a role for bootstrapping
5782 * hotplugged processors.
5784 * zoneinfo_show() and maybe other functions do
5785 * not check if the processor is online before following the pageset pointer.
5786 * Other parts of the kernel may not check if the zone is available.
5788 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5789 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5790 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5792 static void __build_all_zonelists(void *data
)
5795 int __maybe_unused cpu
;
5796 pg_data_t
*self
= data
;
5797 static DEFINE_SPINLOCK(lock
);
5802 memset(node_load
, 0, sizeof(node_load
));
5806 * This node is hotadded and no memory is yet present. So just
5807 * building zonelists is fine - no need to touch other nodes.
5809 if (self
&& !node_online(self
->node_id
)) {
5810 build_zonelists(self
);
5812 for_each_online_node(nid
) {
5813 pg_data_t
*pgdat
= NODE_DATA(nid
);
5815 build_zonelists(pgdat
);
5818 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5820 * We now know the "local memory node" for each node--
5821 * i.e., the node of the first zone in the generic zonelist.
5822 * Set up numa_mem percpu variable for on-line cpus. During
5823 * boot, only the boot cpu should be on-line; we'll init the
5824 * secondary cpus' numa_mem as they come on-line. During
5825 * node/memory hotplug, we'll fixup all on-line cpus.
5827 for_each_online_cpu(cpu
)
5828 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5835 static noinline
void __init
5836 build_all_zonelists_init(void)
5840 __build_all_zonelists(NULL
);
5843 * Initialize the boot_pagesets that are going to be used
5844 * for bootstrapping processors. The real pagesets for
5845 * each zone will be allocated later when the per cpu
5846 * allocator is available.
5848 * boot_pagesets are used also for bootstrapping offline
5849 * cpus if the system is already booted because the pagesets
5850 * are needed to initialize allocators on a specific cpu too.
5851 * F.e. the percpu allocator needs the page allocator which
5852 * needs the percpu allocator in order to allocate its pagesets
5853 * (a chicken-egg dilemma).
5855 for_each_possible_cpu(cpu
)
5856 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5858 mminit_verify_zonelist();
5859 cpuset_init_current_mems_allowed();
5863 * unless system_state == SYSTEM_BOOTING.
5865 * __ref due to call of __init annotated helper build_all_zonelists_init
5866 * [protected by SYSTEM_BOOTING].
5868 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5870 if (system_state
== SYSTEM_BOOTING
) {
5871 build_all_zonelists_init();
5873 __build_all_zonelists(pgdat
);
5874 /* cpuset refresh routine should be here */
5876 vm_total_pages
= nr_free_pagecache_pages();
5878 * Disable grouping by mobility if the number of pages in the
5879 * system is too low to allow the mechanism to work. It would be
5880 * more accurate, but expensive to check per-zone. This check is
5881 * made on memory-hotadd so a system can start with mobility
5882 * disabled and enable it later
5884 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5885 page_group_by_mobility_disabled
= 1;
5887 page_group_by_mobility_disabled
= 0;
5889 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5891 page_group_by_mobility_disabled
? "off" : "on",
5894 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5898 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5899 static bool __meminit
5900 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5902 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5903 static struct memblock_region
*r
;
5905 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5906 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5907 for_each_memblock(memory
, r
) {
5908 if (*pfn
< memblock_region_memory_end_pfn(r
))
5912 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5913 memblock_is_mirror(r
)) {
5914 *pfn
= memblock_region_memory_end_pfn(r
);
5922 #ifdef CONFIG_SPARSEMEM
5923 /* Skip PFNs that belong to non-present sections */
5924 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5926 const unsigned long section_nr
= pfn_to_section_nr(++pfn
);
5928 if (present_section_nr(section_nr
))
5930 return section_nr_to_pfn(next_present_section_nr(section_nr
));
5933 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5940 * Initially all pages are reserved - free ones are freed
5941 * up by memblock_free_all() once the early boot process is
5942 * done. Non-atomic initialization, single-pass.
5944 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5945 unsigned long start_pfn
, enum memmap_context context
,
5946 struct vmem_altmap
*altmap
)
5948 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5951 if (highest_memmap_pfn
< end_pfn
- 1)
5952 highest_memmap_pfn
= end_pfn
- 1;
5954 #ifdef CONFIG_ZONE_DEVICE
5956 * Honor reservation requested by the driver for this ZONE_DEVICE
5957 * memory. We limit the total number of pages to initialize to just
5958 * those that might contain the memory mapping. We will defer the
5959 * ZONE_DEVICE page initialization until after we have released
5962 if (zone
== ZONE_DEVICE
) {
5966 if (start_pfn
== altmap
->base_pfn
)
5967 start_pfn
+= altmap
->reserve
;
5968 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5972 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
5974 * There can be holes in boot-time mem_map[]s handed to this
5975 * function. They do not exist on hotplugged memory.
5977 if (context
== MEMMAP_EARLY
) {
5978 if (!early_pfn_valid(pfn
)) {
5979 pfn
= next_pfn(pfn
);
5982 if (!early_pfn_in_nid(pfn
, nid
)) {
5986 if (overlap_memmap_init(zone
, &pfn
))
5988 if (defer_init(nid
, pfn
, end_pfn
))
5992 page
= pfn_to_page(pfn
);
5993 __init_single_page(page
, pfn
, zone
, nid
);
5994 if (context
== MEMMAP_HOTPLUG
)
5995 __SetPageReserved(page
);
5998 * Mark the block movable so that blocks are reserved for
5999 * movable at startup. This will force kernel allocations
6000 * to reserve their blocks rather than leaking throughout
6001 * the address space during boot when many long-lived
6002 * kernel allocations are made.
6004 * bitmap is created for zone's valid pfn range. but memmap
6005 * can be created for invalid pages (for alignment)
6006 * check here not to call set_pageblock_migratetype() against
6009 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6010 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6017 #ifdef CONFIG_ZONE_DEVICE
6018 void __ref
memmap_init_zone_device(struct zone
*zone
,
6019 unsigned long start_pfn
,
6020 unsigned long nr_pages
,
6021 struct dev_pagemap
*pgmap
)
6023 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
6024 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6025 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
6026 unsigned long zone_idx
= zone_idx(zone
);
6027 unsigned long start
= jiffies
;
6028 int nid
= pgdat
->node_id
;
6030 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
6034 * The call to memmap_init_zone should have already taken care
6035 * of the pages reserved for the memmap, so we can just jump to
6036 * the end of that region and start processing the device pages.
6039 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6040 nr_pages
= end_pfn
- start_pfn
;
6043 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
6044 struct page
*page
= pfn_to_page(pfn
);
6046 __init_single_page(page
, pfn
, zone_idx
, nid
);
6049 * Mark page reserved as it will need to wait for onlining
6050 * phase for it to be fully associated with a zone.
6052 * We can use the non-atomic __set_bit operation for setting
6053 * the flag as we are still initializing the pages.
6055 __SetPageReserved(page
);
6058 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6059 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6060 * ever freed or placed on a driver-private list.
6062 page
->pgmap
= pgmap
;
6063 page
->zone_device_data
= NULL
;
6066 * Mark the block movable so that blocks are reserved for
6067 * movable at startup. This will force kernel allocations
6068 * to reserve their blocks rather than leaking throughout
6069 * the address space during boot when many long-lived
6070 * kernel allocations are made.
6072 * bitmap is created for zone's valid pfn range. but memmap
6073 * can be created for invalid pages (for alignment)
6074 * check here not to call set_pageblock_migratetype() against
6077 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6078 * because this is done early in section_activate()
6080 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6081 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6086 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6087 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6091 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6093 unsigned int order
, t
;
6094 for_each_migratetype_order(order
, t
) {
6095 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6096 zone
->free_area
[order
].nr_free
= 0;
6100 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6101 unsigned long zone
, unsigned long start_pfn
)
6103 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
6106 static int zone_batchsize(struct zone
*zone
)
6112 * The per-cpu-pages pools are set to around 1000th of the
6115 batch
= zone_managed_pages(zone
) / 1024;
6116 /* But no more than a meg. */
6117 if (batch
* PAGE_SIZE
> 1024 * 1024)
6118 batch
= (1024 * 1024) / PAGE_SIZE
;
6119 batch
/= 4; /* We effectively *= 4 below */
6124 * Clamp the batch to a 2^n - 1 value. Having a power
6125 * of 2 value was found to be more likely to have
6126 * suboptimal cache aliasing properties in some cases.
6128 * For example if 2 tasks are alternately allocating
6129 * batches of pages, one task can end up with a lot
6130 * of pages of one half of the possible page colors
6131 * and the other with pages of the other colors.
6133 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6138 /* The deferral and batching of frees should be suppressed under NOMMU
6141 * The problem is that NOMMU needs to be able to allocate large chunks
6142 * of contiguous memory as there's no hardware page translation to
6143 * assemble apparent contiguous memory from discontiguous pages.
6145 * Queueing large contiguous runs of pages for batching, however,
6146 * causes the pages to actually be freed in smaller chunks. As there
6147 * can be a significant delay between the individual batches being
6148 * recycled, this leads to the once large chunks of space being
6149 * fragmented and becoming unavailable for high-order allocations.
6156 * pcp->high and pcp->batch values are related and dependent on one another:
6157 * ->batch must never be higher then ->high.
6158 * The following function updates them in a safe manner without read side
6161 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6162 * those fields changing asynchronously (acording the the above rule).
6164 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6165 * outside of boot time (or some other assurance that no concurrent updaters
6168 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6169 unsigned long batch
)
6171 /* start with a fail safe value for batch */
6175 /* Update high, then batch, in order */
6182 /* a companion to pageset_set_high() */
6183 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
6185 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
6188 static void pageset_init(struct per_cpu_pageset
*p
)
6190 struct per_cpu_pages
*pcp
;
6193 memset(p
, 0, sizeof(*p
));
6196 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6197 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6200 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
6203 pageset_set_batch(p
, batch
);
6207 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6208 * to the value high for the pageset p.
6210 static void pageset_set_high(struct per_cpu_pageset
*p
,
6213 unsigned long batch
= max(1UL, high
/ 4);
6214 if ((high
/ 4) > (PAGE_SHIFT
* 8))
6215 batch
= PAGE_SHIFT
* 8;
6217 pageset_update(&p
->pcp
, high
, batch
);
6220 static void pageset_set_high_and_batch(struct zone
*zone
,
6221 struct per_cpu_pageset
*pcp
)
6223 if (percpu_pagelist_fraction
)
6224 pageset_set_high(pcp
,
6225 (zone_managed_pages(zone
) /
6226 percpu_pagelist_fraction
));
6228 pageset_set_batch(pcp
, zone_batchsize(zone
));
6231 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6233 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6236 pageset_set_high_and_batch(zone
, pcp
);
6239 void __meminit
setup_zone_pageset(struct zone
*zone
)
6242 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6243 for_each_possible_cpu(cpu
)
6244 zone_pageset_init(zone
, cpu
);
6248 * Allocate per cpu pagesets and initialize them.
6249 * Before this call only boot pagesets were available.
6251 void __init
setup_per_cpu_pageset(void)
6253 struct pglist_data
*pgdat
;
6256 for_each_populated_zone(zone
)
6257 setup_zone_pageset(zone
);
6259 for_each_online_pgdat(pgdat
)
6260 pgdat
->per_cpu_nodestats
=
6261 alloc_percpu(struct per_cpu_nodestat
);
6264 static __meminit
void zone_pcp_init(struct zone
*zone
)
6267 * per cpu subsystem is not up at this point. The following code
6268 * relies on the ability of the linker to provide the
6269 * offset of a (static) per cpu variable into the per cpu area.
6271 zone
->pageset
= &boot_pageset
;
6273 if (populated_zone(zone
))
6274 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6275 zone
->name
, zone
->present_pages
,
6276 zone_batchsize(zone
));
6279 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6280 unsigned long zone_start_pfn
,
6283 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6284 int zone_idx
= zone_idx(zone
) + 1;
6286 if (zone_idx
> pgdat
->nr_zones
)
6287 pgdat
->nr_zones
= zone_idx
;
6289 zone
->zone_start_pfn
= zone_start_pfn
;
6291 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6292 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6294 (unsigned long)zone_idx(zone
),
6295 zone_start_pfn
, (zone_start_pfn
+ size
));
6297 zone_init_free_lists(zone
);
6298 zone
->initialized
= 1;
6301 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6302 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6305 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6307 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
6308 struct mminit_pfnnid_cache
*state
)
6310 unsigned long start_pfn
, end_pfn
;
6313 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
6314 return state
->last_nid
;
6316 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
6317 if (nid
!= NUMA_NO_NODE
) {
6318 state
->last_start
= start_pfn
;
6319 state
->last_end
= end_pfn
;
6320 state
->last_nid
= nid
;
6325 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6328 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6329 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6330 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6332 * If an architecture guarantees that all ranges registered contain no holes
6333 * and may be freed, this this function may be used instead of calling
6334 * memblock_free_early_nid() manually.
6336 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
6338 unsigned long start_pfn
, end_pfn
;
6341 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
6342 start_pfn
= min(start_pfn
, max_low_pfn
);
6343 end_pfn
= min(end_pfn
, max_low_pfn
);
6345 if (start_pfn
< end_pfn
)
6346 memblock_free_early_nid(PFN_PHYS(start_pfn
),
6347 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
6353 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6354 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6356 * If an architecture guarantees that all ranges registered contain no holes and may
6357 * be freed, this function may be used instead of calling memory_present() manually.
6359 void __init
sparse_memory_present_with_active_regions(int nid
)
6361 unsigned long start_pfn
, end_pfn
;
6364 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
6365 memory_present(this_nid
, start_pfn
, end_pfn
);
6369 * get_pfn_range_for_nid - Return the start and end page frames for a node
6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6374 * It returns the start and end page frame of a node based on information
6375 * provided by memblock_set_node(). If called for a node
6376 * with no available memory, a warning is printed and the start and end
6379 void __init
get_pfn_range_for_nid(unsigned int nid
,
6380 unsigned long *start_pfn
, unsigned long *end_pfn
)
6382 unsigned long this_start_pfn
, this_end_pfn
;
6388 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6389 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6390 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6393 if (*start_pfn
== -1UL)
6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399 * assumption is made that zones within a node are ordered in monotonic
6400 * increasing memory addresses so that the "highest" populated zone is used
6402 static void __init
find_usable_zone_for_movable(void)
6405 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6406 if (zone_index
== ZONE_MOVABLE
)
6409 if (arch_zone_highest_possible_pfn
[zone_index
] >
6410 arch_zone_lowest_possible_pfn
[zone_index
])
6414 VM_BUG_ON(zone_index
== -1);
6415 movable_zone
= zone_index
;
6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6420 * because it is sized independent of architecture. Unlike the other zones,
6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422 * in each node depending on the size of each node and how evenly kernelcore
6423 * is distributed. This helper function adjusts the zone ranges
6424 * provided by the architecture for a given node by using the end of the
6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426 * zones within a node are in order of monotonic increases memory addresses
6428 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6429 unsigned long zone_type
,
6430 unsigned long node_start_pfn
,
6431 unsigned long node_end_pfn
,
6432 unsigned long *zone_start_pfn
,
6433 unsigned long *zone_end_pfn
)
6435 /* Only adjust if ZONE_MOVABLE is on this node */
6436 if (zone_movable_pfn
[nid
]) {
6437 /* Size ZONE_MOVABLE */
6438 if (zone_type
== ZONE_MOVABLE
) {
6439 *zone_start_pfn
= zone_movable_pfn
[nid
];
6440 *zone_end_pfn
= min(node_end_pfn
,
6441 arch_zone_highest_possible_pfn
[movable_zone
]);
6443 /* Adjust for ZONE_MOVABLE starting within this range */
6444 } else if (!mirrored_kernelcore
&&
6445 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6446 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6447 *zone_end_pfn
= zone_movable_pfn
[nid
];
6449 /* Check if this whole range is within ZONE_MOVABLE */
6450 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6451 *zone_start_pfn
= *zone_end_pfn
;
6456 * Return the number of pages a zone spans in a node, including holes
6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6460 unsigned long zone_type
,
6461 unsigned long node_start_pfn
,
6462 unsigned long node_end_pfn
,
6463 unsigned long *zone_start_pfn
,
6464 unsigned long *zone_end_pfn
,
6465 unsigned long *ignored
)
6467 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6468 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6469 /* When hotadd a new node from cpu_up(), the node should be empty */
6470 if (!node_start_pfn
&& !node_end_pfn
)
6473 /* Get the start and end of the zone */
6474 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6475 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6476 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6477 node_start_pfn
, node_end_pfn
,
6478 zone_start_pfn
, zone_end_pfn
);
6480 /* Check that this node has pages within the zone's required range */
6481 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6484 /* Move the zone boundaries inside the node if necessary */
6485 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6486 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6488 /* Return the spanned pages */
6489 return *zone_end_pfn
- *zone_start_pfn
;
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6494 * then all holes in the requested range will be accounted for.
6496 unsigned long __init
__absent_pages_in_range(int nid
,
6497 unsigned long range_start_pfn
,
6498 unsigned long range_end_pfn
)
6500 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6501 unsigned long start_pfn
, end_pfn
;
6504 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6505 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6506 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6507 nr_absent
-= end_pfn
- start_pfn
;
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6517 * Return: the number of pages frames in memory holes within a range.
6519 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6520 unsigned long end_pfn
)
6522 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6525 /* Return the number of page frames in holes in a zone on a node */
6526 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6527 unsigned long zone_type
,
6528 unsigned long node_start_pfn
,
6529 unsigned long node_end_pfn
,
6530 unsigned long *ignored
)
6532 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6533 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6534 unsigned long zone_start_pfn
, zone_end_pfn
;
6535 unsigned long nr_absent
;
6537 /* When hotadd a new node from cpu_up(), the node should be empty */
6538 if (!node_start_pfn
&& !node_end_pfn
)
6541 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6542 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6544 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6545 node_start_pfn
, node_end_pfn
,
6546 &zone_start_pfn
, &zone_end_pfn
);
6547 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6550 * ZONE_MOVABLE handling.
6551 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6554 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6555 unsigned long start_pfn
, end_pfn
;
6556 struct memblock_region
*r
;
6558 for_each_memblock(memory
, r
) {
6559 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6560 zone_start_pfn
, zone_end_pfn
);
6561 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6562 zone_start_pfn
, zone_end_pfn
);
6564 if (zone_type
== ZONE_MOVABLE
&&
6565 memblock_is_mirror(r
))
6566 nr_absent
+= end_pfn
- start_pfn
;
6568 if (zone_type
== ZONE_NORMAL
&&
6569 !memblock_is_mirror(r
))
6570 nr_absent
+= end_pfn
- start_pfn
;
6577 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6578 static inline unsigned long __init
zone_spanned_pages_in_node(int nid
,
6579 unsigned long zone_type
,
6580 unsigned long node_start_pfn
,
6581 unsigned long node_end_pfn
,
6582 unsigned long *zone_start_pfn
,
6583 unsigned long *zone_end_pfn
,
6584 unsigned long *zones_size
)
6588 *zone_start_pfn
= node_start_pfn
;
6589 for (zone
= 0; zone
< zone_type
; zone
++)
6590 *zone_start_pfn
+= zones_size
[zone
];
6592 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6594 return zones_size
[zone_type
];
6597 static inline unsigned long __init
zone_absent_pages_in_node(int nid
,
6598 unsigned long zone_type
,
6599 unsigned long node_start_pfn
,
6600 unsigned long node_end_pfn
,
6601 unsigned long *zholes_size
)
6606 return zholes_size
[zone_type
];
6609 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6611 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6612 unsigned long node_start_pfn
,
6613 unsigned long node_end_pfn
,
6614 unsigned long *zones_size
,
6615 unsigned long *zholes_size
)
6617 unsigned long realtotalpages
= 0, totalpages
= 0;
6620 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6621 struct zone
*zone
= pgdat
->node_zones
+ i
;
6622 unsigned long zone_start_pfn
, zone_end_pfn
;
6623 unsigned long size
, real_size
;
6625 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6631 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6632 node_start_pfn
, node_end_pfn
,
6635 zone
->zone_start_pfn
= zone_start_pfn
;
6637 zone
->zone_start_pfn
= 0;
6638 zone
->spanned_pages
= size
;
6639 zone
->present_pages
= real_size
;
6642 realtotalpages
+= real_size
;
6645 pgdat
->node_spanned_pages
= totalpages
;
6646 pgdat
->node_present_pages
= realtotalpages
;
6647 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6651 #ifndef CONFIG_SPARSEMEM
6653 * Calculate the size of the zone->blockflags rounded to an unsigned long
6654 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6655 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6656 * round what is now in bits to nearest long in bits, then return it in
6659 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6661 unsigned long usemapsize
;
6663 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6664 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6665 usemapsize
= usemapsize
>> pageblock_order
;
6666 usemapsize
*= NR_PAGEBLOCK_BITS
;
6667 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6669 return usemapsize
/ 8;
6672 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6674 unsigned long zone_start_pfn
,
6675 unsigned long zonesize
)
6677 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6678 zone
->pageblock_flags
= NULL
;
6680 zone
->pageblock_flags
=
6681 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6683 if (!zone
->pageblock_flags
)
6684 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6685 usemapsize
, zone
->name
, pgdat
->node_id
);
6689 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6690 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6691 #endif /* CONFIG_SPARSEMEM */
6693 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6695 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6696 void __init
set_pageblock_order(void)
6700 /* Check that pageblock_nr_pages has not already been setup */
6701 if (pageblock_order
)
6704 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6705 order
= HUGETLB_PAGE_ORDER
;
6707 order
= MAX_ORDER
- 1;
6710 * Assume the largest contiguous order of interest is a huge page.
6711 * This value may be variable depending on boot parameters on IA64 and
6714 pageblock_order
= order
;
6716 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6719 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6720 * is unused as pageblock_order is set at compile-time. See
6721 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6724 void __init
set_pageblock_order(void)
6728 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6730 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6731 unsigned long present_pages
)
6733 unsigned long pages
= spanned_pages
;
6736 * Provide a more accurate estimation if there are holes within
6737 * the zone and SPARSEMEM is in use. If there are holes within the
6738 * zone, each populated memory region may cost us one or two extra
6739 * memmap pages due to alignment because memmap pages for each
6740 * populated regions may not be naturally aligned on page boundary.
6741 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6743 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6744 IS_ENABLED(CONFIG_SPARSEMEM
))
6745 pages
= present_pages
;
6747 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6751 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6753 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6755 spin_lock_init(&ds_queue
->split_queue_lock
);
6756 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6757 ds_queue
->split_queue_len
= 0;
6760 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6763 #ifdef CONFIG_COMPACTION
6764 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6766 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6769 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6772 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6774 pgdat_resize_init(pgdat
);
6776 pgdat_init_split_queue(pgdat
);
6777 pgdat_init_kcompactd(pgdat
);
6779 init_waitqueue_head(&pgdat
->kswapd_wait
);
6780 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6782 pgdat_page_ext_init(pgdat
);
6783 spin_lock_init(&pgdat
->lru_lock
);
6784 lruvec_init(&pgdat
->__lruvec
);
6787 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6788 unsigned long remaining_pages
)
6790 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6791 zone_set_nid(zone
, nid
);
6792 zone
->name
= zone_names
[idx
];
6793 zone
->zone_pgdat
= NODE_DATA(nid
);
6794 spin_lock_init(&zone
->lock
);
6795 zone_seqlock_init(zone
);
6796 zone_pcp_init(zone
);
6800 * Set up the zone data structures
6801 * - init pgdat internals
6802 * - init all zones belonging to this node
6804 * NOTE: this function is only called during memory hotplug
6806 #ifdef CONFIG_MEMORY_HOTPLUG
6807 void __ref
free_area_init_core_hotplug(int nid
)
6810 pg_data_t
*pgdat
= NODE_DATA(nid
);
6812 pgdat_init_internals(pgdat
);
6813 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6814 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6819 * Set up the zone data structures:
6820 * - mark all pages reserved
6821 * - mark all memory queues empty
6822 * - clear the memory bitmaps
6824 * NOTE: pgdat should get zeroed by caller.
6825 * NOTE: this function is only called during early init.
6827 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6830 int nid
= pgdat
->node_id
;
6832 pgdat_init_internals(pgdat
);
6833 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6835 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6836 struct zone
*zone
= pgdat
->node_zones
+ j
;
6837 unsigned long size
, freesize
, memmap_pages
;
6838 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6840 size
= zone
->spanned_pages
;
6841 freesize
= zone
->present_pages
;
6844 * Adjust freesize so that it accounts for how much memory
6845 * is used by this zone for memmap. This affects the watermark
6846 * and per-cpu initialisations
6848 memmap_pages
= calc_memmap_size(size
, freesize
);
6849 if (!is_highmem_idx(j
)) {
6850 if (freesize
>= memmap_pages
) {
6851 freesize
-= memmap_pages
;
6854 " %s zone: %lu pages used for memmap\n",
6855 zone_names
[j
], memmap_pages
);
6857 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6858 zone_names
[j
], memmap_pages
, freesize
);
6861 /* Account for reserved pages */
6862 if (j
== 0 && freesize
> dma_reserve
) {
6863 freesize
-= dma_reserve
;
6864 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6865 zone_names
[0], dma_reserve
);
6868 if (!is_highmem_idx(j
))
6869 nr_kernel_pages
+= freesize
;
6870 /* Charge for highmem memmap if there are enough kernel pages */
6871 else if (nr_kernel_pages
> memmap_pages
* 2)
6872 nr_kernel_pages
-= memmap_pages
;
6873 nr_all_pages
+= freesize
;
6876 * Set an approximate value for lowmem here, it will be adjusted
6877 * when the bootmem allocator frees pages into the buddy system.
6878 * And all highmem pages will be managed by the buddy system.
6880 zone_init_internals(zone
, j
, nid
, freesize
);
6885 set_pageblock_order();
6886 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6887 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6888 memmap_init(size
, nid
, j
, zone_start_pfn
);
6892 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6893 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6895 unsigned long __maybe_unused start
= 0;
6896 unsigned long __maybe_unused offset
= 0;
6898 /* Skip empty nodes */
6899 if (!pgdat
->node_spanned_pages
)
6902 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6903 offset
= pgdat
->node_start_pfn
- start
;
6904 /* ia64 gets its own node_mem_map, before this, without bootmem */
6905 if (!pgdat
->node_mem_map
) {
6906 unsigned long size
, end
;
6910 * The zone's endpoints aren't required to be MAX_ORDER
6911 * aligned but the node_mem_map endpoints must be in order
6912 * for the buddy allocator to function correctly.
6914 end
= pgdat_end_pfn(pgdat
);
6915 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6916 size
= (end
- start
) * sizeof(struct page
);
6917 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6920 panic("Failed to allocate %ld bytes for node %d memory map\n",
6921 size
, pgdat
->node_id
);
6922 pgdat
->node_mem_map
= map
+ offset
;
6924 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6925 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6926 (unsigned long)pgdat
->node_mem_map
);
6927 #ifndef CONFIG_NEED_MULTIPLE_NODES
6929 * With no DISCONTIG, the global mem_map is just set as node 0's
6931 if (pgdat
== NODE_DATA(0)) {
6932 mem_map
= NODE_DATA(0)->node_mem_map
;
6933 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6934 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6941 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6944 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6945 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6947 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6950 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6953 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6954 unsigned long node_start_pfn
,
6955 unsigned long *zholes_size
)
6957 pg_data_t
*pgdat
= NODE_DATA(nid
);
6958 unsigned long start_pfn
= 0;
6959 unsigned long end_pfn
= 0;
6961 /* pg_data_t should be reset to zero when it's allocated */
6962 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6964 pgdat
->node_id
= nid
;
6965 pgdat
->node_start_pfn
= node_start_pfn
;
6966 pgdat
->per_cpu_nodestats
= NULL
;
6967 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6968 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6969 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6970 (u64
)start_pfn
<< PAGE_SHIFT
,
6971 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6973 start_pfn
= node_start_pfn
;
6975 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6976 zones_size
, zholes_size
);
6978 alloc_node_mem_map(pgdat
);
6979 pgdat_set_deferred_range(pgdat
);
6981 free_area_init_core(pgdat
);
6984 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6986 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6987 * PageReserved(). Return the number of struct pages that were initialized.
6989 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
6994 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6995 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6996 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6997 + pageblock_nr_pages
- 1;
7001 * Use a fake node/zone (0) for now. Some of these pages
7002 * (in memblock.reserved but not in memblock.memory) will
7003 * get re-initialized via reserve_bootmem_region() later.
7005 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
7006 __SetPageReserved(pfn_to_page(pfn
));
7014 * Only struct pages that are backed by physical memory are zeroed and
7015 * initialized by going through __init_single_page(). But, there are some
7016 * struct pages which are reserved in memblock allocator and their fields
7017 * may be accessed (for example page_to_pfn() on some configuration accesses
7018 * flags). We must explicitly initialize those struct pages.
7020 * This function also addresses a similar issue where struct pages are left
7021 * uninitialized because the physical address range is not covered by
7022 * memblock.memory or memblock.reserved. That could happen when memblock
7023 * layout is manually configured via memmap=, or when the highest physical
7024 * address (max_pfn) does not end on a section boundary.
7026 static void __init
init_unavailable_mem(void)
7028 phys_addr_t start
, end
;
7030 phys_addr_t next
= 0;
7033 * Loop through unavailable ranges not covered by memblock.memory.
7036 for_each_mem_range(i
, &memblock
.memory
, NULL
,
7037 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
7039 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7045 * Early sections always have a fully populated memmap for the whole
7046 * section - see pfn_valid(). If the last section has holes at the
7047 * end and that section is marked "online", the memmap will be
7048 * considered initialized. Make sure that memmap has a well defined
7051 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7052 round_up(max_pfn
, PAGES_PER_SECTION
));
7055 * Struct pages that do not have backing memory. This could be because
7056 * firmware is using some of this memory, or for some other reasons.
7059 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
7062 static inline void __init
init_unavailable_mem(void)
7065 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7069 #if MAX_NUMNODES > 1
7071 * Figure out the number of possible node ids.
7073 void __init
setup_nr_node_ids(void)
7075 unsigned int highest
;
7077 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7078 nr_node_ids
= highest
+ 1;
7083 * node_map_pfn_alignment - determine the maximum internode alignment
7085 * This function should be called after node map is populated and sorted.
7086 * It calculates the maximum power of two alignment which can distinguish
7089 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7090 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7091 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7092 * shifted, 1GiB is enough and this function will indicate so.
7094 * This is used to test whether pfn -> nid mapping of the chosen memory
7095 * model has fine enough granularity to avoid incorrect mapping for the
7096 * populated node map.
7098 * Return: the determined alignment in pfn's. 0 if there is no alignment
7099 * requirement (single node).
7101 unsigned long __init
node_map_pfn_alignment(void)
7103 unsigned long accl_mask
= 0, last_end
= 0;
7104 unsigned long start
, end
, mask
;
7105 int last_nid
= NUMA_NO_NODE
;
7108 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7109 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7116 * Start with a mask granular enough to pin-point to the
7117 * start pfn and tick off bits one-by-one until it becomes
7118 * too coarse to separate the current node from the last.
7120 mask
= ~((1 << __ffs(start
)) - 1);
7121 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7124 /* accumulate all internode masks */
7128 /* convert mask to number of pages */
7129 return ~accl_mask
+ 1;
7132 /* Find the lowest pfn for a node */
7133 static unsigned long __init
find_min_pfn_for_node(int nid
)
7135 unsigned long min_pfn
= ULONG_MAX
;
7136 unsigned long start_pfn
;
7139 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
7140 min_pfn
= min(min_pfn
, start_pfn
);
7142 if (min_pfn
== ULONG_MAX
) {
7143 pr_warn("Could not find start_pfn for node %d\n", nid
);
7151 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7153 * Return: the minimum PFN based on information provided via
7154 * memblock_set_node().
7156 unsigned long __init
find_min_pfn_with_active_regions(void)
7158 return find_min_pfn_for_node(MAX_NUMNODES
);
7162 * early_calculate_totalpages()
7163 * Sum pages in active regions for movable zone.
7164 * Populate N_MEMORY for calculating usable_nodes.
7166 static unsigned long __init
early_calculate_totalpages(void)
7168 unsigned long totalpages
= 0;
7169 unsigned long start_pfn
, end_pfn
;
7172 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7173 unsigned long pages
= end_pfn
- start_pfn
;
7175 totalpages
+= pages
;
7177 node_set_state(nid
, N_MEMORY
);
7183 * Find the PFN the Movable zone begins in each node. Kernel memory
7184 * is spread evenly between nodes as long as the nodes have enough
7185 * memory. When they don't, some nodes will have more kernelcore than
7188 static void __init
find_zone_movable_pfns_for_nodes(void)
7191 unsigned long usable_startpfn
;
7192 unsigned long kernelcore_node
, kernelcore_remaining
;
7193 /* save the state before borrow the nodemask */
7194 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7195 unsigned long totalpages
= early_calculate_totalpages();
7196 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7197 struct memblock_region
*r
;
7199 /* Need to find movable_zone earlier when movable_node is specified. */
7200 find_usable_zone_for_movable();
7203 * If movable_node is specified, ignore kernelcore and movablecore
7206 if (movable_node_is_enabled()) {
7207 for_each_memblock(memory
, r
) {
7208 if (!memblock_is_hotpluggable(r
))
7213 usable_startpfn
= PFN_DOWN(r
->base
);
7214 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7215 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7223 * If kernelcore=mirror is specified, ignore movablecore option
7225 if (mirrored_kernelcore
) {
7226 bool mem_below_4gb_not_mirrored
= false;
7228 for_each_memblock(memory
, r
) {
7229 if (memblock_is_mirror(r
))
7234 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7236 if (usable_startpfn
< 0x100000) {
7237 mem_below_4gb_not_mirrored
= true;
7241 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7242 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7246 if (mem_below_4gb_not_mirrored
)
7247 pr_warn("This configuration results in unmirrored kernel memory.");
7253 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7254 * amount of necessary memory.
7256 if (required_kernelcore_percent
)
7257 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7259 if (required_movablecore_percent
)
7260 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7264 * If movablecore= was specified, calculate what size of
7265 * kernelcore that corresponds so that memory usable for
7266 * any allocation type is evenly spread. If both kernelcore
7267 * and movablecore are specified, then the value of kernelcore
7268 * will be used for required_kernelcore if it's greater than
7269 * what movablecore would have allowed.
7271 if (required_movablecore
) {
7272 unsigned long corepages
;
7275 * Round-up so that ZONE_MOVABLE is at least as large as what
7276 * was requested by the user
7278 required_movablecore
=
7279 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7280 required_movablecore
= min(totalpages
, required_movablecore
);
7281 corepages
= totalpages
- required_movablecore
;
7283 required_kernelcore
= max(required_kernelcore
, corepages
);
7287 * If kernelcore was not specified or kernelcore size is larger
7288 * than totalpages, there is no ZONE_MOVABLE.
7290 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7293 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7294 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7297 /* Spread kernelcore memory as evenly as possible throughout nodes */
7298 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7299 for_each_node_state(nid
, N_MEMORY
) {
7300 unsigned long start_pfn
, end_pfn
;
7303 * Recalculate kernelcore_node if the division per node
7304 * now exceeds what is necessary to satisfy the requested
7305 * amount of memory for the kernel
7307 if (required_kernelcore
< kernelcore_node
)
7308 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7311 * As the map is walked, we track how much memory is usable
7312 * by the kernel using kernelcore_remaining. When it is
7313 * 0, the rest of the node is usable by ZONE_MOVABLE
7315 kernelcore_remaining
= kernelcore_node
;
7317 /* Go through each range of PFNs within this node */
7318 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7319 unsigned long size_pages
;
7321 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7322 if (start_pfn
>= end_pfn
)
7325 /* Account for what is only usable for kernelcore */
7326 if (start_pfn
< usable_startpfn
) {
7327 unsigned long kernel_pages
;
7328 kernel_pages
= min(end_pfn
, usable_startpfn
)
7331 kernelcore_remaining
-= min(kernel_pages
,
7332 kernelcore_remaining
);
7333 required_kernelcore
-= min(kernel_pages
,
7334 required_kernelcore
);
7336 /* Continue if range is now fully accounted */
7337 if (end_pfn
<= usable_startpfn
) {
7340 * Push zone_movable_pfn to the end so
7341 * that if we have to rebalance
7342 * kernelcore across nodes, we will
7343 * not double account here
7345 zone_movable_pfn
[nid
] = end_pfn
;
7348 start_pfn
= usable_startpfn
;
7352 * The usable PFN range for ZONE_MOVABLE is from
7353 * start_pfn->end_pfn. Calculate size_pages as the
7354 * number of pages used as kernelcore
7356 size_pages
= end_pfn
- start_pfn
;
7357 if (size_pages
> kernelcore_remaining
)
7358 size_pages
= kernelcore_remaining
;
7359 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7362 * Some kernelcore has been met, update counts and
7363 * break if the kernelcore for this node has been
7366 required_kernelcore
-= min(required_kernelcore
,
7368 kernelcore_remaining
-= size_pages
;
7369 if (!kernelcore_remaining
)
7375 * If there is still required_kernelcore, we do another pass with one
7376 * less node in the count. This will push zone_movable_pfn[nid] further
7377 * along on the nodes that still have memory until kernelcore is
7381 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7385 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7386 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7387 zone_movable_pfn
[nid
] =
7388 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7391 /* restore the node_state */
7392 node_states
[N_MEMORY
] = saved_node_state
;
7395 /* Any regular or high memory on that node ? */
7396 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7398 enum zone_type zone_type
;
7400 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7401 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7402 if (populated_zone(zone
)) {
7403 if (IS_ENABLED(CONFIG_HIGHMEM
))
7404 node_set_state(nid
, N_HIGH_MEMORY
);
7405 if (zone_type
<= ZONE_NORMAL
)
7406 node_set_state(nid
, N_NORMAL_MEMORY
);
7413 * free_area_init_nodes - Initialise all pg_data_t and zone data
7414 * @max_zone_pfn: an array of max PFNs for each zone
7416 * This will call free_area_init_node() for each active node in the system.
7417 * Using the page ranges provided by memblock_set_node(), the size of each
7418 * zone in each node and their holes is calculated. If the maximum PFN
7419 * between two adjacent zones match, it is assumed that the zone is empty.
7420 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7421 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7422 * starts where the previous one ended. For example, ZONE_DMA32 starts
7423 * at arch_max_dma_pfn.
7425 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
7427 unsigned long start_pfn
, end_pfn
;
7430 /* Record where the zone boundaries are */
7431 memset(arch_zone_lowest_possible_pfn
, 0,
7432 sizeof(arch_zone_lowest_possible_pfn
));
7433 memset(arch_zone_highest_possible_pfn
, 0,
7434 sizeof(arch_zone_highest_possible_pfn
));
7436 start_pfn
= find_min_pfn_with_active_regions();
7438 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7439 if (i
== ZONE_MOVABLE
)
7442 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
7443 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
7444 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
7446 start_pfn
= end_pfn
;
7449 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7450 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7451 find_zone_movable_pfns_for_nodes();
7453 /* Print out the zone ranges */
7454 pr_info("Zone ranges:\n");
7455 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7456 if (i
== ZONE_MOVABLE
)
7458 pr_info(" %-8s ", zone_names
[i
]);
7459 if (arch_zone_lowest_possible_pfn
[i
] ==
7460 arch_zone_highest_possible_pfn
[i
])
7463 pr_cont("[mem %#018Lx-%#018Lx]\n",
7464 (u64
)arch_zone_lowest_possible_pfn
[i
]
7466 ((u64
)arch_zone_highest_possible_pfn
[i
]
7467 << PAGE_SHIFT
) - 1);
7470 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7471 pr_info("Movable zone start for each node\n");
7472 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7473 if (zone_movable_pfn
[i
])
7474 pr_info(" Node %d: %#018Lx\n", i
,
7475 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7479 * Print out the early node map, and initialize the
7480 * subsection-map relative to active online memory ranges to
7481 * enable future "sub-section" extensions of the memory map.
7483 pr_info("Early memory node ranges\n");
7484 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7485 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7486 (u64
)start_pfn
<< PAGE_SHIFT
,
7487 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7488 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7491 /* Initialise every node */
7492 mminit_verify_pageflags_layout();
7493 setup_nr_node_ids();
7494 init_unavailable_mem();
7495 for_each_online_node(nid
) {
7496 pg_data_t
*pgdat
= NODE_DATA(nid
);
7497 free_area_init_node(nid
, NULL
,
7498 find_min_pfn_for_node(nid
), NULL
);
7500 /* Any memory on that node */
7501 if (pgdat
->node_present_pages
)
7502 node_set_state(nid
, N_MEMORY
);
7503 check_for_memory(pgdat
, nid
);
7507 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7508 unsigned long *percent
)
7510 unsigned long long coremem
;
7516 /* Value may be a percentage of total memory, otherwise bytes */
7517 coremem
= simple_strtoull(p
, &endptr
, 0);
7518 if (*endptr
== '%') {
7519 /* Paranoid check for percent values greater than 100 */
7520 WARN_ON(coremem
> 100);
7524 coremem
= memparse(p
, &p
);
7525 /* Paranoid check that UL is enough for the coremem value */
7526 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7528 *core
= coremem
>> PAGE_SHIFT
;
7535 * kernelcore=size sets the amount of memory for use for allocations that
7536 * cannot be reclaimed or migrated.
7538 static int __init
cmdline_parse_kernelcore(char *p
)
7540 /* parse kernelcore=mirror */
7541 if (parse_option_str(p
, "mirror")) {
7542 mirrored_kernelcore
= true;
7546 return cmdline_parse_core(p
, &required_kernelcore
,
7547 &required_kernelcore_percent
);
7551 * movablecore=size sets the amount of memory for use for allocations that
7552 * can be reclaimed or migrated.
7554 static int __init
cmdline_parse_movablecore(char *p
)
7556 return cmdline_parse_core(p
, &required_movablecore
,
7557 &required_movablecore_percent
);
7560 early_param("kernelcore", cmdline_parse_kernelcore
);
7561 early_param("movablecore", cmdline_parse_movablecore
);
7563 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7565 void adjust_managed_page_count(struct page
*page
, long count
)
7567 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7568 totalram_pages_add(count
);
7569 #ifdef CONFIG_HIGHMEM
7570 if (PageHighMem(page
))
7571 totalhigh_pages_add(count
);
7574 EXPORT_SYMBOL(adjust_managed_page_count
);
7576 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7579 unsigned long pages
= 0;
7581 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7582 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7583 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7584 struct page
*page
= virt_to_page(pos
);
7585 void *direct_map_addr
;
7588 * 'direct_map_addr' might be different from 'pos'
7589 * because some architectures' virt_to_page()
7590 * work with aliases. Getting the direct map
7591 * address ensures that we get a _writeable_
7592 * alias for the memset().
7594 direct_map_addr
= page_address(page
);
7595 if ((unsigned int)poison
<= 0xFF)
7596 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7598 free_reserved_page(page
);
7602 pr_info("Freeing %s memory: %ldK\n",
7603 s
, pages
<< (PAGE_SHIFT
- 10));
7608 #ifdef CONFIG_HIGHMEM
7609 void free_highmem_page(struct page
*page
)
7611 __free_reserved_page(page
);
7612 totalram_pages_inc();
7613 atomic_long_inc(&page_zone(page
)->managed_pages
);
7614 totalhigh_pages_inc();
7619 void __init
mem_init_print_info(const char *str
)
7621 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7622 unsigned long init_code_size
, init_data_size
;
7624 physpages
= get_num_physpages();
7625 codesize
= _etext
- _stext
;
7626 datasize
= _edata
- _sdata
;
7627 rosize
= __end_rodata
- __start_rodata
;
7628 bss_size
= __bss_stop
- __bss_start
;
7629 init_data_size
= __init_end
- __init_begin
;
7630 init_code_size
= _einittext
- _sinittext
;
7633 * Detect special cases and adjust section sizes accordingly:
7634 * 1) .init.* may be embedded into .data sections
7635 * 2) .init.text.* may be out of [__init_begin, __init_end],
7636 * please refer to arch/tile/kernel/vmlinux.lds.S.
7637 * 3) .rodata.* may be embedded into .text or .data sections.
7639 #define adj_init_size(start, end, size, pos, adj) \
7641 if (start <= pos && pos < end && size > adj) \
7645 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7646 _sinittext
, init_code_size
);
7647 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7648 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7649 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7650 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7652 #undef adj_init_size
7654 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7655 #ifdef CONFIG_HIGHMEM
7659 nr_free_pages() << (PAGE_SHIFT
- 10),
7660 physpages
<< (PAGE_SHIFT
- 10),
7661 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7662 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7663 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7664 totalcma_pages
<< (PAGE_SHIFT
- 10),
7665 #ifdef CONFIG_HIGHMEM
7666 totalhigh_pages() << (PAGE_SHIFT
- 10),
7668 str
? ", " : "", str
? str
: "");
7672 * set_dma_reserve - set the specified number of pages reserved in the first zone
7673 * @new_dma_reserve: The number of pages to mark reserved
7675 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7676 * In the DMA zone, a significant percentage may be consumed by kernel image
7677 * and other unfreeable allocations which can skew the watermarks badly. This
7678 * function may optionally be used to account for unfreeable pages in the
7679 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7680 * smaller per-cpu batchsize.
7682 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7684 dma_reserve
= new_dma_reserve
;
7687 void __init
free_area_init(unsigned long *zones_size
)
7689 init_unavailable_mem();
7690 free_area_init_node(0, zones_size
,
7691 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7694 static int page_alloc_cpu_dead(unsigned int cpu
)
7697 lru_add_drain_cpu(cpu
);
7701 * Spill the event counters of the dead processor
7702 * into the current processors event counters.
7703 * This artificially elevates the count of the current
7706 vm_events_fold_cpu(cpu
);
7709 * Zero the differential counters of the dead processor
7710 * so that the vm statistics are consistent.
7712 * This is only okay since the processor is dead and cannot
7713 * race with what we are doing.
7715 cpu_vm_stats_fold(cpu
);
7720 int hashdist
= HASHDIST_DEFAULT
;
7722 static int __init
set_hashdist(char *str
)
7726 hashdist
= simple_strtoul(str
, &str
, 0);
7729 __setup("hashdist=", set_hashdist
);
7732 void __init
page_alloc_init(void)
7737 if (num_node_state(N_MEMORY
) == 1)
7741 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7742 "mm/page_alloc:dead", NULL
,
7743 page_alloc_cpu_dead
);
7748 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7749 * or min_free_kbytes changes.
7751 static void calculate_totalreserve_pages(void)
7753 struct pglist_data
*pgdat
;
7754 unsigned long reserve_pages
= 0;
7755 enum zone_type i
, j
;
7757 for_each_online_pgdat(pgdat
) {
7759 pgdat
->totalreserve_pages
= 0;
7761 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7762 struct zone
*zone
= pgdat
->node_zones
+ i
;
7764 unsigned long managed_pages
= zone_managed_pages(zone
);
7766 /* Find valid and maximum lowmem_reserve in the zone */
7767 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7768 if (zone
->lowmem_reserve
[j
] > max
)
7769 max
= zone
->lowmem_reserve
[j
];
7772 /* we treat the high watermark as reserved pages. */
7773 max
+= high_wmark_pages(zone
);
7775 if (max
> managed_pages
)
7776 max
= managed_pages
;
7778 pgdat
->totalreserve_pages
+= max
;
7780 reserve_pages
+= max
;
7783 totalreserve_pages
= reserve_pages
;
7787 * setup_per_zone_lowmem_reserve - called whenever
7788 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7789 * has a correct pages reserved value, so an adequate number of
7790 * pages are left in the zone after a successful __alloc_pages().
7792 static void setup_per_zone_lowmem_reserve(void)
7794 struct pglist_data
*pgdat
;
7795 enum zone_type j
, idx
;
7797 for_each_online_pgdat(pgdat
) {
7798 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7799 struct zone
*zone
= pgdat
->node_zones
+ j
;
7800 unsigned long managed_pages
= zone_managed_pages(zone
);
7802 zone
->lowmem_reserve
[j
] = 0;
7806 struct zone
*lower_zone
;
7809 lower_zone
= pgdat
->node_zones
+ idx
;
7811 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7812 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7813 lower_zone
->lowmem_reserve
[j
] = 0;
7815 lower_zone
->lowmem_reserve
[j
] =
7816 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7818 managed_pages
+= zone_managed_pages(lower_zone
);
7823 /* update totalreserve_pages */
7824 calculate_totalreserve_pages();
7827 static void __setup_per_zone_wmarks(void)
7829 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7830 unsigned long lowmem_pages
= 0;
7832 unsigned long flags
;
7834 /* Calculate total number of !ZONE_HIGHMEM pages */
7835 for_each_zone(zone
) {
7836 if (!is_highmem(zone
))
7837 lowmem_pages
+= zone_managed_pages(zone
);
7840 for_each_zone(zone
) {
7843 spin_lock_irqsave(&zone
->lock
, flags
);
7844 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7845 do_div(tmp
, lowmem_pages
);
7846 if (is_highmem(zone
)) {
7848 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7849 * need highmem pages, so cap pages_min to a small
7852 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7853 * deltas control async page reclaim, and so should
7854 * not be capped for highmem.
7856 unsigned long min_pages
;
7858 min_pages
= zone_managed_pages(zone
) / 1024;
7859 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7860 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7863 * If it's a lowmem zone, reserve a number of pages
7864 * proportionate to the zone's size.
7866 zone
->_watermark
[WMARK_MIN
] = tmp
;
7870 * Set the kswapd watermarks distance according to the
7871 * scale factor in proportion to available memory, but
7872 * ensure a minimum size on small systems.
7874 tmp
= max_t(u64
, tmp
>> 2,
7875 mult_frac(zone_managed_pages(zone
),
7876 watermark_scale_factor
, 10000));
7878 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7879 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7880 zone
->watermark_boost
= 0;
7882 spin_unlock_irqrestore(&zone
->lock
, flags
);
7885 /* update totalreserve_pages */
7886 calculate_totalreserve_pages();
7890 * setup_per_zone_wmarks - called when min_free_kbytes changes
7891 * or when memory is hot-{added|removed}
7893 * Ensures that the watermark[min,low,high] values for each zone are set
7894 * correctly with respect to min_free_kbytes.
7896 void setup_per_zone_wmarks(void)
7898 static DEFINE_SPINLOCK(lock
);
7901 __setup_per_zone_wmarks();
7906 * Initialise min_free_kbytes.
7908 * For small machines we want it small (128k min). For large machines
7909 * we want it large (64MB max). But it is not linear, because network
7910 * bandwidth does not increase linearly with machine size. We use
7912 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7913 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7929 int __meminit
init_per_zone_wmark_min(void)
7931 unsigned long lowmem_kbytes
;
7932 int new_min_free_kbytes
;
7934 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7935 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7937 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7938 min_free_kbytes
= new_min_free_kbytes
;
7939 if (min_free_kbytes
< 128)
7940 min_free_kbytes
= 128;
7941 if (min_free_kbytes
> 262144)
7942 min_free_kbytes
= 262144;
7944 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7945 new_min_free_kbytes
, user_min_free_kbytes
);
7947 setup_per_zone_wmarks();
7948 refresh_zone_stat_thresholds();
7949 setup_per_zone_lowmem_reserve();
7952 setup_min_unmapped_ratio();
7953 setup_min_slab_ratio();
7958 core_initcall(init_per_zone_wmark_min
)
7961 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7962 * that we can call two helper functions whenever min_free_kbytes
7965 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7966 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7970 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7975 user_min_free_kbytes
= min_free_kbytes
;
7976 setup_per_zone_wmarks();
7981 int watermark_boost_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7982 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7986 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7993 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7994 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7998 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8003 setup_per_zone_wmarks();
8009 static void setup_min_unmapped_ratio(void)
8014 for_each_online_pgdat(pgdat
)
8015 pgdat
->min_unmapped_pages
= 0;
8018 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
8019 sysctl_min_unmapped_ratio
) / 100;
8023 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8024 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8028 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8032 setup_min_unmapped_ratio();
8037 static void setup_min_slab_ratio(void)
8042 for_each_online_pgdat(pgdat
)
8043 pgdat
->min_slab_pages
= 0;
8046 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
8047 sysctl_min_slab_ratio
) / 100;
8050 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8051 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8055 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8059 setup_min_slab_ratio();
8066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8068 * whenever sysctl_lowmem_reserve_ratio changes.
8070 * The reserve ratio obviously has absolutely no relation with the
8071 * minimum watermarks. The lowmem reserve ratio can only make sense
8072 * if in function of the boot time zone sizes.
8074 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8075 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8077 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8078 setup_per_zone_lowmem_reserve();
8082 static void __zone_pcp_update(struct zone
*zone
)
8086 for_each_possible_cpu(cpu
)
8087 pageset_set_high_and_batch(zone
,
8088 per_cpu_ptr(zone
->pageset
, cpu
));
8092 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8093 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8094 * pagelist can have before it gets flushed back to buddy allocator.
8096 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8097 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8100 int old_percpu_pagelist_fraction
;
8103 mutex_lock(&pcp_batch_high_lock
);
8104 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8106 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8107 if (!write
|| ret
< 0)
8110 /* Sanity checking to avoid pcp imbalance */
8111 if (percpu_pagelist_fraction
&&
8112 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8113 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8119 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8122 for_each_populated_zone(zone
)
8123 __zone_pcp_update(zone
);
8125 mutex_unlock(&pcp_batch_high_lock
);
8129 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8131 * Returns the number of pages that arch has reserved but
8132 * is not known to alloc_large_system_hash().
8134 static unsigned long __init
arch_reserved_kernel_pages(void)
8141 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8142 * machines. As memory size is increased the scale is also increased but at
8143 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8144 * quadruples the scale is increased by one, which means the size of hash table
8145 * only doubles, instead of quadrupling as well.
8146 * Because 32-bit systems cannot have large physical memory, where this scaling
8147 * makes sense, it is disabled on such platforms.
8149 #if __BITS_PER_LONG > 32
8150 #define ADAPT_SCALE_BASE (64ul << 30)
8151 #define ADAPT_SCALE_SHIFT 2
8152 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8156 * allocate a large system hash table from bootmem
8157 * - it is assumed that the hash table must contain an exact power-of-2
8158 * quantity of entries
8159 * - limit is the number of hash buckets, not the total allocation size
8161 void *__init
alloc_large_system_hash(const char *tablename
,
8162 unsigned long bucketsize
,
8163 unsigned long numentries
,
8166 unsigned int *_hash_shift
,
8167 unsigned int *_hash_mask
,
8168 unsigned long low_limit
,
8169 unsigned long high_limit
)
8171 unsigned long long max
= high_limit
;
8172 unsigned long log2qty
, size
;
8177 /* allow the kernel cmdline to have a say */
8179 /* round applicable memory size up to nearest megabyte */
8180 numentries
= nr_kernel_pages
;
8181 numentries
-= arch_reserved_kernel_pages();
8183 /* It isn't necessary when PAGE_SIZE >= 1MB */
8184 if (PAGE_SHIFT
< 20)
8185 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8187 #if __BITS_PER_LONG > 32
8189 unsigned long adapt
;
8191 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8192 adapt
<<= ADAPT_SCALE_SHIFT
)
8197 /* limit to 1 bucket per 2^scale bytes of low memory */
8198 if (scale
> PAGE_SHIFT
)
8199 numentries
>>= (scale
- PAGE_SHIFT
);
8201 numentries
<<= (PAGE_SHIFT
- scale
);
8203 /* Make sure we've got at least a 0-order allocation.. */
8204 if (unlikely(flags
& HASH_SMALL
)) {
8205 /* Makes no sense without HASH_EARLY */
8206 WARN_ON(!(flags
& HASH_EARLY
));
8207 if (!(numentries
>> *_hash_shift
)) {
8208 numentries
= 1UL << *_hash_shift
;
8209 BUG_ON(!numentries
);
8211 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8212 numentries
= PAGE_SIZE
/ bucketsize
;
8214 numentries
= roundup_pow_of_two(numentries
);
8216 /* limit allocation size to 1/16 total memory by default */
8218 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8219 do_div(max
, bucketsize
);
8221 max
= min(max
, 0x80000000ULL
);
8223 if (numentries
< low_limit
)
8224 numentries
= low_limit
;
8225 if (numentries
> max
)
8228 log2qty
= ilog2(numentries
);
8230 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8233 size
= bucketsize
<< log2qty
;
8234 if (flags
& HASH_EARLY
) {
8235 if (flags
& HASH_ZERO
)
8236 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8238 table
= memblock_alloc_raw(size
,
8240 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8241 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
8245 * If bucketsize is not a power-of-two, we may free
8246 * some pages at the end of hash table which
8247 * alloc_pages_exact() automatically does
8249 table
= alloc_pages_exact(size
, gfp_flags
);
8250 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8252 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8255 panic("Failed to allocate %s hash table\n", tablename
);
8257 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8258 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8259 virt
? "vmalloc" : "linear");
8262 *_hash_shift
= log2qty
;
8264 *_hash_mask
= (1 << log2qty
) - 1;
8270 * This function checks whether pageblock includes unmovable pages or not.
8272 * PageLRU check without isolation or lru_lock could race so that
8273 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8274 * check without lock_page also may miss some movable non-lru pages at
8275 * race condition. So you can't expect this function should be exact.
8277 * Returns a page without holding a reference. If the caller wants to
8278 * dereference that page (e.g., dumping), it has to make sure that that it
8279 * cannot get removed (e.g., via memory unplug) concurrently.
8282 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8283 int migratetype
, int flags
)
8285 unsigned long iter
= 0;
8286 unsigned long pfn
= page_to_pfn(page
);
8289 * TODO we could make this much more efficient by not checking every
8290 * page in the range if we know all of them are in MOVABLE_ZONE and
8291 * that the movable zone guarantees that pages are migratable but
8292 * the later is not the case right now unfortunatelly. E.g. movablecore
8293 * can still lead to having bootmem allocations in zone_movable.
8296 if (is_migrate_cma_page(page
)) {
8298 * CMA allocations (alloc_contig_range) really need to mark
8299 * isolate CMA pageblocks even when they are not movable in fact
8300 * so consider them movable here.
8302 if (is_migrate_cma(migratetype
))
8308 for (; iter
< pageblock_nr_pages
; iter
++) {
8309 if (!pfn_valid_within(pfn
+ iter
))
8312 page
= pfn_to_page(pfn
+ iter
);
8314 if (PageReserved(page
))
8318 * If the zone is movable and we have ruled out all reserved
8319 * pages then it should be reasonably safe to assume the rest
8322 if (zone_idx(zone
) == ZONE_MOVABLE
)
8326 * Hugepages are not in LRU lists, but they're movable.
8327 * THPs are on the LRU, but need to be counted as #small pages.
8328 * We need not scan over tail pages because we don't
8329 * handle each tail page individually in migration.
8331 if (PageHuge(page
) || PageTransCompound(page
)) {
8332 struct page
*head
= compound_head(page
);
8333 unsigned int skip_pages
;
8335 if (PageHuge(page
)) {
8336 if (!hugepage_migration_supported(page_hstate(head
)))
8338 } else if (!PageLRU(head
) && !__PageMovable(head
)) {
8342 skip_pages
= compound_nr(head
) - (page
- head
);
8343 iter
+= skip_pages
- 1;
8348 * We can't use page_count without pin a page
8349 * because another CPU can free compound page.
8350 * This check already skips compound tails of THP
8351 * because their page->_refcount is zero at all time.
8353 if (!page_ref_count(page
)) {
8354 if (PageBuddy(page
))
8355 iter
+= (1 << page_order(page
)) - 1;
8360 * The HWPoisoned page may be not in buddy system, and
8361 * page_count() is not 0.
8363 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8366 if (__PageMovable(page
) || PageLRU(page
))
8370 * If there are RECLAIMABLE pages, we need to check
8371 * it. But now, memory offline itself doesn't call
8372 * shrink_node_slabs() and it still to be fixed.
8375 * If the page is not RAM, page_count()should be 0.
8376 * we don't need more check. This is an _used_ not-movable page.
8378 * The problematic thing here is PG_reserved pages. PG_reserved
8379 * is set to both of a memory hole page and a _used_ kernel
8387 #ifdef CONFIG_CONTIG_ALLOC
8388 static unsigned long pfn_max_align_down(unsigned long pfn
)
8390 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8391 pageblock_nr_pages
) - 1);
8394 static unsigned long pfn_max_align_up(unsigned long pfn
)
8396 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8397 pageblock_nr_pages
));
8400 /* [start, end) must belong to a single zone. */
8401 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8402 unsigned long start
, unsigned long end
)
8404 /* This function is based on compact_zone() from compaction.c. */
8405 unsigned long nr_reclaimed
;
8406 unsigned long pfn
= start
;
8407 unsigned int tries
= 0;
8412 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8413 if (fatal_signal_pending(current
)) {
8418 if (list_empty(&cc
->migratepages
)) {
8419 cc
->nr_migratepages
= 0;
8420 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8426 } else if (++tries
== 5) {
8427 ret
= ret
< 0 ? ret
: -EBUSY
;
8431 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8433 cc
->nr_migratepages
-= nr_reclaimed
;
8435 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
8436 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
8439 putback_movable_pages(&cc
->migratepages
);
8446 * alloc_contig_range() -- tries to allocate given range of pages
8447 * @start: start PFN to allocate
8448 * @end: one-past-the-last PFN to allocate
8449 * @migratetype: migratetype of the underlaying pageblocks (either
8450 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8451 * in range must have the same migratetype and it must
8452 * be either of the two.
8453 * @gfp_mask: GFP mask to use during compaction
8455 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8456 * aligned. The PFN range must belong to a single zone.
8458 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8459 * pageblocks in the range. Once isolated, the pageblocks should not
8460 * be modified by others.
8462 * Return: zero on success or negative error code. On success all
8463 * pages which PFN is in [start, end) are allocated for the caller and
8464 * need to be freed with free_contig_range().
8466 int alloc_contig_range(unsigned long start
, unsigned long end
,
8467 unsigned migratetype
, gfp_t gfp_mask
)
8469 unsigned long outer_start
, outer_end
;
8473 struct compact_control cc
= {
8474 .nr_migratepages
= 0,
8476 .zone
= page_zone(pfn_to_page(start
)),
8477 .mode
= MIGRATE_SYNC
,
8478 .ignore_skip_hint
= true,
8479 .no_set_skip_hint
= true,
8480 .gfp_mask
= current_gfp_context(gfp_mask
),
8481 .alloc_contig
= true,
8483 INIT_LIST_HEAD(&cc
.migratepages
);
8486 * What we do here is we mark all pageblocks in range as
8487 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8488 * have different sizes, and due to the way page allocator
8489 * work, we align the range to biggest of the two pages so
8490 * that page allocator won't try to merge buddies from
8491 * different pageblocks and change MIGRATE_ISOLATE to some
8492 * other migration type.
8494 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8495 * migrate the pages from an unaligned range (ie. pages that
8496 * we are interested in). This will put all the pages in
8497 * range back to page allocator as MIGRATE_ISOLATE.
8499 * When this is done, we take the pages in range from page
8500 * allocator removing them from the buddy system. This way
8501 * page allocator will never consider using them.
8503 * This lets us mark the pageblocks back as
8504 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8505 * aligned range but not in the unaligned, original range are
8506 * put back to page allocator so that buddy can use them.
8509 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8510 pfn_max_align_up(end
), migratetype
, 0);
8515 * In case of -EBUSY, we'd like to know which page causes problem.
8516 * So, just fall through. test_pages_isolated() has a tracepoint
8517 * which will report the busy page.
8519 * It is possible that busy pages could become available before
8520 * the call to test_pages_isolated, and the range will actually be
8521 * allocated. So, if we fall through be sure to clear ret so that
8522 * -EBUSY is not accidentally used or returned to caller.
8524 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8525 if (ret
&& ret
!= -EBUSY
)
8530 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8531 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8532 * more, all pages in [start, end) are free in page allocator.
8533 * What we are going to do is to allocate all pages from
8534 * [start, end) (that is remove them from page allocator).
8536 * The only problem is that pages at the beginning and at the
8537 * end of interesting range may be not aligned with pages that
8538 * page allocator holds, ie. they can be part of higher order
8539 * pages. Because of this, we reserve the bigger range and
8540 * once this is done free the pages we are not interested in.
8542 * We don't have to hold zone->lock here because the pages are
8543 * isolated thus they won't get removed from buddy.
8546 lru_add_drain_all();
8549 outer_start
= start
;
8550 while (!PageBuddy(pfn_to_page(outer_start
))) {
8551 if (++order
>= MAX_ORDER
) {
8552 outer_start
= start
;
8555 outer_start
&= ~0UL << order
;
8558 if (outer_start
!= start
) {
8559 order
= page_order(pfn_to_page(outer_start
));
8562 * outer_start page could be small order buddy page and
8563 * it doesn't include start page. Adjust outer_start
8564 * in this case to report failed page properly
8565 * on tracepoint in test_pages_isolated()
8567 if (outer_start
+ (1UL << order
) <= start
)
8568 outer_start
= start
;
8571 /* Make sure the range is really isolated. */
8572 if (test_pages_isolated(outer_start
, end
, 0)) {
8573 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8574 __func__
, outer_start
, end
);
8579 /* Grab isolated pages from freelists. */
8580 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8586 /* Free head and tail (if any) */
8587 if (start
!= outer_start
)
8588 free_contig_range(outer_start
, start
- outer_start
);
8589 if (end
!= outer_end
)
8590 free_contig_range(end
, outer_end
- end
);
8593 undo_isolate_page_range(pfn_max_align_down(start
),
8594 pfn_max_align_up(end
), migratetype
);
8598 static int __alloc_contig_pages(unsigned long start_pfn
,
8599 unsigned long nr_pages
, gfp_t gfp_mask
)
8601 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8603 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8607 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8608 unsigned long nr_pages
)
8610 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8613 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8614 page
= pfn_to_online_page(i
);
8618 if (page_zone(page
) != z
)
8621 if (PageReserved(page
))
8624 if (page_count(page
) > 0)
8633 static bool zone_spans_last_pfn(const struct zone
*zone
,
8634 unsigned long start_pfn
, unsigned long nr_pages
)
8636 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8638 return zone_spans_pfn(zone
, last_pfn
);
8642 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8643 * @nr_pages: Number of contiguous pages to allocate
8644 * @gfp_mask: GFP mask to limit search and used during compaction
8646 * @nodemask: Mask for other possible nodes
8648 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8649 * on an applicable zonelist to find a contiguous pfn range which can then be
8650 * tried for allocation with alloc_contig_range(). This routine is intended
8651 * for allocation requests which can not be fulfilled with the buddy allocator.
8653 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8654 * power of two then the alignment is guaranteed to be to the given nr_pages
8655 * (e.g. 1GB request would be aligned to 1GB).
8657 * Allocated pages can be freed with free_contig_range() or by manually calling
8658 * __free_page() on each allocated page.
8660 * Return: pointer to contiguous pages on success, or NULL if not successful.
8662 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8663 int nid
, nodemask_t
*nodemask
)
8665 unsigned long ret
, pfn
, flags
;
8666 struct zonelist
*zonelist
;
8670 zonelist
= node_zonelist(nid
, gfp_mask
);
8671 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8672 gfp_zone(gfp_mask
), nodemask
) {
8673 spin_lock_irqsave(&zone
->lock
, flags
);
8675 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8676 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8677 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8679 * We release the zone lock here because
8680 * alloc_contig_range() will also lock the zone
8681 * at some point. If there's an allocation
8682 * spinning on this lock, it may win the race
8683 * and cause alloc_contig_range() to fail...
8685 spin_unlock_irqrestore(&zone
->lock
, flags
);
8686 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8689 return pfn_to_page(pfn
);
8690 spin_lock_irqsave(&zone
->lock
, flags
);
8694 spin_unlock_irqrestore(&zone
->lock
, flags
);
8698 #endif /* CONFIG_CONTIG_ALLOC */
8700 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8702 unsigned int count
= 0;
8704 for (; nr_pages
--; pfn
++) {
8705 struct page
*page
= pfn_to_page(pfn
);
8707 count
+= page_count(page
) != 1;
8710 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8714 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8715 * page high values need to be recalulated.
8717 void __meminit
zone_pcp_update(struct zone
*zone
)
8719 mutex_lock(&pcp_batch_high_lock
);
8720 __zone_pcp_update(zone
);
8721 mutex_unlock(&pcp_batch_high_lock
);
8724 void zone_pcp_reset(struct zone
*zone
)
8726 unsigned long flags
;
8728 struct per_cpu_pageset
*pset
;
8730 /* avoid races with drain_pages() */
8731 local_irq_save(flags
);
8732 if (zone
->pageset
!= &boot_pageset
) {
8733 for_each_online_cpu(cpu
) {
8734 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8735 drain_zonestat(zone
, pset
);
8737 free_percpu(zone
->pageset
);
8738 zone
->pageset
= &boot_pageset
;
8740 local_irq_restore(flags
);
8743 #ifdef CONFIG_MEMORY_HOTREMOVE
8745 * All pages in the range must be in a single zone and isolated
8746 * before calling this.
8749 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8755 unsigned long flags
;
8756 unsigned long offlined_pages
= 0;
8758 /* find the first valid pfn */
8759 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8763 return offlined_pages
;
8765 offline_mem_sections(pfn
, end_pfn
);
8766 zone
= page_zone(pfn_to_page(pfn
));
8767 spin_lock_irqsave(&zone
->lock
, flags
);
8769 while (pfn
< end_pfn
) {
8770 if (!pfn_valid(pfn
)) {
8774 page
= pfn_to_page(pfn
);
8776 * The HWPoisoned page may be not in buddy system, and
8777 * page_count() is not 0.
8779 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8785 BUG_ON(page_count(page
));
8786 BUG_ON(!PageBuddy(page
));
8787 order
= page_order(page
);
8788 offlined_pages
+= 1 << order
;
8789 del_page_from_free_list(page
, zone
, order
);
8790 pfn
+= (1 << order
);
8792 spin_unlock_irqrestore(&zone
->lock
, flags
);
8794 return offlined_pages
;
8798 bool is_free_buddy_page(struct page
*page
)
8800 struct zone
*zone
= page_zone(page
);
8801 unsigned long pfn
= page_to_pfn(page
);
8802 unsigned long flags
;
8805 spin_lock_irqsave(&zone
->lock
, flags
);
8806 for (order
= 0; order
< MAX_ORDER
; order
++) {
8807 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8809 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8812 spin_unlock_irqrestore(&zone
->lock
, flags
);
8814 return order
< MAX_ORDER
;
8817 #ifdef CONFIG_MEMORY_FAILURE
8819 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8820 * test is performed under the zone lock to prevent a race against page
8823 bool set_hwpoison_free_buddy_page(struct page
*page
)
8825 struct zone
*zone
= page_zone(page
);
8826 unsigned long pfn
= page_to_pfn(page
);
8827 unsigned long flags
;
8829 bool hwpoisoned
= false;
8831 spin_lock_irqsave(&zone
->lock
, flags
);
8832 for (order
= 0; order
< MAX_ORDER
; order
++) {
8833 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8835 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8836 if (!TestSetPageHWPoison(page
))
8841 spin_unlock_irqrestore(&zone
->lock
, flags
);